This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: School of Physics and Electrical Engineering, Anyang Normal University,
Anyang, Henan 455000, China
bbinstitutetext: Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE),
Central China Normal University, Wuhan, Hubei 430079, China

New physics in the angular distribution of 𝑩𝒄𝑱/𝝍(𝝁+𝝁)𝝉(𝝅𝝂𝝉)𝝂¯𝝉B_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau} decay

Quan-Yi Hu b    Xin-Qiang Li b    Xiao-Long Mu b    Ya-Dong Yang b    and Dong-Hui Zheng [email protected] [email protected] [email protected] [email protected] [email protected]
Abstract

In BcJ/ψ(μ+μ)τν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}\bar{\nu}_{\tau} decay, the three-momentum 𝒑τ\bm{p}_{\tau^{-}} cannot be determined accurately due to the decay products of τ\tau^{-} inevitably include an undetected ντ\nu_{\tau}. As a consequence, the angular distribution of this decay cannot be measured. In this work, we construct a measurable angular distribution by considering the subsequent decay τπντ\tau^{-}\to\pi^{-}\nu_{\tau}. The full cascade decay is BcJ/ψ(μ+μ)τ(πντ)ν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau}, in which the three-momenta 𝒑μ+\bm{p}_{\mu^{+}}, 𝒑μ\bm{p}_{\mu^{-}}, and 𝒑π\bm{p}_{\pi^{-}} can be measured. The five-fold differential angular distribution containing all Lorentz structures of the new physics (NP) effective operators can be written in terms of twelve angular observables i(q2,Eπ)\mathcal{I}_{i}(q^{2},E_{\pi}). Integrating over the energy of pion EπE_{\pi}, we construct twelve normalized angular observables ^i(q2)\widehat{\mathcal{I}}_{i}(q^{2}) and two lepton-flavor-universality ratios R(PL,TJ/ψ)(q2)R(P_{L,T}^{J/\psi})(q^{2}). Based on the BcJ/ψB_{c}\to J/\psi form factors calculated by the latest lattice QCD and sum rule, we predict the q2q^{2} distribution of all ^i\widehat{\mathcal{I}}_{i} and R(PL,TJ/ψ)R(P_{L,T}^{J/\psi}) both within the Standard Model and in eight NP benchmark points. We find that the benchmark BP2 (corresponding to the hypothesis of tensor operator) has the greatest effect on all ^i\widehat{\mathcal{I}}_{i} and R(PL,TJ/ψ)R(P_{L,T}^{J/\psi}), except ^5\widehat{\mathcal{I}}_{5}. The ratios R(PL,TJ/ψ)R(P_{L,T}^{J/\psi}) are more sensitive to the NP with pseudo-scalar operators than the ^i\widehat{\mathcal{I}}_{i}. Finally, we discuss the symmetries in the angular observables and present a model-independent method to determine the existence of tensor operators.

1 Introduction

Exploring new physics (NP) beyond the Standard Model (SM) has been one of the most important tasks in high energy physics, especially since the discovery of Higgs boson Aad:2012tfa ; Chatrchyan:2012ufa ; Aad:2015zhl . In recent years, the existence of NP that breaks the universality of lepton flavour in bcτν¯τb\to c\tau^{-}\bar{\nu}_{\tau} transition has been implied by the anomalous measurements Lees:2012xj ; Lees:2013uzd ; Aaij:2015yra ; Huschle:2015rga ; Hirose:2016wfn ; Aaij:2017uff ; Hirose:2017dxl ; Aaij:2017deq ; Belle:2019rba on B¯D()τν¯τ\bar{B}\to D^{(*)}\tau^{-}\bar{\nu}_{\tau} decays. Moreover, the averaging results performed by the Heavy Flavor Averaging Group (HFLAV) Amhis:2019ckw show that the measurements of R(D())(B¯D()τν¯)/(B¯D()ν¯)R(D^{(*)})\equiv\mathcal{B}(\bar{B}\to D^{(*)}\tau\bar{\nu})/\mathcal{B}(\bar{B}\to D^{(*)}\ell\bar{\nu}) (=e,μ\ell=e,\,\mu) deviate about 3.1σ3.1\sigma Amhis:2019up from the predicted values within the SM.111The recent ref. Bordone:2019vic finds R(D)=0.250±0.003R(D^{*})=0.250\pm 0.003 in the SM. Since the HFLAV average does not include this value, the actual deviation from the SM prediction is larger than 3.1σ3.1\sigma. Very recently, the review Bernlochner:2021vlv revisits the R(D())R(D^{(*)}) world averages by investigating the correlations between the systematic uncertainties of all measurements, and shows that their averages lead to an increased tension of about 3.6σ3.6\sigma with respect to the SM. Motivated by this deviation and using the available data on bcτν¯τb\to c\tau^{-}\bar{\nu}_{\tau} transition, a number of global fitting analyses have been carried out Alok:2017qsi ; Hu:2018veh ; Alok:2019uqc ; Murgui:2019czp ; Blanke:2018yud ; Blanke:2019qrx ; Shi:2019gxi ; Cheung:2020sbq ; Kumbhakar:2020jdz , finding that some different combinations of NP coupling parameters can well explain the R(D())R(D^{(*)}) anomaly. At the same time, a large number of works have been completed in some specific NP models, such as leptoquarks Tanaka:2012nw ; Sakaki:2013bfa ; Bauer:2015knc ; Fajfer:2015ycq ; Li:2016vvp ; Crivellin:2017zlb ; Becirevic:2018afm ; Angelescu:2018tyl ; Bansal:2018nwp ; Iguro:2018vqb ; Crivellin:2019dwb , RR-parity violating supersymetric models Deshpand:2016cpw ; Altmannshofer:2017poe ; Hu:2018lmk ; Hu:2020yvs ; Altmannshofer:2020axr , charged Higgses Tanaka:2012nw ; Crivellin:2012ye ; Celis:2012dk ; Ko:2012sv ; Celis:2016azn ; Iguro:2017ysu ; Iguro:2018qzf , charged vector bosons Asadi:2018wea ; Greljo:2018ogz ; Babu:2018vrl , and Pati-Salam Model Blanke:2018sro ; Iguro:2021kdw . These NP effects also affect other bcb\to c semileptonic decay modes, such as BcJ/ψτν¯τB_{c}\to J/\psi\tau\bar{\nu}_{\tau} Aaij:2017tyk ; Harrison:2020nrv ; Harrison:2020gvo ; Watanabe:2017mip ; Wei:2018vmk ; Tran:2018kuv ; Issadykov:2018myx ; Cohen:2018vhw ; Cohen:2018dgz ; Huang:2018nnq ; Wang:2018duy ; Leljak:2019eyw ; Hu:2019qcn ; Azizi:2019aaf ; Penalva:2020ftd , Bcηcτν¯τB_{c}\to\eta_{c}\tau\bar{\nu}_{\tau} Wei:2018vmk ; Tran:2018kuv ; Issadykov:2018myx ; Berns:2018vpl ; Murphy:2018sqg ; Wang:2018duy ; Leljak:2019eyw ; Hu:2019qcn ; Azizi:2019aaf ; Penalva:2020ftd , ΛbΛcτν¯τ\Lambda_{b}\to\Lambda_{c}\tau\bar{\nu}_{\tau} Dutta:2015ueb ; Li:2016pdv ; Hu:2018veh ; DiSalvo:2018ngq ; Ray:2018hrx ; Penalva:2019rgt ; Mu:2019bin ; Gutsche:2015mxa ; Shivashankara:2015cta ; Boer:2019zmp ; Ferrillo:2019owd ; Hu:2020axt , ΞbΞcτν¯τ\Xi_{b}\to\Xi_{c}\tau\bar{\nu}_{\tau} Dutta:2018zqp ; Faustov:2018ahb ; Zhang:2019jax ; Zhang:2019xdm , ΣbΣcτν¯τ\Sigma_{b}\to\Sigma_{c}\tau\bar{\nu}_{\tau} Rajeev:2019ktp ; Sheng:2020drc , and ΩbΩcτν¯τ\Omega_{b}\to\Omega_{c}\tau\bar{\nu}_{\tau} Rajeev:2019ktp ; Sheng:2020drc .

Particularly, the LHCb collaboration released a value of the ratio R(J/ψ)(BcJ/ψτν)/(BcJ/ψμν)=0.71±0.17±0.18R(J/\psi)\equiv\mathcal{B}(B_{c}\to J/\psi\tau\nu)/\mathcal{B}(B_{c}\to J/\psi\mu\nu)=0.71\pm 0.17\pm 0.18 Aaij:2017tyk . Using the model-dependent calculations of BcJ/ψB_{c}\to J/\psi transition form factors Kiselev:1999sc ; Ivanov:2000aj ; Ebert:2003cn ; Hernandez:2006gt ; Ivanov:2006ni ; Wang:2008xt ; Qiao:2012vt ; Wen-Fei:2013uea ; Rui:2016opu ; Dutta:2017xmj ; Watanabe:2017mip ; Tran:2018kuv ; Issadykov:2018myx ; Leljak:2019eyw ; Hu:2019qcn , the SM prediction of R(J/ψ)R(J/\psi) lies in the range 0.23–0.30. The model-independent bound on R(J/ψ)R(J/\psi) Cohen:2018dgz ; Wang:2018duy is also obtained by constraining the BcJ/ψB_{c}\to J/\psi form factors through a combination of dispersive relations, heavy-quark relations at zero-recoil, and the limited existing form-factor determinations from lattice QCD Colquhoun:2016osw ; Lytle:2016ixw , resulting in 0.20R(J/ψ)0.390.20\leq R(J/\psi)\leq 0.39 Cohen:2018dgz . Very recently, the HPQCD collaboration present the first lattice QCD determination of the vector and axial-vector form factors of the BcJ/ψB_{c}\to J/\psi transition for the full q2q^{2} range Harrison:2020gvo , and find R(J/ψ)=0.2582±0.0038R(J/\psi)=0.2582\pm 0.0038 Harrison:2020nrv within the SM, which is the most accurate prediction and in tension with the LHCb result at 1.8σ1.8\sigma level. The BcJ/ψB_{c}\to J/\psi transition form factors from lattice QCD make the theoretical calculations more accurate, which makes it interesting to revisit the NP effects in BcJ/ψτν¯τB_{c}\to J/\psi\tau\bar{\nu}_{\tau} decay.

In order to distinguish between the SM and NP scenarios, and further characterise the underlying effects of NP, besides considering the total decay rate, the full angular distribution of BcJ/ψτν¯τB_{c}^{-}\to J/\psi\tau^{-}\bar{\nu}_{\tau} and BcJ/ψ(μ+μ)τν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}\bar{\nu}_{\tau} decays should also be taken into account sometimes, see for instance refs. Cohen:2018vhw ; Leljak:2019eyw ; Harrison:2020nrv . However, as pointed out in refs. Nierste:2008qe ; Tanaka:2010se ; Hagiwara:2014tsa ; Bordone:2016tex ; Alonso:2016gym ; Alonso:2017ktd ; Asadi:2018sym ; Alonso:2018vwa ; Bhattacharya:2020lfm ; Asadi:2020fdo ; Hu:2020axt ; Ligeti:2016npd , the information of the polar and azimuthal angles of the emitted τ\tau^{-} cannot be determined precisely because the decay products of τ\tau^{-} inevitably contain an undetected ντ\nu_{\tau}. This means that the observables depending on the polar or azimuthal angle of τ\tau^{-}, such as the corresponding coefficients of the angular distribution and the forward-backward asymmetry of τ\tau^{-}, cannot be directly measured. Therefore, in this work, we construct a measurable angular distribution by further considering the subsequent decay τπντ\tau^{-}\to\pi^{-}\nu_{\tau}. The full cascade decay is BcJ/ψ(μ+μ)τ(πντ)ν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau}, which includes three visible final-state particles μ+\mu^{+}, μ\mu^{-}, and π\pi^{-} whose three-momenta can be measured. We first calculate the full five-fold differential angular distribution including all Lorentz structures of the NP effective operators, and then carefully study the NP effects in the angular distribution from many aspects.

Our paper is organized as follows. In section 2, after defining the effective Hamiltonian, we give the analytical results of the independent transversity amplitudes and the measurable angular distribution of the five-body BcJ/ψ(μ+μ)τ(πντ)ν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau} decay. Definitions of the integrated observables are included in section 3. In section 4, we show the numerical results of the entire set of normalized angular observables ^i(q2)\widehat{\mathcal{I}}_{i}(q^{2}) and the lepton-flavor-universality ratios R(PL,TJ/ψ)(q2)R(P_{L,T}^{J/\psi})(q^{2}) and R(J/ψ)R(J/\psi). A model-independent method for determining the existence of tensor operator is given in section 5. Our conclusions are finally made in section 6. In the appendices A and B, we present the detailed procedures related to the calculations of angular distribution and dependence relations, respectively.

2 Analytical results

In this section, after giving some necessary definitions, we directly list the analytical results of angular distribution. The more detailed calculations, including some useful conventions, can be found in appendix A.

2.1 Effective Hamiltonian

Assuming that the NP scale is higher than the electroweak scale, one can integrate out the possible NP particles as well as the SM heavy particles — the W±W^{\pm}, Z0Z^{0}, the top quark, and the Higgs boson, thus obtaining the effective Hamiltonian suitable for describing the bcτν¯τb\to c\tau^{-}\bar{\nu}_{\tau} transition222Neutrinos are assumed to be left-handed in this work. The effective Hamiltonian containing right-handed neutrinos can be found in refs. Dutta:2013qaa ; Ligeti:2016npd ; Mandal:2020htr . It can be derived from the identity σμνγ5=i2ϵμναβσαβ\sigma^{\mu\nu}\gamma_{5}=-\frac{i}{2}\epsilon^{\mu\nu\alpha\beta}\sigma_{\alpha\beta} that the operator (c¯σμν(1+γ5)b)(τ¯σμνντL)({\bar{c}}\sigma^{\mu\nu}(1+\gamma_{5})b)({\bar{\tau}}\sigma_{\mu\nu}\nu_{\tau L}) is absent. We use the convention ϵ0123=ϵ0123=1\epsilon_{0123}=-\epsilon^{0123}=1.

eff=2GFVcb[\displaystyle{\cal H}_{\rm eff}=\sqrt{2}G_{F}V_{cb}\big{[} gV(c¯γμb)(τ¯γμντL)+gA(c¯γμγ5b)(τ¯γμντL)\displaystyle g_{V}({\bar{c}}\gamma^{\mu}b)({\bar{\tau}}\gamma_{\mu}\nu_{\tau L})+g_{A}({\bar{c}}\gamma^{\mu}\gamma_{5}b)({\bar{\tau}}\gamma_{\mu}\nu_{\tau L})
+gS(c¯b)(τ¯ντL)+gP(c¯γ5b)(τ¯ντL)\displaystyle+g_{S}({\bar{c}}b)({\bar{\tau}}\nu_{\tau L})+g_{P}({\bar{c}}\gamma_{5}b)({\bar{\tau}}\nu_{\tau L})
+gT(c¯σμν(1γ5)b)(τ¯σμνντL)]+H.c.,\displaystyle+g_{T}({\bar{c}}\sigma^{\mu\nu}(1-\gamma_{5})b)({\bar{\tau}}\sigma_{\mu\nu}\nu_{\tau L})\big{]}+{\rm H.c.}, (1)

where GFG_{F} is the Fermi constant, VcbV_{cb} is the CKM matrix element, σμνi2[γμ,γν]\sigma^{\mu\nu}\equiv\frac{i}{2}[\gamma^{\mu},\,\gamma^{\nu}], and ντL=PLντ\nu_{\tau L}=P_{L}\nu_{\tau} denotes the field of left-handed neutrino. The NP effects are encoded in the Wilson coefficients gig_{i}, which are defined at the typical energy scale μ=mb\mu=m_{b}. In the SM, gV=gA=1g_{V}=-g_{A}=1 and gS=gP=gT=0g_{S}=g_{P}=g_{T}=0.

2.2 Transversity amplitudes

In the calculation, the hadronic matrix elements contain the nonperturbative QCD effects and can be parameterized as the Lorentz invariant form factors. The vector and axial-vector current matrix elements can be written as the following four form factors Beneke:2000wa ; Sakaki:2013bfa ; Harrison:2020gvo

J/ψ(k,ε)|c¯γμb|Bc(p)\displaystyle\langle J/\psi(k,\varepsilon)|\bar{c}\gamma_{\mu}b|B_{c}(p)\rangle =2iV(q2)mBc+mJ/ψϵμναβενkαpβ,\displaystyle=\frac{2iV(q^{2})}{m_{B_{c}}+m_{J/\psi}}\epsilon_{\mu\nu\alpha\beta}\varepsilon^{*\nu}k^{\alpha}p^{\beta}, (2)
J/ψ(k,ε)|c¯γμγ5b|Bc(p)\displaystyle\langle J/\psi(k,\varepsilon)|\bar{c}\gamma_{\mu}\gamma_{5}b|B_{c}(p)\rangle =2mJ/ψA0(q2)εqq2qμ\displaystyle=2m_{J/\psi}A_{0}(q^{2})\frac{\varepsilon^{*}\cdot q}{q^{2}}q_{\mu}
+(mBc+mJ/ψ)A1(q2)(εμεqq2qμ)\displaystyle+(m_{B_{c}}+m_{J/\psi})A_{1}(q^{2})\left(\varepsilon^{*}_{\mu}-\frac{\varepsilon^{*}\cdot q}{q^{2}}q_{\mu}\right)
A2(q2)εqmBc+mJ/ψ(pμ+kμmBc2mJ/ψ2q2qμ),\displaystyle-A_{2}(q^{2})\frac{\varepsilon^{*}\cdot q}{m_{B_{c}}+m_{J/\psi}}\left(p_{\mu}+k_{\mu}-\frac{m_{B_{c}}^{2}-m_{J/\psi}^{2}}{q^{2}}q_{\mu}\right), (3)

where q=pkq=p-k, εμ\varepsilon^{\mu} denotes the polarization vector of J/ψJ/\psi meson. In our numerical analysis, we will use the vector and axial-vector form factors computed in lattice QCD Harrison:2020gvo ; Harrison:2020nrv .

Using the equation of motion, the scalar and pseudo-scalar matrix elements can be obtained by

J/ψ(k,ε)|c¯b|Bc(p)\displaystyle\langle J/\psi(k,\varepsilon)|\bar{c}b|B_{c}(p)\rangle =0,\displaystyle=0, (4)
J/ψ(k,ε)|c¯γ5b|Bc(p)\displaystyle\langle J/\psi(k,\varepsilon)|\bar{c}\gamma_{5}b|B_{c}(p)\rangle =εq2mJ/ψmb+mcA0(q2),\displaystyle=-\varepsilon^{*}\cdot q\frac{2m_{J/\psi}}{m_{b}+m_{c}}A_{0}(q^{2}), (5)

Based on the above four form factors V(q2)V(q^{2}) and A0,1,2(q2)A_{0,1,2}(q^{2}), one can define four independent transversity amplitudes as follows

𝒜t\displaystyle\mathcal{A}_{t} =𝒜tSP+mτq2𝒜tVA,\displaystyle=\mathcal{A}^{SP}_{t}+\frac{m_{\tau}}{\sqrt{q^{2}}}\mathcal{A}^{VA}_{t}, (6)
𝒜0\displaystyle\mathcal{A}_{0} =gAmBc+mJ/ψ2mJ/ψq2[A1(q2)(mBc2mJ/ψ2q2)A2(q2)Q+Q(mBc+mJ/ψ)2],\displaystyle=g_{A}\frac{m_{B_{c}}+m_{J/\psi}}{2m_{J/\psi}\sqrt{q^{2}}}\left[A_{1}(q^{2})(m_{B_{c}}^{2}-m_{J/\psi}^{2}-q^{2})-A_{2}(q^{2})\frac{Q_{+}Q_{-}}{(m_{B_{c}}+m_{J/\psi})^{2}}\right], (7)
𝒜\displaystyle\mathcal{A}_{\perp} =gA2A1(q2)(mBc+mJ/ψ),\displaystyle=g_{A}\sqrt{2}A_{1}(q^{2})(m_{B_{c}}+m_{J/\psi}), (8)
𝒜\displaystyle\mathcal{A}_{\parallel} =gV2V(q2)Q+QmBc+mJ/ψ,\displaystyle=g_{V}\sqrt{2}V(q^{2})\frac{\sqrt{Q_{+}Q_{-}}}{m_{B_{c}}+m_{J/\psi}}, (9)

with

𝒜tSP=gPA0(q2)Q+Qmb+mc,𝒜tVA=gAA0(q2)Q+Qq2,\displaystyle\mathcal{A}^{SP}_{t}=-g_{P}A_{0}(q^{2})\frac{\sqrt{Q_{+}Q_{-}}}{m_{b}+m_{c}},\ \mathcal{A}^{VA}_{t}=g_{A}A_{0}(q^{2})\frac{\sqrt{Q_{+}Q_{-}}}{\sqrt{q^{2}}}, (10)

where mbm_{b} and mcm_{c} are the current quark masses evaluated at the scale μ=mb\mu=m_{b}, and Q±(mBc±mJ/ψ)2q2Q_{\pm}\equiv(m_{B_{c}}\pm m_{J/\psi})^{2}-q^{2}.

The tensor matrix element can be parameterized as Beneke:2000wa ; Sakaki:2013bfa ; Leljak:2019eyw

J/ψ(k,ε)|c¯σμνb|Bc(p)=\displaystyle\langle J/\psi(k,\varepsilon)|\bar{c}\sigma_{\mu\nu}b|B_{c}(p)\rangle= ϵμναβ{εα(k+p)βT1(q2)\displaystyle\epsilon_{\mu\nu\alpha\beta}\Bigg{\{}-\varepsilon^{*\alpha}(k+p)^{\beta}T_{1}(q^{2})
+mBc2mJ/ψ2q2εαqβ[T1(q2)T2(q2)]\displaystyle+\frac{m_{B_{c}}^{2}-m_{J/\psi}^{2}}{q^{2}}\varepsilon^{*\alpha}q^{\beta}\left[T_{1}(q^{2})-T_{2}(q^{2})\right]
+2εqq2pαkβ[T1(q2)T2(q2)q2mBc2mJ/ψ2T3(q2)]},\displaystyle+2\frac{\varepsilon^{*}\cdot q}{q^{2}}p^{\alpha}k^{\beta}\left[T_{1}(q^{2})-T_{2}(q^{2})-\frac{q^{2}}{m_{B_{c}}^{2}-m_{J/\psi}^{2}}T_{3}(q^{2})\right]\Bigg{\}}, (11)

and J/ψ|c¯σμνγ5b|Bc=i2ϵμναβJ/ψ|c¯σαβb|Bc\langle J/\psi|\bar{c}\sigma_{\mu\nu}\gamma_{5}b|B_{c}\rangle=-\frac{i}{2}\epsilon_{\mu\nu\alpha\beta}\langle J/\psi|\bar{c}\sigma^{\alpha\beta}b|B_{c}\rangle. In the presence of the tensor operators, we find three additional independent transversity amplitudes as follows

𝒜0T\displaystyle\mathcal{A}^{T}_{0} =gT12mJ/ψ[T2(q2)(mBc2+3mJ/ψ2q2)T3(q2)Q+QmBc2mJ/ψ2],\displaystyle=g_{T}\frac{1}{2m_{J/\psi}}\left[T_{2}(q^{2})(m_{B_{c}}^{2}+3m_{J/\psi}^{2}-q^{2})-T_{3}(q^{2})\frac{Q_{+}Q_{-}}{m_{B_{c}}^{2}-m_{J/\psi}^{2}}\right], (12)
𝒜T\displaystyle\mathcal{A}^{T}_{\perp} =gT2T2(q2)mBc2mJ/ψ2q2,\displaystyle=g_{T}\sqrt{2}T_{2}(q^{2})\frac{m_{B_{c}}^{2}-m_{J/\psi}^{2}}{\sqrt{q^{2}}}, (13)
𝒜T\displaystyle\mathcal{A}^{T}_{\parallel} =gT2T1(q2)Q+Qq2,\displaystyle=g_{T}\sqrt{2}T_{1}(q^{2})\frac{\sqrt{Q_{+}Q_{-}}}{\sqrt{q^{2}}}, (14)

where the superscript TT indicates that an amplitude appears only when one considers the tensor operators.

Refer to caption
Figure 1: Definition of the angles in the BcJ/ψ(μ+μ)τ(πντ)ν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau} decay.

2.3 Angular distribution

The measurable angular distribution of the five-body BcJ/ψ(μ+μ)τ(πντ)ν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau} decay can be written as

d5Γdq2dEπdcosθπdϕπdcosθJ/ψ=\displaystyle\frac{d^{5}\Gamma}{dq^{2}dE_{\pi}d\cos\theta_{\pi}d\phi_{\pi}d\cos\theta_{J/\psi}}= 3GF2|Vcb|2|𝒑J/ψ|(q2)3/2mτ2256π4mBc2(mτ2mπ2)2τJ/ψ\displaystyle\frac{3G_{F}^{2}\left|V_{cb}\right|^{2}\left|\bm{p}_{J/\psi}\right|\left(q^{2}\right)^{3/2}m_{\tau}^{2}}{256\pi^{4}m_{B_{c}}^{2}\left(m_{\tau}^{2}-m_{\pi}^{2}\right)^{2}}{\cal B}_{\tau}{\cal B}_{J/\psi}
×(q2,Eπ,cosθJ/ψ,cosθπ,ϕπ),\displaystyle\times\mathcal{I}\left(q^{2},E_{\pi},\cos\theta_{J/\psi},\cos\theta_{\pi},\phi_{\pi}\right), (15)

where |𝒑J/ψ|=Q+Q/(2mBc)\left|\bm{p}_{J/\psi}\right|=\sqrt{Q_{+}Q_{-}}/(2m_{B_{c}}) denotes the magnitude of three-momentum of the J/ψJ/\psi meson in the BcB_{c} rest frame. τ(τπντ){\cal B}_{\tau}\equiv{\cal B}\left(\tau^{-}\rightarrow\pi^{-}\nu_{\tau}\right) and J/ψ(J/ψμμ+){\cal B}_{J/\psi}\equiv{\cal B}\left(J/\psi\rightarrow\mu^{-}\mu^{+}\right) are the branching fractions of τπντ\tau^{-}\rightarrow\pi^{-}\nu_{\tau} and J/ψμμ+J/\psi\rightarrow\mu^{-}\mu^{+} decays, respectively. Here q2q^{2} is the invariant mass squared of the τν¯τ\tau^{-}\bar{\nu}_{\tau} pair; θJ/ψ\theta_{J/\psi} denotes the polar angle of μ\mu^{-} in the J/ψJ/\psi rest frame; EπE_{\pi}, θπ\theta_{\pi}, and ϕπ\phi_{\pi} represent the energy, polar angle, and azimuthal angle of π\pi^{-} in the τν¯τ\tau^{-}\bar{\nu}_{\tau} center-of-mass frame, respectively. A more intuitive definition of the angles is shown in figure 1. The function (q2,Eπ,cosθJ/ψ,cosθπ,ϕπ)\mathcal{I}\left(q^{2},E_{\pi},\cos\theta_{J/\psi},\cos\theta_{\pi},\phi_{\pi}\right) can be decomposed into a set of trigonometric functions as follows

(q2,Eπ,cosθJ/ψ,cosθπ,ϕπ)=\displaystyle\mathcal{I}\left(q^{2},E_{\pi},\cos\theta_{J/\psi},\cos\theta_{\pi},\phi_{\pi}\right)= i=112i(q2,Eπ)Ωi(cosθJ/ψ,cosθπ,ϕπ)\displaystyle\sum_{i=1}^{12}\mathcal{I}_{i}\left(q^{2},E_{\pi}\right)\Omega_{i}\left(\cos\theta_{J/\psi},\cos\theta_{\pi},\phi_{\pi}\right)
\displaystyle\equiv 1ccos2θJ/ψ+1ssin2θJ/ψ\displaystyle\mathcal{I}_{1c}\cos^{2}\theta_{J/\psi}+\mathcal{I}_{1s}\sin^{2}\theta_{J/\psi}
+(2ccos2θJ/ψ+2ssin2θJ/ψ)cos2θπ\displaystyle+\left(\mathcal{I}_{2c}\cos^{2}\theta_{J/\psi}+\mathcal{I}_{2s}\sin^{2}\theta_{J/\psi}\right)\cos 2\theta_{\pi}
+(6ccos2θJ/ψ+6ssin2θJ/ψ)cosθπ\displaystyle+\left(\mathcal{I}_{6c}\cos^{2}\theta_{J/\psi}+\mathcal{I}_{6s}\sin^{2}\theta_{J/\psi}\right)\cos\theta_{\pi}
+(3cos2ϕπ+9sin2ϕπ)sin2θπsin2θJ/ψ\displaystyle+\left(\mathcal{I}_{3}\cos 2\phi_{\pi}+\mathcal{I}_{9}\sin 2\phi_{\pi}\right)\sin^{2}\theta_{\pi}\sin^{2}\theta_{J/\psi}
+(4cosϕπ+8sinϕπ)sin2θπsin2θJ/ψ\displaystyle+\left(\mathcal{I}_{4}\cos\phi_{\pi}+\mathcal{I}_{8}\sin\phi_{\pi}\right)\sin 2\theta_{\pi}\sin 2\theta_{J/\psi}
+(5cosϕπ+7sinϕπ)sinθπsin2θJ/ψ.\displaystyle+\left(\mathcal{I}_{5}\cos\phi_{\pi}+\mathcal{I}_{7}\sin\phi_{\pi}\right)\sin\theta_{\pi}\sin 2\theta_{J/\psi}. (16)

The twelve angular observables i(q2,Eπ)\mathcal{I}_{i}(q^{2},E_{\pi}) can be completely expressed in terms of the seven transversity amplitudes defined in subsection 2.2 and the dimensionless factors listed in appendix A.3. Explicitly, we have

1c=\displaystyle\mathcal{I}_{1c}= S1|𝒜|22R1Re[𝒜𝒜T]+4S1T|𝒜T|2+(),\displaystyle S_{1}\left|\mathcal{A}_{\perp}\right|^{2}-2R_{1}{\rm Re}\left[\mathcal{A}_{\perp}\mathcal{A}_{\perp}^{T*}\right]+4S_{1}^{T}\left|\mathcal{A}_{\perp}^{T}\right|^{2}+(\perp\leftrightarrow\parallel), (17)
1s=\displaystyle\mathcal{I}_{1s}= St|𝒜t|2+(S1S3)|𝒜0|22(R1R3)Re[𝒜0𝒜0T]+4(S1TS3T)|𝒜0T|2\displaystyle S_{t}\left|\mathcal{A}_{t}\right|^{2}+(S_{1}-S_{3})\left|\mathcal{A}_{0}\right|^{2}-2(R_{1}-R_{3}){\rm Re}\left[\mathcal{A}_{0}\mathcal{A}_{0}^{T*}\right]+4(S^{T}_{1}-S^{T}_{3})\left|\mathcal{A}_{0}^{T}\right|^{2}
+12{S1|𝒜|22R1Re[𝒜𝒜T]+4S1T|𝒜T|2+()},\displaystyle+\frac{1}{2}\left\{S_{1}\left|\mathcal{A}_{\perp}\right|^{2}-2R_{1}{\rm Re}\left[\mathcal{A}_{\perp}\mathcal{A}_{\perp}^{T*}\right]+4S_{1}^{T}\left|\mathcal{A}_{\perp}^{T}\right|^{2}+(\perp\leftrightarrow\parallel)\right\}, (18)
2c=\displaystyle\mathcal{I}_{2c}= S3|𝒜|22R3Re[𝒜𝒜T]+4S3T|𝒜T|2+(),\displaystyle S_{3}\left|\mathcal{A}_{\perp}\right|^{2}-2R_{3}{\rm Re}\left[\mathcal{A}_{\perp}\mathcal{A}_{\perp}^{T*}\right]+4S^{T}_{3}\left|\mathcal{A}_{\perp}^{T}\right|^{2}+(\perp\leftrightarrow\parallel), (19)
2s=\displaystyle\mathcal{I}_{2s}= 2S3|𝒜0|2+4R3Re[𝒜0𝒜0T]8S3T|𝒜0T|2\displaystyle-2S_{3}\left|\mathcal{A}_{0}\right|^{2}+4R_{3}{\rm Re}\left[\mathcal{A}_{0}\mathcal{A}_{0}^{T*}\right]-8S^{T}_{3}\left|\mathcal{A}_{0}^{T}\right|^{2}
+12{S3|𝒜|22R3Re[𝒜𝒜T]+4S3T|𝒜T|2+()},\displaystyle+\frac{1}{2}\left\{S_{3}\left|\mathcal{A}_{\perp}\right|^{2}-2R_{3}{\rm Re}\left[\mathcal{A}_{\perp}\mathcal{A}_{\perp}^{T*}\right]+4S^{T}_{3}\left|\mathcal{A}_{\perp}^{T}\right|^{2}+(\perp\leftrightarrow\parallel)\right\}, (20)
6c=\displaystyle\mathcal{I}_{6c}= 2Re[S2𝒜𝒜R2(𝒜𝒜T+𝒜𝒜T)+4S2T𝒜T𝒜T],\displaystyle 2\mathrm{Re}\left[S_{2}\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}-R_{2}\left(\mathcal{A}_{\perp}\mathcal{A}_{\parallel}^{T*}+\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{T*}\right)+4S_{2}^{T}\mathcal{A}_{\parallel}^{T}\mathcal{A}_{\perp}^{T*}\right], (21)
6s=\displaystyle\mathcal{I}_{6s}= Re[S2𝒜𝒜R2(𝒜𝒜T+𝒜𝒜T)+4S2T𝒜T𝒜T\displaystyle\mathrm{Re}\Big{[}S_{2}\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}-R_{2}\left(\mathcal{A}_{\perp}\mathcal{A}_{\parallel}^{T*}+\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{T*}\right)+4S_{2}^{T}\mathcal{A}_{\parallel}^{T}\mathcal{A}_{\perp}^{T*}
2Rt𝒜t𝒜0+22RtT𝒜t𝒜0T],\displaystyle-\sqrt{2}R_{t}\mathcal{A}_{t}\mathcal{A}_{0}^{*}+2\sqrt{2}R_{t}^{T}\mathcal{A}_{t}\mathcal{A}_{0}^{T*}\Big{]}, (22)
3=\displaystyle\mathcal{I}_{3}= S3|𝒜|22R3Re[𝒜𝒜T]+4S3T|𝒜T|2(),\displaystyle S_{3}\left|\mathcal{A}_{\perp}\right|^{2}-2R_{3}\mathrm{Re}\left[\mathcal{A}_{\perp}\mathcal{A}_{\perp}^{T*}\right]+4S^{T}_{3}\left|\mathcal{A}_{\perp}^{T}\right|^{2}-(\perp\leftrightarrow\parallel), (23)
9=\displaystyle\mathcal{I}_{9}= 2Im[S3𝒜𝒜+R3(𝒜𝒜T𝒜𝒜T)+4S3T𝒜T𝒜T],\displaystyle 2\mathrm{Im}\left[S_{3}\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}+R_{3}\left(\mathcal{A}_{\perp}\mathcal{A}_{\parallel}^{T*}-\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{T*}\right)+4S^{T}_{3}\mathcal{A}_{\parallel}^{T}\mathcal{A}_{\perp}^{T*}\right], (24)
4=\displaystyle\mathcal{I}_{4}= 2Re[S3𝒜𝒜0R3(𝒜0𝒜T+𝒜𝒜0T)+4S3T𝒜0T𝒜T],\displaystyle\sqrt{2}\mathrm{Re}\left[S_{3}\mathcal{A}_{\perp}\mathcal{A}_{0}^{*}-R_{3}\left(\mathcal{A}_{0}\mathcal{A}_{\perp}^{T*}+\mathcal{A}_{\perp}\mathcal{A}_{0}^{T*}\right)+4S^{T}_{3}\mathcal{A}_{0}^{T}\mathcal{A}_{\perp}^{T*}\right], (25)
8=\displaystyle\mathcal{I}_{8}= 2Im[S3𝒜𝒜0+R3(𝒜0𝒜T𝒜𝒜0T)+4S3T𝒜T𝒜0T],\displaystyle\sqrt{2}\mathrm{Im}\left[S_{3}\mathcal{A}_{\parallel}\mathcal{A}_{0}^{*}+R_{3}\left(\mathcal{A}_{0}\mathcal{A}_{\parallel}^{T*}-\mathcal{A}_{\parallel}\mathcal{A}_{0}^{T*}\right)+4S^{T}_{3}\mathcal{A}_{\parallel}^{T}\mathcal{A}_{0}^{T*}\right], (26)
5=\displaystyle\mathcal{I}_{5}= 122Re[2S2𝒜𝒜02R2(𝒜0𝒜T+𝒜𝒜0T)+8S2T𝒜T𝒜0T\displaystyle\frac{1}{2\sqrt{2}}\mathrm{Re}\Big{[}2S_{2}\mathcal{A}_{\parallel}\mathcal{A}_{0}^{*}-2R_{2}\left(\mathcal{A}_{0}\mathcal{A}_{\parallel}^{T*}+\mathcal{A}_{\parallel}\mathcal{A}_{0}^{T*}\right)+8S_{2}^{T}\mathcal{A}_{\parallel}^{T}\mathcal{A}_{0}^{T*}
+2Rt𝒜t𝒜22RtT𝒜t𝒜T],\displaystyle+\sqrt{2}R_{t}\mathcal{A}_{t}\mathcal{A}_{\perp}^{*}-2\sqrt{2}R_{t}^{T}\mathcal{A}_{t}\mathcal{A}_{\perp}^{T*}\Big{]}, (27)
7=\displaystyle\mathcal{I}_{7}= 122Im[2S2𝒜𝒜0+2R2(𝒜0𝒜T𝒜𝒜0T)8S2T𝒜0T𝒜T\displaystyle\frac{1}{2\sqrt{2}}\mathrm{Im}\Big{[}2S_{2}\mathcal{A}_{\perp}\mathcal{A}_{0}^{*}+2R_{2}\left(\mathcal{A}_{0}\mathcal{A}_{\perp}^{T*}-\mathcal{A}_{\perp}\mathcal{A}_{0}^{T*}\right)-8S_{2}^{T}\mathcal{A}_{0}^{T}\mathcal{A}_{\perp}^{T*}
2Rt𝒜t𝒜+22RtT𝒜t𝒜T].\displaystyle-\sqrt{2}R_{t}\mathcal{A}_{t}\mathcal{A}_{\parallel}^{*}+2\sqrt{2}R_{t}^{T}\mathcal{A}_{t}\mathcal{A}_{\parallel}^{T*}\Big{]}. (28)

In the SM, the angular observables 7\mathcal{I}_{7}, 8\mathcal{I}_{8}, and 9\mathcal{I}_{9} are vanishing. Therefore, in future measurements, a non-vanishing 7\mathcal{I}_{7}, 8\mathcal{I}_{8}, or 9\mathcal{I}_{9} would be a solid signal of NP, which induces a complex contribution to the amplitude.

3 Integrated observables

3.1 EπE_{\pi}-integrated angular observables

The differential decay rate (2.3) depends on five parameters q2q^{2}, EπE_{\pi}, θJ/ψ\theta_{J/\psi}, θπ\theta_{\pi} and ϕπ\phi_{\pi}, and a complete experimental analysis may be limited by statistics. Integrating over the EπE_{\pi} and after a proper normalization, we can get the following angular function

^(q2,cosθJ/ψ,cosθπ,ϕπ)\displaystyle\widehat{\mathcal{I}}\left(q^{2},\cos\theta_{J/\psi},\cos\theta_{\pi},\phi_{\pi}\right)\equiv d5Γdq2dEπdcosθπdϕπdcosθJ/ψ𝑑EπdΓdq2\displaystyle\frac{\int{\frac{d^{5}\Gamma}{dq^{2}dE_{\pi}d\cos\theta_{\pi}d\phi_{\pi}d\cos\theta_{J/\psi}}}dE_{\pi}}{\frac{d\Gamma}{dq^{2}}}
=\displaystyle= 98πi=112^i(q2)Ωi(cosθJ/ψ,cosθπ,ϕπ),\displaystyle\frac{9}{8\pi}\sum_{i=1}^{12}\widehat{\mathcal{I}}_{i}\left(q^{2}\right)\Omega_{i}\left(\cos\theta_{J/\psi},\cos\theta_{\pi},\phi_{\pi}\right), (29)

with the twelve normalized angular observables i^(q2)\widehat{\mathcal{I}_{i}}(q^{2}) defined as

^i(q2)i(q2,Eπ)𝑑Eπ(31c2c+61s22s)𝑑Eπ.\displaystyle\widehat{\mathcal{I}}_{i}\left(q^{2}\right)\equiv\frac{\int{\mathcal{I}_{i}\left(q^{2},E_{\pi}\right)}dE_{\pi}}{\int{\left(3\mathcal{I}_{1c}-\mathcal{I}_{2c}+6\mathcal{I}_{1s}-2\mathcal{I}_{2s}\right)}dE_{\pi}}. (30)

Our choice of the normalization in eq. (3.1) results the relationship 3^1c(q2)^2c(q2)+6^1s(q2)2^2s(q2)=13\widehat{\mathcal{I}}_{1c}\left(q^{2}\right)-\widehat{\mathcal{I}}_{2c}\left(q^{2}\right)+6\widehat{\mathcal{I}}_{1s}\left(q^{2}\right)-2\widehat{\mathcal{I}}_{2s}\left(q^{2}\right)=1. The cancellations through normalization to the decay rate lead to the observation that the observables i^(q2)\widehat{\mathcal{I}_{i}}(q^{2}) have less theoretical uncertainty to facilitate the discussion of the NP effects. In section 4, we will analyze numerically the entire set of observables i^(q2)\widehat{\mathcal{I}_{i}}(q^{2}) within the SM and in some NP benchmark points.

The forward-backward asymmetry of π\pi^{-} meson as a function of q2q^{2} can be defined as

AFB(q2)\displaystyle A_{FB}(q^{2})\equiv 01d2Γdq2dcosθπdcosθπ10d2Γdq2dcosθπdcosθπdΓdq2\displaystyle\frac{\int_{0}^{1}\frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\pi}}d\cos\theta_{\pi}-\int_{-1}^{0}\frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\pi}}d\cos\theta_{\pi}}{\frac{d\Gamma}{dq^{2}}}
=\displaystyle= 32(^6c+2^6s).\displaystyle\frac{3}{2}\left(\widehat{\mathcal{I}}_{6c}+2\widehat{\mathcal{I}}_{6s}\right). (31)

This asymmetry observable only exists in τ\tau channel, and specifically for the τπντ\tau^{-}\to\pi^{-}\nu_{\tau} decay. Obviously, it can be expressed linearly in terms of angular observables i^(q2)\widehat{\mathcal{I}_{i}}(q^{2}).

By integrating over the lepton-side parameters EπE_{\pi}, θπ\theta_{\pi}, ϕπ\phi_{\pi}, one can obtain the two-fold differential decay rate as follows

d2Γdq2dcosθJ/ψ=38dΓdq2[2PLJ/ψ(q2)sin2θJ/ψ+PTJ/ψ(q2)(1+cos2θJ/ψ)],\displaystyle\frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{J/\psi}}=\frac{3}{8}\frac{d\Gamma}{dq^{2}}\left[2P_{L}^{J/\psi}\left(q^{2}\right)\sin^{2}\theta_{J/\psi}+P_{T}^{J/\psi}\left(q^{2}\right)\left(1+\cos^{2}\theta_{J/\psi}\right)\right], (32)

where

PLJ/ψ(q2)dΓL/dq2dΓL/dq2+dΓT/dq2,PTJ/ψ(q2)dΓT/dq2dΓL/dq2+dΓT/dq2,\displaystyle P_{L}^{J/\psi}\left(q^{2}\right)\equiv\frac{d\Gamma_{L}/dq^{2}}{d\Gamma_{L}/dq^{2}+d\Gamma_{T}/dq^{2}},\quad P_{T}^{J/\psi}\left(q^{2}\right)\equiv\frac{d\Gamma_{T}/dq^{2}}{d\Gamma_{L}/dq^{2}+d\Gamma_{T}/dq^{2}}, (33)

are the longitudinal and transverse polarization fractions of the J/ψJ/\psi meson, respectively. The differential decay rates for the longitudinally and transversely polarized intermediate state J/ψJ/\psi are given, respectively, by

dΓLdq2\displaystyle\frac{d\Gamma_{L}}{dq^{2}}\equiv dΓλJ/ψ=0dq2\displaystyle\frac{d\Gamma^{\lambda_{J/\psi}=0}}{dq^{2}}
=\displaystyle= 𝒩{3q2|𝒜t|2+(mτ2+2q2)|𝒜0|2\displaystyle\mathcal{N}\bigg{\{}3q^{2}\left|\mathcal{A}_{t}\right|^{2}+\left(m_{\tau}^{2}+2q^{2}\right)\left|\mathcal{A}_{0}\right|^{2}
+24mτq2Re[𝒜0𝒜0T]+16(2mτ2+q2)|𝒜0T|2},\displaystyle+24m_{\tau}\sqrt{q^{2}}\mathrm{Re}\left[\mathcal{A}_{0}\mathcal{A}_{0}^{T*}\right]+16\left(2m_{\tau}^{2}+q^{2}\right)\left|\mathcal{A}_{0}^{T}\right|^{2}\bigg{\}}, (34)
dΓTdq2\displaystyle\frac{d\Gamma_{T}}{dq^{2}}\equiv dΓλJ/ψ=+1dq2+dΓλJ/ψ=1dq2\displaystyle\frac{d\Gamma^{\lambda_{J/\psi}=+1}}{dq^{2}}+\frac{d\Gamma^{\lambda_{J/\psi}=-1}}{dq^{2}}
=\displaystyle= 𝒩{(mτ2+2q2)|𝒜|2+24mτq2Re[𝒜𝒜T]\displaystyle\mathcal{N}\bigg{\{}\left(m_{\tau}^{2}+2q^{2}\right)\left|\mathcal{A}_{\perp}\right|^{2}+24m_{\tau}\sqrt{q^{2}}\mathrm{Re}\left[\mathcal{A}_{\perp}\mathcal{A}_{\perp}^{T*}\right]
+16(2mτ2+q2)|𝒜T|2+()},\displaystyle+16\left(2m_{\tau}^{2}+q^{2}\right)\left|\mathcal{A}_{\perp}^{T}\right|^{2}+(\perp\leftrightarrow\parallel)\bigg{\}}, (35)

with the factor

𝒩GF2|Vcb|2|𝒑J/ψ|192π3mBc2(1mτ2q2)2τJ/ψ.\displaystyle\mathcal{N}\equiv\frac{G_{F}^{2}\left|V_{cb}\right|^{2}\left|\bm{p}_{J/\psi}\right|}{192\pi^{3}m_{B_{c}}^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2}\mathcal{B}_{\tau}\mathcal{B}_{J/\psi}. (36)

The polarization observables PL,TJ/ψ(q2)P_{L,T}^{J/\psi}(q^{2}) constructed above are not affected by τ\tau decay dynamics since we have integrated over all the lepton-side kinematic parameters, so they are also applicable to light leptons μ\mu and ee. We denote [PL,TJ/ψ]τ\left[P_{L,T}^{J/\psi}\right]_{\tau} and [PL,TJ/ψ]μ\left[P_{L,T}^{J/\psi}\right]_{\mu} as extraction from BcJ/ψτνB_{c}\to J/\psi\tau\nu and BcJ/ψμνB_{c}\to J/\psi\mu\nu decays respectively, and define the following ratios to probe the universality of lepton flavor

R(PL,TJ/ψ)[PL,TJ/ψ]τ[PL,TJ/ψ]μ.R\left(P_{L,T}^{J/\psi}\right)\equiv\frac{\left[P_{L,T}^{J/\psi}\right]_{\tau}}{\left[P_{L,T}^{J/\psi}\right]_{\mu}}. (37)

The q2q^{2} distribution of the decay rate can be obtained by adding up eqs. (34) and (35) as follows

dΓdq2=dΓLdq2+dΓTdq2.\displaystyle\frac{d\Gamma}{dq^{2}}=\frac{d\Gamma_{L}}{dq^{2}}+\frac{d\Gamma_{T}}{dq^{2}}. (38)

Our dΓ/dq2d\Gamma/dq^{2} (apart from τJ/ψ{\cal B}_{\tau}\mathcal{B}_{J/\psi}) is consistent with that in refs. Harrison:2020nrv ; Sakaki:2013bfa .

3.2 Tau asymmetries in BcJ/ψτν¯τB_{c}^{-}\to J/\psi\tau^{-}\bar{\nu}_{\tau} from the visible kinematics

After integrating over the variables θJ/ψ\theta_{J/\psi} and ϕπ\phi_{\pi}, one has

d3Γdq2dEπdcosθπ=\displaystyle\frac{d^{3}\Gamma}{dq^{2}dE_{\pi}d\cos\theta_{\pi}}= GF2|Vcb|2|𝒑J/ψ|(q2)3/2mτ264π3mBc2(mτ2mπ2)2τJ/ψ\displaystyle\frac{G_{F}^{2}\left|V_{cb}\right|^{2}\left|\bm{p}_{J/\psi}\right|\left(q^{2}\right)^{3/2}m_{\tau}^{2}}{64\pi^{3}m_{B_{c}}^{2}\left(m_{\tau}^{2}-m_{\pi}^{2}\right)^{2}}{\cal B}_{\tau}{\cal B}_{J/\psi}
×[1c+21s+(6c+26s)cosθπ+(2c+22s)cos2θπ].\displaystyle\times\left[\mathcal{I}_{1c}+2\mathcal{I}_{1s}+\left(\mathcal{I}_{6c}+2\mathcal{I}_{6s}\right)\cos\theta_{\pi}+\left(\mathcal{I}_{2c}+2\mathcal{I}_{2s}\right)\cos 2\theta_{\pi}\right]. (39)

This three-fold differential decay rate can be used to indirectly reveal the information of τ\tau asymmetries in BcJ/ψτν¯τB_{c}^{-}\to J/\psi\tau^{-}\bar{\nu}_{\tau} decay Kiers:1997zt ; Nierste:2008qe ; Tanaka:2010se ; Sakaki:2012ft ; Ivanov:2017mrj ; Alonso:2017ktd ; Asadi:2020fdo . The following discussion of this subsection will follow closely refs. Alonso:2017ktd ; Asadi:2020fdo , which give a detailed analysis of the τ\tau properties in BD()τν¯τB\to D^{(*)}\tau^{-}\bar{\nu}_{\tau} decays using τdν(d=π,ρ)\tau\to d\nu(d=\pi,\,\rho).

The eq. (3.2) can be rewritten as

d3Γdq2dωπdcosθπ=dΓdq2n=02Pn(cosθπ)In(q2,ωπ),\frac{d^{3}\Gamma}{dq^{2}d\omega_{\pi}d\cos\theta_{\pi}}=\frac{d\Gamma}{dq^{2}}\sum_{n=0}^{2}P_{n}\left(\cos\theta_{\pi}\right)I_{n}(q^{2},\omega_{\pi}), (40)

with

I0\displaystyle I_{0}\equiv 12[f0(q2)+fL(q2,ωπ)PL(q2)],\displaystyle\frac{1}{2}\left[f_{0}\left(q^{2}\right)+f_{L}\left(q^{2},\omega_{\pi}\right)P_{L}(q^{2})\right], (41)
I1\displaystyle I_{1}\equiv fAτ(q2,ωπ)Aτ(q2)+f(q2,ωπ)P(q2)+fZL(q2,ωπ)ZL(q2),\displaystyle f_{A_{\tau}}\left(q^{2},\omega_{\pi}\right)A_{\tau}\left(q^{2}\right)+f_{\perp}\left(q^{2},\omega_{\pi}\right)P_{\perp}\left(q^{2}\right)+f_{Z_{L}}\left(q^{2},\omega_{\pi}\right)Z_{L}\left(q^{2}\right), (42)
I2\displaystyle I_{2}\equiv fZ(q2,ωπ)Z(q2)+fZQ(q2,ωπ)ZQ(q2)+fAQ(q2,ωπ)AQ(q2).\displaystyle f_{Z_{\perp}}\left(q^{2},\omega_{\pi}\right)Z_{\perp}\left(q^{2}\right)+f_{Z_{Q}}\left(q^{2},\omega_{\pi}\right)Z_{Q}\left(q^{2}\right)+f_{A_{Q}}\left(q^{2},\omega_{\pi}\right)A_{Q}\left(q^{2}\right). (43)

Here, P0,1,2(cosθπ)P_{0,1,2}\left(\cos\theta_{\pi}\right) are the Legendre functions, the ωπ\omega_{\pi} and the following κπ\kappa_{\pi} and κτ\kappa_{\tau} are defined in eq. (111). The τ\tau asymmetries PLP_{L}, AτA_{\tau}, PP_{\perp}, ZLZ_{L}, ZZ_{\perp}, ZQZ_{Q}, and AQA_{Q} are defined in the section 2 of ref. Asadi:2020fdo . We find that the functions fif_{i} are given, respectively, by

f0=\displaystyle f_{0}= g++g,\displaystyle g_{+}+g_{-}, fL=\displaystyle f_{L}= g+g,\displaystyle g_{+}-g_{-}, f=\displaystyle f_{\perp}= 4πsin2θπτh,\displaystyle\frac{4}{\pi}\sin^{2}\theta_{\pi\tau}\,h_{\perp},
fAτ=\displaystyle f_{A_{\tau}}= cosθπτf0,\displaystyle\cos\theta_{\pi\tau}\,f_{0}, fZL=\displaystyle f_{Z_{L}}= cosθπτfL,\displaystyle\cos\theta_{\pi\tau}\,f_{L}, fZ=\displaystyle f_{Z_{\perp}}= 3π4cosθπτf,\displaystyle\frac{3\pi}{4}\cos\theta_{\pi\tau}\,f_{\perp},
fAQ=\displaystyle f_{A_{Q}}= 12(3cos2θπτ1)f0,\displaystyle\frac{1}{2}\left(3\cos^{2}\theta_{\pi\tau}-1\right)f_{0}, fZQ=\displaystyle f_{Z_{Q}}= 12(3cos2θπτ1)fL,\displaystyle\frac{1}{2}\left(3\cos^{2}\theta_{\pi\tau}-1\right)f_{L}, (44)

where cosθπτ=κτ2+κπ2ωπ(κτ2+1)(κτ21)ωπ2κπ2\cos\theta_{\pi\tau}=\frac{\kappa_{\tau}^{2}+\kappa_{\pi}^{2}-\omega_{\pi}\left(\kappa_{\tau}^{2}+1\right)}{\left(\kappa_{\tau}^{2}-1\right)\sqrt{\omega_{\pi}^{2}-\kappa_{\pi}^{2}}} is the cosine of the π\pi-τ\tau opening angle θπτ\theta_{\pi\tau} in the τν¯τ\tau^{-}\bar{\nu}_{\tau} center-of-mass frame Hu:2020axt , and

g+=\displaystyle g_{+}= 2κτ2(2ωπκτ2κτ4κπ2)(κπ2κτ2)2(κτ21)2,\displaystyle\frac{2\kappa_{\tau}^{2}\left(2\omega_{\pi}\kappa_{\tau}^{2}-\kappa_{\tau}^{4}-\kappa_{\pi}^{2}\right)}{\left(\kappa_{\pi}^{2}-\kappa_{\tau}^{2}\right)^{2}\left(\kappa_{\tau}^{2}-1\right)^{2}}, (45)
g=\displaystyle g_{-}= 2κτ4(κπ22ωπ+1)(κπ2κτ2)2(κτ21)2,\displaystyle\frac{2\kappa_{\tau}^{4}\left(\kappa_{\pi}^{2}-2\omega_{\pi}+1\right)}{\left(\kappa_{\pi}^{2}-\kappa_{\tau}^{2}\right)^{2}\left(\kappa_{\tau}^{2}-1\right)^{2}}, (46)
h=\displaystyle h_{\perp}= 2κτ3ωπ2κπ2(κπ2κτ2)2(κτ21).\displaystyle\frac{2\kappa_{\tau}^{3}\sqrt{\omega_{\pi}^{2}-\kappa_{\pi}^{2}}}{\left(\kappa_{\pi}^{2}-\kappa_{\tau}^{2}\right)^{2}\left(\kappa_{\tau}^{2}-1\right)}. (47)

Neglecting the π\pi mass, our results are in agreement with those in refs. Alonso:2017ktd ; Asadi:2020fdo . The sign difference in hh_{\perp} is due to the different choice of reference direction. It should be pointed out that in the absence of ZL(q2)Z_{L}(q^{2}), the differential forward-backward asymmetry dAπ/dωπdA_{\pi}/d\omega_{\pi} (i.e. I1(q2,ωπ)I_{1}(q^{2},\omega_{\pi})) cannot be expressed in terms of Aτ(q2)A_{\tau}(q^{2}) and P(q2)P_{\perp}(q^{2}) as given by eq. (16) of ref. Alonso:2017ktd .

4 Numerical results

4.1 The form factors

The BcJ/ψB_{c}\to J/\psi transition form factors are the main source of theoretical uncertainties. For the BcJ/ψB_{c}\to J/\psi vector and axial-vector form factors, V(q2)V(q^{2}) and A0,1,2(q2)A_{0,1,2}(q^{2}), we use the latest high-precision lattice QCD calculation results given in ref. Harrison:2020gvo . Since the BcJ/ψB_{c}\to J/\psi tensor form factors T1,2,3(q2)T_{1,2,3}(q^{2}) are not included in ref. Harrison:2020gvo , we will adopt the T1,2,3(q2)T_{1,2,3}(q^{2}) calculated in the QCD sum rule method Leljak:2019eyw .333We are very grateful to Domagoj Leljak for providing us with the variances and correlation matrix of zz-expansion parameters of BcJ/ψB_{c}\to J/\psi tensor form factors. These form factors are parameterized in a simplified zz expansion to extend to the full q2q^{2} range.

4.2 The NP benchmark points

The model-independent analyses of NP effects in BD()τνB\to D^{(*)}\tau\nu decays have been completed in many previous works Alok:2017qsi ; Hu:2018veh ; Alok:2019uqc ; Murgui:2019czp ; Blanke:2018yud ; Blanke:2019qrx ; Shi:2019gxi ; Cheung:2020sbq ; Kumbhakar:2020jdz . In order to show the influences of these NP effects on the angular distribution of BcJ/ψ(μ+μ)τ(πντ)ν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau} decay, we select various best-fit values as the NP benchmark points. These best-fit values are usually performed on a set of chiral base, which is equivalent to Eq. (2.1) by the following relations

gV=\displaystyle g_{V}= 1+CVL+CVR,\displaystyle 1+C_{V_{L}}+C_{V_{R}}, gA=\displaystyle g_{A}= 1CVL+CVR,\displaystyle-1-C_{V_{L}}+C_{V_{R}},
gS=\displaystyle g_{S}= CSL+CSR,\displaystyle C_{S_{L}}+C_{S_{R}}, gP=\displaystyle g_{P}= CSL+CSR,\displaystyle-C_{S_{L}}+C_{S_{R}}, gT=CT.\displaystyle g_{T}=C_{T}. (48)

According to the following steps, we select a total of eight NP benchmark points under seven different NP hypotheses.

Switching one coupling CiC_{i} at a time, there are five NP hypotheses. The hypothesis of a single CVLC_{V_{L}} can resolve the R(D())R(D^{(*)}) anomalies well, but there is no effect on the normalized observables defined in section 3, so we should not choose it. The hypothesis of a single CSLC_{S_{L}} or CSRC_{S_{R}} is ruled out by the decay rate of BcτνB_{c}\to\tau\nu decay Li:2016vvp ; Celis:2016azn ; Alonso:2016oyd . We take a benchmark point from each of the two remaining NP hypotheses as follows Cheung:2020sbq

BP1:(Re[CVR],Im[CVR])=(0.030, 0.460)\displaystyle\text{BP1:}\qquad\left({\rm Re}\left[C_{V_{R}}\right],\,{\rm Im}\left[C_{V_{R}}\right]\right)=\left(-0.030,\,0.460\right)
BP2:(Re[CT],Im[CT])=(0.011, 0.165)\displaystyle\text{BP2:}\qquad\left({\rm Re}\left[C_{T}\right],\,{\rm Im}\left[C_{T}\right]\right)=\left(0.011,\,0.165\right)

The corresponding complex-conjugated fitting values (Re[CVR],Im[CVR])=(0.030,0.460)\left({\rm Re}\left[C_{V_{R}}\right],\,{\rm Im}\left[C_{V_{R}}\right]\right)=\left(-0.030,\,-0.460\right) and (Re[CT],Im[CT])=(0.011,0.165)\left({\rm Re}\left[C_{T}\right],\,{\rm Im}\left[C_{T}\right]\right)=\left(0.011,\,-0.165\right) are marked as BP1 and BP2, respectively. Although BP1 (BP2) and BP1 (BP2) are formally different benchmark points, they produce the same results for angular observables ^1c,1s,2c,2s,6c,6s,3,4,5\widehat{{\cal I}}_{1c,1s,2c,2s,6c,6s,3,4,5} and opposite results for ^7,8,9\widehat{{\cal I}}_{7,8,9}. Observables ^7,8,9\widehat{{\cal I}}_{7,8,9} can distinguish between the NP benchmark point and its complex conjugate partner very well. In the following analysis, we do not consider BP1 and BP2, and the same treatment is also applicable to the following BP6, which is the complex conjugate of the benchmark point BP6.

Considering the combinations induced by specific UV models, we choose the best-fit points in the following four different NP hypotheses as our NP benchmark points (the remaining CiC_{i} are set to zero in each case) Blanke:2019qrx

BP3: (CVL,CSL=4CT)=(0.10,0.04)\displaystyle\left(C_{V_{L}},\,C_{S_{L}}=-4C_{T}\right)=\left(0.10,\,-0.04\right)
BP4: (CSR,CSL)=(0.21,0.15)(A)or(0.26,0.61)(B)\displaystyle\left(C_{S_{R}},\,C_{S_{L}}\right)=\left(0.21,\,-0.15\right)\,\text{(A)}\quad\text{or}\quad\left(-0.26,\,-0.61\right)\,\text{(B)}
BP5: (CVL,CSR)=(0.08,0.01)\displaystyle\left(C_{V_{L}},\,C_{S_{R}}\right)=\left(0.08,\,-0.01\right)
BP6: (Re[CSL=4CT],Im[CSL=4CT])=(0.06, 0.31)\displaystyle\left({\rm Re}\left[C_{S_{L}}=4C_{T}\right],\,{\rm Im}\left[C_{S_{L}}=4C_{T}\right]\right)=\left(-0.06,\,0.31\right)

where the Wilson coefficients are given at the NP scale 1TeV, and we should run them down to the scale mbm_{b} Blanke:2018yud .

Finally, taking into account all NP Wilson coefficients, except CVRC_{V_{R}} which is explicitly lepton-flavor universal in the standard model effective field theory formalism up to contributions of 𝒪(μEW4/Λ4){\cal O}(\mu^{4}_{\rm EW}/\Lambda^{4}) Hu:2018veh , we choose a set of values labelled “Min 1b” in table 8 of ref. Murgui:2019czp as our NP benchmark point BP7

BP7:(CVL,CSR,CSL,CT)=(0.09, 0.086,0.14, 0.008)\text{BP7:}\qquad\left(C_{V_{L}},\,C_{S_{R}},\,C_{S_{L}},\,C_{T}\right)=\left(0.09,\,0.086,\,-0.14,\,0.008\right)

We adopt the same treatment as in many literatures (e.g. Becirevic:2019tpx ; Boer:2019zmp ; Asadi:2020fdo ; Harrison:2020nrv ; Alguero:2020ukk ), that is, only the central value of best-fit result is considered as the benchmark point to qualitatively discuss the influence of the NP effect.

4.3 Angular observables ^i(q2)\widehat{\cal I}_{i}(q^{2})

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: The angular observables ^i(q2)\widehat{\cal I}_{i}(q^{2}) as a function of q2q^{2}, predicted both within the SM and in eight NP benchmark points. The width of each curve is derived from the theoretical uncertainties of BcJ/ψB_{c}\to J/\psi form factors.

In figure 2, we show the predictions for the entire set of angular observables ^i(q2)\widehat{\cal I}_{i}(q^{2}) within the SM and in eight NP benchmark points. It is easy to see that the BP2 (corresponding to the red band in figure 2) has the greatest effect on all ^i(q2)\widehat{\cal I}_{i}(q^{2}) except ^5(q2)\widehat{\cal I}_{5}(q^{2}). The value of ^5(q2)\widehat{\cal I}_{5}(q^{2}) in BP2 is almost the same as that in the SM. The NP corresponding to BP2 even makes the angular observables ^6c(q2)\widehat{\cal I}_{6c}(q^{2}) negative, which is not present in the SM and in other NP benchmark points.

In the BP6 (corresponding to the blue band in figure 2), the contributions of NP to all ^i(q2)\widehat{\cal I}_{i}(q^{2}) except ^5(q2)\widehat{\cal I}_{5}(q^{2}) are in the same direction as in BP2, but the impacts are smaller than that in BP2. The BP6 can obviously decrease the value of ^5(q2)\widehat{\cal I}_{5}(q^{2}). Observables sensitive to BP6 can be used to study specific UV models, such as the scalar SU(2)L\mathrm{SU(2)}_{L} doublet S2S_{2} (also called R2R_{2}) leptoquark Becirevic:2018afm , which can produce the relationship CSL=4CTC_{S_{L}}=4C_{T} at the NP scale.

As we expected, only BP1, BP2, and BP6 which can provide complex phases can produce nonzero angular observables ^7,8,9(q2)\widehat{\cal I}_{7,8,9}(q^{2}). The BP1 (corresponding to the cyan band in figure 2) makes ^5,6c,6s(q2)\widehat{\cal I}_{5,6c,6s}(q^{2}) decrease slightly, and hardly contributes to ^1c,1s,2c,2s,3,4(q2)\widehat{\cal I}_{1c,1s,2c,2s,3,4}(q^{2}). The results of all ^i(q2)\widehat{\cal I}_{i}(q^{2}) predicted by BP4A and BP4B (corresponding to the purple and yellow bands in figure 2, respectively) coincide almost completely with each other. This indicates that ^i(q2)\widehat{\cal I}_{i}(q^{2}) cannot be used to distinguish the two best-fit points of NP hypothesis (CSR,CSL)\left(C_{S_{R}},\,C_{S_{L}}\right), which is motivated by models with extra charged Higgs. This is different from the situation in the angular observables of Λb0Λc+(Λ0π+)τ(πντ)ν¯τ\Lambda_{b}^{0}\to\Lambda_{c}^{+}(\to\Lambda^{0}\pi^{+})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau} decay, which can distinguish between BP4A and BP4B very well Hu:2020axt . The BP4A and BP4B make ^1c,2s,5,6c(q2)\widehat{\cal I}_{1c,2s,5,6c}(q^{2}) decrease slightly and ^1s,2c,3,4,6s(q2)\widehat{\cal I}_{1s,2c,3,4,6s}(q^{2}) increase slightly. The NP effects of BP3, BP5, and BP7 have little impact on ^i(q2)\widehat{\cal I}_{i}(q^{2}).

4.4 Lepton-flavor-universality ratios R(PL,TJ/ψ)(q2)R(P_{L,T}^{J/\psi})(q^{2}) and R(J/ψ)R(J/\psi)

Refer to caption
Refer to caption
Figure 3: Lepton-flavor-universality ratios R(PL,TJ/ψ)(q2)R(P_{L,T}^{J/\psi})(q^{2}) as a function of q2q^{2}, predicted both within the SM and in eight NP benchmark points. The width of each curve is derived from the theoretical uncertainties of BcJ/ψB_{c}\to J/\psi form factors.

The q2q^{2} distribution of lepton-flavor-universality ratios R(PL,TJ/ψ)R(P_{L,T}^{J/\psi}) is shown in figure 3, which includes the results within the SM and in eight NP benchmark points. All NP benchmark points except BP5 and BP1 can be distinguished by R(PL,TJ/ψ)(q2)R(P_{L,T}^{J/\psi})(q^{2}), especially in the small q2q^{2} region. The results of R(PL,TJ/ψ)(q2)R(P_{L,T}^{J/\psi})(q^{2}) predicted by BP4A and BP4B coincide almost completely with each other. The longitudinal polarization ratio R(PLJ/ψ)(q2)R(P_{L}^{J/\psi})(q^{2}) is decreased by benchmarks BP2 and BP6, and increased by benchmarks BP4A, BP4B, BP7, and BP3. Especially, the NP effect of BP2 makes the ratio R(PLJ/ψ)(q2)R(P_{L}^{J/\psi})(q^{2}) significantly less than 1. The transverse polarization ratio R(PTJ/ψ)(q2)R(P_{T}^{J/\psi})(q^{2}) is increased by benchmarks BP2 and BP6, and decreased by benchmarks BP4A, BP4B, BP7, and BP3. The NP effect of BP2 makes the ratio R(PTJ/ψ)(q2)R(P_{T}^{J/\psi})(q^{2}) significantly greater than 1.

All of the NP benchmark points can increase the ratio R(J/ψ)R(J/\psi). R(J/ψ)R(J/\psi) does not use the τ\tau channel for normalization, so the CVLC_{V_{L}} contribution of BP3, BP5, and BP7 can be seen. The predicted values of R(J/ψ)R(J/\psi) are shown as follows

R(J/ψ)SM=\displaystyle R(J/\psi)_{\mathrm{SM}}= 0.2582(38),\displaystyle 0.2582(38), R(J/ψ)BP1=\displaystyle R(J/\psi)_{\mathrm{BP1}}= 0.3272(50),\displaystyle 0.3272(50), R(J/ψ)BP2=\displaystyle R(J/\psi)_{\mathrm{BP2}}= 0.3373(176),\displaystyle 0.3373(176),
R(J/ψ)BP3=\displaystyle R(J/\psi)_{\mathrm{BP3}}= 0.3030(45),\displaystyle 0.3030(45), R(J/ψ)BP4A=\displaystyle R(J/\psi)_{\mathrm{BP4A}}= 0.2781(36),\displaystyle 0.2781(36), R(J/ψ)BP4B=\displaystyle R(J/\psi)_{\mathrm{BP4B}}= 0.2754(36),\displaystyle 0.2754(36), (49)
R(J/ψ)BP5=\displaystyle R(J/\psi)_{\mathrm{BP5}}= 0.3007(44),\displaystyle 0.3007(44), R(J/ψ)BP6=\displaystyle R(J/\psi)_{\mathrm{BP6}}= 0.2938(67),\displaystyle 0.2938(67), R(J/ψ)BP7=\displaystyle R(J/\psi)_{\mathrm{BP7}}= 0.3031(44).\displaystyle 0.3031(44).

5 Symmetries in the angular observables without tensor operators

In the absence of tensor operators, the twelve angular observables i(q2,Eπ)\mathcal{I}_{i}(q^{2},E_{\pi}) defined in section 2.3 are not independent. These angular observables change to

1c=\displaystyle\mathcal{I}_{1c}= S1(|𝒜|2+|𝒜|2),\displaystyle S_{1}\left(\left|\mathcal{A}_{\perp}\right|^{2}+\left|\mathcal{A}_{\parallel}\right|^{2}\right), (50)
1s=\displaystyle\mathcal{I}_{1s}= St|𝒜t|2+(S1S3)|𝒜0|2+12S1(|𝒜|2+|𝒜|2),\displaystyle S_{t}\left|\mathcal{A}_{t}\right|^{2}+(S_{1}-S_{3})\left|\mathcal{A}_{0}\right|^{2}+\frac{1}{2}S_{1}\left(\left|\mathcal{A}_{\perp}\right|^{2}+\left|\mathcal{A}_{\parallel}\right|^{2}\right), (51)
2c=\displaystyle\mathcal{I}_{2c}= S3(|𝒜|2+|𝒜|2),\displaystyle S_{3}\left(\left|\mathcal{A}_{\perp}\right|^{2}+\left|\mathcal{A}_{\parallel}\right|^{2}\right), (52)
2s=\displaystyle\mathcal{I}_{2s}= 2S3|𝒜0|2+12S3(|𝒜|2+|𝒜|2),\displaystyle-2S_{3}\left|\mathcal{A}_{0}\right|^{2}+\frac{1}{2}S_{3}\left(\left|\mathcal{A}_{\perp}\right|^{2}+\left|\mathcal{A}_{\parallel}\right|^{2}\right), (53)
6c=\displaystyle\mathcal{I}_{6c}= 2S2Re[𝒜𝒜],\displaystyle 2S_{2}\mathrm{Re}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right], (54)
6s=\displaystyle\mathcal{I}_{6s}= Re[S2𝒜𝒜2Rt𝒜t𝒜0],\displaystyle\mathrm{Re}\left[S_{2}\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}-\sqrt{2}R_{t}\mathcal{A}_{t}\mathcal{A}_{0}^{*}\right], (55)
3=\displaystyle\mathcal{I}_{3}= S3(|𝒜|2|𝒜|2),\displaystyle S_{3}\left(\left|\mathcal{A}_{\perp}\right|^{2}-\left|\mathcal{A}_{\parallel}\right|^{2}\right), (56)
9=\displaystyle\mathcal{I}_{9}= 2S3Im[𝒜𝒜],\displaystyle 2S_{3}\mathrm{Im}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right], (57)
4=\displaystyle\mathcal{I}_{4}= 2S3Re[𝒜𝒜0],\displaystyle\sqrt{2}S_{3}\mathrm{Re}\left[\mathcal{A}_{\perp}\mathcal{A}_{0}^{*}\right], (58)
8=\displaystyle\mathcal{I}_{8}= 2S3Im[𝒜𝒜0],\displaystyle\sqrt{2}S_{3}\mathrm{Im}\left[\mathcal{A}_{\parallel}\mathcal{A}_{0}^{*}\right], (59)
5=\displaystyle\mathcal{I}_{5}= 122Re[2S2𝒜𝒜0+2Rt𝒜t𝒜],\displaystyle\frac{1}{2\sqrt{2}}\mathrm{Re}\left[2S_{2}\mathcal{A}_{\parallel}\mathcal{A}_{0}^{*}+\sqrt{2}R_{t}\mathcal{A}_{t}\mathcal{A}_{\perp}^{*}\right], (60)
7=\displaystyle\mathcal{I}_{7}= 122Im[2S2𝒜𝒜02Rt𝒜t𝒜].\displaystyle\frac{1}{2\sqrt{2}}\mathrm{Im}\left[2S_{2}\mathcal{A}_{\perp}\mathcal{A}_{0}^{*}-\sqrt{2}R_{t}\mathcal{A}_{t}\mathcal{A}_{\parallel}^{*}\right]. (61)

We can consider these angular observables as being bilinear in

A{Re[𝒜t],Im[𝒜t],Re[𝒜0],Im[𝒜0],Re[𝒜],Im[𝒜],Re[𝒜],Im[𝒜]}.\vec{A}\equiv\left\{\mathrm{Re}[\mathcal{A}_{t}],\mathrm{Im}[\mathcal{A}_{t}],\mathrm{Re}[\mathcal{A}_{0}],\mathrm{Im}[\mathcal{A}_{0}],\mathrm{Re}[\mathcal{A}_{\perp}],\mathrm{Im}[\mathcal{A}_{\perp}],\mathrm{Re}[\mathcal{A}_{\parallel}],\mathrm{Im}[\mathcal{A}_{\parallel}]\right\}. (62)

Generally, the experimental and theoretical degrees of freedom can be matched by the following formula Egede:2010zc ; Matias:2012xw ; Hofer:2015kka ; Alguero:2020ukk

ncnd=2nAns,n_{c}-n_{d}=2n_{A}-n_{s}, (63)

where ncn_{c} is the number of angular observables i\mathcal{I}_{i}; ndn_{d} is the number of dependencies between the different observables i\mathcal{I}_{i}, which can be obtained by the difference between the number of observables i\mathcal{I}_{i} and the dimension of the space given by the gradient vectors i\vec{\nabla}\mathcal{I}_{i} (with the derivatives taken with respect to the various elements of A\vec{A}); nAn_{A} is the number of transversity amplitudes (each 𝒜j\mathcal{A}_{j} is complex and therefore has two degrees of freedom); nsn_{s} is the number of continuous symmetries.

Without tensor operators, there are still twelve angular observables i\mathcal{I}_{i} but only four amplitudes 𝒜t,0,,\mathcal{A}_{t,0,\perp,\parallel}. So nc=12n_{c}=12 and nA=4n_{A}=4. In this case, the only continuous symmetry that can be found is

𝒜teiα𝒜t,𝒜0eiα𝒜0,𝒜eiα𝒜,𝒜eiα𝒜.\mathcal{A}_{t}\to e^{i\alpha}\mathcal{A}_{t},\quad\mathcal{A}_{0}\to e^{i\alpha}\mathcal{A}_{0},\quad\mathcal{A}_{\perp}\to e^{i\alpha}\mathcal{A}_{\perp},\quad\mathcal{A}_{\parallel}\to e^{i\alpha}\mathcal{A}_{\parallel}. (64)

Only 7 of the 12 angular observables i\mathcal{I}_{i} are independent and 5 dependencies are found. We present the dependence relations directly here and provide the detailed derivation in appendix B:

S12c=\displaystyle S_{1}\mathcal{I}_{2c}= S31c,\displaystyle S_{3}\mathcal{I}_{1c}, (65)
S222c2=\displaystyle S_{2}^{2}\mathcal{I}_{2c}^{2}= S22(32+92)+S326c2,\displaystyle S_{2}^{2}\left(\mathcal{I}_{3}^{2}+\mathcal{I}_{9}^{2}\right)+S_{3}^{2}\mathcal{I}_{6c}^{2}, (66)
4S22β22=\displaystyle 4S_{2}^{2}\beta_{2}^{2}= S326c2[(2c22s)(2c+3)442],\displaystyle S_{3}^{2}\mathcal{I}_{6c}^{2}\left[\left(\mathcal{I}_{2c}-2\mathcal{I}_{2s}\right)\left(\mathcal{I}_{2c}+\mathcal{I}_{3}\right)-4\mathcal{I}_{4}^{2}\right], (67)
Rt2(2c22s)\displaystyle R_{t}^{2}\left(\mathcal{I}_{2c}-2\mathcal{I}_{2s}\right) [4S31s+(S33S1)2c+2(S1S3)2s]\displaystyle\left[4S_{3}\mathcal{I}_{1s}+\left(S_{3}-3S_{1}\right)\mathcal{I}_{2c}+2\left(S_{1}-S_{3}\right)\mathcal{I}_{2s}\right]
=\displaystyle= 2St{S32(6c26s)2+[S326cβ3+S22(2c22s)9β2]2S22(2c+3)2β22},\displaystyle 2S_{t}\left\{S_{3}^{2}\left(\mathcal{I}_{6c}-2\mathcal{I}_{6s}\right)^{2}+\frac{\left[S_{3}^{2}\mathcal{I}_{6c}\beta_{3}+S_{2}^{2}\left(\mathcal{I}_{2c}-2\mathcal{I}_{2s}\right)\mathcal{I}_{9}\beta_{2}\right]^{2}}{S_{2}^{2}\left(\mathcal{I}_{2c}+\mathcal{I}_{3}\right)^{2}\beta_{2}^{2}}\right\}, (68)
2S32(2c+3)27=\displaystyle 2S_{3}^{2}\left(\mathcal{I}_{2c}+\mathcal{I}_{3}\right)^{2}\mathcal{I}_{7}= S22[(2c+3)2+92]β26cS3446c2β3S22(2c22s)β2\displaystyle S_{2}^{2}\frac{\left[(\mathcal{I}_{2c}+\mathcal{I}_{3})^{2}+\mathcal{I}_{9}^{2}\right]\beta_{2}}{\mathcal{I}_{6c}}-\frac{S_{3}^{4}\mathcal{I}_{4}\mathcal{I}_{6c}^{2}\beta_{3}}{S_{2}^{2}\left(\mathcal{I}_{2c}-2\mathcal{I}_{2s}\right)\beta_{2}}
+S329[β3(2c22s)46c]+8(2c+3)2(6c26s)2c22s,\displaystyle+S_{3}^{2}\frac{\mathcal{I}_{9}\left[\beta_{3}-\left(\mathcal{I}_{2c}-2\mathcal{I}_{2s}\right)\mathcal{I}_{4}\mathcal{I}_{6c}\right]+\mathcal{I}_{8}\left(\mathcal{I}_{2c}+\mathcal{I}_{3}\right)^{2}\left(\mathcal{I}_{6c}-2\mathcal{I}_{6s}\right)}{\mathcal{I}_{2c}-2\mathcal{I}_{2s}}, (69)

with

β2\displaystyle\beta_{2}\equiv (2c+3)849,\displaystyle\left(\mathcal{I}_{2c}+\mathcal{I}_{3}\right)\mathcal{I}_{8}-\mathcal{I}_{4}\mathcal{I}_{9}, (70)
β3\displaystyle\beta_{3}\equiv 22c5(2c22s+3)+246s(2c+3)\displaystyle 2\mathcal{I}_{2c}\mathcal{I}_{5}\left(\mathcal{I}_{2c}-2\mathcal{I}_{2s}+\mathcal{I}_{3}\right)+2\mathcal{I}_{4}\mathcal{I}_{6s}\left(\mathcal{I}_{2c}+\mathcal{I}_{3}\right)
+46c(22s322c)42s35.\displaystyle+\mathcal{I}_{4}\mathcal{I}_{6c}\left(2\mathcal{I}_{2s}-\mathcal{I}_{3}-2\mathcal{I}_{2c}\right)-4\mathcal{I}_{2s}\mathcal{I}_{3}\mathcal{I}_{5}. (71)

Eqs. (65)–(69) can be used as a model-independent method to determine the existence of tensor operators. The “model-independent method” here not only means that it does not depend on the NP models, but also means that it does not depend on the calculation of BcJ/ψB_{c}\to J/\psi transition form factors.

Furthermore, we can obtain the dependence relations among the normalized angular observables ^i(q2)\widehat{\mathcal{I}}_{i}(q^{2}) by replacing the i(q2,Eπ)\mathcal{I}_{i}(q^{2},E_{\pi}) and the dimensionless factors St,1,2,3S_{t,1,2,3} and RtR_{t} in eqs. (65)–(71) with ^i(q2)\widehat{\mathcal{I}}_{i}(q^{2}), S¯t,1,2,3\bar{S}_{t,1,2,3} and R¯t\bar{R}_{t}, respectively. The factors S¯t,1,2,3\bar{S}_{t,1,2,3} and R¯t\bar{R}_{t} are defined, respectively, as

S¯t,1,2,3St,1,2,3𝑑Eπ,R¯tRt𝑑Eπ.\displaystyle\bar{S}_{t,1,2,3}\equiv\int{S_{t,1,2,3}}dE_{\pi},\quad\bar{R}_{t}\equiv\int{R_{t}}dE_{\pi}. (72)

6 Conclusions

Inspired by the R(D())R(D^{(*)}) anomalies, the angular distribution of BcJ/ψτν¯τB_{c}^{-}\to J/\psi\tau^{-}\bar{\nu}_{\tau} or BcJ/ψ(μ+μ)τν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}\bar{\nu}_{\tau} decay has been used to explore possible NP patterns in bcτν¯τb\to c\tau^{-}\bar{\nu}_{\tau} transition in many previous works. However, angular observables depending on the solid angle of final-state τ\tau^{-} are unmeasurable theoretically, since the decay products of τ\tau^{-} inevitably contain an undetected ντ\nu_{\tau} and the solid angle of τ\tau^{-} cannot be determined precisely. Therefore, in this work, we study the measurable angular distribution of the five-body decay BcJ/ψ(μ+μ)τ(πντ)ν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau}, which includes three visible final-state particles μ+\mu^{+}, μ\mu^{-}, and π\pi^{-}, with their three-momenta all being measured.

The five-fold differential decay rate containing all NP effective operators can be expressed in terms of twelve angular observables i(q2,Eπ)\mathcal{I}_{i}(q^{2},E_{\pi}), which can be completely expressed by seven independent transversity amplitudes and some dimensionless factors. As long as one of the angular observables 7\mathcal{I}_{7}, 8\mathcal{I}_{8} and 9\mathcal{I}_{9} is nonzero, this will be an unquestionable sign of NP, and indicates that the NP can cause extra weak phases. Integrating the five-fold differential decay rate over the EπE_{\pi} and normalized by dΓ/dq2d\Gamma/dq^{2}, we can construct twelve normalized angular observables ^i(q2)\widehat{\mathcal{I}}_{i}(q^{2}). By integrating over all lepton-side parameters, we find that there are only two angular observables PL,TJ/ψ(q2)P^{J/\psi}_{L,T}(q^{2}) whose determination can be obtained without reconstruction of the dilepton solid angle. The PL,TJ/ψ(q2)P^{J/\psi}_{L,T}(q^{2}) are not affected by the lepton dynamics, so they can be used to construct the ratios R(PL,TJ/ψ)R(P^{J/\psi}_{L,T}) to probe the universality of lepton flavor. Based on our five-fold differential decay rate, we show how to extract the complete set of τ\tau asymmetries in BcJ/ψτν¯τB_{c}^{-}\to J/\psi\tau^{-}\bar{\nu}_{\tau} decay from the visible final-state kinematics.

Using the BcJ/ψB_{c}\to J/\psi vector and axial-vector form factors calculated by the latest lattice QCD and the tensor form factors calculated by the QCD sum rule, we predict the q2q^{2} distribution of the twelve normalized angular observables ^i\widehat{\mathcal{I}}_{i} and the two lepton-flavor-universality ratios R(PL,TJ/ψ)R(P_{L,T}^{J/\psi}) both within the SM and in eight NP benchmark points, which are a variety of best-fit points in seven different NP hypotheses. We find that the benchmark BP2 (corresponding to the hypothesis of tensor operator) has the greatest effect on all ^i\widehat{\mathcal{I}}_{i} and R(PL,TJ/ψ)R(P_{L,T}^{J/\psi}), except ^5\widehat{\mathcal{I}}_{5}. Especially for the observables ^6c\widehat{\mathcal{I}}_{6c} and R(PL,TJ/ψ)R(P_{L,T}^{J/\psi}), BP2 makes their predictions very different from those in the SM and other benchmark points. The results of all ^i\widehat{\mathcal{I}}_{i} and R(PL,TJ/ψ)R(P_{L,T}^{J/\psi}) predicted by the two best-fit points (i.e. BP4A and BP4B) of NP hypothesis (CSR,CSL)(C_{S_{R}},\,C_{S_{L}}), which is motivated by models with extra charged Higgs, coincide almost completely with each other. This is different from the situation in the angular observables of the baryonic counterparts, which can distinguish between BP4A and BP4B very well. In addition to the benchmarks BP2, BP4A, and BP4B, the BP1, BP6, and BP7 can also have some influence on the observables. Compared with the ^i\widehat{\mathcal{I}}_{i}, the ratios R(PL,TJ/ψ)R(P_{L,T}^{J/\psi}) are more sensitive to the NP with pseudo-scalar operator. All NP benchmark points can improve the value of R(J/ψ)R(J/\psi), which makes it closer to the experimental measurement.

We discuss the symmetries in the angular observables without tensor operators, and present five dependence relations. Once all twelve angular observables are measured, these five relations will be a very useful way to determine the existence of tensor operators. If these relations are not fulfilled, it means that there must be tensor operators. This method is completely independent of any assumptions on the details of the NP model and BcJ/ψB_{c}\to J/\psi transition form factors.

The cascade decay BcJ/ψ(μ+μ)τ(πντ)ν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau} provides a good prospect for measurement by the LHCb experiment, because it has excellent final-state signatures with a strongly peaking μ+μ\mu^{+}\mu^{-} spectrum and a well π\pi^{-} identification. Additionally, the lifetime of BcB_{c} meson is almost three times shorter than that of Bu,d,sB_{u,d,s} mesons, which can be used to improve the separation of BcB_{c} decay from Bu,d,sB_{u,d,s} decays, thus providing an extra handle to distinguish the large background that derives from the Bu,d,sB_{u,d,s} mesons Aaij:2017tyk ; Bernlochner:2021vlv . One possible background is the very rare Bπμ+μB^{-}\to\pi^{-}\mu^{+}\mu^{-} decay Aaij:2015nea , which has about one-tenth the number of events as the signal decay. This background can also be distinguished from the signal by the kinematic properties of the visible final-state particles. Future precise measurements of the angular observables in BcJ/ψ(μ+μ)τ(πντ)ν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau} decay, especially precise measurements of the normalized ones, would be very helpful to provide a more definite answer concerning the anomalies observed in bcτν¯τb\to c\tau^{-}\bar{\nu}_{\tau} transition, restricting further or even deciphering the NP models.

Acknowledgements.
This work is supported by the National Natural Science Foundation of China under Grant Nos. 11947083, 12075097, 11675061 and 11775092, as well as by the CCNU-QLPL Innovation Fund (QLPL2020P01). X.L. is also supported by the Fundamental Research Funds for the Central Universities under Grant No. CCNU20TS007.

Appendix A The calculation of the angular distribution

In the appendix of ref. Hu:2020axt , we have given the detailed calculation procedures for the similar five-body cascade decay of unpolarized Λb\Lambda_{b} baryon. The calculation of Vτ(πντ)ν¯τV^{*}\to\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau} part is exactly the same as that in this work. Therefore, in this section, we mainly present some important definitions and conventions, and calculate the J/ψμ+μJ/\psi\to\mu^{+}\mu^{-} decay. At the end of this section, the dimensionless factors are listed for the sake of completeness of this paper.

A.1 Definitions and conventions

The differential decay rate of cascade decay BcJ/ψ(μ+μ)τ(πντ)ν¯τB_{c}^{-}\to J/\psi(\to\mu^{+}\mu^{-})\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau} can be written as

dΓ=\displaystyle d\Gamma= 4GF2|Vcb|2(τπντ)dq2mBc(mτ2mπ2)2mJ/ψΓJ/ψλμ,λμ+|𝖬λμ,λμ+|2dΠ2(pBc;q,pJ/ψ)\displaystyle\frac{4G_{F}^{2}\left|V_{cb}\right|^{2}{\cal B}\left(\tau\to\pi^{-}\nu_{\tau}\right)dq^{2}}{m_{B_{c}}\left(m_{\tau}^{2}-m_{\pi}^{2}\right)^{2}m_{J/\psi}\Gamma_{J/\psi}}\sum_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}}\left|{\sf M}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}}\right|^{2}d\Pi_{2}\left(p_{B_{c}};q,p_{J/\psi}\right)
×dΠ2(q;pτ,pν¯)dΠ2(pτ;pπ,pν)dΠ2(pJ/ψ;pμ,pμ+),\displaystyle\times d\Pi_{2}\left(q;p_{\tau},p_{\bar{\nu}}\right)d\Pi_{2}\left(p_{\tau};p_{\pi^{-}},p_{\nu}\right)d\Pi_{2}\left(p_{J/\psi};p_{\mu^{-}},p_{\mu^{+}}\right), (73)

where

𝖬λμ,λμ+\displaystyle{\sf M}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}} 𝖧λμ,λμ+𝖫+ληλ𝖧λμ,λμ+λ𝖫λ+λ,ληληλ𝖧λμ,λμ+λ,λ𝖫λ,λ,\displaystyle\equiv{\sf H}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}}{\sf L}+\sum_{\lambda}\eta_{\lambda}{\sf H}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}}^{\lambda}{\sf L}_{\lambda}+\sum_{\lambda,\lambda^{\prime}}\eta_{\lambda}\eta_{\lambda^{\prime}}{\sf H}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}}^{\lambda,\lambda^{\prime}}{\sf L}_{\lambda,\lambda^{\prime}}, (74)
𝖧λμ,λμ+\displaystyle{\sf H}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}} =λJ/ψHλJ/ψλμ,λμ+λJ/ψ,\displaystyle=\sum_{\lambda_{J/\psi}}H_{\lambda_{J/\psi}}{\cal M}^{\lambda_{J/\psi}}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}}, (75)
𝖧λμ,λμ+λ\displaystyle{\sf H}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}}^{\lambda} =λJ/ψHλJ/ψλλμ,λμ+λJ/ψ,\displaystyle=\sum_{\lambda_{J/\psi}}H_{\lambda_{J/\psi}}^{\lambda}{\cal M}^{\lambda_{J/\psi}}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}}, (76)
𝖧λμ,λμ+λ,λ\displaystyle{\sf H}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}}^{\lambda,\lambda^{\prime}} =λJ/ψHλJ/ψλ,λλμ,λμ+λJ/ψ.\displaystyle=\sum_{\lambda_{J/\psi}}H_{\lambda_{J/\psi}}^{\lambda,\lambda^{\prime}}{\cal M}^{\lambda_{J/\psi}}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}}. (77)

The λμ\lambda_{\mu^{-}} and λμ+\lambda_{\mu^{+}} respectively represent the helicity of final-state particles μ\mu^{-} and μ+\mu^{+}, as well as the λ()\lambda^{(\prime)} and λJ/ψ\lambda_{J/\psi} respectively represent the helicity of intermediate state VV^{*} and J/ψJ/\psi. The dΠ2d\Pi_{2} stands for the two-body phase space. λμ,λμ+λJ/ψ{\cal M}^{\lambda_{J/\psi}}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}} denotes the helicity amplitude related to J/ψμ+μJ/\psi\to\mu^{+}\mu^{-} decay. HλJ/ψ(λ,λ)H_{\lambda_{J/\psi}}^{\left(\lambda,\lambda^{\prime}\right)} are the hadronic helicity amplitudes describing the BcJ/ψB_{c}\to J/\psi transition with different Lorentz structures.

HλJ/ψ\displaystyle H_{\lambda_{J/\psi}} =J/ψ(λJ/ψ)|gS(c¯b)+gP(c¯γ5b)|Bc,\displaystyle=\left\langle J/\psi(\lambda_{J/\psi})\left|g_{S}({\bar{c}}b)+g_{P}({\bar{c}}\gamma_{5}b)\right|B_{c}\right\rangle, (78)
HλJ/ψλ\displaystyle H^{\lambda}_{\lambda_{J/\psi}} =ϵμ(λ)J/ψ(λJ/ψ)|gV(c¯γμb)+gA(c¯γμγ5b)|Bc,\displaystyle=\epsilon^{\mu*}(\lambda)\left\langle J/\psi(\lambda_{J/\psi})\left|g_{V}({\bar{c}}\gamma_{\mu}b)+g_{A}({\bar{c}}\gamma_{\mu}\gamma_{5}b)\right|B_{c}\right\rangle, (79)
HλJ/ψλ,λ\displaystyle H^{\lambda,\lambda^{\prime}}_{\lambda_{J/\psi}} =gTϵμ(λ)ϵν(λ)J/ψ(λJ/ψ)|c¯iσμν(1γ5)b|Bc,\displaystyle=g_{T}\epsilon^{\mu*}(\lambda)\epsilon^{\nu*}(\lambda^{\prime})\left\langle J/\psi(\lambda_{J/\psi})\left|{\bar{c}}i\sigma_{\mu\nu}(1-\gamma_{5})b\right|B_{c}\right\rangle, (80)

where ϵμ(λ)\epsilon^{\mu}(\lambda) denotes the polarization vector of the virtual vector boson VV^{*} with helicity λ\lambda. The modified leptonic helicity amplitudes are 𝖫(λ,λ){\sf L}_{\left(\lambda,\lambda^{\prime}\right)}, which can be obtained directly from the appendix of ref. Hu:2020axt .

In the BcB_{c} rest frame, the polarization vector of J/ψJ/\psi meson can be written as Auvil:1966eao ; Haber:1994pe

εμ(±1)\displaystyle\varepsilon^{\mu}\left(\pm 1\right) =(0,1,i, 0)/2,\displaystyle=\left(0,\,\mp 1,\,-i,\,0\right)/\sqrt{2}, (81)
εμ(0)\displaystyle\varepsilon^{\mu}\left(0\right) =(|𝒑J/ψ|, 0, 0,EJ/ψ)/mJ/ψ,\displaystyle=\left(\left|{\bm{p}}_{J/\psi}\right|,\,0,\,0,\,E_{J/\psi}\right)/m_{J/\psi}, (82)

with |𝒑J/ψ|=Q+Q/(2mBc)\left|{\bm{p}}_{J/\psi}\right|=\sqrt{Q_{+}Q_{-}}/\left(2m_{B_{c}}\right) and EJ/ψ=(mBc2+mJ/ψ2q2)/(2mBc)E_{J/\psi}=\left(m_{B_{c}}^{2}+m_{J/\psi}^{2}-q^{2}\right)/\left(2m_{B_{c}}\right). The polarization vector of virtual VV^{*} can be written as Auvil:1966eao ; Haber:1994pe

ϵμ(±1)\displaystyle\epsilon^{\mu}\left(\pm 1\right) =(0,±1,i, 0)/2,\displaystyle=\left(0,\,\pm 1,\,-i,\,0\right)/\sqrt{2}, (83)
ϵμ(0)\displaystyle\epsilon^{\mu}\left(0\right) =(|𝒒|, 0, 0,q0)/q2,\displaystyle=\left(\left|{\bm{q}}\right|,\,0,\,0,\,-q_{0}\right)/\sqrt{q^{2}}, (84)
ϵμ(t)\displaystyle\epsilon^{\mu}\left(t\right) =qμ/q2,\displaystyle=q^{\mu}/\sqrt{q^{2}}, (85)

with |𝒒|=Q+Q/(2mBc)\left|{\bm{q}}\right|=\sqrt{Q_{+}Q_{-}}/\left(2m_{B_{c}}\right) and q0=(mBc2mJ/ψ2+q2)/(2mBc)q_{0}=\left(m_{B_{c}}^{2}-m_{J/\psi}^{2}+q^{2}\right)/\left(2m_{B_{c}}\right). Eqs. (83)–(85) satisfy the completeness relation

gμν=λ{t,±1,0}ϵμ(λ)ϵν(λ)ηλ,g^{\mu\nu}=\sum_{\lambda\in\{t,\pm 1,0\}}\epsilon^{\mu}(\lambda)\epsilon^{\nu*}(\lambda)\eta_{\lambda}, (86)

where ηt=1\eta_{t}=1 and η±1,0=1\eta_{\pm 1,0}=-1.

For scalar and pseudo-scalar operators, there is only one nonzero hadronic helicity amplitude

H0=𝒜tSP.H_{0}={\cal A}_{t}^{SP}. (87)

For vector and axial-vector operators, there are four nonzero hadronic helicity amplitudes listed as follows

H0t\displaystyle H_{0}^{t} =𝒜tVA,\displaystyle={\cal A}_{t}^{VA}, H00\displaystyle H_{0}^{0} =𝒜0,\displaystyle={\cal A}_{0},
H11\displaystyle H_{1}^{1} =(𝒜+𝒜)/2,\displaystyle=\left({\cal A}_{\perp}+{\cal A}_{\parallel}\right)/\sqrt{2}, H11\displaystyle H_{-1}^{-1} =(𝒜𝒜)/2.\displaystyle=\left({\cal A}_{\perp}-{\cal A}_{\parallel}\right)/\sqrt{2}. (88)

For the tensor operators, there are twelve nonzero hadronic helicity amplitudes listed as follows

H0t,0\displaystyle H_{0}^{t,0} =H01,1=H00,t=H01,1=𝒜0T,\displaystyle=H_{0}^{-1,1}=-H_{0}^{0,t}=-H_{0}^{1,-1}={\cal A}_{0}^{T},
H10,1\displaystyle H_{1}^{0,1} =H1t,1=H11,0=H11,t=(𝒜T+𝒜T)/2,\displaystyle=H_{1}^{t,1}=-H_{1}^{1,0}=-H_{1}^{1,t}=\left({\cal A}_{\parallel}^{T}+{\cal A}_{\perp}^{T}\right)/\sqrt{2},
H10,1\displaystyle H_{-1}^{0,-1} =H11,t=H11,0=H1t,1=(𝒜T𝒜T)/2.\displaystyle=H_{-1}^{-1,t}=-H_{-1}^{-1,0}=-H_{-1}^{t,-1}=\left({\cal A}_{\parallel}^{T}-{\cal A}_{\perp}^{T}\right)/\sqrt{2}. (89)

A.2 Calculating J/ψμ+μJ/\psi\to\mu^{+}\mu^{-} decay

The J/ψμ+μJ/\psi\to\mu^{+}\mu^{-} decay should be calculated in the J/ψJ/\psi rest frame. In this reference frame, the transverse polarization vector of J/ψJ/\psi meson does not change, i.e., ε~μ(±1)=εμ(±1)\tilde{\varepsilon}^{\mu}\left(\pm 1\right)=\varepsilon^{\mu}\left(\pm 1\right), but its longitudinal polarization vector changes to ε~μ(0)=(0, 0, 0, 1)\tilde{\varepsilon}^{\mu}\left(0\right)=\left(0,\,0,\,0,\,1\right). For massless μ\mu^{-} and μ+\mu^{+} leptons, their spinors can be written as Auvil:1966eao ; Haber:1994pe

u(12)\displaystyle u\left(\frac{1}{2}\right) =mJ/ψ2(cosθJ/ψ2,sinθJ/ψ2,cosθJ/ψ2,sinθJ/ψ2)T,\displaystyle=\sqrt{\frac{m_{J/\psi}}{2}}\left(\cos\frac{\theta_{J/\psi}}{2},\ \sin\frac{\theta_{J/\psi}}{2},\ \cos\frac{\theta_{J/\psi}}{2},\ \sin\frac{\theta_{J/\psi}}{2}\right)^{T}, (90)
u(12)\displaystyle u\left(-\frac{1}{2}\right) =mJ/ψ2(sinθJ/ψ2,cosθJ/ψ2,sinθJ/ψ2,cosθJ/ψ2)T,\displaystyle=\sqrt{\frac{m_{J/\psi}}{2}}\left(-\sin\frac{\theta_{J/\psi}}{2},\ \cos\frac{\theta_{J/\psi}}{2},\ \sin\frac{\theta_{J/\psi}}{2},\ -\cos\frac{\theta_{J/\psi}}{2}\right)^{T}, (91)
v(12)\displaystyle v\left(\frac{1}{2}\right) =mJ/ψ2(cosθJ/ψ2,sinθJ/ψ2,cosθJ/ψ2,sinθJ/ψ2)T,\displaystyle=\sqrt{\frac{m_{J/\psi}}{2}}\left(\cos\frac{\theta_{J/\psi}}{2},\ \sin\frac{\theta_{J/\psi}}{2},\ -\cos\frac{\theta_{J/\psi}}{2},\ -\sin\frac{\theta_{J/\psi}}{2}\right)^{T}, (92)
v(12)\displaystyle v\left(-\frac{1}{2}\right) =mJ/ψ2(sinθJ/ψ2,cosθJ/ψ2,sinθJ/ψ2,cosθJ/ψ2)T,\displaystyle=\sqrt{\frac{m_{J/\psi}}{2}}\left(-\sin\frac{\theta_{J/\psi}}{2},\ \cos\frac{\theta_{J/\psi}}{2},\ -\sin\frac{\theta_{J/\psi}}{2},\ \cos\frac{\theta_{J/\psi}}{2}\right)^{T}, (93)

where the Jacob-Wick second particle convention has been used Jacob:1959at .

As the J/ψμ+μJ/\psi\to\mu^{+}\mu^{-} decay is dominated by electromagnetic interaction, we can write the helicity amplitude as follows

λμ,λμ+λJ/ψ(J/ψμ+μ)=NJ/ψε~J/ψμ(λJ/ψ)u¯(λμ)γμv(λμ+),\displaystyle{\cal M}^{\lambda_{J/\psi}}_{\lambda_{\mu^{-}},\lambda_{\mu^{+}}}\left(J/\psi\to\mu^{+}\mu^{-}\right)=N_{J/\psi}\tilde{\varepsilon}_{J/\psi}^{\mu}\left(\lambda_{J/\psi}\right)\bar{u}\left(\lambda_{\mu^{-}}\right)\gamma_{\mu}v\left(\lambda_{\mu^{+}}\right), (94)

where NJ/ψ8iπαEMfJ/ψ/(3mJ/ψ)N_{J/\psi}\equiv-8i\pi\alpha_{\rm EM}f_{J/\psi}/\left(3m_{J/\psi}\right), fJ/ψf_{J/\psi} is the decay constant of J/ψJ/\psi meson, αEM\alpha_{\rm EM} is the fine-structure constant. There are six nonzero helicity amplitudes as follows

12,121\displaystyle{\cal M}^{1}_{\frac{1}{2},-\frac{1}{2}} =12,121=NJ/ψmJ/ψ2(1+cosθJ/ψ),\displaystyle={\cal M}^{-1}_{-\frac{1}{2},\frac{1}{2}}=\frac{N_{J/\psi}m_{J/\psi}}{\sqrt{2}}(1+\cos\theta_{J/\psi}), (95)
12,121\displaystyle{\cal M}^{-1}_{\frac{1}{2},-\frac{1}{2}} =12,121=NJ/ψmJ/ψ2(1cosθJ/ψ),\displaystyle={\cal M}^{1}_{-\frac{1}{2},\frac{1}{2}}=\frac{N_{J/\psi}m_{J/\psi}}{\sqrt{2}}(1-\cos\theta_{J/\psi}), (96)
12,120\displaystyle{\cal M}^{0}_{\frac{1}{2},-\frac{1}{2}} =12,120=NJ/ψmJ/ψsinθJ/ψ,\displaystyle=-{\cal M}^{0}_{-\frac{1}{2},\frac{1}{2}}=N_{J/\psi}m_{J/\psi}\sin\theta_{J/\psi}, (97)

and one can obtain that the total decay rate is

Γ(J/ψμ+μ)=|NJ/ψ|2mJ/ψ12π.\displaystyle\Gamma\left(J/\psi\to\mu^{+}\mu^{-}\right)=\frac{\left|N_{J/\psi}\right|^{2}m_{J/\psi}}{12\pi}. (98)

A.3 Dimensionless factors

The dimensionless factors induced in the calculation of Vτ(πντ)ν¯τV^{*}\to\tau^{-}(\to\pi^{-}\nu_{\tau})\bar{\nu}_{\tau} are as follows Hu:2020axt

St=\displaystyle S_{t}= 2ωπκτ2κτ4κπ2,\displaystyle 2\omega_{\pi}\kappa_{\tau}^{2}-\kappa_{\tau}^{4}-\kappa_{\pi}^{2}, (99)
S1=\displaystyle S_{1}= κτ28(ωπ2κπ2)[κπ2(6ωπκτ2+3κτ4+4ωπ2+10ωπ5)\displaystyle\frac{\kappa_{\tau}^{2}}{8\left(\omega_{\pi}^{2}-\kappa_{\pi}^{2}\right)}\Big{[}\kappa_{\pi}^{2}\left(-6\omega_{\pi}\kappa_{\tau}^{2}+3\kappa_{\tau}^{4}+4\omega_{\pi}^{2}+10\omega_{\pi}-5\right)
+(2ωπκτ2)(2ωπ2+2ωπ1)κτ23κπ4+6(12ωπ)ωπ2],\displaystyle+\left(2\omega_{\pi}-\kappa_{\tau}^{2}\right)\left(2\omega_{\pi}^{2}+2\omega_{\pi}-1\right)\kappa_{\tau}^{2}-3\kappa_{\pi}^{4}+6\left(1-2\omega_{\pi}\right)\omega_{\pi}^{2}\Big{]}, (100)
S2=\displaystyle S_{2}= κτ2(κπ22ωπ+1)(ωπκτ2)ωπ2κπ2,\displaystyle\frac{\kappa_{\tau}^{2}\left(\kappa_{\pi}^{2}-2\omega_{\pi}+1\right)\left(\omega_{\pi}-\kappa_{\tau}^{2}\right)}{\sqrt{\omega_{\pi}^{2}-\kappa_{\pi}^{2}}}, (101)
S3=\displaystyle S_{3}= κτ28(ωπ2κπ2)[κπ2(2ωπκτ2+κτ4+4ωπ22ωπ+1)\displaystyle\frac{\kappa_{\tau}^{2}}{8\left(\omega_{\pi}^{2}-\kappa_{\pi}^{2}\right)}\Big{[}\kappa_{\pi}^{2}\left(-2\omega_{\pi}\kappa_{\tau}^{2}+\kappa_{\tau}^{4}+4\omega_{\pi}^{2}-2\omega_{\pi}+1\right)
+(κτ22ωπ)(2ωπ26ωπ+3)κτ2κπ4+2(12ωπ)ωπ2],\displaystyle+\left(\kappa_{\tau}^{2}-2\omega_{\pi}\right)\left(2\omega_{\pi}^{2}-6\omega_{\pi}+3\right)\kappa_{\tau}^{2}-\kappa_{\pi}^{4}+2\left(1-2\omega_{\pi}\right)\omega_{\pi}^{2}\Big{]}, (102)
S1T=\displaystyle S^{T}_{1}= 12(κπ2ωπ2){κπ4(2ωπκτ2+5κτ4+2ωπ3)+4ωπ2κτ2[(3ωπ1)κτ2ωπ]\displaystyle\frac{1}{2\left(\kappa_{\pi}^{2}-\omega_{\pi}^{2}\right)}\Big{\{}\kappa_{\pi}^{4}\left(2\omega_{\pi}\kappa_{\tau}^{2}+5\kappa_{\tau}^{4}+2\omega_{\pi}-3\right)+4\omega_{\pi}^{2}\kappa_{\tau}^{2}\left[\left(3\omega_{\pi}-1\right)\kappa_{\tau}^{2}-\omega_{\pi}\right]
+κπ2[(6ωπ210ωπ+3)κτ4+2(32ωπ)ωπκτ2+2ωπ2]κπ6},\displaystyle+\kappa_{\pi}^{2}\left[\left(-6\omega_{\pi}^{2}-10\omega_{\pi}+3\right)\kappa_{\tau}^{4}+2\left(3-2\omega_{\pi}\right)\omega_{\pi}\kappa_{\tau}^{2}+2\omega_{\pi}^{2}\right]-\kappa_{\pi}^{6}\Big{\}}, (103)
S2T=\displaystyle S^{T}_{2}= 4κτ2(κπ22ωπ+1)(κπ2ωπκτ2)ωπ2κπ2,\displaystyle\frac{4\kappa_{\tau}^{2}\left(\kappa_{\pi}^{2}-2\omega_{\pi}+1\right)\left(\kappa_{\pi}^{2}-\omega_{\pi}\kappa_{\tau}^{2}\right)}{\sqrt{\omega_{\pi}^{2}-\kappa_{\pi}^{2}}}, (104)
S3T=\displaystyle S^{T}_{3}= 12(ωπ2κπ2){κπ4(6ωπκτ2+κτ46ωπ+1)4ωπ2κτ2[(ωπ1)κτ2+ωπ]\displaystyle\frac{1}{2\left(\omega_{\pi}^{2}-\kappa_{\pi}^{2}\right)}\Big{\{}\kappa_{\pi}^{4}\left(-6\omega_{\pi}\kappa_{\tau}^{2}+\kappa_{\tau}^{4}-6\omega_{\pi}+1\right)-4\omega_{\pi}^{2}\kappa_{\tau}^{2}\left[\left(\omega_{\pi}-1\right)\kappa_{\tau}^{2}+\omega_{\pi}\right]
+κπ2[(2ωπ22ωπ1)κτ4+2ωπ(6ωπ1)κτ2+2ωπ2]+3κπ6},\displaystyle+\kappa_{\pi}^{2}\left[\left(2\omega_{\pi}^{2}-2\omega_{\pi}-1\right)\kappa_{\tau}^{4}+2\omega_{\pi}\left(6\omega_{\pi}-1\right)\kappa_{\tau}^{2}+2\omega_{\pi}^{2}\right]+3\kappa_{\pi}^{6}\Big{\}}, (105)
Rt=\displaystyle R_{t}= 2(ωπ1)κτ(2ωπκτ2κτ4κπ2)ωπ2κπ2,\displaystyle\frac{\sqrt{2}\left(\omega_{\pi}-1\right)\kappa_{\tau}\left(2\omega_{\pi}\kappa_{\tau}^{2}-\kappa_{\tau}^{4}-\kappa_{\pi}^{2}\right)}{\sqrt{\omega_{\pi}^{2}-\kappa_{\pi}^{2}}}, (106)
RtT=\displaystyle R_{t}^{T}= 22(κπ2ωπ)(2ωπκτ2+κτ4+κπ2)ωπ2κπ2,\displaystyle\frac{2\sqrt{2}\left(\kappa_{\pi}^{2}-\omega_{\pi}\right)\left(-2\omega_{\pi}\kappa_{\tau}^{2}+\kappa_{\tau}^{4}+\kappa_{\pi}^{2}\right)}{\sqrt{\omega_{\pi}^{2}-\kappa_{\pi}^{2}}}, (107)
R1=\displaystyle R_{1}= κτ2(κπ2ωπ2){κπ2[(ωπ+2)κτ4+(4ωπ2+8ωπ6)κτ24ωπ2+ωπ]\displaystyle\frac{\kappa_{\tau}}{2\left(\kappa_{\pi}^{2}-\omega_{\pi}^{2}\right)}\Big{\{}\kappa_{\pi}^{2}\left[\left(\omega_{\pi}+2\right)\kappa_{\tau}^{4}+\left(4\omega_{\pi}^{2}+8\omega_{\pi}-6\right)\kappa_{\tau}^{2}-4\omega_{\pi}^{2}+\omega_{\pi}\right]
+κπ4(6κτ2+ωπ+2)+ωπκτ2[(14ωπ)κτ24(ωπ1)ωπ]},\displaystyle+\kappa_{\pi}^{4}\left(-6\kappa_{\tau}^{2}+\omega_{\pi}+2\right)+\omega_{\pi}\kappa_{\tau}^{2}\left[\left(1-4\omega_{\pi}\right)\kappa_{\tau}^{2}-4\left(\omega_{\pi}-1\right)\omega_{\pi}\right]\Big{\}}, (108)
R2=\displaystyle R_{2}= 2κτ(κτ4κπ2)(κπ22ωπ+1)ωπ2κπ2,\displaystyle\frac{2\kappa_{\tau}\left(\kappa_{\tau}^{4}-\kappa_{\pi}^{2}\right)\left(\kappa_{\pi}^{2}-2\omega_{\pi}+1\right)}{\sqrt{\omega_{\pi}^{2}-\kappa_{\pi}^{2}}}, (109)
R3=\displaystyle R_{3}= κτ2(κπ2ωπ2){κπ2[(3ωπ2)κτ4+(4ωπ2+8ωπ2)κτ2+(34ωπ)ωπ]\displaystyle\frac{\kappa_{\tau}}{2\left(\kappa_{\pi}^{2}-\omega_{\pi}^{2}\right)}\Big{\{}\kappa_{\pi}^{2}\left[\left(3\omega_{\pi}-2\right)\kappa_{\tau}^{4}+\left(-4\omega_{\pi}^{2}+8\omega_{\pi}-2\right)\kappa_{\tau}^{2}+\left(3-4\omega_{\pi}\right)\omega_{\pi}\right]
+κπ4(2κτ2+3ωπ2)+ωπκτ2[(34ωπ)κτ2+4(ωπ1)ωπ]},\displaystyle+\kappa_{\pi}^{4}\left(-2\kappa_{\tau}^{2}+3\omega_{\pi}-2\right)+\omega_{\pi}\kappa_{\tau}^{2}\left[\left(3-4\omega_{\pi}\right)\kappa_{\tau}^{2}+4\left(\omega_{\pi}-1\right)\omega_{\pi}\right]\Big{\}}, (110)

where the three dimensionless parameters are defined as

κτmτq2,κπmπq2,ωπEπq2.\kappa_{\tau}\equiv\frac{m_{\tau}}{\sqrt{q^{2}}},\quad\kappa_{\pi}\equiv\frac{m_{\pi}}{\sqrt{q^{2}}},\quad\omega_{\pi}\equiv\frac{E_{\pi}}{\sqrt{q^{2}}}. (111)

In the limit κπ0\kappa_{\pi}\to 0, the EπE_{\pi}-integrated factors S¯i(R¯i)Si(Ri)𝑑Eπ\bar{S}_{i}(\bar{R}_{i})\equiv\int S_{i}(R_{i})dE_{\pi} are given, respectively, by

S¯t=\displaystyle\bar{S}_{t}= 14q2κτ2(κτ21)2,\displaystyle\frac{1}{4}\sqrt{q^{2}}\kappa_{\tau}^{2}\left(\kappa_{\tau}^{2}-1\right)^{2}, (112)
S¯1=\displaystyle\bar{S}_{1}= 116q2κτ2[κτ67κτ4+3κτ2+8(κτ4+κτ2)log(κτ)+3],\displaystyle\frac{1}{16}\sqrt{q^{2}}\kappa_{\tau}^{2}\left[\kappa_{\tau}^{6}-7\kappa_{\tau}^{4}+3\kappa_{\tau}^{2}+8\left(\kappa_{\tau}^{4}+\kappa_{\tau}^{2}\right)\log\left(\kappa_{\tau}\right)+3\right], (113)
S¯2=\displaystyle\bar{S}_{2}= 14q2κτ2[3κτ4+2κτ2+8κτ2log(κτ)+1],\displaystyle\frac{1}{4}\sqrt{q^{2}}\kappa_{\tau}^{2}\left[-3\kappa_{\tau}^{4}+2\kappa_{\tau}^{2}+8\kappa_{\tau}^{2}\log\left(\kappa_{\tau}\right)+1\right], (114)
S¯3=\displaystyle\bar{S}_{3}= 116q2κτ2[κτ621κτ4+21κτ2+24(κτ4+κτ2)log(κτ)+1],\displaystyle\frac{1}{16}\sqrt{q^{2}}\kappa_{\tau}^{2}\left[-\kappa_{\tau}^{6}-21\kappa_{\tau}^{4}+21\kappa_{\tau}^{2}+24\left(\kappa_{\tau}^{4}+\kappa_{\tau}^{2}\right)\log\left(\kappa_{\tau}\right)+1\right], (115)
S¯1T=\displaystyle\bar{S}_{1}^{T}= 14q2κτ2(κτ21)2(3κτ2+1),\displaystyle\frac{1}{4}\sqrt{q^{2}}\kappa_{\tau}^{2}\left(\kappa_{\tau}^{2}-1\right)^{2}\left(3\kappa_{\tau}^{2}+1\right), (116)
S¯2T=\displaystyle\bar{S}_{2}^{T}= q2κτ4(κτ21)2,\displaystyle-\sqrt{q^{2}}\kappa_{\tau}^{4}\left(\kappa_{\tau}^{2}-1\right)^{2}, (117)
S¯3T=\displaystyle\bar{S}_{3}^{T}= 14q2κτ2(κτ21)3,\displaystyle\frac{1}{4}\sqrt{q^{2}}\kappa_{\tau}^{2}\left(\kappa_{\tau}^{2}-1\right)^{3}, (118)
R¯t=\displaystyle\bar{R}_{t}= 122q2κτ3[κτ4+2κτ28κτ2log(κτ)3],\displaystyle\frac{1}{2\sqrt{2}}\sqrt{q^{2}}\kappa_{\tau}^{3}\left[\kappa_{\tau}^{4}+2\kappa_{\tau}^{2}-8\kappa_{\tau}^{2}\log\left(\kappa_{\tau}\right)-3\right], (119)
R¯tT=\displaystyle\bar{R}_{t}^{T}= 12q2κτ2(κτ21)2,\displaystyle\frac{1}{\sqrt{2}}\sqrt{q^{2}}\kappa_{\tau}^{2}\left(\kappa_{\tau}^{2}-1\right)^{2}, (120)
R¯1=\displaystyle\bar{R}_{1}= 14q2κτ3[5κτ4+8κτ2+4κτ2log(κτ)3],\displaystyle\frac{1}{4}\sqrt{q^{2}}\kappa_{\tau}^{3}\left[-5\kappa_{\tau}^{4}+8\kappa_{\tau}^{2}+4\kappa_{\tau}^{2}\log\left(\kappa_{\tau}\right)-3\right], (121)
R¯2=\displaystyle\bar{R}_{2}= 2q2κτ5[κτ22log(κτ)1],\displaystyle 2\sqrt{q^{2}}\kappa_{\tau}^{5}\left[\kappa_{\tau}^{2}-2\log\left(\kappa_{\tau}\right)-1\right], (122)
R¯3=\displaystyle\bar{R}_{3}= 34q2κτ3[κτ44κτ2log(κτ)1].\displaystyle-\frac{3}{4}\sqrt{q^{2}}\kappa_{\tau}^{3}\left[\kappa_{\tau}^{4}-4\kappa_{\tau}^{2}\log\left(\kappa_{\tau}\right)-1\right]. (123)

We provide the full analytical results for these factors electronically in the supplementary material.

Appendix B The detailed derivation of the dependence relations

In this section we provide the detailed derivation of the dependence relations among the angular observables i\mathcal{I}_{i}. It is useful to re-express Im[𝒜𝒜0]\mathrm{Im}[\mathcal{A}_{\parallel}\mathcal{A}_{0}^{*}], Re[𝒜𝒜0]\mathrm{Re}[\mathcal{A}_{\parallel}\mathcal{A}_{0}^{*}], Re[𝒜t𝒜]\mathrm{Re}[\mathcal{A}_{t}\mathcal{A}_{\perp}^{*}] and Im[𝒜t𝒜]\mathrm{Im}[\mathcal{A}_{t}\mathcal{A}_{\parallel}^{*}] as

Im[𝒜𝒜0]=\displaystyle\mathrm{Im}\left[\mathcal{A}_{\parallel}\mathcal{A}_{0}^{*}\right]= 1|𝒜|2{Im[𝒜𝒜]Re[𝒜0𝒜]Re[𝒜𝒜]Im[𝒜0𝒜]},\displaystyle\frac{1}{\left|\mathcal{A}_{\perp}\right|^{2}}\left\{\mathrm{Im}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]\mathrm{Re}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]-\mathrm{Re}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]\mathrm{Im}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]\right\}, (124)
Re[𝒜𝒜0]=\displaystyle\mathrm{Re}\left[\mathcal{A}_{\parallel}\mathcal{A}_{0}^{*}\right]= 1|𝒜|2{Re[𝒜𝒜]Re[𝒜0𝒜]+Im[𝒜𝒜]Im[𝒜0𝒜]},\displaystyle\frac{1}{\left|\mathcal{A}_{\perp}\right|^{2}}\left\{\mathrm{Re}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]\mathrm{Re}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]+\mathrm{Im}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]\mathrm{Im}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]\right\}, (125)
Re[𝒜t𝒜]=\displaystyle\mathrm{Re}\left[\mathcal{A}_{t}\mathcal{A}_{\perp}^{*}\right]= 1|𝒜0|2{Re[𝒜t𝒜0]Re[𝒜0𝒜]Im[𝒜t𝒜0]Im[𝒜0𝒜]},\displaystyle\frac{1}{\left|\mathcal{A}_{0}\right|^{2}}\left\{\mathrm{Re}\left[\mathcal{A}_{t}\mathcal{A}_{0}^{*}\right]\mathrm{Re}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]-\mathrm{Im}\left[\mathcal{A}_{t}\mathcal{A}_{0}^{*}\right]\mathrm{Im}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]\right\}, (126)
Im[𝒜t𝒜]=\displaystyle\mathrm{Im}\left[\mathcal{A}_{t}\mathcal{A}_{\parallel}^{*}\right]= 1|𝒜0|2|𝒜|2{Re[𝒜t𝒜0]Re[𝒜0𝒜]Im[𝒜𝒜]\displaystyle\frac{1}{\left|\mathcal{A}_{0}\right|^{2}\left|\mathcal{A}_{\perp}\right|^{2}}\Big{\{}-\mathrm{Re}\left[\mathcal{A}_{t}\mathcal{A}_{0}^{*}\right]\mathrm{Re}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]\mathrm{Im}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]
+Re[𝒜t𝒜0]Im[𝒜0𝒜]Re[𝒜𝒜]+Im[𝒜t𝒜0]Re[𝒜0𝒜]Re[𝒜𝒜]\displaystyle+\mathrm{Re}\left[\mathcal{A}_{t}\mathcal{A}_{0}^{*}\right]\mathrm{Im}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]\mathrm{Re}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]+\mathrm{Im}\left[\mathcal{A}_{t}\mathcal{A}_{0}^{*}\right]\mathrm{Re}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]\mathrm{Re}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]
+Im[𝒜t𝒜0]Im[𝒜0𝒜]Im[𝒜𝒜]}.\displaystyle+\mathrm{Im}\left[\mathcal{A}_{t}\mathcal{A}_{0}^{*}\right]\mathrm{Im}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]\mathrm{Im}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]\Big{\}}. (127)

Therefore, the twelve angular observables (50)–(61) can be seen as functions of 4 real variables |𝒜t|2\left|\mathcal{A}_{t}\right|^{2}, |𝒜|2\left|\mathcal{A}_{\perp}\right|^{2}, |𝒜|2\left|\mathcal{A}_{\parallel}\right|^{2}, |𝒜0|2\left|\mathcal{A}_{0}\right|^{2} and 3 complex variables 𝒜t𝒜0\mathcal{A}_{t}\mathcal{A}_{0}^{*}, 𝒜0𝒜\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}, 𝒜𝒜\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}. The advantage of this view is that it implies the continuous symmetry (64). There are only seven independent real variables due to the following three relationships

Re[𝒜t𝒜0]2+Im[𝒜t𝒜0]2=\displaystyle\mathrm{Re}\left[\mathcal{A}_{t}\mathcal{A}_{0}^{*}\right]^{2}+\mathrm{Im}\left[\mathcal{A}_{t}\mathcal{A}_{0}^{*}\right]^{2}= |𝒜t|2|𝒜0|2,\displaystyle\left|\mathcal{A}_{t}\right|^{2}\left|\mathcal{A}_{0}\right|^{2}, (128)
Re[𝒜0𝒜]2+Im[𝒜0𝒜]2=\displaystyle\mathrm{Re}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]^{2}+\mathrm{Im}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]^{2}= |𝒜0|2|𝒜|2,\displaystyle\left|\mathcal{A}_{0}\right|^{2}\left|\mathcal{A}_{\perp}\right|^{2}, (129)
Re[𝒜𝒜]2+Im[𝒜𝒜]2=\displaystyle\mathrm{Re}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]^{2}+\mathrm{Im}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]^{2}= |𝒜|2|𝒜|2.\displaystyle\left|\mathcal{A}_{\parallel}\right|^{2}\left|\mathcal{A}_{\perp}\right|^{2}. (130)

Inverting the eqs. (51)–(60), one can rewrite the variables in terms of the angular observables i\mathcal{I}_{i} as follows

|𝒜t|2=\displaystyle\left|\mathcal{A}_{t}\right|^{2}= 1St[1s+S1S32S32s3S1S34S32c],\displaystyle\frac{1}{S_{t}}\left[\mathcal{I}_{1s}+\frac{S_{1}-S_{3}}{2S_{3}}\mathcal{I}_{2s}-\frac{3S_{1}-S_{3}}{4S_{3}}\mathcal{I}_{2c}\right], (131)
|𝒜0|2=\displaystyle\left|\mathcal{A}_{0}\right|^{2}= 14S3(2c22s),\displaystyle\frac{1}{4S_{3}}\left(\mathcal{I}_{2c}-2\mathcal{I}_{2s}\right), (132)
|𝒜|2=\displaystyle\left|\mathcal{A}_{\perp}\right|^{2}= 12S3(2c+3),\displaystyle\frac{1}{2S_{3}}\left(\mathcal{I}_{2c}+\mathcal{I}_{3}\right), (133)
|𝒜|2=\displaystyle\left|\mathcal{A}_{\parallel}\right|^{2}= 12S3(2c3),\displaystyle\frac{1}{2S_{3}}\left(\mathcal{I}_{2c}-\mathcal{I}_{3}\right), (134)
Re[𝒜t𝒜0]=\displaystyle\mathrm{Re}\left[\mathcal{A}_{t}\mathcal{A}_{0}^{*}\right]= 122Rt(6c26s),\displaystyle\frac{1}{2\sqrt{2}R_{t}}\left(\mathcal{I}_{6c}-2\mathcal{I}_{6s}\right), (135)
Im[𝒜t𝒜0]=\displaystyle\mathrm{Im}\left[\mathcal{A}_{t}\mathcal{A}_{0}^{*}\right]= S326cβ3+S229(2c22s)β222RtS2S3(2c+3)β2,\displaystyle\frac{S_{3}^{2}\mathcal{I}_{6c}\beta_{3}+S_{2}^{2}\mathcal{I}_{9}\left(\mathcal{I}_{2c}-2\mathcal{I}_{2s}\right)\beta_{2}}{2\sqrt{2}R_{t}S_{2}S_{3}\left(\mathcal{I}_{2c}+\mathcal{I}_{3}\right)\beta_{2}}, (136)
Re[𝒜0𝒜]=\displaystyle\mathrm{Re}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]= 12S34,\displaystyle\frac{1}{\sqrt{2}S_{3}}\mathcal{I}_{4}, (137)
Im[𝒜0𝒜]=\displaystyle\mathrm{Im}\left[\mathcal{A}_{0}\mathcal{A}_{\perp}^{*}\right]= S22S326cβ2,\displaystyle-\frac{S_{2}}{\sqrt{2}S_{3}^{2}\mathcal{I}_{6c}}\beta_{2}, (138)
Re[𝒜𝒜]=\displaystyle\mathrm{Re}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]= 12S26c,\displaystyle\frac{1}{2S_{2}}\mathcal{I}_{6c}, (139)
Im[𝒜𝒜]=\displaystyle\mathrm{Im}\left[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}\right]= 12S39,\displaystyle\frac{1}{2S_{3}}\mathcal{I}_{9}, (140)

with β2\beta_{2} and β3\beta_{3} defined in eqs. (70) and (71), respectively. Substituting them into eqs. (50), (61), and (128)–(130), we can obtain the final form of the 5 dependence relations (65)–(69).

References

  • (1) ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [1207.7214].
  • (2) CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [1207.7235].
  • (3) ATLAS, CMS collaboration, Combined Measurement of the Higgs Boson Mass in pppp Collisions at s=7\sqrt{s}=7 and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [1503.07589].
  • (4) BaBar collaboration, Evidence for an excess of B¯D()τν¯τ\bar{B}\to D^{(*)}\tau^{-}\bar{\nu}_{\tau} decays, Phys. Rev. Lett. 109 (2012) 101802 [1205.5442].
  • (5) BaBar collaboration, Measurement of an Excess of B¯D()τν¯τ\bar{B}\to D^{(*)}\tau^{-}\bar{\nu}_{\tau} Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [1303.0571].
  • (6) LHCb collaboration, Measurement of the ratio of branching fractions (B¯0D+τν¯τ)/(B¯0D+μν¯μ)\mathcal{B}(\bar{B}^{0}\to D^{*+}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}^{0}\to D^{*+}\mu^{-}\bar{\nu}_{\mu}), Phys. Rev. Lett. 115 (2015) 111803 [1506.08614].
  • (7) Belle collaboration, Measurement of the branching ratio of B¯D()τν¯τ\bar{B}\to D^{(\ast)}\tau^{-}\bar{\nu}_{\tau} relative to B¯D()ν¯\bar{B}\to D^{(\ast)}\ell^{-}\bar{\nu}_{\ell} decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [1507.03233].
  • (8) Belle collaboration, Measurement of the τ\tau lepton polarization and R(D)R(D^{*}) in the decay B¯Dτν¯τ\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau}, Phys. Rev. Lett. 118 (2017) 211801 [1612.00529].
  • (9) LHCb collaboration, Measurement of the ratio of the B0Dτ+ντB^{0}\to D^{*-}\tau^{+}\nu_{\tau} and B0Dμ+νμB^{0}\to D^{*-}\mu^{+}\nu_{\mu} branching fractions using three-prong τ\tau-lepton decays, Phys. Rev. Lett. 120 (2018) 171802 [1708.08856].
  • (10) Belle collaboration, Measurement of the τ\tau lepton polarization and R(D)R(D^{*}) in the decay B¯Dτν¯τ\bar{B}\rightarrow D^{*}\tau^{-}\bar{\nu}_{\tau} with one-prong hadronic τ\tau decays at Belle, Phys. Rev. D 97 (2018) 012004 [1709.00129].
  • (11) LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B0Dτ+ντB^{0}\to D^{*-}\tau^{+}\nu_{\tau} branching fraction using three-prong τ\tau decays, Phys. Rev. D 97 (2018) 072013 [1711.02505].
  • (12) Belle collaboration, Measurement of (D)\mathcal{R}(D) and (D)\mathcal{R}(D^{*}) with a semileptonic tagging method, Phys. Rev. Lett. 124 (2020) 161803 [1910.05864].
  • (13) HFLAV collaboration, Averages of bb-hadron, cc-hadron, and τ\tau-lepton properties as of 2018, 1909.12524.
  • (14) HFLAV collaboration, Online update for averages of RDR_{D} and RDR_{D^{\ast}} for Spring 2019 at https://hflav-eos.web.cern.ch/hflav-eos/semi/spring19/html/RDsDsstar/RDRDs.html, .
  • (15) M. Bordone, M. Jung and D. van Dyk, Theory determination of B¯D()ν¯\bar{B}\to D^{(*)}\ell^{-}\bar{\nu} form factors at 𝒪(1/mc2)\mathcal{O}(1/m_{c}^{2}), Eur. Phys. J. C 80 (2020) 74 [1908.09398].
  • (16) F.U. Bernlochner, M.F. Sevilla, D.J. Robinson and G. Wormser, Semitauonic bb-hadron decays: A lepton flavor universality laboratory, 2101.08326.
  • (17) A.K. Alok, D. Kumar, J. Kumar, S. Kumbhakar and S.U. Sankar, New physics solutions for RDR_{D} and RDR_{D^{*}}, JHEP 09 (2018) 152 [1710.04127].
  • (18) Q.-Y. Hu, X.-Q. Li and Y.-D. Yang, bcτνb\to c\tau\nu transitions in the standard model effective field theory, Eur. Phys. J. C 79 (2019) 264 [1810.04939].
  • (19) A.K. Alok, D. Kumar, S. Kumbhakar and S. Uma Sankar, Solutions to RDR_{D}-RDR_{D^{*}} in light of Belle 2019 data, Nucl. Phys. B 953 (2020) 114957 [1903.10486].
  • (20) C. Murgui, A. Peñuelas, M. Jung and A. Pich, Global fit to bcτνb\to c\tau\nu transitions, JHEP 09 (2019) 103 [1904.09311].
  • (21) M. Blanke, A. Crivellin, S. de Boer, T. Kitahara, M. Moscati, U. Nierste et al., Impact of polarization observables and BcτνB_{c}\to\tau\nu on new physics explanations of the bcτνb\to c\tau\nu anomaly, Phys. Rev. D 99 (2019) 075006 [1811.09603].
  • (22) M. Blanke, A. Crivellin, T. Kitahara, M. Moscati, U. Nierste and I. Nišandžić, Addendum to “Impact of polarization observables and BcτνB_{c}\to\tau\nu on new physics explanations of the bcτνb\to c\tau\nu anomaly”, 1905.08253.
  • (23) R.-X. Shi, L.-S. Geng, B. Grinstein, S. Jäger and J. Martin Camalich, Revisiting the new-physics interpretation of the bcτνb\to c\tau\nu data, JHEP 12 (2019) 065 [1905.08498].
  • (24) K. Cheung, Z.-R. Huang, H.-D. Li, C.-D. Lü, Y.-N. Mao and R.-Y. Tang, Revisit to the bcτνb\to c\tau\nu transition: In and beyond the SM, Nucl. Phys. B 965 (2021) 115354 [2002.07272].
  • (25) S. Kumbhakar, Signatures of complex new physics in bcτν¯b\to c\tau\bar{\nu} transitions, Nucl. Phys. B 963 (2021) 115297 [2007.08132].
  • (26) M. Tanaka and R. Watanabe, New physics in the weak interaction of B¯D()τν¯\bar{B}\to D^{(*)}\tau\bar{\nu}, Phys. Rev. D 87 (2013) 034028 [1212.1878].
  • (27) Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Testing leptoquark models in B¯D()τν¯\bar{B}\to D^{(*)}\tau\bar{\nu}, Phys. Rev. D 88 (2013) 094012 [1309.0301].
  • (28) M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the RD(){}_{D^{(*)}} , RK , and (g2)g(g-2)_{g} Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [1511.01900].
  • (29) S. Fajfer and N. Košnik, Vector leptoquark resolution of RKR_{K} and RD()R_{D^{(*)}} puzzles, Phys. Lett. B 755 (2016) 270 [1511.06024].
  • (30) X.-Q. Li, Y.-D. Yang and X. Zhang, Revisiting the one leptoquark solution to the R(D())R(D^{(*)}) anomalies and its phenomenological implications, JHEP 08 (2016) 054 [1605.09308].
  • (31) A. Crivellin, D. Müller and T. Ota, Simultaneous explanation of R(D())R(D^{(*)}) and bsμ+μb\to s\mu^{+}\mu^{-}: the last scalar leptoquarks standing, JHEP 09 (2017) 040 [1703.09226].
  • (32) D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D.A. Faroughy and O. Sumensari, Scalar leptoquarks from grand unified theories to accommodate the BB-physics anomalies, Phys. Rev. D 98 (2018) 055003 [1806.05689].
  • (33) A. Angelescu, D. Bečirević, D. Faroughy and O. Sumensari, Closing the window on single leptoquark solutions to the BB-physics anomalies, JHEP 10 (2018) 183 [1808.08179].
  • (34) S. Bansal, R.M. Capdevilla and C. Kolda, Constraining the minimal flavor violating leptoquark explanation of the RD()R_{D^{(*)}} anomaly, Phys. Rev. D 99 (2019) 035047 [1810.11588].
  • (35) S. Iguro, T. Kitahara, Y. Omura, R. Watanabe and K. Yamamoto, D polarization vs. RD(){R}_{D^{\left(\ast\right)}} anomalies in the leptoquark models, JHEP 02 (2019) 194 [1811.08899].
  • (36) A. Crivellin, D. Müller and F. Saturnino, Flavor Phenomenology of the Leptoquark Singlet-Triplet Model, JHEP 06 (2020) 020 [1912.04224].
  • (37) N. Deshpande and X.-G. He, Consequences of R-parity violating interactions for anomalies in B¯D()τν¯\bar{B}\to D^{(*)}\tau\bar{\nu} and bsμ+μb\to s\mu^{+}\mu^{-}, Eur. Phys. J. C 77 (2017) 134 [1608.04817].
  • (38) W. Altmannshofer, P. Bhupal Dev and A. Soni, RD()R_{D^{(*)}} anomaly: A possible hint for natural supersymmetry with RR-parity violation, Phys. Rev. D 96 (2017) 095010 [1704.06659].
  • (39) Q.-Y. Hu, X.-Q. Li, Y. Muramatsu and Y.-D. Yang, R-parity violating solutions to the RD()R_{D^{(\ast)}} anomaly and their GUT-scale unifications, Phys. Rev. D 99 (2019) 015008 [1808.01419].
  • (40) Q.-Y. Hu, Y.-D. Yang and M.-D. Zheng, Revisiting the BB-physics anomalies in RR-parity violating MSSM, Eur. Phys. J. C 80 (2020) 365 [2002.09875].
  • (41) W. Altmannshofer, P.B. Dev, A. Soni and Y. Sui, Addressing RD(){}_{D^{(*)}}, RK(){}_{K^{(*)}}, muon g2g-2 and ANITA anomalies in a minimal RR-parity violating supersymmetric framework, Phys. Rev. D 102 (2020) 015031 [2002.12910].
  • (42) A. Crivellin, C. Greub and A. Kokulu, Explaining BDτνB\to D\tau\nu, BDτνB\to D^{*}\tau\nu and BτνB\to\tau\nu in a 2HDM of type III, Phys. Rev. D 86 (2012) 054014 [1206.2634].
  • (43) A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in 𝐁𝐃()𝛕𝛎𝛕\bm{B\to D^{(*)}\tau\nu_{\tau}} and 𝐁𝛕𝛎𝛕\bm{B\to\tau\nu_{\tau}} decays, JHEP 01 (2013) 054 [1210.8443].
  • (44) P. Ko, Y. Omura and C. Yu, BD()τνB\to D^{(*)}\tau\nu and BτνB\to\tau\nu in chiral U(1)U(1)^{\prime} models with flavored multi Higgs doublets, JHEP 03 (2013) 151 [1212.4607].
  • (45) A. Celis, M. Jung, X.-Q. Li and A. Pich, Scalar contributions to bc(u)τνb\to c(u)\tau\nu transitions, Phys. Lett. B 771 (2017) 168 [1612.07757].
  • (46) S. Iguro and K. Tobe, R(D())R(D^{(*)}) in a general two Higgs doublet model, Nucl. Phys. B 925 (2017) 560 [1708.06176].
  • (47) S. Iguro and Y. Omura, Status of the semileptonic BB decays and muon g-2 in general 2HDMs with right-handed neutrinos, JHEP 05 (2018) 173 [1802.01732].
  • (48) P. Asadi, M.R. Buckley and D. Shih, It’s all right(-handed neutrinos): a new WW^{\prime} model for the RD(){R}_{D^{{\left(\ast\right)}}} anomaly, JHEP 09 (2018) 010 [1804.04135].
  • (49) A. Greljo, D.J. Robinson, B. Shakya and J. Zupan, R(D())R(D^{(*)}) from WW^{\prime} and right-handed neutrinos, JHEP 09 (2018) 169 [1804.04642].
  • (50) K. Babu, B. Dutta and R.N. Mohapatra, A theory of R(D,D)R(D^{*},D) anomaly with right-handed currents, JHEP 01 (2019) 168 [1811.04496].
  • (51) M. Blanke and A. Crivellin, BB Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background, Phys. Rev. Lett. 121 (2018) 011801 [1801.07256].
  • (52) S. Iguro, J. Kawamura, S. Okawa and Y. Omura, TeV-scale vector leptoquark from Pati-Salam unification with vectorlike families, 2103.11889.
  • (53) LHCb collaboration, Measurement of the ratio of branching fractions (Bc+J/ψτ+ντ)/(Bc+J/ψμ+νμ)\mathcal{B}(B_{c}^{+}\,\to\,J/\psi\tau^{+}\nu_{\tau})/\mathcal{B}(B_{c}^{+}\,\to\,J/\psi\mu^{+}\nu_{\mu}), Phys. Rev. Lett. 120 (2018) 121801 [1711.05623].
  • (54) LATTICE-HPQCD collaboration, R(J/ψ)R(J/\psi) and BcJ/ψν¯B_{c}^{-}\rightarrow J/\psi\ell^{-}\bar{\nu}_{\ell} Lepton Flavor Universality Violating Observables from Lattice QCD, Phys. Rev. Lett. 125 (2020) 222003 [2007.06956].
  • (55) HPQCD collaboration, BcJ/ψB_{c}\rightarrow J/\psi form factors for the full q2q^{2} range from lattice QCD, Phys. Rev. D 102 (2020) 094518 [2007.06957].
  • (56) R. Watanabe, New Physics effect on BcJ/ψτν¯B_{c}\to J/\psi\tau\bar{\nu} in relation to the RD()R_{D^{(*)}} anomaly, Phys. Lett. B 776 (2018) 5 [1709.08644].
  • (57) J. Zhu, B. Wei, J.-H. Sheng, R.-M. Wang, Y. Gao and G.-R. Lu, Probing the R-parity violating supersymmetric effects in BcJ/ψν¯,ηcν¯B_{c}\to J/\psi\ell^{-}\bar{\nu}_{\ell},\eta_{c}\ell^{-}\bar{\nu}_{\ell} and ΛbΛcν¯\Lambda_{b}\to\Lambda_{c}\ell^{-}\bar{\nu}_{\ell} decays, Nucl. Phys. B 934 (2018) 380 [1801.00917].
  • (58) C.-T. Tran, M.A. Ivanov, J.G. Körner and P. Santorelli, Implications of new physics in the decays Bc(J/ψ,ηc)τνB_{c}\to(J/\psi,\eta_{c})\tau\nu, Phys. Rev. D 97 (2018) 054014 [1801.06927].
  • (59) A. Issadykov and M.A. Ivanov, The decays BcJ/ψ+¯νB_{c}\to J/\psi+\bar{\ell}\nu_{\ell} and BcJ/ψ+π(K)B_{c}\to J/\psi+\pi(K) in covariant confined quark model, Phys. Lett. B 783 (2018) 178 [1804.00472].
  • (60) T.D. Cohen, H. Lamm and R.F. Lebed, Tests of the standard model in BDνB\to D\ell\nu_{\ell}, BDνB\to D^{*}\ell\nu_{\ell} and BcJ/ψνB_{c}\to J/\psi\ell\nu_{\ell}, Phys. Rev. D 98 (2018) 034022 [1807.00256].
  • (61) T.D. Cohen, H. Lamm and R.F. Lebed, Model-independent bounds on R(J/ψ)R(J/\psi), JHEP 09 (2018) 168 [1807.02730].
  • (62) Z.-R. Huang, Y. Li, C.-D. Lu, M.A. Paracha and C. Wang, Footprints of New Physics in bcτνb\to c\tau\nu Transitions, Phys. Rev. D 98 (2018) 095018 [1808.03565].
  • (63) W. Wang and R. Zhu, Model independent investigation of the RJ/ψ,ηcR_{J/\psi,\eta_{c}} and ratios of decay widths of semileptonic BcB_{c} decays into a P-wave charmonium, Int. J. Mod. Phys. A 34 (2019) 1950195 [1808.10830].
  • (64) D. Leljak, B. Melic and M. Patra, On lepton flavour universality in semileptonic Bcηc,J/ψB_{c}\to\eta_{c},J/\psi decays, JHEP 05 (2019) 094 [1901.08368].
  • (65) X.-Q. Hu, S.-P. Jin and Z.-J. Xiao, Semileptonic decays Bc(ηc,J/ψ)lν¯lB_{c}\to(\eta_{c},J/\psi)l\bar{\nu}_{l} in the ”PQCD + Lattice” approach, Chin. Phys. C 44 (2020) 023104 [1904.07530].
  • (66) K. Azizi, Y. Sarac and H. Sundu, Lepton flavor universality violation in semileptonic tree level weak transitions, Phys. Rev. D 99 (2019) 113004 [1904.08267].
  • (67) N. Penalva, E. Hernández and J. Nieves, B¯cηc\bar{B}_{c}\to\eta_{c}, B¯cJ/ψ\bar{B}_{c}\to J/\psi and B¯D()\bar{B}\to D^{(*)} semileptonic decays including new physics, Phys. Rev. D 102 (2020) 096016 [2007.12590].
  • (68) A. Berns and H. Lamm, Model-Independent Prediction of R(ηc)R(\eta_{c}), JHEP 12 (2018) 114 [1808.07360].
  • (69) C.W. Murphy and A. Soni, Model-Independent Determination of Bc+ηc+νB_{c}^{+}\to\eta_{c}\,\ell^{+}\,\nu Form Factors, Phys. Rev. D 98 (2018) 094026 [1808.05932].
  • (70) R. Dutta, Λb(Λc,p)τν\Lambda_{b}\to(\Lambda_{c},\,p)\,\tau\,\nu decays within standard model and beyond, Phys. Rev. D 93 (2016) 054003 [1512.04034].
  • (71) X.-Q. Li, Y.-D. Yang and X. Zhang, ΛbΛcτν¯τ{\varLambda}_{b}\to{\varLambda}_{c}\tau{\overline{\nu}}_{\tau} decay in scalar and vector leptoquark scenarios, JHEP 02 (2017) 068 [1611.01635].
  • (72) E. Di Salvo, F. Fontanelli and Z. Ajaltouni, Detailed Study of the Decay ΛbΛcτν¯τ\Lambda_{b}\to\Lambda_{c}\tau{\bar{\nu}}_{\tau}, Int. J. Mod. Phys. A 33 (2018) 1850169 [1804.05592].
  • (73) A. Ray, S. Sahoo and R. Mohanta, Probing new physics in semileptonic Λb\Lambda_{b} decays, Phys. Rev. D 99 (2019) 015015 [1812.08314].
  • (74) N. Penalva, E. Hernández and J. Nieves, Further tests of lepton flavour universality from the charged lepton energy distribution in bcb\to c semileptonic decays: The case of ΛbΛcν¯\Lambda_{b}\to\Lambda_{c}\ell\bar{\nu}_{\ell}, Phys. Rev. D 100 (2019) 113007 [1908.02328].
  • (75) X.-L. Mu, Y. Li, Z.-T. Zou and B. Zhu, Investigation of effects of new physics in ΛbΛcτν¯τ\Lambda_{b}\to\Lambda_{c}\tau\bar{\nu}_{\tau} decay, Phys. Rev. D 100 (2019) 113004 [1909.10769].
  • (76) T. Gutsche, M.A. Ivanov, J.G. Körner, V.E. Lyubovitskij, P. Santorelli and N. Habyl, Semileptonic decay ΛbΛc+τ+ντ¯\Lambda_{b}\to\Lambda_{c}+\tau^{-}+\bar{\nu_{\tau}} in the covariant confined quark model, Phys. Rev. D 91 (2015) 074001 [1502.04864].
  • (77) S. Shivashankara, W. Wu and A. Datta, ΛbΛcτν¯τ\Lambda_{b}\to\Lambda_{c}\tau\bar{\nu}_{\tau} Decay in the Standard Model and with New Physics, Phys. Rev. D 91 (2015) 115003 [1502.07230].
  • (78) P. Böer, A. Kokulu, J.-N. Toelstede and D. van Dyk, Angular Analysis of ΛbΛc(Λπ)ν¯\Lambda_{b}\to\Lambda_{c}(\to\Lambda\pi)\ell\bar{\nu}, JHEP 12 (2019) 082 [1907.12554].
  • (79) M. Ferrillo, A. Mathad, P. Owen and N. Serra, Probing effects of new physics in Λb0Λc+μν¯μ\Lambda^{0}_{b}\to\Lambda^{+}_{c}\mu^{-}\bar{\nu}_{\mu} decays, JHEP 12 (2019) 148 [1909.04608].
  • (80) Q.-Y. Hu, X.-Q. Li, Y.-D. Yang and D.-H. Zheng, The measurable angular distribution of Λb0Λc+(Λ0π+)τ(πvτ)v¯τ{\Lambda}_{b}^{0}\to{\Lambda}_{c}^{+}\left(\to{\Lambda}^{0}{\pi}^{+}\right){\tau}^{-}\left(\to{\pi}^{-}{v}_{\tau}\right){\overline{v}}_{\tau} decay, JHEP 02 (2021) 183 [2011.05912].
  • (81) R. Dutta, Phenomenology of ΞbΞcτν\Xi_{b}\to\Xi_{c}\,\tau\,\nu decays, Phys. Rev. D 97 (2018) 073004 [1801.02007].
  • (82) R. Faustov and V. Galkin, Relativistic description of the Ξb\Xi_{b} baryon semileptonic decays, Phys. Rev. D 98 (2018) 093006 [1810.03388].
  • (83) J. Zhang, J. Su and Q. Zeng, Contributions of vector leptoquark to ΞbΞcτν¯τ\Xi_{b}\to\Xi_{c}\tau\bar{\nu}_{\tau} decay, Nucl. Phys. B 938 (2019) 131.
  • (84) J. Zhang, X. An, R. Sun and J. Su, Probing new physics in semileptonic ΞbΛ(Ξc)τν¯τ\Xi_{b}\rightarrow\Lambda(\Xi_{c})\tau^{-}\bar{\nu}_{\tau} decays, Eur. Phys. J. C 79 (2019) 863.
  • (85) N. Rajeev, R. Dutta and S. Kumbhakar, Implication of RD()R_{D^{(*)}} anomalies on semileptonic decays of Σb\Sigma_{b} and Ωb\Omega_{b} baryons, Phys. Rev. D 100 (2019) 035015 [1905.13468].
  • (86) J.-H. Sheng, J. Zhu, X.-N. Li, Q.-Y. Hu and R.-M. Wang, Probing new physics in semileptonic Σb\Sigma_{b} and Ωb\Omega_{b} decays, Phys. Rev. D 102 (2020) 055023 [2009.09594].
  • (87) V.V. Kiselev, A.K. Likhoded and A.I. Onishchenko, Semileptonic BcB_{c} meson decays in sum rules of QCD and NRQCD, Nucl. Phys. B569 (2000) 473 [hep-ph/9905359].
  • (88) M.A. Ivanov, J.G. Korner and P. Santorelli, The Semileptonic decays of the BcB_{c} meson, Phys. Rev. D63 (2001) 074010 [hep-ph/0007169].
  • (89) D. Ebert, R.N. Faustov and V.O. Galkin, Weak decays of the BcB_{c} meson to charmonium and DD mesons in the relativistic quark model, Phys. Rev. D68 (2003) 094020 [hep-ph/0306306].
  • (90) E. Hernandez, J. Nieves and J.M. Verde-Velasco, Study of exclusive semileptonic and non-leptonic decays of BcB_{c} - in a nonrelativistic quark model, Phys. Rev. D74 (2006) 074008 [hep-ph/0607150].
  • (91) M.A. Ivanov, J.G. Körner and P. Santorelli, Exclusive semileptonic and nonleptonic decays of the BcB_{c} meson, Phys. Rev. D73 (2006) 054024 [hep-ph/0602050].
  • (92) W. Wang, Y.-L. Shen and C.-D. Lu, Covariant Light-Front Approach for BcB_{c} transition form factors, Phys. Rev. D79 (2009) 054012 [0811.3748].
  • (93) C.-F. Qiao and R.-L. Zhu, Estimation of semileptonic decays of BcB_{c} meson to S-wave charmonia with nonrelativistic QCD, Phys. Rev. D87 (2013) 014009 [1208.5916].
  • (94) W.-F. Wang, Y.-Y. Fan and Z.-J. Xiao, Semileptonic decays Bc(ηc,J/Ψ)lνB_{c}\to(\eta_{c},J/\Psi)l\nu in the perturbative QCD approach, Chin. Phys. C37 (2013) 093102 [1212.5903].
  • (95) Z. Rui, H. Li, G.-x. Wang and Y. Xiao, Semileptonic decays of BcB_{c} meson to S-wave charmonium states in the perturbative QCD approach, Eur. Phys. J. C76 (2016) 564 [1602.08918].
  • (96) R. Dutta and A. Bhol, Bc(J/ψ,ηc)τνB_{c}\to(J/\psi,\,\eta_{c})\tau\nu semileptonic decays within the standard model and beyond, Phys. Rev. D96 (2017) 076001 [1701.08598].
  • (97) HPQCD collaboration, BcB_{c} decays from highly improved staggered quarks and NRQCD, PoS LATTICE2016 (2016) 281 [1611.01987].
  • (98) A. Lytle, B. Colquhoun, C. Davies, J. Koponen and C. McNeile, Semileptonic BcB_{c} decays from full lattice QCD, PoS BEAUTY2016 (2016) 069 [1605.05645].
  • (99) U. Nierste, S. Trine and S. Westhoff, Charged-Higgs effects in a new BDτνB\to D\tau\nu differential decay distribution, Phys. Rev. D 78 (2008) 015006 [0801.4938].
  • (100) M. Tanaka and R. Watanabe, Tau longitudinal polarization in BDτνB\to D\tau\nu and its role in the search for charged Higgs boson, Phys. Rev. D 82 (2010) 034027 [1005.4306].
  • (101) K. Hagiwara, M.M. Nojiri and Y. Sakaki, CPCP violation in BDτντB\to D\tau\nu_{\tau} using multipion tau decays, Phys. Rev. D 89 (2014) 094009 [1403.5892].
  • (102) M. Bordone, G. Isidori and D. van Dyk, Impact of leptonic τ\tau decays on the distribution of BPμν¯B\rightarrow P\mu\bar{\nu} decays, Eur. Phys. J. C 76 (2016) 360 [1602.06143].
  • (103) R. Alonso, A. Kobach and J. Martin Camalich, New physics in the kinematic distributions of B¯D()τ(ν¯ντ)ν¯τ\bar{B}\to D^{(*)}\tau^{-}(\to\ell^{-}\bar{\nu}_{\ell}\nu_{\tau})\bar{\nu}_{\tau}, Phys. Rev. D 94 (2016) 094021 [1602.07671].
  • (104) R. Alonso, J. Martin Camalich and S. Westhoff, Tau properties in BDτνB\to D\tau\nu from visible final-state kinematics, Phys. Rev. D 95 (2017) 093006 [1702.02773].
  • (105) P. Asadi, M.R. Buckley and D. Shih, Asymmetry Observables and the Origin of RD()R_{D^{(*)}} Anomalies, Phys. Rev. D 99 (2019) 035015 [1810.06597].
  • (106) R. Alonso, J. Martin Camalich and S. Westhoff, Tau Polarimetry in B Meson Decays, SciPost Phys. Proc. 1 (2019) 012 [1811.05664].
  • (107) B. Bhattacharya, A. Datta, S. Kamali and D. London, A measurable angular distribution for B¯Dτv¯τ\overline{B}\to{D}^{\ast}{\tau}^{-}{\overline{v}}_{\tau} decays, JHEP 07 (2020) 194 [2005.03032].
  • (108) P. Asadi, A. Hallin, J. Martin Camalich, D. Shih and S. Westhoff, Complete framework for tau polarimetry in BD()τνB\to D^{(*)}\tau\nu decays, Phys. Rev. D 102 (2020) 095028 [2006.16416].
  • (109) Z. Ligeti, M. Papucci and D.J. Robinson, New Physics in the Visible Final States of BD()τνB\to D^{(*)}\tau\nu, JHEP 01 (2017) 083 [1610.02045].
  • (110) R. Dutta, A. Bhol and A.K. Giri, Effective theory approach to new physics in bub\to u and bcb\to c leptonic and semileptonic decays, Phys. Rev. D 88 (2013) 114023 [1307.6653].
  • (111) R. Mandal, C. Murgui, A. Peñuelas and A. Pich, The role of right-handed neutrinos in bcτν¯b\to c\tau\bar{\nu} anomalies, JHEP 08 (2020) 022 [2004.06726].
  • (112) M. Beneke and T. Feldmann, Symmetry breaking corrections to heavy to light B meson form-factors at large recoil, Nucl. Phys. B 592 (2001) 3 [hep-ph/0008255].
  • (113) K. Kiers and A. Soni, Improving constraints on tan Beta / m(HH) using BDτB\to D\tau anti-neutrino, Phys. Rev. D 56 (1997) 5786 [hep-ph/9706337].
  • (114) Y. Sakaki and H. Tanaka, Constraints on the charged scalar effects using the forward-backward asymmetry on BD()τν¯τB\to D^{(*)}\tau\bar{\nu}_{\tau}, Phys. Rev. D 87 (2013) 054002 [1205.4908].
  • (115) M.A. Ivanov, J.G. Körner and C.-T. Tran, Probing new physics in B¯0D()τν¯τ\bar{B}^{0}\to D^{(\ast)}\tau^{-}\bar{\nu}_{\tau} using the longitudinal, transverse, and normal polarization components of the tau lepton, Phys. Rev. D 95 (2017) 036021 [1701.02937].
  • (116) R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of BcB_{c}^{-} Constrains Explanations for Anomalies in BD()τνB\to D^{(*)}\tau\nu, Phys. Rev. Lett. 118 (2017) 081802 [1611.06676].
  • (117) D. Bečirević, M. Fedele, I. Nišandžić and A. Tayduganov, Lepton Flavor Universality tests through angular observables of B¯D()ν¯\overline{B}\to D^{(\ast)}\ell\overline{\nu} decay modes, 1907.02257.
  • (118) M. Algueró, S. Descotes-Genon, J. Matias and M. Novoa-Brunet, Symmetries in BDνB\to D^{*}\ell\nu angular observables, JHEP 06 (2020) 156 [2003.02533].
  • (119) U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New physics reach of the decay mode B¯K¯0+\bar{B}\to\bar{K}^{*0}\ell^{+}\ell^{-}, JHEP 10 (2010) 056 [1005.0571].
  • (120) J. Matias, F. Mescia, M. Ramon and J. Virto, Complete Anatomy of B¯dK¯0(Kπ)l+l\bar{B}_{d}\to\bar{K}^{*0}(\to K\pi)l^{+}l^{-} and its angular distribution, JHEP 04 (2012) 104 [1202.4266].
  • (121) L. Hofer and J. Matias, Exploiting the symmetries of P and S wave for BKμ+μB\to K^{*}\mu^{+}\mu^{-}, JHEP 09 (2015) 104 [1502.00920].
  • (122) LHCb collaboration, First measurement of the differential branching fraction and CPC\!P asymmetry of the B±π±μ+μB^{\pm}\to\pi^{\pm}\mu^{+}\mu^{-} decay, JHEP 10 (2015) 034 [1509.00414].
  • (123) P. Auvil and J. Brehm, Wave Functions for Particles of Higher Spin, Phys. Rev. 145 (1966) 1152.
  • (124) H.E. Haber, Spin formalism and applications to new physics searches, in 21st Annual SLAC Summer Institute on Particle Physics: Spin Structure in High-energy Processes (School: 26 Jul - 3 Aug, Topical Conference: 4-6 Aug) (SSI 93), pp. 231–272, 4, 1994 [hep-ph/9405376].
  • (125) M. Jacob and G.C. Wick, On the General Theory of Collisions for Particles with Spin, Annals Phys. 7 (1959) 404.