This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

New Construction of Optimal Type-II Binary Z-Complementary Pairs

Zhi Gu,  Zhengchun Zhou,  Qi Wang,  and Pingzhi Fan Z. Gu is with the School of Information Science and Technology, Southwest Jiaotong University, Chengdu, 611756, China. E-mail: [email protected]. Zhou is with the School of Mathematics, Southwest Jiaotong University, Chengdu, 611756, China. E-mail: [email protected]. Wang is with the Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. E-mail: [email protected]. Fan is with the Institute of Mobile Communications, Southwest Jiaotong University, Chengdu, 611756, China. E-mail: [email protected].
Abstract

A pair of sequences is called a Z-complementary pair (ZCP) if it has zero aperiodic autocorrelation sums at each of the non-zero time-shifts within a certain region, called the zero correlation zone (ZCZ). ZCPs are categorised into two types: Type-I ZCPs and Type-II ZCPs. Type-I ZCPs have the ZCZ around the in-phase position and Type-II ZCPs have the ZCZ around the end-shift position. Till now only a few constructions of Type-II ZCPs are reported in the literature, and all have lengths of the form 2m±12^{m}\pm 1 or N+1N+1 where N=2a10b26cN=2^{a}10^{b}26^{c} and a,b,ca,~{}b,~{}c are non-negative integers. In this paper, we propose a recursive construction of ZCPs based on concatenation of sequences. Inspired by Turyn’s construction of Golay complementary pairs, we also propose a construction of Type-II ZCPs from known ones. The proposed constructions can generate optimal Type-II ZCPs with new flexible parameters and Z-optimal Type-II ZCPs with any odd length. In addition, we give upper bounds for the PMEPR of the proposed ZCPs. It turns out that our constructions lead to ZCPs with low PMEPR.

Index Terms:
Aperiodic correlation, Golay sequence, complementary pair, peak-to-mean envelope power ratio (PMEPR), Z-complementary pair.

I Introduction

A PAIR of sequences is called a Golay complementary pair (GCP), if their aperiodic autocorrelation sums (AACSs) are zero everywhere, except at the zero shift [1], [2]. GCPs were first introduced by Golay in 1961 in the context of an optical problem in multislit spectrometry. Since then, GCPs have found extensive engineering applications for its ideal correlation properties. For example, GCPs are useful in inter-symbol interference channel estimation [3, 4], radar waveform designs [5, 6, 7], asynchronous multi-carrier code-division multiple access (MC-CDMA) communications [8, 9], and peak-to-mean envelope power ratio (PMEPR) control in multi-carrier communications [10, 11].

The main drawback of the GCPs is their limited availability for various lengths. It was conjectured that binary GCPs are available only for lengths of the form 2a10b26c2^{a}10^{b}26^{c} where a,b,ca,~{}b,~{}c are non-negative integers [12]. By computer search, the conjecture has been verified for binary GCPs of length up to 100100 [12]. In search of binary sequence pairs of other lengths, Fan, Yuan and Tu [13] proposed the concept of Z-complementary pair (ZCP) in 2007, which is a pair of sequences whose aperiodic autocorrelation sums are zero not everywhere but within a certain region called zero correlation zone (ZCZ). Based on their lengths, binary ZCPs are categorised into two types: odd-length (OB-ZCPs) and even-length ZCPs (EB-ZCPs). It was further conjectured by Fan, Yuan and Tu [13] that “For OB-ZCPs, the maximum zero correlation zone is given by Zmax=(N+1)/2Z_{\max}=(N+1)/2, and for EB-ZCPs, given that the lengths N2a10b26cN\neq 2^{a}10^{b}26^{c}, the ZCZ is upper bounded by N2N-2.” In 2011 Li et al. [14] proved the conjecture for OB-ZCPs. However, a systematic construction of OB-ZCPs was still unknown.

In 2014, Liu, Udaya and Guan [15] made remarkable progress towards this open problem and proposed a systematic construction of OB-ZCPs. The generated optimal sequence pairs achieve the maximum ZCZ of width (N+1)/2(N+1)/2 as well as the minimum AACSs magnitude of 22 at each time-shift outside the ZCZ [15]. The construction of optimal OB-ZCPs in [15] was given by applying the insertion method on binary Golay-Davis-Jedwab (GDJ) sequences. In 2014, Liu, Udaya and Guan [16] also confirmed the conjecture for EB-ZCPs that ZmaxN2Z_{\max}\leq N-2. Recently, a lot of work has been done for constructing EB-ZCPs (for example, see [17, 18, 19]). Besides the lengths, in [15] Liu, Udaya and Guan further categorised ZCPs based on their correlation properties: Type-I ZCPs are sequence pairs having zero AACSs at each time-shift within the ZCZ around the in-phase position, while Type-II ZCPs are those having zero AACSs at each time-shift within the ZCZ around the end-shift position. Type-I ZCPs can be effectively used in quasi-synchronous CDMA (QS-CDMA) systems [20, 21, 22, 23, 24, 25, 26], which are tolerant of small-signal arrival delays. On the other hand, Type-II ZCPs are useful in wide-band wireless communication systems where the minimum interfering-signal delay can assume a large value. This is because the ZCZ of Type-II ZCP is designed for large time-shifts, and thus the asynchronous interfering signals arriving at the receiver after large delays can be rejected. A typical example of such a channel with large delays is the sparsely populated rural and mountainous areas [25]. In some other important applications, like designing preamble sequences in OFDMA systems [27], where PMEPR plays a very important role, Type-II ZCPs may be advantageous over Type-I ZCPs because of its huge availability with flexible lengths. Moreover, Type-I and Type-II ZCPs can also be used to construct complementary sets [28] and Z-complementary sets [29].

Till now there are only a few constructions of Type-I and Type-II constructions reported in the literature [15, 16, 17, 18, 19, 30, 31]. Note that most of the constructions are based on GCPs and thereby have lengths of the form of 2a+2v2^{a}+2^{v}. Recently, based on generalized Boolean functions, Chen [17] gave a direct construction of those Type-I ZCPs having lengths of the form 2m1+2v2^{m-1}+2^{v} and a ZCZ of width 2π(v+1)1+2v2^{\pi(v+1)-1}+2^{v}, where π\pi is a permutation over {1,2,,m1}\{1,2,\dots,m-1\}. Adhikary et al. [30, 31] made further progress towards this problem and proposed a systematic construction of Type-I and Type-II ZCPs of lengths of the form 2a10b26c+12^{a}10^{b}26^{c}+1, by applying the insertion method on binary GCPs. Very recently, Shen et al. [32] constructed Type-II ZCP of length 2m+32^{m}+3, by inserting 3 elements into GDJ sequences. An overview of known Type-II binary ZCPs is given in Table I, together with their corresponding ZCZ width. For the definitions of Z-optimality and optimality of binary ZCPs, see Definitions 6 and 7, respectively.

TABLE I: Existing and proposed binary Type-II ZCPs.
Ref. Length ZCZ width Magnitude outside the ZCZ (vv) Remarks on Z-optimality Remarks on optimality
[15] 2m+12^{m}+1 2m1+12^{m-1}+1 22 Z-optimal Optimal
[15] 2m12^{m}-1 2m12^{m-1} 22 Z-optimal Optimal
[30] 2a10b26c+1,2^{a}10^{b}26^{c}+1, a1~{}a\geq 1 2a110b26c+12^{a-1}10^{b}26^{c}+1 22 Z-optimal Optimal
[30] 10b+1,10^{b}+1, b1~{}b\geq 1 4×10b1+14\times 10^{b-1}+1 22 Not Z-optimal Not optimal
[30] 26c+1,26^{c}+1, c1~{}c\geq 1 12×26c1+112\times 26^{c-1}+1 22 Not Z-optimal Not optimal
[30] 10b26c+1,10^{b}26^{c}+1, b,c1~{}b,~{}c\geq 1 12×10b26c1+112\times 10^{b}26^{c-1}+1 22 Not Z-optimal Not optimal
[32] 2m+32^{m}+3 2m1+22^{m-1}+2 v{2,6}v\in\{2,6\} Z-optimal Not optimal
Theorem 1 2N+1,2N+1, N+N\in\mathbb{Z}^{+} N+1N+1 2v2(2N1)2\leq v\leq 2(2N-1) Z-optimal Optimal when |ρ𝐚(τ)+ρ𝐛(τ)|=1|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)|=1
Remark 3 2N1,2N-1, N+N\in\mathbb{Z}^{+} NN 2v2(2N3)2\leq v\leq 2(2N-3) Z-optimal Not optimal
Theorem 2 2kN+2k1,2^{k}N+2^{k-1}, N+,k2N\in\mathbb{Z}^{+},~{}k\geq 2 2kN+2k1N2^{k}N+2^{k-1}-N 4v2k(2N1)4\leq v\leq 2^{k}(2N-1) Z-optimal when N=1N=1 Not optimal
Theorem 3 3N,3N, N=2a10b26cN=2^{a}10^{b}26^{c} 3N13N-1 2N2N Z-optimal Optimal when N=1,2N=1,2
Theorem 3 14N,14N, N=2a10b26cN=2^{a}10^{b}26^{c} 14N114N-1 4N4N Z-optimal Optimal when N=1N=1
Theorem 5 2N1,2N-1, N=2a10b26cN=2^{a}10^{b}26^{c} NN 22 Z-optimal Optimal
Theorem 6 2N+1,2N+1, N=2a10b26cN=2^{a}10^{b}26^{c} N+1N+1 22 Z-optimal Optimal

To the best of our knowledge, the maximum ZCZ width for binary Type-II ZCPs of lengths of the form 10b+110^{b}+1, 26c+126^{c}+1 and 10b26c+110^{b}26^{c}+1 are 4×10b1+14\times 10^{b-1}+1, 12×26c1+112\times 26^{c-1}+1 and 12×10b26c1+112\times 10^{b}26^{c-1}+1, respectively. Furthermore, there is no construction of Type-II EB-ZCPs in the literature.

Motivated by the constructions reported in [15, 30], in search of ZCPs with larger ZCZ widths, we propose an iterative construction of Type-II binary ZCPs of both even and odd lengths. Our proposed construction can generate Z-optimal Type-II OB-ZCPs having lengths of any odd length, and also optimal Type-II EB-ZCPs for certain cases. In fact, our proposed construction can generate Type-II ZCPs with more flexible lengths which were unknown before. As a comparison with previous results, our results are given in Table I. We further list down the “best possible” ZCPs up to length 3030 in Table II. The term “best possible”, means that the ZCPs have the closest possible autocorrelation properties to those of the optimal Type-II ZCPs. Note that the sequence pairs, whose lengths are given in bold letters in Table II, were not reported before.

The rest of this paper is organized as follows. In Section II, we introduce some basic definitions and preliminary results about ZCPs, and the peak-to-mean envelope power ratio (PMEPR) control problem in code-keying MC communications. In Section III, we propose a generic construction of Type-II ZCPs, which allows generating both OB-ZCPs and EB-ZCPs. In addition, we propose a construction of optimal Type-II OB-ZCPs in Section IV. In Section V, we analyse the PMEPR of the proposed ZCPs. Finally, Section VI concludes the paper by some future work.

TABLE II: “Best possible” Type-II sequence pairs of length up to 3030
NN Type (𝐚𝐛)\left(\begin{array}[]{c}\mathbf{a}\\ \mathbf{b}\\ \end{array}\right) |ρ𝐚(τ)+ρ𝐛(τ)|τ=0N1\left|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)\right|_{\tau=0}^{N-1}
2 GCP (+++)\bigg{(}\begin{matrix}++\\ +-\end{matrix}\bigg{)} (4,0)
3 Optimal OB-ZCP (+++++)\bigg{(}\begin{matrix}+++\\ ++-\end{matrix}\bigg{)} (6,2,0)
4 GCP (++++++)\bigg{(}\begin{matrix}+++-\\ ++-+\end{matrix}\bigg{)} (8,𝟎3)(8,\mathbf{0}_{3})
5 Optimal OB-ZCP (+++)\bigg{(}\begin{matrix}---++\\ --+--\end{matrix}\bigg{)} (10,𝟐2,𝟎2)(10,\mathbf{2}_{2},\mathbf{0}_{2})
6 Optimal EB-ZCP (+++++++++)\bigg{(}\begin{matrix}++++--\\ +++-++\end{matrix}\bigg{)} (12,4,𝟎4)(12,4,\mathbf{0}_{4})
7 Optimal OB-ZCP (++++++)\bigg{(}\begin{matrix}--+-+--\\ --++-++\end{matrix}\bigg{)} (14,𝟐3,𝟎3)(14,\mathbf{2}_{3},\mathbf{0}_{3})
8 GCP (++++++++++)\bigg{(}\begin{matrix}+++-++-+\\ +++---+-\end{matrix}\bigg{)} (16,𝟎7)(16,\mathbf{0}_{7})
9 Optimal OB-ZCP (+++++++++++)\bigg{(}\begin{matrix}+-+++++--\\ +-++---++\end{matrix}\bigg{)} (18,𝟐4,𝟎4)(18,\mathbf{2}_{4},\mathbf{0}_{4})
10 GCP (+++++++++++++)\bigg{(}\begin{matrix}++-+-+--++\\ ++-+++++--\end{matrix}\bigg{)} (20,𝟎9)(20,\mathbf{0}_{9})
12 Z-optimal EB-ZCP (++++++++++++++)\bigg{(}\begin{matrix}++++--+++-++\\ ++++-----+--\end{matrix}\bigg{)} (24,8,𝟎10)(24,8,\mathbf{0}_{10})
14 EB-ZCP (+++++++++++)\bigg{(}\begin{matrix}--+-+----++-++\\ --+-+--++--+--\end{matrix}\bigg{)} (28,𝟒3,𝟎10)(28,\mathbf{4}_{3},\mathbf{0}_{10})
15 Optimal OB-ZCP (++++++++++++++++++)\bigg{(}\begin{matrix}-++-+++++-+-+++\\ -++-+++--+-+---\end{matrix}\bigg{)} (30,𝟐7,𝟎7)(30,\mathbf{2}_{7},\mathbf{0}_{7})
16 GCP (++++++++++++++++++++)\bigg{(}\begin{matrix}+++-++-++++---+-\\ +++-++-+---+++-+\end{matrix}\bigg{)} (32,𝟎15)(32,\mathbf{0}_{15})
17 Optimal OB-ZCP (+++++++++++++++++++)\bigg{(}\begin{matrix}-++++-+-+-++--+++\\ -++++-+--+--++---\end{matrix}\bigg{)} (34,𝟐8,𝟎8)(34,\mathbf{2}_{8},\mathbf{0}_{8})
18 EB-ZCP (+++++++++++++++++++++)\bigg{(}\begin{matrix}+-+++++--+-++---++\\ +-+++++---+--+++--\end{matrix}\bigg{)} (36,𝟒4,𝟎13)(36,\mathbf{4}_{4},\mathbf{0}_{13})
19 Optimal OB-ZCP (++++++++++++++++++++++)\bigg{(}\begin{matrix}+-+++++--++--+-+-++\\ +-+++++----++-+-+--\end{matrix}\bigg{)} (22,𝟐9,𝟎9)(22,\mathbf{2}_{9},\mathbf{0}_{9})
20 GCP (++++++++++++++++++++++)\bigg{(}\begin{matrix}++-+-+--++++-+++++--\\ ++-+-+--++--+-----++\end{matrix}\bigg{)} (20,𝟎9)(20,\mathbf{0}_{9})
21 Optimal OB-ZCP (+++++++++++++++++++++++)\bigg{(}\begin{matrix}-++-+-+++--++++++--++\\ -++-+-+++-+------++--\end{matrix}\bigg{)} (42,𝟐10,𝟎10)(42,\mathbf{2}_{10},\mathbf{0}_{10})
24 Z-optimal EB-ZCP (++++++++++++++++++++++++++++++)\bigg{(}\begin{matrix}++++--+++-++++++-----+--\\ ++++--+++-++----+++++-++\end{matrix}\bigg{)} (48,16,𝟎22)(48,16,\mathbf{0}_{22})
26 GCP (+++++++++++++++++++++++++++++++)\bigg{(}\begin{matrix}++++-++--+-+-+--+-+++--+++\\ ++++-++--+-+++++-+---++---\end{matrix}\bigg{)} (52,𝟎25)(52,\mathbf{0}_{25})
28 Z-optimal EB-ZCP (++++++++++++++++++++++++++)\bigg{(}\begin{matrix}--+-+----++-++--+-+--++--+--\\ --+-+----++-++++-+-++--++-++\end{matrix}\bigg{)} (56,𝟖3,𝟎24)(56,\mathbf{8}_{3},\mathbf{0}_{24})
30 Z-optimal EB-ZCP (+++++++++++++++++++++++++++++++++)\bigg{(}\begin{matrix}+-++-+-+-++--+-++--+---+++-++-\\ +-++-+-+-++-+-+++-+-+++---+--+\end{matrix}\bigg{)} (60,20,𝟎28)(60,20,\mathbf{0}_{28})

II Preliminaries

In this section, we recall some definitions and bounds of binary ZCPs. Before that, we fix some notations which will be used throughout the paper.

  • ++ and - denote 11 and 1-1, respectively.

  • 𝟎L\mathbf{0}_{L} and 𝟏L\mathbf{1}_{L} denote length-L vectors whose elements are all 0 and 11, respectively.

  • 𝐜=(cN11,cN12,,c0)\overleftarrow{\mathbf{c}}=(c_{N_{1}-1},c_{N_{1}-2},\cdots,c_{0}) denotes the reverse of sequence 𝐜=(c0,,cN12,cN11)\mathbf{c}=(c_{0},\ldots,c_{N_{1}-2},c_{N_{1}-1}).

  • 𝐜𝐝\mathbf{c}\mid\mid\mathbf{d} denote the horizontal concatenation of sequences 𝐜\mathbf{c} and 𝐝\mathbf{d}.

  • 𝐜𝐝\mathbf{c}\otimes\mathbf{d} denotes the Kroneker product of the sequences 𝐜\mathbf{c} and 𝐝\mathbf{d} of lengths N1N_{1} and N2N_{2}, respectively, i.e.,

    𝐜𝐝=(c0d0,c0d1,,c0dN21,,cN11d0,cN11d1,,cN11dN21).\mathbf{c}\otimes\mathbf{d}=(c_{0}d_{0},c_{0}d_{1},\cdots,c_{0}d_{N_{2}-1},\cdots,c_{N_{1}-1}d_{0},c_{N_{1}-1}d_{1},\cdots,c_{N_{1}-1}d_{N_{2}-1}).

In the following, we first give the definition of aperiodic correlation, and then define the deletion function.

Definition 1

For two length-NN binary sequences 𝐜\mathbf{c} and 𝐝\mathbf{d}, their aperiodic cross-correlation function is defined as

ρ𝐜,𝐝(τ)={k=0N1τckdk+τ,0τN1,k=0N1τck+τdk,(N1)τ1,0,|τ|N.{\rho_{\mathbf{c,d}}(\tau)=\left\{\begin{array}[]{ll}\sum_{k=0}^{N-1-\tau}c_{k}d_{k+\tau},&0\leq\tau\leq N-1,\\ \sum_{k=0}^{N-1-\tau}c_{k+\tau}d_{k},&-(N-1)\leq\tau\leq-1,\\ 0,&|\tau|\geq N.\end{array}\right.} (1)

When 𝐜=𝐝\mathbf{c}=\mathbf{d}, the function ρ𝐜,𝐝(τ)\rho_{\mathbf{c,d}}(\tau) is called the aperiodic autocorrelation function (AACF) of 𝐜\mathbf{c}, denoted by ρ𝐜(τ)\rho_{\mathbf{c}}(\tau) for simplicity.

Definition 2

(Deletion Function) For a sequence 𝐜=(c0,c1,,cN1)\mathbf{c}=(c_{0},c_{1},\ldots,c_{N-1}) and an integer r{0,1,,N1}r\in\{0,1,\ldots,N-1\}, define 𝒱(𝐜,r)\mathcal{V}(\mathbf{c},r) as a deletion function of 𝐜\mathbf{c} as

𝒱(𝐜,r)={(c1,c2,,cN1), if r=0;(c0,c1,,cN2), if r=N1;(c0,c1,,cr1,cr+1,,cN1),otherwise,\mathcal{V}(\mathbf{c},r)=\begin{cases}(c_{1},c_{2},\ldots,c_{N-1}),&\hbox{ if }r=0;\\ (c_{0},c_{1},\ldots,c_{N-2}),&\hbox{ if }r=N-1;\\ (c_{0},c_{1},\ldots,c_{r-1},c_{r+1},\ldots,c_{N-1}),&\hbox{otherwise,}\end{cases}

where rr denotes the deletion position.

In what follows, we give a series of definitions on a pair of sequences with desirable aperiodic autocorrelation sums, and certain bounds on these sequence pairs.

Definition 3

A pair of sequences 𝐜\mathbf{c} and 𝐝\mathbf{d} of length NN is called a Golay complementary pair (GCP) if and only if

ρ𝐜(τ)+ρ𝐝(τ)=0,\rho_{\mathbf{c}}(\tau)+\rho_{\mathbf{d}}(\tau)=0,

for all 1τN11\leq\tau\leq N-1.

Definition 4

(Type-I binary ZCPs) A pair of binary sequences 𝐜\mathbf{c} and 𝐝\mathbf{d} of length NN is called a Type-I Z-complementary pair (ZCP) with ZCZ of width ZZ, if and only if

ρ𝐜(τ)+ρ𝐝(τ)=0,\rho_{\mathbf{c}}(\tau)+\rho_{\mathbf{d}}(\tau)=0,

for all 1τZ11\leq\tau\leq Z-1, and ρ𝐜(Z)+ρ𝐝(Z)0\rho_{\mathbf{c}}(Z)+\rho_{\mathbf{d}}(Z)\neq 0.

Definition 5

(Type-II binary ZCPs) A pair of binary sequences 𝐜\mathbf{c} and 𝐝\mathbf{d} of length NN is called a Type-II ZCP with ZCZ of width ZZ, if and only if

ρ𝐜(τ)+ρ𝐝(τ)=0, for all NZ+1τN1,\rho_{\mathbf{c}}(\tau)+\rho_{\mathbf{d}}(\tau)=0,\text{ for all }N-Z+1\leq\tau\leq N-1, (2)

and ρ𝐜(NZ)+ρ𝐝(NZ)0\rho_{\mathbf{c}}(N-Z)+\rho_{\mathbf{d}}(N-Z)\neq 0.

Clearly, when Z=NZ=N, both Type-I and Type-II ZCPs become GCPs.

In the following lemma we recall the upper bounds of the ZCZ width for various types of binary ZCPs.

Lemma 1

Let (𝐜,𝐝)(\mathbf{c,d}) be a binary ZCP of length NN with ZCZ of width ZZ. Then

  • 1)

    Z(N+1)/2Z\leq(N+1)/2 if NN is odd [15];

  • 2)

    ZN2Z\leq N-2 if NN is even and (𝐜,𝐝)(\mathbf{c,d}) is Type-I ZCP [16]; and

  • 3)

    ZN1Z\leq N-1 if NN is even and (𝐜,𝐝)(\mathbf{c,d}) is Type-II ZCP.

Note that bound 3) in Lemma 1 was obtained by exhaustive computer search. Based on the bounds above, we have the following definition on the Z-optimality of ZCPs.

Definition 6

[15, 16] A binary ZCP is said to be Z-optimal if the upper bound of the ZCZ width in Lemma 1 is achieved with equality.

The following lemma gives the lower bounds of the aperiodic autocorrelation sum magnitude outside the ZCZ of a Z-optimal (Type-I and Type-II) binary ZCP.

Lemma 2

Let (𝐜,𝐝)(\mathbf{c,d}) be a binary ZCP of length NN with ZCZ of width ZZ. Then we have the following bounds for odd-length ZCPs and even-length ZCPs.

  • 1)

    [15] If (𝐜,𝐝)(\mathbf{c,d}) is a Z-optimal Type-I OB-ZCP, then

    |ρ𝐜(τ)+ρ𝐝(τ)|2,for any (N+1)/2τN1.|\rho_{\mathbf{c}}(\tau)+\rho_{\mathbf{d}}(\tau)|\geq 2,~{}~{}~{}\hbox{for any }(N+1)/2\leq\tau\leq N-1.
  • 2)

    [16] If (𝐜,𝐝)(\mathbf{c,d}) is a Z-optimal Type-II OB-ZCP, then

    |ρ𝐜(τ)+ρ𝐝(τ)|2,for any 1τ(N1)/2.|\rho_{\mathbf{c}}(\tau)+\rho_{\mathbf{d}}(\tau)|\geq 2,~{}~{}~{}\hbox{for any }1\leq\tau\leq(N-1)/2.
  • 3)

    [16] If (𝐜,𝐝)(\mathbf{c,d}) is a Type-I EB-ZCP and ZN/2Z\geq N/2, then

    |ρ𝐜(Z)+ρ𝐝(Z)|4.|\rho_{\mathbf{c}}(Z)+\rho_{\mathbf{d}}(Z)|\geq 4.
  • 4)

    If (𝐜,𝐝)(\mathbf{c,d}) is a Z-optimal Type-II EB-ZCP, then

    |ρ𝐜(1)+ρ𝐝(1)|4.|\rho_{\mathbf{c}}(1)+\rho_{\mathbf{d}}(1)|\geq 4.

The lower bounds above define the optimality of ZCPs, which achieve the smallest possible sum magnitude outside the ZCZ of Z-optimal binary ZCPs.

Definition 7

A Z-optimal Type-I OB-ZCP is called optimal if the lower bound 1) in Lemma 2 is met with equality. And a binary Z-optimal Type-II ZCP is called optimal if the lower bound 2) or 4) in Lemma 2 is met with equality.

Remark 1

The bounds in Lemma 1 may not be tight for all sequence length NN. For example, as pointed out by one of the anonymous reviewers, there is no Type-I EB-ZCPs with length larger than 14 reported in the literature which can satisfy the upper bound in Lemma 1. Therefore it would be possible to derive tigher bounds on ZCZ widths of ZCPs for certain sequence lengths. In such cases, the bounds in Lemma 2 could be improved as well. Accordingly, the optimality in Definitions 6 and 7 should be changed with respect to the new bounds.

III A General Construction of Binary ZCPs

Infinite families of nontrivial (Type-I and Type-II) OB-ZCPs and Type-I EB-ZCPs were obtained in [15] and [16, 17, 18, 19], respectively. However, there was no infinite family of Type-II EB-ZCPs in the literature. In this section, we present a construction of ZCPs which can generate infinite families of Z-optimal Type-II OB-ZCPs and EB-ZCPs. We first present an example to show that an optimal Type-II EB-ZCP does exist.

Example 1

Suppose that

𝐜=(++++++++++),𝐝=(+++++++).\begin{split}\mathbf{c}&=(+-+++++-+++--+),\\ \mathbf{d}&=(+-++++-----++-).\end{split} (3)

Then (𝐜,𝐝)\mathbf{(c,d)} is an optimal Type-II EB-ZCP since it is easily verified that

|ρ𝐜(τ)+ρ𝐝(τ)|τ=013=(28,4,0,0,0,0,0,0,0,0,0,0,0,0).\left|\rho_{\mathbf{c}}(\tau)+\rho_{\mathbf{d}}(\tau)\right|_{\tau=0}^{13}=(28,4,0,0,0,0,0,0,0,0,0,0,0,0). (4)

Now, we present a systematic construction of Type-II ZCPs in the following.

Construction 1

Let 𝐚\mathbf{a} and 𝐛\mathbf{b} be two binary sequences of length NN and N+1N+1, respectively. Taking 𝐚\mathbf{a} and 𝐛\mathbf{b} as seed sequences, and we then initialize two sequence pairs (𝐜01,𝐝01)(\mathbf{c}_{0}^{1},\mathbf{d}_{0}^{1}) and (𝐜11,𝐝11)(\mathbf{c}_{1}^{1},\mathbf{d}_{1}^{1}) as follows:

𝐜01=𝐚𝐛,𝐝01=𝐚𝐛;𝐜11=𝐛𝐚,𝐝11=𝐛𝐚.\begin{split}\mathbf{c}_{0}^{1}=\mathbf{a}\mid\mid\mathbf{b},&~{}\mathbf{d}_{0}^{1}=\mathbf{a}\mid\mid-\mathbf{b};\\ \mathbf{c}_{1}^{1}=\mathbf{b}\mid\mid\mathbf{a},&~{}\mathbf{d}_{1}^{1}=\mathbf{b}\mid\mid-\mathbf{a}.\\ \end{split} (5)

At the kk-th iteration, we have 2k2^{k} pairs (𝐜ik,𝐝ik)(\mathbf{c}_{i}^{k},\mathbf{d}_{i}^{k}) for 0i2k10\leq i\leq 2^{k}-1, given by

𝐜ik={𝐜i2k1𝐝i2k1 for i even,𝐝i2k1𝐜i2k1 for i odd.\begin{split}\mathbf{c}_{i}^{k}=\begin{cases}\mathbf{c}_{\lfloor\frac{i}{2}\rfloor}^{k-1}\mid\mid\mathbf{d}_{\lfloor\frac{i}{2}\rfloor}^{k-1}&\text{ for }i\text{ even},\\ \mathbf{d}_{\lfloor\frac{i}{2}\rfloor}^{k-1}\mid\mid\mathbf{c}_{\lfloor\frac{i}{2}\rfloor}^{k-1}&\text{ for }i\text{ odd}.\end{cases}\end{split} (6)

and

𝐝ik={𝐜i2k1𝐝i2k1 for i even,𝐝i2k1𝐜i2k1 for i odd.\begin{split}\mathbf{d}_{i}^{k}=\begin{cases}\mathbf{c}_{\lfloor\frac{i}{2}\rfloor}^{k-1}\mid\mid-\mathbf{d}_{\lfloor\frac{i}{2}\rfloor}^{k-1}&\text{ for }i\text{ even},\\ \mathbf{d}_{\lfloor\frac{i}{2}\rfloor}^{k-1}\mid\mid-\mathbf{c}_{\lfloor\frac{i}{2}\rfloor}^{k-1}&\text{ for }i\text{ odd}.\end{cases}\end{split} (7)
Remark 2

Figure 1 illustrates how Construction 1 generates sequence pairs recursively.

Refer to caption
Figure 1: Tree representation of recursive Type-II ZCP construction.

Based on the construction above, we have the following theorems to obtain Z-optimal (optimal) OB-ZCPs and EB-ZCPs.

Theorem 1

Let 𝐚\mathbf{a} and 𝐛\mathbf{b} be binary sequences of lengths NN and N+1N+1, respectively. By Construction 1, the sequence pairs at the initial step, (𝐜01,𝐝01)(\mathbf{c}_{0}^{1},\mathbf{d}_{0}^{1}) and (𝐜11,𝐝11)(\mathbf{c}_{1}^{1},\mathbf{d}_{1}^{1}) are Z-optimal Type-II OB-ZCPs of length L=2N+1L=2N+1 with ZCZ of width Z=N+1Z=N+1. In addition, for r=0,1r=0,1, we have

ρ𝐜r1(τ)+ρ𝐝r1(τ)={2(ρ𝐚(τ)+ρ𝐛(τ)),1τN,0,N+1τ2N.\rho_{\mathbf{c}_{r}^{1}}(\tau)+\rho_{\mathbf{d}_{r}^{1}}(\tau)=\left\{\begin{array}[]{ll}2(\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)),&{1\leq\tau\leq N,}\\ 0,&{N+1\leq\tau\leq 2N.}\end{array}\right. (8)
Proof:

When r=0r=0, it is easy to see that

ρ𝐜r1(τ)={ρ𝐚(τ)+ρ𝐛(τ)+k=0τ1aN1kbτ1k,1τN,k=02Nτakbk+τN,N+1τ2N,\rho_{\mathbf{c}_{r}^{1}}(\tau)=\begin{cases}\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)+\sum\limits_{k=0}^{\tau-1}a_{N-1-k}b_{\tau-1-k},&{1\leq\tau\leq N,}\\ \sum\limits_{k=0}^{2N-\tau}a_{k}b_{k+\tau-N},&{N+1\leq\tau\leq 2N,}\end{cases}

and

ρ𝐝r1(τ)={ρ𝐚(τ)+ρ𝐛(τ)k=0τ1aN1kbτ1k,1τN,k=02Nτakbk+τN,N+1τ2N.\rho_{\mathbf{d}_{r}^{1}}(\tau)=\begin{cases}\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)-\sum\limits_{k=0}^{\tau-1}a_{N-1-k}b_{\tau-1-k},&{1\leq\tau\leq N,}\\ -\sum\limits_{k=0}^{2N-\tau}a_{k}b_{k+\tau-N},&{N+1\leq\tau\leq 2N.}\end{cases}

Hence, we have

ρ𝐜r1(τ)+ρ𝐝r1(τ)={2(ρ𝐚(τ)+ρ𝐛(τ)),1τN,0,N+1τ2N,\rho_{\mathbf{c}_{r}^{1}}(\tau)+\rho_{\mathbf{d}_{r}^{1}}(\tau)\\ =\left\{\begin{array}[]{ll}2(\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)),&{1\leq\tau\leq N,}\\ 0,&{N+1\leq\tau\leq 2N,}\end{array}\right.

i.e., the width of ZCZ is N+1N+1. Similarly, we can prove that (8) holds for r=1r=1. This completes the proof. ∎

Remark 3

Let 𝐚\mathbf{a} and 𝐛\mathbf{b} be binary sequences of lengths N1N-1 and NN, respectively. Then Theorem 1 will produce Z-optimal Type-II OB-ZCPs of length 2N12N-1.

Theorem 2

Let 𝐚\mathbf{a} and 𝐛\mathbf{b} be binary sequences of lengths NN and N+1N+1, respectively. By Construction 1, at the kk-th step of the iteration, sequence pairs (𝐜rk,𝐝rk)(\mathbf{c}_{r}^{k},\mathbf{d}_{r}^{k}) are Type-II EB-ZCPs of length L=2kN+2k1L=2^{k}N+2^{k-1} having the ZCZ of width Z=2kN+2k1NZ=2^{k}N+2^{k-1}-N when k2k\geq 2 and r=0,1,,2k1r=0,1,\ldots,2^{k}-1. In addition, we have

ρ𝐜rk(τ)+ρ𝐝rk(τ)={2k(ρ𝐚(τ)+ρ𝐛(τ)),1τN,0,otherwise.\rho_{\mathbf{c}_{r}^{k}}(\tau)+\rho_{\mathbf{d}_{r}^{k}}(\tau)\\ =\left\{\begin{array}[]{ll}2^{k}(\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)),&1\leq\tau\leq N,\\ 0,&\hbox{otherwise.}\end{array}\right. (9)
Proof:

When r=0,k2r=0,k\geq 2, it is easy to see that

ρ𝐜rk(τ)={ρ𝐜rk1(τ)+ρ𝐝rk1(τ)+ρ𝐝rk1,𝐜rk1(2k1N+2k2τ), for 1τ2k1N+2k21;ρ𝐜rk1,𝐝rk1(τ(2k1N+2k2)), for 2k1N+2k2τ2kN+2k11;\rho_{\mathbf{c}_{r}^{k}}(\tau)=\begin{cases}\rho_{\mathbf{c}_{r}^{k-1}}(\tau)+\rho_{\mathbf{d}_{r}^{k-1}}(\tau)+\rho_{\mathbf{d}_{r}^{k-1},\mathbf{c}_{r}^{k-1}}(2^{k-1}N+2^{k-2}-\tau),\\ \hskip 165.02606pt\text{ for }1\leq\tau\leq 2^{k-1}N+2^{k-2}-1;\\ \rho_{\mathbf{c}_{r}^{k-1},\mathbf{d}_{r}^{k-1}}(\tau-(2^{k-1}N+2^{k-2})),\\ \hskip 113.81102pt\text{ for }2^{k-1}N+2^{k-2}\leq\tau\leq 2^{k}N+2^{k-1}-1;\end{cases}

and

ρ𝐝rk(τ)={ρ𝐜rk1(τ)+ρ𝐝rk1(τ)ρ𝐝rk1,𝐜rk1(2k1N+2k2τ), for 1τ2k1N+2k21;ρ𝐜rk1,𝐝rk1(τ(2k1N+2k2)), for 2k1N+2k2τ2kN+2k11.\rho_{\mathbf{d}_{r}^{k}}(\tau)=\begin{cases}\rho_{\mathbf{c}_{r}^{k-1}}(\tau)+\rho_{\mathbf{d}_{r}^{k-1}}(\tau)-\rho_{\mathbf{d}_{r}^{k-1},\mathbf{c}_{r}^{k-1}}(2^{k-1}N+2^{k-2}-\tau),\\ \hskip 165.02606pt\text{ for }{1\leq\tau\leq 2^{k-1}N+2^{k-2}-1;}\\ -\rho_{\mathbf{c}_{r}^{k-1},\mathbf{d}_{r}^{k-1}}(\tau-(2^{k-1}N+2^{k-2})),\\ \hskip 113.81102pt\text{ for }{2^{k-1}N+2^{k-2}\leq\tau\leq 2^{k}N+2^{k-1}-1.}\end{cases}

Hence, we have

ρ𝐜rk(τ)+ρ𝐝rk(τ)={2(ρ𝐜rk1(τ)+ρ𝐝rk1(τ)), for 1τ2k1N+2k21;0, for 2k1N+2k2τ2kN+2k11.\rho_{\mathbf{c}_{r}^{k}}(\tau)+\rho_{\mathbf{d}_{r}^{k}}(\tau)=\begin{cases}2(\rho_{\mathbf{c}_{r}^{k-1}}(\tau)+\rho_{\mathbf{d}_{r}^{k-1}}(\tau)),\hskip 14.22636pt\text{ for }{1\leq\tau\leq 2^{k-1}N+2^{k-2}-1;}\\ 0,\hskip 119.50148pt\text{ for }{2^{k-1}N+2^{k-2}\leq\tau\leq 2^{k}N+2^{k-1}-1.}\end{cases} (10)

From (8) and (10), it follows that

ρ𝐜rk(τ)+ρ𝐝rk(τ)={2k(ρ𝐚(τ)+ρ𝐛(τ)),1τN,0,otherwise.\rho_{\mathbf{c}_{r}^{k}}(\tau)+\rho_{\mathbf{d}_{r}^{k}}(\tau)\\ =\left\{\begin{array}[]{ll}2^{k}(\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)),&1\leq\tau\leq N,\\ 0,&\hbox{otherwise.}\end{array}\right.

This completes the proof. ∎

Remark 4

Note that the ZCZ width is independent of different selections of the seed sequences 𝐚\mathbf{a} and 𝐛\mathbf{b}.

In the following, we show some illustrative examples.

Example 2

Let 𝐚=(++)\mathbf{a}=(++) and 𝐛=(+++)\mathbf{b}=(+++), then according to Construction 1 and Figure 1, we have at the initial step,

𝐜01=(+++++),𝐝01=(++).\begin{split}\mathbf{c}_{0}^{1}&=(+++++),\\ \mathbf{d}_{0}^{1}&=(++---).\end{split}

At the second iteration,

𝐜02=(+++++++),𝐝02=(++++++++).\begin{split}\mathbf{c}_{0}^{2}&=(+++++++---),\\ \mathbf{d}_{0}^{2}&=(+++++--+++).\end{split}

And at the third iteration,

𝐜03=(+++++++++++++++),𝐝03=(+++++++++).\begin{split}\mathbf{c}_{0}^{3}&=(+++++++---+++++--+++),\\ \mathbf{d}_{0}^{3}&=(+++++++--------++---).\end{split}

Clearly, we have

|ρ𝐜01(τ)+ρ𝐝01(τ)|τ=04=(10,6,2,𝟎2),|ρ𝐜02(τ)+ρ𝐝02(τ)|τ=09=(20,12,4,𝟎7),|ρ𝐜03(τ)+ρ𝐝03(τ)|τ=019=(40,24,8,𝟎17).\begin{split}\left|\rho_{\mathbf{c}_{0}^{1}}(\tau)+\rho_{\mathbf{d}_{0}^{1}}(\tau)\right|_{\tau=0}^{4}&=(10,6,2,\mathbf{0}_{2}),\\ \left|\rho_{\mathbf{c}_{0}^{2}}(\tau)+\rho_{\mathbf{d}_{0}^{2}}(\tau)\right|_{\tau=0}^{9}&=(20,12,4,\mathbf{0}_{7}),\\ \left|\rho_{\mathbf{c}_{0}^{3}}(\tau)+\rho_{\mathbf{d}_{0}^{3}}(\tau)\right|_{\tau=0}^{19}&=(40,24,8,\mathbf{0}_{17}).\end{split}

Hence, (𝐜01,𝐝01)(\mathbf{c}_{0}^{1},\mathbf{d}_{0}^{1}) is a Z-optimal Type-II OB-ZCP of length 55 having a ZCZ of width 33. (𝐜02,𝐝02)(\mathbf{c}_{0}^{2},\mathbf{d}_{0}^{2}) is a Z-optimal Type-II EB-ZCP of length 1010 having a ZCZ of width 88 and (𝐜03,𝐝03)(\mathbf{c}_{0}^{3},\mathbf{d}_{0}^{3}) is a Type-II EB-ZCP of length 2020 having a ZCZ of width 1818. It is worth noting that (𝐜02,𝐝02)(\mathbf{c}_{0}^{2},\mathbf{d}_{0}^{2}) and (𝐜03,𝐝03)(\mathbf{c}_{0}^{3},\mathbf{d}_{0}^{3}) have large ZCZ ratios of 0.80.8 and 0.90.9, respectively.

Remark 5

Note that Z-optimal Type-II EB-ZCPs of length L=2k+2k1L=2^{k}+2^{k-1} with ZCZ width Z=2k+2k11Z=2^{k}+2^{k-1}-1 can be generated by Theorem 2 when the length of the seed sequence 𝐚\mathbf{a} is 11 and k2k\geq 2.

Example 3

Let 𝐚=(+)\mathbf{a}=(+) and 𝐛=(++)\mathbf{b}=(++), then according to Construction 1 and Figure 1, we have at the initial step,

𝐜01=(+++),𝐝01=(+).\begin{split}\mathbf{c}_{0}^{1}&=(+++),\\ \mathbf{d}_{0}^{1}&=(+--).\end{split}

At the second iteration,

𝐜02=(++++),𝐝02=(+++++).\begin{split}\mathbf{c}_{0}^{2}&=(++++--),\\ \mathbf{d}_{0}^{2}&=(+++-++).\end{split}

At the third iteration,

𝐜03=(+++++++++),𝐝03=(+++++).\begin{split}\mathbf{c}_{0}^{3}&=(++++--+++-++),\\ \mathbf{d}_{0}^{3}&=(++++-----+--).\end{split}

Clearly, we have

|ρ𝐜01(τ)+ρ𝐝01(τ)|τ=02=(6,2,0),|ρ𝐜02(τ)+ρ𝐝02(τ)|τ=05=(12,4,𝟎4),|ρ𝐜03(τ)+ρ𝐝03(τ)|τ=011=(24,8,𝟎10).\begin{split}\left|\rho_{\mathbf{c}_{0}^{1}}(\tau)+\rho_{\mathbf{d}_{0}^{1}}(\tau)\right|_{\tau=0}^{2}&=(6,2,0),\\ \left|\rho_{\mathbf{c}_{0}^{2}}(\tau)+\rho_{\mathbf{d}_{0}^{2}}(\tau)\right|_{\tau=0}^{5}&=(12,4,\mathbf{0}_{4}),\\ \left|\rho_{\mathbf{c}_{0}^{3}}(\tau)+\rho_{\mathbf{d}_{0}^{3}}(\tau)\right|_{\tau=0}^{11}&=(24,8,\mathbf{0}_{10}).\end{split}

Hence, (𝐜01,𝐝01)(\mathbf{c}_{0}^{1},\mathbf{d}_{0}^{1}) is an optimal Type-II OB-ZCP of length 33 having a ZCZ of width 22. (𝐜02,𝐝02)(\mathbf{c}_{0}^{2},\mathbf{d}_{0}^{2}) is an optimal Type-II EB-ZCP of length 66 having a ZCZ of width 55 and (𝐜03,𝐝03)(\mathbf{c}_{0}^{3},\mathbf{d}_{0}^{3}) is a Z-optimal Type-II EB-ZCP of length 1212 having a ZCZ of width 1111.

Example 3 gives us a construction of Z-optimal Type-II EB-ZCPs. However, the length of Z-optimal Type-II EB-ZCPs which are constructed through the above method is 2k+2k12^{k}+2^{k-1}, and this makes the length very limited. By the following construction inspired by the well-known Turyn’s construction, we can obtain Type-II ZCPs of length (2k+2k1)10b26c(2^{k}+2^{k-1})10^{b}26^{c}.

Theorem 3

Let (𝐜,𝐝),(𝐞,𝐟)(\mathbf{c,d}),(\mathbf{e,f}) be Type-II ZCPs of length N1,N2N_{1},N_{2} with ZCZ of width Z1,Z2Z_{1},Z_{2}, respectively. Then (𝐮,𝐯)(\mathbf{u,v}) is a Type-II ZCP of length N=N1N2N=N_{1}N_{2} with ZCZ of width Z=N1Z2N1+Z1Z=N_{1}Z_{2}-N_{1}+Z_{1}. Here (𝐮,𝐯)(\mathbf{u,v}) is given by the following formula:

(𝐮,𝐯)=(𝐞𝐜+𝐝2+𝐟𝐝𝐜2,𝐟𝐜+𝐝2𝐞𝐝𝐜2),(\mathbf{u,v})=(\mathbf{e}\otimes\frac{\mathbf{c}+\mathbf{d}}{2}+\overleftarrow{\mathbf{f}}\otimes\frac{\mathbf{d}-\mathbf{c}}{2},\mathbf{f}\otimes\frac{\mathbf{c}+\mathbf{d}}{2}-\overleftarrow{\mathbf{e}}\otimes\frac{\mathbf{d}-\mathbf{c}}{2}), (11)

where \otimes denotes the Kronecker product. In particular, if (𝐞,𝐟\mathbf{e},\mathbf{f}) is a GCP then (𝐮,𝐯\mathbf{u},\mathbf{v}) is a Type-II ZCP of length N1N2N_{1}N_{2} with ZCZ of width Z=N1N2N1+Z1Z=N_{1}N_{2}-N_{1}+Z_{1}.

Proof:

See Appendix. ∎

Example 4

Let 𝐜=(+++)\mathbf{c}=(+++) and 𝐝=(+)\mathbf{d}=(+--), then (𝐜,𝐝)(\mathbf{c},\mathbf{d}) is a Type-II ZCP of length 33 with ZCZ of width 22. Let (𝐞,𝐟)(\mathbf{e,f}) be a length-1010 GCP as follows.

𝐞=(++++++),𝐟=(+++++++).\begin{split}\mathbf{e}&=(++-+-+--++),\\ \mathbf{f}&=(++-+++++--).\end{split}

By Theorem 3, we obtain a length-3030 Z-optimal Type-II ZCP (𝐮,𝐯)(\mathbf{u,v}), as shown in (12),

𝐮=(++++++++++++++++++++),𝐯=(+++++++++++++++),\begin{split}\mathbf{u}&=(++++++---+++-+++++-++-+++--+--),\\ \mathbf{v}&=(++-++---+++----++-------++++++),\end{split} (12)

since it is computed that

|ρu(τ)+ρv(τ)|τ=029=(60,20,𝟎28).\left|\rho_{\mathrm{u}}(\tau)+\rho_{\mathrm{v}}(\tau)\right|_{\tau=0}^{29}=(60,20,\mathbf{0}_{28}).

IV New Families of Optimal Type-II OB-ZCPs

In this section, we construct new families of optimal Type-II OB-ZCPs. According to Theorem 1, we have constructed Z-optimal Type-II OB-ZCP of any length. In Theorem 1, (8) shows that the key of construction of optimal Type-II OB-ZCPs is to find a sequence pair (𝐚,𝐛)(\mathbf{a,b}) of length NN and N+1N+1 with low AACSs. The following theorem gives a lower bound for the AACSs of the above sequence pair (𝐚,𝐛)(\mathbf{a,b}).

Theorem 4

Let 𝐚\mathbf{a} and 𝐛\mathbf{b} be two binary sequences of lengths NN and N+1N+1, respectively. Then

|ρ𝐚(τ)+ρ𝐛(τ)|1, for all 1τN.|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)|\geq 1,\hbox{ for all }1\leq\tau\leq N. (13)
Proof:

Clearly, we have

ρ𝐚(τ)Nτmod2, for all 1τN,\rho_{\mathbf{a}}(\tau)\equiv N-\tau\mod 2,\text{ for all }1\leq\tau\leq N,

and

ρ𝐛(τ)N+1τmod2, for all 1τN.\rho_{\mathbf{b}}(\tau)\equiv N+1-\tau\mod 2,\hbox{ for all }1\leq\tau\leq N.

Therefore,

|ρ𝐚(τ)+ρ𝐛(τ)|1mod2, for all 1τN.|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)|\equiv 1\mod 2,\hbox{ for all }1\leq\tau\leq N.

Hence,

|ρ𝐚(τ)+ρ𝐛(τ)|1, for all 1τN.|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)|\geq 1,\hbox{ for all }1\leq\tau\leq N.

By exhaustive computer search, seed sequence pairs up to length N=24N=24 which can achieve the bound derived in Theorem 4, are listed Table III.

TABLE III: Some seed sequence pair of Lengths up to 24.
NN (𝐚𝐛)\left(\begin{array}[]{c}\mathbf{a}\\ \mathbf{b}\\ \end{array}\right) |ρ𝐚(τ)+ρ𝐛(τ)|τ=1N1\left|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)\right|_{\tau=1}^{N-1}
5 (+++++++)\bigg{(}\begin{matrix}++++-\\ ++--+-\end{matrix}\bigg{)} 𝟏4\mathbf{1}_{4}
6 (+++++++++)\bigg{(}\begin{matrix}+++++-\\ ++--+-+\end{matrix}\bigg{)} 𝟏5\mathbf{1}_{5}
11 (++++++++++++++)\bigg{(}\begin{matrix}++++++-+--+\\ +-+---+++--+\end{matrix}\bigg{)} 𝟏10\mathbf{1}_{10}
12 (+++++++++++++++)\bigg{(}\begin{matrix}++++++-++--+\\ ++----++-+-+-\end{matrix}\bigg{)} 𝟏11\mathbf{1}_{11}
13 (+++++++++++)\bigg{(}\begin{matrix}+----+++-++-+\\ ------++--+-+-\end{matrix}\bigg{)} 𝟏12\mathbf{1}_{12}
14 (++++++++++++++++)\bigg{(}\begin{matrix}--++++---+--+-\\ ++++-+++-+-+--+\end{matrix}\bigg{)} 𝟏13\mathbf{1}_{13}
17 (++++++++++++++++++++++)\bigg{(}\begin{matrix}-+-+---+++++++--+\\ +++--++-++-++++-+-\end{matrix}\bigg{)} 𝟏16\mathbf{1}_{16}
18 (++++++++++++++++++++++)\bigg{(}\begin{matrix}--++--+-+-+++++---\\ +++-++++-+-++-++--+\end{matrix}\bigg{)} 𝟏17\mathbf{1}_{17}
21 (+++++++++++++++++)\bigg{(}\begin{matrix}--+--+-++---+-+++---+\\ -++---------+++-+-+--+\end{matrix}\bigg{)} 𝟏20\mathbf{1}_{20}
22 (+++++++++++++++++++)\bigg{(}\begin{matrix}+++-+----+---++-+--++-\\ +++-+-----+-+----++--+-\end{matrix}\bigg{)} 𝟏21\mathbf{1}_{21}
23 (++++++++++++++++++++)\bigg{(}\begin{matrix}+---+---+---++++-+-++-+\\ ++----+-++-++-----+---+-\end{matrix}\bigg{)} 𝟏22\mathbf{1}_{22}
24 (+++++++++++++++++++++)\bigg{(}\begin{matrix}-+-----+-+--+++-+--+---+\\ -+---+----++-++---+++++-+\end{matrix}\bigg{)} 𝟏23\mathbf{1}_{23}
Example 5

Let 𝐚=(+++++)\mathbf{a}=(+++++-) and 𝐛=(++++)\mathbf{b}=(++--+-+). Then the sequence pair (𝐚,𝐛)(\mathbf{a,b}) meets the bound in Theorem 4, i.e.,

|ρ𝐚(τ)+ρ𝐛(τ)|τ=06=(13,𝟏6).\left|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)\right|_{\tau=0}^{6}=(13,\mathbf{1}_{6}).

Also, let

𝐜=𝐚𝐛,𝐝=𝐚𝐛.\begin{split}\mathbf{c}&=\mathbf{a}\mid\mid\mathbf{b},\\ \mathbf{d}&=\mathbf{a}\mid\mid-\mathbf{b}.\end{split}

According to Theorem 1, (𝐜,𝐝)(\mathbf{c,d}) is a length-1313 optimal Type-II OB-ZCP having ZCZ width 77, because

|ρ𝐜(τ)+ρ𝐝(τ)|τ=012=(26,𝟐6,𝟎6).\left|\rho_{\mathbf{c}}(\tau)+\rho_{\mathbf{d}}(\tau)\right|_{\tau=0}^{12}=(26,\mathbf{2}_{6},\mathbf{0}_{6}).

It is important to note that optimal Type-II OB-ZCP of length 1313 has not been previously reported in the literature.

In what follows, we obtain optimal Type-II OB-ZCPs of lengths 2N±12N\pm 1, when N=2a10b26cN=2^{a}10^{b}26^{c}, and a,b,ca,b,c are non-negative integers.

Theorem 5

Let (𝐱,𝐲)(\mathbf{x,y}) be a binary GCP of length N=2a10b26cN=2^{a}10^{b}26^{c} and (𝐚,𝐛)=(𝒱(𝐱,0),𝐲)(\mathbf{a,b})=(\mathcal{V}(\mathbf{x},0),\mathbf{y}). Suppose that

𝐜=𝐚𝐛,𝐝=𝐚𝐛.\begin{split}\mathbf{c}&=\mathbf{a}\mid\mid\mathbf{b},\\ \mathbf{d}&=\mathbf{a}\mid\mid-\mathbf{b}.\end{split}

Then (𝐜,𝐝)(\mathbf{c,d}) is an optimal Type-II OB-ZCP of length 2N12N-1 having ZCZ of width NN.

Proof:

By the definition of AACF, we have

ρ𝐚(τ)=i=0N2τaiai+τ=i=1N1τxixi+τ=(i=0N1τxixi+τ)x0xτ=ρ𝐱(τ)x0xτ,\begin{split}\rho_{\mathbf{a}}(\tau)=&\sum_{i=0}^{N-2-\tau}a_{i}a_{i+\tau}\\ =&\sum_{i=1}^{N-1-\tau}x_{i}x_{i+\tau}\\ =&\left(\sum_{i=0}^{N-1-\tau}x_{i}x_{i+\tau}\right)-x_{0}x_{\tau}\\ =&\rho_{\mathbf{x}}(\tau)-x_{0}x_{\tau},\end{split}

for all τ=0,1,,N1\tau=0,1,\ldots,N-1. As the sequence pair (𝐱,𝐲)(\mathbf{x,y}) is a GCP, then

ρ𝐚(τ)+ρ𝐛(τ)=ρ𝐱(τ)+ρ𝐲(τ)x0xτ={2N1,τ=0,x0xτ,τ=1,2,,N1.\begin{split}\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)=&\rho_{\mathbf{x}}(\tau)+\rho_{\mathbf{y}}(\tau)-x_{0}x_{\tau}\\ =&\left\{\begin{array}[]{ll}2N-1,&\tau=0,\\ -x_{0}x_{\tau},&\tau=1,2,\ldots,N-1.\end{array}\right.\end{split}

Therefore, we have |ρ𝐚(τ)+ρ𝐛(τ)|=1|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)|=1 for all τ=1,2,,N1\tau=1,2,\ldots,N-1. According to Theorem 1, (𝐜,𝐝)(\mathbf{c,d}) is an optimal Type-II OB-ZCP of length 2N12N-1. ∎

Theorem 6

Let (𝐱,𝐲)(\mathbf{x,y}) be a binary GCP of length N=2a10b26cN=2^{a}10^{b}26^{c} and

𝐜=𝐚𝐛,𝐝=𝐚𝐛.\begin{split}\mathbf{c}&=\mathbf{a}\mid\mid\mathbf{b},\\ \mathbf{d}&=\mathbf{a}\mid\mid-\mathbf{b}.\end{split}

Then (𝐜,𝐝)(\mathbf{c,d}) is an optimal Type-II OB-ZCP of length 2N+12N+1 where (𝐚,𝐛)(\mathbf{a,b}) is given by

𝐚=𝐱,𝐛=λ𝐲,where λ{+1,1}.\begin{split}\mathbf{a}&=\mathbf{x},\\ \mathbf{b}&=\lambda\mid\mid\mathbf{y},~{}~{}~{}\textrm{where }\lambda\in\{+1,-1\}.\end{split}
Proof:

By the definition of AACF, we have

ρ𝐛(τ)=i=0Nτbibi+τ=(i=1Nτbibi+τ)+b0bτ=(i=0N1τyiyi+τ)+λyτ1=ρ𝐲(τ)+λyτ1,\begin{split}\rho_{\mathbf{b}}(\tau)=&\sum_{i=0}^{N-\tau}b_{i}b_{i+\tau}\\ =&\left(\sum_{i=1}^{N-\tau}b_{i}b_{i+\tau}\right)+b_{0}b_{\tau}\\ =&\left(\sum_{i=0}^{N-1-\tau}y_{i}y_{i+\tau}\right)+\lambda y_{\tau-1}\\ =&\rho_{\mathbf{y}}(\tau)+\lambda y_{\tau-1},\end{split}

for all τ=1,2,,N\tau=1,2,\ldots,N. As the sequence pair (𝐱,𝐲)(\mathbf{x,y}) is a GCP, then

ρ𝐚(τ)+ρ𝐛(τ)=ρ𝐱(τ)+ρ𝐲(τ)+λyτ1={2N+1,τ=0,λyτ1,τ=1,2,,N.\begin{split}\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)=&\rho_{\mathbf{x}}(\tau)+\rho_{\mathbf{y}}(\tau)+\lambda y_{\tau-1}\\ =&\left\{\begin{array}[]{ll}2N+1,&\tau=0,\\ \lambda y_{\tau-1},&\tau=1,2,\ldots,N.\end{array}\right.\end{split}

Therefore, |ρ𝐚(τ)+ρ𝐛(τ)|=1|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)|=1 for all τ=1,2,,N\tau=1,2,\ldots,N. According to Theorem 1, (𝐜,𝐝)(\mathbf{c,d}) is an optimal Type-II OB-ZCP of length 2N+12N+1 having a ZCZ of width N+1N+1. ∎

Remark 6

We can also obtain Type-I OB-ZCPs via Construction 1 as follows. Let (𝐱,𝐲)(\mathbf{x,y}) be a binary GCP of length N=2a10b26cN=2^{a}10^{b}26^{c} and

𝐚=𝐱,𝐛=𝐲λ,𝐛^=𝐲λ,where λ{+1,1}.\begin{split}\mathbf{a}&=\mathbf{x},\\ \mathbf{b}&=\mathbf{y}\mid\mid\lambda,\mathbf{\hat{b}}=\mathbf{y}\mid\mid-\lambda,~{}~{}~{}\textrm{where }\lambda\in\{+1,-1\}.\end{split} (14)

Also let

𝐜=𝐚𝐛,𝐝=𝐚𝐛^.\begin{split}\mathbf{c}&=\mathbf{a}\mid\mid\mathbf{b},\\ \mathbf{d}&=\mathbf{a}\mid\mid-\mathbf{\hat{b}}.\end{split} (15)

Then (𝐜,𝐝)(\mathbf{c,d}) is an optimal Type-I OB-ZCP of length 2N+12N+1.

Although the length of above optimal Type-I OB-ZCP has been reported in [30, 31], our construction is a new method. Besides, it is easy to see that |ρ𝐚(τ)+ρ𝐛(τ)|=|ρ𝐚(τ)+ρ𝐛^(τ)|=1|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)|=|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{\hat{b}}}(\tau)|=1 for all τ=1,2,,N\tau=1,2,\ldots,N.

Remark 7

Compared with the results in [15, 30], Theorem 5 can construct optimal Type-II OB-ZCPs with more flexible parameters. The lengths of the optimal Type-II OB-ZCPs constructed in Theorem 5 are 2N12N-1, where N=2a10b26cN=2^{a}10^{b}26^{c}. With Theorem 3, these optimal Type-II OB-ZCPs and EB-ZCPs can be used to generate EB-ZCPs with ZCZ of large width. For example, we can obtain Z-optimal Type-II EB-ZCPs of length 3N3N or 14N14N using Theorem 3. Theorem 2 can generate Type-II EB-ZCPs of flexible lengths having large ZCZ widths. The result of Theorem 6 is similar to the Type-II OB-ZCPs reported in [30]. In Table II we give a complete list of “best possible” Type-II binary ZCPs up to length 3030 till now, which can be constructed by a systematic construction. Note that the lengths in the bold letter in Table II can only be generated by our systematic construction.

Remark 8

We note that the seed sequence pairs with low AACSs, such as the pair used in Example 5, widely exist. We have verified the existence of all binary seed sequence pairs with low AACSs of lengths up to 2424 by computer search. Some examples of seed sequence pairs with low AACSs up to 2424, obtained by computer search, are shown in Table III. Based on Table III and Theorems 5 and 6, we are able to construct optimal Type-II OB-ZCP of length 33 to 5353.

V PMEPR of the Proposed Type-II ZCPs

Sequences with low PMEPR are desirable in multi-carrier communications such as orthogonal frequency division multiplexing (OFDM) systems. In this section, we shall discuss the PMEPR of the proposed Type-II ZCPs. Before doing this, we give a short introduction to the definition of PMEPR of sequences.

We first define the OFDM signal of a sequence 𝐜=(c0,c1,,cL1)\mathbf{c}=(c_{0},c_{1},\ldots,c_{L-1}) to be the real part of

S𝐜(t)=k=0L1cke2πj(fc+kΔf)t,0t1Δf,S_{\mathbf{c}}(t)=\sum_{k=0}^{L-1}c_{k}e^{2\pi j(f_{c}+k\Delta f)t},0\leq t\leq\frac{1}{\Delta f},

where j=1j=\sqrt{-1}, fcf_{c} denotes the carrier frequency and Δf\Delta f is the subcarrier spacing. Then, the PMEPR of 𝐜\mathbf{c} (or its OFDM signal) is defined by

PMEPR(𝐜)=1Lsup0t<1Δf|S𝐜(t)|2.\hbox{PMEPR}(\mathbf{c})=\frac{1}{L}\sup_{0\leq t<\frac{1}{\Delta f}}|S_{\mathbf{c}}(t)|^{2}. (16)

For a pair of sequence pair (𝐜,𝐝)(\mathbf{c},\mathbf{d}), its PMEPR is defined as

PMEPR(𝐜,𝐝)=max{PMEPR(𝐜),PMEPR(𝐝)}.\hbox{PMEPR}(\mathbf{c},\mathbf{d})=\max\{\hbox{PMEPR}(\mathbf{c}),\hbox{PMEPR}(\mathbf{d})\}. (17)

It turns out in [15] that

PMEPR(𝐜,𝐝)2+2Lτ=1L1|ρ𝐜(τ)+ρ𝐝(τ)|\hbox{PMEPR}(\mathbf{c},\mathbf{d})\leq 2+\frac{2}{L}\sum_{\tau=1}^{L-1}|\rho_{\mathbf{c}}(\tau)+\rho_{\mathbf{d}}(\tau)| (18)

which reveals a relationship between the PMEPR and autocorrelation of a sequence pair. Clearly, for a GCP (𝐜,𝐝)(\mathbf{c},\mathbf{d}), one immediately has PMEPR(𝐜,𝐝)2\hbox{PMEPR}(\mathbf{c},\mathbf{d})\leq 2. Based on (18), upper bounds on PMEPR of some known Type-I ZCPs were given (see [15] and [33] for example). In the sequel, we shall discuss upper bounds for the PMEPR of the proposed Type-II ZCPs based on (18).

The following result follows directly from (18), (8) and (9).

Theorem 7

Let 𝐚\mathbf{a} and 𝐛\mathbf{b} be binary sequences of lengths NN and N+1N+1, respectively. Then the PMEPR of Type-II ZCP generated by Construction 1 is upper bounded by

2+42N+1τ=1N|ρ𝐚(τ)+ρ𝐛(τ)|.\displaystyle 2+\frac{4}{2N+1}\sum_{\tau=1}^{N}|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)|. (19)

Theorems 7 tells us the upper bound of the PMEPR of the sequences generated by Construction 1 is determined by the aperiodic autocorrelation sums of the seed sequences 𝐚\mathbf{a} and 𝐛\mathbf{b}. According to Theorem 4, one has

τ=1N|ρ𝐚(τ)+ρ𝐛(τ)|N.\displaystyle\sum_{\tau=1}^{N}|\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)|\geq N. (20)

We thus have following corollary.

Corollary 1

Let 𝐚,𝐛\mathbf{a},\mathbf{b} be the seed sequences meeting the bound in (20). Then each Type-II ZCP generated by Construction 1 has PMEPR upper bounded by 2+4N2N+142+\frac{4N}{2N+1}\approx 4.

Corollary 1 means that each optimal Type-II OB-ZCP constructed in Section IV of this paper has PMEPR upper bounded by 4.

Example 6

Let (𝐜,𝐝)(\mathbf{c},\mathbf{d}) be the optimal type-II OB-ZCP of length 13 in Example 5. Note that (𝐜,𝐝)(\mathbf{c},\mathbf{d}) is constructed from the seed sequence 𝐚=(+++++)\mathbf{a}=(+++++-) and 𝐛=(++++)\mathbf{b}=(++--+-+) meeting the bound in 20. It is easy to check that PMEPR(𝐜)=2.4276\hbox{PMEPR}(\mathbf{c})=2.4276 and PMEPR(𝐝)=2.4276\hbox{PMEPR}(\mathbf{d})=2.4276 which verifies the result in Corollary 1.

Theorem 8

Let (𝐜,𝐝)(\mathbf{c},\mathbf{d}) be a Type-II ZCP of length N1N_{1} with ZCZ of width Z1Z_{1}, (𝐞,𝐟)(\mathbf{e,f}) a GCP of length N2N_{2}. Let (𝐮,𝐯)(\mathbf{u,v}) be the Type-II ZCP generated from (𝐜,𝐝)(\mathbf{c},\mathbf{d}) and (𝐞,𝐟)(\mathbf{e},\mathbf{f}) in Theorem 3. Then

PMEPR(𝐮,𝐯)UB(𝐜,𝐝)\displaystyle\hbox{PMEPR}(\mathbf{u},\mathbf{v})\leq\mathrm{UB}(\mathbf{c,d}) (21)

where

UB(𝐜,𝐝)=2+2N1h=1N1Z1|ρ𝐜(h)+ρ𝐝(h)|\displaystyle\mathrm{UB}(\mathbf{c,d})=2+\frac{2}{N_{1}}\sum_{h=1}^{N_{1}-Z_{1}}|\rho_{\mathbf{c}}(h)+\rho_{\mathbf{d}}(h)| (22)

is an upper bound of the PMEPR of (𝐜,𝐝)(\mathbf{c,d}).

Proof:

According to Theorem 3, (𝐮,𝐯)(\mathbf{u,v}) is a Type-II ZCP of length N=N1N2N=N_{1}N_{2} and ZCZ width Z=N1(Z21)+Z1Z=N_{1}(Z_{2}-1)+Z_{1}. We then have

τ=1N1|ρ𝐮(τ)+ρ𝐯(τ)|\displaystyle\sum_{\tau=1}^{N-1}|\rho_{\mathbf{u}}(\tau)+\rho_{\mathbf{v}}(\tau)| =\displaystyle= τ=1NZ|ρ𝐮(τ)+ρ𝐯(τ)|=N2h=1N1Z1|ρ𝐜(h)+ρ𝐝(h)|\displaystyle\sum_{\tau=1}^{N-Z}|\rho_{\mathbf{u}}(\tau)+\rho_{\mathbf{v}}(\tau)|=N_{2}\sum_{h=1}^{N_{1}-Z_{1}}|\rho_{\mathbf{c}}(h)+\rho_{\mathbf{d}}(h)| (23)

where the second identity follows from (24) and the assumption that (𝐞,𝐟)(\mathbf{e,f}) is a GCP. This together with (18) further leads to

PMEPR(𝐮,𝐯)UB(𝐜,𝐝).\displaystyle\hbox{PMEPR}(\mathbf{u},\mathbf{v})\leq\mathrm{UB}(\mathbf{c,d}).

Note that UB(𝐜,𝐝)\mathrm{UB}(\mathbf{c,d}) in (22) is an upper bound of the PMPER of (𝐜,𝐝)(\mathbf{c,d}) due to (18). This completes the proof. ∎

The following result follows directly from Theorem 8 and Corollary 1.

Corollary 2

Let (𝐞,𝐟)(\mathbf{e,f}) be a GCP and (𝐮,𝐯)(\mathbf{u,v}) be the Type-II ZCP in Theorem 3. Then we have

  • PMEPR(𝐮,𝐯)<4\hbox{PMEPR}(\mathbf{u},\mathbf{v})<4 when (𝐜,𝐝)(\mathbf{c,d}) is the Type-II ZCP generated by Construction 1 from the seed sequences 𝐚,𝐛\mathbf{a,b} meeting the bound in (20);

  • PMEPR(𝐮,𝐯)2+433.33\hbox{PMEPR}(\mathbf{u},\mathbf{v})\leq 2+\frac{4}{3}\approx 3.33 when 𝐜=(+++),𝐝=(+)\mathbf{c}=(+++),\mathbf{d}=(+--); and

  • PMEPR(𝐮,𝐯)2+8142.57\hbox{PMEPR}(\mathbf{u},\mathbf{v})\leq 2+\frac{8}{14}\approx 2.57 when 𝐜=(++++++++++),𝐝=(+++++++)\mathbf{c}=(+-+++++-+++--+),\mathbf{d}=(+-++++-----++-).

Example 7

In Table IV, we list the PMEMR of some ZCPs generated by the construction in Theorem 3. Herein, (𝐮3,N2,𝐯3,N2)(\mathbf{u}_{3,N_{2}},\mathbf{v}_{3,N_{2}}) (resp., (𝐮14,N2,𝐯14,N2)(\mathbf{u}_{14,N_{2}},\mathbf{v}_{14,N_{2}}) denotes the Type-II ZCP generated from GCP of length N2N_{2} and ZCP (𝐜,𝐝)(\mathbf{c,d}) given by 𝐜=(+++),𝐝=(+)\mathbf{c}=(+++),\mathbf{d}=(+--) (resp., 𝐜=(++++++++++),𝐝=(+++++++)\mathbf{c}=(+-+++++-+++--+),\mathbf{d}=(+-++++-----++-)). It can be seen from the table that the PMEPR of these sequences are very close to the bounds in Corollary 2.

TABLE IV: PMEPR of some Type-II ZCPs in Theorem 3.
Length of GCP N2N_{2} PMEPR(𝐮3,N2)\hbox{PMEPR}(\mathbf{u}_{3,N_{2}}) PMEPR(𝐯3,N2)\hbox{PMEPR}(\mathbf{v}_{3,N_{2}}) PMEPR(𝐮14,N2)\hbox{PMEPR}(\mathbf{u}_{14,N_{2}}) PMEPR(𝐯14,N2)\hbox{PMEPR}(\mathbf{v}_{14,N_{2}})
1 3.0000 1.6667 2.5714 2.4119
2 2.8452 2.6667 2.1373 2.5137
4 3.0000 1.7387 2.5714 2.5102
8 3.2545 3.0740 2.5243 2.5456
10 3.3333 3.0200 2.4851 2.5570
16 3.0312 3.2919 2.5714 2.5102
20 3.1834 3.3159 2.5669 2.5549
26 3.2902 3.2291 2.5542 2.5545
32 3.3290 3.1483 2.5714 2.5373
40 3.3333 3.0446 2.5624 2.5570
52 3.3064 3.3189 2.5682 2.5549
64 3.2902 3.3201 2.5714 2.5689
80 3.2037 3.2667 2.5669 2.5695
Remark 9

ZCPs with good PMEPR properties can be regarded as potential alternatives of GCPs in practical applications (see [27] for an application scenario) since they can exist for more lengths. Note that compared to the systematic constructions of Type-I ZCPs with low PMEPR, available in the literature, Type-II ZCPs are available with more flexible lengths. For example, for sequence lengths N{N1×N2:N1=5,11,13,14,N2=2a10b26c,a,b,c>0}N\in\{N_{1}\times N_{2}:N_{1}=5,11,13,14,N_{2}=2^{a}10^{b}26^{c},a,b,c>0\}, no Type-I ZCPs were reported in the literature. According to Theorem 3 and Corollary 2, Type-II ZCPs with low PMEPR exist for such lengths. Therefore, Type-I ZCPs and Type-II ZCPs are two different ways of providing potential sequences with flexible lengths and low PMEPR for practical applications.

VI Concluding Remarks

In this paper, some properties and construction of optimal binary ZCPs are studied. Our motivation is the fact that all currently known binary GCPs have even-lengths of the form 2a10b26c2^{a}10^{b}26^{c} only. We target at finding optimal binary sequence pairs of any length, which have the closest correlation property to that of GCPs. More precisely, we proposed a new method which horizontally concatenates sequences 𝐚\mathbf{a} and 𝐛\mathbf{b} of different lengths to construct the optimal binary ZCPs. Note that our construction is generic because in our construction NN can be any number. Based on the new method, we constructed optimal and Z-optimal OB-ZCPs with more flexible parameters. The main contributions of this paper are listed in the following:

  1. 1.

    For even length of Type-II binary ZCPs, we proved that the width of its ZCZ can achieve N1N-1, in which case the ZCP is called a Z-optimal Type-II EB-ZCP. We constructed the optimal Type-II EB-ZCPs of lengths 6×2a10b26c6\times 2^{a}10^{b}26^{c} and 14×2a10b26c14\times 2^{a}10^{b}26^{c} through Example 1, Theorem 2 and Theorem 3, where a,b,ca,b,c are non-negative integers.

  2. 2.

    We proposed a new recursive construction of Type-II EB-ZCPs. By the construction, we can also generate ZCPs with large ZCZ ratio and flexible parameters.

  3. 3.

    By horizontally concatenating of sequence pair of different lengths, we constructed optimal Type-II OB-ZCPs of length 2N±12N\pm 1, where NN is the Golay number, i.e. N=2a10b26cN=2^{a}10^{b}26^{c}.

  4. 4.

    By horizontally concatenating of sequence pair of different lengths, we constructed Z-optimal Type-II OB-ZCPs of length 2N±12N\pm 1, where NN can be any number.

  5. 5.

    We gave upper bounds for the PMEPR of ZCPs from the proposed constructions. It turns out that our constructions can generated Type-II ZCPs with low PMEPR.

  6. 6.

    Our construction can also be extended to obtain optimal Type-I OB-ZCPs. Although the length of generated Type-I OB-ZCP has been reported before, our construction is a new method. One of our near future work is to explore how to construct optimal Type-I ZCPs with new lengths from Type-II ones.

We conclude the present paper by proposing the following open questions:

  1. 1.

    Are there any systematic constructions of optimal Type-II OB-ZCPs in lengths other than the ones discussed in this paper?

  2. 2.

    Are there more optimal Type-II EB-ZCPs, except for the lengths 66 and 1414?

Appendix
Proof of Theorem 3

We need the following lemma to prove the theorem.

Lemma 3

Let (𝐜,𝐝)(\mathbf{c,d}) be a Type-II ZCP of length NN with ZCZ of width ZZ, then so is (𝐜,𝐝)(\mathbf{c},\overleftarrow{\mathbf{d}}).

Proof:

By the definition of AACF, we have

ρ𝐝(τ)=i=0N1τdidi+τ=i=0N1τdN1idN1(i+τ)=t=0N1τdt+τdt=ρ𝐝(τ).\begin{split}\rho_{\overleftarrow{\mathbf{d}}}(\tau)=&\sum_{i=0}^{N-1-\tau}\overleftarrow{d_{i}}\overleftarrow{d_{i+\tau}}\\ =&\sum_{i=0}^{N-1-\tau}d_{N-1-i}d_{N-1-(i+\tau)}\\ =&\sum_{t=0}^{N-1-\tau}d_{t+\tau}d_{t}\\ =&\rho_{\mathbf{d}}(\tau).\end{split}

Therefore, we have

ρ𝐛(τ)+ρ𝐝(τ)=ρ𝐛(τ)+ρ𝐝(τ)=0,\begin{split}\rho_{\mathbf{b}}(\tau)+\rho_{\overleftarrow{\mathbf{d}}}(\tau)&=\rho_{\mathbf{b}}(\tau)+\rho_{\mathbf{d}}(\tau)=0,\end{split}

for all NZ+1τN1N-Z+1\leq\tau\leq N-1, and ρ𝐛(NZ)+ρ𝐝(NZ)0\rho_{\mathbf{b}}(N-Z)+\rho_{\overleftarrow{\mathbf{d}}}(N-Z)\neq 0. ∎

Proof of Theorem 3:

By the Euclidean division theorem, we have τ=kN1+h\tau=kN_{1}+h where 0kN21,0hN110\leq k\leq N_{2}-1,0\leq h\leq N_{1}-1. By the definition of AACF, we have

ρ𝐮(τ)=m=0N21k[(em+fm2)(em+k+fm+k2)ρ𝐜(h)+(emfm2)(em+kfm+k2)ρ𝐝(h)+(em+fm2)(em+kfm+k2)ρ𝐜,𝐝(h)+(emfm2)(em+k+fm+k2)ρ𝐝,𝐜(h)+(em+fm2)(em+k+1+fm+k+12)ρ𝐜(N1h)+(emfm2)(em+k+1fm+k+12)ρ𝐝(N1h)+(em+fm2)(em+k+1fm+k+12)ρ𝐝,𝐜(N1h)+(emfm2)(em+k+1+fm+k+12)ρ𝐜,𝐝(N1h)]\begin{split}\rho_{\mathbf{u}}(\tau)=&\sum_{m=0}^{N_{2}-1-k}\left[\left(\frac{e_{m}+\overleftarrow{f}_{m}}{2}\right)\left(\frac{e_{m+k}+\overleftarrow{f}_{m+k}}{2}\right)\rho_{\mathbf{c}}(h)\right.+\left(\frac{e_{m}-\overleftarrow{f}_{m}}{2}\right)\left(\frac{e_{m+k}-\overleftarrow{f}_{m+k}}{2}\right)\rho_{\mathbf{d}}(h)\\ &+\left(\frac{e_{m}+\overleftarrow{f}_{m}}{2}\right)\left(\frac{e_{m+k}-\overleftarrow{f}_{m+k}}{2}\right)\rho_{\mathbf{c},\mathbf{d}}(h)+\left(\frac{e_{m}-\overleftarrow{f}_{m}}{2}\right)\left(\frac{e_{m+k}+\overleftarrow{f}_{m+k}}{2}\right)\rho_{\mathbf{d},\mathbf{c}}(h)\\ &+\left(\frac{e_{m}+\overleftarrow{f}_{m}}{2}\right)\left(\frac{e_{m+k+1}+\overleftarrow{f}_{m+k+1}}{2}\right)\rho_{\mathbf{c}}(N_{1}-h)\\ &+\left(\frac{e_{m}-\overleftarrow{f}_{m}}{2}\right)\left(\frac{e_{m+k+1}-\overleftarrow{f}_{m+k+1}}{2}\right)\rho_{\mathbf{d}}(N_{1}-h)\\ &+\left(\frac{e_{m}+\overleftarrow{f}_{m}}{2}\right)\left(\frac{e_{m+k+1}-\overleftarrow{f}_{m+k+1}}{2}\right)\rho_{\mathbf{d},\mathbf{c}}(N_{1}-h)\\ &\left.+\left(\frac{e_{m}-\overleftarrow{f}_{m}}{2}\right)\left(\frac{e_{m+k+1}+\overleftarrow{f}_{m+k+1}}{2}\right)\rho_{\mathbf{c},\mathbf{d}}(N_{1}-h)\right]\end{split}

Therefore, we have

ρ𝐮(τ)=ρ𝐜(h)4(ρ𝐞(k)+ρ𝐟(k)+ρ𝐞,𝐟(k)+ρ𝐟,𝐞(k))+ρ𝐝(h)4(ρ𝐞(k)+ρ𝐟(k)ρ𝐞,𝐟(k)ρ𝐟,𝐞(k))+ρ𝐜,𝐝(h)4(ρ𝐞(k)ρ𝐟(k)ρ𝐞,𝐟(k)+ρ𝐟,𝐞(k))+ρ𝐝,𝐜(h)4(ρ𝐞(k)ρ𝐟(k)+ρ𝐞,𝐟(k)ρ𝐟,𝐞(k))+ρ𝐜(N1h)4(ρ𝐞(k+1)+ρ𝐟(k+1)+ρ𝐞,𝐟(k+1)+ρ𝐟,𝐞(k+1))+ρ𝐝(N1h)4(ρ𝐞(k+1)+ρ𝐟(k+1)ρ𝐞,𝐟(k+1)ρ𝐟,𝐞(k+1))+ρ𝐜,𝐝(N1h)4(ρ𝐞(k+1)ρ𝐟(k+1)ρ𝐞,𝐟(k+1)+ρ𝐟,𝐞(k+1))+ρ𝐝,𝐜(N1h)4(ρ𝐞(k)ρ𝐟(k+1)+ρ𝐞,𝐟(k+1)ρ𝐟,𝐞(k+1)),\begin{split}\rho_{\mathbf{u}}(\tau)=&~{}\frac{\rho_{\mathbf{c}}(h)}{4}\left(\rho_{\mathbf{e}}(k)+\rho_{\overleftarrow{\mathbf{f}}}(k)+\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k)+\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k)\right)\\ &+\frac{\rho_{\mathbf{d}}(h)}{4}\left(\rho_{\mathbf{e}}(k)+\rho_{\overleftarrow{\mathbf{f}}}(k)-\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k)-\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k)\right)\\ &+\frac{\rho_{\mathbf{c,d}}(h)}{4}\left(\rho_{\mathbf{e}}(k)-\rho_{\overleftarrow{\mathbf{f}}}(k)-\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k)+\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k)\right)\\ &+\frac{\rho_{\mathbf{d,c}}(h)}{4}\left(\rho_{\mathbf{e}}(k)-\rho_{\overleftarrow{\mathbf{f}}}(k)+\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k)-\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k)\right)\\ &+\frac{\rho_{\mathbf{c}}(N_{1}-h)}{4}\left(\rho_{\mathbf{e}}(k+1)+\rho_{\overleftarrow{\mathbf{f}}}(k+1)+\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k+1)+\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k+1)\right)\\ &+\frac{\rho_{\mathbf{d}}(N_{1}-h)}{4}\left(\rho_{\mathbf{e}}(k+1)+\rho_{\overleftarrow{\mathbf{f}}}(k+1)-\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k+1)-\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k+1)\right)\\ &+\frac{\rho_{\mathbf{c,d}}(N_{1}-h)}{4}\left(\rho_{\mathbf{e}}(k+1)-\rho_{\overleftarrow{\mathbf{f}}}(k+1)-\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k+1)+\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k+1)\right)\\ &+\frac{\rho_{\mathbf{d,c}}(N_{1}-h)}{4}\left(\rho_{\mathbf{e}}(k)-\rho_{\overleftarrow{\mathbf{f}}}(k+1)+\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k+1)-\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k+1)\right),\\ \end{split}

and

ρ𝐯(τ)=ρ𝐜(h)4(ρ𝐞(k)+ρ𝐟(k)ρ𝐞,𝐟(k)ρ𝐟,𝐞(k))+ρ𝐝(h)4(ρ𝐞(k)+ρ𝐟(k)+ρ𝐞,𝐟(k)+ρ𝐟,𝐞(k))ρ𝐜,𝐝(h)4(ρ𝐞(k)ρ𝐟(k)ρ𝐞,𝐟(k)+ρ𝐟,𝐞(k))ρ𝐝,𝐜(h)4(ρ𝐞(k)ρ𝐟(k)+ρ𝐞,𝐟(k)ρ𝐟,𝐞(k))+ρ𝐜(N1h)4(ρ𝐞(k+1)+ρ𝐟(k+1)ρ𝐞,𝐟(k+1)ρ𝐟,𝐞(k+1))+ρ𝐝(N1h)4(ρ𝐞(k+1)+ρ𝐟(k+1)+ρ𝐞,𝐟(k+1)+ρ𝐟,𝐞(k+1))ρ𝐜,𝐝(N1h)4(ρ𝐞(k+1)ρ𝐟(k+1)ρ𝐞,𝐟(k+1)+ρ𝐟,𝐞(k+1))ρ𝐝,𝐜(N1h)4(ρ𝐞(k)ρ𝐟(k+1)+ρ𝐞,𝐟(k+1)ρ𝐟,𝐞(k+1)).\begin{split}\rho_{\mathbf{v}}(\tau)=&~{}\frac{\rho_{\mathbf{c}}(h)}{4}\left(\rho_{\mathbf{e}}(k)+\rho_{\overleftarrow{\mathbf{f}}}(k)-\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k)-\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k)\right)\\ &+\frac{\rho_{\mathbf{d}}(h)}{4}\left(\rho_{\mathbf{e}}(k)+\rho_{\overleftarrow{\mathbf{f}}}(k)+\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k)+\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k)\right)\\ &-\frac{\rho_{\mathbf{c,d}}(h)}{4}\left(\rho_{\mathbf{e}}(k)-\rho_{\overleftarrow{\mathbf{f}}}(k)-\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k)+\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k)\right)\\ &-\frac{\rho_{\mathbf{d,c}}(h)}{4}\left(\rho_{\mathbf{e}}(k)-\rho_{\overleftarrow{\mathbf{f}}}(k)+\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k)-\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k)\right)\\ &+\frac{\rho_{\mathbf{c}}(N_{1}-h)}{4}\left(\rho_{\mathbf{e}}(k+1)+\rho_{\overleftarrow{\mathbf{f}}}(k+1)-\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k+1)-\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k+1)\right)\\ &+\frac{\rho_{\mathbf{d}}(N_{1}-h)}{4}\left(\rho_{\mathbf{e}}(k+1)+\rho_{\overleftarrow{\mathbf{f}}}(k+1)+\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k+1)+\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k+1)\right)\\ &-\frac{\rho_{\mathbf{c,d}}(N_{1}-h)}{4}\left(\rho_{\mathbf{e}}(k+1)-\rho_{\overleftarrow{\mathbf{f}}}(k+1)-\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k+1)+\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k+1)\right)\\ &-\frac{\rho_{\mathbf{d,c}}(N_{1}-h)}{4}\left(\rho_{\mathbf{e}}(k)-\rho_{\overleftarrow{\mathbf{f}}}(k+1)+\rho_{\mathbf{e},\overleftarrow{\mathbf{f}}}(k+1)-\rho_{\overleftarrow{\mathbf{f}},\mathbf{e}}(k+1)\right).\end{split}

Therefore, we have

ρ𝐮(τ)+ρ𝐯(τ)\displaystyle\rho_{\mathbf{u}}(\tau)+\rho_{\mathbf{v}}(\tau) (24)
=\displaystyle= ρ𝐜(h)2(ρ𝐞(k)+ρ𝐟(k))+ρ𝐝(h)2(ρ𝐞(k)+ρ𝐟(k))\displaystyle~{}\frac{\rho_{\mathbf{c}}(h)}{2}\left(\rho_{\mathbf{e}}(k)+\rho_{\overleftarrow{\mathbf{f}}}(k)\right)+\frac{\rho_{\mathbf{d}}(h)}{2}\left(\rho_{\mathbf{e}}(k)+\rho_{\overleftarrow{\mathbf{f}}}(k)\right)
+ρ𝐜(N1h)2(ρ𝐞(k+1)+ρ𝐟(k+1))+ρ𝐝(N1h)2(ρ𝐞(k+1)+ρ𝐟(k+1))\displaystyle~{}+\frac{\rho_{\mathbf{c}}(N_{1}-h)}{2}\left(\rho_{\mathbf{e}}(k+1)+\rho_{\overleftarrow{\mathbf{f}}}(k+1)\right)+\frac{\rho_{\mathbf{d}}(N_{1}-h)}{2}\left(\rho_{\mathbf{e}}(k+1)+\rho_{\overleftarrow{\mathbf{f}}}(k+1)\right)
=\displaystyle= 12[(ρ𝐜(h)+ρ𝐝(h))(ρ𝐞(k)+ρ𝐟(k))+(ρ𝐜(N1h)+\displaystyle~{}\frac{1}{2}\bigg{[}\big{(}\rho_{\mathbf{c}}(h)+\rho_{\mathbf{d}}(h)\big{)}\big{(}\rho_{\mathbf{e}}(k)+\rho_{\overleftarrow{\mathbf{f}}}(k)\big{)}+\big{(}\rho_{\mathbf{c}}(N_{1}-h)+
ρ𝐝(N1h))(ρ𝐞(k+1)+ρ𝐟(k+1))].\displaystyle~{}\rho_{\mathbf{d}}(N_{1}-h)\big{)}\big{(}\rho_{\mathbf{e}}(k+1)+\rho_{\overleftarrow{\mathbf{f}}}(k+1)\big{)}\bigg{]}.

This together with the definition of Type-II ZCP and Lemma 3 means that

  • ρ𝐮(τ)+ρ𝐯(τ)0\rho_{\mathbf{u}}(\tau)+\rho_{\mathbf{v}}(\tau)\neq 0 for τ=(N2Z2)N1+N1Z1\tau=(N_{2}-Z_{2})N_{1}+N_{1}-Z_{1} (i.e., k=N2Z2k=N_{2}-Z_{2} and h=N1Z1h=N_{1}-Z_{1}); and

  • ρ𝐮(τ)+ρ𝐯(τ)=0\rho_{\mathbf{u}}(\tau)+\rho_{\mathbf{v}}(\tau)=0 for all τ>(N2Z2)N1+N1Z1\tau>(N_{2}-Z_{2})N_{1}+N_{1}-Z_{1} (i.e., k>N2Z2k>N_{2}-Z_{2} or (k=N2Z2k=N_{2}-Z_{2} and h>N1Z1h>N_{1}-Z_{1})).

Therefore, the ZCZ width of (𝐮,𝐯)(\mathbf{u},\mathbf{v}) is Z=N1(Z21)+Z1Z=N_{1}(Z_{2}-1)+Z_{1}. This completes the proof of the theorem.

References

  • [1] M. J. E. Golay, “Static multislit spectrometry and its application to the panoramic display of infrared spectra,” J. Opt. Soc. Am., vol. 41, no. 7, pp. 468-472, Jul. 1951.
  • [2] M. Golay, “Complementary series,” IRE Trans. Inf. Theory, vol. 7, no. 2, pp. 82-87, Apr. 1961.
  • [3] P. Spasojevic and C. N. Georghiades, “Complementary sequences for ISI channel estimation,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 1145-1152, Mar. 2001.
  • [4] S. Wang and A. Abdi, “MIMO ISI channel estimation using uncorrelated Golay complementary sets of polyphase sequences,” IEEE Trans. Veh. Technol., vol. 56, no. 5, pp. 3024-3039, Sep. 2007.
  • [5] S. Z. Budisin, “Efficient pulse compressor for Golay complementary sequences,” Electron. Lett., vol. 27, no. 3, pp. 219-220, Jan. 1991.
  • [6] A. Pezeshki, A. R. Calderbank, W. Moran, and S. D. Howard, “Doppler resilient Golay complementary waveforms,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4254-4266, Sep. 2008.
  • [7] P. Kumari, J. Choi, N. González-Prelcic, and R. W. Heath, “IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3012–3027, Apr. 2018.
  • [8] H. H. Chen, J. F. Yeh, and N. Suehiro, “A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications,” IEEE Commun. Mag., vol. 39, no. 10, pp. 126-135, Oct. 2001.
  • [9] Z. Liu, Y. L. Guan, and H. H. Chen, “Fractional-delay-resilient receiver design for interference-free MC-CDMA communications based on complete complementary codes,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1226-1236, Mar. 2015.
  • [10] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2397-2417, Nov. 1999.
  • [11] Z. Wang, M. G. Parker, G. Gong, and G. Wu, “On the PMEPR of binary Golay sequences of length 2n2^{n},” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2391-2398, Apr. 2014.
  • [12] P. Borwein and R. Ferguson, “A complete description of Golay pairs for lengths up to 100,” Math. comput., vol. 73, no. 246, pp. 967-985, 2004.
  • [13] P. Fan, W. Yuan, and Y. Tu, “Z-complementary binary sequences,” IEEE Signal Process. Lett., vol. 14, no. 8, pp. 509-512, Aug. 2007.
  • [14] X. Li, P. Fan, X. Tang, and Y. Tu, “Existence of binary Z-complementary pairs,” IEEE Signal Process. Lett., vol. 18, no. 1, pp. 63-66, Jan. 2011.
  • [15] Z. Liu, P. Udaya, and Y. L. Guan, “Optimal odd-length binary Z-complementary pairs,” IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5768-5781, Sep. 2014.
  • [16] Z. Liu, P. Udaya, and Y. L. Guan, “On even-period binary Z-complementary pairs with large ZCZs,” IEEE Signal Process. Lett., vol. 21, no. 3, pp. 284-287, Mar. 2014.
  • [17] C. Chen, “A novel construction of Z-complementary pairs based on generalized Boolean functions,” IEEE Signal Process. Lett., vol. 24, no. 7, pp. 987-990, Jul. 2017.
  • [18] A. R. Adhikary, S. Majhi, Z. Liu, and Y. L. Guan, “New sets of even-length binary Z-complementary pairs with asymptotic ZCZ ratio of 3/43/4,” IEEE Signal Process. Lett., vol. 25, no. 7, pp. 970-973, Jul. 2018.
  • [19] C. Xie and Y. Sun, “Constructions of even-period binary Z-complementary pairs with large ZCZs,” IEEE Signal Process. Lett., vol. 25, no. 8, pp. 1141-1145, Aug. 2018.
  • [20] N. Suehiro, “A signal design without co-channel interference for approximately synchronized CDMA systems,” IEEE J. Sel. Areas Commun., vol. 12, no. 5, pp. 837-841, Jun. 1994.
  • [21] B. Long, P. Zhang, and J. Hu, “A generalized QS-CDMA system and the design of new spreading codes,” IEEE Trans. Veh. Technol., vol. 47, no. 4, pp. 1268-1275, Nov. 1998.
  • [22] P. Fan, N. Suehiro, N. Kuroyanagi, and X. M. Deng, “Class of binary sequences with zero correlation zone,” Electron. Lett., vol. 35, no. 10, pp. 777-779, May 1999.
  • [23] X. Tang and W. H. Mow, “Design of spreading codes for quasi-synchronous CDMA with intercell interference,” IEEE J. Sel. Areas Commun., vol. 24, no. 1, pp. 84–93, Jan. 2006.
  • [24] X. Tang, P. Fan, and J. Lindner, “Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets,” IEEE Trans. Inf. Theory, vol. 56, no. 8, pp. 4038–4045, Aug. 2010.
  • [25] W. C. Lee, Mobile communications design fundamentals.   John Wiley & Sons, 2010.
  • [26] J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook. Mobile Communications series, Artech House Publishers, 1998.
  • [27] “IEEE p802.11axTM/d2.0: Draft standard for information technologytelecommunications and information exchange between systems local and metropolitan area networks-specific requirements,” (Amendment to IEEE Std 802.11-2016).
  • [28] A. R. Adhikary and S. Majhi, “New constructions of complementary sets of sequences of lengths non-power-of-two,” IEEE Commun. Lett., vol. 23, no. 7, pp. 1119–1122, July 2019.
  • [29] A. R. Adhikary and S. Majhi, “New construction of optimal aperiodic Z-complementary sequence sets of odd-lengths,” Electron. Lett., vol. 55, no. 19, pp. 1043–1045, 2019.
  • [30] A. R. Adhikary, S. Majhi, Z. Liu, and Y. L. Guan, “New sets of optimal odd-length binary Z-complementary pairs,” IEEE Trans. Inf. Theory, vol. 66, no. 1, pp. 669-678, Jan. 2020.
  • [31] A. R. Adhikary, S. Majhi, Z. Liu, and Y. L. Guan, “New optimal binary Z-complementary pairs of odd lengths,” 2017 Eighth Int. workshop on signal design and its App. in Commun. (IWSDA), Sapporo, 2017, pp. 14–18.
  • [32] B. Shen, Y. Yang, Z. Zhou, P. Fan, and Y. Guan, “New optimal binary Z-complementary pairs of odd length 2m+32^{m}+3,” IEEE Signal Process. Lett., vol. 26, no. 12, pp. 1931–1934, Dec. 2019.
  • [33] C. Chen and C. Pai, “Binary Z-complementary pairs with bounded peak-to-mean envelope power ratios,” IEEE Commun. Lett., vol. 23, no. 11, pp. 1899-1903, Nov. 2019.