This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

New Constructions of Mutually Orthogonal Complementary Sets and Z-Complementary Code Sets Based on Extended Boolean Functions

Hongyang Xiao, Xiwang Cao Hongyang Xiao, College of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China, [email protected]Corresponding author. Xiwang Cao, College of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China; Key Laboratory of Mathematical Modeling and High Performance Computing of Air Vehicles (NUAA), MIIT, Nanjing, 211106, China, [email protected]
Abstract

Mutually orthogonal complementary sets (MOCSs) and Z-complementary code sets (ZCCSs) have many applications in practical scenarios such as synthetic aperture imaging systems and multi-carrier code division multiple access (MC-CDMA) systems. With the aid of extended Boolean functions (EBFs), in this paper, we first propose a direct construction of MOCSs with flexible lengths, and then propose a new construction of ZCCSs. The proposed MOCSs cover many existing lengths and have non-power-of-two lengths when q=2q=2. Our presented second construction can generate optimal ZCCSs meeting the set size upper bound. Note that the proposed two constructions are direct without the aid of any special sequence, which is suitable for rapid hardware generation.

Keywords: Multi-carrier code division multiple access (MC-CDMA)\cdot mutually orthogonal complementary set (MOCS)\cdot Z-complementary code set (ZCCS)\cdot extended Boolean function (EBF).

Mathematics Subject Classification: 11T71 \cdot 94A60 \cdot 06E30

1 Introduction

The concept of Golay complementary pair (GCP) was initiated by Golay in 1961[1]. The aperiodic auto-correlation function (AACF) of a GCP diminishes to zero for all time shifts except at zero. In 1972, Tseng and Liu generalized the concept of GCP to Golay complementary sets (GCSs) and MOCSs [2]. An (N,L)(N,L)-GCS is a set of NN (2)(\geq 2) sequences of length LL with the property that their AACF is zero for any non-zero time shifts and an (M,N,L)(M,N,L)-MOCS is a collection of MM GCSs, in which every GCS has NN sequences of length LL such that any two distinct GCSs are orthogonal. In 1988, Suehiro and Hatori proposed the concept of (N,N,L)(N,N,L)-complete complementary codes (CCCs) whose set size achieves the theoretical upper bound of MOCSs (i.e., MNM\leq N)[3]. Due to the ideal correlation properties, MOCSs have been applied in many practical scenarios such as synthetic aperture imaging systems[4], OFDM-CDMA systems [5] and MC-CDMA systems [8, 6, 7].

In recent years, the construction of MOCSs has attracted extensive attention in sequence design community. Generalized Boolean functions (GBFs), usually are utilized to construct MOCSs. This is initiated by the pioneer work of Davis and Jedwab in [9] which proposed a direct construction of 2h2^{h}-ary (h>0)(h>0) GCPs of length 2m2^{m} (m>0)(m>0). Paterson extended the idea of [9] to construct qq-ary (for even qq) GCPs [10]. Further constructions of GCPs and GCSs based on GBFs have been proposed in [11, 12]. In [13], Tathinakumar and Chaturvedi proposed a direct construction of qq-ary CCCs of length 2m2^{m} by extending Paterson’s idea in [10]. Wu et al. [14] designed MOCSs with non-power-of-two lengths. Later, a number of direct constructions of qq-ary MOCSs with non-power-of-two lengths are presented in [15, 16]. Sarkar et al. in [17] proposed (pn+1,pn+1,pm)(p^{n+1},p^{n+1},p^{m})-CCCs via qq-ary functions (pmq\mathbb{Z}_{p}^{m}\rightarrow\mathbb{Z}_{q}), where pp is a prime number and qq is a positive multiple of pp. But these CCCs only have prime power lengths. In [18], Sarkar et al. designed CCCs of length p1m1p2m2pkmkp_{1}^{m_{1}}p_{2}^{m_{2}}\cdots p_{k}^{m_{k}} (where each pip_{i} is a prime and mim_{i} is a positive integer) using multivariable functions (MVFs)[18]. This direct construction can generate qq-ary CCCs of all possible lengths. However, in the case of q=2,q=2, only binary CCC of length of form 2m2^{m} (m)(m\in\mathbb{Z}) has been constructed [18]. Apart from these direct constructions of MOCSs, there are some other indirect methods to construct MOCSs such as interleaving, concatenation, paraunitary (PU) matrices, Kronecker product, extended correlation, etc. [19, 22, 23, 24, 20, 21]. However, the generated MOCSs may not be friendly for hardware generation due to their large space and time requirements. So how to construct MOCSs with flexible lengths is still an open problem.

Since the set size is constrained by the number of sub-carrier in MOCSs, which prevents the communication system from supporting a large number of users, Fan et al. proposed the concept of ZCCSs in [25]. The reason why ZCCSs have large set sizes is that there is a zero correlation zone (ZCZ) in the aperiodic cross-correlation and auto-correlation. For an (M,N,L,Z)(M,N,L,Z)-ZCCS, it holds that MNL/ZM\leq N\lfloor L/Z\rfloor and it is optimal if the upper bound is achieved, where M,M, N,N, L,L, ZZ refer to the set size, number of sub-carrier, length and ZCZ width, respectively. Especially, an (M,N,L,Z)(M,N,L,Z)-ZCCS is called an MOCS if Z=LZ=L. In the literature, ZCCSs are constructed by using direct and indirect methods. In [26], Wu et al. proposed ZCCSs with length 2m2^{m} (m>0m>0) based on GBFs, then they expanded the parameters of ZCCSs in 2021 [27]. Several GBFs based constructions of ZCCSs are presented in the literature [30, 29, 28, 31]. Additionally, Tian et al. constructed ZCCSs by using PU matrices in [32]. Yu et al. applied Kronecker product to obtain ZCCSs in [33]. Das et al. presented a class of ZCCSs by using Butson-type Hadamard (BH) matrices and optimal Z-paraunitary (ZPU) matrices [34]. Adhikary and Majhi in [35] employed Hadamard product to construct ZCCSs with new parameters. Further constructions of ZCCSs have been proposed in [36, 37, 38, 39]. In most previous designs, however, the optimal ZCCSs based on direct methods have limited lengths and the optimal ZCCSs based on indirect methods have limited hardware generations. Recently, Shen et al. introduced the concept of EBF and obtained optimal ZCCSs of length qmq^{m} [40], where q2q\geq 2 is a positive integer. This work helps us to construct more optimal ZCCSs.

Motivated by the existing works on MOCSs and ZCCSs, in this paper, we construct (qd,qv+d,γ)(q^{d^{\prime}},q^{v+d},\gamma)-MOCSs with flexible lengths and (qv+d,qd,qm,qmv)(q^{v+d},q^{d},q^{m},q^{m-v})-ZCCSs by using EBFs, where γ=amqm1+k=1v1akqmv+k1+qu\gamma=a_{m}q^{m-1}+\sum^{v-1}_{k=1}a_{k}q^{m-v+k-1}+q^{u}, 0<d<d<m0<d^{\prime}<d<m, v<mv<m, akqa_{k}\in\mathbb{Z}_{q}, amqa_{m}\in\mathbb{Z}^{*}_{q} and q2q\geq 2 is a positive integer. According to the arbitrariness of qq, the proposed MOCSs cover the result in [18] and have non-power-of-two lengths when q=2q=2. In addition, the resulting MOCSs and ZCCSs can be obtained directly from EBFs without using tedious sequence operations. Note that the proposed ZCCSs are optimal with respect to the theoretical upper bound.

The remainder of this paper is outlined as follows. In Section 2, we give the notations and definitions that will be used throughout this paper. In Section 3, we show a construction of MOCS with flexible lengths. In Section 4, we present an construction optimal ZCCS. In Section 5, we make a comparison of the existing literature with this paper. Finally, we conclude this paper in Section 6.

2 Preliminaries

2.1 Notation

  • q={0,1,,q1}\mathbb{Z}_{q}=\{0,1,\cdots,q-1\} is the ring of integers modulo qq, where q2q\geq 2 is a positive integer throughout this paper, unless we specifically point out;

  • q=q\{0}\mathbb{Z}^{*}_{q}=\mathbb{Z}_{q}\backslash\{0\};

  • m={1,2,,m}\mathbb{N}_{m}=\{1,2,\cdots,m\} is the set with mm elements;

  • ξ=e2π1/q\xi=e^{2\pi\sqrt{-1}/q} is a primitive qq-th root of unity;

  • x\lfloor x\rfloor denotes the largest integer lower than or equal to xx;

  • x\lceil x\rceil denotes the smallest integer bigger than or equal to xx;

  • Bold small letter 𝐚\mathbf{a} denotes a sequence of length LL, i.e., 𝐚=(a0,a1,,aL1);\mathbf{a}=(a_{0},a_{1},\cdots,a_{L-1});

  • ()(\cdot)^{*} denotes the conjugate of ().(\cdot).

2.2 Correlation functions and complementary sequence sets

Assume 𝐚=(a0,a1,,aL1)\mathbf{a}=(a_{0},a_{1},\cdots,a_{L-1}) and 𝐛=(b0,b1,,bL1)\mathbf{b}=(b_{0},b_{1},\cdots,b_{L-1}) are q\mathbb{Z}_{q}-valued sequences of length LL, where aia_{i} and bib_{i} are in the ring q\mathbf{\mathbb{Z}}_{q}. The aperiodic cross-correlation function (ACCF) R𝐚,𝐛(τ)R_{\mathbf{a},\mathbf{b}}(\tau) between 𝐚\mathbf{a} and 𝐛\mathbf{b} at a time shift τ\tau is defined as

R𝐚,𝐛(τ)={i=0L1τξaibi+τ,0τL1,i=0L1+τξaiτbi,L+1τ<0.R_{\mathbf{a},\mathbf{b}}(\tau)=\left\{\begin{array}[]{ll}\sum_{i=0}^{L-1-\tau}\xi^{a_{i}-b_{i+\tau}},&0\leq\tau\leq L-1,\\ \sum_{i=0}^{L-1+\tau}\xi^{a_{i-\tau}-b_{i}},&-L+1\leq\tau<0.\end{array}\right.

If 𝐚=𝐛\mathbf{a}=\mathbf{b}, then R𝐚,𝐛(τ)R_{\mathbf{a},\mathbf{b}}(\tau) is called the aperiodic auto-correlation function (AACF), denoted as R𝐚(τ)R_{\mathbf{a}}(\tau). In addition, by the definition of AACF, we get R𝐛,𝐚(τ)=R𝐚,𝐛(τ).R_{\mathbf{b},\mathbf{a}}(-\tau)=R^{*}_{\mathbf{a},\mathbf{b}}(\tau).

Definition 2.1.

A set of NN length-LL sequences {𝐚0,𝐚1,,𝐚N1}\{\mathbf{a}_{0},\mathbf{a}_{1},\cdots,\mathbf{a}_{N-1}\} is called a GCS of order NN if for all 0<|τ|L1,0<|\tau|\leq L-1,

i=0N1R𝐚i(τ)=0.\sum^{N-1}_{i=0}R_{\mathbf{a}_{i}}(\tau)=0.
Definition 2.2.

A set of MM sequence sets 𝒮={𝒮0,𝒮1,,𝒮M1}\mathcal{S}=\{\mathcal{S}_{0},\mathcal{S}_{1},\cdots,\mathcal{S}_{M-1}\} is called an (M,N,L)(M,N,L)-MOCS if for any 0ijM10\leq i\neq j\leq M-1 and 0|τ|L1,0\leq|\tau|\leq L-1,

R𝒮i,𝒮j(τ)=k=0N1R𝐚ki,𝐚kj(τ)=0,R_{\mathcal{S}_{i},\mathcal{S}_{j}}(\tau)=\sum^{N-1}_{k=0}R_{\mathbf{a}^{i}_{k},\mathbf{a}^{j}_{k}}(\tau)=0,

where each 𝒮t={𝐚0t,𝐚1t,,𝐚N1t}\mathcal{S}_{t}=\{\mathbf{a}^{t}_{0},\mathbf{a}^{t}_{1},\cdots,\mathbf{a}^{t}_{N-1}\} is a GCS of NN length-LL sequences.

Definition 2.3.

A set of MM sequence sets 𝒮={𝒮0,𝒮1,,𝒮M1}\mathcal{S}=\{\mathcal{S}_{0},\mathcal{S}_{1},\cdots,\mathcal{S}_{M-1}\} is called an (M,N,L,Z)(M,N,L,Z)-ZCCS if

R𝒮i,𝒮j(τ)\displaystyle R_{\mathcal{S}_{i},\mathcal{S}_{j}}(\tau) =k=0N1R𝐚ki,𝐚kj(τ)={NL,τ=0,i=j,0,0<|τ|<Z,i=j,0,|τ|<Z,ij,\displaystyle=\sum_{k=0}^{N-1}R_{\mathbf{a}^{i}_{k},\mathbf{a}^{j}_{k}}(\tau)=\left\{\begin{array}[]{ll}NL,&\tau=0,\;i=j,\\ 0,&0<|\tau|<Z,\;i=j,\\ 0,&|\tau|<Z,\;i\neq j,\end{array}\right.

where ZZ denotes the ZCZ width and each 𝒮t={𝐚0t,𝐚1t,,𝐚N1t}\mathcal{S}_{t}=\{\mathbf{a}^{t}_{0},\mathbf{a}^{t}_{1},\cdots,\mathbf{a}^{t}_{N-1}\} consists of NN length-LL sequences for any 0tM10\leq t\leq M-1. In addition, if Z=LZ=L, then the (M,N,L,Z)(M,N,L,Z)-ZCCS is called an (M,N,L)(M,N,L)-MOCS.

The following results give two bounds on the parameters of MOCSs and ZCCSs, respectively.

Lemma 2.4.

[3] For an (M,N,L)(M,N,L)-MOCS, the upper bound on set size satisfies the inequality MNM\leq N. When M=NM=N, it is called a CCC.

Lemma 2.5.

[41] For any (M,N,L,Z)(M,N,L,Z)-ZCCS, it holds that

MNLZ.M\leq N\left\lfloor\frac{L}{Z}\right\rfloor.

Note that a ZCCSZCCS is optimaloptimal if the above upper bound is achieved,i.e., M=NLZ.M=N\left\lfloor\frac{L}{Z}\right\rfloor.

2.3 Extended Boolean functions (EBFs)

An EBF ff in mm variables x1,x2,,xmx_{1},x_{2},\cdots,x_{m} is a mapping from qm\mathbb{Z}_{q}^{m} to q\mathbb{Z}_{q} where xiqx_{i}\in\mathbb{Z}_{q} for i1,2,,mi\in 1,2,\cdots,m. Given f(x)f(x), we define

𝐟=(f0,f1,,fqm1),\mathbf{f}=(f_{0},f_{1},\cdots,f_{q^{m}-1}),

where fi=f(i1,i2,,im)f_{i}=f(i_{1},i_{2},\cdots,i_{m}) and (i1,i2,,im)(i_{1},i_{2},\cdots,i_{m}) is the qq-ary representation of the integer i=k=1mikqk1i=\sum^{m}_{k=1}i_{k}q^{k-1}. For example, for f=x1x2+x1+2f=x_{1}x_{2}+x_{1}+2 with m=2m=2 and q=3q=3, we have the sequence 𝐟=(2,0,1,2,1,0,2,2,2).\mathbf{f}=(2,0,1,2,1,0,2,2,2). In addition, we also consider the sequences of length Lqm.L\neq q^{m}. Hence we define the corresponding truncated sequence 𝐟(L)\mathbf{f}^{(L)} of the EBF ff by removing the last qmLq^{m}-L elements of the sequence 𝐟\mathbf{f}. That is 𝐟(L)=(f0,f1,,fL1)\mathbf{f}^{(L)}=(f_{0},f_{1},\cdots,f_{L-1}) is a sequence of length LL with fi=f(i1,i2,,im)f_{i}=f(i_{1},i_{2},\cdots,i_{m}) for i=0,1,,L1i=0,1,\cdots,L-1, which is a naturally generalization of [42]. For convenience, we ignore the superscript of 𝐟(L)\mathbf{f}^{(L)} unless the sequence length is undetermined.

3 Construction of MOCSs with flexible lengths

In this section, we present a direct construction of MOCSs with flexible lengths. Before giving the new MOCSs, we introduce the following lemmas.

Lemma 3.1.

[43] For an even integer qq and any positive integers mm, kk with kmk\leq m, let vv be an integer with 0vmk0\leq v\leq m-k, and π\pi be a permutation of m\mathbb{N}_{m} satisfying the following three conditions:

(1)(1) π(mk+1)<π(mk+2)<<π(m1)<π(m)=m.\pi(m-k+1)<\pi(m-k+2)<\cdots<\pi(m-1)<\pi(m)=m.

(2)(2) If v>0v>0, then v={π(1),π(2),,π(v)}.\mathbb{N}_{v}=\{\pi(1),\pi(2),\cdots,\pi(v)\}.

(3)(3) For all α=1,2,,k1,\alpha=1,2,\cdots,k-1, if π(t)<π(mk+α),\pi(t)<\pi(m-k+\alpha), then π(t1)<π(mk+α)\pi(t-1)<\pi(m-k+\alpha) where 2tmk.2\leq t\leq m-k.
Let

f=q2s=1mk1xπ(s)xπ(s+1)+α=1ks=1mkcα,sxπ(mk+α)xπ(s)+s=1mcsxs+c0,f=\frac{q}{2}\sum^{m-k-1}_{s=1}x_{\pi(s)}x_{\pi(s+1)}+\sum^{k}_{\alpha=1}\sum^{m-k}_{s=1}c_{\alpha,s}x_{\pi(m-k+\alpha)}x_{\pi(s)}+\sum^{m}_{s=1}c_{s}x_{s}+c_{0},

where cα,s,csqc_{\alpha,s},c_{s}\in\mathbb{Z}_{q}. Then the set

={𝐟+q2α=1kdα𝐱π(mk+α)+q2dk+1𝐱π(1)dα{0,1}}\mathcal{F}=\left\{\mathbf{f}+\frac{q}{2}\sum^{k}_{\alpha=1}d_{\alpha}\mathbf{x}_{\pi(m-k+\alpha)}+\frac{q}{2}d_{k+1}\mathbf{x}_{\pi(1)}\mid d_{\alpha}\in\{0,1\}\right\}

forms a GCS of size 2k+12^{k+1} and length L=2m1+α=1k1aα2π(mk+α)1+2vL=2^{m-1}+\sum^{k-1}_{\alpha=1}a_{\alpha}2^{\pi(m-k+\alpha)-1}+2^{v} with aα{0,1}.a_{\alpha}\in\{0,1\}.

Lemma 3.2.

For positive integers m2m\geq 2 and r<m,r<m, let hh be a bijection from S1=rS_{1}=\mathbb{N}_{r} onto S2mS_{2}\subseteq\mathbb{N}_{m} with rr elements. Suppose that h(u)h(u) is the smallest element of S2S_{2}. Let ii be an integer with

l=1luralqh(l)1il=1luralqh(l)1+qh(u)1,\sum^{r}_{\begin{subarray}{c}l=1\\ l\neq u\end{subarray}}a_{l}q^{h(l)-1}\leq i\leq\sum^{r}_{\begin{subarray}{c}l=1\\ l\neq u\end{subarray}}a_{l}q^{h(l)-1}+q^{h(u)}-1,

where alqa_{l}\in\mathbb{Z}^{*}_{q} for lS1{u}l\in S_{1}\setminus\{u\} and (i1,i2,,im)(i_{1},i_{2},\cdots,i_{m}) is the qq-ary representation of i.i. Also let i(t)i^{(t)} be an integer with qq-ary representation (i1,i2,,ikt,,im)(i_{1},i_{2},\cdots,i_{k}\oplus t,\cdots,i_{m}) for positive integers kh(u)k\leq h(u) and tqt\in\mathbb{Z}^{*}_{q}. Then we have

l=1luralqh(l)1i(t)l=1luralqh(l)1+qh(u)1.\sum^{r}_{\begin{subarray}{c}l=1\\ l\neq u\end{subarray}}a_{l}q^{h(l)-1}\leq i^{(t)}\leq\sum^{r}_{\begin{subarray}{c}l=1\\ l\neq u\end{subarray}}a_{l}q^{h(l)-1}+q^{h(u)}-1.
Proof.

For convenience, we let j=il=1luralqh(l)1j=i-\sum\limits^{r}_{\begin{subarray}{c}l=1\\ l\neq u\end{subarray}}a_{l}q^{h(l)-1} and (j1,j2,,jm)(j_{1},j_{2},\cdots,j_{m}) be the qq-ary representation of j.j. Then 0jqh(u)10\leq j\leq q^{h(u)}-1, which means js=0j_{s}=0 for sh(u)+1s\geq h(u)+1. Similarly, we let j(t)=i(t)l=1luralqh(l)1j^{(t)}=i^{(t)}-\sum\limits^{r}_{\begin{subarray}{c}l=1\\ l\neq u\end{subarray}}a_{l}q^{h(l)-1} with qq-ary representation (j1,j2,,jkt,,jm)(j_{1},j_{2},\cdots,j_{k}\oplus t,\cdots,j_{m}). Obviously, the qq-ary representation of jj differs from that of j(t)j^{(t)} in only one position kk. So we obtain js(t)=js=0j^{(t)}_{s}=j_{s}=0 for sh(u)+1s\geq h(u)+1 which implies 0j(t)qh(u)10\leq j^{(t)}\leq q^{h(u)}-1. Therefore,

l=1luralqh(l)1i(t)l=1luralqh(l)1+qh(u)1.\sum^{r}_{\begin{subarray}{c}l=1\\ l\neq u\end{subarray}}a_{l}q^{h(l)-1}\leq i^{(t)}\leq\sum^{r}_{\begin{subarray}{c}l=1\\ l\neq u\end{subarray}}a_{l}q^{h(l)-1}+q^{h(u)}-1.

Lemma 3.3.

For positive integers m2m\geq 2 and r<m,r<m, let ii and hh be the same as that of Lemma 3.2. If il=1luralqh(l)1+qh(u)1i\leq\sum\limits^{r}_{\begin{subarray}{c}l=1\\ l\neq u\end{subarray}}a_{l}q^{h(l)-1}+q^{h(u)}-1 and ih(l)=ali_{h(l)}=a_{l} for lS1{u}l\in S_{1}\setminus\{u\}. Then we have is=0i_{s}=0 for s=h(u)+1,h(u)+2,,m1s=h(u)+1,h(u)+2,\cdots,m-1 and sh(l)s\neq h(l) for lS1{u}l\in S_{1}\setminus\{u\}.

Proof.

Suppose the conclusion doesn’t hold, we assume it=b0i_{t}=b\neq 0 where h(u)+1tm1h(u)+1\leq t\leq m-1 and th(l)t\neq h(l) for lS1{u}l\in S_{1}\setminus\{u\}. Then we have il=1luralqh(l)1+bqt1l=1luralqh(l)1+qh(u)i\geq\sum\limits^{r}_{\begin{subarray}{c}l=1\\ l\neq u\end{subarray}}a_{l}q^{h(l)-1}+bq^{t-1}\geq\sum\limits^{r}_{\begin{subarray}{c}l=1\\ l\neq u\end{subarray}}a_{l}q^{h(l)-1}+q^{h(u)} which contradicts the condition. ∎

Lemma 3.4.

[44] Let qq be an even number, (i1,i2,,im)(i_{1},i_{2},\cdots,i_{m}) and (j1,j2,,jm)(j_{1},j_{2},\cdots,j_{m}) be the binary representations of ii and jj, respectively, and let {I1,I2,,Id}\{I_{1},I_{2},\cdots,I_{d}\} be a partition of the set m\mathbb{N}_{m}. Let πα\pi_{\alpha} be a bijection from mα\mathbb{N}_{m_{\alpha}} to IαI_{\alpha}, where |Iα|=mα\lvert I_{\alpha}\rvert=m_{\alpha} for any αd.\alpha\in\mathbb{N}_{d}. If the following three conditions are satisfied:

(1)(1) α1\alpha_{1} is the largest integer satisfying iπα(β)=jπα(β)i_{\pi_{\alpha}(\beta)}=j_{\pi_{\alpha}(\beta)} for αα1\alpha\in\mathbb{N}_{\alpha_{1}} and βmα.\beta\in\mathbb{N}_{m_{\alpha}}.

(2)(2) β1\beta_{1} is the smallest integer such that iπα1(β1)jπα1(β1).i_{\pi_{\alpha_{1}(\beta_{1})}}\neq j_{\pi_{\alpha_{1}(\beta_{1})}}.

(3)(3) Let ii^{\prime} and jj^{\prime} be integers which differ from ii and jj, respectively, in only one position πα1(β11),\pi_{\alpha_{1}(\beta_{1}-1)}, that is, iπα1(β11)=1iπα1(β11)i^{\prime}_{\pi_{\alpha_{1}(\beta_{1}-1)}}=1-i_{\pi_{\alpha_{1}(\beta_{1}-1)}} and jπα1(β11)=1jπα1(β11)j^{\prime}_{\pi_{\alpha_{1}(\beta_{1}-1)}}=1-j_{\pi_{\alpha_{1}(\beta_{1}-1)}}.
Then

fn,ifn,jfn,i+fn,jq2(modq),f_{n,i}-f_{n,j}-f_{n,i^{\prime}}+f_{n,j^{\prime}}\equiv\frac{q}{2}\pmod{q},

where f(x)f(x) as shown in Eq. (1) of [44].

Lemma 3.5.

Let xn1,xn2,,xnd\textbf{x}_{n_{1}},\textbf{x}_{n_{2}},\cdots,\textbf{x}_{n_{d}} be the sequences corresponding to EBFs xn1,xn2,,xndx_{n_{1}},x_{n_{2}},\cdots,x_{n_{d}}, respectively, where n1<n2<<nd.n_{1}<n_{2}<\cdots<n_{d}. Let u=(u0,u1,,uL1)=a1xn1a2xn2adxnd\textbf{u}=(u_{0},u_{1},\cdots,u_{L-1})=a_{1}\textbf{x}_{n_{1}}\oplus a_{2}\textbf{x}_{n_{2}}\oplus\cdots\oplus a_{d}\textbf{x}_{n_{d}} be a qq-ary sequence with aiqa_{i}\in\mathbb{Z}_{q} for any id,i\in\mathbb{N}_{d}, which is a linear combination of xn1,xn2,,xnd.\textbf{x}_{n_{1}},\textbf{x}_{n_{2}},\cdots,\textbf{x}_{n_{d}}. If qn1Lq^{n_{1}}\mid L and a10a_{1}\neq 0, let (i1,i2,,im)(i_{1},i_{2},\cdots,i_{m}) be the binary representation of ii, and let i(t)i^{(t)} differ from ii in only one position n1n_{1}, i.e.,

(i1(t),i2(t),,im(t))=(i1,i2,,in11,in1t,in1+1,,im),(i^{(t)}_{1},i^{(t)}_{2},\cdots,i^{(t)}_{m})=(i_{1},i_{2},\cdots,i_{n_{1}-1},i_{n_{1}}\oplus t,i_{n_{1}+1},\cdots,i_{m}),

where tqt\in\mathbb{Z}^{*}_{q}. Then

ξui+ξui(1)+ξui(2)++ξui(q1)=0.\xi^{u_{i}}+\xi^{u_{i^{(1)}}}+\xi^{u_{i^{(2)}}}+\cdots+\xi^{u_{i^{(q-1)}}}=0.
Proof.

Since qn1Lq^{n_{1}}\mid L, then for any integer ii,

ui(t)ui=(a1in1(t)a2in2(t)akink(t))(a1in1a2in2akink)a1(in1(t)in1)a1t(modq),u_{i^{(t)}}-u_{i}=(a_{1}i^{(t)}_{n_{1}}\oplus a_{2}i^{(t)}_{n_{2}}\oplus\cdots a_{k}i^{(t)}_{n_{k}})-(a_{1}i_{n_{1}}\oplus a_{2}i_{n_{2}}\oplus\cdots a_{k}i_{n_{k}})\equiv a_{1}(i^{(t)}_{n_{1}}-i_{n_{1}})\equiv a_{1}t\pmod{q},

Thus we have

1+ξui(1)ui+ξui(2)ui++ξui(q1)ui=0.1+\xi^{u_{i^{(1)}}-u_{i}}+\xi^{u_{i^{(2)}}-u_{i}}+\cdots+\xi^{u_{i^{(q-1)}}-u_{i}}=0.

Now we state our construction in the following Theorem 3.6, which is based on Lemma 3.1.

Theorem 3.6.

Let mm, dd, dd^{\prime}, vv be positive integers with 0<d<d<m0<d^{\prime}<d<m and v<mv<m. Let {I1I_{1}, I2I_{2}, \cdots, IdI_{d}} be a partition of the set mv\mathbb{N}_{m-v}. Put πα\pi_{\alpha} be a bijection from mα\mathbb{N}_{m_{\alpha}} to IαI_{\alpha}, where |Iα|=mα\lvert I_{\alpha}\rvert=m_{\alpha} for any αd.\alpha\in\mathbb{N}_{d}. Let uu be an integer with α=1dmα<u<α=1d+1mα\sum_{{\alpha}=1}^{d^{\prime}}m_{\alpha}<u<\sum_{\alpha=1}^{d^{\prime}+1}m_{\alpha}, we impose an additional condition below:

{π1(1),π1(2),,π1(m1),π2(1),,πd+1(u)}={1,2.,u},\{\pi_{1}(1),\pi_{1}(2),\cdots,\pi_{1}(m_{1}),\pi_{2}(1),\cdots,\pi_{d^{\prime}+1}(u^{\prime})\}=\{1,2.\cdots,u\},

where 0<u<md+10<u^{\prime}<m_{d^{\prime}+1}. Let (n1,n2,,nd+v)(n_{1},n_{2},\cdots,n_{d+v}) and (p1,p2,,pd)(p_{1},p_{2},\cdots,p_{d^{\prime}}) be the qq-ary representations of nn and pp, respectively. Let

f(x)\displaystyle f(x) =α=1dβ=1mα1aα,βxπα(β)xπα(β+1)+α=1dβ=1mαk=1vbα,β,kxπα(β)xmv+k+l=1q1s=1mcs,lxsl+c0,\displaystyle=\sum^{d}_{\alpha=1}\sum^{m_{\alpha}-1}_{\beta=1}a_{\alpha,\beta}x_{\pi_{\alpha}(\beta)}x_{\pi_{\alpha}(\beta+1)}+\sum^{d}_{\alpha=1}\sum^{m_{\alpha}}_{\beta=1}\sum_{k=1}^{v}b_{\alpha,\beta,k}x_{\pi_{\alpha}(\beta)}x_{m-v+k}+\sum_{l=1}^{q-1}\sum_{s=1}^{m}c_{s,l}x^{l}_{s}+c_{0}, (1)
fnp(x)\displaystyle f^{p}_{n}(x) =f(x)+α=1dnαxπα(1)+k=1vnk+dxmv+k+cα=1dpαxπα(mα),\displaystyle=f(x)+\sum^{d}_{\alpha=1}n_{\alpha}x_{\pi_{\alpha}(1)}+\sum^{v}_{k=1}n_{k+d}x_{m-v+k}+c\sum^{d^{\prime}}_{\alpha=1}p_{\alpha}x_{\pi_{\alpha}(m_{\alpha})}, (2)

where aα,β,cqa_{\alpha,\beta},c\in\mathbb{Z}^{*}_{q} are co-prime with qq and bα,β,k,cs,l,c0qb_{\alpha,\beta,k},c_{s,l},c_{0}\in\mathbb{Z}_{q}. Then {0,1,,qd1}\{\mathcal{F}^{0},\mathcal{F}^{1},\cdots,\mathcal{F}^{q^{d^{\prime}}-1}\} generates a (qd,qv+d,L)(q^{d^{\prime}},q^{v+d},L)-MOCS with L=amqm1+k=1v1akqmv+k1+quL=a_{m}q^{m-1}+\sum^{v-1}_{k=1}a_{k}q^{m-v+k-1}+q^{u}, akqa_{k}\in\mathbb{Z}_{q} and amqa_{m}\in\mathbb{Z}^{*}_{q}, where p={𝐟0p,𝐟1p,,𝐟qv+d1p}.\mathcal{F}^{p}=\{\mathbf{f}^{p}_{0},\mathbf{f}^{p}_{1},\cdots,\mathbf{f}^{p}_{q^{v+d}-1}\}.

Proof.

Since for sequences 𝐟np\mathbf{f}^{p}_{n} and 𝐟np\mathbf{f}^{p^{\prime}}_{n}, R𝐟np,𝐟np(τ)=R𝐟np,𝐟np(τ)R_{\mathbf{f}^{p^{\prime}}_{n},\mathbf{f}^{p}_{n}}(-\tau)=R^{*}_{\mathbf{f}^{p}_{n},\mathbf{f}^{p^{\prime}}_{n}}(\tau), then it suffice to prove that for 0p,pqd10\leq p,p^{\prime}\leq q^{d^{\prime}}-1 and 0<τL10<\tau\leq L-1,

Rp,p(τ)=n=0qv+d1i=0L1τξfn,ipfn,i+τp=i=0L1τn=0qv+d1ξfn,ipfn,i+τp=0,R_{\mathcal{F}^{p},\mathcal{F}^{p^{\prime}}}(\tau)=\sum^{q^{v+d}-1}_{n=0}\sum^{L-1-\tau}_{i=0}\xi^{f^{p}_{n,i}-f^{p^{\prime}}_{n,i+\tau}}=\sum^{L-1-\tau}_{i=0}\sum^{q^{v+d}-1}_{n=0}\xi^{f^{p}_{n,i}-f^{p^{\prime}}_{n,i+\tau}}=0,

where fn,ipf^{p}_{n,i} and fn,jpf^{p^{\prime}}_{n,j} are the (i+1)(i+1)-th and the (j+1)(j+1)-th element of sequence 𝐟np\mathbf{f}^{p}_{n} and 𝐟np\mathbf{f}^{p^{\prime}}_{n}, respectively. For simplicity, we assume ak0a_{k}\neq 0 for any kv1k\in\mathbb{N}_{v-1}. Throughout this paper, for a given integer ii, we set j=i+τj=i+\tau and let (i1,i2,,im)(i_{1},i_{2},\cdots,i_{m}) and (j1,j2,,jm)(j_{1},j_{2},\cdots,j_{m}) be the qq-ary representations of ii and jj, respectively. Let (p1,p2,,pd)(p_{1},p_{2},\cdots,p_{d^{\prime}}) and (p1,p2,,pd)(p^{\prime}_{1},p^{\prime}_{2},\cdots,p^{\prime}_{d^{\prime}}) are the qq-ary representations of pp and pp^{\prime}, respectively.

Case 1: If iπα(1)jπα(1)i_{\pi_{\alpha}(1)}\neq j_{\pi_{\alpha}(1)} for some αd\alpha\in\mathbb{N}_{d} or imv+kjmv+ki_{m-v+k}\neq j_{m-v+k} for some kv.k\in\mathbb{N}_{v}. Then

Rp,p(τ)=i=0L1τξfifjα=1d(nα=0q1ξnα(iπα(1)jπα(1)))α=1dξpαiπα(mα)pαjπα(mα)A=0.\displaystyle R_{\mathcal{F}^{p},\mathcal{F}^{p^{\prime}}}(\tau)=\sum_{i=0}^{L-1-\tau}\xi^{f_{i}-f_{j}}\prod_{\alpha=1}^{d}\left(\sum_{n_{\alpha}=0}^{q-1}\xi^{n_{\alpha}\left(i_{\pi_{\alpha}(1)}-j_{\pi_{\alpha}(1)}\right)}\right)\prod_{\alpha=1}^{d^{\prime}}\xi^{p_{\alpha}i_{\pi_{\alpha}(m_{\alpha})}-p^{\prime}_{\alpha}j_{\pi_{\alpha}(m_{\alpha})}}A=0.

where A=k=1v(nd+k=0q1ξnd+k(imv+kjmv+k))A=\prod_{k=1}^{v}\left(\sum_{n_{d+k}=0}^{q-1}\xi^{n_{d+k}(i_{m-v+k}-j_{m-v+k})}\right).

Case 2: If iπα(1)=jπα(1)i_{\pi_{\alpha}(1)}=j_{\pi_{\alpha}(1)} for all αd\alpha\in\mathbb{N}_{d}, imv+k=jmv+ki_{m-v+k}=j_{m-v+k} for all kvk\in\mathbb{N}_{v}, and im=jm=0.i_{m}=j_{m}=0. Then

Rp,p(τ)=qd+vi=0L1τξfifjα=1dξpαiπα(mα)pαjπα(mα).\displaystyle R_{\mathcal{F}^{p},\mathcal{F}^{p^{\prime}}}(\tau)=q^{d+v}\sum_{i=0}^{L-1-\tau}\xi^{f_{i}-f_{j}}\prod_{\alpha=1}^{d^{\prime}}\xi^{p_{\alpha}i_{\pi_{\alpha}(m_{\alpha})}-p^{\prime}_{\alpha}j_{\pi_{\alpha}(m_{\alpha})}}.

Similar to Lemma 3.4, we assume that

(1) α1\alpha_{1} is the largest integer satisfying iπα(β)=jπα(β)i_{\pi_{\alpha}(\beta)}=j_{\pi_{\alpha}(\beta)} for αα1\alpha\in\mathbb{N}_{\alpha_{1}} and βmα\beta\in\mathbb{N}_{m_{\alpha}}.

(2) β1\beta_{1} is the smallest integer such that iπα1(β1)jπα1(β1)i_{\pi_{\alpha_{1}}(\beta_{1})}\neq j_{\pi_{\alpha_{1}}(\beta_{1})}.

(3) Let i(t)i^{(t)} and j(t)j^{(t)} be integers which differ from ii and jj, respectively, in only one position πα1(β11),\pi_{\alpha_{1}}(\beta_{1}-1), that is, iπα1(β11)(t)=tiπα1(β11)i^{(t)}_{\pi_{\alpha_{1}}(\beta_{1}-1)}=t\oplus i_{\pi_{\alpha_{1}}(\beta_{1}-1)} and jπα1(β11)(t)=tjπα1(β11)j^{(t)}_{\pi_{\alpha_{1}}(\beta_{1}-1)}=t\oplus j_{\pi_{\alpha_{1}}(\beta_{1}-1)}.

Thus we get

fi(t)fifj(t)+fj=taα1,β11(iπα1(β1)jπα1(β1))f_{i^{(t)}}-f_{i}-f_{j^{(t)}}+f_{j}=ta_{\alpha_{1},\beta_{1}-1}\left(i_{\pi_{\alpha_{1}}(\beta_{1})}-j_{\pi_{\alpha_{1}}(\beta_{1})}\right)

and

ξfifj+ξfi(1)fj(1)+ξfi(2)fj(2)++ξfi(q1)fj(q1)=0,\xi^{f_{i}-f_{j}}+\xi^{f_{i^{(1)}}-f_{j^{(1)}}}+\xi^{f_{i^{(2)}}-f_{j^{(2)}}}+\cdots+\xi^{f_{i^{(q-1)}}-f_{j^{(q-1)}}}=0,

which implies

Rp1,p2(τ)=qd+vi=0L1τξfifjα=1dξpαiπα(mα)pαjπα(mα)=0.\displaystyle R_{\mathcal{F}^{p_{1}},\mathcal{F}^{p_{2}}}(\tau)=q^{d+v}\sum_{i=0}^{L-1-\tau}\xi^{f_{i}-f_{j}}\prod_{\alpha=1}^{d^{\prime}}\xi^{p_{\alpha}i_{\pi_{\alpha}(m_{\alpha})}-p^{\prime}_{\alpha}j_{\pi_{\alpha}(m_{\alpha})}}=0.

Case 3: If iπα(1)=jπα(1)i_{\pi_{\alpha}(1)}=j_{\pi_{\alpha}(1)} for all αd\alpha\in\mathbb{N}_{d}, imv+k=jmv+ki_{m-v+k}=j_{m-v+k} for all kvk\in\mathbb{N}_{v}, and im=jm=am0.i_{m}=j_{m}=a_{m}\neq 0. Suppose k1k_{1} is the largest integer such that imv+k=jmv+k=0i_{m-v+k}=j_{m-v+k}=0 for k<v,k<v, i.e., imv+k=jmv+k=ak0i_{m-v+k}=j_{m-v+k}=a_{k}\neq 0 for k{k1+1,k1+2,,v},k\in\{k_{1}+1,k_{1}+2,\cdots,v\}, then

i,j\displaystyle i,j <L=amqm1+α=1v1akqmv+k1+qu\displaystyle<L=a_{m}q^{m-1}+\sum^{v-1}_{\alpha=1}a_{k}q^{m-v+k-1}+q^{u}
amqm1+k=k1+1v1akqmv+k1+qmv+k111.\displaystyle\leq a_{m}q^{m-1}+\sum^{v-1}_{k=k_{1}+1}a_{k}q^{m-v+k-1}+q^{m-v+k_{1}-1}-1.

According to Lemma 3.2 and πα1(β11)<mv+k11,\pi_{\alpha_{1}(\beta_{1}-1)}<{m-v+k_{1}-1}, we have

i(t),j(t)amqm1+k=k1+1v1akqmv+k1+qmv+k111<L.i^{(t)},j^{(t)}\leq a_{m}q^{m-1}+\sum^{v-1}_{k=k_{1}+1}a_{k}q^{m-v+k-1}+q^{m-v+k_{1}-1}-1<L.

Therefore, we get

ξfifj+ξfi(1)fj(1)++ξfi(q1)fj(q1)=0.\xi^{f_{i}-f_{j}}+\xi^{f_{i^{(1)}}-f_{j^{(1)}}}+\cdots+\xi^{f_{i^{(q-1)}}-f_{j^{(q-1)}}}=0.

Case 4: iπα(1)=jπα(1)i_{\pi_{\alpha}(1)}=j_{\pi_{\alpha}(1)} for all αd\alpha\in\mathbb{N}_{d}, imv+k=jmv+ki_{m-v+k}=j_{m-v+k} for all kvk\in\mathbb{N}_{v}, and im=jm=am0.i_{m}=j_{m}=a_{m}\neq 0. We also consider that imv+k=jmv+k=ak0i_{m-v+k}=j_{m-v+k}=a_{k}\neq 0 for all kv,k\in\mathbb{N}_{v},

i,j<L=amqm1+k=1v1akqmv+k1+qu.i,j<L=a_{m}q^{m-1}+\sum^{v-1}_{k=1}a_{k}q^{m-v+k-1}+q^{u}.

According to Lemma 3.3, we have is=js=0i_{s}=j_{s}=0 for s=u+1,u+2,,mv1s=u+1,u+2,\cdots,m-v-1, so πα1(β1)u,\pi_{\alpha_{1}}(\beta_{1})\leq u, and πα1(β11)u.\pi_{\alpha_{1}}(\beta_{1}-1)\leq u. Therefore,

i(t),j(t)amqm1+k=1v1akqmv+k1+qu<Li^{(t)},j^{(t)}\leq a_{m}q^{m-1}+\sum^{v-1}_{k=1}a_{k}q^{m-v+k-1}+q^{u}<L

and

ξfifj+ξfi(1)fj(1)++ξfi(q1)fj(q1)=0.\xi^{f_{i}-f_{j}}+\xi^{f_{i^{(1)}}-f_{j^{(1)}}}+\cdots+\xi^{f_{i^{(q-1)}}-f_{j^{(q-1)}}}=0.

Combining the above four cases, we can conclude that Rp,p(τ)=0R_{\mathcal{F}^{p},\mathcal{F}^{p^{\prime}}}(\tau)=0 for 0<τL10<\tau\leq L-1.

Next, it remains to show that for 0ppqd10\leq p\neq p^{\prime}\leq q^{d^{\prime}}-1,

Rp,p(0)=n=0qv+d1i=0L1ξfn,ipfn,ip=0.R_{\mathcal{F}^{p},\mathcal{F}^{p^{\prime}}}(0)=\sum^{q^{v+d}-1}_{n=0}\sum^{L-1}_{i=0}{\xi}^{f^{p}_{n,i}-f^{p^{\prime}}_{n,i}}=0.

Since ppp\neq p^{\prime}, there exists a smallest sds\in\mathbb{N}_{d^{\prime}} such that pspsp_{s}\neq p^{\prime}_{s}. Then according to Lemma 3.5, for any 0iL10\leq i\leq L-1, there exists i(t)i^{(t)} whose qq-ary representation differs from ii in only one position ss, i.e., (i1,i2,,is1,ist,is+1,,im)(i_{1},i_{2},\cdots,i_{s-1},i_{s}\oplus t,i_{s+1},\cdots,i_{m}) for any tqt\in\mathbb{Z}^{*}_{q}. Therefore, we get

ξfn,ipfn,ip+ξfn,i(1)pfn,i(1)p++ξfn,i(q1)pfn,i(q1)p\displaystyle\xi^{f^{p}_{n,i}-f^{p^{\prime}}_{n,i}}+\xi^{f^{p}_{n,i^{(1)}}-f^{p^{\prime}}_{n,i^{(1)}}}+\cdots+\xi^{f^{p}_{n,i^{(q-1)}}-f^{p^{\prime}}_{n,i^{(q-1)}}}
=\displaystyle= ξfn,ipfn,ip(1+ξfn,i(1)pfn,i(1)pfn,ip+fn,ip++ξfn,i(q1)pfn,i(q1)pfn,ip+fn,ip)\displaystyle\xi^{f^{p}_{n,i}-f^{p^{\prime}}_{n,i}}\left(1+\xi^{f^{p}_{n,i^{(1)}}-f^{p^{\prime}}_{n,i^{(1)}}-f^{p}_{n,i}+f^{p^{\prime}}_{n,i}}+\cdots+\xi^{f^{p}_{n,i^{(q-1)}}-f^{p^{\prime}}_{n,i^{(q-1)}}-f^{p}_{n,i}+f^{p^{\prime}}_{n,i}}\right)
=\displaystyle= ξfn,ipfn,ip(1+ξc(psps)++ξc(psps)(q1))\displaystyle\xi^{f^{p}_{n,i}-f^{p^{\prime}}_{n,i}}\left(1+\xi^{c(p_{s}-p^{\prime}_{s})}+\cdots+\xi^{c(p_{s}-p^{\prime}_{s})(q-1)}\right)
=\displaystyle= 0\displaystyle 0

and

Rp,p(0)=n=0qk+11i=0L1ξfn,ipfn,ip=0.R_{\mathcal{F}^{p},\mathcal{F}^{p^{\prime}}}(0)=\sum^{q^{k+1}-1}_{n=0}\sum^{L-1}_{i=0}{\xi}^{f^{p}_{n,i}-f^{p^{\prime}}_{n,i}}=0.

By the above discussion, we obtain that {pp{0,1,,qd1}}\{\mathcal{F}^{p}\mid p\in\{0,1,\cdots,q^{d^{\prime}}-1\}\} is a (qd,qv+d,L)(q^{d^{\prime}},q^{v+d},L)-MOCS with L=amqm1+k=1v1akqmv+k1+quL=a_{m}q^{m-1}+\sum^{v-1}_{k=1}a_{k}q^{m-v+k-1}+q^{u}, where akqa_{k}\in\mathbb{Z}_{q} and amqa_{m}\in\mathbb{Z}^{*}_{q}.

Remark 3.7.

In Theorem 3.6, if we let q=2q=2 and all ak=0a_{k}=0 and am=1a_{m}=1, then the length L=amqm1+k=1v1akqmv+k1+quL=a_{m}q^{m-1}+\sum^{v-1}_{k=1}a_{k}q^{m-v+k-1}+q^{u} turns into the form 2m1+2u,2^{m-1}+2^{u}, this result is coveblack in [14].

Example 3.8.

Let m=5,m=5, v=1,v=1, d=2,d=2, d=1,d^{\prime}=1, m1=m2=2,m_{1}=m_{2}=2, (π1(1),π1(2),π2(1),π2(2))=(1,2,3,4)(\pi_{1}(1),\pi_{1}(2),\pi_{2}(1),\pi_{2}(2))=(1,2,3,4) and all aα,β,bα,β,k,cs,l,c0,ca_{\alpha,\beta},b_{\alpha,\beta,k},c_{s,l},c_{0},c are equal to 1. Then {0,1,2}\{\mathcal{F}^{0},\mathcal{F}^{1},\mathcal{F}^{2}\} forms a ternary (3,27,108)(3,27,108)-MOCS from Theorem 3.6.

4 Constructions of CCCs and optimal ZCCSs

In this section, we mainly propose an approach to constructing an optimal ZCCS. Before doing this work, we need to construct CCCs as a preparing work.

Theorem 4.1.

Let mm, dd be positive integers with 2d<m2\leq d<m, and {I1,I2,,Id}\{I_{1},I_{2},\cdots,I_{d}\} be a partition of the set m\mathbb{N}_{m}. Put πα\pi_{\alpha} be a bijection from mα\mathbb{N}_{m_{\alpha}} to IαI_{\alpha}, where |Iα|=mα\lvert I_{\alpha}\rvert=m_{\alpha} for any α{1,2,,d}.\alpha\in\{1,2,\cdots,d\}. Let

f(x)=\displaystyle f(x)= α=1dβ=1mα1aα,βxπα(β)xπα(β+1)+l=1q1u=1mhu,lxul+h0,\displaystyle\sum_{\alpha=1}^{d}\sum_{\beta=1}^{m_{\alpha}-1}a_{\alpha,\beta}x_{\pi_{\alpha}(\beta)}x_{\pi_{\alpha}(\beta+1)}+\sum_{l=1}^{q-1}\sum_{u=1}^{m}h_{u,l}x^{l}_{u}+h_{0},
fnp(x)=\displaystyle f^{p}_{n}(x)= f(x)+α=1dnαxπα(1)+α=1dpαxπα(mα),\displaystyle f(x)+\sum_{\alpha=1}^{d}n_{\alpha}x_{\pi_{\alpha}(1)}+\sum_{\alpha=1}^{d}p_{\alpha}x_{\pi_{\alpha}(m_{\alpha})},

where aα,βqa_{\alpha,\beta}\in\mathbb{Z}^{*}_{q} is co-prime with qq, hu,lh_{u,l}, h0qh_{0}\in\mathbb{Z}_{q}, (n1,n2,,nd)(n_{1},n_{2},\cdots,n_{d}) and (p1,p2,,pd)(p_{1},p_{2},\cdots,p_{d}) are the qq-ary representations of nn and pp, respectively. Then the set {0,1,,qd1}\{\mathcal{F}^{0},\mathcal{F}^{1},\cdots,\mathcal{F}^{q^{d}-1}\} forms a qq-ary CCC with p={𝐟0p,𝐟1p,,𝐟qd1p}\mathcal{F}^{p}=\{\mathbf{f}^{p}_{0},\mathbf{f}^{p}_{1},\cdots,\mathbf{f}^{p}_{q^{d}-1}\}.

Proof.

The proof consists of two parts. In the first part, we demonstrate that for any 0p,pqd10\leq p,p^{\prime}\leq q^{d}-1 and 0<τqm10<\tau\leq q^{m}-1, p\mathcal{F}^{p} and p\mathcal{F}^{p^{\prime}} satisfy the ideal correlation property, i.e.,

Rp,p(τ)=n=0qd1R𝐟np,𝐟np(τ)=n=0qd1i=0qm1τξfn,ipfn,jp=i=0qm1τn=0qd1ξfn,ipfn,jp=0,R_{\mathcal{F}^{p},\mathcal{F}^{p^{\prime}}}(\tau)=\sum_{n=0}^{q^{d}-1}R_{\mathbf{f}^{p}_{n},\mathbf{f}^{p^{\prime}}_{n}}(\tau)=\sum_{n=0}^{q^{d}-1}\sum_{i=0}^{q^{m}-1-\tau}\xi^{f^{p}_{n,i}-f^{p^{\prime}}_{n,j}}=\sum_{i=0}^{q^{m}-1-\tau}\sum_{n=0}^{q^{d}-1}\xi^{f^{p}_{n,i}-f^{p^{\prime}}_{n,j}}=0,

where fn,ipf^{p}_{n,i} and fn,jpf^{p^{\prime}}_{n,j} are the (i+1)(i+1)-th and the (j+1)(j+1)-th element of sequence 𝐟np\mathbf{f}^{p}_{n} and 𝐟np\mathbf{f}^{p^{\prime}}_{n}, respectively. Similarly, let the definitions of i,j,i(t)i,j,i^{(t)} and j(t)j^{(t)} be given as Theorem 3.6. Furthermore, we divide the set {i0iqm1τ}\{i\mid 0\leq i\leq q^{m}-1-\tau\} into two parts: S1(τ)={iα{1,2,,d}, 0iqm1τ,iπα(1)jπα(1)}S_{1}(\tau)=\{i\mid\exists\ \alpha\in\{1,2,\cdots,d\},\ 0\leq i\leq q^{m}-1-\tau,\ i_{\pi_{\alpha}(1)}\neq j_{\pi_{\alpha}(1)}\} and S2(τ)={iα{1,2,,d}, 0iqm1τ,iπα(1)=jπα(1)}S_{2}(\tau)=\{i\mid\forall\ \alpha\in\{1,2,\cdots,d\},\ 0\leq i\leq q^{m}-1-\tau,\ i_{\pi_{\alpha}(1)}=j_{\pi_{\alpha}(1)}\}. Thus we obtain that

Rp,p(τ)=\displaystyle R_{\mathcal{{\color[rgb]{0,0,0}F}}^{p},\mathcal{{\color[rgb]{0,0,0}F}}^{p^{\prime}}}(\tau)= i=0qm1τn=0qd1ξfn,ipfn,jp\displaystyle\sum_{i=0}^{q^{m}-1-\tau}\sum_{n=0}^{q^{d}-1}\xi^{f^{p}_{n,i}-f^{p^{\prime}}_{n,j}}
=\displaystyle= i=0qm1τξfifjα=1d(nα=0q1ξnα(iπα(1)jπα(1)))α=1dξpαiπα(mα)pαjπα(mα)\displaystyle\sum_{i=0}^{q^{m}-1-\tau}\xi^{f_{i}-f_{j}}\prod_{\alpha=1}^{d}\left(\sum_{n_{\alpha}=0}^{q-1}\xi^{n_{\alpha}\left(i_{\pi_{\alpha}(1)}-j_{\pi_{\alpha}(1)}\right)}\right)\prod_{\alpha=1}^{d}\xi^{p_{\alpha}i_{\pi_{\alpha}(m_{\alpha})}-p^{\prime}_{\alpha}j_{\pi_{\alpha}(m_{\alpha})}}
=\displaystyle= iS1(τ)ξfifjα=1d(nα=0q1ξnα(iπα(1)jπα(1)))α=1dξpαiπα(mα)pαjπα(mα)\displaystyle\sum_{i\in S_{1}(\tau)}\xi^{f_{i}-f_{j}}\prod_{\alpha=1}^{d}\left(\sum_{n_{\alpha}=0}^{q-1}\xi^{n_{\alpha}\left(i_{\pi_{\alpha}(1)}-j_{\pi_{\alpha}(1)}\right)}\right)\prod_{\alpha=1}^{d}\xi^{p_{\alpha}i_{\pi_{\alpha}(m_{\alpha})}-p^{\prime}_{\alpha}j_{\pi_{\alpha}(m_{\alpha})}}
+iS2(τ)ξfifjα=1d(nα=0q1ξnα(iπα(1)jπα(1)))α=1dξpαiπα(mα)pαjπα(mα)\displaystyle+\sum_{i\in S_{2}(\tau)}\xi^{f_{i}-f_{j}}\prod_{\alpha=1}^{d}\left(\sum_{n_{\alpha}=0}^{q-1}\xi^{n_{\alpha}\left(i_{\pi_{\alpha}(1)}-j_{\pi_{\alpha}(1)}\right)}\right)\prod_{\alpha=1}^{d}\xi^{p_{\alpha}i_{\pi_{\alpha}(m_{\alpha})}-p^{\prime}_{\alpha}j_{\pi_{\alpha}(m_{\alpha})}}
=\displaystyle= qdiS2(τ)ξfifjα=1dξpαiπα(mα)pαjπα(mα),\displaystyle q^{d}\sum_{i\in S_{2}(\tau)}\xi^{f_{i}-f_{j}}\prod_{\alpha=1}^{d}\xi^{p_{\alpha}i_{\pi_{\alpha}(m_{\alpha})}-p^{\prime}_{\alpha}j_{\pi_{\alpha}(m_{\alpha})}},

where (pk,1,pk,2,,pk,d)(p_{k,1},p_{k,2},\cdots,p_{k,d}) is the qq-ary representation of pkp_{k} for any k{1,2}.k\in\{1,2\}. For any iS2(τ)i\in S_{2}(\tau), according to the Case 2 of first part in Theorem 3.6, we have

fi(t)fifj(t)+fj=taα1,β11(iπα1(β1)jπα1(β1))f_{i^{(t)}}-f_{i}-f_{j^{(t)}}+f_{j}=ta_{\alpha_{1},\beta_{1}-1}\left(i_{\pi_{\alpha_{1}}(\beta_{1})}-j_{\pi_{\alpha_{1}}(\beta_{1})}\right)

and

(ξfifj+ξfi(1)fj(1)+ξfi(2)fj(2)++ξfi(q1)fj(q1))α=1dξpαiπα(mα)pαjπα(mα)=0.(\xi^{f_{i}-f_{j}}+\xi^{f_{i^{(1)}}-f_{j^{(1)}}}+\xi^{f_{i^{(2)}}-f_{j^{(2)}}}+\cdots+\xi^{f_{i^{(q-1)}}-f_{j^{(q-1)}}})\prod_{\alpha=1}^{d}\xi^{p_{\alpha}i_{\pi_{\alpha}(m_{\alpha})}-p^{\prime}_{\alpha}j_{\pi_{\alpha}(m_{\alpha})}}=0.

According to the above discussion, we know that the ideal correlation property is available for any τ>0\tau>0. Now, we need to prove that for any 0ppqd10\leq p\neq p^{\prime}\leq q^{d}-1 and τ=0\tau=0,

Rp,p(0)=n=0qd1R𝐟np,𝐟np(0)=n=0qd1i=0qm1ξα=1d(pαpα)iπα(mα)=0.\displaystyle R_{\mathcal{{\color[rgb]{0,0,0}F}}^{p},\mathcal{{\color[rgb]{0,0,0}F}}^{p^{\prime}}}(0)=\sum_{n=0}^{q^{d}-1}R_{\mathbf{{\color[rgb]{0,0,0}f}}^{p}_{n},\mathbf{{\color[rgb]{0,0,0}f}}^{p^{\prime}}_{n}}(0)=\sum_{n=0}^{q^{d}-1}\sum_{i=0}^{q^{m}-1}\xi^{\sum_{\alpha=1}^{d}(p_{\alpha}\oplus p^{\prime}_{\alpha})i_{\pi_{\alpha}(m_{\alpha})}}=0.

Put d=α=1d(pαpα)xπα(mα)\textbf{d}=\sum_{\alpha=1}^{d}(p_{\alpha}\oplus p^{\prime}_{\alpha})\textbf{x}_{\pi_{\alpha}(m_{\alpha})}. Due to each xπα(mα)\textbf{x}_{\pi_{\alpha}(m_{\alpha})} is a balanced sequence, the linear combination of xπ1(m1),xπ2(m2),,xπd(md)\textbf{x}_{\pi_{1}(m_{1})},\textbf{x}_{\pi_{2}(m_{2})},\cdots,\textbf{x}_{\pi_{d}(m_{d})} is balanced, i.e., d is balanced. Then we have

Rp,p(0)=n=0qd1i=0qm1ξα=1d(pαpα)iπα(mα)=0,\displaystyle R_{\mathcal{{\color[rgb]{0,0,0}F}}^{p},\mathcal{{\color[rgb]{0,0,0}F}}^{p^{\prime}}}(0)=\sum_{n=0}^{q^{d}-1}\sum_{i=0}^{q^{m}-1}\xi^{\sum_{\alpha=1}^{d}(p_{\alpha}\oplus p^{\prime}_{\alpha})i_{\pi_{\alpha}(m_{\alpha})}}=0,

which completes the proof.

With the help of the above Theorem 4.1, the following (qv+d,qd,qm,qmv)(q^{v+d},q^{d},q^{m},q^{m-v})-ZCCSs can be obtained easily.

Theorem 4.2.

Let mm, dd, vv be positive integers with dmvd\leq m-v and v<mv<m. Let {I1,I2,,Id}\{I_{1},I_{2},\cdots,I_{d}\} be a partition of the set mv\mathbb{N}_{m-v}. Put πα\pi_{\alpha} be a permutation from mα\mathbb{N}_{m_{\alpha}} to IαI_{\alpha}, where |Iα|=mα\lvert I_{\alpha}\rvert=m_{\alpha} for any αd.\alpha\in\mathbb{N}_{d}. Also let

f(x)=\displaystyle f(x)= α=1dβ=1mα1aα,βxπα(β)xπα(β+1)+l=1q1u=1mhu,lxul+h0,\displaystyle\sum_{\alpha=1}^{d}\sum_{\beta=1}^{m_{\alpha}-1}a_{\alpha,\beta}x_{\pi_{\alpha}(\beta)}x_{\pi_{\alpha}(\beta+1)}+\sum_{l=1}^{q-1}\sum_{u=1}^{m}h_{u,l}x^{l}_{u}+h_{0},
fnp(x)=\displaystyle f^{p}_{n}(x)= f(x)+α=1dnαxπα(1)+b(α=1dpαxπα(mα)+k=1vpk+dxmv+k),\displaystyle f(x)+\sum_{\alpha=1}^{d}n_{\alpha}x_{\pi_{\alpha}(1)}+b\left(\sum_{\alpha=1}^{d}p_{\alpha}x_{\pi_{\alpha}(m_{\alpha})}+\sum_{k=1}^{v}p_{k+d}x_{m-v+k}\right),

where (n1,n2,,nd)(n_{1},n_{2},\cdots,n_{d}) and (p1,p2,,pv+d)(p_{1},p_{2},\cdots,p_{v+d}) are the qq-ary representations of nn and pp, respectively, aα,β,bqa_{\alpha,\beta},b\in\mathbb{Z}^{*}_{q} are both co-prime with qq, and hu,l,h0qh_{u,l},h_{0}\in\mathbb{Z}_{q}. Then {0,1,,qv+d1}\left\{\mathcal{F}^{0},\mathcal{F}^{1},\cdots,\mathcal{F}^{q^{v+d}-1}\right\} forms a (qv+d,qd,qm,qmv)(q^{v+d},q^{d},q^{m},q^{m-v})-ZCCS with p={𝐟0p,𝐟1p,,𝐟qd1p}\mathcal{F}^{p}=\left\{\mathbf{f}^{p}_{0},\mathbf{f}^{p}_{1},\cdots,\mathbf{f}^{p}_{q^{d}-1}\right\}.

Proof.

It is obvious that every sequence 𝐟np\mathbf{f}^{p}_{n} can be divided into qvq^{v} relevant sub-sequence by a concatenate method, i.e.,

𝐟np=𝐠n,0p|𝐠n,1p||𝐠n,qv1p,\mathbf{f}^{p}_{n}=\mathbf{g}^{p}_{n,0}|\mathbf{g}^{p}_{n,1}|\cdots|\mathbf{g}^{p}_{n,q^{v}-1},

Each 𝐠n,ep\mathbf{g}^{p}_{n,e} can be expressed as 𝐠n,0pxe\mathbf{g}^{p}_{n,0}\oplus x_{e}, i.e., 𝐠n,ep=𝐠n,0pxe,\mathbf{g}^{p}_{n,e}=\mathbf{g}^{p}_{n,0}\oplus x_{e}, where 𝐠n,ep\mathbf{g}^{p}_{n,e} denotes the (e+1)(e+1)-th sub-sequence of 𝐟np\mathbf{f}^{p}_{n}, xeqx_{e}\in\mathbb{Z}_{q} and e{0,1,2,,qv1}.e\in\{0,1,2,\cdots,q^{v}-1\}. For any 0<τqmv10<\tau\leq q^{m-v}-1 and any 0pqv+d10\leq p\leq q^{v+d}-1,

Rp(τ)\displaystyle R_{\mathcal{F}^{p}}(\tau) =n=0qd1R𝐟np(τ)\displaystyle=\sum^{q^{d}-1}_{n=0}R_{\mathbf{f}^{p}_{n}}(\tau)
=(1+k=1qv1ξukwk)n=0qd1R𝐠n,0p(τ)+(ξw1+k=1qv2ξukwk+1)n=0qd1R𝐠n,0p(qvτ)\displaystyle=\left(1+\sum^{q^{v}-1}_{k=1}\xi^{u_{k}-w_{k}}\right)\sum^{q^{d}-1}_{n=0}R_{\mathbf{g}^{p}_{n,0}}(\tau)+\left(\xi^{-w_{1}}+\sum^{q^{v}-2}_{k=1}\xi^{u_{k}-w_{k+1}}\right)\sum^{q^{d}-1}_{n=0}R^{*}_{\mathbf{g}^{p}_{n,0}}(q^{v}-\tau)
=0.\displaystyle=0.

By the way of Theorem 4.1, we conclude that the sequence set {𝐠0,0p,𝐠1,0p,,𝐠qd1,0p}\left\{\mathbf{g}^{p}_{0,0},\mathbf{g}^{p}_{1,0},\cdots,\mathbf{g}^{p}_{q^{d}-1,0}\right\} forms a GCS. Therefore, we know that {𝐟0p,𝐟1p,,𝐟qd1p}\left\{\mathbf{f}^{p}_{0},\mathbf{f}^{p}_{1},\cdots,\mathbf{f}^{p}_{q^{d}-1}\right\} satisfies the auto-correlation property for 0<τqmv10<\tau\leq q^{m-v}-1.

Next, we verify the cross-correlation property, i.e., for 0ppqv+d10\leq p\neq p^{\prime}\leq q^{v+d}-1 and for any 0<τ<qmv0<\tau<q^{m-v},

Rp,p(τ)\displaystyle R_{\mathcal{F}^{p},\mathcal{F}^{p^{\prime}}}(\tau)
=n=0qd1R𝐟np,𝐟np(τ)\displaystyle=\sum^{q^{d}-1}_{n=0}R_{\mathbf{f}^{p}_{n},\mathbf{f}^{p^{\prime}}_{n}}(\tau)
=(1+k=1qv1ξukwk)n=0qd1R𝐠n,0p,𝐠n,0p(τ)+(ξw1+k=1qv2ξukwk+1)n=0qd1R𝐠n,0p,𝐠n,0p(qvτ)\displaystyle=\left(1+\sum^{q^{v}-1}_{k=1}\xi^{u_{k}-w_{k}}\right)\sum^{q^{d}-1}_{n=0}R_{\mathbf{g}^{p}_{n,0},\mathbf{g}^{p^{\prime}}_{n,0}}(\tau)+\left(\xi^{-w_{1}}+\sum^{q^{v}-2}_{k=1}\xi^{u_{k}-w_{k+1}}\right)\sum^{q^{d}-1}_{n=0}R^{*}_{\mathbf{g}^{p^{\prime}}_{n,0},\mathbf{g}^{p}_{n,0}}(q^{v}-\tau)
=0,\displaystyle=0,

where 𝐟np=𝐠n,0p|(𝐠n,0pu1)||(𝐠n,0puqv1)\mathbf{f}^{p}_{n}=\mathbf{g}^{p}_{n,0}|(\mathbf{g}^{p}_{n,0}\oplus u_{1})|\cdots|(\mathbf{g}^{p}_{n,0}\oplus u_{q^{v}-1}) and 𝐟np=𝐠n,0p|(𝐠n,0pw1)||(𝐠n,0pwqv1)\mathbf{f}^{p^{\prime}}_{n}=\mathbf{g}^{p^{\prime}}_{n,0}|(\mathbf{g}^{p^{\prime}}_{n,0}\oplus w_{1})|\cdots|(\mathbf{g}^{p^{\prime}}_{n,0}\oplus w_{q^{v}-1}) with ui,wiq.u_{i},w_{i}\in\mathbb{Z}_{q}. The qq-ary representations of pp and pp^{\prime} are (p1,p2,,pv+d)(p_{1},p_{2},\cdots,p_{v+d}) and (p1,p2,,pv+d)(p^{\prime}_{1},p^{\prime}_{2},\cdots,p^{\prime}_{v+d}), respectively.

According to the definition of fnp(x)f^{p}_{n}(x), we get that

gn,0p(x)=h(x)+α=1dnαxπα(1)+bα=1dnαxπα(mα),g^{p}_{n,0}(x)=h(x)+\sum_{\alpha=1}^{d}n_{\alpha}x_{\pi_{\alpha}(1)}+b\sum_{\alpha=1}^{d}n_{\alpha}x_{\pi_{\alpha}(m_{\alpha})},

where h(x)=α=1dβ=1mα1aα,βxπα(β)xπα(β+1)+l=1q1u=1mvhu,lxul+h0h(x)=\sum_{\alpha=1}^{d}\sum_{\beta=1}^{m_{\alpha}-1}a_{\alpha,\beta}x_{\pi_{\alpha}(\beta)}x_{\pi_{\alpha}(\beta+1)}+\sum_{l=1}^{q-1}\sum_{u=1}^{m-v}h_{u,l}x^{l}_{u}+h_{0} with {I1,I2,,Id}\{I_{1},I_{2},\cdots,I_{d}\} a partition of the set mv\mathbb{N}_{m-v}. Obviously, according to Theorem 4.1, we get that

n=0qd1R𝐠n,0p,𝐠n,0p(τ)=0\sum^{q^{d}-1}_{n=0}R_{\mathbf{g}^{p}_{n,0},\mathbf{g}^{p^{\prime}}_{n,0}}(\tau)=0

and

n=0qd1R𝐠n,0p,𝐠n,0p(qvτ)=0.\sum^{q^{d}-1}_{n=0}R^{*}_{\mathbf{g}^{p^{\prime}}_{n,0},\mathbf{g}^{p}_{n,0}}(q^{v}-\tau)=0.

This shows that Rp,p(τ)=0.R_{\mathcal{F}^{p},\mathcal{F}^{p^{\prime}}}(\tau)=0. Similarly, we can prove that Rp,p(τ)=0R_{\mathcal{F}^{p},\mathcal{F}^{p^{\prime}}}(\tau)=0 for any qd+1τ<0.-q^{d}+1\leq\tau<0.

When τ=0,\tau=0, for any 0ppqv+d10\leq p\neq p^{\prime}\leq q^{v+d}-1,

Rp,p(0)=n=0qd1i=0qm1α=1dξb(pαpα)iπα(mα)k=1vξb(pk+dpk+d)imv+k=0.\displaystyle R_{\mathcal{F}^{p},\mathcal{F}^{p^{\prime}}}(0)=\sum^{q^{d}-1}_{n=0}\sum_{i=0}^{q^{m}-1}\prod_{\alpha=1}^{d}\xi^{b(p_{\alpha}\oplus p^{\prime}_{\alpha})i_{\pi_{\alpha}(m_{\alpha})}}\prod_{k=1}^{v}\xi^{b(p_{k+d}\oplus p^{\prime}_{k+d})i_{m-v+k}}=0.

The equality holds because ppp\neq p^{\prime} leads to the existence of at least one index sv+ds\in\mathbb{N}_{v+d} such that pspsp_{s}\neq p^{\prime}_{s} and gcd(b,q)=1.gcd(b,q)=1. By the above two cases, we get that R𝐟p,𝐟p(τ)=0R_{\mathbf{f}^{p},\mathbf{f}^{p^{\prime}}}(\tau)=0 for any qd<τ<qd-q^{d}<\tau<q^{d} and 0ppqv+d.0\leq p\neq p^{\prime}\leq q^{v+d}. Thus we prove that {0,1,,qv+d1}\left\{\mathcal{F}^{0},\mathcal{F}^{1},\cdots,\mathcal{F}^{q^{v+d}-1}\right\} is a (qv+d,qd,qm,qmv)(q^{v+d},q^{d},q^{m},q^{m-v})-ZCCS with p={𝐟0p,𝐟1p,,𝐟qd1p}\mathcal{F}^{p}=\left\{\mathbf{f}_{0}^{p},\mathbf{f}_{1}^{p},\cdots,\mathbf{f}_{q^{d}-1}^{p}\right\}.

Remark 4.3.

According to Lemma 2.5, we know the ZCCS constructed from Theorem 4.2 is optimal since M/N=qv+d/qd=L/ZM/N=q^{v+d}/q^{d}=L/Z is available. In particular, when v=0v=0, the Theorem 4.2 changes into Theorem 4.1.

Example 4.4.

Let a1,1=b=1a_{1,1}=b=1, q=4q=4, m=3m=3, v=1v=1, d=1d=1, m1=2m_{1}=2, (π1(1),π1(2))=(2,1)(\pi_{1}(1),\pi_{1}(2))=(2,1), h0=1h_{0}=1, (h1,1,h2,1,h3,1)=(1,2,2)(h_{1,1},h_{2,1},h_{3,1})=(1,2,2), (h1,2,h2,2,h3,2)=(3,1,0)(h_{1,2},h_{2,2},h_{3,2})=(3,1,0) and (h1,3,h2,3,h3,3)=(2,1,3)(h_{1,3},h_{2,3},h_{3,3})=(2,1,3) in Theorem 4.2. Then {0,1,,15}\left\{\mathcal{F}^{0},\mathcal{F}^{1},\cdots,\mathcal{F}^{15}\right\} forms a quaternary (16,4,64,16)(16,4,64,16)-ZCCS, where 3\mathcal{F}^{3} and 10\mathcal{F}^{10} are given by

[𝐟03𝐟13𝐟23𝐟33]=[1212133132323311121213313232331112121331323233111212133132323311121220021010220012122002101022001212200210102200121220021010220012123113323211331212311332321133121231133232113312123113323211331212022010100022121202201010002212120220101000221212022010100022]\begin{bmatrix}\mathbf{f}^{3}_{0}\\ \mathbf{f}^{3}_{1}\\ \mathbf{f}^{3}_{2}\\ \mathbf{f}^{3}_{3}\end{bmatrix}=\begin{bmatrix}1212133132323311121213313232331112121331323233111212133132323311\\ 1212200210102200121220021010220012122002101022001212200210102200\\ 1212311332321133121231133232113312123113323211331212311332321133\\ 1212022010100022121202201010002212120220101000221212022010100022\par\end{bmatrix}
[𝐟010𝐟110𝐟210𝐟310]=[1133121231133232331130301331101011331212311332323311303013311010113323231331212133110101311303031133232313312121331101013113030311333030311310103311121213313232113330303113101033111212133132321133010113310303331123233113212111330101133103033311232331132121]\begin{bmatrix}\mathbf{f}^{10}_{0}\\ \mathbf{f}^{10}_{1}\\ \mathbf{f}^{10}_{2}\\ \mathbf{f}^{10}_{3}\end{bmatrix}=\begin{bmatrix}1133121231133232331130301331101011331212311332323311303013311010\\ 1133232313312121331101013113030311332323133121213311010131130303\\ 1133303031131010331112121331323211333030311310103311121213313232\\ 1133010113310303331123233113212111330101133103033311232331132121\par\end{bmatrix}

The sum of aperiodic auto-correlation of sequences 3\mathcal{F}^{3} is presented in Figure 2 and the sum of aperiodic cross-correlation of sequences 3\mathcal{F}^{3} and 10\mathcal{F}^{10} is presented in Figure 2.

Refer to caption
Figure 1: Auto-correlation of 3\mathcal{F}^{3}
Refer to caption
Figure 2: Cross-correlation of F3F^{3} and 10\mathcal{F}^{10}

5 Comparison

Table 1: Summary of Existing MOCSs
Source Based on Parameters Conditions
[13] GBF (2k,2k,2m)(2^{k},2^{k},2^{m}) 0<km0<k\leq m
[14] GBF (2k,2k+1,2m+2t)(2^{k^{\prime}},2^{k+1},2^{m}+2^{t}) 0<k,tm;0kt;kk10<k,t\leq m;0\leq{k^{\prime}}\leq t;{k^{\prime}}\leq{k-1}
[14] GBF (2k,2k+1,2m+2t)(2^{k},2^{k+1},2^{m}+2^{t}) 0<ktm0<k\leq t\leq m
[15] GBF (2k,2k+1,2m+2t)(2^{k},2^{k+1},2^{m}+2^{t}) 0t<km0\leq t<k\leq m
[16] GBF (2k+1,2k+1,2m1+2m3)(2^{k+1},2^{k+1},2^{m-1}+2^{m-3}) km5k\leq m-5
[17] qq-ary function (pn+1,pn+1,pm)(p^{n+1},p^{n+1},p^{m}) pp is a prime number, 0<n<m0<n<m
[18] MVF (i=1kpini,i=1kpini,i=1kpimi)(\prod^{k}_{i=1}p_{i}^{n_{i}},\prod^{k}_{i=1}p_{i}^{n_{i}},\prod^{k}_{i=1}p_{i}^{m_{i}}) pi|q,p_{i}|q, qq is a finite positive integer, iki\in\mathbb{N}_{k},0<nimi0<n_{i}\leq m_{i}
[20] PU matrix (M,M,Mm)(M,M,M^{m}) m>0m>0, MM is the order of PU matrix
[21] PU matrix (M,M,Nm)(M,M,N^{m}) N|M,m>0N|M,m>0, MM is the order of PU matrix
[22] Kronecker product (M1M2,M1M2,N1N2)(M_{1}M_{2},M_{1}M_{2},N_{1}N_{2}) (M1,M1,N1)(M_{1},M_{1},N_{1})-CCC and (M2,M2,N2)(M_{2},M_{2},N_{2})-CCC, M1,M2,N1,N2M1,M2,N_{1},N_{2} are four even numbers
[23] Kronecker product (M,M,MN1N2)(M,M,MN_{1}N_{2}) (M,M,N1)(M,M,N_{1})-CCC and (M,M,N2)(M,M,N_{2})-CCC, 2M,N1,N22\leq M,N_{1},N_{2}
[24] Extended correlation (MP,MP,2N1)(MP,MP,2N-1) (M,M,N)(M,M,N)-CCC and (P,P,N)(P,P,N)- CCC, 2M,P,N2\leq M,P,N
[40] concatenation (M1M2/2,M1M2/2,2L1L2)(M_{1}M_{2}/2,M_{1}M_{2}/2,2L_{1}L_{2}) M1,M2M_{1},M_{2} are two even numbers, L1,L2L_{1},L_{2} are two positive integers
Theorem 3.6 EBF (qd,qv+d,amqm1+k=1v1akqmv+k1+qu)(q^{d^{\prime}},q^{v+d},a_{m}q^{m-1}+\sum^{v-1}_{k=1}a_{k}q^{m-v+k-1}+q^{u}) 0<d<d<m0<d^{\prime}<d<m, akqa_{k}\in\mathbb{Z}_{q}, amqa_{m}\in\mathbb{Z}^{*}_{q}, and q2q\geq 2 is a positive integer
Table 2: Summary of Existing ZCCSs
Source Based on Parameters Conditions Optimal Remark
[19] GBF (2k+1,2k+1,32m,2m+1)(2^{k+1},2^{k+1},3\cdot 2^{m},2^{m+1}) 0<km0<k\leq m ×\times Direct
[19] GBF (2k+2,2k+2,2mL,2mL)(2^{k+2},2^{k+2},2^{m}\cdot L,2^{m}\cdot L^{\prime}) L>L2L^{\prime}>\frac{L}{2} \surd Direct
[19] GBF (2k+1,2k+1,3×2m,2m+1)(2^{k+1},2^{k+1},3\times 2^{m},2^{m+1}) m>0,k>0m>0,k>0 \surd Direct
[26] GBF (2k+v,2k,2m,2mv)(2^{k+v},2^{k},2^{m},2^{m-v}) vm,kmvv\leq m,k\leq m-v \surd Direct
[28] GBF (2n,2n,2m1+2,2m2+2π(m3)+1)(2^{n},2^{n},2^{m-1}+2,2^{m-2}+2^{\pi(m-3)}+1) π\pi is a permutation of m2\mathbb{N}_{m-2}, m3m\geq 3 \surd Direct
[28] GBF (2n+1,2n+1,2m1+2,2m2+2π(m3)+1)(2^{n+1},2^{n+1},2^{m-1}+2,2^{m-2}+2^{\pi(m-3)+1}) π\pi is a permutation of m2\mathbb{N}_{m-2}, vmv\leq m, q2q\geq 2, m2m\geq 2 \surd Direct
[29] GBF (2n+p,2n,2m,2mp)(2^{n+p},2^{n},2^{m},2^{m-p}) pmp\leq m \surd Direct
[30] GBF (2k+p+1,2k+1,2m,2mp)(2^{k+p+1},2^{k+1},2^{m},2^{m-p}) k+pmk+p\leq m \surd Direct
[31] GBF (2k+1,2k+1,3(2m1+2m3),2(2m1+2m3))(2^{k+1},2^{k+1},3(2^{m-1}+2^{m-3}),2(2^{m-1}+2^{m-3})) m5m\geq 5, k>0k>0 \surd Direct
[31] GBF (R2k+l,2k+1,R(2m1+2m3),2m1+2m3)(R2^{k+l},2^{k+1},R(2^{m-1}+2^{m-3}),2^{m-1}+2^{m-3}) m5m\geq 5, k>0k>0, and RR is even \surd Direct
[34] BH Matrix (MP,M,MP,M)(MP,M,MP,M) M,PM,P are the order of BH matrix \surd Indirect
[34] Optimal ZPU Matrix (MP,M,MN+1P,MN+1)(MP,M,M^{N+1}P,M^{N+1}) M,PM,P are the order of BH matrix, N>0N>0 \surd Indirect
[35] Hadamard product (2n+1,2n+1,N,Z)(2^{n+1},2^{n+1},N,Z) N3,N\geq 3, NN is odd, NZ=1\lfloor\frac{N}{Z}=1\rfloor \surd Direct
[35] ZCP (2m,2m,L,Z)(2^{m},2^{m},L,Z) ZL2Z\geq\lceil\frac{L}{2}\rceil \surd Direct
[37] PBF (i=1lpi2n+1,2n+1,2mi=1lpi,2m)(\prod^{l}_{i=1}p_{i}2^{n+1},2^{n+1},2^{m}\prod^{l}_{i=1}p_{i},2^{m}) pi\forall p_{i} is a prime, n,m>0n,m>0 ×\times Direct
[38] PBF (p2k+1,2k+1,p2m,2m)(p2^{k+1},2^{k+1},p2^{m},2^{m}) pp is a prime \surd Direct
[39] MVF (i=1kpi2,i=1kpi,i=1kpimi,i=1kpimi1)(\prod^{k}_{i=1}p_{i}^{2},\prod^{k}_{i=1}p_{i},\prod^{k}_{i=1}p_{i}^{m_{i}},\prod^{k}_{i=1}p_{i}^{m_{i}-1}) pip_{i} is a prime number, mi>0m_{i}>0 \surd Direct
[40] EBF (qv+1,q,qm,qmv)(q^{v+1},q,q^{m},q^{m-v}) q2q\geq 2, vmv\leq m \surd Direct
Theorem 4.2 EBF (qv+d,qd,qm,qmv)(q^{v+d},q^{d},q^{m},q^{m-v}) v<mv<m, dmvd\leq m-v, q2q\geq 2 is a positive integer \surd Direct

Table 1 and Table 2 show the existence of constructions of MOCSs and ZCCSs in previous papers. The notation “\surd” (resp. “×\times”) in Table 2 means the corresponding ZCCSs are optimal (resp. non-optimal).

From Table 1, we know that all GBFs based MOCSs have lengths of 2m2^{m} or 2m+2t2^{m}+2^{t} [13, 14, 15, 16]. The constructions in [17] and [18] generate MOCSs with flexible lengths by using qq-ary functions and MVFs, respectively. But both of these methods only have power of two lengths when q=2.q=2. Other methods for designing MOCSs include PU matrices [20, 21], interleaving, Kronecker product [23, 22], extended correlation [24] and concatenation [40]. However, These methods are hard to be applied in engineering due to their large space and time requirements in hardware generation. Compablack with the previous constructions, our results have flexible lengths and non-power-of-two lengths when q=2q=2.

From Table 2, we know the constructions of ZCCSs in the literature mainly divided into direct and indirect approaches. The direct methods are mainly based on GBFs [28, 29, 30, 26, 19, 31], Pseudo-Boolean functions (PBFs) [37, 38], EBFs [40] and MVFs [39]. In fact, all existing ZCCSs constructed based on GBFs and PBFs have multiples of two lengths and the ZCCSs based on MVFs have limited set sizes. For other indirect methods, some researchers provided ZCCSs by Hadamard product [35], Z-complementary pairs (ZCPs) [35], BH matrix and optimal Z-paraunitary (ZPU) matrices [34]. These constructs are difficult to implement on hardware. In the case of the same length and ZCZ width, compablack to [40], the proposed ZCCSs have larger set sizes or lengths. Moreover, our ZCCSs can accommodate more users on the basis of achieving the optimality.

6 Conclusion

In this paper, we mainly present a construction of optimal ZCCSs and a construction of MOCSs with flexible lengths based on EBFs. According to the arbitrariness of qq, the proposed MOCSs cover the result in [18] and have non-power-of-two lengths when q=2q=2. Moreover, the resulting MOCSs can be obtained directly from EBFs without using tedious sequence operations. The proposed MOCSs with flexible lengths find many applications in wireless communication due to its good correlation properties. The proposed ZCCSs are optimal with respect to the theoretical upper bound and we can obtain a new class of ZCCSs of arbitrary lengths with large zero correlation zone width.

Declarations

Funding This research was supported by the National Natural Science Foundation of China (Grant No. 12171241)
Conflicts of Interest The authors declare that they have no conflicts of interest.
Ethics approval and consent to participate Not applicable.
Consent for publication Not applicable.

References

  • [1] Golay M.J.E.: Complementary series. IEEE Trans. Inf. Theory. 7(2), 82-87 (1961).
  • [2] Tseng C.C. and Liu C.: Complementary sets of sequences. IEEE Trans. Inf. Theory. 18(5), 644-652 (1972).
  • [3] Suehiro N., and Hatori M.: N-shift cross-orthogonal sequences. IEEE Trans. Inf. Theory. 34(1), 143-146 (1988).
  • [4] Tasinkevych Y., Trots I., and Nowicki A.: Mutually orthogonal Golay complementary sequences in the simultaneous synthetic aperture method for medical ultrasound diagnostics. Ultrasonics. 115 (2021).
  • [5] Zhang Z., Tian F., Zeng F., Ge L., and Xuan G.: Mutually orthogonal complementary pairs for OFDM-CDMA systems. 12th Int. conf. Signal Process, HangZhou. 1761-1765 (2014).
  • [6] Aparicio J., and Shimura T.: Asynchronous detection and identification of multiple users by multi-carrier modulated complementary set of sequences. IEEE Access. 6, 22054-22069 (2018).
  • [7] Liu Z., Guan Y.L., and Parampalli U.: New complete complementary codes for peak-to-mean power control in multi-carrier CDMA. IEEE Trans. Commun. 62(3), 1105-1113 (2014).
  • [8] Tseng S.M. and Bell M.R.: Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary sets of sequences,” IEEE Trans. Commun. 48(1), 53-59 (2000).
  • [9] Davis J. A., and Jedwab J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Mu¨\rm\ddot{u}ller codes. IEEE Trans. Inf. Theory. 45(7), 2397-2417 (1999).
  • [10] Paterson K.G.: Generalized Reed-Mu¨\rm\ddot{u}ller codes and power control in OFDM modulation. IEEE Trans. Inf. Theory. 46(1), 104-120 (2000).
  • [11] Li Y., and Chu W. B.: More Golay sequences. IEEE Trans. Inf. Theory. 51(3), 1141-1145 (2005).
  • [12] Chen C. Y., Wang C. H., and Chao C. C.: Complementary sets and Reed-Mu¨\rm\ddot{u}ller codes for peak-to-average power ratio blackuction in OFDM. in Proc. 16th Int. Symp. AAECC. 3857, 317-327 (2006).
  • [13] Rathinakumar A., and Chaturvedi A.K.: Complete mutually orthogonal golay complementary sets from Reed-Mu¨\rm\ddot{u}ller codes. IEEE Trans. Inf. Theory. 54(3), 1339-1346 (2008).
  • [14] Wu S., Chen C., and Li Z.: How to construct mutually orthogonal complementary sets with non-power-of-two lengths?. IEEE Trans. Inf. Theory. 67(6), 3464-3472 (2021).
  • [15] Tian L., Lu X., Xu C., and Li Y.: New mutually orthogonal complementary sets with non-power-of-two lengths. IEEE Commun. Lett. 28, 359-363 (2021).
  • [16] Kumar P., Majhi S., and Paul S.: A direct construction of GCP and binary CCC of length non-power-of-two. arXiv:2109.08567 (2021).
  • [17] Sarkar P., Li C., Majhi S., and Liu Z.: New correlation bound and construction of quasi-complementary code sets. arXiv: 2204.13538 (2022)
  • [18] Sarkar P., Liu Z., and Majhi S.: Multivariable function for new complete complementary codes with arbitrary lengths. arXiv:2102.10517 (2021).
  • [19] Xie C., Sun Y., and Ming Y.: Constructions of optimal binary Z-complementary sequence sets with large zero correlation zone. IEEE Signal Process. Lett. 28, 1694-1698 (2021).
  • [20] Das S., Budišin S., Majhi S., Liu Z., and Guan Y.L. : A multiplier-free generator for polyphase complete complementary codes. IEEE Trans. Signal Process. 66(5), 1184-1196 (2018).
  • [21] Das S., Majhi S., and Liu Z.: A novel class of complete complementary codes and their applications for APU matrices. IEEE Signal Process. Lett. 25(9), 1300-1304 (2018).
  • [22] Jin Y., and Koga H.: Basic properties of the complete complementary codes using the DFT matrices and the Kronecker products. In Proc. 2008 International Symp. Inf. Theory and Its Appl. 1-6 (2008).
  • [23] Gu Z., Zhou Z., Adhikary A., Feng Y., and Fan P.: Asymptotically optimal Golay-ZCZ sequence sets with flexible length. arXiv:2112.08678 (2021).
  • [24] Liu K., Liu J., and Ni J.: Generalized construction of Z-complementary code sets of odd length. IEEE Signal Process. Lett. 30, 354-358 (2023).
  • [25] Fan P., Yuan W., and Tu Y.: Z-complementary binary sequences. IEEE Signal Process. Lett. 14(8), 509-512 (2007).
  • [26] Wu S., and Chen C.: Optimal Z-complementary sequence sets with good peak-to-average power-ratio property. IEEE Signal Process. Lett. 25(10), 1500-1504 (2018).
  • [27] Wu S. W., Sahin A., Huang Z. M., and Chen C. Y.: Z-complementary code sets with flexible lengths from generalized Boolean functions. IEEE Access. 9, 4642-4652 (2021).
  • [28] Sarkar P., Roy A., and Majhi S.: Construction of Z-complementary code sets with non-power-of-two lengths based on generalized Boolean functions. IEEE Commun. Lett. 24(8), 1607-1611 (2020).
  • [29] Sarkar P., and Majhi S.: A direct construction of optimal ZCCS with maximum column sequence PMEPR two for MC-CDMA system. IEEE Commun. Lett. 25(2), 337-341 (2021).
  • [30] Sarkar P., Majhi S., and Liu Z.: Optimal Z-complementary code set from generalized Reed-Mu¨\rm\ddot{u}ller codes. IEEE Trans. Commun. 67(3), 1783-1796 (2019).
  • [31] Ghosh G., Majhi S., Paul S.: Construction of optimal binary Z-complementary code sets with new lengths. arXiv:2301.03294 (2023).
  • [32] Tian L., Li Y., Zhou Z., and Xu C.: Two classes of Z-complementary code sets with good cross-correlation subsets via paraunitary matrices. IEEE Trans. Commun. 69(5), 2935-2947 (2021).
  • [33] Yu T., Adhikary A. R., Wang Y., and Yang Y.: New class of optimal Z-complementary code sets. IEEE Signal Process. Lett. 29(5), 1477-1481 (2022).
  • [34] Das S., Parampalli U., Majhi S., Liu Z., and S. Budišin.: New optimal Z-complementary code sets based on generalized paraunitary matrices. IEEE Trans. Commun. 68, 5546-5558 (2020).
  • [35] Adhikary A., and Majhi S.: New construction of optimal aperiodic Z-complementary sequence sets of odd-lengths. Electron. Lett. 55(19), 1043-1045 (2019).
  • [36] Li Y., and Xu C.: ZCZ aperiodic complementary sequence sets with low column sequence PMEPR. IEEE Commun. Lett. 19(8), 1303-1306 (2015).
  • [37] Ghosh G., Sudhan M., Palash S., and Ashish K.U.: Direct construction of optimal Z-complementary code sets for all possible even length by using pseudo-Boolean functions. IEEE Signal Process. Lett. 29, 872-876 (2022).
  • [38] Sarkar P., Majhi S., and Liu Z.: Pseudo-Boolean functions for optimal Z-complementary code sets with flexible lengths. IEEE Signal Process. Lett. 28, 1350-1354 (2021).
  • [39] Roy A., Majhi S.: Construction of inter-group complementary code set and 2-D Z-complementary array code set based on multivariable functions. arXiv:2109.00970 (2021).
  • [40] Shen, B., Meng, H., Yang, Y. et al. New constructions of Z-complementary code sets and mutually orthogonal complementary sequence sets. Des. Codes Cryptogr. 91, 353-371 (2023).
  • [41] Feng L., Fan P., and Zhou X.: Lower bounds on correlation of Z-complementary code sets. Wirel. Pers. Commun. 72(2), 1475-1488 (2013).
  • [42] Chen C.: Complementary sets of non-power-of-two length for peak-to-average power ratio blackuction in OFDM. IEEE Trans. Inf. Theory. 62(12), 7538-7545 (2016).
  • [43] Chen C.: A novel construction of complementary sets with flexible lengths based on Boolean functions. IEEE Commun. Lett. 22(2), 260-263 (2018).
  • [44] Chen C., Wang C.H., and Chao C.C.: Complete complementary codes and generalized Reed-Mu¨\rm\ddot{u}ller codes. IEEE Commun. Lett. 12(11), 849-851 (2008).