This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

New family of C-metrics in 𝒩=2{\cal N}=2 gauged supergravity

Masato Nozawa1 and Takashi Torii2 1General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka City, Osaka 535-8585, Japan
2Department of System Design, Osaka Institute of Technology, Osaka City, Osaka 530-8568, Japan
Abstract

We present a new family of charged C-metrics in 𝒩=2{\cal N}=2 gauged supergravity in four dimensions. The double Wick rotation of the C-metric allows us to bring our solution into a different family of the C-metrics previously found by Lü and Vázquez-Poritz. In the case of zero acceleration limit, our solution with vanishing charges reduces to the scalar haired black holes in AdS with regular horizons. Nevertheless, it turns out that each family of neutral solutions fails to veil the curvature singularity by the event horizon, showing that neither of them represents the accelerated black holes with a scalar hair. Physical solutions without visible curvature singularities are obtained only in the case of nonvanishing charges. Causal structures of the solution are spelled out in detail. We also present conditions under which the solution preserves supersymmetry.

I Introduction

Black hole solutions in anti-de Sitter (AdS) space have drawn considerable attention from the perspective of holography. By cause of the admirable nature of duality, classical AdS black holes have provided an extremely valuable arena for exploring the strongly coupled dual gauge theories and the condensed matter physics applications.

In the asymptotically flat spacetimes, stationary black holes in vacuum are essentially unique and identified entirely by mass and angular momentum Israel:1967wq ; MRS ; robinson ; bunting ; Robinson:1975bv ; Nozawa:2018kfk . Despite the primary importance of AdS black holes, similar classification of black holes in AdS is a much more difficult task to implement. There is no known formalism of comparable power for exhaustive classification of AdS black holes, even though one centers on the static case. Some progresses for partial classification have been achieved under fairly restrictive assumptions Sudarsky:2002mk ; Anderson:2002xb . The construction of exact solutions is likewise unfeasible in a straightforward fashion, since the cosmological constant or the scalar field potential destroys the symmetry of the reduced target space of nonlinear sigma model, which prevents us to generate new solutions from simpler seed solutions Klemm:2015uba .

In the teeth of the above adversity, it turns out that AdS black holes enjoy substantially rich varieties and are endowed with physically interesting properties. Of most prominence is that some black holes admit scalar ‘hairs.’ Within the framework of supergravity, exact solutions describing static AdS black holes with a nontrivial scalar configuration have been constructed in Anabalon:2012ta ; Feng:2013tza (see also Anabalon:2012sn ; Anabalon:2013eaa ; Anabalon:2020pez ; Lu:2013eoa ; Lu:2013ura ).111Many authors have explored scalar haired AdS black holes with diverse potentials. Nonexhaustive list of references for canonical scalar field in Einstein’s gravity is Torii:2001pg ; Kolyvaris:2010yyf ; Gonzalez:2013aca ; Mahapatra:2020wym . These solutions embody the manifestation of non-uniqueness, since the theory under study obviously possesses the Schwarzschild-AdS black hole for which the scalar field is frozen to a constant. A more unanticipated and tantalizing facet is that these scalar haired black holes themselves are not unique. Ref. Faedo:2015jqa has presented a new scalar haired black hole in the same theory as in Anabalon:2012ta ; Feng:2013tza . These works prompt the questions with regard to the diversity of AdS black holes.

In the present paper, we undertake this problem by focusing on the accelerating black holes broadly termed the C-metric. The vacuum C-metric LeviCivita ; Newman1961 ; Ehlers:1962zz describes a pair of black holes undergoing uniform acceleration in opposite directions Kinnersley:1970zw . The acceleration of black holes is provided by a conical deficit angle corresponding to the cosmic string extending out to infinity, or a strut with a negative tension which stretches between two black holes. Specifically, the C-metric can be realized as a perturbation of the Schwarzschild black hole with a distributional stringy source Kodama:2008wf . The vacuum C-metric falls into Petrov type-D and Weyl class of solutions Bonnor . Causal structures and physical properties of the vacuum C-metric have been fully investigated in Hong:2003gx ; Letelier:1998rx ; Griffiths:2006tk ; Lim:2014qra . The C-metric in AdS has been also studied intensively from various points of view: causal structures Podolsky:2002nk ; Dias:2002mi ; Krtous:2005ej , thermodynamics Appels:2016uha ; Appels:2017xoe ; Astorino:2016ybm ; Zhang:2018hms ; Wang:2022hzh , minimal surfaces Xu:2017nut and quasi-normal modes Nozawa:2008wf ; Destounis:2020pjk ; Destounis:2022rpk . Here we consider the supergravity generalization of the AdS C-metric, for which the AdS vacuum is realized by the scalar field potential rather than a pure cosmological constant.

A charged C-metric in 𝒩=2\mbox{$\mathcal{N}$}=2 supergravity has been discovered in Lu:2014ida ; Lu:2014sza . The bosonic Lagrangian studied in Lu:2014ida ; Lu:2014sza consists of Einstein-Maxwell-dilaton theory with an arbitrary coupling constant and is identical to the cases considered in Anabalon:2012ta ; Feng:2013tza . The C-metric solution in Lu:2014ida ; Lu:2014sza reduces in the zero acceleration limit to the spherical solution in Anabalon:2012ta ; Feng:2013tza . It is worth mentioning that the spherically symmetric solution in Anabalon:2012ta ; Feng:2013tza describes a naked singularity instead of a black hole in the neutral case, whereas the spherical solution in Faedo:2015jqa allows a parameter range in which the event horizon exists. It is then pertinent to deduce that the neutral C-metric in Lu:2014ida ; Lu:2014sza would represent a pair of accelerated naked particles and there should exist another family of ‘hairy C-metrics’ which incorporates the spherical solution in Faedo:2015jqa . This is a prime motivation of the present paper.

Bearing these prospects in mind, we present a new charged C-metric in 𝒩=2\mbox{$\mathcal{N}$}=2 supergravity. We demonstrate that our solution is converted to the one in Lu:2014ida ; Lu:2014sza via double Wick rotation. This transformation is missing in the zero acceleration limit and properly accounts for the existence of two distinct hairy solutions within the same theory. The emphasis of the present article is placed on the causal structure of the C-metric solution. In the neutral limit, our solution displays some peculiarities, most notably the event horizon disappears in any range of parameters. This comes as a surprise since the neutral solution reduces in the vanishing acceleration case to the hairy black hole solution in Faedo:2015jqa . This proclaims that the zero acceleration limit of the solution is discontinuous. Nevertheless, the charged solution can have a parameter range in which the horizon exists.

We organize the present article as follows. In the next section, we give a quick review of 𝒩=2{\cal N}=2 supergravity with Abelian Fayet-Iliopoulos gaugings. Upon truncation, we will see that the bosonic theory reduces to the Einstein-Maxwell-dilaton gravity with a potential which is expressed in terms of a real superpotential. Section III provides our new C-metric and discusses various limits of the solution. Causal structures and physical properties of the solution are examined in section IV. Section V concludes our paper with short summary and future outlooks. Supersymmetry of the C-metric will be investigated in appendix. We employ the units c=8πG=1c=8\pi G=1 throughout the paper.

II Fayet-Iliopoulos gauged supergravity

Let us consider the 𝒩=2\mbox{$\mathcal{N}$}=2 gauged supergravity coupled to nVn_{V} number of abelian vector multiplets in four dimensions Andrianopoli:1996cm (see, e.g, Freedman:2012zz ; Trigiante:2016mnt ; DallAgata:2021uvl for recent reviews). We follow the conventions of Cacciatori:2008ek . The bosonic field contents consist of the vectors AIμA^{I}{}_{\mu} (I=0,1,,nVI=0,1,...,n_{V}) and the complex scalars zαz^{\alpha} (α=1,,nV\alpha=1,...,n_{V}). These scalars parametrize the special Kähler manifold corresponding to the nVn_{V}-dimensional Hodge-Kähler manifold endowed with a symplectic bundle. The symplectic bundle is characterized by a covariantly holomorphic section

𝒱=(XIFI),𝒟α¯𝒱=α¯𝒱12(α¯𝒦)𝒱=0,\displaystyle\mbox{$\mathcal{V}$}=\left(\begin{array}[]{c}X^{I}\\ F_{I}\end{array}\right)\,,\qquad\mbox{$\mathcal{D}$}_{\bar{\alpha}}\mbox{$\mathcal{V}$}=\partial_{\bar{\alpha}}\mbox{$\mathcal{V}$}-\frac{1}{2}(\partial_{\bar{\alpha}}\mbox{$\mathcal{K}$})\mbox{$\mathcal{V}$}=0\,, (3)

where 𝒦=𝒦(zα,z¯α)\mbox{$\mathcal{K}$}=\mbox{$\mathcal{K}$}(z^{\alpha},\bar{z}^{\alpha}) is the Kähler potential and 𝒟α\mbox{$\mathcal{D}$}_{\alpha} denotes the Kähler covariant derivative. The covariantly holomorphic section obeys the following symplectic constraint

𝒱,𝒱¯XIF¯IFIX¯I=i,𝒱,α𝒱=0,\displaystyle\langle\mbox{$\mathcal{V}$},\bar{\mbox{$\mathcal{V}$}}\rangle\equiv X^{I}\bar{F}_{I}-F_{I}\bar{X}^{I}=i\,,\qquad\langle\mbox{$\mathcal{V}$},\partial_{\alpha}{\mbox{$\mathcal{V}$}}\rangle=0\,, (4)

where ,\langle~{},~{}\rangle stands for the symplectic inner product induced by the symplectic metric Ω=iσ2InV\Omega=i\sigma_{2}\otimes I_{n_{V}}. Writing

𝒱=eK/2v,v=(ZIYI),\displaystyle\mbox{$\mathcal{V}$}=e^{K/2}v\,,\qquad v=\left(\begin{array}[]{c}Z^{I}\\ Y_{I}\end{array}\right), (7)

vv denotes the symplectic section α¯v=0\partial_{\bar{\alpha}}v=0. Assuming the invertibility of the matrix (XIαXI)(X^{I}~{}\partial_{\alpha}X^{I}), the symplectic constraint implies the existence of a prepotential FF satisfying

YI=ZIF(Z),F(λZ)=λ2F(Z).\displaystyle Y_{I}=\frac{\partial}{\partial Z^{I}}F(Z)\,,\qquad F(\lambda Z)=\lambda^{2}F(Z)\,. (8)

Throughout the paper, we assume the existence of the prepotential.

The coupling between the scalars zαz^{\alpha} and the vectors AIμA^{I}{}_{\mu} is controlled by the complex matrix 𝒩IJ{\cal N}_{IJ} which is defined by the relations

FI=𝒩IJXJ,𝒟α¯F¯I=𝒩IJ𝒟α¯X¯J.\displaystyle F_{I}={\cal N}_{IJ}X^{J}\,,\qquad{\cal D}_{\bar{\alpha}}\bar{F}_{I}={\cal N}_{IJ}{\cal D}_{\bar{\alpha}}\bar{X}^{J}\,. (9)

Then, the bosonic Lagrangian reads

=12(R2V)1gαβ¯dzαdz¯β¯+12IIJFIFJ+12RIJFIFJ.\displaystyle\mbox{$\mathcal{L}$}=\frac{1}{2}(R-2V)\star 1-g_{\alpha\bar{\beta}}{\rm d}z^{\alpha}\wedge\star{\rm d}\bar{z}^{\bar{\beta}}+\frac{1}{2}I_{IJ}F^{I}\wedge\star F^{J}+\frac{1}{2}R_{IJ}F^{I}\wedge F^{J}\,. (10)

where we have written IIJ=Im𝒩IJI_{IJ}={\rm Im}\mbox{$\mathcal{N}$}_{IJ}, RIJ=Re𝒩IJR_{IJ}={\rm Re}\mbox{$\mathcal{N}$}_{IJ} and FI=dAIF^{I}={\rm d}A^{I} is the electromagnetic field strength. The scalar potential is

V=2gIgJ(IIJ+8X¯IXJ),\displaystyle V=-2g_{I}g_{J}\left(I^{IJ}+8\bar{X}^{I}X^{J}\right)\,, (11)

where IIJI^{IJ} is the inverse of IIJI_{IJ} and gIg_{I} denote the Fayet-Iliopoulos coupling constants. In what follows, we assume gI>0g_{I}>0.

Einstein’s equations derived from the Lagrangian (10) read

Rμν12Rgμν=\displaystyle R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}= Tμν,\displaystyle\,T_{\mu\nu}\,, (12)

where

Tμν\displaystyle T_{\mu\nu} =IIJ(FμρIFνJρ14gμνFρσIFJρσ)+2gαβ¯((μzαν)z¯β¯12gμνρzαρz¯β¯)Vgμν.\displaystyle=-I_{IJ}\left(F^{I}_{\mu\rho}F_{\nu}^{J\rho}-\frac{1}{4}g_{\mu\nu}F^{I}_{\rho\sigma}F^{J\rho\sigma}\right)+2g_{\alpha\bar{\beta}}\left(\nabla_{(\mu}z^{\alpha}\nabla_{\nu)}\bar{z}^{\bar{\beta}}-\frac{1}{2}g_{\mu\nu}\nabla_{\rho}z^{\alpha}\nabla^{\rho}\bar{z}^{\bar{\beta}}\right)-Vg_{\mu\nu}\,. (13)

The gauge fields obey

d(IIJFJ+RIJFJ)=\displaystyle{\rm d}\left(I_{IJ}\star F^{J}+R_{IJ}F^{J}\right)=  0.\displaystyle\,0\,. (14)

Lastly, the scalar field equations boil down to

2zα+ΓαTμβγzβμzγgαβ¯β¯V+14gαβ¯[(β¯IIJ)FρσIFJρσ(β¯RIJ)FρσIFJρσ]=\displaystyle\nabla^{2}z^{\alpha}+{}^{T\!}\Gamma^{\alpha}{}_{\beta\gamma}\nabla_{\mu}z^{\beta}\nabla^{\mu}z^{\gamma}-g^{\alpha\bar{\beta}}\partial_{\bar{\beta}}V+\frac{1}{4}g^{\alpha\bar{\beta}}\left[(\partial_{\bar{\beta}}I_{IJ})F^{I}_{\rho\sigma}F^{J\rho\sigma}-(\partial_{\bar{\beta}}R_{IJ})F^{I}_{\rho\sigma}\star F^{J\rho\sigma}\right]=  0\displaystyle\,0 (15)

where ΓαTβγ{}^{T\!}\Gamma^{\alpha}{}_{\beta\gamma} is the affine connection of the target space.

II.1 Model

We focus on a one-parameter family of 𝒩=2{\cal N}=2 supergravity models in which the prepotential is given by Faedo:2015jqa

F(X)=i4(X0)n(X1)2n,\displaystyle F(X)=-\frac{i}{4}(X^{0})^{n}(X^{1})^{2-n}\,, (16)

corresponding to nV=1n_{V}=1 involving a single complex scalar. For the special choice of the parameter n=1,1/2n=1,1/2 and 3/23/2, the theory is obtained by the truncation of what is called the STU model and is embedded into the eleven dimensional supergravity Cvetic:1999xp ; Azizi:2016noi . The prepotential of the STU model is

FSTU(X)=i4X0X1X2X3,\displaystyle F_{\rm STU}(X)=-\frac{i}{4}\sqrt{X^{0}X^{1}X^{2}X^{3}}\,, (17)

for which the three complex scalars zi=Xi/X0z^{i}=X^{i}/X^{0} parametrize the coset [SL(2,)/SO(2)]3[{\rm SL}(2,\mathbb{R})/{\rm SO}(2)]^{3}. The n=1n=1 is obtained when a single scalar field is turned on z2=z3=0z^{2}=z^{3}=0, while the n=1/2,3/2n=1/2,3/2 cases correspond to the diagonal truncation z1=z2=z3=zz^{1}=z^{2}=z^{3}=z Duff:1999gh .

Setting Z0=1Z^{0}=1 and Z1=zZ^{1}=z, the symplectic vector reads

v=(1zi4nz2ni4(2n)z1n),\displaystyle v=\left(\begin{array}[]{c}1\\ z\\ -\dfrac{i}{4}\,nz^{2-n}\\ -\dfrac{i}{4}\,(2-n)z^{1-n}\end{array}\right)\,, (22)

and the Kähler potential is given by

e𝒦=14[n(z2n+z¯2n)+(2n)(z1nz¯+zz¯1n)].\displaystyle e^{-\mathcal{K}}=\frac{1}{4}\left[n(z^{2-n}+\bar{z}^{2-n})+(2-n)(z^{1-n}\bar{z}+z\bar{z}^{1-n})\right]\,. (23)

When n=1n=1, 1/21/2 and 3/23/2, the scalar manifold corresponds to the coset SU(1,1)/U(1){\rm SU}(1,1)/{\rm U}(1).

To proceed, we would like to further truncate the theory to the real scalar z=z¯z=\bar{z}. This is possible if Imz=0{\rm Im}\,z=0 is consistent with the equations of motion (15). After some computations, one can ascertain that this is indeed the case, as far as we concentrate on the purely electrically or magnetically charged solutions

FIFJ=0.\displaystyle F^{I}\wedge F^{J}=0\,. (24)

In this truncated case, the condition Im𝒩IJ<0{\rm Im}\mbox{$\mathcal{N}$}_{IJ}<0 requires 0<n<20<n<2 and the bosonic Lagrangian is simplified to

=12(R2V)112dΦdΦ18ne±2(2n)nΦF0F018(2n)e2n2nΦF1F1\displaystyle\mbox{$\mathcal{L}$}=\frac{1}{2}(R-2V)\star 1-\frac{1}{2}{\rm d}\Phi\wedge\star{\rm d}\Phi-\frac{1}{8}ne^{\pm\sqrt{\frac{2(2-n)}{n}}\Phi}F^{0}\wedge\star F^{0}-\frac{1}{8}(2-n)e^{\mp\sqrt{\frac{2n}{2-n}}\Phi}F^{1}\wedge\star F^{1} (25)

where we have set z=exp(±2/[n(2n)]Φ)z=\exp({\pm\sqrt{2/[n(2-n)]}\Phi}). The scalar potential VV is expressed in terms of the real superpotential WW as

V=4[2(ΦW)23W2],\displaystyle V=4\left[2(\partial_{\Phi}W)^{2}-3W^{2}\right]\,, (26)

where

W(Φ)=gIXI=g0e2n2nΦ+g1e±n2(2n)Φ.\displaystyle W(\Phi)=g_{I}X^{I}=g_{0}e^{\mp\sqrt{\frac{2-n}{2n}}\Phi}+g_{1}e^{\pm\sqrt{\frac{n}{2(2-n)}}\Phi}\,. (27)

The present theory (25) has the following symmetry

n2n,ΦΦ,g0g1,F0F1,\displaystyle n\leftrightarrow 2-n\,,\qquad\Phi\leftrightarrow-\Phi\,,\qquad g_{0}\leftrightarrow g_{1}\,,\qquad F^{0}\leftrightarrow F^{1}\,, (28)

corresponding to the interchange of X0X^{0} and X1X^{1}.

The scalar potential (26) admits at most two critical points

Φ0=±n(2n)2log(g0(2n)g1n),Φ1=±n(2n)2log(g0(2n)(12n)g1n(32n)).\displaystyle\Phi_{0}=\pm\sqrt{\frac{n(2-n)}{2}}\log\left(\frac{g_{0}(2-n)}{g_{1}n}\right)\,,\qquad\Phi_{1}=\pm\sqrt{\frac{n(2-n)}{2}}\log\left(\frac{g_{0}(2-n)(1-2n)}{g_{1}n(3-2n)}\right)\,. (29)

Under the present proviso gI>0g_{I}>0, the critical point Φ0\Phi_{0} exists all values of 0<n<20<n<2, while the critical point Φ1\Phi_{1} is absent for 1/2n3/21/2\leq n\leq 3/2. Both of these critical points correspond to the AdS vacua. The former critical point Φ0\Phi_{0} also extremizes the superpotential (27), i.e., this is a supersymmetric AdS vacuum. At Φ=Φ0\Phi=\Phi_{0}, we have

V=3g2,Φ2V=2g2,\displaystyle V=-3g^{2}\,,\qquad\partial_{\Phi}^{2}V=-2g^{2}\,, (30)

where gg denotes the reciprocal of the AdS radius given by

g4(g0n)n(g12n)2n.\displaystyle g\equiv 4\sqrt{\Big{(}\frac{g_{0}}{n}\Big{)}^{n}\Big{(}\frac{g_{1}}{2-n}\Big{)}^{2-n}}\,. (31)

Notably, the mass square m2=Φ2Vm^{2}=\partial_{\Phi}^{2}V lies in the unitary range mBF2<m2<mBF2+g2m_{\rm BF}^{2}<m^{2}<m_{\rm BF}^{2}+g^{2}, where mBF2=9g2/4m_{\rm BF}^{2}=-9g^{2}/4 is the Breitenlohner-Freedman bound Breitenlohner:1982jf . When the mass parameter of the AdS extremum lies in this characteristic range, the scalar field may be subjected to the ‘mixed’ boundary conditions. In this case, the slower fall-off mode of the scalar field also survives and back reacts nontrivially on the metric.222Denoting the conformal dimensions of the scalar field as Δ±=(3±4m2g2+9)/2\Delta_{\pm}=(3\pm\sqrt{4m^{2}g^{-2}+9})/2, the scalar field behaves as ΦΦ/rΔ+Φ+/rΔ+\Phi\sim\Phi_{-}/r^{\Delta_{-}}+\Phi_{+}/r^{\Delta_{+}} around AdS boundary (rr\to\infty). When m2mBF2+g2m^{2}\geq m_{\rm BF}^{2}+g^{2}, we must impose the Dirichlet boundary condition Φ=0\Phi_{-}=0 since the slower fall-off mode Φ\Phi_{-} is not normalizable. When mBF2m2mBF2+g2m_{\rm BF}^{2}\leq m^{2}\leq m_{\rm BF}^{2}+g^{2} which occurs in the present case, both modes are normalizable and the slower fall-off mode Φ\Phi_{-} might be nonvanishing. See Ishibashi:2004wx ; Hertog:2004dr ; Henneaux:2006hk for details. Despite the apparent divergence of conventional charges, one can still find generators of asymptotic symmetries and the corresponding charges of finite value.

To simplify the system further, let us relabel

ϕ=2(ΦΦ0),α=2nn,\displaystyle\phi=\,\sqrt{2}(\Phi-\Phi_{0})\,,\qquad\alpha=\mp\sqrt{\frac{2-n}{n}}\in\mathbb{R}\,,
(F0,F1)(g0α2g1)11+α221+α2α(g1g0αF0,F1)\displaystyle(F^{0},F^{1})\to\left(\frac{g_{0}\alpha^{2}}{g_{1}}\right)^{\frac{1}{1+\alpha^{2}}}\frac{2\sqrt{1+\alpha^{2}}}{\alpha}\left(\frac{g_{1}}{g_{0}\alpha}F^{0},F^{1}\right) (32)

for which

V(ϕ)=4[4(ϕW)23W2],W(ϕ)=g2(1+α2)(eα2ϕ+α2eϕ2α).\displaystyle V(\phi)=4\left[4(\partial_{\phi}W)^{2}-3W^{2}\right]\,,\qquad W(\phi)=\frac{g}{2(1+\alpha^{2})}\left(e^{\frac{\alpha}{2}\phi}+\alpha^{2}e^{-\frac{\phi}{2\alpha}}\right)\,. (33)

The Lagrangian is then reduced to

=12(R2V(ϕ))114dϕdϕeαϕF0F0e1αϕF1F1.\displaystyle\mbox{$\mathcal{L}$}=\frac{1}{2}(R-2V(\phi))\star 1-\frac{1}{4}{\rm d}\phi\wedge\star{\rm d}\phi-e^{-\alpha\phi}F^{0}\wedge\star F^{0}-e^{\frac{1}{\alpha}\phi}F^{1}\wedge\star F^{1}\,. (34)

The symmetry (28) now amounts to

α1α,F0F1.\displaystyle\alpha\leftrightarrow-\frac{1}{\alpha}\,,\qquad F^{0}\leftrightarrow F^{1}\,. (35)

On top of this, the above Lagrangian (34) admits a trivial symmetry

αα,ϕϕ.\displaystyle\alpha\leftrightarrow-\alpha\,,\qquad\phi\leftrightarrow-\phi\,. (36)

This enables us to focus on the domain α>0\alpha>0, which we assume hereafter.

The values α=1\alpha=1, 3\sqrt{3} and 1/31/\sqrt{3} are special since theories with these special parameters can be embedded into the maximal 𝒩=8{\cal N}=8 gauged supergravity.

III New C-metric solution

A new gravitational solution for the system (34) with (33) is

ds2=\displaystyle{\rm d}s^{2}= 1A2(xy)2[h(x)2α21+α2(h(y)1α21+α2Δy(y)dt2+dy2h(y)1α21+α2Δy(y))\displaystyle\,\frac{1}{A^{2}(x-y)^{2}}\left[h(x)^{\frac{2\alpha^{2}}{1+\alpha^{2}}}\left(-h(y)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{y}(y){\rm d}t^{2}+\frac{{\rm d}y^{2}}{h(y)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{y}(y)}\right)\right.
+h(y)2α21+α2(dx2h(x)1α21+α2Δx(x)+h(x)1α21+α2Δx(x)dφ2)],\displaystyle\left.+h(y)^{\frac{2\alpha^{2}}{1+\alpha^{2}}}\left(\frac{{\rm d}x^{2}}{h(x)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{x}(x)}+h(x)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{x}(x){\rm d}\varphi^{2}\right)\right]\,, (37)
ϕ=\displaystyle\phi= 2α1+α2log(h(y)h(x)),A0=q0x1+α2dφ,A1=αq1x1+α2h(x)dφ.\displaystyle-\frac{2\alpha}{1+\alpha^{2}}\log\left(\frac{h(y)}{h(x)}\right)\,,\qquad A^{0}=\frac{q_{0}x}{\sqrt{1+\alpha^{2}}}{\rm d}\varphi\,,\qquad A^{1}=\frac{\alpha q_{1}x}{\sqrt{1+\alpha^{2}}h(x)}{\rm d}\varphi\,. (38)

where

h(x)=1+Ar0x,\displaystyle h(x)=1+Ar_{0}x\,, (39)

and

Δy(y)=\displaystyle\Delta_{y}(y)= a02a1ya2y2+Aq02y3r0Aq12y3r0h(y),\displaystyle\,-a_{0}-2a_{1}y-a_{2}y^{2}+\frac{Aq^{2}_{0}y^{3}}{r_{0}}-\frac{Aq_{1}^{2}y^{3}}{r_{0}h(y)}\,, (40a)
Δx(x)=\displaystyle\Delta_{x}(x)= a0+2a1x+a2x2Aq02x3r0+Aq12x3r0h(x)+g2A2h(x)3α211+α2.\displaystyle\,a_{0}+2a_{1}x+a_{2}x^{2}-\frac{Aq^{2}_{0}x^{3}}{r_{0}}+\frac{Aq_{1}^{2}x^{3}}{r_{0}h(x)}+\frac{g^{2}}{A^{2}}h(x)^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}\,. (40b)

Here, AA, r0r_{0}, q0,1q_{0,1}, a0,1,2a_{0,1,2} are arbitrary constants. Since both of the gauge fields are magnetic, the condition (24) for the consistent truncation is indeed fulfilled.

Inasmuch as the hypersurface-orthogonality of Killing vectors /t\partial/\partial t and /φ\partial/\partial\varphi, the metric (37) is static and axially symmetric. The scalar field and the gauge fields are also invariant under these symmetries. An elementary computation verifies that the solution (37) belongs to the Petrov type D. These properties are shared by the conventional C-metric in the Einstein-Maxwell-Λ\Lambda system.

The solution (37) is not manifestly symmetric under (35). In order to illustrate this symmetry, we adopt new variables

x=x1+Ar0x,y=y1+Ar0y,\displaystyle x=-\frac{x^{\prime}}{1+Ar_{0}x^{\prime}}\,,\qquad y=-\frac{y^{\prime}}{1+Ar_{0}y^{\prime}}\,, (41)

with the property h(x)=1/h(x)h(x)=1/h(x^{\prime}). In terms of these ‘primed’ coordinates, the metric, the scalar field and the gauge fields are indeed form-invariant, provided

q0=\displaystyle q_{0}^{\prime}= q1,q1=q0,a0=a0,\displaystyle\,q_{1}\,,\qquad q_{1}^{\prime}=-q_{0}\,,\qquad a_{0}^{\prime}=a_{0}\,,
a1=\displaystyle a_{1}^{\prime}= a1+Ar0a0,a2=a22Ar0a1+A2r02a0.\displaystyle\,-a_{1}+Ar_{0}a_{0}\,,\qquad a_{2}^{\prime}=a_{2}-2Ar_{0}a_{1}+A^{2}r_{0}^{2}a_{0}\,. (42)

This is no more than the relabeling of parameters, i.e., the transformation (35) maps a solution into another one within the same family of solutions.

Remark that some of the seven parameters (AA, r0r_{0}, q0,1q_{0,1}, a0,1,2a_{0,1,2}) of the solution are unphysical and gauged away. This becomes evident by noting that the solution (37) admits the following shift and scaling symmetry

x=b0x′′+b1,y=b0y′′+b1,t=b2t′′,φ=b2φ′′,\displaystyle x=b_{0}x^{\prime\prime}+b_{1}\,,\qquad y=b_{0}y^{\prime\prime}+b_{1}\,,\qquad t=b_{2}t^{\prime\prime}\,,\qquad\varphi=b_{2}\varphi^{\prime\prime}\,, (43)

together with

A′′=\displaystyle A^{\prime\prime}= δ1b0b2h(b1)α21+α2A,r0′′=δ1b0b2h(b1)11+α2r0,\displaystyle\delta_{1}\sqrt{\frac{b_{0}}{b_{2}}}h(b_{1})^{\frac{-\alpha^{2}}{1+\alpha^{2}}}A\,,\qquad r_{0}^{\prime\prime}=\,\delta_{1}\sqrt{b_{0}b_{2}}h(b_{1})^{-\frac{1}{1+\alpha^{2}}}r_{0}\,,
q0′′=\displaystyle\qquad q^{\prime\prime}_{0}= δ2b0b2q0,q1′′=δ3b0b2h(b1)2q1,\displaystyle\delta_{2}b_{0}b_{2}q_{0}\,,\qquad q^{\prime\prime}_{1}=\delta_{3}\frac{b_{0}b_{2}}{h(b_{1})^{2}}q_{1}\,,
a2′′=\displaystyle a_{2}^{\prime\prime}= (a23Ab1q02r0+q12r02(1h(b1)3))b0b2h(b1)1α21+α2,\displaystyle\left(a_{2}-\frac{3Ab_{1}q_{0}^{2}}{r_{0}}+\frac{q_{1}^{2}}{r_{0}^{2}}\left(1-h(b_{1})^{-3}\right)\right)b_{0}b_{2}h(b_{1})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\,,
a1′′=\displaystyle a_{1}^{\prime\prime}= (a1+a2b13Ab12q022r0+Ab12q12(1+2h(b1))2r0h(b1)2)b2h(b1)1α21+α2,\displaystyle\left(a_{1}+a_{2}b_{1}-\frac{3Ab_{1}^{2}q_{0}^{2}}{2r_{0}}+\frac{Ab_{1}^{2}q_{1}^{2}(1+2h(b_{1}))}{2r_{0}h(b_{1})^{2}}\right)b_{2}h(b_{1})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\,,
a0′′=\displaystyle a_{0}^{\prime\prime}= Δy(b1)b2b0h(b1)1α21+α2.\displaystyle-\Delta_{y}(b_{1})\frac{b_{2}}{b_{0}}h(b_{1})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\,. (44)

Here, b0b_{0}, b1b_{1} and b2b_{2} are constants and δ1,2,3=±1\delta_{1,2,3}=\pm 1. Supposed a20a_{2}\neq 0, this three-parameter family of coordinate freedom permits us to scale a0a_{0} and a2a_{2}, and take a1a_{1} as any value we wish. Moreover, the appropriate sign choice of δ1=±1\delta_{1}=\pm 1 allows us to choose A>0A>0 without loss of generality.

In the following, we would like to view the constant AA as an acceleration parameter. Unfortunately, the present metric (37) fails to admit the A0A\to 0 limit in the present form, due to the overall factor A2A^{-2}. To overcome this difficulty, let us introduce rescaled coordinates

r=1Ay,τ=1At,\displaystyle r=-\frac{1}{Ay}\,,\qquad\tau=\frac{1}{A}t\,, (45)

in terms of which one can recast the metric and the scalar field into

ds2=\displaystyle{\rm d}s^{2}= 1(1+Arx)2[h(x)2α21+α2(f(r)1α21+α2Δr(r)dτ2+dr2f(r)1α21+α2Δr(r))\displaystyle\,\frac{1}{(1+Arx)^{2}}\left[h(x)^{\frac{2\alpha^{2}}{1+\alpha^{2}}}\left(-f(r)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{r}(r){\rm d}\tau^{2}+\frac{{\rm d}r^{2}}{f(r)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{r}(r)}\right)\right.
+r2f(r)2α21+α2(dx2h(x)1α21+α2Δx(x)+h(x)1α21+α2Δx(x)dφ2)],\displaystyle\left.+r^{2}f(r)^{\frac{2\alpha^{2}}{1+\alpha^{2}}}\left(\frac{{\rm d}x^{2}}{h(x)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{x}(x)}+h(x)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{x}(x){\rm d}\varphi^{2}\right)\right]\,, (46)
ϕ=\displaystyle\phi= 2α1+α2log(f(r)h(x)).\displaystyle-\frac{2\alpha}{1+\alpha^{2}}\log\left(\frac{f(r)}{h(x)}\right)\,. (47)

The gauge fields are still given by (38). Here, we have defined

Δr(r)=\displaystyle\Delta_{r}(r)=\, a2+2a1Ara0A2r2q02r0r+q12r0rf(r),f(r)=1r0r.\displaystyle-a_{2}+2a_{1}Ar-a_{0}A^{2}r^{2}-\frac{q^{2}_{0}}{r_{0}r}+\frac{q_{1}^{2}}{r_{0}rf(r)}\,,\qquad f(r)=1-\frac{r_{0}}{r}\,. (48)

We are now in a position to discuss the A0A\to 0 limit of (46). Nontrivial relations arise only from the structure function Δx(x)\Delta_{x}(x) around A=0A=0 as

a2=O(A0),a1=(3α21)g2r02A(1+α2)+O(A0),a0=g2A2+O(A0).\displaystyle a_{2}=O(A^{0})\,,\qquad a_{1}=-\frac{(3\alpha^{2}-1)g^{2}r_{0}}{2A(1+\alpha^{2})}+O(A^{0})\,,\qquad a_{0}=-\frac{g^{2}}{A^{2}}+O(A^{0})\,. (49)

Defining

k=a2(α21)(3α21)(1+α2)2g2r02,\displaystyle k=-a_{2}-\frac{(\alpha^{2}-1)(3\alpha^{2}-1)}{(1+\alpha^{2})^{2}}g^{2}r_{0}^{2}\,, (50)

the coordinate freedom (43) allows us to normalize kk to be ±1\pm 1 or 0 and O(A0)O(A^{0}) term in a1a_{1} to vanish. The last freedom is to scale the O(A0)O(A^{0}) term in a0a_{0}. Requiring the metric keeps the Lorentzian signature in the g=q0,1=0g=q_{0,1}=0 case for any value of kk, one finds that the O(A0)O(A^{0}) term in a0a_{0} should be scaled to be +1+1, i.e.,

Δr(r)=\displaystyle\Delta_{r}(r)= kA2r2q02r0r+q12r0rf(r)+g2(r23α211+α2r0r+(α21)(3α21)(1+α2)2r02),\displaystyle\,k-A^{2}r^{2}-\frac{q_{0}^{2}}{r_{0}r}+\frac{q_{1}^{2}}{r_{0}rf(r)}+g^{2}\left(r^{2}-\frac{3\alpha^{2}-1}{1+\alpha^{2}}r_{0}r+\frac{(\alpha^{2}-1)(3\alpha^{2}-1)}{(1+\alpha^{2})^{2}}r_{0}^{2}\right)\,, (51a)
Δx(x)=\displaystyle\Delta_{x}(x)=  1kx2Aq02r0x3+Aq12x3r0h(x)+g2(h(x)3α211+α21A23α21(1+α2)Ar0x(α21)(3α21)(1+α2)2r02x2).\displaystyle\,1-kx^{2}-\frac{Aq_{0}^{2}}{r_{0}}x^{3}+\frac{Aq_{1}^{2}x^{3}}{r_{0}h(x)}+g^{2}\left(\frac{h(x)^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}-1}{A^{2}}-\frac{3\alpha^{2}-1}{(1+\alpha^{2})A}r_{0}x-\frac{(\alpha^{2}-1)(3\alpha^{2}-1)}{(1+\alpha^{2})^{2}}r_{0}^{2}x^{2}\right)\,. (51b)

Bringing back to the original coordinate yy, the structure function Δy(y)\Delta_{y}(y) reads

Δy(y)=\displaystyle\Delta_{y}(y)= 1+ky2+Aq02r0y3Aq12y3r0h(y)+g2(1A2+3α21(1+α2)Ar0y+(α21)(3α21)(1+α2)2r02y2).\displaystyle\,-1+ky^{2}+\frac{Aq_{0}^{2}}{r_{0}}y^{3}-\frac{Aq_{1}^{2}y^{3}}{r_{0}h(y)}+g^{2}\left(\frac{1}{A^{2}}+\frac{3\alpha^{2}-1}{(1+\alpha^{2})A}r_{0}y+\frac{(\alpha^{2}-1)(3\alpha^{2}-1)}{(1+\alpha^{2})^{2}}r_{0}^{2}y^{2}\right)\,. (52)

Quite surprisingly, the terms proportional to g2g^{2} in Δx(x)\Delta_{x}(x) vanish when α=1\alpha=1, 3\sqrt{3} and 1/31/\sqrt{3}.

It turns out that the solution is characterized by five parameters kk, AA, r0r_{0}, q0,1q_{0,1}, while gg and α\alpha parametrize the theory (34). In the following subsections, we elucidate the physical meaning of the above parameters by taking various limits of the solution (37). We will see that kk controls the topology, AA is the acceleration, r0r_{0} encodes the mass and q0,1q_{0,1} denote magnetic charges.

III.1 r0=q0,1=0r_{0}=q_{0,1}=0 case: AdS

If we set r0=q0,1=0r_{0}=q_{0,1}=0, the scalar field and the gauge fields become trivial. The metric is now simplified to

ds2=1A2(xy)2(Δy(y)dt2+dy2Δy(y)+dΣk2(x,φ)),\displaystyle{\rm d}s^{2}=\frac{1}{A^{2}(x-y)^{2}}\left(-\Delta_{y}(y){\rm d}t^{2}+\frac{{\rm d}y^{2}}{\Delta_{y}(y)}+{\rm d}\Sigma^{2}_{k}(x,\varphi)\right)\,, (53)

where Δy(y)=g2A21+ky2\Delta_{y}(y)=g^{2}A^{-2}-1+ky^{2} and

dΣk2(x,φ)dx21kx2+(1kx2)dφ2.\displaystyle{\rm d}\Sigma_{k}^{2}(x,\varphi)\equiv\frac{{\rm d}x^{2}}{1-kx^{2}}+\left(1-kx^{2}\right){\rm d}\varphi^{2}\,. (54)

The two dimensional metric dΣk2{\rm d}\Sigma_{k}^{2} stands for the maximally symmetric space with a constant scalar curvature R2=2k{}^{2\!}R=2k. The angular coordinate φ\varphi has a canonical periodicity 2π2\pi for k=±1k=\pm 1. Indeed, the above metric satisfies Rμνρσ=2g2gμ[ρgσ]νR_{\mu\nu\rho\sigma}=-2g^{2}g_{\mu[\rho}g_{\sigma]\nu} and recovers AdS written in the unusual coordinates. The above coordinate patch is the analogue of the Rindler coordinate in Minkowski spacetime. To illustrate this, let us consider a static observer sitting at |y||y|\to\infty with constant x,φx,\varphi. We see that this observer undergoes an acceleration aμ=uννuμa^{\mu}=u^{\nu}\nabla_{\nu}u^{\mu} with constant magnitude |aμ|=A|a^{\mu}|=A.

To demonstrate the explicit coordinate transformation to more familiar AdS patches, we tentatively suppose g2>A2g^{2}>A^{2} and define new coordinates as

R=F0(x,y)g2A2gA(xy),w=g2xA2(xy)F0(x,y),T=g2A2Agt,\displaystyle R=\frac{\sqrt{F_{0}(x,y)}}{\sqrt{g^{2}-A^{2}}gA(x-y)}\,,\qquad w=\frac{g^{2}x-A^{2}(x-y)}{\sqrt{F_{0}(x,y)}}\,,\qquad T=\frac{\sqrt{g^{2}-A^{2}}}{Ag}t\,, (55)

where F0(x,y)g2[g2A2(1ky2)]A2k(g2A2)(xy)2F_{0}(x,y)\equiv g^{2}[g^{2}-A^{2}(1-ky^{2})]-A^{2}k(g^{2}-A^{2})(x-y)^{2}. For simplicity of the argument, we shall restrict ourselves to the F0>0F_{0}>0 case. In terms of these coordinates, the metric (53) reduces to the standard coordinates of AdS as

ds2=(k+g2R2)dT2+dR2k+g2R2+R2dΣk2(w,φ).\displaystyle{\rm d}s^{2}=-\left(k+g^{2}R^{2}\right){\rm d}T^{2}+\frac{{\rm d}R^{2}}{k+g^{2}R^{2}}+R^{2}{\rm d}\Sigma_{k}^{2}(w,\varphi)\,. (56)

In the case of g2<A2g^{2}<A^{2} with k=0,1k=0,-1 and F0>0F_{0}>0, the metric fails to be Lorentzian, which we shall not pursue any further. For g2<A2g^{2}<A^{2} with k=1k=1 and F0>0F_{0}>0, we set RiRR\to-iR and TiTT\to iT in (55), yielding the static AdS metric in the hyperbolic chart

ds2=(1+g2R2)dT2+dR21+g2R2+R2(dw2w21+(w21)dφ2).\displaystyle{\rm d}s^{2}=-\left(-1+g^{2}R^{2}\right){\rm d}T^{2}+\frac{{\rm d}R^{2}}{-1+g^{2}R^{2}}+R^{2}\left(\frac{{\rm d}w^{2}}{w^{2}-1}+(w^{2}-1){\rm d}\varphi^{2}\right)\,. (57)

For A2=g2A^{2}=g^{2}, it turns out that only the k0k\neq 0 case provides the nondegenerate metric. Under this condition, we perform the following coordinate transformation

z=xyy,ρ=1kx2y,\displaystyle z=\frac{x-y}{y}\,,\qquad\rho=-\frac{\sqrt{1-kx^{2}}}{y}\,, (58)

yielding

ds2=1g2z2(kdt2+dz2+k1dρ2+ρ2dφ2).\displaystyle{\rm d}s^{2}=\frac{1}{g^{2}z^{2}}\Big{(}-k{\rm d}t^{2}+{\rm d}z^{2}+k^{-1}{\rm d}\rho^{2}+\rho^{2}{\rm d}\varphi^{2}\Big{)}\,. (59)

Since the metric in the parenthesis corresponds to the Minkowski spacetime, the spacetime (59) reduces to AdS written in the Poincarè coordinates.

III.2 A=0A=0 case: hairy black hole

Since the parameter AA measures the acceleration of a fiducial observer, let us next focus on the solution of vanishing acceleration. Setting A=0A=0 in (46), the solution reads

ds2=\displaystyle{\rm d}s^{2}= f(r)1α21+α2Δr(r)dτ2+dr2f(r)1α21+α2Δr(r)+r2f(r)2α21+α2dΣk2(x,φ),\displaystyle\,-f(r)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{r}(r){\rm d}\tau^{2}+\frac{{\rm d}r^{2}}{f(r)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{r}(r)}+r^{2}f(r)^{\frac{2\alpha^{2}}{1+\alpha^{2}}}{\rm d}\Sigma_{k}^{2}(x,\varphi)\,, (60)
ϕ=\displaystyle\phi= 2α1+α2logf(r),A0=q0x1+α2dφ,A1=q1αx1+α2dφ,\displaystyle-\frac{2\alpha}{1+\alpha^{2}}\log f(r)\,,\qquad A^{0}=\frac{q_{0}x}{\sqrt{1+\alpha^{2}}}{\rm d}\varphi\,,\qquad A^{1}=\frac{q_{1}\alpha x}{\sqrt{1+\alpha^{2}}}{\rm d}\varphi\,, (61)

where

Δr(r)=\displaystyle\Delta_{r}(r)= kq02r0r+q12r0rf(r)+g2(r23α211+α2r0r+(α21)(3α21)(1+α2)2r02).\displaystyle\,k-\frac{q_{0}^{2}}{r_{0}r}+\frac{q_{1}^{2}}{r_{0}rf(r)}+g^{2}\left(r^{2}-\frac{3\alpha^{2}-1}{1+\alpha^{2}}r_{0}r+\frac{(\alpha^{2}-1)(3\alpha^{2}-1)}{(1+\alpha^{2})^{2}}r_{0}^{2}\right)\,. (62)

This two charged solution has been derived in Anabalon:2020pez .333 Set αthere=g\alpha_{\rm there}=g, Lthere=1/gL_{\rm there}=1/g, xthere=f(r)1α21+α2x_{\rm there}=f(r)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}} and ηthere=(1+α2)/[gr0(1α2)]\eta_{\rm there}=(1+\alpha^{2})/[gr_{0}(1-\alpha^{2})] in eq. (3.25) of Anabalon:2020pez . As evident from the metric form, the locus of the event horizon is the largest root r+r_{+} of Δr(r)=0\Delta_{r}(r)=0. If the event horizon conceals both of the curvature singularities at r=0r=0 and r=r0r=r_{0}, the solution (60) is qualified as a static black hole in AdS.

To start with, it is instructive to see the asymptotic behavior of the solution (60). In terms of the areal radius S(r)=rf(r)α21+α2S(r)=rf(r)^{\frac{\alpha^{2}}{1+\alpha^{2}}}, the metric and the scalar field are expanded around rr\to\infty as

ds2\displaystyle{\rm d}s^{2}\simeq (k2MS+g2S2)dτ2+dS2k+γ2M/S+g2S2+S2dΣk2(x,φ),\displaystyle\,-\left(k-\frac{2M}{S}+g^{2}S^{2}\right){\rm d}\tau^{2}+\frac{{\rm d}S^{2}}{k+\gamma-2M^{\prime}/S+g^{2}S^{2}}+S^{2}{\rm d}\Sigma_{k}^{2}(x,\varphi)\,,
ϕ\displaystyle\phi\simeq ϕ1S+ϕ2S2,\displaystyle\,\frac{\phi_{1}}{S}+\frac{\phi_{2}}{S^{2}}\,, (63)

where

M=\displaystyle M= (1α2)r06(1+α2)3[3k(1+α2)2+g2r02(3α21)(α23)]+q02q122r0,\displaystyle\,\frac{(1-\alpha^{2})r_{0}}{6(1+\alpha^{2})^{3}}\left[3k(1+\alpha^{2})^{2}+g^{2}r_{0}^{2}(3\alpha^{2}-1)(\alpha^{2}-3)\right]+\frac{q_{0}^{2}-q_{1}^{2}}{2r_{0}}\,, (64)
M=\displaystyle M^{\prime}= M+2g2r03α2(α21)3(1+α2)3,\displaystyle\,M+\frac{2g^{2}r_{0}^{3}\alpha^{2}(\alpha^{2}-1)}{3(1+\alpha^{2})^{3}}\,, (65)
γ=\displaystyle\gamma= α2g2r02(1+α2)2,\displaystyle\,\frac{\alpha^{2}g^{2}r_{0}^{2}}{(1+\alpha^{2})^{2}}\,, (66)

and

ϕ1=2r0α1+α2,ϕ2=r02α(α21)(1+α2)2.\displaystyle\phi_{1}=\frac{2r_{0}\alpha}{1+\alpha^{2}}\,,\qquad\phi_{2}=-\frac{r_{0}^{2}\alpha(\alpha^{2}-1)}{(1+\alpha^{2})^{2}}\,. (67)

The unfamiliar term γ\gamma originates from the existence of slower fall-off mode ϕ1\phi_{1} of the scalar field around the AdS vacuum Hertog:2004dr , which is intricately related to the notion of multi-trace deformations of conformal field theory. According to the prescription given in Hertog:2004dr ; Papadimitriou:2007sj , the physical mass is given by MM, rather than MM^{\prime}. This outcome is convincingly justifiable by the first law of black hole thermodynamics

δM=κ8πδArea+Φ0δQ0+Φ1δQ1,\displaystyle\delta M=\frac{\kappa}{8\pi}\delta{\rm Area}+\Phi_{0}\delta Q_{0}+\Phi_{1}\delta Q_{1}\,, (68)

where κ\kappa and Area{\rm Area} correspond, respectively, to the surface gravity–associated with the time translation /τ\partial/\partial\tau–and the area of the event horizon r=r+r=r_{+}

κ=12f(r+)1α21+α2Δr(r+),Area=4πS2(r+).\displaystyle\kappa=\frac{1}{2}f(r_{+})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{r}^{\prime}(r_{+})\,,\qquad{\rm Area}=4\pi S^{2}(r_{+})\,. (69)

Here we have assumed Σk\Sigma_{k} to be compact with area 4π4\pi. The magnetic charges and magnetostatic potentials are given by

Q0=q01+α2,Q1=αq11+α2,Φ0=Q0r+,Φ1=Q1r+f(r+).\displaystyle Q_{0}=\frac{q_{0}}{\sqrt{1+\alpha^{2}}}\,,\qquad Q_{1}=\frac{\alpha q_{1}}{\sqrt{1+\alpha^{2}}}\,,\qquad\Phi_{0}=\frac{Q_{0}}{r_{+}}\,,\qquad\Phi_{1}=\frac{Q_{1}}{r_{+}f(r_{+})}\,. (70)

Thermodynamic aspects of this solutions have been discussed in Anabalon:2021smx .

Since Δr(r)\Delta_{r}(r) allows at most four real roots, the classification of horizons requires a formidable work, which we shall not pursue further in this paper. In lieu of this, let us consider a simpler case in which the solution is neutral q0=q1=0q_{0}=q_{1}=0. In this case, the solution has been already constructed in Faedo:2015jqa and rederived via Mcvittie’s ansatz in Nozawa:2020gzz . The solution (60) asymptotically rr\to\infty approaches to AdS and admits a parameter range in which the event horizon r=r+r=r_{+} exists at the largest root r+r_{+} of Δ(r)=0\Delta(r)=0 outside the curvature singularities at r=0r=0 and r=r0r=r_{0}. We summarize the results of Faedo:2015jqa in table 1.444 Since the scalar field contributes nontrivially to the gravitational Hamiltonian, the positivity of the mass MM is far from clear to date, when the scalar field displays the slow fall-off at infinity. Nevertheless, it deserves to remark that the mass MM given in (64) is indeed positive for the solution (60), whenever the horizon exists for k=1k=1. It therefore follows that the neutral solution describes a hairy black hole in AdS. This implies the violation of the uniqueness conjecture of static black holes, since the present theory (34) admits a Schwarzschild-AdS black hole without a scalar hair.

0<α<1/30<\alpha<1/{\sqrt{3}} α=1/3\alpha=1/{\sqrt{3}} 1/3<α<11/{\sqrt{3}}<\alpha<1 α=1\alpha=1 1<α<31<\alpha<{\sqrt{3}} α=3\alpha=\sqrt{3} α>3\alpha>{\sqrt{3}}
k=1k=1 gr0<f1(α)gr_{0}<-f_{1}(\alpha) gr0>f2(α)gr_{0}>f_{2}(\alpha)
k=0k=0 r0<0r_{0}<0 r0>0r_{0}>0
k=1k=-1 2f3(α)gr0<f2(α)-2f_{3}(\alpha)\leq gr_{0}<f_{2}(\alpha) gr0<f2(α)gr_{0}<f_{2}(\alpha) r0r_{0}\in\mathbb{R} gr0>f1(α)gr_{0}>-f_{1}(\alpha) f1(α)<gr02f3(α)-f_{1}(\alpha)<gr_{0}\leq 2f_{3}(\alpha)
Table 1: The parameter range under which the solution (60) describes a black hole which is regular on and outside the event horizon r+>max(0,r0)r_{+}>{\rm max}(0,r_{0}). f13(α)f_{1-3}(\alpha) are defined by f1(α)=(1+α2)/|(α21)(13α2)|f_{1}(\alpha)=(1+\alpha^{2})/{\sqrt{|(\alpha^{2}-1)(1-3\alpha^{2})|}}, f2(α)=(1+α2)/|(α21)(3α2)|f_{2}(\alpha)=(1+\alpha^{2})/{\sqrt{|(\alpha^{2}-1)(3-\alpha^{2})|}}, f3(α)=(1+α2)/|(α23)(3α21)|f_{3}(\alpha)=(1+\alpha^{2})/{\sqrt{|(\alpha^{2}-3)(3\alpha^{2}-1)|}}. Thanks to the symmetry (35), we have tabulated only the range α>0\alpha>0.

III.3 g=0g=0 case

Due to Vg2V\propto g^{2}, setting g=0g=0 gives rise to the massless scalar. In this case, one obtains the dilatonic C-metric in the asymptotically flat space in a broad sense. Since the term of non-integer power of h(x)h(x) drops out of Δx\Delta_{x}, the resulting metric is akin to the singly charged dilatonic C-metric in Dowker:1993bt .

III.4 Double Wick rotation and comparison with the literature

Let us consider the general structure functions (40). We then perform the following double Wick rotation

x=y^,y=x^,t=iφ^,φ=it^,q0=iq^0,q1=iq^1.\displaystyle x=\hat{y}\,,\qquad y=\hat{x}\,,\qquad t=i\hat{\varphi}\,,\qquad\varphi=i\hat{t}\,,\qquad q_{0}=-i\hat{q}_{0}\,,\qquad q_{1}=-i\hat{q}_{1}\,. (71)

This amounts to the simultaneous interchange of the role of (x,yx,y) and (t,φt,\varphi). Note that the flip of tt and φ\varphi involves the double Wick rotation to keep the Lorentzian signature. Then, the metric reduces to another family of C-metrics

ds2=\displaystyle{\rm d}s^{2}= 1A2(x^y^)2[h(x^)2α21+α2(h(y^)1α21+α2Δ^y^(y^)dt^2+dy^2h(y^)1α21+α2Δ^y^(y^))\displaystyle\,\frac{1}{A^{2}(\hat{x}-\hat{y})^{2}}\left[h(\hat{x})^{\frac{2\alpha^{2}}{1+\alpha^{2}}}\left(-h(\hat{y})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\hat{\Delta}_{\hat{y}}(\hat{y}){\rm d}\hat{t}^{2}+\frac{{\rm d}\hat{y}^{2}}{h(\hat{y})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\hat{\Delta}_{\hat{y}}(\hat{y})}\right)\right.
+h(y^)2α21+α2(dx^2h(x^)1α21+α2Δ^x^(x^)+h(x^)1α21+α2Δ^x^(x^)dφ^2)],\displaystyle\left.+h(\hat{y})^{\frac{2\alpha^{2}}{1+\alpha^{2}}}\left(\frac{{\rm d}\hat{x}^{2}}{h(\hat{x})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\hat{\Delta}_{\hat{x}}(\hat{x})}+h(\hat{x})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\hat{\Delta}_{\hat{x}}(\hat{x}){\rm d}\hat{\varphi}^{2}\right)\right]\,, (72)
ϕ=\displaystyle\phi= 2α1+α2log(h(y^)h(x^)),A0=q^0y^1+α2dt^,A1=αq^1y^1+α2h(y^)dt^,\displaystyle\frac{2\alpha}{1+\alpha^{2}}\log\left(\frac{h(\hat{y})}{h(\hat{x})}\right)\,,\qquad A^{0}=\frac{\hat{q}_{0}\hat{y}}{\sqrt{1+\alpha^{2}}}{\rm d}\hat{t}\,,\qquad A^{1}=\frac{\alpha\hat{q}_{1}\hat{y}}{\sqrt{1+\alpha^{2}}h(\hat{y})}{\rm d}\hat{t}\,, (73)

where the structure functions are written explicitly as

Δ^y^(y^)\displaystyle\hat{\Delta}_{\hat{y}}(\hat{y})\equiv\, a0+2a1y^+a2y^2+Aq^02r0y^3Aq^12y^r0h(y^)+g2A2h(y^)3α211+α2,\displaystyle a_{0}+2a_{1}\hat{y}+a_{2}\hat{y}^{2}+\frac{A\hat{q}^{2}_{0}}{r_{0}}\hat{y}^{3}-\frac{A\hat{q}_{1}^{2}\hat{y}}{r_{0}h(\hat{y})}+\frac{g^{2}}{A^{2}}h(\hat{y})^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}\,, (74)
Δ^x^(x^)\displaystyle\hat{\Delta}_{\hat{x}}(\hat{x})\equiv\, a02a1x^a2x^2Aq^02r0x^3+Aq^12x^r0h(x^),\displaystyle-a_{0}-2a_{1}\hat{x}-a_{2}\hat{x}^{2}-\frac{A\hat{q}_{0}^{2}}{r_{0}}\hat{x}^{3}+\frac{A\hat{q}_{1}^{2}\hat{x}}{r_{0}h(\hat{x})}\,, (75)

As is obvious from the construction, this solution solves the field equations for the system (34) as well. The differences between the metrics (37) and (72) are the precise form of the structure functions, the sign of the scalar field and the electric/magnetic configurations of the gauge potentials. As it turns out, the solution (72) incorporates the one found in Lu:2014ida ; Lu:2014sza . To facilitate the comparison with the notation in Lu:2014ida , it is opportune to introduce

r^=1Ay^,τ^=t^A,Δ^r^(r^)=a22a1Ar^+a0A2r^2q^02r0r^+q^12r0rf(r^)+g2r^2f(r^)3α211+α2.\displaystyle\hat{r}=-\frac{1}{A\hat{y}}\,,\qquad\hat{\tau}=\frac{\hat{t}}{A}\,,\qquad\hat{\Delta}_{\hat{r}}(\hat{r})=\,a_{2}-2a_{1}A\hat{r}+a_{0}A^{2}\hat{r}^{2}-\frac{\hat{q}^{2}_{0}}{r_{0}\hat{r}}+\frac{\hat{q}_{1}^{2}}{r_{0}rf(\hat{r})}+g^{2}\hat{r}^{2}f(\hat{r})^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}\,. (76)

Then, the metric (72) reduces to the ‘hatted’ form of (46), for which the A0A\to 0 limit can be taken. Using the freedom corresponding to (43), one can fix the parameters as

a0=1,a1=0,a2=k.\displaystyle a_{0}=-1\,,\qquad a_{1}=0\,,\qquad a_{2}=k\,. (77)

Thus, one ends up with

Δ^r^(r^)=kA2r^2q^02r0r^+q^12r0r^f(r^)+g2r^2f(r^)3α211+α2,Δ^x^(x^)=1kx^2Aq^02r0x^3+Aq^12x^2r0h(x^).\displaystyle\hat{\Delta}_{\hat{r}}(\hat{r})=k-A^{2}\hat{r}^{2}-\frac{\hat{q}^{2}_{0}}{r_{0}\hat{r}}+\frac{\hat{q}_{1}^{2}}{r_{0}\hat{r}f(\hat{r})}+g^{2}\hat{r}^{2}f(\hat{r})^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}\,,\qquad\hat{\Delta}_{\hat{x}}(\hat{x})=1-k\hat{x}^{2}-\frac{A\hat{q}^{2}_{0}}{r_{0}}\hat{x}^{3}+\frac{A\hat{q}_{1}^{2}\hat{x}^{2}}{r_{0}h(\hat{x})}\,. (78)

We see that the solution (72) with k=1k=1 reduces, after some shift and scaling transformations (43), to the one found in Lu:2014ida ; Lu:2014sza . It is worthy of remark that the choice of parameters a0,1,2a_{0,1,2} required by the existence of the A0A\to 0 limit (77) differs from the previous one (49).

Setting r0=q^0,1=0r_{0}=\hat{q}_{0,1}=0, the metric (72) with (77) reduces to AdS, while the solution in the A0A\to 0 limit leads to Anabalon:2012ta ; Feng:2013tza

ds2=\displaystyle{\rm d}s^{2}= f(r^)1α21+α2Δ^r^(r^)dτ^2+dr^2f(r^)1α21+α2Δ^r^(r^)+r^2f(r^)2α21+α2dΣk2(x^,φ^),\displaystyle\,-f(\hat{r})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\hat{\Delta}_{\hat{r}}(\hat{r}){\rm d}\hat{\tau}^{2}+\frac{{\rm d}\hat{r}^{2}}{f(\hat{r})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\hat{\Delta}_{\hat{r}}(\hat{r})}+\hat{r}^{2}f(\hat{r})^{\frac{2\alpha^{2}}{1+\alpha^{2}}}{\rm d}\Sigma_{k}^{2}(\hat{x},\hat{\varphi})\,, (79)
ϕ=\displaystyle\phi= +2α1+α2logf(r^),A0=q^01+α2r^dτ^,A1=αq^11+α2r^f(r^)dτ^,\displaystyle+\frac{2\alpha}{1+\alpha^{2}}\log f(\hat{r})\,,\qquad A^{0}=-\frac{\hat{q}_{0}}{\sqrt{1+\alpha^{2}}\hat{r}}{\rm d}\hat{\tau}\,,\qquad A^{1}=-\frac{\alpha\hat{q}_{1}}{\sqrt{1+\alpha^{2}}\hat{r}f(\hat{r})}{\rm d}\hat{\tau}\,, (80)

where

Δ^r^(r^)=kq^02r0r^+q^12r0r^f(r^)+g2r^2f(r^)3α211+α2.\displaystyle\hat{\Delta}_{\hat{r}}(\hat{r})=k-\frac{\hat{q}^{2}_{0}}{r_{0}\hat{r}}+\frac{\hat{q}_{1}^{2}}{r_{0}\hat{r}f(\hat{r})}+g^{2}\hat{r}^{2}f(\hat{r})^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}\,. (81)

By the parallel argument laid out in previous subsections, r0r_{0} corresponds to the mass parameter and kk governs the topology of the horizon. The solution (79) asymptotically tends to AdS as r^\hat{r}\to\infty with the mass

M=r0k(1α2)2(1+α2)+q^02q^122r0.\displaystyle M=\frac{r_{0}k(1-\alpha^{2})}{2(1+\alpha^{2})}+\frac{\hat{q}_{0}^{2}-\hat{q}_{1}^{2}}{2r_{0}}\,. (82)

It is obvious to see that the neutral solution (79) does not allow an event horizon of a black hole for k0k\geq 0, by virtue of Δ^r^(r^)=k+g2r^2f(r^)3α211+α2>0\hat{\Delta}_{\hat{r}}(\hat{r})=k+g^{2}\hat{r}^{2}f(\hat{r})^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}>0. This is in sharp contrast to the solution (60) (see table 1). It follows that the solutions (60) and (79) describe genuinely distinct family of physical spacetimes, even though they are related by (71). This is reminiscent of the fact Kunduri:2007vf that the Wick rotation of the near-horizon geometry of a dipole black ring Emparan:2004wy gives rise to the Kaluza-Klein black hole Ishihara:2005dp in five dimensional Einstein-Maxwell theory.

Since the discovery of the solution (60), it has remained open why the same theory admits two discrete family of static solutions (60) and (79) of black hole type. These two solutions are not related to the ordinary electromagnetic duality.555This is because the metrics (60) and (79) are solutions for the same Lagrangian (34). The electromagnetic duality (F0,F1)(F0,F1)=(eαϕF0,e1αϕF1)(F^{0},F^{1})\to(\star F^{0}{}^{\prime},\star F^{1}{}^{\prime})=(e^{-\alpha\phi}F^{0},e^{\frac{1}{\alpha}\phi}F^{1}) is not a symmetry for the Lagrangian but for equations of motion of gauge fields. If the potential of the scalar field vanishes, the transformation (F0,F1)(F0,F1)=(eαϕF0,e1αϕF1)(F^{0},F^{1})\to(\star F^{0}{}^{\prime},\star F^{1}{}^{\prime})=(e^{-\alpha\phi}F^{0},e^{\frac{1}{\alpha}\phi}F^{1}) can be compensated by the sign flip of the scalar field and the new solution falls into the same theory. Obviously, this is not the case since the potential is not an even function. Thus, although an electrically charged solution is obtained by performing the electromagnetic duality to the solution (60), it is a solution to a different theory. In ref. Anabalon:2017yhv , the authors clarified the existence of two solutions in terms of the generalized electromagnetic duality, at the price of introducing magnetic gaugings g𝕄=(gI,gI)g_{\mathbb{M}}=(g_{I},g^{I}) and F𝕄=(FI,FI)F^{\mathbb{M}}=(F^{I},F_{I}). This formulation restores the symplectic covariance and is related to the ω\omega-deformation of 𝒩=8{\cal N}=8 gauged supergravity. We have clarified above that these seemingly different solutions are indeed related by (71), which cannot be captured unless one introduces the acceleration parameter AA.

III.5 Hairless case

Since the origin of the potential is an extremum, one can truncate the theory to ϕ=0\phi=0 provided FI=0F^{I}=0. The potential reads V=3g2V=-3g^{2}, corresponding to the negative cosmological constant with AdS radius g1g^{-1}. It follows that the present theory (34) also possesses the ordinary hairless C-metric

ds2=1A2(xy)2(Δˇy(y)dt2+dy2Δˇy(y)+dx2Δˇx(x)+Δˇx(x)dφ2),\displaystyle{\rm d}s^{2}=\frac{1}{A^{2}(x-y)^{2}}\left(-\check{\Delta}_{y}(y){\rm d}t^{2}+\frac{{\rm d}y^{2}}{\check{\Delta}_{y}(y)}+\frac{{\rm d}x^{2}}{\check{\Delta}_{x}(x)}+\check{\Delta}_{x}(x){\rm d}\varphi^{2}\right)\,, (83)

where

Δˇy(y)=g2A21+ky2+2Amy3,Δˇx(x)=1kx22Amx3.\displaystyle\check{\Delta}_{y}(y)=\frac{g^{2}}{A^{2}}-1+ky^{2}+2Amy^{3}\,,\qquad\check{\Delta}_{x}(x)=1-kx^{2}-2Amx^{3}\,. (84)

Here k=0,±1k=0,\pm 1. The causal structure of this solution with k=1k=1 and m>0m>0 has been discussed by Dias:2002mi ; Podolsky:2002nk . In this Λ\Lambda-vacuum case, both of the structure functions Δˇy\check{\Delta}_{y} and Δˇx\check{\Delta}_{x} are cubic in each variable. This means that the double Wick rotation (71) is trivial.

It is worthy of mentioning that the hairless solution (83) is not derived from (37) or (72), since the only scheme to set the scalar field to be constant for the latter two solutions is r0=0r_{0}=0, eventuating in AdS. This implies that a more general solution encompassing all of these three distinct solutions should exist. Actually, families of numerical solutions were found in the double well potential case, and it was reported that such solutions exist generally around the top of the upwardly convex potential Torii:2001pg . The relation between these solutions and our hairy black hole solutions are still unclear, but it may be possible to understand the black hole solutions in a unified manner. We defer the extensive search of the solution of this sort to a future work.

IV Physical properties of the solution

The discussion in the previous section shows that the present theory (34) with FI=0F^{I}=0 enjoys three family of C-metrics (37), (72) and (83). It follows that the rich variety of black hole solutions in this theory is not only limited to ordinary static black holes, but also persists to the accelerating solutions. This encourages further motivation for investigating their physical properties.

As demonstrated, our C-metric (37) recovers the hairy black hole, while the solution (72) does not have horizons for q0,1=0q_{0,1}=0 and k=1k=1. It is then reasonable to infer that the solution (37) describes a C-metric supported solely by a scalar hair. To demonstrate this prospect rigorously, we need to clarify the global causal structure. This is the prime purpose of the current section.

IV.1 Conical singularity

We are interested in the case where the metric has a Lorentzian signature (,+,+,+-,+,+,+). This restricts the domain of xx to the range Δx(x)0\Delta_{x}(x)\geq 0. The precise form of Δx(x)\Delta_{x}(x) is sensitive to the value of all seven parameters g,αg,\alpha and r0,A,q0,1,kr_{0},A,q_{0,1},k. We focus on the case in which Δx(x)\Delta_{x}(x) admits at least two real roots x±x_{\pm}

Δx(x±)=0,Δx(x)>0(x<x<x+).\displaystyle\Delta_{x}(x_{\pm})=0\,,\qquad\Delta_{x}(x)>0~{}~{}(x_{-}<x<x_{+})\,. (85)

In this case, the two dimensional surface spanned by (x,φx,\varphi) becomes compact. For instance, the special case of α=1\alpha=1, 3\sqrt{3}, 1/31/\sqrt{3} gives Δx(x)=1kx2\Delta_{x}(x)=1-kx^{2} for q0,1=0q_{0,1}=0, requiring k=1k=1.

Possible conical singularities at x=xx=x_{-} can be avoided, provided φ=12h(x)1α21+α2|Δx(x)|φ\varphi_{-}=\frac{1}{2}h(x_{-})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}|\Delta_{x}^{\prime}(x_{-})|\varphi has a canonical 2π2\pi period. One can determine the periodicity of φ\varphi at x=x+x=x_{+} in an analogous fashion, and it turns out to be 2πδ2\pi-\delta, where

δ=2π(1h(x+)1α21+α2|Δx(x+)|h(x)1α21+α2|Δx(x)|).\displaystyle\delta=2\pi\left(1-\frac{h(x_{+})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}|\Delta_{x}^{\prime}(x_{+})|}{h(x_{-})^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}|\Delta_{x}^{\prime}(x_{-})|}\right)\,. (86)

Generically, there emerges a conical singularity δ0\delta\neq 0 at x=x+x=x_{+}. The positive δ\delta corresponds to the conical deficit, while the negative δ\delta corresponds to the conical excess.

An exceptional case is α=1\alpha=1 with q0,1=0q_{0,1}=0, for which the two dimensional surface ds22=dx2/(h(x)1α21+α2Δx(x))+h(x)1α21+α2Δx(x)dφ2{\rm d}s_{2}^{2}={\rm d}x^{2}/(h(x)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{x}(x))+h(x)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{x}(x){\rm d}\varphi^{2} with k=1k=1 is simplified to the standard metric of the unit two sphere ds22=dθ2+sin2θdφ2{\rm d}s_{2}^{2}={\rm d}\theta^{2}+\sin^{2}\theta{\rm d}\varphi^{2}, where x=cosθx=\cos\theta. It follows that the conical singularity at the north and south poles of S2S^{2} can be completely cured. It is the background scalar field that provides the acceleration. However, it turns out that this case describes a naked singularity.

IV.2 Infinity and singularity

The coordinate xx might be regarded as a directional cosine (x=cosθx=\cos\theta), but the coordinate r=1/(Ay)r=-1/(Ay) may not be taken too literally as an ordinary radial coordinate. To see this more concretely, let us consider ‘radial’ null geodesics obeying

h(y)1α21+α2Δy(y)t˙2+1h(y)1α21+α2Δy(y)y˙2=0,E=h(x)2α21+α2h(y)1α21+α2Δy(y)A2(xy)2t˙,\displaystyle-h(y)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{y}(y)\dot{t}^{2}+\frac{1}{h(y)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{y}(y)}\dot{y}^{2}=0\,,\qquad E=\frac{h(x)^{\frac{2\alpha^{2}}{1+\alpha^{2}}}h(y)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}}\Delta_{y}(y)}{A^{2}(x-y)^{2}}\dot{t}\,, (87)

where the dot denotes the derivative with respect to the affine parameter λ\lambda and EE is a constant corresponding to the energy of null rays, respectively. Upon integration, we have

±EA2(λλ0)=h(x)2α21+α2(xy)2dy=h(x)2α21+α2xy.\displaystyle\pm EA^{2}(\lambda-\lambda_{0})=\int\frac{h(x)^{\frac{2\alpha^{2}}{1+\alpha^{2}}}}{(x-y)^{2}}{\rm d}y=\frac{h(x)^{\frac{2\alpha^{2}}{1+\alpha^{2}}}}{x-y}\,. (88)

It follows that r=+r=+\infty (y=0y=0) can be reached within a finite affine time for these null geodesics. One also recognizes that the surface x=yx=y corresponds to infinity. This enforces us to work with coordinate yy, instead of rr, to reveal the global causal structure.

The spacetime singularities are characterized by the blow-up of curvature invariants. The scalar curvature and the Kretschmann invariant diverge at

y=±,y=1Ar0,x=1Ar0.\displaystyle y=\pm\infty\,,\qquad y=-\frac{1}{Ar_{0}}\,,\qquad x=-\frac{1}{Ar_{0}}\,. (89)

Since we are now paying attention only to the finite range of xx, other plausible singularities x=±x=\pm\infty are not our concern here. A minimal requirement for regularity of the solution is that x=1/(Ar0)x=-1/(Ar_{0}) lies outside the range of xxx+x_{-}\leq x\leq x_{+} and the Killing horizons cover singularities y=±y=\pm\infty and y=1/(Ar0)y=-1/(Ar_{0}).

To see the structure of y=const.y={\rm const.} surface such as singularities and infinity for fixed xx, it suffices to focus on the two dimensional portion of the spacetime

ds22=Δy(y)dt2+dy2Δy(y)=Δy(y(y))(dt2dy2),\displaystyle{\rm d}s^{2}_{2}=-\Delta_{y}(y){\rm d}t^{2}+\frac{{\rm d}y^{2}}{\Delta_{y}(y)}=-\Delta_{y}(y(y_{*}))\left({\rm d}t^{2}-{\rm d}y_{*}^{2}\right)\,, (90)

where y=Δy1dyy_{*}=\int\Delta_{y}^{-1}{\rm d}y is the analogue of the tortoise coordinate. Since this metric is manifestly conformal to the two dimensional Minkowski metric, one can immediately extract the causal structure of the y=const.y={\rm const.} surface. If yy_{*} diverges, the corresponding surface is null. If yy_{*} is finite, the corresponding surface is spacelike (timelike) for Δy(y(y))<0(>0)\Delta_{y}(y(y_{*}))<0~{}(>0).

Since xy=0x-y=0 corresponds to the asymptotic infinity, we postulate that the physical region is enclosed by

xy0,h(x)>0,h(y)>0,Δx(x)0.\displaystyle x-y\geq 0\,,\qquad h(x)>0\,,\qquad h(y)>0\,,\qquad\Delta_{x}(x)\geq 0\,. (91)

We shall not consider the xy<0x-y<0 region, since it is simply achieved by the simultaneous sign flip of x,yx,y and r0r_{0}. The coordinate domain under consideration is visualized in figure 1.

Refer to caption
Figure 1: Coordinate region for r0>0r_{0}>0 (left) and r0<0r_{0}<0 (right).

IV.3 Causal structure: neutral case

Let us first explore the causal structure of the neutral case q0,1=0q_{0,1}=0 with k=1k=1. The motivation comes from the fact that the solution (37) gives rise to the hairy black hole in the limit A0A\to 0 (see section III.2), in contrast to the case (72). It is then tempting to envisage that the q0,1=0q_{0,1}=0 solution (37) would describe the hairy C-metric in AdS.

The Killing horizons appear when the Killing vector for the time translation /t\partial/\partial t becomes null. This occurs at Δy=0\Delta_{y}=0, which admits at most two distinct roots which we denote y<y+y_{-}<y_{+}, since Δy\Delta_{y} is quadratic in yy (52). In the hereafter, we focus on the case where these horizons exist and are nondegenerate.

We now proceed to discuss the global structure. For this purpose, it is helpful to observe the following relation

Δx(x)=g2A2h(x)3α211+α2Δy(x).\displaystyle\Delta_{x}(x)=\frac{g^{2}}{A^{2}}h(x)^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}-\Delta_{y}(x)\,. (92)

This means that the intersecting points of the functions (g2/A2)h(x)3α211+α2(g^{2}/A^{2})h(x)^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}} and Δy(x)\Delta_{y}(x) correspond to the axes x=x±x=x_{\pm}. By the requirement of Lorentzian signature Δx(x)0\Delta_{x}(x)\geq 0, the permitted region is (g2/A2)h(x)3α211+α2Δy(x)(g^{2}/A^{2})h(x)^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}\geq\Delta_{y}(x). If Δy(x)\Delta_{y}(x) is convex upward, the Lorentzian signature is assured for x<xx<x_{-} or x>x+x>x_{+}. This makes the surface spanned by xϕx-\phi coordinates noncompact, which we are not concerned with. It follows that Δy(x)\Delta_{y}(x) must be convex downward.

Typical behaviors of functions Δy(x)\Delta_{y}(x) and (g2/A2)h(x)3α211+α2(g^{2}/A^{2})h(x)^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}} are plotted in the left of figure 2. These functions may have three intersections, but this is not essential for the present discussion. To extract a useful relation, we remark the subsequent features:

  • (g2/A2)h(x)3α211+α2(g^{2}/A^{2})h(x)^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}} is positive-semidefinite and monotonically increasing (decreasing) for (3α21)r0>0(<0)(3\alpha^{2}-1)r_{0}>0~{}(<0).

  • Δy(x)\Delta_{y}(x) is convex downward with Δy(y±)=0\Delta_{y}(y_{\pm})=0.

  • xx takes values in the bounded domain xxx+x_{-}\leq x\leq x_{+} satisfying Δx(x)=(g2/A2)h(x)3α211+α2Δy(x)0\Delta_{x}(x)=(g^{2}/A^{2})h(x)^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}-\Delta_{y}(x)\geq 0.

  • Conditions 1/(Ar0)<x-1/(Ar_{0})<x_{-} for r0>0r_{0}>0 and x+<1/(A|r0|)x_{+}<1/(A|r_{0}|) for r0<0r_{0}<0 must be satisfied to evade the naked singularity.

Inspecting these aspects, we arrive at the universal relation

x<y<y+<x+,\displaystyle x_{-}<y_{-}<y_{+}<x_{+}\,, (93)

regardless of the parameters.

Refer to caption
Figure 2: Plots of Δy(x)\Delta_{y}(x) and (g2/A2)h(x)3α211+α2(g^{2}/A^{2})h(x)^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}} (left) and Δ^x^(x^)\hat{\Delta}_{\hat{x}}(\hat{x}) and (g2/A2)h(x^)3α211+α2(g^{2}/A^{2})h(\hat{x})^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}} (right). The parameters are chosen such that g=k=1g=k=1, A=3/2A=3/2, r0=1/4r_{0}=1/4, α=1/2\alpha=1/2 and q0,1=q^0,1=0q_{0,1}=\hat{q}_{0,1}=0. In either case, x<y<y+<x+x_{-}<y_{-}<y_{+}<x_{+}.

Recalling that the allowed coordinate region is x>yx>y with x=yx=y being conformal infinity, the Penrose diagram is designed as follows:

  • (i)

    y+<xx+y_{+}<x\leq x_{+}. In this case, we have two nondegenerate Killing horizons y=y±y=y_{\pm} and infinity is timelike. The Penrose diagram is the same as the Reissner-Nordström-AdS black hole [fig 3-(i)].

  • (ii)

    x=y+x=y_{+}. We have a single horizon at y=yy=y_{-} and infinity corresponds to the null surface [fig 3-(ii)].

  • (iii)

    y<x<y+y_{-}<x<y_{+}. We have a single horizon at y=yy=y_{-} and infinity becomes spacelike [fig 3-(iii)].

  • (iv)

    x=yx=y_{-}. We do not have any horizons and infinity is replaced by a null surface [fig 3-(iv)].

  • (v)

    xx<yx_{-}\leq x<y_{-}. No horizons are present and infinity alters to timelike [fig 3-(v)].

Here, the singularity refers to either y=1/(Ar0)y=-1/(Ar_{0}) (r0>0r_{0}>0) or y=y=-\infty (r0<0r_{0}<0).

It turns out that the solution (37) with k=1k=1 and q0,1=0q_{0,1}=0 fails to describe the accelerating black holes in AdS. Rather, it corresponds to the accelerating naked singularity. The singularity is covered only from a part of angular directions y+<xx+y_{+}<x\leq x_{+} [case (i)], otherwise the singularity is globally visible from future infinity. This is a bit puzzling and unanticipated result, since the A0A\to 0 limit gives rise to a hairy black hole for some range of parameters, as shown in table 1. This is because the A0A\to 0 limit of the solution is discontinuous. In the A0A\neq 0 case, a stringent restriction is placed upon the causal structure because of the relation (93). In contrast, the rr and xx coordinates for the A0A\to 0 metric (60) are free from this condition. As long as Δy(y)\Delta_{y}(y) is a quadratic function of yy, the constraint (93) is inevitable. The Λ\Lambda-vacuum case, on the other hand, can circumvent this problem since Δˇy(y)\check{\Delta}_{y}(y) is cubic [see (84)].

Refer to caption
Figure 3: Penrose diagrams of the k=1k=1 neutral C-metric. The thick lines denote the curvature singularities.

The neutral limit of the solution (72) with k=1k=1 does not alleviate this problem. Considering that the functional relationship Δ^x^(x^)=(g2/A2)h(x^)3α211+α2Δ^y^(x^)\hat{\Delta}_{\hat{x}}(\hat{x})=(g^{2}/A^{2})h(\hat{x})^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}-\hat{\Delta}_{\hat{y}}(\hat{x}) remains untouched and Δ^x^(x^)\hat{\Delta}_{\hat{x}}(\hat{x}) is convex upward with Δ^x^(±1)=0\hat{\Delta}_{\hat{x}}(\pm 1)=0, we have x^=1<y^<y^+<1=x^+\hat{x}_{-}=-1<\hat{y}_{-}<\hat{y}_{+}<1=\hat{x}_{+} (right picture in figure 2). This is the relation identical to (93), leading to the same Penrose diagram (figure 3) as above. It follows that none of the neutral solutions (37) and (72) correspond to the hairy C-metrics.

IV.4 Causal structure: charged solution

As revealed in the precedent subsection, the scalar field is not capable of supporting the regular configuration (modulo the conical singularity) of the C-metric. We therefore examine the effect of charging up, for which Δy(y)=0\Delta_{y}(y)=0 admits at most four real roots. However, the exhaustive classification of the horizons and axes becomes intractable or, at the very best, considerably cumbersome, in light of the fact that the solution involves seven parameters and Δx(x)\Delta_{x}(x) contains a non-integer power function of xx. For the discussion to be reasonably focused, we confine to the case α=1/3\alpha=1/\sqrt{3} with k=1k=1 and q1=0q_{1}=0, in which Δx(x)\Delta_{x}(x) and Δy(y)\Delta_{y}(y) are simplified to the cubic functions as Δx(x)=1x2(Aq02/r0)x3\Delta_{x}(x)=1-x^{2}-(Aq_{0}^{2}/r_{0})x^{3} and Δy(y)=g2/A2Δx(y)\Delta_{y}(y)=g^{2}/A^{2}-\Delta_{x}(y). This case is simple but nonetheless captures the essential feature of the global structure for other value of parameters.

Since the intractable term h(x)3α211+α2h(x)^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}} has disappeared from the structure function Δx(x)\Delta_{x}(x), it is easier to analyze the spacetime structure by drawing the function Δx(x)\Delta_{x}(x) rather than Δy(y)\Delta_{y}(y). For the classification, it is convenient to define dimensionless quantities normalized by the acceleration parameter as

𝖰0A|r0|q0,𝖦gA,𝖱0Ar0.\displaystyle\mathsf{Q}_{0}\equiv\sqrt{\frac{A}{|r_{0}|}}q_{0}\,,\qquad\mathsf{G}\equiv\frac{g}{A}\,,\qquad\mathsf{R}_{0}\equiv Ar_{0}\,. (94)

For α=1/3\alpha=1/\sqrt{3}, the last quantity does not appear in Δx(x)=1x2ϵ𝖰02x3\Delta_{x}(x)=1-x^{2}-\epsilon\mathsf{Q}_{0}^{2}x^{3}, where ϵ\epsilon is +1+1 (1-1) for r0>0r_{0}>0 (r0<0r_{0}<0). Since Δx(x)\Delta_{x}(x) is a cubic function, it has at least one real root xx_{\ast}. It also has two extrema (x,Δx(x))=(0,1)(x,\,\Delta_{x}(x))=(0,~{}1) and (2ϵ/(3𝖰02),14/(27𝖰04)-2\epsilon/(3\mathsf{Q}_{0}^{2}),1-4/(27\mathsf{Q}_{0}^{4})). As the domain with Lorentzian signature, i.e. Δx(x)>0\Delta_{x}(x)>0, should be compact, there should be other real roots of Δx(x)=0\Delta_{x}(x)=0. This condition gives rise to the upper bound on the charge as

𝖰02233,(r0<0),\displaystyle\mathsf{Q}^{2}_{0}\leq\frac{2}{3\sqrt{3}}\,,~{}~{}~{}(r_{0}<0), (95)
𝖰02<233,(r0>0).\displaystyle\mathsf{Q}^{2}_{0}<\frac{2}{3\sqrt{3}}\,,~{}~{}~{}(r_{0}>0). (96)

It should be noted that the roots become degenerate and the Lorentzian domain disappears when 𝖰02=2/(33)\mathsf{Q}^{2}_{0}=2/(3\sqrt{3}) for r0>0r_{0}>0.

The other structure function is now Δy(x)=𝖦2Δx(x)\Delta_{y}(x)=\mathsf{G}^{2}-\Delta_{x}(x). Thus, the locus of horizons is determined by the intersections of 𝖦2\mathsf{G}^{2} and Δx(x)\Delta_{x}(x).

When r0<0r_{0}<0, Δx(x)\Delta_{x}(x) has two or three real roots x<0<x+xx_{-}<0<x_{+}\leq x_{\ast} under the condition (95), where x<x<x+x_{-}<x<x_{+} is the Lorentzian domain. It is easy to find that the intersections take larger values of xx than xx_{-} as x<y1<y2<x+x<y3x_{-}<y_{1}<y_{2}<x_{+}\leq x_{\ast}<y_{3} even if there are three intersections (𝖦2<1\mathsf{G}^{2}<1). This corresponds to the naked singularity, as we have learned from the neutral case in the previous subsection (see figure 3). Thus we are compelled to assume r0>0r_{0}>0 in the following.

Under the condition (96), Δx(x)=0\Delta_{x}(x)=0 is satisfied at three distinct real points, which we label x,x,x+x_{\ast},\,x_{-},\,x_{+} in ascending order. The structure function Δx\Delta_{x} is depicted in figure 4. It is easy to appreciate that these roots obey

1𝖰02<x<23𝖰02<x<1,0<x+<1.\displaystyle-\frac{1}{\mathsf{Q}^{2}_{0}}<x_{\ast}<-\frac{2}{3\mathsf{Q}^{2}_{0}}<x_{-}<-1,\qquad 0<x_{+}<1\,. (97)

Since Δx(x)\Delta_{x}(x) is a cubic function of xx, it admits at least one intersection with the line 𝖦2\mathsf{G}^{2}. It gives a real root y1y_{1} of Δy(y)\Delta_{y}(y), which will be identified as an event horizon, and other roots of Δy(y)\Delta_{y}(y) can be real or complex by the value of 𝖦2\mathsf{G}^{2}.

The configuration of Killing horizons is thus classified into three types

  • (I)

    𝖦<1\mathsf{G}<1: three horizons, y1<x<y2<y3<x+y_{1}<x_{-}<y_{2}<y_{3}<x_{+}.

  • (II)

    𝖦=1\mathsf{G}=1: two horizons, y1<x<yd<x+y_{1}<x_{-}<y_{d}<x_{+} where y2y_{2} and y3y_{3} are degenerate y2=y3yd(=0)y_{2}=y_{3}\equiv y_{d}\,(=0).

  • (III)

    𝖦>1\mathsf{G}>1: single horizon, y1<x<x+y_{1}<x_{-}<x_{+} where y2y_{2} and y3y_{3} are complex conjugate.

In either case, we have y1<xy_{1}<x_{-}. Hence, the event horizon y1y_{1} exists from any angular directions x[x,x+]x\in[x_{-},x_{+}].

Refer to caption
Figure 4: Typical behavior of Δx(x)\Delta_{x}(x) in the case where Δx(x)\Delta_{x}(x) has three distinct real roots x<x<x+x_{*}<x_{-}<x_{+}. The intersection points of Δx(x)\Delta_{x}(x) and 𝖦2\mathsf{G}^{2} correspond to the Killing horizon.
Refer to caption
Figure 5: Penrose diagrams of the k=1k=1 charged C-metric with q1=0q_{1}=0 and g<Ag<A. Case (i) is for y3<xx+y_{3}<x\leq x_{+}, (ii) for x=y3x=y_{3}, (iii) for y2<x<y3y_{2}<x<y_{3}, (iv) for x=y2x=y_{2} and (v) for xx<y2x_{-}\leq x<y_{2}. The thick lines denote the curvature singularities.
Refer to caption
Figure 6: Penrose diagrams of the k=1k=1 charged C-metric with q1=0q_{1}=0 and g=Ag=A. Case (i) is for xx<yd=0x_{-}\leq x<y_{d}=0, (ii) for x=yd=0x_{-}=y_{d}=0 and (iii) for 0=yd<xx+0=y_{d}<x\leq x_{+}. The thick lines denote the curvature singularities.

Finally we must demand 1/𝖱0<y1-1/\mathsf{R}_{0}<y_{1} to avoid the naked singularity. Since Δy(y)=0\Delta_{y}^{\prime}(y)=0 occurs at y=2/(3𝖰02)y=-2/(3\mathsf{Q}_{0}^{2}) and y=0y=0, this condition amounts to Δy(1/𝖱0)<0\Delta_{y}(-1/\mathsf{R}_{0})<0 and 1/𝖱0<2/(3𝖰02)-1/\mathsf{R}_{0}<-2/(3\mathsf{Q}_{0}^{2}), which gives two kinds of lower bounds on the charge as

23𝖱0<𝖰02,\displaystyle\frac{2}{3}\mathsf{R}_{0}<\mathsf{Q}_{0}^{2}\,, (98)

and

𝖥(𝖱0)<𝖰02,where𝖥(𝖱0)=𝖱0[1𝖱02(1𝖦2)].\displaystyle\mathsf{F}(\mathsf{R}_{0})<\mathsf{Q}^{2}_{0}\,,~{}~{}~{}{\rm where}~{}~{}~{}\mathsf{F}(\mathsf{R}_{0})=\mathsf{R}_{0}\left[1-\mathsf{R}_{0}^{2}\left(1-\mathsf{G}^{2}\right)\right]\,. (99)

For case (I), the condition (98) is included in (99) under the condition (96). Hence 𝖥(𝖱0)<𝖰02<2/(33)\mathsf{F}(\mathsf{R}_{0})<\mathsf{Q}^{2}_{0}<2/(3\sqrt{3}) should be satisfied. The corresponding Penrose diagram is drawn in figure 5. For case (II), 𝖥(𝖱0)=𝖱0>2𝖱0/3\mathsf{F}(\mathsf{R}_{0})=\mathsf{R}_{0}>2\mathsf{R}_{0}/3, i.e., 𝖱0<𝖰2<2/(33)\mathsf{R}_{0}<\mathsf{Q}^{2}<2/(3\sqrt{3}) is called for. The Penrose diagram is shown in figure 6. For case (III), 𝖥(𝖱0)\mathsf{F}(\mathsf{R}_{0}) is monotonic in 𝖱0\mathsf{R}_{0} with 𝖥(𝖱0)=1>23\mathsf{F}^{\prime}(\mathsf{R}_{0})=1>\frac{2}{3}, thereby we have 𝖥(𝖱0)<𝖰2<2/(33)\mathsf{F}(\mathsf{R}_{0})<\mathsf{Q}^{2}<2/(3\sqrt{3}). The corresponding Penrose diagram is the same as the Schwarzschild-AdS black hole (case (v) of figure 5).

Note that the singularity is always spacelike whenever it is covered by the event horizon, even though the solution is charged. This is a feature that we have encountered also in a static black hole with a single charge in the asymptotically flat case (g=0g=0) Gibbons:1987ps .

The cases with the different values α\alpha can be analyzed similarly despite the augmentation of complexity. When either Δy(y)\Delta_{y}(y) or h(y)Δy(y)h(y)\Delta_{y}(y) is cubic, some numerical tests reveal the need of the relation

1𝖱0<y1<x<(y2y3<)x+.\displaystyle-\frac{1}{\mathsf{R}_{0}}<y_{1}<x_{-}<(y_{2}\leq y_{3}<)~{}x_{+}\,. (100)

We therefore end up with figures 5, 6 and the Schwarzschild-AdS solution, when the curvature singularity is hidden by an event horizon. It would be intriguing to extend this analysis for the other values of parameters.

V Summary

We have constructed a new family of C-metric solutions (37) in 𝒩=2{\cal N}=2 gauged supergravity theory with a prepotential (16). Upon truncation, the theory is nothing but the Einstein-Maxwell-dilaton gravity (34), in which a real scalar field couples to two gauge fields with different coupling constants and the scalar potential is expressed in terms of the superpotential. Our solution describes a family of C-metrics distinct from the one obtained in the literature Lu:2014ida ; Lu:2014sza . The non-uniqueness of the solutions of this sort has been identified in the vanishing acceleration limit in Faedo:2015jqa . However, the relevance of these solutions remained open to date. We have clarified in this paper that these solutions are converted to each other via the double Wick rotation (71). Although these solutions are related in a simple fashion, the physical properties of the solutions are considerably different. As we have expounded in section III.2 and III.4, the most comprehensible aspect is the presence of the horizons in the uncharged and non-accelerating limit. Our solution reduces in the spherical case to the hairy black hole with a regular horizon, whilst the the double Wick rotated solution brings about the naked singularity.

Inspired from the above property, we have investigated the global structure of the neutral solution in a clear-cut fashion by noting the restriction (92). Notably, the neutral solution fails to hide the singularity behind the horizon, as opposed to the non-accelerating case. This is our main upshot achieved in this paper. A technical crux of this obstruction is that the structure function Δy(y)\Delta_{y}(y) given by (52), which is responsible for the horizon structure, is quadratic, while the vacuum structure function Δˇy(y)\check{\Delta}_{y}(y) given by (84) is cubic. The cubic structure can circumvent the thorny constraint (93). The avoidance of naked singularity therefore asks for at least one charge. We have verified that this is indeed the case for α=1/3\alpha=1/\sqrt{3}. Specifically, the charged C-metric is qualified as a pair of accelerated black holes in AdS, whose causal structure resembles that for the neutral Λ\Lambda-vacuum C-metric Podolsky:2002nk ; Dias:2002mi .

The present C-metric in supergravity has many potential applications which we set out to delineate in order. The Λ\Lambda-vacuum C-metric is known to describe an exact black hole in the AdS brane worlds Emparan:1999wa . Aside from the significance in its own right, these solutions can be applied to explore the strongly coupled regime of the boundary conformal field theory Emparan:2002px and can represent the dual of plasma balls Emparan:2009dj . Black funnels and black droplet solutions are also intriguing application Hubeny:2009kz . To examine the effect of a scalar field would offer a new insight in the holographic context.

The time-dependent generalization of the C-metric is an important testground for the description of gravitational radiation. This issue has been first discussed in Gueven:1996zm within the Robinson-Trautman class Robinson:1960zzb , which allows a class of non-twisting and shear-free null geodesic congruences. The dynamical generalization of the C-metric considered in Lu:2014ida falls into this category. The Robinson-Trautman solution outside the Petrov-D class seems an alluring future direction.

A rotating generalization of the electrovacuum C-metric is dubbed as the Plebański-Demiański solution Plebanski:1976gy , which is the most general Petrov D solution in Einstein-Maxwell-Λ\Lambda system. Unfortunately, rotating solutions within the Einstein-Maxwell-dilaton theory are hard to construct even in the ungauged case, since the target space is not symmetric. A less complicated task is to seek the rotating solution in the original theory (10) with a nonvanishing axionic scalar. Some solutions for special values of α\alpha have been found, but the organizing solution for general α\alpha is still missing. A promising route is to seek the supersymmetric solutions, for which the possible canonical form of the metric is severely constrained. In appendix, we present the conditions under which the C-metric solutions (37) and (72) preserve supersymmetry.

The embedding of the Plebański-Demiański solution into eleven dimensions seems also interesting, since the uplifted solution can be made regular and is parametrized by quantized conical singularities in four dimensions. See e.g. Ferrero:2020twa ; Cassani:2021dwa ; Ferrero:2021ovq for details. The obtained D=11D=11 solution is holographically interpreted as a membrane wrapped on spindles. For the α=1,3,1/3\alpha=1,\sqrt{3},1/\sqrt{3} cases, we expect that the uplifted solution of our C-metric (37) can be interpreted in a similar fashion.

Finally, the Euclidean C-metric is a stimulating subject to be explored as well. The C-metric instanton solution describes a pair production of black holes by the cosmic string Dowker:1993bt ; Hawking:1995zn ; Eardley:1995au . Also, the Euclidean dilatonic C-metric plays a key role in the construction of vacuum black ring Emparan:2001wn ; Tomizawa:2006vp . Furthermore, the Euclidean Plebański-Deminański solution enjoys some mathematically rich frameworks such as the conformal ambi-Kähler structure Nozawa:2015qea ; Nozawa:2017yfl . Pursuing these issues is left for future investigation.

Acknowledgements.
The work of MN is partially supported by MEXT KAKENHI Grant-in-Aid for Transformative Research Areas (A) through the “Extreme Universe” collaboration 21H05189 and JSPS Grant-Aid for Scientific Research (17H01091, 20K03929). The work of TT is supported by JSPS KAKENHI Grant-Aid for Scientific Research (JP18K03630, JP19H01901) and for Exploratory Research (JP19K21621, JP22K18604).

Appendix A Supersymmetry

Since the present Einstein-Maxwell-dilaton theory (34) originates from the 𝒩=2\mathcal{N}=2 supergravity, it is interesting to investigate the supersymmetry preserved by the present solution. The supersymmetry of the C-metric in the Einstein-Maxwell-Λ\Lambda system has been explored in Klemm:2013eca . The dilaton coupling constant α\alpha induces an interesting effect on the twist of supersymmetric solutions Nozawa:2010rf .

The Killing spinor equations are given by

^μϵ\displaystyle\hat{\nabla}_{\mu}\epsilon\equiv\, (μ+i41+α2(eαϕ2Fνρ0+αeϕ2αFνρ1)γνργμ+W(ϕ)γμig1+α2(Aμ0+αAμ1))ϵ=0,\displaystyle\left(\nabla_{\mu}+\frac{i}{4\sqrt{1+\alpha^{2}}}\left(e^{-\frac{\alpha\phi}{2}}F_{\nu\rho}^{0}+\alpha e^{\frac{\phi}{2\alpha}}F_{\nu\rho}^{1}\right)\gamma^{\nu\rho}\gamma_{\mu}+W(\phi)\gamma_{\mu}-\frac{ig}{\sqrt{1+\alpha^{2}}}(A^{0}_{\mu}+\alpha A^{1}_{\mu})\right)\epsilon=0\,, (101)
Πϵ\displaystyle\Pi\epsilon\equiv (γμμϕ8Wϕ+i1+α2(αeαϕ2Fμν0+eϕ2αFνρ1)γμν)ϵ=0,\displaystyle\,\left(\gamma^{\mu}\nabla_{\mu}\phi-8\frac{\partial W}{\partial\phi}+\frac{i}{\sqrt{1+\alpha^{2}}}\left(-\alpha e^{-\frac{\alpha\phi}{2}}F_{\mu\nu}^{0}+e^{\frac{\phi}{2\alpha}}F_{\nu\rho}^{1}\right)\gamma^{\mu\nu}\right)\epsilon=0\,, (102)

where ϵ\epsilon is a Dirac spinor. These equations are derived from the general expressions given in Cacciatori:2008ek , or fixed by requiring the positive mass theorem Nozawa:2013maa ; Nozawa:2014zia .

For the existence of nontrivial solutions obeying these first order and algebraic equations, the following integrability conditions must be fulfilled

det[^μ,^ν]=0,detΠ=0.\displaystyle{\rm det}[\hat{\nabla}_{\mu},\hat{\nabla}_{\nu}]=0\,,\qquad{\rm det}\,\Pi=0\,. (103)

The condition detΠ=0{\rm det}\,\Pi=0 for the solution (37) boils down to

a0=[(q0q1)2+a2r02]24A2q02r04,a1=[(q0q1)(3q0+q1)a2r02][(q0q1)2+a2r02]8Aq02r03.\displaystyle a_{0}=-\frac{[(q_{0}-q_{1})^{2}+a_{2}r_{0}^{2}]^{2}}{4A^{2}q_{0}^{2}r_{0}^{4}}\,,\qquad a_{1}=\frac{[(q_{0}-q_{1})(3q_{0}+q_{1})-a_{2}r_{0}^{2}][(q_{0}-q_{1})^{2}+a_{2}r_{0}^{2}]}{8Aq_{0}^{2}r_{0}^{3}}\,. (104)

Plugging these results into det[^μ,^ν]=0{\rm det}[\hat{\nabla}_{\mu},\hat{\nabla}_{\nu}]=0, one finds, after lengthy and tedious computations, all the components of equations are automatically satisfied. In this case, the structure function factorizes into

Δy(y)=14A2q02r04h(y)[2q0q1+{q12+a2r02+q02(12Ar0y)}h(y)]20.\displaystyle\Delta_{y}(y)=\frac{1}{4A^{2}q_{0}^{2}r_{0}^{4}h(y)}\left[-2q_{0}q_{1}+\left\{q_{1}^{2}+a_{2}r_{0}^{2}+q_{0}^{2}(1-2Ar_{0}y)\right\}h(y)\right]^{2}\geq 0\,. (105)

Thus, the Killing horizon for this solution is degenerate, as consistent with supersymmetry.666 Since the supersymmetry requires the bilinear vector Vμ=iϵ¯γμϵV^{\mu}=i\bar{\epsilon}\gamma^{\mu}\epsilon of the Killing spinor is a globally defined timelike or null Killing vector, the stationary black-hole horizon, if exists, must be degenerate. If it is nondegenerate, the Killing vector VμV^{\mu} becomes spacelike inside the black hole. In the zero acceleration limit (49), the preservation of supersymmetry requires

q0=±(k2g+gr02α2(α21)(1+α2)2),q1=±(k2ggr02(α21)(1+α2)2).\displaystyle q_{0}=\pm\left(\frac{k}{2g}+\frac{gr_{0}^{2}\alpha^{2}(\alpha^{2}-1)}{(1+\alpha^{2})^{2}}\right)\,,\qquad q_{1}=\pm\left(\frac{k}{2g}-\frac{gr_{0}^{2}(\alpha^{2}-1)}{(1+\alpha^{2})^{2}}\right)\,. (106)

This occurs for any value of kk.

For the flipped solution (72) with (74), the supersymmetric conditions become

a0=[(q^0q^1)2a2r02]24A2q^02r04,a1=[(q^0q^1)(3q^0+q^1)+a2r02][(q^0q^1)2a2r02]8Aq^02r03.\displaystyle a_{0}=\frac{[(\hat{q}_{0}-\hat{q}_{1})^{2}-a_{2}r_{0}^{2}]^{2}}{4A^{2}\hat{q}_{0}^{2}r_{0}^{4}}\,,\qquad a_{1}=-\frac{[(\hat{q}_{0}-\hat{q}_{1})(3\hat{q}_{0}+\hat{q}_{1})+a_{2}r_{0}^{2}][(\hat{q}_{0}-\hat{q}_{1})^{2}-a_{2}r_{0}^{2}]}{8A\hat{q}_{0}^{2}r_{0}^{3}}\,. (107)

for which

Δ^y^(y^)=[2q^0q^1+{q^12a2r02+q^02(12Ar0y^)}h(y^)]24A2q^02r04h(y^)+g2A2h(y^)3α211+α20.\displaystyle\hat{\Delta}_{\hat{y}}(\hat{y})=\frac{\left[-2\hat{q}_{0}\hat{q}_{1}+\left\{\hat{q}_{1}^{2}-a_{2}r_{0}^{2}+\hat{q}_{0}^{2}(1-2Ar_{0}\hat{y})\right\}h(\hat{y})\right]^{2}}{4A^{2}\hat{q}_{0}^{2}r_{0}^{4}h(\hat{y})}+\frac{g^{2}}{A^{2}}h(\hat{y})^{\frac{3\alpha^{2}-1}{1+\alpha^{2}}}\geq 0\,. (108)

On account of the fact that y^=1/(Ar0)\hat{y}=-1/(Ar_{0}), where h(y^)=0h(\hat{y})=0, is singular, it turns out that the flipped solution fails to have a degenerate horizon in the supersymmetric case. In the zero acceleration limit (79), the supersymmetric condition becomes

(q0q1)2kr02=0.\displaystyle(q_{0}-q_{1})^{2}-kr_{0}^{2}=0\,. (109)

This equation is satisfied only for k0k\geq 0.

References

  • (1) W. Israel, Phys. Rev. 164, 1776-1779 (1967) doi:10.1103/PhysRev.164.1776
  • (2) H. Müller Zum Hagen, D. C. Robinson and H. J. Seifert, Gen. Rel. Grav. 4, 53 (1973).
  • (3) D. C. Robinson, Gen. Rel. Grav. 8, 696 (1977).
  • (4) G. L. Bunting and A. K. M. Masood-ul-Alam, Gen. Rel. Grav. 19, 147 (1987).
  • (5) D. C. Robinson, Phys. Rev. Lett.  34 (1975) 905.
  • (6) M. Nozawa, T. Shiromizu, K. Izumi and S. Yamada, Class. Quant. Grav. 35, no.17, 175009 (2018) doi:10.1088/1361-6382/aad206 [arXiv:1805.11385 [gr-qc]].
  • (7) D. Sudarsky and J. A. Gonzalez, Phys. Rev. D 67 (2003) 024038 [gr-qc/0207069].
  • (8) M. T. Anderson, P. T. Chrusciel and E. Delay, JHEP 0210 (2002) 063 [gr-qc/0211006].
  • (9) D. Klemm, M. Nozawa and M. Rabbiosi, Class. Quant. Grav. 32, no.20, 205008 (2015) doi:10.1088/0264-9381/32/20/205008 [arXiv:1506.09017 [hep-th]].
  • (10) A. Anabalón, JHEP 1206 (2012) 127 [arXiv:1204.2720 [hep-th]].
  • (11) X. H. Feng, H. Lü and Q. Wen, Phys. Rev. D 89 (2014) 4, 044014 [arXiv:1312.5374 [hep-th]].
  • (12) A. Anabalon, F. Canfora, A. Giacomini and J. Oliva, JHEP 06, 010 (2012) doi:10.1007/JHEP06(2012)010 [arXiv:1203.6627 [hep-th]].
  • (13) A. Anabalon and D. Astefanesei, Phys. Lett. B 732, 137-141 (2014) doi:10.1016/j.physletb.2014.03.035 [arXiv:1311.7459 [hep-th]].
  • (14) A. Anabalon, D. Astefanesei, A. Gallerati and M. Trigiante, JHEP 04, 047 (2021) doi:10.1007/JHEP04(2021)047 [arXiv:2012.09877 [hep-th]].
  • (15) H. Lu, JHEP 09, 112 (2013) doi:10.1007/JHEP09(2013)112 [arXiv:1306.2386 [hep-th]].
  • (16) H. Lü, Y. Pang and C. N. Pope, JHEP 11, 033 (2013) doi:10.1007/JHEP11(2013)033 [arXiv:1307.6243 [hep-th]].
  • (17) T. Torii, K. Maeda and M. Narita, Phys. Rev. D 64, 044007 (2001) doi:10.1103/PhysRevD.64.044007
  • (18) T. Kolyvaris, G. Koutsoumbas, E. Papantonopoulos and G. Siopsis, Gen. Rel. Grav. 43, 163-180 (2011) doi:10.1007/s10714-010-1079-0 [arXiv:0911.1711 [hep-th]].
  • (19) P. A. González, E. Papantonopoulos, J. Saavedra and Y. Vásquez, JHEP 12, 021 (2013) doi:10.1007/JHEP12(2013)021 [arXiv:1309.2161 [gr-qc]].
  • (20) S. Mahapatra, S. Priyadarshinee, G. N. Reddy and B. Shukla, Phys. Rev. D 102, no.2, 024042 (2020) doi:10.1103/PhysRevD.102.024042 [arXiv:2004.00921 [hep-th]].
  • (21) F. Faedo, D. Klemm and M. Nozawa, JHEP 11, 045 (2015) doi:10.1007/JHEP11(2015)045 [arXiv:1505.02986 [hep-th]].
  • (22) T. Levi-Civita, Rend. Acc. Lincei. 27, 343 (1917).
  • (23) E.  T. Newman and L. A. Tamburino, J. Math. Phys. 2, 667 (1961) doi:org/10.1063/1.1703754.
  • (24) J. Ehlers and W. Kundt, “Exact solutions of the gravitational field equations,” in Gravitation: an introduction to current research, edited by L. Witten, Wiley, New York and London, (1962), pp. 49-101.
  • (25) W. Kinnersley and M. Walker, Phys. Rev. D 2, 1359-1370 (1970) doi:10.1103/PhysRevD.2.1359
  • (26) H. Kodama, Prog. Theor. Phys. 120, 371-411 (2008) doi:10.1143/PTP.120.371 [arXiv:0804.3839 [hep-th]].
  • (27) W. B. Bonnor, Gen. Relativ. Gravit. 15, 535 (1983).
  • (28) K. Hong and E. Teo, Class. Quant. Grav. 20, 3269-3277 (2003) doi:10.1088/0264-9381/20/14/321 [arXiv:gr-qc/0305089 [gr-qc]].
  • (29) P. S. Letelier and S. R. Oliveira, Phys. Rev. D 64, 064005 (2001) doi:10.1103/PhysRevD.64.064005 [arXiv:gr-qc/9809089 [gr-qc]].
  • (30) J. B. Griffiths, P. Krtous and J. Podolsky, Class. Quant. Grav. 23, 6745-6766 (2006) doi:10.1088/0264-9381/23/23/008 [arXiv:gr-qc/0609056 [gr-qc]].
  • (31) Y. K. Lim, Phys. Rev. D 89, no.10, 104016 (2014) doi:10.1103/PhysRevD.89.104016 [arXiv:1405.2611 [gr-qc]].
  • (32) J. Podolsky, Czech. J. Phys. 52, 1-10 (2002) doi:10.1023/A:1013961411430 [arXiv:gr-qc/0202033 [gr-qc]].
  • (33) O. J. C. Dias and J. P. S. Lemos, Phys. Rev. D 67, 064001 (2003) doi:10.1103/PhysRevD.67.064001 [arXiv:hep-th/0210065 [hep-th]].
  • (34) P. Krtous, Phys. Rev. D 72, 124019 (2005) doi:10.1103/PhysRevD.72.124019 [arXiv:gr-qc/0510101 [gr-qc]].
  • (35) M. Appels, R. Gregory and D. Kubiznak, Phys. Rev. Lett. 117, no.13, 131303 (2016) doi:10.1103/PhysRevLett.117.131303 [arXiv:1604.08812 [hep-th]].
  • (36) M. Appels, R. Gregory and D. Kubiznak, JHEP 05, 116 (2017) doi:10.1007/JHEP05(2017)116 [arXiv:1702.00490 [hep-th]].
  • (37) M. Astorino, Phys. Rev. D 95, no.6, 064007 (2017) doi:10.1103/PhysRevD.95.064007 [arXiv:1612.04387 [gr-qc]].
  • (38) J. Zhang, Y. Li and H. Yu, JHEP 02, 144 (2019) doi:10.1007/JHEP02(2019)144 [arXiv:1808.10299 [hep-th]].
  • (39) Y. Wang and J. Ren, [arXiv:2205.09469 [hep-th]].
  • (40) H. Xu, Phys. Lett. B 773, 639-643 (2017) doi:10.1016/j.physletb.2017.09.033 [arXiv:1708.01433 [hep-th]].
  • (41) M. Nozawa and T. Kobayashi, Phys. Rev. D 78, 064006 (2008) doi:10.1103/PhysRevD.78.064006 [arXiv:0803.3317 [hep-th]].
  • (42) K. Destounis, R. D. B. Fontana and F. C. Mena, Phys. Rev. D 102, no.4, 044005 (2020) doi:10.1103/PhysRevD.102.044005 [arXiv:2005.03028 [gr-qc]].
  • (43) K. Destounis, G. Mascher and K. D. Kokkotas, Phys. Rev. D 105, no.12, 124058 (2022) doi:10.1103/PhysRevD.105.124058 [arXiv:2206.07794 [gr-qc]].
  • (44) H. Lu and J. F. Vazquez-Poritz, Phys. Rev. D 91, no.6, 064004 (2015) doi:10.1103/PhysRevD.91.064004 [arXiv:1408.3124 [hep-th]].
  • (45) H. Lü and J. F. Vázquez-Poritz, JHEP 12, 057 (2014) doi:10.1007/JHEP12(2014)057 [arXiv:1408.6531 [hep-th]].
  • (46) L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré and T. Magri, J. Geom. Phys.  23 (1997) 111 [hep-th/9605032].
  • (47) D. Z. Freedman and A. Van Proeyen, “Supergravity,” Cambridge Univ. Press (2012).
  • (48) M. Trigiante, Phys. Rept. 680, 1-175 (2017) doi:10.1016/j.physrep.2017.03.001 [arXiv:1609.09745 [hep-th]].
  • (49) G. Dall’Agata and M. Zagermann, Lect. Notes Phys. 991, 1-263 (2021) doi:10.1007/978-3-662-63980-1v
  • (50) S. L. Cacciatori, D. Klemm, D. S. Mansi and E. Zorzan, JHEP 0805, 097 (2008) [arXiv:0804.0009 [hep-th]].
  • (51) M. Cvetič, M. J. Duff, P. Hoxha, J. T. Liu, H. Lü, J. X. Lu, R. Martinez-Acosta, C. N. Pope, H. Sati and T. A. Tran, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214].
  • (52) A. Azizi, H. Godazgar, M. Godazgar and C. N. Pope, Phys. Rev. D 94, no.6, 066003 (2016) doi:10.1103/PhysRevD.94.066003 [arXiv:1606.06954 [hep-th]].
  • (53) M. J. Duff and J. T. Liu, Nucl. Phys. B 554, 237-253 (1999) doi:10.1016/S0550-3213(99)00299-0 [arXiv:hep-th/9901149 [hep-th]].
  • (54) P. Breitenlohner and D. Z. Freedman, Annals Phys.  144 (1982) 249.
  • (55) A. Ishibashi and R. M. Wald, Class. Quant. Grav.  21 (2004) 2981 [hep-th/0402184].
  • (56) T. Hertog and K. Maeda, JHEP 0407 (2004) 051 [hep-th/0404261].
  • (57) M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Annals Phys. 322, 824-848 (2007) doi:10.1016/j.aop.2006.05.002 [arXiv:hep-th/0603185 [hep-th]].
  • (58) I. Papadimitriou, JHEP 05, 075 (2007) doi:10.1088/1126-6708/2007/05/075 [arXiv:hep-th/0703152 [hep-th]].
  • (59) A. Anabalón, D. Astefanesei, A. Gallerati and M. Trigiante, JHEP 11, 116 (2021) doi:10.1007/JHEP11(2021)116 [arXiv:2105.08771 [hep-th]].
  • (60) M. Nozawa, Phys. Rev. D 103, no.2, 024005 (2021) doi:10.1103/PhysRevD.103.024005 [arXiv:2010.07561 [gr-qc]].
  • (61) F. Dowker, J. P. Gauntlett, D. A. Kastor and J. H. Traschen, Phys. Rev. D 49, 2909-2917 (1994) doi:10.1103/PhysRevD.49.2909 [arXiv:hep-th/9309075 [hep-th]].
  • (62) H. K. Kunduri, J. Lucietti and H. S. Reall, Class. Quant. Grav. 24, 4169-4190 (2007) doi:10.1088/0264-9381/24/16/012 [arXiv:0705.4214 [hep-th]].
  • (63) R. Emparan, JHEP 03, 064 (2004) doi:10.1088/1126-6708/2004/03/064 [arXiv:hep-th/0402149 [hep-th]].
  • (64) H. Ishihara and K. Matsuno, Prog. Theor. Phys. 116, 417-422 (2006) doi:10.1143/PTP.116.417 [arXiv:hep-th/0510094 [hep-th]].
  • (65) A. Anabalón, D. Astefanesei, A. Gallerati and M. Trigiante, JHEP 04, 058 (2018) doi:10.1007/JHEP04(2018)058 [arXiv:1712.06971 [hep-th]].
  • (66) G. W. Gibbons and K. i. Maeda, Nucl. Phys. B 298, 741-775 (1988) doi:10.1016/0550-3213(88)90006-5
  • (67) R. Emparan, G. T. Horowitz and R. C. Myers, JHEP 01, 007 (2000) doi:10.1088/1126-6708/2000/01/007 [arXiv:hep-th/9911043 [hep-th]].
  • (68) R. Emparan, A. Fabbri and N. Kaloper, JHEP 08, 043 (2002) doi:10.1088/1126-6708/2002/08/043 [arXiv:hep-th/0206155 [hep-th]].
  • (69) R. Emparan and G. Milanesi, JHEP 08, 012 (2009) doi:10.1088/1126-6708/2009/08/012 [arXiv:0905.4590 [hep-th]].
  • (70) V. E. Hubeny, D. Marolf and M. Rangamani, Class. Quant. Grav. 27, 025001 (2010) doi:10.1088/0264-9381/27/2/025001 [arXiv:0909.0005 [hep-th]].
  • (71) R. Gueven and E. Yoruk, Phys. Rev. D 54, 6413-6423 (1996) doi:10.1103/PhysRevD.54.6413 [arXiv:hep-th/9609078 [hep-th]].
  • (72) I. Robinson and A. Trautman, Phys. Rev. Lett. 4, 431-432 (1960) doi:10.1103/PhysRevLett.4.431
  • (73) J. F. Plebanski and M. Demianski, Annals Phys. 98, 98-127 (1976) doi:10.1016/0003-4916(76)90240-2
  • (74) P. Ferrero, J. P. Gauntlett, J. M. P. Ipiña, D. Martelli and J. Sparks, Phys. Rev. D 104, no.4, 046007 (2021) doi:10.1103/PhysRevD.104.046007 [arXiv:2012.08530 [hep-th]].
  • (75) D. Cassani, J. P. Gauntlett, D. Martelli and J. Sparks, Phys. Rev. D 104, no.8, 086005 (2021) doi:10.1103/PhysRevD.104.086005 [arXiv:2106.05571 [hep-th]].
  • (76) P. Ferrero, M. Inglese, D. Martelli and J. Sparks, Phys. Rev. D 105, no.12, 126001 (2022) doi:10.1103/PhysRevD.105.126001 [arXiv:2109.14625 [hep-th]].
  • (77) S. W. Hawking and S. F. Ross, Phys. Rev. Lett. 75, 3382-3385 (1995) doi:10.1103/PhysRevLett.75.3382 [arXiv:gr-qc/9506020 [gr-qc]].
  • (78) D. M. Eardley, G. T. Horowitz, D. A. Kastor and J. H. Traschen, Phys. Rev. Lett. 75, 3390-3393 (1995) doi:10.1103/PhysRevLett.75.3390 [arXiv:gr-qc/9506041 [gr-qc]].
  • (79) R. Emparan and H. S. Reall, Phys. Rev. Lett. 88, 101101 (2002) doi:10.1103/PhysRevLett.88.101101 [arXiv:hep-th/0110260 [hep-th]].
  • (80) S. Tomizawa and M. Nozawa, Phys. Rev. D 73, 124034 (2006) doi:10.1103/PhysRevD.73.124034 [arXiv:hep-th/0604067 [hep-th]].
  • (81) M. Nozawa and T. Houri, Class. Quant. Grav. 33, no.12, 125008 (2016) doi:10.1088/0264-9381/33/12/125008 [arXiv:1510.07470 [hep-th]].
  • (82) M. Nozawa, Phys. Lett. B 770, 166-173 (2017) doi:10.1016/j.physletb.2017.04.064 [arXiv:1702.05210 [hep-th]].
  • (83) D. Klemm and M. Nozawa, JHEP 05, 123 (2013) doi:10.1007/JHEP05(2013)123 [arXiv:1303.3119 [hep-th]].
  • (84) M. Nozawa, Class. Quant. Grav. 28, 175013 (2011) doi:10.1088/0264-9381/28/17/175013 [arXiv:1011.0261 [hep-th]].
  • (85) M. Nozawa and T. Shiromizu, Phys. Rev. D 89, no.2, 023011 (2014) doi:10.1103/PhysRevD.89.023011 [arXiv:1310.1663 [gr-qc]].
  • (86) M. Nozawa and T. Shiromizu, Nucl. Phys. B 887, 380-399 (2014) doi:10.1016/j.nuclphysb.2014.09.002 [arXiv:1407.3355 [hep-th]].