This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

New Physics Searches at the BESIII Experiment

Shenjian Chen [email protected] School of Physics, Nanjing University, Nanjing 210093, China Nanjing Proton Source Research and Design Center, Nanjing 210093, China    Stephen Lars Olsen [email protected] University of Chinese Academy of Science, Beijing 100049, China Institute for Basic Science, Daejeon 34126, South Korea
Abstract

The Standard Model (SM) of particle physics, comprised of the unified electro-weak (EW) and Quantum Chromodynamic (QCD) theories, accurately explains almost all experimental results related to the micro-world, and has made a number of predictions for previously unseen particles, most notably the Higgs scalar boson, that were subsequently discovered. As a result, the SM is currently universally accepted as the theory of the fundamental particles and their interactions. However, in spite of its numerous successes, the SM has a number of apparent shortcomings including: many free parameters that must be supplied by experimental measurements; no mechanism to produce the dominance of matter over antimatter in the universe; and no explanations for gravity, the dark matter in the universe, neutrino masses, the number of particle generations, etc. Because of these shortcomings, there is considerable incentive to search for evidence for new, non-SM physics phenomena that might provide important clues about what a new, beyond the SM theory (BSM) might look like. Although the center-of-mass energies that BESIII can access are far below the energy frontier, searches for new, BSM physics are an important component of its research program. Here we describe ways that BESIII looks for signs of BSM physics by measuring rates for processes that the SM predicts to be forbidden or very rare, searching for non-SM particles such as dark photons, making precision tests of SM predictions, and looking for violations of the discrete symmetries CC and CPCP in processes for which the SM-expectations are immeasurably small.

New Physics, Dark photons, Lepton flavor violation, CC and CPCP violation

I Introduction

The Standard Model consistently predicts the results of experimental measurements and has emerged as the only viable candidate theory for describing elementary particle interactions Weinberg (2018). In spite of its great success, there are a number of reasons to believe that the Standard Model (SM) is not the ultimate theory, including:

  • The SM has 19 free parameters that must be supplied by experimental measurements. These include the quark, lepton and Higgs masses, the mixing angles of the Cabibbo-Kobayashi-Maskawa (CKM) quark-flavor mixing matrix, and the couplings of the electric, weak and QCD color forces.

  • As first pointed out by Sakharov Sakharov (1967), the matter-antimatter asymmetry of the universe implies the existence of sizable CPCP-violating interactions in nature. However, The established SM mechanism for CPCP violation fails to explain the matter-dominated universe by about ten orders of magnitude; there must be additional CPCP violating mechanisms in nature beyond those contained in the SM.

  • The model has no explanation for dark matter, which is, apparently, the dominant component of the mass of the universe.

  • The particles in the SM are arranged in three generations of colored quarks and three generations of leptons; particle interactions are mediated by three forces, the color, electromagnetic and weak forces. The theory provides no explanation for why the number of generations is three and it does not account in any way for gravity, the fourth force that is known to exist.

As a result, there have been a huge number of experimental efforts aimed finding “new physics,” which refers to new physical phenomena beyond the Standard Model (BSM) of particle physics. This may be, for example, a new fundamental particle, such as a fourth generation quark or lepton, or a new fundamental force carrier, such as a dark photon, high-mass gauge boson, a new Higgs-like meson, etc. Searches for new physics can be performed in two ways. One method is to look for direct production of new particles in collisions at high energy accelerators, for example at the Large Hadron Collider, and reconstruct it from its SM decay products. Another way is to measure precisely a decay process that can be accurately described by the SM, and look for deviations from the SM prediction of the decay rate. According to quantum field theory (QFT), new heavy particles can contribute to the decay process through virtual loop diagrams. These make precision measurements sensitive to new physics, and this technique is widely used in high intensity collider experiments such as BESIII Prasad (2019); Wang (2015); Godang (2013).

Here we review highlights of some of these activities at BESIII.

II Rare Processes

II.1 Search for flavor changing neutral currents (FCNC)

Flavor changing neutral current (FCNC) processes transform an up-type (u,c,tu,c,t) or down-type (d,s,bd,s,b) quark into another quark of the same type but with a different flavor. In the SM, these processes are mediated by the ZZ boson and are known as neutral currents. However, they are strongly suppressed by the Glashow–Iliopoulos–Maiani (GIM) cancellation Glashow et al. (1970) and only occur as second-order loop processes. In many extensions of the SM, virtual TeV-scale particles can contribute competing processes that lead to measurable deviations from SM-inferred transition rates or other properties. Hence studies of rare FCNC processes are suitable probes for new physics.

Recently, hints of discrepancies have been observed in the semi-leptonic FCNC processes of the bb-quark, bs+b\to s\ell^{+}\ell^{-} (=e,μ\ell=e,\mu) by the LHCb experiment Capriotti (2019): (1) The differential branching fractions measured as a function of the squared four-momentum transferred to the two leptons, Q2Q^{2}, for several BB-meson decay modes are below the theoretical predictions Aaij et al. (2014a, 2015a, 2016a, 2015b); Detmold and Meinel (2016). The largest local discrepancy is a 3.3σ3.3\sigma difference in the rate for Bs0ϕμ+μB_{s}^{0}\to\phi\mu^{+}\mu^{-} decay from its SM-predicted value. (2) The ratios of branching fractions for decays involving muons and electrons, defined as RK=(B+K+μ+μ)(B+K+e+e)R_{K}=\frac{\mathcal{B}(B^{+}\to K^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+}\to K^{+}e^{+}e^{-})} and RK=(B+K+μ+μ)(B+K+e+e)R_{K^{*}}=\frac{\mathcal{B}(B^{+}\to K^{*+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+}\to K^{*+}e^{+}e^{-})}, which are unity in the SM (i.e. lepton-flavor universality), were measured to be Aaij et al. (2014b, 2017)

RK=0.7450.074+0.090±0.036 at central Q2[1.0,6.0]GeV/c2\displaystyle R_{K}=0.745^{+0.090}_{-0.074}\pm 0.036\text{ at central }Q^{2}\in[1.0,6.0]\,\text{GeV}/c^{2} 2.6σ\displaystyle 2.6\sigma
RK=0.660.07+0.11±0.03 at low Q2[0.045,1.1]GeV/c2\displaystyle R_{K^{*}}=0.66^{+0.11}_{-0.07}\pm 0.03\text{ at low }Q^{2}\in[0.045,1.1]\,\text{GeV}/c^{2} 2.1σ2.3σ\displaystyle 2.1\sigma-2.3\sigma
RK=0.690.07+0.11±0.05 at central Q2[1.1,6.0]GeV/c2\displaystyle R_{K^{*}}=0.69^{+0.11}_{-0.07}\pm 0.05\text{ at central }Q^{2}\in[1.1,6.0]\,\text{GeV}/c^{2} 2.4σ2.5σ\displaystyle 2.4\sigma-2.5\sigma

where the levels of deviations from the SM predictions are indicated. (3) Measurements of the quantity P5P^{\prime}_{5}, which is the chiral asymmetry produced by the interference between the transversely and longitudinally polarized amplitudes in the decay BK++B\to K^{*+}\ell^{+}\ell^{-}, are 2.8σ2.8\sigma and 3.0σ3.0\sigma lower than the SM prediction in two Q2Q^{2} intervals below the J/ψJ/\psi resonance mass Aaij et al. (2016b). Since these discrepancies could be evidence for new particles that would extend the SM, it is important to check if there are similar deviations in the charm sector.

While SM rates for FCNC transitions in the down-type bb- or ss-quark sectors are relatively frequent because of the large mass of the top quark contribution to the loop, those in the up-type cc-quark sector are especially rare due to the small masses of the intermediate down-like quarks in the loop that result in a strong GIM cancellation. For cuc\to u transition rates for charmed and charmonia particles that proceed via the SM loop contribution, dubbed as short distance (SD) effects, the expected branching fractions are typically between <108<10^{-8} Greub et al. (1996); Fajfer et al. (2001a); Burdman et al. (2002); Fajfer et al. (2001b); Paul et al. (2011); Cappiello et al. (2013) and 101010^{-10}-101410^{-14} Sanchis-Lozano (1994); Wang et al. (2008), respectively. For FCNC decays of charmed mesons, the measured rates are enhanced by a few orders of magnitude by SM contributions from long distance (LD) effects that proceed via di-lepton decays of ordinary ρ\rhoω\omega and ϕ\phi vector mesons Paul et al. (2011); Cappiello et al. (2013). However, some extensions to the SM further enhance these FCNC processes, sometimes by orders of magnitude Prelovsek and Wyler (2001); Paul et al. (2010); Fajfer et al. (2001b); Hill (1995); Aulakh and Mohapatra (1982); Glashow and Weinberg (1977).

The BESIII experiment has searched for cc-quark FCNC processes in both charmed meson and charmonium decays. No significant signals for new physics are found in any of the investigated decay modes, and the inferred 90% confidence level (CL) upper limits on the branching fractions are summarized in Table 1.

  • For the D0γγD^{0}\to\gamma\gamma mode, the upper limit is consistent with that previously set by the BaBar experiment Lees et al. (2012a). The BESIII result is the first experimental study of this decay that uses D0D^{0} mesons produced at the open-charm threshold.

  • For the rare decays Dh(h())e+eD\to h(h^{(^{\prime})})e^{+}e^{-}, where hh=light meson(s), searches for four-body decays of D+D^{+} mesons are performed for the first time, and the upper limits for D0D^{0} meson decays are, in general, one order of magnitude better than previous measurements Patrignani et al. (2016).

  • Searches for the FCNC decays ψ(2S)D0e+e\psi(2S)\to D^{0}e^{+}e^{-} and ψ(2S)Λc+p¯e+e\psi(2S)\to\Lambda_{c}^{+}\bar{p}e^{+}e^{-} are performed for the first time. The upper limit on J/ψD0e+eJ/\psi\to D^{0}e^{+}e^{-} is two orders of magnitude more stringent than the best previous result, which was set by the BESII collaboration Ablikim et al. (2006a).

Table 1: Results for the upper limit at 90% CL on the branching fractions for various FCNC process searches performed at BESIII. Also listed are the best previous results.
Mode Data UL\mathcal{B}^{\text{UL}} at 90% CL Ref. Previous best UL\mathcal{B}^{\text{UL}}
D0γγD^{0}\to\gamma\gamma 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770)\;\; 3.8×1063.8\times 10^{-6} Ablikim et al. (2015a) 2.2×1062.2\times 10^{-6}
D+π+π0e+eD^{+}\to\pi^{+}\pi^{0}e^{+}e^{-} 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770) 1.4×1051.4\times 10^{-5} Ablikim et al. (2018a)
D+K+π0e+eD^{+}\to K^{+}\pi^{0}e^{+}e^{-} 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770) 1.5×1051.5\times 10^{-5} Ablikim et al. (2018a)
D+KS0π+e+eD^{+}\to K_{S}^{0}\pi^{+}e^{+}e^{-} 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770) 2.6×1052.6\times 10^{-5} Ablikim et al. (2018a)
D+KS0K+e+eD^{+}\to K_{S}^{0}K^{+}e^{+}e^{-} 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770) 1.1×1051.1\times 10^{-5} Ablikim et al. (2018a)
D0KK+e+eD^{0}\to K^{-}K^{+}e^{+}e^{-} 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770) 1.1×1051.1\times 10^{-5} Ablikim et al. (2018a) 3.15×1043.15\times 10^{-4}
D0π+πe+eD^{0}\to\pi^{+}\pi^{-}e^{+}e^{-} 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770) 0.7×1050.7\times 10^{-5} Ablikim et al. (2018a) 3.73×1043.73\times 10^{-4}
D0Kπ+e+eD^{0}\to K^{-}\pi^{+}e^{+}e^{-} 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770) 4.1×1054.1\times 10^{-5} Ablikim et al. (2018a) 3.85×1043.85\times 10^{-4}
D0π0e+eD^{0}\to\pi^{0}e^{+}e^{-} 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770) 0.4×1050.4\times 10^{-5} Ablikim et al. (2018a) 0.45×1040.45\times 10^{-4}
D0ηe+eD^{0}\to\eta e^{+}e^{-} 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770) 0.3×1050.3\times 10^{-5} Ablikim et al. (2018a) 1.1×1041.1\times 10^{-4}
D0ωe+eD^{0}\to\omega e^{+}e^{-} 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770) 0.6×1050.6\times 10^{-5} Ablikim et al. (2018a) 1.8×1041.8\times 10^{-4}
D0KS0e+eD^{0}\to K_{S}^{0}e^{+}e^{-} 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\,\psi(3770) 1.2×1051.2\times 10^{-5} Ablikim et al. (2018a) 1.1×1041.1\times 10^{-4}
J/ψD0e+eJ/\psi\to D^{0}e^{+}e^{-} 1.311.31J/ψJ/\psi 8.5×1088.5\times 10^{-8} Ablikim et al. (2017a) 1.1×1051.1\times 10^{-5}
ψ(2S)D0e+e\psi(2S)\to D^{0}e^{+}e^{-} 448448ψ(2S)\psi(2S)\; 1.4×1071.4\times 10^{-7} Ablikim et al. (2017a)
ψ(2S)Λc+p¯e+e\psi(2S)\to\Lambda_{c}^{+}\bar{p}e^{+}e^{-} 448448ψ(2S)\psi(2S) 1.7×1061.7\times 10^{-6} Ablikim (2018)

II.2 Prospects for BESIII rare decay searches

The BESIII FCNC search results mentioned above are based on data collected in 2009-2012, which included 1.31B J/ψJ/\psi and 448M ψ(2S)\psi(2S) event samples and a 2.93 fb-1 data sample that was accumulated at ECM=3.773E_{\rm CM}=3.773 GeV, the peak energy of the ψ(3770)DD¯\psi(3770)\rightarrow D\bar{D} resonance. BESIII has recently increased the J/ψJ/\psi data sample to 10B events and will eventually increase the ψ(2S)\psi(2S) sample to 3B events, and the ψ(3770)DD¯\psi(3770)\rightarrow D\bar{D} data to 20 fb-1 (see Table 7.1 in ref. Ablikim et al. (2020a)). Since the results listed in Table 1 are mainly limited by statistics, when the full data are available and analyzed, the sensitivity levels of FCNC searches should improve, in most cases, by factors of 7\sim 7, and decay branching fractions will be probed at the 10610^{-6}-10810^{-8} levels. If no interesting signals are found, more stringent upper limits would be established that should further constrain the parameter spaces of a number of new physics models.

In contrast to FCNC processes, charged-current weak decays of charmonium states are allowed, but are expected to occur as very rare processes; the SM-predicted branching fractions are of the order 101010^{-10}-10810^{-8} Sanchis-Lozano (1994), which means they would be difficult to detect at BESIII, even with the full 10B event J/ψJ/\psi data sample. However, some BSM calculations based on a two-Higgs-doublet model predict that the branching ratios of charmonium weak decays could be enhanced to be as large as 10510^{-5} Datta et al. (1999). BESIII searched for several Cabibbo-favored weak decays, such as the hadronic processes J/ψDsρ+J/\psi\to D_{s}^{-}\rho^{+} and J/ψD¯0K¯0J/\psi\to\bar{D}^{0}\bar{K}^{*0} Ablikim et al. (2014a), and the semi-leptonic process J/ψDs()e+νeJ/\psi\to D_{s}^{(*)-}e^{+}\nu_{e} Ablikim et al. (2014b), and established 90% CL branching fraction upper limits in the 105\sim 10^{-5}-10610^{-6} range. Searches for some Cabibbo-suppressed weak decays of the J/ψJ/\psi are currently underway at BESIII, with expected branching fraction sensitivity levels of about 10710^{-7}.

III Testing SM predictions for lepton couplings & CKM matrix elements

In the SM, the strength of charged-current weak interactions is governed by a single universal parameter, the Fermi constant GFG_{\rm F}. The three charged leptons, (e,μ,τe^{-},\mu^{-},\tau^{-}) all couple to the WW-boson with this strength, a feature called lepton-flavor universality, LFU. Although the quarks appeared, at first, to have different coupling strengths, this is because of a misalignment of the charge=1/3=-1/3 strong-interaction flavor eigenstates (d,s,bd,s,b) and their weak-interactions counterparts (d,s,bd^{\prime},s^{\prime},b^{\prime}), as was first realized by Cabibbo in 1963 Cabibbo (1963). He hypothesized that the weak interaction flavor states were related to the strong-interaction states by an orthogonal rotation; the most general rotation matrix for three quark generations was first written down by Kobayashi and Maskawa in 1973 Kobayashi and Maskawa (1973). The universality of the quark-WW couplings is reflected by the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The equality of the weak interaction-coupling strengths for the quarks and leptons is a feature that is specfic to the SM and is violated by many beyond-the-SM theories, such as those that include fourth generation quarks, additional weak vector bosons, or multiple Higgs particles.

III.1 Search for violations of charged lepton flavor universality (LFU)

The equality of the electron and muon couplings, geg_{e} and gμg_{\mu}, has been established at the 𝒪(0.2%){\mathcal{O}}(0.2\%) level, i.e. (ge/gμ1)=0.002±0.002(g_{e}/g_{\mu}-1)=0.002\pm 0.002, by a comparison between the K+e+νeK^{+}\rightarrow e^{+}\nu_{e} and K+μ+νμK^{+}\rightarrow\mu^{+}\nu_{\mu} partial decay widths measured by the NA62 experiment Lazzeroni et al. (2013) together with PDG values for the K+K^{+} lifetime and the electron & muon masses Tanabashi et al. (2018). The best test of the equality of the τ\tau-lepton coupling and muon couplings, (gτ/gμ1)=0.0008±0.0021(g_{\tau}/g_{\mu}-1)=0.0008\pm 0.0021, has similar precision and is from a BESIII measurement of the tau mass Ablikim et al. (2014c) together with with PDG values of the tau-lepton’s lifetime and leptonic decay branching fractions.

The possibility of LFU violation has attracted considerable recent attention because of measurements from BaBar Lees et al. (2012b), Belle Abdesselam et al. (2019) and LHCb Aaij et al. (2018) of the relative decay rates for the semileptonic processes B¯D()τν\bar{B}\rightarrow D^{(*)}\tau^{-}\nu and B¯D()ν\bar{B}\rightarrow D^{(*)}\ell^{-}\nu (=μore)\ell^{-}=\mu^{-}\ {\rm or}\ e^{-}) that seem to violate SM expectations. Specifically, the HFLAV Group’s recent averages of experimental measurements are Amhis et al. (2019):

D=(B¯Dτν)(B¯Dν)\displaystyle{\mathcal{R}}_{D}=\frac{{\mathcal{B}}(\bar{B}\rightarrow D\tau^{-}\nu)}{{\mathcal{B}}(\bar{B}\rightarrow D\ell^{-}\nu)} =\displaystyle= 0.340±0.027±0.013(expt.)[𝐒𝐌:0.299±0.003]\displaystyle 0.340\pm 0.027\pm 0.013~{}({\rm expt.})~{}~{}[{\bf SM:}~{}~{}0.299\pm 0.003]
D=(B¯Dτν)(B¯Dν)\displaystyle{\mathcal{R}}_{D^{*}}=\frac{{\mathcal{B}}(\bar{B}\rightarrow D^{*}\tau^{-}\nu)}{{\mathcal{B}}(\bar{B}\rightarrow D^{*}\ell^{-}\nu)} =\displaystyle= 0.295±0.011±0.008(expt.)[𝐒𝐌:0.258±0.005].\displaystyle 0.295\pm 0.011\pm 0.008~{}({\rm expt.)}~{}~{}[{\bf SM:}~{}~{}0.258\pm 0.005]. (1)

Here the discrepancies with LFU, if they are real and not just statistical fluctuations, are of order 10%, and motivate more careful checks of LFU in semileptonic and purely leptonic charmed particle decays with BESIII data.

III.1.1 BESIII tests of LFU

Charmed particle decay measurements at BESIII are summarized in detail elsewhere in this volume Li and Lyu (2020). Table 2 summarizes measurements that are relevant for LFU tests, where all the measurements agree with SM expectations within 12σ1\sim 2\sigma. The quantities in the last column, (Γe(τ)/Γμ)/SM1\sqrt{(\Gamma_{e(\tau)}/\Gamma_{\mu})/{\rm SM}}-1, which would be (ge(τ)/gμ1)(g_{e(\tau)}/g_{\mu}-1) if radiative corrections and detailed considerations of the relevant form-factors were properly applied, are included as indicators of the sensitivity levels. According to these values, the most stringent BESIII sensitivity levels for LFU-violating effects are a factor of five better than those of the B¯D()τν\bar{B}\rightarrow D^{(*)}\tau^{-}\nu measurements (eqn. 1) but an order of magnitude poorer than the limits on ge/gμg_{e}/g_{\mu} from K+K^{+} decay.

Table 2: BESIII measurements of charmed particle semileptonic and purely leptonic branching-fraction measurements, and comparisons of the Γe(τ)/Γμ\Gamma_{e(\tau)}/\Gamma_{\mu} to SM expectations for LFU.
mode nevtsn_{\rm evts} (×103){\mathcal{B}}\ (\times 10^{-3}) ref. Γe(τ)/Γμ\Gamma_{e(\tau)}/\Gamma_{\mu} SM pred. Γe(τ)/ΓμSM1\sqrt{\frac{\Gamma_{e(\tau)}/\Gamma_{\mu}}{\rm SM}}-1
D0Kμ+νμD^{0}\rightarrow K^{-}\mu^{+}\nu_{\mu}  47.1K    34.1±0.2±0.434.1\pm 0.2\pm 0.4 Ablikim et al. (2019a)    1.027±0.0141.027\pm 0.014    1.026±0.0011.026\pm 0.001  0.0±0.0070.0\pm 0.007
D0Ke+νeD^{0}\rightarrow K^{-}e^{+}\nu_{e} 70.7K 35.05±0.14±0.0335.05\pm 0.14\pm 0.03 Ablikim et al. (2015b)
D0πμ+νμD^{0}\rightarrow\pi^{-}\mu^{+}\nu_{\mu} 2.3K 2.72±0.08±0.062.72\pm 0.08\pm 0.06 Ablikim et al. (2018b) 1.085±0.0371.085\pm 0.037 1.015±0.0021.015\pm 0.002  0.034±0.0190.034\pm 0.019
D0πe+νeD^{0}\rightarrow\pi^{-}e^{+}\nu_{e} 6.3K 2.93±0.04±0.032.93\pm 0.04\pm 0.03 Ablikim et al. (2015b)
D+K¯0μ+νμD^{+}\rightarrow\bar{K}^{0}\mu^{+}\nu_{\mu} 20.7K 87.2±0.7±1.887.2\pm 0.7\pm 1.8 Ablikim et al. (2016a) 1.012±0.0331.012\pm 0.033 1.03\approx 1.03
D+K¯0e+νeD^{+}\rightarrow\bar{K}^{0}e^{+}\nu_{e} 26.0K 86.0±0.6±1.586.0\pm 0.6\pm 1.5 Ablikim et al. (2017b)
D+π0μ+νμD^{+}\rightarrow\pi^{0}\mu^{+}\nu_{\mu} 1.3K 3.50±0.11±0.103.50\pm 0.11\pm 0.10 Ablikim et al. (2018b) 1.037±0.0451.037\pm 0.045 1.015±0.0021.015\pm 0.002  0.011±0.0230.011\pm 0.023
D+π0e+νeD^{+}\rightarrow\pi^{0}e^{+}\nu_{e} 3.4K 3.63±0.08±0.053.63\pm 0.08\pm 0.05 Ablikim et al. (2017b)
D+ωμ+νμD^{+}\rightarrow\omega\mu^{+}\nu_{\mu} 194 1.77±0.18±0.111.77\pm 0.18\pm 0.11 Ablikim et al. (2020b) 0.92±0.140.92\pm 0.14 0.930.970.93-0.97
D+ωe+νeD^{+}\rightarrow\omega e^{+}\nu_{e} 491 1.63±0.11±0.081.63\pm 0.11\pm 0.08 Ablikim et al. (2015c)
D+ημ+νμD^{+}\rightarrow\eta\mu^{+}\nu_{\mu} 234 1.04±0.10±0.051.04\pm 0.10\pm 0.05 Ablikim et al. (2020c) 1.03±0.131.03\pm 0.13 1.01.031.0-1.03
D+ηe+νeD^{+}\rightarrow\eta e^{+}\nu_{e} 373 1.07±0.08±0.051.07\pm 0.08\pm 0.05 Ablikim et al. (2018c)
Λc+Λμ+νμ\Lambda_{c}^{+}\rightarrow\Lambda\mu^{+}\nu_{\mu} 1.3K 34.9±4.6±2.734.9\pm 4.6\pm 2.7 Ablikim et al. (2017c) 1.04±0.311.04\pm 0.31 1.0\approx 1.0
Λc+Λe+νe\Lambda_{c}^{+}\rightarrow\Lambda e^{+}\nu_{e} 104 36.3±3.8±2.036.3\pm 3.8\pm 2.0 Ablikim et al. (2015d)
D+τ+ντD^{+}\rightarrow\tau^{+}\nu_{\tau} 137 1.20±0.24±0.121.20\pm 0.24\pm 0.12 Ablikim et al. (2019b) 3.21±0.773.21\pm 0.77 2.672.67  0.09±0.15-0.09\pm 0.15
D+μ+νμD^{+}\rightarrow\mu^{+}\nu_{\mu} 400 0.37±0.02±0.010.37\pm 0.02\pm 0.01 Ablikim et al. (2014d)
Ds+τ+ντD_{s}^{+}\rightarrow\tau^{+}\nu_{\tau} 22.1K 51.7±1.5±01.651.7\pm 1.5\pm 01.6 Muramatsu et al. (2020) 9.42±0.409.42\pm 0.40 9.759.75 0.02±0.02-0.02\pm 0.02
Ds+μ+νμD_{s}^{+}\rightarrow\mu^{+}\nu_{\mu} 1.1K 5.49±0.16±0.155.49\pm 0.16\pm 0.15 Ablikim et al. (2019c)

III.1.2 Future prospects for LFU tests at BESIII

The most stringent BESIII tests for LFU-violating effects in charmed-particle decays are derived from measurements of DK¯+νD\rightarrow\bar{K}\ell^{+}\nu and π+ν\pi\ell^{+}\nu semileptonic decays, where the current (ge/gμ1)(g_{e}/g_{\mu}-1) sensitivities are at the 12%1\sim 2\% level. These results are based on the analysis of the 2.93 fb-1 data sample accumulated at the ψ(3770)DD¯\psi(3770)\rightarrow D\bar{D} resonance. When the analysis of the full 20 fb-1 data set is complete, the sensitivity levels of the LFU tests, which are now mostly statistically limited, will improve by factors of 2.5\sim 2.5, and be in the sub-1% range. In this case, if the current 1.8σ1.8\sigma discrepancy that BESIII sees in D0KνD^{0}\rightarrow K^{-}\ell^{-}\nu is real and the central value reported in Table 2 persists, its significance will increase to more than 4σ4\sigma. The other BESIII measurement with interesting potential is the ratio of the Ds+τ+νD_{s}^{+}\rightarrow\tau^{+}\nu and Ds+μ+νD_{s}^{+}\rightarrow\mu^{+}\nu purely leptonic decay rates that is based on analyses of a 3.19 fb-1 data sample collected at ECM=4178E_{\rm CM}=4178 MeV, where σ(e+eDs+D¯s)\sigma(e^{+}e^{-}\rightarrow D_{s}^{*+}\bar{D}_{s}^{-}) has a local maximum of \sim1 nb. In this case, the BESIII long-range plan includes an additional 3 fb-1 data sample at 4178 MeV, which would provide a 2\sqrt{2} improvement in (gτ/gμ1)(g_{\tau}/g_{\mu}-1) sensitivity.

III.2 Unitarity of the CKM Matrix and the Cabibbo Angle Anomaly

The CKM matrix (see Fig. 1a) is the DNA of flavor physics; its elements characterize all of the SM weak charged current interactions of quarks. It defines a rotation in three-dimensions of flavor-space and, in the SM where there are three quark generations, it must be exactly unitary; any deviation from this would be a clear signal for new physics.

The unitarity condition for the top row of the CKM matrix is: |Vud|2+|Vus|2+|Vub|2=1|V_{ud}|^{2}+|V_{us}|^{2}+|V_{ub}|^{2}=1. Experimentally, a high precision value of |Vud||V_{ud}| comes from an analysis of eight superallowed 0+0+0^{+}\rightarrow 0^{+} nuclear β\beta-decays Hardy and Towner (2016) corrected for electroweak effects. The latest result is |Vud|=0.97370(4)|V_{ud}|=0.97370(4) Seng et al. (2018). A precise value of the ratio |Vus|/|Vud|=0.2313(5)|V_{us}|/|V_{ud}|=0.2313(5) ratio is determined from a KLOE measurement of (K+μ+ν){\mathcal{B}}(K^{+}\rightarrow\mu^{+}\nu) Ambrosino et al. (2006), the PDG 2018 world average for (π+μ+ν){\mathcal{B}}(\pi^{+}\rightarrow\mu^{+}\nu) Tanabashi et al. (2018) and a FLAG average of LQCD evaluations of the pseudoscalar form-factor ratio fK+/fπ+f_{K^{+}}/f_{\pi^{+}} Aoki et al. (2020). The value of |Vub|2|V_{ub}|^{2}, determined from BB-meson decays, is 𝒪(105)\sim{\mathcal{O}}(10^{-5}) and is a negligible contributor to the unitarity condition Tanabashi et al. (2018). The combination of these results Seng et al. (2018),

|Vud|2+|Vus|2+|Vub|2=0.9983(5),|V_{ud}|^{2}+|V_{us}|^{2}+|V_{ub}|^{2}=0.9983(5), (2)

indicates a nominal 3.5σ\sim 3.5\sigma deviation from unitarity that, if taken at face value, is strong evidence for a SM violation.

Since deviations from CKM unitarity would be a clear sign of new physics, the eqn. 2 result inspired further investigations. These included: independent determinations of |Vud||V_{ud}| based on the neutron lifetime Czarnecki et al. (2019); Seng et al. (2020) that returned consistent results, albeit with a slightly larger error; an independent evaluation of |Vus|/|Vud||V_{us}|/|V_{ud}| using (KLπν){\mathcal{B}}(K_{L}\rightarrow\pi\ell\nu) and (π+π0e+ν){\mathcal{B}}(\pi^{+}\rightarrow\pi^{0}e^{+}\nu) Bazavov et al. (2019) that found an even larger deviation from unitarity, but with a corresondingly larger error; and reexaminations of the nuclear physics corrections used in the nuclear β\beta-decay analyses for |Vud||V_{ud}| Seng et al. (2019); Gorchtein (2019) that did not change the central value, but indicated that the previous error that was assigned to these effects may have been somewhat underestimated. The current state of affairs is that the best current analyses of the existing data find an 𝒪(0.1%){\mathcal{O}}(0.1\%) deviation from unitarity for the top row of the CKM matrix with a significance level that is somewhere in the 2σ5σ2\sigma\sim 5\sigma range.

Refer to caption
Figure 1: a) The CKM matrix and its Wolfenstein parameterization. The shaded rectangles in the latter have areas |Vij|\propto|V_{ij}|. b) Values of sinθC\sin\theta_{C} derived from different measurements. The value based on nuclear β\beta-decay is from Seng et al. (2018), the one from Kμ2K_{\mu 2} (K3K_{\ell 3}) decays is from Aoki et al. (2020) (Bazavov et al. (2019)), and the one from DD decays is the average of BESIII (D+μ+ν){\mathcal{B}}(D^{+}\rightarrow\mu^{+}\nu) Ablikim et al. (2014d) and (D0πe+ν)/(D0Ke+ν){\mathcal{B}}(D^{0}\rightarrow\pi^{-}e^{+}\nu)/{\mathcal{B}}(D^{0}\rightarrow K^{-}e^{+}\nu) Ablikim et al. (2015b) measurements. The shaded blue band is the PDG 2018 sinθC\sin\theta_{C} value based on a unitarity-constrained fit to all CKM elements Tanabashi et al. (2018).

The strong generational hierarchy of the CKM quark-flavor mixing matrix is illustrated in Fig. 1a, where the Wolfenstein parameterization Wolfenstein (1983) is shown with shaded rectangles with areas that are proportional to |Vi,j||V_{i,j}|. Transitions between different generations (i.e., further off-diagonal elements) are successively suppressed by additional factors of λ=sinθC0.225\lambda=\sin\theta_{C}\simeq 0.225, where θC\theta_{C} is the Cabibbo angle. A striking feature of the Wolfenstein formulation, and a characteristic of the SM, is that, to 𝒪(λ6)104{\mathcal{O}}(\lambda^{6})\sim 10^{-4}, the four entries in the upper-left corner of the matrix, i.e., all transitions involving (u,du,d) & (c,sc,s) quarks, are well characterized by the single parameter, sinθC\sin\theta_{C}. The authors of ref. Grossman et al. (2019) argue that comparing the sinθC\sin\theta_{C} values derived from different qiqjq_{i}\leftrightarrow q_{j} (i=u,c;j=d,si=u,c;~{}j=d,s) subprocesses is a more sensitive test for new physics than tests of the CKM matrix unitarity, and provide, in support of this claim, an example of a toy model that has a heavy gauge boson with different dd- and ss-quark couplings that demonstrates this. In Fig. 1b, values of sinθC\sin\theta_{C} derived from the nuclear β\beta-decay (udu\leftrightarrow d) and K2&K3K_{\ell 2}~{}\&~{}K_{\ell 3} decays (usu\leftrightarrow s) transitions discussed in the previous paragraph are shown. The apparent discrepancy from a single, universal value is referred to as the Cabibbo angle anomaly.

Studies of cdc\rightarrow d transitions provide independent sinθC\sin\theta_{C} determinations. In the SM, |Vcd|=|Vus|=sinθC|V_{cd}|=|V_{us}|=\sin\theta_{C}; a deviation between the sinθC\sin\theta_{C} value inferred from cdc\rightarrow d decays with the one evaluated from K2&K3K_{\ell 2}~{}\&~{}K_{\ell 3} decays would be another clear indication of new physics. To date, this relation has not been strenuously tested. The PDG 2018 world-average value, |Vus|=0.2243±0.0005|V_{us}|=0.2243\pm 0.0005, differs from that for |Vcd|=0.218±0.004|V_{cd}|=0.218\pm 0.004 by 1.5σ1.5\sigma, where the uncertainty of the latter is nearly an order of magnitude poorer Tanabashi et al. (2018). The best determinations of |Vcd||V_{cd}| to date are from statistically limited BESIII measurements of (D+μ+ν){\mathcal{B}}(D^{+}\rightarrow\mu^{+}\nu) Ablikim et al. (2014d) and the ratio (D0πe+ν)/(D0Ke+ν){\mathcal{B}}(D^{0}\rightarrow\pi^{-}e^{+}\nu)/{\mathcal{B}}(D^{0}\rightarrow K^{-}e^{+}\nu) Ablikim et al. (2015b), both of which are based on analyses of BESIII’s 2.97 fb-1 sample of ψ(3770)DD¯\psi(3770)\rightarrow D\bar{D} events that are discussed elsewere in this volume Li and Lyu (2020). The average value of the two |Vcd||V_{cd}| measurements is plotted in Fig. 1b.

With the full 20 fb-1 ψ(3770)\psi(3770) data sample, the BESIII precision on |Vcd||V_{cd}| should be improved by at least a factor of 2.5; if the result is the same as the current central value, the significance of the discrepancy would increase to about the 4σ4\sigma level.

IV Searches for non-SM sources of 𝑪𝑷CP violation

Searches for new sources of CPVCPV have been elevated to a new level of interest by the recent LHCb discovery of a CPCP violating asymmetry in the charmed quark sector; a 5σ5\sigma difference between the branching fractions for D0K+KD^{0}\rightarrow K^{+}K^{-} or π+π\pi^{+}\pi^{-} and D¯0\bar{D}^{0} to the same final states, with a magnitude of order 10310^{-3} Aaij et al. (2019); the measured CPCP violating asymmetry is at the high end of theoretical estimates for its SM value, which range from 10310^{-3} Golden and Grinstein (1989); Buccella et al. (1995); Bianco et al. (2003); Grossman et al. (2007) to 10410^{-4} Khodjamirian and Petrov (2017). Although the LHCb result is intriguing in that it may be a sign of the long-sought-for non-SM mechanism for CPVCPV, uncertainties in the SM calculations for this asymmetry make it impossible to either establish or rule out this possibility Saur and Yu (2020).

Violations of CPCP have never been observed in weak decays of strange hyperons; the current limit on CPVCPV asymmetry in Λ\Lambda hyperon decay is of order 10210^{-2} Barnes et al. (1996), which is two orders-of-magnitude above the highest conceivable SM effects Donoghue et al. (1986). A non-zero measurement of a CPVCPV asymmetry at the level of 103\sim 10^{-3} would be an unambiguous signature for new physics.

IV.1 Search for 𝑪𝑷CP violation in 𝚲𝒑𝝅\Lambda\rightarrow p\pi^{-} decay

Parity violation in the weak interactions was discovered in 1957 Lee and Yang (1956); Wu et al. (1957). Immediately thereafter there was considerable interest is studying parity violations in strange hyperon decays that were predicted by Lee and Yang Lee and Yang (1957). For the YBπY\rightarrow B\pi weak decay process, where YY is one of the spin =1/2=1/2 strange hyperons and BB is an octet baryon, parity violation allows for both SS- and PP-wave transitions, and the final states are characterized by the Lee-Yang parameters:

α=2Re(SP)|S|2+|P|2;β=2Im(SP)|S|2+|P|2;γ=|S|2|P|2|S|2+|P|2,\alpha=\frac{2{\rm Re}(S^{*}P)}{|S|^{2}+|P|^{2}};~{}~{}~{}\beta=\frac{2{\rm Im}(S^{*}P)}{|S|^{2}+|P|^{2}};~{}~{}~{}\gamma=\frac{|S|^{2}-|P|^{2}}{|S|^{2}+|P|^{2}}, (3)

where α2+β2+γ2=1\alpha^{2}+\beta^{2}+\gamma^{2}=1. If the initial-state YY has a non-zero polarization 𝒫Y\vec{\mathcal{P}}_{Y}, the BB flight direction in the YY rest frame relative to the polarization direction, θ\theta, is distributed as dN/dcosθ1+α|𝒫Y|cosθdN/d\cos\theta\propto 1+\alpha|\vec{\mathcal{P}}_{Y}|\cos\theta and, if α\alpha is also non-zero, has an explicit parity-violating up-down asymmetry. The polarization of the daughter baryon, 𝒫B\vec{\mathcal{P}}_{B}, depends on 𝒫Y{\mathcal{P}}_{Y}, θ\theta, and the α,β,γ\alpha,\ \beta,\ \gamma parameters as illustrated in Fig. 2a. If CPCP is conserved, the decay parameters for YY and Y¯\bar{Y} are equal in magnitude but opposite in sign. (The parameters for Y¯\bar{Y} are denoted by α¯\bar{\alpha} & β¯\bar{\beta}.) Violations of CPCP symmetry would result in non-zero values for the parameters ACPA_{CP} and BCPB_{CP}, defined as

ACPα+α¯αα¯andBCPβ+β¯ββ¯.A_{CP}\equiv\frac{\alpha+\bar{\alpha}}{\alpha-\bar{\alpha}}~{}~{}~{}{\rm and}~{}~{}~{}B_{CP}\equiv\frac{\beta+\bar{\beta}}{\beta-\bar{\beta}}. (4)
Refer to caption
Figure 2: a) Polarized YBπY\rightarrow B\pi decay illustrating the α\alpha, β\beta, γ\gamma dependence of the daughter BB polarization, where q\vec{q} is a vector along the BB momentum in the YY rest frame. b) The J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda} reaction. Parity conservation in J/ψJ/\psi decay guarantees that the (cosθ\cos\theta-dependent) Λ\Lambda and Λ¯\bar{\Lambda} polarizations are equal and perpendicular to the production plane.

Measuring αΛ\alpha_{\Lambda} for Λpπ\Lambda\rightarrow p\pi^{-} decay is not straight forward. Measurements of the up-down parity-violating asymmetry in Λpπ\Lambda\rightarrow p\pi^{-} determine the product αΛ𝒫Λ\alpha_{\Lambda}{\mathcal{P}}_{\Lambda}, where 𝒫Λ{\mathcal{P}}_{\Lambda} is generally unknown. To extract αΛ\alpha_{\Lambda}, the polarization of the final-state proton must be measured. This was done in a series of pre-1975 experiments by scattering the final-state proton on carbon, with a world-average result of αΛ=0.642±0.013\alpha_{\Lambda}=0.642\pm 0.013 Bricman et al. (1978); this was the PDG value for 43 years, from 1976 until 2019.

BESIII measured αΛ\alpha_{\Lambda} and α¯Λ\bar{\alpha}_{\Lambda} with fully reconstructed e+eJ/ψ(Λpπ)(Λ¯p¯π+)e^{+}e^{-}\rightarrow J/\psi\rightarrow(\Lambda\rightarrow p\pi^{-})(\bar{\Lambda}\rightarrow\bar{p}\pi^{+}) events. For this reaction, the joint angular distribution can be expressed as Fäldt and Kupsc (2017)

dΓ(1+αψcos2θΛ)[1+𝒫Λ(cosθΛ)(αΛcosθ+α¯Λcosθ+)]+αΛα¯Λ[1(ξ)+(1αψ2)12cosΔΦ2(ξ)],d\Gamma\propto(1+\alpha_{\psi}\cos^{2}\theta_{\Lambda})[1+{\mathcal{P}}_{\Lambda}(\cos\theta_{\Lambda})(\alpha_{\Lambda}\cos\theta_{-}+\bar{\alpha}_{\Lambda}\cos\theta_{+})]+\alpha_{\Lambda}\bar{\alpha}_{\Lambda}[{\mathcal{F}}_{1}(\xi)+({1-\alpha_{\psi}^{2}})^{\frac{1}{2}}\cos\Delta\Phi{\mathcal{F}}_{2}(\xi)], (5)

where: θΛ\theta_{\Lambda} is the Λ\Lambda production angle relative to the e+e^{+}-beam direction (the cosθΛ\cos\theta_{\Lambda} distribution is 1+αψcos2θΛ1+\alpha_{\psi}\cos^{2}\theta_{\Lambda}); ΔΦ\Delta\Phi is the complex phase difference between the A+,+A_{+,+} and A+,A_{+,-} helicity amplitudes; and ξ\xi denotes (θΛ,θ,ϕθ+,ϕ+)(\theta_{\Lambda},\theta_{-},\phi_{-}\theta_{+},\phi_{+}), where θ,ϕ\theta_{-},\phi_{-} ( θ+,ϕ+\theta_{+},\phi_{+}) are the Λ\Lambda (Λ¯\bar{\Lambda}) decay angles (see Fig. 2b). The cosθΛ\cos\theta_{\Lambda}-dependent Λ\Lambda (and Λ¯\bar{\Lambda}) polarization is given by

𝒫Λ(cosθΛ)=(1αψ2)12cosθΛsinθΛsinΔΦ1+αψcos2θΛ.{\mathcal{P}}_{\Lambda}(\cos\theta_{\Lambda})=\frac{({1-\alpha_{\psi}^{2}})^{\frac{1}{2}}\cos\theta_{\Lambda}\sin\theta_{\Lambda}\sin\Delta\Phi}{1+\alpha_{\psi}\cos^{2}\theta_{\Lambda}}. (6)

The Λ\Lambda polarization is zero if the A+,+A_{+,+} and A+,A_{+,-} helicity amplitudes are relatively real (i.e., ΔΦ=0\Delta\Phi=0), in which case it is apparent from eqn. 5 that only the product αΛα¯Λ\alpha_{\Lambda}\bar{\alpha}_{\Lambda} can be measured and individual determinations of αΛ\alpha_{\Lambda} and α¯Λ\bar{\alpha}_{\Lambda} cannot be extracted from the data. (Expressions for 1(ξ){\mathcal{F}}_{1}(\xi) and 2(ξ){\mathcal{F}}_{2}(\xi) are provided in ref. Fäldt and Kupsc (2017).)

When BESIII was being planned, it was generally thought that 𝒫Λ0{\mathcal{P}}_{\Lambda}\approx 0 and that J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda} events would not be useful for CPCP tests. It was somewhat of a surprise when BESIII subsequently discovered that, in fact, the polarization of Λ\Lambda and Λ¯\bar{\Lambda} hyperons produced in J/ψJ/\psi decays is substantial Ablikim et al. (2019d), as shown in Fig. 3a. With a sample of 420K fully reconstructed J/ψ(Λpπ)(Λ¯p¯π+)J/\psi\rightarrow(\Lambda\rightarrow p\pi^{-})(\bar{\Lambda}\rightarrow\bar{p}\pi^{+}) events in a 1.31B J/ψJ/\psi event sample, BESIII measured ACPΛ=0.006±0.012±0.007A_{CP}^{\Lambda}=-0.006\pm 0.012\ \pm 0.007. This null result improved on the precision of the best previous measurement, ACPΛ=+0.013±0.022A_{CP}^{\Lambda}=+0.013\pm 0.022 Barnes et al. (1996), that was based on 96K pp¯ΛΛ¯p\bar{p}\rightarrow\Lambda\bar{\Lambda} events, by a factor of two. As a by-product of this measurement, BESIII made the world’s most precise measurement of αΛ=0.750±0.010\alpha_{\Lambda}=0.750\pm 0.010, a result that is more than five standard deviations higher than the previous PDG average value. It is likely that all previous measurements were biased by a common systematic problem, probably related to the spin analyzing properties of carbon; the PDG 2019 value for αΛ\alpha_{\Lambda} is solely based on the BESIII value Tanabashi et al. (2018).

Refer to caption
Figure 3: Polarization vs cosθΛ(Ξ)\cos\theta_{\Lambda(\Xi^{-})} for a) J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda} Ablikim et al. (2019d) and b) J/ψΞΞ¯+J/\psi\rightarrow\Xi^{-}\bar{\Xi}^{+} [BESIII preliminary Adlarson et al. (2019)] events. The red curves are fits to the data; the blue curves are expectations for zero polarization.

IV.2 Prospects for BESIII 𝑪𝑷CP violation studies

The BESIII values for ACPΛA_{CP}^{\Lambda} and αΛ\alpha_{\Lambda} mentioned in the previous paragraph were realized by an analysis of 1.3 B J/ψJ/\psi decays, which is a small subset of BESIII’s total 10B J/ψJ/\psi event sample. The analysis of the full data set is currently underway that, when done, will provide a factor-of-three improvement in sensitivity.

BESIII is currently applying a similar analysis to J/ψ(ΞΛπ)(Ξ¯+Λ¯π+)J/\psi\to(\Xi^{-}\rightarrow\Lambda\pi^{-})(\bar{\Xi}^{+}\rightarrow\bar{\Lambda}\pi^{+}) hyperon pairs, where preliminary results demonstrate that there is substantial transverse Ξ\Xi polarization (see Fig. 3b). In ΞΞ¯+\Xi^{-}\bar{\Xi}^{+} events, the αΞ\alpha_{\Xi} decay parameter influences both the up-down decay asymmetry in the primary ΞΛπ\Xi\rightarrow\Lambda\pi process, and the polarization of the daughter Λ\Lambda hyperons (see Fig. 3a) that can be determined from the decay asymmetry in the secondary Λpπ\Lambda\rightarrow p\pi^{-} decay. For a given sample of J/ψJ/\psi decays, the number of fully reconstructed ΞΞ¯+\Xi^{-}\bar{\Xi}^{+} events in which Λpπ\Lambda\rightarrow p\pi^{-} and Λ¯p¯π+\bar{\Lambda}\rightarrow\bar{p}\pi^{+} are only about one quarter of the number of reconstructed J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda} events because of the smaller J/ψΞΞ¯+J/\psi\rightarrow\Xi^{-}\bar{\Xi}^{+} branching fraction and a lower detection efficiency. Nevertheless, this lower event number is compensated by the added information from the daughter Λ\Lambda decays. As a result, the sensitivity per event for the Ξ\Xi^{-} decay parameters is higher than that for Λ\Lambda parameters with J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda} events, and simulations show comparable precisions for αΞ\alpha_{\Xi^{-}} and αΛ\alpha_{\Lambda} Adlarson and Kupsc (2019). In contrast to Λpπ\Lambda\rightarrow p\pi, where measuring the daughter proton’s polarization is impractical, in ΞΛπ\Xi\rightarrow\Lambda\pi decays the daughter Λ\Lambda polarization is measured and BCPΞB_{CP}^{\Xi^{-}} can be determined; BCPΞB_{CP}^{\Xi^{-}} is potentially more sensitive to new physics than ACPΞA_{CP}^{\Xi^{-}} Gonzalez and Illana (1994).

In addition to the Λ\Lambda hyperons produced by J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda}, those produced as daughters in J/ψ(ΞΛπ)(Ξ¯+Λ¯π+)J/\psi\to(\Xi^{-}\rightarrow\Lambda\pi^{-})(\bar{\Xi}^{+}\rightarrow\bar{\Lambda}\pi^{+}) events are also useful for ACPΛA_{CP}^{\Lambda} measurements. The rms polarization of Λ\Lambda hyperons produced via J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda} (see Fig. 3a) is 𝒫J/ψ,Λrms0.13\langle{\mathcal{P}}_{J/\psi,\Lambda}\rangle_{\rm rms}\approx 0.13. In contrast, the rms polarization for Λ\Lambda hyperons produced as a daughter particle in ΞΛπ\Xi^{-}\rightarrow\Lambda\pi^{-} decay is 𝒫Ξ,Λrms|αΞ|=0.39±0.01\langle{\mathcal{P}}_{\Xi^{-},\Lambda}\rangle_{\rm rms}\approx|\alpha_{\Xi^{-}}|=0.39\pm 0.01 (see Fig. 2a). Thus, 𝒫Ξ,Λrms3𝒫J/ψ,Λrms\langle{\mathcal{P}}_{\Xi^{-},\Lambda}\rangle_{\rm rms}\approx 3\langle{\mathcal{P}}_{J/\psi,\Lambda}\rangle_{\rm rms} and, since the ACPΛA_{CP}^{\Lambda} sensitivity is proportional to nevts\sqrt{n_{\rm evts}} but linear in 𝒫Λrms\langle{\mathcal{P}}_{\Lambda}\rangle_{\rm rms}, a Λ\Lambda from ΞΛπ\Xi^{-}\rightarrow\Lambda\pi^{-} decay has nine times the equivalent statistical power of a Λ\Lambda from J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda}. Detailed estimates of BESIII’s ultimate statistical error for ACPA_{CP} with the existing 10B J/ψJ/\psi event sample, including Λ\Lambda hyperons from ΞΛπ\Xi\rightarrow\Lambda\pi decays, are reported in ref. Adlarson and Kupsc (2019) and summarized here in Table 3. The projected ultimate ACPΛA_{CP}^{\Lambda} sensitivity is 𝒪(2×103){\mathcal{O}}(2\times 10^{-3}), which is an order of magnitude improvement on the pre-BESIII result Barnes et al. (1996).

Table 3: The expected numbers of fully reconstructed events and the extrapolated 1σ1\sigma statistical errors on α=(αα¯)/2\langle\alpha\rangle=(\alpha-\bar{\alpha})/2 and ACPA_{CP} from a complete analysis of J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda}ΞΞ+¯\Xi^{-}\bar{\Xi^{+}} and Ξ0Ξ0¯\Xi^{0}\bar{\Xi^{0}} events in BESIII’s 10B J/ψJ/\psi event data sample (from ref. Adlarson and Kupsc (2019)). Here the full reconstruction of the Λpπ\Lambda\rightarrow p\pi^{-} and Λ¯p¯π+\bar{\Lambda}\rightarrow\bar{p}\pi^{+} decay channels are required.
reaction (×104){\mathcal{B}}\ (\times 10^{-4}) nevtsn_{\rm evts}    δαΛ\delta\langle\alpha_{\Lambda}\rangle   δACPΛ\delta A_{CP}^{\Lambda}   δαΞ\delta\langle\alpha_{\Xi^{-}}\rangle   δACPΞ\delta A_{CP}^{\Xi^{-}}   δαΞ0\delta\langle\alpha_{\Xi^{0}}\rangle   δACPΞ0\delta A_{CP}^{\Xi^{0}}
J/ψΛΛ¯J/\psi\rightarrow\Lambda\bar{\Lambda} 18.9 3,200K 0.0010 0.0049
J/ψΞΞ+¯J/\psi\rightarrow\Xi^{-}\bar{\Xi^{+}} 9.7 810K 0.0018 0.0034 0.0016 0.0039
J/ψΞ0Ξ0¯J/\psi\rightarrow\Xi^{0}\bar{\Xi^{0}} 11.6 670K 0.0019 0.0041 0.0017 0.0049
combined 0.0013 0.0023

V Standard model forbidden processes

Cross sections for e+eℎ𝑎𝑑𝑟𝑜𝑛𝑠e^{+}e^{-}\rightarrow{\it hadrons} in the BESIII accessible ECME_{\rm CM} regions are 𝒪(10nb){\mathcal{O}}(10~{}{\rm nb}) and the experiment typically records 𝒪(105){\mathcal{O}}(10^{5}) events/day. However, at the J/ψJ/\psi resonance peak, the cross section is 3.6μ\approx 3.6\mub, and in a typical day of operation BESIII collects 𝒪(108){\mathcal{O}}(10^{8}) events. The cross section at the ψ(2S)\psi(2S) peak is 2μ\approx 2\mub and the event rate is 𝒪(5×107){\mathcal{O}}(5\times 10^{7}) events/day. Thus, at the J/ψJ/\psi and ψ(2S)\psi(2S) peaks, BESIII has a high rate of events in a very clean experimental environment that are well suited for high sensitivity searches for a number of SM-model forbidden processes. About one third of the ψ(2S)\psi(2S) events decay via ψ(2S)π+πJ/ψ\psi(2S)\rightarrow\pi^{+}\pi^{-}J/\psi, where the triggering on, and detection of only the π+π\pi^{+}\pi^{-} pair provides an unbiased “beam” of tagged J/ψJ/\psi mesons that can be used to search for decays to final states that would otherwise be undetectable.

V.1 Search for the Landau-Yang theorem forbidden 𝑱/𝝍𝜸𝜸J/\psi\rightarrow\gamma\gamma decay

The Landau-Yang theorem states that a massive spin 1 meson cannot decay to two photons Landau (1948); Yang (1950). As a consequence, the J/ψγγJ/\psi\rightarrow\gamma\gamma decay mode is strictly forbidden. An unambiguous signal for J/ψγγJ/\psi\rightarrow\gamma\gamma would signal a breakdown of the spin-symmetry theorem of QFT, the underlying framework of the SM and its many proposed new physics extensions. (For a discussion of how QFT might be modified to accommodate a Landau-Yang theorem violation see ref. Gninenko et al. (2011).)

Refer to caption
Figure 4: a) The π+π\pi^{+}\pi^{-} recoil mass spectrum for selected ψ(2S)π+πγγ\psi(2S)\rightarrow\pi^{+}\pi^{-}\gamma\gamma events. The peak at the π+π\pi^{+}\pi^{-} recoil massmJ/ψ=3.097\approx m_{J/\psi}=3.097 GeV is entirely attributable to backgrounds from J/ψγπ0J/\psi\rightarrow\gamma\pi^{0} and γη\gamma\eta. b) The K+KK^{+}K^{-} invariant mass distribution for ψ(2S)γπ+πK+K\psi(2S)\rightarrow\gamma\pi^{+}\pi^{-}K^{+}K^{-} events with M(γK+K)=mJ/ψ±15M(\gamma K^{+}K^{-})=m_{J/\psi}\pm 15 MeV. A J/ψγϕJ/\psi\rightarrow\gamma\phi decay would show up as a narrow peak with M(K+K)mϕ=1.02M(K^{+}K^{-})\approx m_{\phi}=1.02 GeV. Both plots are from ref. Ablikim et al. (2014e).

The PDG 2018 upper limit, (J/ψγγ)<1.6×107{\mathcal{B}}(J/\psi\rightarrow\gamma\gamma)<1.6\times 10^{-7} Tanabashi et al. (2018), is entirely based on a BESIII measurement that uses tagged J/ψJ/\psi mesons that recoil from the π+π\pi^{+}\pi^{-} system in ψ(2S)π+πJ/ψ\psi(2S)\rightarrow\pi^{+}\pi^{-}J/\psi decays Ablikim et al. (2014e), and is a factor of 20 times more sensitive than previous measurements. In a data sample containing 106M ψ(2S)\psi(2S) decays, events with two oppositely charged tracks and two γ\gamma-rays that satisfy a four-constraint energy-momentum kinematic fit to the π+πγγ\pi^{+}\pi^{-}\gamma\gamma hypothesis were selected. Figure 4a shows the mass recoiling against the π+π\pi^{+}\pi^{-} tracks where there is a 29±729\pm 7 event peak at the J/ψJ/\psi mass that is consistent with being entirely due to the expected background from roughly equal numbers of J/ψγπ0J/\psi\rightarrow\gamma\pi^{0} and γη\gamma\eta events in which the π0\pi^{0} and η\eta decay to a pair of γ\gamma-rays with a large energy asymmetry and the low energy γ\gamma is undetected either because its energy is below the detection threshold or it outside of the fiducial acceptance region of the detector (|cosθγ|>0.92|\cos\theta_{\gamma}|>0.92).

V.1.1 Search for the CC-parity violating J/ψγϕJ/\psi\rightarrow\gamma\phi decay

A similar BESIII analysis searched for J/ψγϕJ/\psi\rightarrow\gamma\phi Ablikim et al. (2014e). Although this process does not violate the Landau-Yang theorem, it violates charge-parity (CC) conservation. The weak interactions are known to violate CC-parity, but the expected branching fractions for weak-interaction-mediated J/ψJ/\psi decays are below the level of 10910^{-9} Wang et al. (2017). If J/ψγϕJ/\psi\rightarrow\gamma\phi were seen with a branching fraction that is higher than this, it would be imply a CC-parity violation in the electromagnetic interaction and be an indicator of new physics. This measurement is based on a search for J/ψJ/\psi decays to γϕ\gamma\phi; ϕK+K\phi\rightarrow K^{+}K^{-}, with tagged J/ψJ/\psi mesons from ψ(2S)π+πJ/ψ\psi(2S)\rightarrow\pi^{+}\pi^{-}J/\psi decays. In this case kinematically constrained γπ+πK+K\gamma\pi^{+}\pi^{-}K^{+}K^{-} events, where the K+K^{+} and KK^{-} are positively identified as such by the BESIII pid systems and the π+π\pi^{+}\pi^{-} recoil mass is within ±15\pm 15 MeV of mJ/ψm_{J/\psi}. Figure 4b shows the K+KK^{+}K^{-} invariant mass where there is no sign of a ϕK+K\phi\rightarrow K^{+}K^{-} peak at MK+Kmϕ=1020M_{K^{+}K^{-}}\approx m_{\phi}=1020 MeV. A 90% CL upper limit on the size of the ϕ\phi signal is <6.9<6.9 events, which translates into a branching fraction upper limit of (J/ψγϕ)<1.4×106{\mathcal{B}}(J/\psi\rightarrow\gamma\phi)<1.4\times 10^{-6}. This is the first experimental limit for this decay.

V.2 Search for lepton flavor violation in 𝑱/𝝍𝒆𝝁J/\psi\rightarrow e\mu decays

The discovery of neutrino oscillations Fukuda et al. (1998) provided clear evidence for violations of lepton flavor conservation (LFV) in the neutrino sector. However, the SM translation of the neutrino results to the charged-lepton sector predicts LFV effects that are proportional to powers of the neutrino masses with branching fractions that are immeasurably small (<1051<10^{-51}). Thus, any observation of LFV at levels much higher than this would be clear evidence for new physics, such as grand unified (GUT) theories or the presence of extra dimensions. Although most attention is given to LFV searches in muon decay, tau decay and μe\mu\rightarrow e conversion experiments, in some theories LFV quarkonium decays, including Vij+V\rightarrow\ell^{-}_{i}\ell^{+}_{j} decays, where iji\neq j, are promising reactions Bordes et al. (2001). BESIII searched for the LFV decay J/ψeμ+J/\psi\rightarrow e^{-}\mu^{+}.

Refer to caption
Figure 5: a) |p|/s|\sum\vec{p}|/\sqrt{s} vs. Evis/sE_{\rm vis}/\sqrt{s} for selected J/ψeμ+J/\psi\rightarrow e^{-}\mu^{+} candidate events in BESIII  Ablikim et al. (2013a). b) Diagrams for leptoquark-mediated J/ψeΛc+J/\psi\rightarrow e^{-}\Lambda_{c}^{+} decay as per the model of ref. Pati and Salam (1974). c) The pKπ+pK^{-}\pi^{+} invariant mass distribution for selected, kinematically constrained J/ψepKπ+J/\psi\rightarrow e^{-}pK^{-}\pi^{+} events (from BESIII Ablikim et al. (2019e)). The expected shape of a J/ψΛc+eJ/\psi\rightarrow\Lambda_{c}^{+}e^{-}; Λc+pKπ+\Lambda_{c}^{+}\rightarrow pK^{-}\pi^{+} signal is shown as the blue histogram.

The best previous limit was a 2003 BESII result, (J/ψeμ)<1.1×106{\mathcal{B}}(J/\psi\rightarrow e^{-}\mu^{-})<1.1\times 10^{-6} Bai et al. (2003), that was based on an analysis of a sample of 5858M J/ψJ/\psi events. This was improved by a 2013 BESIII result that used a sample of 230M J/ψJ/\psi events. In this analysis, the variables |p|/s|\sum\vec{p}|/\sqrt{s} and Evis/sE_{\rm vis}/\sqrt{s} are examined for events with two back-to-back and oppositely charged tracks, with one track positively identified as an electron and the other as muon. Events with detected γ\gamma-rays or additional tracks are rejected, and selected events are required to satisfy a four-constraint energy-momentum kinematic fit. The main background is expected to be from J/ψμ+μJ/\psi\rightarrow\mu^{+}\mu^{-} events in which one of the muons passes the electron identification requirements. Figure 5a shows a scatterplot of |p|/s|\sum\vec{p}|/\sqrt{s} vs. Evis/sE_{\rm vis}/\sqrt{s} for selected events, where the four events in the signal box are consistent with the 4.75±1.094.75\pm 1.09 background events that are expected. (This background level corresponds to a muon to electron misidentification probability of 107\sim 10^{-7}.) The 90% CL upper limit of (J/ψeμ+)<1.6×107{\mathcal{B}}(J/\psi\rightarrow e^{-}\mu^{+})<1.6\times 10^{-7} that is established Ablikim et al. (2013a) is a factor of seven more stringent than the previous result.

V.3 Search for lepton/baryon number violations in 𝑱/𝝍𝚲𝒄+𝒆J/\psi\rightarrow\Lambda_{c}^{+}e^{-}

In addition to CPVCPV, another requirement that Sakharov listed for the production of the matter-antimatter symmetry of the universe is the existence of a mechanism for baryon/lepton number violation Sakharov (1967). Processes that violate baryon (B) and lepton number (L) but conserve their difference (B-L) occur in GUT theories Pati and Salam (1974). Experiments that search for B-violating decays of the proton have reported lifetime upper limits with spectacular sensitivities: e.g., τ(pe+π0)>1.6×1034\tau(p\rightarrow e^{+}\pi^{0})>1.6\times 10^{34} years Abe et al. (2017). In contrast, limits for B-violating decays in the heavy quark sector are sparse and not remotely as sensitive. These include a 90% CL upper limit (D0pe)<1.0×105{\mathcal{B}}(D^{0}\rightarrow pe^{-})<1.0\times 10^{-5} from CLEO Rubin et al. (2009) and BaBar branching fraction limits for B0Λc+B^{0}\rightarrow\Lambda_{c}^{+}\ell^{-} and BΛ(Λ¯)B^{-}\rightarrow\Lambda(\bar{\Lambda})\ell^{-} (here =e,μ\ell=e,\mu) that range from a few×106{\rm few}\times 10^{-6} for the Λc+\Lambda_{c}^{+} modes to a few×108{\rm few}\times 10^{-8} for the Λ(Λ¯)\Lambda(\bar{\Lambda}) modes del Amo Sanchez et al. (2011).

The only result on B-violating quarkonium decays is a BESIII upper limit on J/ψΛc+eJ/\psi\rightarrow\Lambda_{c}^{+}e^{-} that is based on an analysis of a sample of 1.31B J/ψJ/\psi decays. Quark line diagrams for this process in the context of the Pati-Salam model Pati and Salam (1974) are shown in Fig. 5b, where X and Y are virtual leptoquarks that mediate the decay. BESIII search searched for exclusive J/ψΛc+eJ/\psi\rightarrow\Lambda_{c}^{+}e^{-} decay events where the Λc+\Lambda_{c}^{+} decays to pKπ+pK^{-}\pi^{+} (=6.3%{\mathcal{B}}=6.3\%). The pKπ+pK^{-}\pi^{+} invariant mass distribution for candidate events, shown as data points in Fig. 5c, has no events in the mass interval that is ±4\pm 4 times the resolution and centered on the Λc+\Lambda_{c}^{+} mass. The absence of any event candidates translates into a 90% CL frequentist upper limit of (J/ψΛc+e)<6.9×108{\mathcal{B}}(J/\psi\rightarrow\Lambda_{c}^{+}e^{-})<6.9\times 10^{-8} Ablikim et al. (2019e).

VI Searches for New, Beyond the Standard Model Particles

In spite of the success of the SM, particle physics still faces a number of mysteries and challenges, including the origin of elementary particle masses and the nature of dark matter (DM). The Higgs mechanism Higgs (1964) is a theoretically attractive way to explain the mass of elementary particles. However, the SM relation for the Higgs mass is a potentially divergent infinite sum of quadratically increasing terms that somehow add up to the finite value mHiggs=125m_{\rm Higgs}=125 GeV, a SM feature that many theoretical physicists consider to be unnatural Susskind (1979). The existence of DM is inferred from a number of astrophysical and cosmological observations Jibrail et al. (2020). One possibility is that DM may be comprised of electrically neutral, weakly interacting, stable particles with a mass at the electroweak scale. However, none of the SM particles are good DM candidates and, from the perspective of theory and phenomenology, this implies that the SM is deficient and the quest for a more fundamental theory beyond the SM is strongly motivated. In some extensions of the SM, the naturalness and DM problems can be solved at once.

The naturalness problem can be solved by supersymmetry (SUSY) Martin (1997), where every SM particle has an as yet undiscovered partner with the same quantum numbers and gauge interactions but differs in spin by 12\frac{1}{2}. The most economical and intensively studied version of SUSY is the minimal supersymmetric model (MSSM) Martin (1997), with superpartners that include:

spin-zero sfermions: left handed f~L\tilde{f}_{L}, right handed f~R\tilde{f}_{R};
spin-12\frac{1}{2} gauginos: a bino B~\tilde{B}, three winos W~i\tilde{W}_{i}, gluinos g~\tilde{g};
spin-12\frac{1}{2} higgsinos: two H~i\tilde{H}_{i}.

The two higgsinos can mix with the bino and the three winos to produce two chargino χ1,2±\chi_{1,2}^{\pm} and four neutralino χ1,2,3,40\chi_{1,2,3,4}^{0} physical states. A discrete symmetry called RR-parity is introduced to make the lightest SUSY particle, usually the χ10\chi_{1}^{0}, stable, which makes it a nearly ideal DM candidate that is often denoted as simply χ\chi. A further extension is the so-called next-to-minimal MSSM (NMSSM) Ellwanger et al. (2010); Maniatis (2010); Djouadi et al. (2008), in which a complex isosinglet field is added. The NMSSM has a rich Higgs sector containing three CPCP-even, two CPCP-odd, and two charged Higgs bosons. The mass of the lightest CPCP-odd scalar Higgs boson, the A0A^{0}, may be less than twice the mass of charm quark, in which case it would be accessible at BESIII.

Although the lightest neutralino is an attractive DM candidate, the lack of any experimental evidence for it in either LHC experiments or direct detection experiments suggests that DM might be more complex than the neutralino of the SUSY models. Attempts to devise a unified explanation have led to a vast and diverse array of dark-sector models. These models necessarily have several sectors: a visible sector that includes all of the SM particles, a dark sector of particles that do not interact with the known strong, weak, or electromagnetic forces, and a portal sector that consists of particles that couple the visible and dark sectors. The latter may be vectors, axions, higgs-like scalars or neutrino-like fermions Essig et al. (2013); Alexander et al. (2016), of which vectors are the most frequently studied. The simplest scenario for the vector portal invokes a new force that is mediated by a U(1)U(1) gauge boson Holdom (1986) that couples very weakly to charged particles via kinetic mixing with the SM photon γ\gamma, with a mixing strength ε\varepsilon that is in the range between 10510^{-5} and 10210^{-2} Arkani-Hamed et al. (2009). This new boson is variously called a dark photon, hidden photon or UU boson, and is denoted as γ\gamma^{\prime}. The γ\gamma^{\prime} mass is expected to be low, on the order of MeV/c2c^{2} to GeV/c2c^{2} Arkani-Hamed et al. (2009) and, thus, it could be produced at the BEPCII collider in a variety of processes, depending on its mass.

VI.1 Search for 𝑨𝟎A^{0}, 𝜸\gamma^{\prime} and invisible decays of light mesons

Both the light CPCP-odd NMSSM Higgs boson A0A^{0} and dark photon γ\gamma^{\prime} have been searched for by BESIII. Since it is Higgs-like, the A0A^{0} couples to SM fermions with a strength proportional to the fermion mass. For an A0A^{0} with a mass below the τ\tau pair production threshold, the decay A0μ+μA^{0}\to\mu^{+}\mu^{-} is expected to be dominant. The A0A^{0} can also serve as a portal to the dark sector with the invisible-final-state decay process A0χχ¯A^{0}\to\chi\bar{\chi}. Similarly, as a portal between the SM and dark sectors, the γ\gamma^{\prime} can, in turn, either decay to χχ¯\chi\bar{\chi}, or visibly to a pair of light leptons or quarks, provided it is kinematically allowed.

BESIII results on searches for the A0A^{0}, γ\gamma^{\prime} and invisible decays of light meson states are summarized in Table 4. The A0A^{0} was searched for in J/ψγA0J/\psi\to\gamma A^{0} (A0μ+μA^{0}\to\mu^{+}\mu^{-}) and ψ(2S)π+πJ/ψ\psi(2S)\to\pi^{+}\pi^{-}J/\psi (J/ψγA0J/\psi\to\gamma A^{0}) (A0μ+μA^{0}\to\mu^{+}\mu^{-}) decay candidate events in BESIII’s J/ψJ/\psi Ablikim (2016) and ψ(2S)\psi(2S) Ablikim et al. (2012) data samples. The sensitivity obtained with the J/ψJ/\psi data is five times better than that with the ψ(2S)\psi(2S) data. The combination of BaBar Lees et al. (2013) and BESIII Ablikim (2016) measurements constrain the A0A^{0} to be mostly singlet. BESIII published three results on dark photon (γ\gamma^{\prime}) searches in J/ψJ/\psi and ψ(3770)\psi(3770) decays with resulting 90% CL exclusion regions for ε\varepsilon as a function of the dark photon mass that are shown in Fig. 6. BESIII dark photon searches in J/ψηγJ/\psi\to\eta\gamma^{\prime} (γe+e\gamma^{\prime}\to e^{+}e^{-}) decays Ablikim et al. (2019f) and J/ψηγJ/\psi\to\eta^{\prime}\gamma^{\prime} (γe+e\gamma^{\prime}\to e^{+}e^{-}) decays Ablikim et al. (2019g) were among the first searches that were based on these channels Ablikim et al. (2017d). BESIII results for dark photon searches in e+eγISRγ(γ+,=e,μ)e^{+}e^{-}\to\gamma_{\text{ISR}}\gamma^{\prime}(\gamma^{\prime}\to\ell^{+}\ell^{-},\ell=e,\mu) initial state radiation events were based on two years of data taking and are competitive with BaBar results Lees et al. (2014) based on nine years of running. Invisible decays of light mesons produced J/ψJ/\psi decays were also searched for at BESIII. These include the first measurements for the ω\omega and ϕ\phi vector mesons that are copiously produced via J/ψωηJ/\psi\to\omega\eta and ϕη\phi\eta decays Ablikim et al. (2018d). For J/ψϕηJ/\psi\to\phi\eta (ηinvisible\eta\to\emph{invisible})and J/ψϕηJ/\psi\to\phi\eta^{\prime} (ηinvisible\eta^{\prime}\to\emph{invisible}) decays, the BESIII limits Ablikim et al. (2013b) are factors of six and three improvements over previous results from BESII Ablikim et al. (2006b). These results provide complementary information to studies of the nature of DM and constrain parameters of the phenomenological models.

Refer to caption
Figure 6: Exclusion limits at the 90% confidence level for the mixing strength parameter ε\varepsilon as a function of the dark photon mass mγm_{\gamma^{\prime}}. Also shown are exclusion limits from other experiments. The ε\varepsilon values that would explain the discrepancy between the measured and SM-calculated value of the anomalous magnetic moment of the muon Pospelov (2009) are displayed as the bold solid red line along with its 2σ2\sigma band.
Table 4: BESIII results on searches for light CPCP-odd Higgs boson A0A^{0}, dark photon γ\gamma^{\prime}, and invisible decays of quarkonium and light mesons. The first column lists the decay modes and the third column lists the measured 90% CL branching fractions upper limits. For the visible dark photon decays, the corresponding γγ\gamma-\gamma^{\prime} mixing strength ε\varepsilon limits are shown in the fourth column.
Mode Data UL\mathcal{B}^{\text{UL}} at 90% CL ε(×103)\varepsilon(\times 10^{-3}) ref.
J/ψγA0(μ+μ)J/\psi\to\gamma A^{0}(\to\mu^{+}\mu^{-}) 225225J/ψJ/\psi (2.8495.3)×108(2.8-495.3)\times 10^{-8} Ablikim (2016)
ψππJ/ψ(γA0(μ+μ))\psi^{\prime}\to\pi\pi J/\psi(\to\gamma A^{0}(\to\mu^{+}\mu^{-})) 106106ψ(2S)\psi(2S) (4210)×107(4-210)\times 10^{-7} Ablikim et al. (2012)
J/ψηγ(e+e)J/\psi\to\eta\gamma^{\prime}(\to e^{+}e^{-}) 1.3101.310J/ψJ/\psi (1.991.1)×108(1.9-91.1)\times 10^{-8} 10110-1 Ablikim et al. (2019f)
J/ψηγ(e+e)J/\psi\to\eta^{\prime}\gamma^{\prime}(\to e^{+}e^{-}) (1.820)×108(1.8-20)\times 10^{-8} 3.4263.4-26 Ablikim et al. (2019g)
e+eγISRγ(e+e/μ+μ)e^{+}e^{-}\to\gamma_{\text{ISR}}\gamma^{\prime}(\to e^{+}e^{-}/\mu^{+}\mu^{-}) 2.93fb1ψ(3770)2.93\,\text{fb}^{-1}\ \psi(3770) 0.110.1-1 Ablikim et al. (2017d)
J/ψηω(ωinvisible)J/\psi\to\eta\omega(\omega\to\emph{invisible}) 1.311.31J/ψJ/\psi 7.3×1057.3\times 10^{-5} Ablikim et al. (2018d)
J/ψηϕ(ϕinvisible)J/\psi\to\eta\phi(\phi\to\emph{invisible}) 1.7×1041.7\times 10^{-4}
J/ψϕη(ηinvisible)J/\psi\to\phi\eta(\eta\to\emph{invisible}) 225225J/ψJ/\psi 1.0×1041.0\times 10^{-4} Ablikim et al. (2013b)
J/ψϕη(ηinvisible)J/\psi\to\phi\eta^{\prime}(\eta^{\prime}\to\emph{invisible}) 5.3×1045.3\times 10^{-4}

VII Interactions with Other Experiments

The standard model of particle physics is a seamless structure in which measurements in one sector have profound impact on other, seemingly unrelated areas. Thus, for example, BESIII measurements of strong-interaction phases in hadronic decays of charmed mesons provide important input into determinations of the CPCP-violating angle γ\gamma in BB-meson decays by BelleII and LHCb. Similarly, BESIII measurements of the annihilation cross section for e+ehadronse^{+}e^{-}\rightarrow hadrons at energies below 2 GeV provide critical input to the interpretation of high energy tests of the SM at the Higgs (126 GeV) and top-quark(173 GeV) mass scales as well as the measurements of (g2)μ(g-2)_{\mu}, the anomalous magnetic moment of the muon. The relation between BESIII measurements of strong phases in the charmed sector to CPVCPV measurements in the beauty sector are discussed elsewhere in this volume Li and Lyu (2020). Here we briefly review the impact of BESIIII cross section results on the interpretation of (g2)μ(g-2)_{\mu} measurements.

VII.1 BESIII impact on the determination of (𝒈𝟐)𝝁(g-2)_{\mu}

The measured value of (g2)μ(g-2)_{\mu} from BNL experiment E821 Bennett et al. (2006) is \sim3.7 standard deviations higher than the SM prediction Aoyama et al. (2020), a discrepancy that has inspired elaborate follow-up experiments at Fermilab Grange et al. (2015) and J-PARC Otani (2015). As illustrated in Fig. 7a, the SM predicted value for (g2)μ(g-2)_{\mu} is very sensitive to the effects of hadronic vacuum polarization (HVP) of the virtual photon, which are about 100 times larger than the current experimental uncertainty. The contributions from higher-order radiative corrections to the μ\mu-γ\gamma vertex, so-called hadron light-by-light (HLbL) scattering, is of the same order as the current experimental error, but it has a 20% theoretical uncertainty that will be comparable to the expected error from the new round of experiments.

Vacuum polarization also has critical influence on precision tests of the electroweak theory that rely on a precise knowledge of α(s)\alpha(s), the running QED coupling constant. Because of vacuum polarization, α1(mZ2)=128.95±0.01\alpha^{-1}(m^{2}_{Z})=128.95\pm 0.01 Davier et al. (2017), about 6% below its long-distance value of α1(s=0)=137.04\alpha^{-1}(s=0)=137.04. About half of this change is due to HVP.

Refer to caption
Figure 7: a) Hadron vacuum polarization (HVP) and hadron light-by-light scattering (HLbL) contributions to the SM calculation of (g2)μ(g-2)_{\mu}. b) Measurements of σ(e+eπ+π)\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}) from SND Achasov et al. (2006), CMD-2 Akhmetshin et al. (2004, 2007), BaBar Lees et al. (2012c), KLOE Anastasi et al. (2018), and BESIII Ablikim et al. (2016b). The structure near ECM=0.78E_{\rm CM}=0.78 GeV is caused by interference between ρπ+π\rho\to\pi^{+}\pi^{-} and ωπ+π\omega\to\pi^{+}\pi^{-} (from ref. Keshavarzi et al. (2018)). c) Preliminary BESIII results for the π0\pi^{0} form factor Redmer (2018) together with results from CELLO Behrend et al. (1991), CLEO Gronberg et al. (1998), BaBar Aubert et al. (2009) and BelleUehara et al. (2012) (from ref. Aoyama et al. (2020)).

VII.1.1 Precision measurement of vacuum polarization of virtual photons

Since HVP effects are non-perturbative, they cannot be directly computed from first principle QCD. Recent computer-based Lattice QCD (LQCD) calculations have made significant progress but the uncertainties are still large Miura (2019); Davies et al. (2020). The most reliable determinations to date of HVP contributions to (g2)μ(g-2)_{\mu} and α(mZ2)\alpha(m^{2}_{Z}) use dispersion relations with input from experimental measurements of cross sections for e+ee^{+}e^{-} annihilation into hadrons Aoyama et al. (2020). The data used for the most recent determinations are mostly from the SND Achasov et al. (2006), BaBar Lees et al. (2012c), BESIII Ablikim et al. (2016b), CMD-2 Akhmetshin et al. (2004, 2007), and KLOE Anastasi et al. (2018) experiments. BaBar and KLOE operations have been terminated, leaving SND, CMD-3 Akhmetshin et al. (2017), and BESIII as the only running facilities with the capability to provide the improvements in precision that will be essential for the evaluation of (g2)μ(g-2)_{\mu} with a precision that will match those of the new experimental measurements.

With data taken at ECM=3.773E_{\rm CM}=3.773 GeV (primarily for studies of DD-meson decays) BESIII measured the cross sections for e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} at ECME_{\rm CM} between 0.6 and 0.9 GeV Ablikim et al. (2016b), which covers the ρπ+π\rho\to\pi^{+}\pi^{-} peak, the major contributor to the HVP dispersion relation integral. These measurements used initial state radiation (ISR) events in which one of the incoming beam particles radiates a γ\gamma-ray with energy EISR=xECM/2E_{\rm ISR}=xE_{\rm CM}/2 before annihilating at a reduced CM energy of ECM=1xECME_{\rm CM}=\sqrt{1-x}E_{\rm CM}. The relative uncertainty of the BESIII measurements is 0.9%, which is similar to the precision of the BaBar Lees et al. (2012c) and KLOE Anastasi et al. (2018) results. The BESIII measured values agree well with KLOE results for energies below 0.8 GeV but are systematically higher at higher energies; in contrast, BESIII results agree with BaBar at higher energies but are lower at lower energies. Detailed comparisons are shown in Fig. 7b. Nevertheless, the contributions of e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} to the (g2)μ(g-2)_{\mu} HVP calculation from these experiments have overall agreement within two standard deviations, and the observed \sim3.7 standard deviation difference between the calculated muon magnetic moment value and the E821 experimental measurement persists.

VII.1.2 Experimental input for data-driven HLbL determinations

The HLbL scattering contribution to the SM (g2)μ(g-2)_{\mu} value, has a hadron loop (see Fig. 7a) that is non-perturbative and in a more complex environment than the HVP loop. As a result, its determination is not straightforward and has a rather volatile history (see ref. Melnikov (2016)). In this case, the loop integral is dominated by single mesons (π0\pi^{0}, η\eta, η\eta^{\prime}) but, since they couple to virtual photons, their time-like form factors at low Q2Q^{2} values are involved. Until now, only high Q2Q^{2} measurements of these form factors have been reported and models were used to extrapolate these to the low Q2Q^{2} regions of interest. Recently, however, BESIII reported preliminary π0\pi^{0} form-factor results for Q2Q^{2} values in the range 0.30.3-1.51.5 GeV2 Redmer (2018) (see Fig. 7c). These are the first experimental results that include momentum transfers below Q2=0.5Q^{2}=0.5 GeV2, the relevant region for HLbL calculations. These, and measurements of the η\eta and η\eta^{\prime} form factors that are currently underway, will reduce the model dependence and, thus, the theoretical errors of the HLbL contribution to (g2)μ(g-2)_{\mu}.

VII.2 Prospects for (𝒈𝟐)𝝁(g-2)_{\mu}-related measurements at BESIII

Currently, the precision of the (g2)μ(g-2)_{\mu} measurement (54 ppm Bennett et al. (2006)) is comparable to that of the SM calculation (37 ppm Aoyama et al. (2020)). However, since a four-fold improvement in the experimental precision is imminent, improvements in the theoretical precision are needed. These will require improved experimental input for the data-driven evauations of the HVP and HLbL terms and/or improved LQCD calculations. BESIII is improving the σ(e+ehadrons)\sigma(e^{+}e^{-}\rightarrow hadrons) measurements used for the HVP term and providing light-meson form-factors for the HLbL determination. Moreover, precision BESIII measurements of various decay constants and form-factors provide calibration points that are used to validate LQCD techniques.

VIII Summary and Perspectives

In the search for new, beyond the standard model physics, there is no compelling theoretical guidance for where it might first show up. It may first appear at the energy frontier that is explored at the LHC, or at the intensity frontier that is pursued at lower energies. (Interestingly, the current most prominent candidate for BSM physics is the 3.7σ\sim 3.7\sigma discrepancy in (g2)μ(g-2)_{\mu}, which is about as far removed from the energy frontier as one can get.) A key aspect of any experiment is reach, i.e. the range of unexplored SM-parameter space that is explored. In this quest, BESIII is accumulating huge numbers of J/ψJ/\psi and ψ(2S)\psi(2S) events that support high sensitivity searches for low-mass non-SM particles, SM-forbidden decay processes, and non-SM CPCP violations in hyperon decays. In addition, high statistics samples of DD and DsD_{s} mesons produced just above threshold in very clean experimental environments provide the means to search for new physics in the (u,du,d)-(c,sc,s) quark sector with world’s best precision. BESIII is continuing the BES program’s long history of steadily improving the precision of e+ehadronse^{+}e^{-}\rightarrow~{}hadrons annihilation cross section measurements and light meson form factor determinations that are used to evaluate HVP and HLbL corrections that are needed for the interpretation of SM tests being done by other experiments.

Acknowledgments

This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1532257; the CAS President’s International Fellowship Initiative; and the Korean Institute for Basic Science under project code IBS-R016-D1.

References

  • Weinberg (2018) S. Weinberg, Phys. Rev. Lett. 121, 220001 (2018).
  • Sakharov (1967) A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967), [JETP Lett.5,24(1967); Sov. Phys. Usp.34,no.5,392(1991); Usp. Fiz. Nauk161,no.5,61(1991)].
  • Prasad (2019) V. Prasad (BESIII), in An Alpine LHC Physics Summit 2019 (ALPS 2019) Obergurgl, Austria, April 22-27, 2019 (2019), eprint 1907.12058.
  • Wang (2015) B. Wang, in Proceedings, Meeting of the APS Division of Particles and Fields (DPF 2015): Ann Arbor, Michigan, USA, 4-8 Aug 2015 (2015), eprint 1511.00373.
  • Godang (2013) R. Godang, EPJ Web Conf. 49, 15002 (2013), eprint 1302.2171.
  • Glashow et al. (1970) S. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970).
  • Capriotti (2019) L. Capriotti (LHCb), PoS ICHEP2018, 233 (2019).
  • Aaij et al. (2014a) R. Aaij et al. (LHCb), JHEP 06, 133 (2014a), eprint 1403.8044.
  • Aaij et al. (2015a) R. Aaij et al. (LHCb), JHEP 09, 179 (2015a), eprint 1506.08777.
  • Aaij et al. (2016a) R. Aaij et al. (LHCb), JHEP 11, 047 (2016a), [Erratum: JHEP 04, 142 (2017)], eprint 1606.04731.
  • Aaij et al. (2015b) R. Aaij et al. (LHCb), JHEP 06, 115 (2015b), [Erratum: JHEP 09, 145 (2018)], eprint 1503.07138.
  • Detmold and Meinel (2016) W. Detmold and S. Meinel, Phys. Rev. D 93, 074501 (2016), eprint 1602.01399.
  • Aaij et al. (2014b) R. Aaij et al. (LHCb), Phys. Rev. Lett. 113, 151601 (2014b), eprint 1406.6482.
  • Aaij et al. (2017) R. Aaij et al. (LHCb), JHEP 08, 055 (2017), eprint 1705.05802.
  • Aaij et al. (2016b) R. Aaij et al. (LHCb), JHEP 02, 104 (2016b), eprint 1512.04442.
  • Greub et al. (1996) C. Greub, T. Hurth, M. Misiak, and D. Wyler, Phys. Lett. B 382, 415 (1996), eprint hep-ph/9603417.
  • Fajfer et al. (2001a) S. Fajfer, P. Singer, and J. Zupan, Phys. Rev. D 64, 074008 (2001a), eprint hep-ph/0104236.
  • Burdman et al. (2002) G. Burdman, E. Golowich, J. L. Hewett, and S. Pakvasa, Phys. Rev. D 66, 014009 (2002), eprint hep-ph/0112235.
  • Fajfer et al. (2001b) S. Fajfer, S. Prelovsek, and P. Singer, Phys. Rev. D 64, 114009 (2001b), eprint hep-ph/0106333.
  • Paul et al. (2011) A. Paul, I. I. Bigi, and S. Recksiegel, Phys. Rev. D 83, 114006 (2011), eprint 1101.6053.
  • Cappiello et al. (2013) L. Cappiello, O. Cata, and G. D’Ambrosio, JHEP 04, 135 (2013), eprint 1209.4235.
  • Sanchis-Lozano (1994) M. A. Sanchis-Lozano, Z. Phys. C 62, 271 (1994).
  • Wang et al. (2008) Y.-M. Wang, H. Zou, Z.-T. Wei, X.-Q. Li, and C.-D. Lu, Eur. Phys. J. C 54, 107 (2008), eprint 0707.1138.
  • Prelovsek and Wyler (2001) S. Prelovsek and D. Wyler, Phys. Lett. B 500, 304 (2001), eprint hep-ph/0012116.
  • Paul et al. (2010) A. Paul, I. I. Bigi, and S. Recksiegel, Phys. Rev. D 82, 094006 (2010), [Erratum: Phys.Rev.D 83, 019901 (2011)], eprint 1008.3141.
  • Hill (1995) C. T. Hill, Phys. Lett. B 345, 483 (1995), eprint hep-ph/9411426.
  • Aulakh and Mohapatra (1982) C. Aulakh and R. N. Mohapatra, Phys. Lett. B 119, 136 (1982).
  • Glashow and Weinberg (1977) S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977).
  • Lees et al. (2012a) J. Lees et al. (BaBar), Phys. Rev. D 85, 091107 (2012a), eprint 1110.6480.
  • Patrignani et al. (2016) C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).
  • Ablikim et al. (2006a) M. Ablikim et al. (BES), Phys. Lett. B 639, 418 (2006a), eprint hep-ex/0604005.
  • Ablikim et al. (2015a) M. Ablikim et al. (BESIII), Phys. Rev. D 91, 112015 (2015a), eprint 1505.03087.
  • Ablikim et al. (2018a) M. Ablikim et al. (BESIII), Phys. Rev. D 97, 072015 (2018a), eprint 1802.09752.
  • Ablikim et al. (2017a) M. Ablikim et al. (BESIII), Phys. Rev. D 96, 111101 (2017a), eprint 1710.02278.
  • Ablikim (2018) M. Ablikim (BESIII), Phys. Rev. D 97, 091102 (2018), eprint 1802.04057.
  • Ablikim et al. (2020a) M. Ablikim et al., Chin. Phys. C 44, 040001 (2020a), eprint 1912.05983.
  • Datta et al. (1999) A. Datta, P. O’Donnell, S. Pakvasa, and X. Zhang, Phys. Rev. D 60, 014011 (1999), eprint hep-ph/9812325.
  • Ablikim et al. (2014a) M. Ablikim et al. (BESIII), Phys. Rev. D 89, 071101 (2014a), eprint 1402.4025.
  • Ablikim et al. (2014b) M. Ablikim et al. (BESIII), Phys. Rev. D 90, 112014 (2014b), eprint 1410.8426.
  • Cabibbo (1963) N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
  • Kobayashi and Maskawa (1973) M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
  • Lazzeroni et al. (2013) C. Lazzeroni et al. (NA62), Phys. Lett. B 719, 326 (2013), eprint 1212.4012.
  • Tanabashi et al. (2018) M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 030001 (2018).
  • Ablikim et al. (2014c) M. Ablikim et al. (BESIII), Phys. Rev. D 90, 012001 (2014c), eprint 1405.1076.
  • Lees et al. (2012b) J. Lees et al. (BaBar), Phys. Rev. Lett. 109, 101802 (2012b), eprint 1205.5442.
  • Abdesselam et al. (2019) A. Abdesselam et al. (Belle) (2019), eprint 1904.08794.
  • Aaij et al. (2018) R. Aaij et al. (LHCb), Phys. Rev. D 97, 072013 (2018), eprint 1711.02505.
  • Amhis et al. (2019) Y. S. Amhis et al. (HFLAV) (2019), eprint 1909.12524.
  • Li and Lyu (2020) H. Li and X.-R. Lyu, Precision Standard Model tests with charmed hadron decays, In these proceedings (2020).
  • Ablikim et al. (2019a) M. Ablikim et al. (BESIII), Phys. Rev. Lett. 122, 011804 (2019a), eprint 1810.03127.
  • Ablikim et al. (2015b) M. Ablikim et al. (BESIII), Phys. Rev. D92, 072012 (2015b), eprint 1508.07560.
  • Ablikim et al. (2018b) M. Ablikim et al. (BESIII), Phys. Rev. Lett. 121, 171803 (2018b), eprint 1802.05492.
  • Ablikim et al. (2016a) M. Ablikim et al. (BESIII), Eur. Phys. J. C 76, 369 (2016a), eprint 1605.00068.
  • Ablikim et al. (2017b) M. Ablikim et al. (BESIII), Phys. Rev. D 96, 012002 (2017b), eprint 1703.09084.
  • Ablikim et al. (2020b) M. Ablikim et al. (BESIII), Phys. Rev. D 101, 072005 (2020b), eprint 2002.10578.
  • Ablikim et al. (2015c) M. Ablikim et al. (BESIII), Phys. Rev. D 92, 071101 (2015c), eprint 1508.00151.
  • Ablikim et al. (2020c) M. Ablikim et al. (BESIII), Phys. Rev. Lett. 124, 231801 (2020c), eprint 2003.12220.
  • Ablikim et al. (2018c) M. Ablikim et al. (BESIII), Phys. Rev. D 97, 092009 (2018c), eprint 1803.05570.
  • Ablikim et al. (2017c) M. Ablikim et al. (BESIII), Phys. Lett. B 767, 42 (2017c), eprint 1611.04382.
  • Ablikim et al. (2015d) M. Ablikim et al. (BESIII), Phys. Rev. Lett. 115, 221805 (2015d), eprint 1510.02610.
  • Ablikim et al. (2019b) M. Ablikim et al. (BESIII), Phys. Rev. Lett. 123, 211802 (2019b), eprint 1908.08877.
  • Ablikim et al. (2014d) M. Ablikim et al. (BESIII), Phys. Rev. D89, 051104 (2014d), eprint 1312.0374.
  • Muramatsu et al. (2020) H. Muramatsu et al. (2020), BESIII Analysis Memo BAM-00372, preliminary.
  • Ablikim et al. (2019c) M. Ablikim et al. (BESIII), Phys. Rev. Lett. 122, 071802 (2019c), eprint 1811.10890.
  • Hardy and Towner (2016) J. Hardy and I. S. Towner, PoS CKM2016, 028 (2016).
  • Seng et al. (2018) C.-Y. Seng, M. Gorchtein, H. H. Patel, and M. J. Ramsey-Musolf, Phys. Rev. Lett. 121, 241804 (2018), eprint 1807.10197.
  • Ambrosino et al. (2006) F. Ambrosino et al. (KLOE), Phys. Lett. B632, 76 (2006), eprint hep-ex/0509045.
  • Aoki et al. (2020) S. Aoki et al. (Flavour Lattice Averaging Group), Eur. Phys. J. C80, 113 (2020), eprint 1902.08191.
  • Czarnecki et al. (2019) A. Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. D100, 073008 (2019), eprint 1907.06737.
  • Seng et al. (2020) C.-Y. Seng, X. Feng, M. Gorchtein, and L.-C. Jin (2020), eprint 2003.11264.
  • Bazavov et al. (2019) A. Bazavov et al. (Fermilab Lattice, MILC), Phys. Rev. D99, 114509 (2019), eprint 1809.02827.
  • Seng et al. (2019) C. Y. Seng, M. Gorchtein, and M. J. Ramsey-Musolf, Phys. Rev. D100, 013001 (2019), eprint 1812.03352.
  • Gorchtein (2019) M. Gorchtein, Phys. Rev. Lett. 123, 042503 (2019), eprint 1812.04229.
  • Wolfenstein (1983) L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
  • Grossman et al. (2019) Y. Grossman, E. Passemar, and S. Schacht (2019), eprint 1911.07821.
  • Aaij et al. (2019) R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 211803 (2019), eprint 1903.08726.
  • Golden and Grinstein (1989) M. Golden and B. Grinstein, Phys. Lett. B222, 501 (1989).
  • Buccella et al. (1995) F. Buccella, M. Lusignoli, G. Miele, A. Pugliese, and P. Santorelli, Phys. Rev. D51, 3478 (1995), eprint hep-ph/9411286.
  • Bianco et al. (2003) S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, Riv. Nuovo Cim. 26N7, 1 (2003), eprint hep-ex/0309021.
  • Grossman et al. (2007) Y. Grossman, A. L. Kagan, and Y. Nir, Phys. Rev. D75, 036008 (2007), eprint hep-ph/0609178.
  • Khodjamirian and Petrov (2017) A. Khodjamirian and A. A. Petrov, Phys. Lett. B774, 235 (2017), eprint 1706.07780.
  • Saur and Yu (2020) M. Saur and F.-S. Yu, Sci. Bull. 65, 1428 (2020), eprint 2002.12088.
  • Barnes et al. (1996) P. D. Barnes et al., Phys. Rev. C54, 1877 (1996).
  • Donoghue et al. (1986) J. F. Donoghue, X.-G. He, and S. Pakvasa, Phys. Rev. D34, 833 (1986).
  • Lee and Yang (1956) T. D. Lee and C.-N. Yang, Phys. Rev. 104, 254 (1956).
  • Wu et al. (1957) C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys. Rev. 105, 1413 (1957).
  • Lee and Yang (1957) T. D. Lee and C.-N. Yang, Phys. Rev. 108, 1645 (1957).
  • Bricman et al. (1978) C. Bricman et al. (Particle Data Group), Phys. Lett. 75B, 1 (1978).
  • Fäldt and Kupsc (2017) G. Fäldt and A. Kupsc, Phys. Lett. B772, 16 (2017), eprint 1702.07288.
  • Ablikim et al. (2019d) M. Ablikim et al. (BESIII), Nature Phys. 15, 631 (2019d), eprint 1808.08917.
  • Adlarson et al. (2019) P. Adlarson et al. (2019), BESIII Document 803-v4, preliminary.
  • Adlarson and Kupsc (2019) P. Adlarson and A. Kupsc, Phys. Rev. D100, 114005 (2019), eprint 1908.03102.
  • Gonzalez and Illana (1994) E. Gonzalez and J. I. Illana, in Tau charm factory. Proceedings, 3rd Workshop, Marbella, Spain, June 1-6, 1993 (1994), pp. 525–538.
  • Landau (1948) L. Landau, Dokl. Akad. Nauk SSSR 60, 207 (1948).
  • Yang (1950) C.-N. Yang, Phys. Rev. 77, 242 (1950).
  • Gninenko et al. (2011) S. Gninenko, A. Ignatiev, and V. Matveev, Int. J. Mod. Phys. A 26, 4367 (2011), eprint 1102.5702.
  • Ablikim et al. (2014e) M. Ablikim et al. (BESIII), Phys. Rev. D 90, 092002 (2014e), eprint 1409.4040.
  • Wang et al. (2017) T. Wang, Y. Jiang, H. Yuan, K. Chai, and G.-L. Wang, J. Phys. G 44, 045004 (2017), eprint 1604.03298.
  • Fukuda et al. (1998) Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998), eprint hep-ex/9807003.
  • Bordes et al. (2001) J. Bordes, H.-M. Chan, and S. T. Tsou, Phys. Rev. D 63, 016006 (2001), eprint hep-ph/0006338.
  • Ablikim et al. (2013a) M. Ablikim et al. (BESIII), Phys. Rev. D 87, 112007 (2013a), eprint 1304.3205.
  • Pati and Salam (1974) J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974), [Erratum: Phys.Rev.D 11, 703–703 (1975)].
  • Ablikim et al. (2019e) M. Ablikim et al. (BESIII), Phys. Rev. D 99, 072006 (2019e), eprint 1803.04789.
  • Bai et al. (2003) J. Bai et al. (BES), Phys. Lett. B 561, 49 (2003), eprint hep-ex/0303005.
  • Abe et al. (2017) K. Abe et al. (Super-Kamiokande), Phys. Rev. D 95, 012004 (2017), eprint 1610.03597.
  • Rubin et al. (2009) P. Rubin et al. (CLEO), Phys. Rev. D 79, 097101 (2009), eprint 0904.1619.
  • del Amo Sanchez et al. (2011) P. del Amo Sanchez et al. (BaBar), Phys. Rev. D 83, 091101 (2011), eprint 1101.3830.
  • Higgs (1964) P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).
  • Susskind (1979) L. Susskind, Phys. Rev. D 20, 2619 (1979).
  • Jibrail et al. (2020) A. W. Jibrail, P. J. Elahi, and G. F. Lewis, Mon. Not. Roy. Astron. Soc. 492, 2369 (2020), eprint 1912.10595.
  • Martin (1997) S. P. Martin, pp. 1–98 (1997), [Adv. Ser. Direct. High Energy Phys.21,1(2010); Adv. Ser. Direct. High Energy Phys.18,1(1998)], eprint hep-ph/9709356.
  • Ellwanger et al. (2010) U. Ellwanger, C. Hugonie, and A. M. Teixeira, Phys. Rept. 496, 1 (2010), eprint 0910.1785.
  • Maniatis (2010) M. Maniatis, Int. J. Mod. Phys. A 25, 3505 (2010), eprint 0906.0777.
  • Djouadi et al. (2008) A. Djouadi et al., JHEP 07, 002 (2008), eprint 0801.4321.
  • Essig et al. (2013) R. Essig et al., in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29-August 6, 2013 (2013), eprint 1311.0029, URL http://www.slac.stanford.edu/econf/C1307292/docs/IntensityFrontier/NewLight-17.pdf.
  • Alexander et al. (2016) J. Alexander et al., in Dark Sectors 2016 Workshop: Community Report (2016), eprint 1608.08632.
  • Holdom (1986) B. Holdom, Phys. Lett. B 166, 196 (1986).
  • Arkani-Hamed et al. (2009) N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009), eprint 0810.0713.
  • Ablikim (2016) M. Ablikim (BESIII), Phys. Rev. D 93, 052005 (2016), eprint 1510.01641.
  • Ablikim et al. (2012) M. Ablikim et al. (BESIII), Phys. Rev. D 85, 092012 (2012), eprint 1111.2112.
  • Lees et al. (2013) J. Lees et al. (BaBar), Phys. Rev. D 87, 031102 (2013), [Erratum: Phys.Rev.D 87, 059903 (2013)], eprint 1210.0287.
  • Ablikim et al. (2019f) M. Ablikim et al. (BESIII), Phys. Rev. D 99, 012006 (2019f), eprint 1810.03091.
  • Ablikim et al. (2019g) M. Ablikim et al. (BESIII), Phys. Rev. D 99, 012013 (2019g), eprint 1809.00635.
  • Ablikim et al. (2017d) M. Ablikim et al. (BESIII), Phys. Lett. B 774, 252 (2017d), eprint 1705.04265.
  • Lees et al. (2014) J. Lees et al. (BaBar), Phys. Rev. Lett. 113, 201801 (2014), eprint 1406.2980.
  • Ablikim et al. (2018d) M. Ablikim et al. (BESIII), Phys. Rev. D 98, 032001 (2018d), eprint 1805.05613.
  • Ablikim et al. (2013b) M. Ablikim et al. (BESIII), Phys. Rev. D 87, 012009 (2013b), eprint 1209.2469.
  • Ablikim et al. (2006b) M. Ablikim et al. (BES), Phys. Rev. Lett. 97, 202002 (2006b), eprint hep-ex/0607006.
  • Pospelov (2009) M. Pospelov, Phys. Rev. D 80, 095002 (2009), eprint 0811.1030.
  • Bennett et al. (2006) G. Bennett et al. (Muon g-2), Phys. Rev. D 73, 072003 (2006), eprint hep-ex/0602035.
  • Aoyama et al. (2020) T. Aoyama et al. (2020), eprint 2006.04822.
  • Grange et al. (2015) J. Grange et al. (Muon g-2) (2015), eprint 1501.06858.
  • Otani (2015) M. Otani (E34), JPS Conf. Proc. 8, 025008 (2015).
  • Davier et al. (2017) M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 77, 827 (2017), eprint 1706.09436.
  • Achasov et al. (2006) M. Achasov et al., J. Exp. Theor. Phys. 103, 380 (2006), eprint hep-ex/0605013.
  • Akhmetshin et al. (2004) R. Akhmetshin et al. (CMD-2), Phys. Lett. B 578, 285 (2004), eprint hep-ex/0308008.
  • Akhmetshin et al. (2007) R. Akhmetshin et al. (CMD-2), Phys. Lett. B 648, 28 (2007), eprint hep-ex/0610021.
  • Lees et al. (2012c) J. Lees et al. (BaBar), Phys. Rev. D 86, 032013 (2012c), eprint 1205.2228.
  • Anastasi et al. (2018) A. Anastasi et al. (KLOE-2), JHEP 03, 173 (2018), eprint 1711.03085.
  • Ablikim et al. (2016b) M. Ablikim et al. (BESIII), Phys. Lett. B 753, 629 (2016b), eprint 1507.08188.
  • Keshavarzi et al. (2018) A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 97, 114025 (2018), eprint 1802.02995.
  • Redmer (2018) C. Redmer (BESIII), in 13th Conference on the Intersections of Particle and Nuclear Physics (2018), eprint 1810.00654.
  • Behrend et al. (1991) H. Behrend et al. (CELLO), Z. Phys. C 49, 401 (1991).
  • Gronberg et al. (1998) J. Gronberg et al. (CLEO), Phys. Rev. D 57, 33 (1998), eprint hep-ex/9707031.
  • Aubert et al. (2009) B. Aubert et al. (BaBar), Phys. Rev. D 80, 052002 (2009), eprint 0905.4778.
  • Uehara et al. (2012) S. Uehara et al. (Belle), Phys. Rev. D 86, 092007 (2012), eprint 1205.3249.
  • Miura (2019) K. Miura, PoS LATTICE2018, 010 (2019), eprint 1901.09052.
  • Davies et al. (2020) C. Davies et al. (Fermilab Lattice, LATTICE-HPQCD, MILC), Phys. Rev. D 101, 034512 (2020), eprint 1902.04223.
  • Akhmetshin et al. (2017) R. Akhmetshin et al., Phys. Lett. B 768, 345 (2017), eprint 1612.04483.
  • Melnikov (2016) K. Melnikov, EPJ Web Conf. 118, 01020 (2016).