This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

New Conforming Finite element divdiv Complexes in Three Dimensions

Jun Hu LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China. [email protected] Yizhou Liang LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China. [email protected] Rui Ma School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P.R. China. [email protected]  and  Min Zhang Computational Science Research Center, Beijing 100193, P. R. China. School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China. [email protected]
Abstract.

In this paper, the first family of conforming finite element divdiv complexes on cuboid grids in three dimensions is constructed. Besides, a new family of conforming finite element divdiv complexes with enhanced smoothness on tetrahedral grids is presented. These complexes are exact in the sense that the range of each discrete map is the kernel space of the succeeding one.

1. Introduction

This paper considers the construction of conforming finite element sub-complexes of the following divdiv complex on Ω3\Omega\subseteq\mathbb{R}^{3}, see [15, 2]

(1.1) RTH1(Ω;3)devgradH(symcurl,Ω;\displaystyle RT\stackrel{{\scriptstyle\subseteq}}{{\rightarrow}}H^{1}(\Omega;\mathbb{R}^{3})\stackrel{{\scriptstyle\operatorname{dev}\operatorname{grad}}}{{\longrightarrow}}H(\operatorname{sym}\operatorname{curl},\Omega; 𝕋)symcurlH(divdiv,Ω;𝕊)\displaystyle\mathbb{T})\stackrel{{\scriptstyle\operatorname{sym}\operatorname{curl}}}{{\longrightarrow}}H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S})
divdivL2(Ω;)0,\displaystyle\stackrel{{\scriptstyle\operatorname{div}\operatorname{div}}}{{\longrightarrow}}L^{2}(\Omega;\mathbb{R})\stackrel{{\scriptstyle}}{{\rightarrow}}0,

where RT:={a𝐱+𝒃:a,𝒃3}RT:=\{a\mathbf{x}+\bm{b}:\,a\in\mathbb{R},\bm{b}\in\mathbb{R}^{3}\}, the spaces H1(Ω;3)H^{1}(\Omega;\mathbb{R}^{3}) and L2(Ω;)L^{2}(\Omega;\mathbb{R}) are the vector-valued and scalar-valued Sobolev spaces, respectively, and

H(symcurl,Ω;𝕋):=\displaystyle H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}):= {𝝈L2(Ω;𝕋):symcurl𝝈L2(Ω;𝕊)},\displaystyle\left\{\bm{\sigma}\in L^{2}(\Omega;\mathbb{T}):\operatorname{sym}\operatorname{curl}\bm{\sigma}\in L^{2}(\Omega;\mathbb{S})\right\},
H(divdiv,Ω;𝕊):=\displaystyle H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}):= {𝝈L2(Ω;𝕊):divdiv𝝈L2(Ω;)}.\displaystyle\left\{\bm{\sigma}\in L^{2}(\Omega;\mathbb{S}):\operatorname{div}\operatorname{div}\bm{\sigma}\in L^{2}(\Omega;\mathbb{R})\right\}.

Here 𝕋\mathbb{T} and 𝕊\mathbb{S} denote the spaces of traceless and symmetric matrices in three dimensions, respectively, the operator symcurl\operatorname{sym}\operatorname{curl} is the symmetric part of the row-wise curl\operatorname{curl} operator, and the inner divergence operator of divdiv\operatorname{div}\operatorname{div} is applied by row resulting a column vector for which the outer divergence operator is applied. Such a complex is exact provided that the domain Ω\Omega is contractible and Lipschitz [15, 2]. Particularly, conforming finite element spaces ΣhH(divdiv,Ω;𝕊)\Sigma_{h}\subseteq H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}), VhH1(Ω;3)V_{h}\subseteq H^{1}(\Omega;\mathbb{R}^{3}), 𝒰hH(symcurl,Ω;𝕋)\mathcal{U}_{h}\subseteq H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}), and QhL2(Ω;)Q_{h}\subseteq L^{2}(\Omega;\mathbb{R}) are constructed, such that the following discrete divdiv complex

(1.2) RTVhdevgrad𝒰h sym curl Σh div div Qh0RT\stackrel{{\scriptstyle\subseteq}}{{\longrightarrow}}V_{h}\stackrel{{\scriptstyle\operatorname{dev}\operatorname{grad}}}{{\longrightarrow}}\mathcal{U}_{h}\stackrel{{\scriptstyle\text{ sym curl }}}{{\longrightarrow}}\Sigma_{h}\stackrel{{\scriptstyle\text{ div div }}}{{\longrightarrow}}Q_{h}\rightarrow 0

is exact.

One of the applications of the finite element divdiv complex of (1.2) is to solve the fourth order problems [5, 7, 12, 15]. Besides, the construction of the finite element divdiv complex of (1.2) is closely related to the mixed formulation of the so-called linearized Einstein-Bianchi system [16]. The first finite element sub-complex of the gradgrad complex (the dual complex of the divdiv complex) was constructed in [10], and the finite element spaces were employed to solve the linearized Einstein-Bianchi system within the mixed form. Recently, two finite element divdiv complexes of (1.2) on tetrahedral grids were constructed in [11, 7], and the associated finite element spaces can be used to discretize the linearized Einstein-Bianchi system within the dual formulation introduced in [11]. Both used the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element on tetrahedral grids from [7]. However, it is arduous to compute the basis functions of the finite element spaces in [11, 7], since the degrees of freedom(DOFs) of those finite elements are in some sense complicated. More precisely, the design of the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element in [7] was based on Green’s identity [7, Lemma 4.1]

(1.3) (divdiv𝝈,q)K=(𝝈,2q)Kf(K)e(f)(𝒏f,e𝝈𝒏f,q)f+f(K)[(𝒏f𝝈𝒏f,q𝒏f)f(2divf(𝝈𝒏f)+(𝒏f𝝈𝒏f)𝒏f,q)f]\displaystyle\begin{split}(\operatorname{div}\operatorname{div}\bm{\sigma},q)_{K}=&(\bm{\sigma},\nabla^{2}q)_{K}-\sum_{f\in\mathscr{F}(K)}\sum_{e\in\mathscr{E}(f)}(\bm{n}_{f,e}^{\intercal}\bm{\sigma}\bm{n}_{f},q)_{f}\\ &+\sum_{f\in\mathscr{F}(K)}[(\bm{n}_{f}^{\intercal}\bm{\sigma}\bm{n}_{f},\frac{\partial q}{\partial\bm{n}_{f}})_{f}-(2\operatorname{div}_{f}(\bm{\sigma}\bm{n}_{f})+\frac{\partial(\bm{n}_{f}^{\intercal}\bm{\sigma}\bm{n}_{f})}{\partial\bm{n}_{f}},q)_{f}]\end{split}

on tetrahedron KK. Here 𝝈\bm{\sigma} is a symmetric matrix valued function, qq is a scalar function, (K)\mathscr{F}(K) is the set of all faces of the tetrahedron KK, (f)\mathscr{E}(f) is the set of all edges of face ff, 𝒏f\bm{n}_{f} is the unit normal vector of ff, 𝒏f,e\bm{n}_{f,e} denotes the unit normal vector of ee that parallels to ff, and divf\operatorname{div}_{f} is the surficial divergence. Based on (1.3), besides the continuity of 𝒏f,e𝝈𝒏f\bm{n}_{f,e}^{\intercal}\bm{\sigma}\bm{n}_{f} across each edge ee and 𝒏f𝝈𝒏f\bm{n}_{f}^{\intercal}\bm{\sigma}\bm{n}_{f} across each interface ff, the continuity of 2divf(𝝈𝒏f)+(𝒏f𝝈𝒏f)𝒏f2\operatorname{div}_{f}(\bm{\sigma}\bm{n}_{f})+\frac{\partial(\bm{n}_{f}^{\intercal}\bm{\sigma}\bm{n}_{f})}{\partial\bm{n}_{f}} across each interface ff is imposed on the functions of the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space in [7]. As a result, the last continuity brings a set of DOFs which combine two terms 2divf(𝝈𝒏f)2\operatorname{div}_{f}(\bm{\sigma}\bm{n}_{f}) and (𝒏f𝝈𝒏f)𝒏f\frac{\partial(\bm{n}_{f}^{\intercal}\bm{\sigma}\bm{n}_{f})}{\partial\bm{n}_{f}} on the boundary of KK. Such a combination makes it difficult to figure out the explicit basis functions of the corresponding H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space. In addition, such a combination is inherited by both the H1(Ω;3)H^{1}(\Omega;\mathbb{R}^{3}) and H(symcurl,Ω;𝕋)H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) conforming finite element spaces in the finite element complex. In a recent work [12], new H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element spaces with explicit basis functions were constructed on both triangular and tetrahedral grids in a unified way. Instead of (1.3), the design of [12] was based on the following identity

(divdiv𝝈,q)K=(𝝈,2q)Kf(K)(𝝈𝒏f,q)f+f(K)(𝒏fdiv𝝈,q)f.\begin{split}(\operatorname{div}\operatorname{div}\bm{\sigma},q)_{K}=(\bm{\sigma},\nabla^{2}q)_{K}-\sum_{f\in\mathscr{F}(K)}(\bm{\sigma}\bm{n}_{f},\nabla q)_{f}+\sum_{f\in\mathscr{F}(K)}(\bm{n}_{f}^{\intercal}\operatorname{div}\bm{\sigma},q)_{f}.\end{split}

The continuity of 𝝈𝒏f\bm{\sigma}\bm{n}_{f} and 𝒏fdiv𝝈\bm{n}_{f}^{\intercal}\operatorname{div}\bm{\sigma} across each interface ff was imposed on the functions of the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space in [12]. Consequently, the element follows by strengthening the continuity of the normal component of the divergences of the functions of the H(div,Ω;𝕊)H(\operatorname{div},\Omega;\mathbb{S}) conforming finite elements proposed in [14, 9, 13]. Here H(div,Ω;𝕊)H(\operatorname{div},\Omega;\mathbb{S}) is a space of square-integrable tensors with square-integrable divergence, taking values in the space 𝕊\mathbb{S} of symmetric matrices. As it can be seen from [12] that because of a crucial structure of the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space, inherited from that of the H(div,Ω;𝕊)H(\operatorname{div},\Omega;\mathbb{S}) finite element space, the basis functions can be easily written out. In addition, the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space in [12] is a little bit smoother than that in [7]. Recently, the construction in [12] has been generalized to arbitrary dimension [6].

This paper is devoted to construct conforming finite element complexes of (1.2) on both cuboid and tetrahedral grids in three dimensions. The key part is to characterize the continuity of the finite element spaces appearing in the discrete complexes of (1.2). Motivated by the sufficient continuity condition proposed in [12], which is actually a characterization of the continuity of H(divdiv,Ω;𝕊)H(div,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S})\cap H(\operatorname{div},\Omega;\mathbb{S}), a new H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space Σh\Sigma_{h} is constructed in this paper. The enhanced smoothness of Σh\Sigma_{h} brings corresponding enhancement of regularity for the finite element subspaces 𝒰hH(symcurl,Ω;𝕋)\mathcal{U}_{h}\subseteq H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) and VhH1(Ω;3)V_{h}\subseteq H^{1}(\Omega;\mathbb{R}^{3}). In fact, a global regularity 𝒰hH(symcurl,Ω;𝕋)\mathcal{U}_{h}\subseteq H^{*}(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) is imposed for the H(symcurl,Ω;𝕋)H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) conforming finite element space, where H(symcurl,Ω;𝕋)H^{*}(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) is a subspace of H(symcurl,Ω;𝕋)H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) such that the column-wise divergences of matrix valued functions belong to the space H(curl,Ω;3)H(\operatorname{curl},\Omega;\mathbb{R}^{3}). Consequently, a global regularity VhH1(div,Ω;3)V_{h}\subseteq H^{1}(\operatorname{div},\Omega;\mathbb{R}^{3}) is required for the H1(Ω;3)H^{1}(\Omega;\mathbb{R}^{3}) conforming finite element space, where H1(div,Ω;3)H^{1}(\operatorname{div},\Omega;\mathbb{R}^{3}) is a subspace of H1(Ω;3)H^{1}(\Omega;\mathbb{R}^{3}) such that the divergences of vector valued functions are equally in the space H1(Ω;)H^{1}(\Omega;\mathbb{R}). As a consequence, the conforming finite element divdiv complexes of (1.2) on cuboid grids and tetrahedral grids in three dimensions constructed in this paper are sub-complexes of the divdiv complex with the following enhanced smoothness:

(1.4) RTH1(div,Ω;\displaystyle RT\stackrel{{\scriptstyle\subseteq}}{{\rightarrow}}H^{1}(\operatorname{div},\Omega; 3)devgradH(symcurl,Ω;𝕋)\displaystyle\mathbb{R}^{3})\stackrel{{\scriptstyle\operatorname{dev}\operatorname{grad}}}{{\longrightarrow}}H^{\ast}(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T})
symcurlH(divdiv,Ω;𝕊)H(div,Ω;𝕊)divdivL2(Ω;)0.\displaystyle\stackrel{{\scriptstyle\operatorname{sym}\operatorname{curl}}}{{\longrightarrow}}H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S})\cap H(\operatorname{div},\Omega;\mathbb{S})\stackrel{{\scriptstyle\operatorname{div}\operatorname{div}}}{{\longrightarrow}}L^{2}(\Omega;\mathbb{R})\stackrel{{\scriptstyle}}{{\rightarrow}}0.

On cuboid grids, the spaces QhQ_{h}, Σh\Sigma_{h}, 𝒰h\mathcal{U}_{h}, and VhV_{h} are noted as Qk2,Q_{k-2,\Box}, Σk,\Sigma_{k,\Box}, 𝒰k,\mathcal{U}_{k,\Box}, and Vk,V_{k,\Box} with k3k\geq 3, respectively, where Qk2,Q_{k-2,\Box} is the space of discontinuous piecewise polynomials of degree no more than k2k-2 for each variable. For the spaces Σk,\Sigma_{k,\Box}, 𝒰k,\mathcal{U}_{k,\Box}, and Vk,V_{k,\Box}, the associated shape function spaces will be determined by the polynomial de Rham complex and the polynomial divdiv complex, and the corresponding DOFs are identified by imposing the associated continuity requirements sufficiently. On tetrahedral grids, the spaces QhQ_{h}, Σh\Sigma_{h}, 𝒰h\mathcal{U}_{h}, and VhV_{h} are noted as Qk2,Q_{k-2,\triangle}, Σk,\Sigma_{k,\triangle}, 𝒰k+1,\mathcal{U}_{k+1,\triangle}, and Vk+2,V_{k+2,\triangle} with k4k\geq 4, respectively, where Qk2,Q_{k-2,\triangle} is the space of discontinuous piecewise polynomials of degree no more than k2k-2, the space Σk,\Sigma_{k,\triangle} is a modification of the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element in [12], the spaces 𝒰k+1,\mathcal{U}_{k+1,\triangle} and Vk+2,V_{k+2,\triangle} are newly proposed herein.

The rest of the paper is organized as follows. Section 2 introduces the notation. Section 3 constructs the finite element divdiv complex on cuboid grids. Section 4 constructs the finite element divdiv complex on tetrahedral grids. The exactness of the discrete complexes will be proved in Section 5.

2. Preliminaries

Let Ω\Omega be a contractible domain with Lipschitz boundary Ω\partial\Omega of 3\mathbb{R}^{3}.  Let {𝒯h}\{\mathcal{T}_{h}\} denote a family of shape regular cuboid or tetrahedral grids on Ω\Omega with the mesh size hh.  Let 𝒱\mathscr{V}, \mathscr{E}, and \mathscr{F} denote the set of vertices, edges, and faces, respectively.  Given element K𝒯hK\in\mathcal{T}_{h}, let 𝒱(K)\mathscr{V}(K), (K)\mathscr{E}(K), and (K)\mathscr{F}(K) denote the sets of vertices, edges, and faces of KK, respectively. Given an edge e(K)e\in\mathscr{E}(K), the unit tangential vector 𝒕e\bm{t}_{e}, as well as two unit normal vectors 𝒏e±\bm{n}^{\pm}_{e} are fixed. For a facet f(K)f\in\mathscr{F}(K), the unit normal vector 𝒏f{\bm{n}_{f}} as well as two unit tangential vectors 𝒕f±\bm{t}^{\pm}_{f} are fixed. The jump of uu across an interface ff\in{\mathscr{F}} shared by neighboring elements K±K^{\pm} is defined by

[u]f:=u|K+u|K.\left[u\right]_{f}:=u|_{K^{+}}-u|_{K^{-}}.

When it comes to any boundary face fΩf\subseteq\partial\Omega, the jump []f[\cdot]_{f} reduces to the trace. Let pwk\nabla_{pw}^{k} denote the elementwise derivative of order kk for piecewise functions.

Denote by 𝕄\mathbb{M} the space of 3×33\times 3 real matrices, and let 𝕊\mathbb{S}, 𝕂\mathbb{K}, and 𝕋\mathbb{T} be the subspaces of symmetric, skew-symmetric, and traceless matrices, respectively. Let 𝑰\bm{I} denote the 3×33\times 3 identity, and 𝑰1:=(1,0,0)\bm{I}_{1}:=(1,0,0)^{\intercal}, 𝑰2:=(0,1,0)\bm{I}_{2}:=(0,1,0)^{\intercal}, as well as 𝑰3:=(0,0,1)\bm{I}_{3}:=(0,0,1)^{\intercal}. For matrix valued function 𝝈:Ω𝕄\bm{\sigma}:\Omega\rightarrow\mathbb{M}, define the symmetric part and traceless part as follows, respectively,

sym𝝈:=12(𝝈+𝝈),dev𝝈:=𝝈13tr(𝝈)𝑰.\operatorname{sym}\bm{\sigma}:=\frac{1}{2}(\bm{\sigma}+\bm{\sigma}^{\intercal}),\quad\operatorname{dev}\bm{\sigma}:=\bm{\sigma}-\frac{1}{3}\operatorname{tr}(\bm{\sigma})\bm{I}.

For simplicity of presentation, for 𝐱=(x,y,z)Ω\mathbf{x}=(x,y,z)^{\intercal}\in\Omega, let xix_{i} be x,y,zx,y,z when ii takes 1,21,2 and 33, respectively, and /xi\partial/\partial{x_{i}} be abbreviated as i\partial_{i}. For a vector field 𝒗=(v1,v2,v3)\bm{v}=(v_{1},v_{2},v_{3})^{\intercal}, the gradient applies by row to produce a matrix valued function, namely grad𝒗:=𝒗:=(jvi)3×3\operatorname{grad}\bm{v}:=\nabla\bm{v}:=(\partial_{j}v_{i})_{3\times 3}. Define the symmetric gradient by ε(𝒗):=sym(𝒗)\varepsilon(\bm{v}):=\operatorname{sym}(\nabla\bm{v}) and define a skew symmetric matrix

mspn𝒗:=(0v3v2v30v1v2v10).\operatorname{mspn}\bm{v}:=\left(\begin{array}[]{ccc}0&-v_{3}&v_{2}\\ v_{3}&0&-v_{1}\\ -v_{2}&v_{1}&0\end{array}\right).

Given a facet ff\in\mathscr{F} with the unit normal vector 𝒏f\bm{n}_{f}, for a vector 𝒗3\bm{v}\in\mathbb{R}^{3} as well as a scalar function qq, define

Πf𝒗:=(𝒏f×𝒗)×𝒏f,fq:=Πfq.\Pi_{f}\bm{v}:=(\bm{n}_{f}\times\bm{v})\times\bm{n}_{f},\quad\nabla_{f}q:=\Pi_{f}\nabla q.

Define the surface symmetric gradient εf\varepsilon_{f} by

εf(𝒗):=sym(f(Πf𝒗)),\varepsilon_{f}(\bm{v}):=\operatorname{sym}(\nabla_{f}(\Pi_{f}\bm{v})),

and the surface rot operator is defined by

rotf𝒗:=(𝒏f×)𝒗=𝒏fcurl𝒗.\operatorname{rot}_{f}\bm{v}:=(\bm{n}_{f}\times\nabla)\cdot\bm{v}=\bm{n}_{f}\cdot\operatorname{curl}\bm{v}.

For a matrix field, the operators curl\operatorname{curl} and div\operatorname{div} apply by row, and curl\operatorname{curl}^{*} and div\operatorname{div}^{*} apply by column to produce a matrix field and vector field, respectively. Given a plane ff with unit normal vector 𝒏f\bm{n}_{f}, denote

(2.1) 𝒬f:=𝑰𝒏f𝒏f\displaystyle\mathcal{Q}_{f}:=\bm{I}-\bm{n}_{f}\bm{n}_{f}^{\intercal}

the orthogonal projection onto ff.

Given a matrix valued function 𝝈\bm{\sigma}, define the symmetric projection 𝒬f,sym𝝈:=sym(𝒬f𝝈)\mathcal{Q}_{f,\operatorname{sym}}\bm{\sigma}:=\operatorname{sym}(\mathcal{Q}_{f}\bm{\sigma}), and for symmetric 𝝈\bm{\sigma}, define Λf(𝝈):f𝒬f𝕊𝒬f\Lambda_{f}(\bm{\sigma}):f\rightarrow\mathcal{Q}_{f}\mathbb{S}\mathcal{Q}_{f} by

(2.2) Λf(𝝈):=𝒬f(2ε(𝝈𝒏f)𝝈𝒏f)𝒬f.\displaystyle\Lambda_{f}(\bm{\sigma}):=\mathcal{Q}_{f}(2\varepsilon(\bm{\sigma}\bm{n}_{f})-\frac{\partial\bm{\sigma}}{\partial\bm{n}_{f}})\mathcal{Q}_{f}.

Assume that D3D\subseteq\mathbb{R}^{3} is a bounded and topologically trivial domain. Let standard notation Hm(D;X)H^{m}(D;X) denote the Sobolev space consisting of functions within domain DD, taking values in space XX, and with all derivatives of order at most mm square-integrable. In the case m=0m=0, set H0(D;X)=L2(D;X)H^{0}(D;X)=L^{2}(D;X). The L2L^{2} scalar product over DD is denoted as (,)D(\cdot,\cdot)_{D}, 0,D\|{\cdot}\|_{0,D} denotes the L2L^{2} norm over a set DD, and 0\|{\cdot}\|_{0} abbreviates 0,Ω\|{\cdot}\|_{0,\Omega}. Similarly, let Cm(D;X)C^{m}(D;X) denote the space of mm-times continuously differentiable functions, taking values in XX. In this paper, XX could be 𝕄,𝕊,𝕋,\mathbb{M},\mathbb{S},\mathbb{T},\mathbb{R} or 3\mathbb{R}^{3}. Define

H(symcurl,D;𝕋):=\displaystyle H(\operatorname{sym}\operatorname{curl},D;\mathbb{T}):= {𝝈L2(D;𝕋):symcurl𝝈L2(D;𝕊)},\displaystyle\left\{\bm{\sigma}\in L^{2}(D;\mathbb{T}):\operatorname{sym}\operatorname{curl}\bm{\sigma}\in L^{2}(D;\mathbb{S})\right\},
H(divdiv,D;𝕊):=\displaystyle H(\operatorname{div}\operatorname{div},D;\mathbb{S}):= {𝝈L2(D;𝕊):divdiv𝝈L2(D;)}.\displaystyle\left\{\bm{\sigma}\in L^{2}(D;\mathbb{S}):\operatorname{div}\operatorname{div}\bm{\sigma}\in L^{2}(D;\mathbb{R})\right\}.

Let Pk(D;X)P_{k}(D;X) denote the space of polynomials of degree no more than kk on DD, taking values in the space XX. Let Qk(D;X)Q_{k}(D;X) denote the space of polynomials on DD of degree no more than kk for each variable, taking values in the space XX. It will be convenient to define

Pk1(xi)Pk2(xj)Pk3(xl):={0s1k1,0s2k20s3k3cs1s2s3xis1xjs2xls3:cs1s2s3}.P_{k_{1}}(x_{i})\cdot P_{k_{2}}(x_{j})\cdot P_{k_{3}}(x_{l}):=\left\{\sum_{0\leq s_{1}\leq k_{1},0\leq s_{2}\leq k_{2}\atop 0\leq s_{3}\leq k_{3}}c_{s_{1}s_{2}s_{3}}\,x_{i}^{s_{1}}x_{j}^{s_{2}}x_{l}^{s_{3}}:\,c_{s_{1}s_{2}s_{3}}\in\mathbb{R}\right\}.

Here s1s_{1}, s2s_{2}, s3s_{3}, k1k_{1}, k2k_{2}, and k3k_{3} are nonnegative integers, and {i,j,l}\{i,j,l\} is a permutation of {1,2,3}\{1,2,3\}. In particular, for 𝐱=(x1,x2,x3)D\mathbf{x}=(x_{1},x_{2},x_{3})^{\intercal}\in D, denote

Pk1k2k3(D):=Pk1(x1)Pk2(x2)Pk3(x3).P_{k_{1}k_{2}k_{3}}(D):=P_{k_{1}}(x_{1})\cdot P_{k_{2}}(x_{2})\cdot P_{k_{3}}(x_{3}).

Given two spaces 𝒬1(D)\mathcal{Q}_{1}(D) and 𝒬2(D)\mathcal{Q}_{2}(D) with 𝒬2(D)𝒬1(D)\mathcal{Q}_{2}(D)\subseteq\mathcal{Q}_{1}(D), let 𝒬1(D)/𝒬2(D)\mathcal{Q}_{1}(D)/\mathcal{Q}_{2}(D) denote the space of q𝒬1(D)q\in\mathcal{Q}_{1}(D) such that (q,p)D=0(q,p)_{D}=0 for any p𝒬2(D)p\in\mathcal{Q}_{2}(D).

For 𝐱=(x,y,z)D\mathbf{x}=(x,y,z)^{\intercal}\in D, denote

(2.3) RM(D):={(c1c4yc5zc2+c4xc6zc3+c5x+c6y):c1,c2,c3,c4,c5,c6}\displaystyle RM(D):=\left\{\begin{pmatrix}c_{1}-c_{4}y-c_{5}z\\ c_{2}+c_{4}x-c_{6}z\\ c_{3}+c_{5}x+c_{6}y\\ \end{pmatrix}:c_{1},c_{2},c_{3},c_{4},c_{5},c_{6}\in\mathbb{R}\right\}

as the 6-dimensional space of the rigid motions. Besides,

RT(D):={a𝐱+𝒃:a,𝒃3}RT(D):=\{a\mathbf{x}+\bm{b}:\,a\in\mathbb{R},\bm{b}\in\mathbb{R}^{3}\}

with dimRT(D)=4{\rm{dim}}\,RT(D)=4 is the shape function space of the lowest order Raviart-Thomas element[4]. If the domain DD is clear, the spaces RM(D)RM(D) and RT(D)RT(D) are recorded as RMRM and RTRT, respectively.

Let ker(𝒟)\operatorname{ker}(\mathscr{D}) be the kernel space of operator 𝒟\mathscr{D}. Let n¯\overline{n} denote the congruence of integer nn with modulus 3, namely,

(2.4) n¯n(mod3),n¯=1,2,3.\displaystyle\overline{n}\equiv n(\operatorname{mod}3),~{}~{}~{}~{}~{}\overline{n}=1,2,3.

For 𝒖=(uij)3×3\bm{u}=(u_{ij})_{3\times 3}, let 𝒫n𝒖:=(u11,u22,u33)\mathscr{P}_{n}\bm{u}:=(u_{11},u_{22},u_{33})^{\intercal} denote the normal stress and 𝒫t𝒖:=(u12,u13,u23)\mathscr{P}_{t}\bm{u}:=(u_{12},u_{13},u_{23})^{\intercal} as the shear stress.

3. The finite element spaces on cuboid grids

Let 𝒯\mathcal{T}_{\Box} be a cuboid grid of the domain Ω3\Omega\subseteq\mathbb{R}^{3}. This section constructs finite element subspaces Vk,H1(Ω;3)V_{k,\Box}\subseteq H^{1}(\Omega;\mathbb{R}^{3}), 𝒰k,H(symcurl,Ω;𝕋)\mathcal{U}_{k,\Box}\subseteq H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}), and Σk,H(divdiv,Ω;𝕊)\Sigma_{k,\Box}\subseteq H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) on cuboid grids. It will be proved that these finite element subspaces form an exact discrete divdiv complex of (1.2).

In the endeavor to acquire the exact finite element divdiv complex of (1.2) on 𝒯\mathcal{T}_{\Box}, one of the challenging tasks is to construct the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space Σk,\Sigma_{k,\Box}. It is not easy to get a unisolvent H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space on cuboid grids by strengthening the continuity of the normal component of the divergences of the symmetric matrix valued functions of the H(div,Ω;𝕊)H(\operatorname{div},\Omega;\mathbb{S}) conforming finite element on cuboid grids as in [12, 6]. To attack this difficulty, the de Rham complex and the divdiv complex which consist of polynomials over hexahedrons are proposed below to determine the shape function space. Besides, the continuity as that of the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space in [12] is imposed sufficiently to construct the DOFs. Then the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space Σk,\Sigma_{k,\Box} follows, which is actually a subspace of H(divdiv,Ω;𝕊)H(div,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S})\cap H(\operatorname{div},\Omega;\mathbb{S}). As a consequence, there is corresponding enhanced smoothness for the remaining finite element spaces 𝒰k,\mathcal{U}_{k,\Box} and Vk,V_{k,\Box} in the discrete divdiv complex.

For a cuboid partition 𝒯\mathcal{T}_{\Box}, on any cube K𝒯K\in\mathcal{T}_{\Box} with K=(xa,xb)×(ya,yb)×(za,zb)K=(x_{a},x_{b})\times(y_{a},y_{b})\times(z_{a},z_{b}), let

(3.1) bK,x:=(xxa)(xxb)hK,x2,bK,y:=(yya)(yyb)hK,y2,bK,z:=(zza)(zzb)hK,z2.\displaystyle\begin{split}&b_{K,x}:=\frac{(x-x_{a})(x-x_{b})}{h_{K,x}^{2}},~{}~{}~{}~{}b_{K,y}:=\frac{(y-y_{a})(y-y_{b})}{h_{K,y}^{2}},\\ &b_{K,z}:=\frac{(z-z_{a})(z-z_{b})}{h_{K,z}^{2}}.\end{split}

Here hK,x:=xbxah_{K,x}:=x_{b}-x_{a}, hK,y:=ybyah_{K,y}:=y_{b}-y_{a}, and hK,z:=zbzah_{K,z}:=z_{b}-z_{a}. Let bK:=bK,xbK,ybK,zb_{K}:=b_{K,x}b_{K,y}b_{K,z}. And bK,xib_{K,x_{i}} is abbreviated as bK,ib_{K,i} in the text for i=1,2,3i=1,2,3. Let Ei(K)(K)E_{i}(K)\subseteq\mathscr{E}(K) be the set of all edges of KK which parallel to the xix_{i}-axis and let Fi(K)(K)F_{i}(K)\subseteq\mathscr{F}(K) be the set of all faces of KK that perpendicular to the xix_{i}-axis. Let Fi(K)Fj(K)F_{i}(K)\cup F_{j}(K) denote the set of all faces of KK which are either in Fi(K)F_{i}(K) or in Fj(K)F_{j}(K). Let FiF_{i}\subseteq\mathscr{F} be the set of all faces of 𝒯\mathcal{T}_{\Box} that perpendicular to the xix_{i}-axis. Hereafter, if not special specified, {i,j,l}\{i,j,l\} is a permutation of {1,2,3}\{1,2,3\}.

3.1. Polynomial complexes

Two polynomial complexes are established in this subsection. They will be used in the construction of the discrete complex of (1.2) on 𝒯\mathcal{T}_{\Box} below. In particular, the shape function spaces of Vk,V_{k,\Box}, 𝒰k,\mathcal{U}_{k,\Box}, and Σk,\Sigma_{k,\Box} are determined, respectively.

Given a topological trivial domain D3D\subseteq\mathbb{R}^{3}, define

(3.2) M[k](D;3):=Pk1,k,k(D)×Pk,k1,k(D)×Pk,k,k1(D),V[k](D;3):=Pk,k1,k1(D)×Pk1,k,k1(D)×Pk1,k1,k(D).\displaystyle\begin{split}&M_{[k]}(D;\mathbb{R}^{3}):=P_{k-1,k,k}(D)\times P_{k,k-1,k}(D)\times P_{k,k,k-1}(D),\\ &V_{[k]}(D;\mathbb{R}^{3}):=P_{k,k-1,k-1}(D)\times P_{k-1,k,k-1}(D)\times P_{k-1,k-1,k}(D).\end{split}

The exact smooth de Rham complex [2] reads

(3.3) C(D;)C(D;3)curlC(D;3)divC(D;)0.\displaystyle\mathbb{R}\stackrel{{\scriptstyle\subseteq}}{{\longrightarrow}}C^{\infty}(D;\mathbb{R})\stackrel{{\scriptstyle{\nabla}}}{{\longrightarrow}}C^{\infty}(D;\mathbb{R}^{3})\stackrel{{\scriptstyle{\operatorname{curl}}}}{{\longrightarrow}}C^{\infty}(D;\mathbb{R}^{3})\stackrel{{\scriptstyle{\operatorname{div}}}}{{\longrightarrow}}C^{\infty}(D;\mathbb{R}){\longrightarrow}0.
Lemma 3.1.

On any topological trivial domain D3D\subseteq\mathbb{R}^{3}, the following polynomial sequence

Qk1(D;)M[k1](D;3)curlV[k1](D;3)divQk2(D;)0~{}~{}~{}~{}~{}~{}~{}~{}~{}\mathbb{R}\stackrel{{\scriptstyle\subseteq}}{{\longrightarrow}}Q_{k-1}(D;\mathbb{R})\stackrel{{\scriptstyle{\nabla}}}{{\longrightarrow}}M_{[k-1]}(D;\mathbb{R}^{3})\stackrel{{\scriptstyle{\operatorname{curl}}}}{{\longrightarrow}}V_{[k-1]}(D;\mathbb{R}^{3})\stackrel{{\scriptstyle{\operatorname{div}}}}{{\longrightarrow}}Q_{k-2}(D;\mathbb{R}){\longrightarrow}0

is an exact de Rham complex.

Proof.

For any qQk1(D;)q\in Q_{k-1}(D;\mathbb{R}) with q=0\nabla q=0, it follows that qq\in\mathbb{R}. This is

(3.4) ker()Qk1(D;)=.\displaystyle{\rm{ker}}(\nabla)\cap Q_{k-1}(D;\mathbb{R})=\mathbb{R}.

If 𝒖M[k1](D;3)\bm{u}\in M_{[k-1]}(D;\mathbb{R}^{3}) with curl𝒖=0\operatorname{curl}\bm{u}=0, then the exactness of (3.3) shows that there exists some qC(D;)q\in C^{\infty}(D;\mathbb{R}) such that 𝒖=q\bm{u}=\nabla q. Since the ii-th component of q\nabla q belongs to Pk(xi1¯)Pk1(xi)Pk(xi+1¯)P_{k}(x_{\overline{i-1}})\cdot P_{k-1}(x_{i})\cdot P_{k}(x_{\overline{i+1}}) for i=1,2,3i=1,2,3, simple arguments lead to qQk1(D;)q\in Q_{k-1}(D;\mathbb{R}). Therefore

(3.5) ker(curl)M[k1](D;3)=Qk1(D;).\displaystyle{\rm{ker}}(\operatorname{curl})\cap M_{[k-1]}(D;\mathbb{R}^{3})=\nabla Q_{k-1}(D;\mathbb{R}).

To show the exactness, it suffices to show that the decomposition

(3.6) V[k1](D;3)=curlM[k1](D;3)𝐱Qk2(D;)\displaystyle V_{[k-1]}(D;\mathbb{R}^{3})=\operatorname{curl}\,M_{[k-1]}(D;\mathbb{R}^{3})\oplus\mathbf{x}Q_{k-2}(D;\mathbb{R})

is a direct sum. To this end, given ϕcurlM[k1](D;3)𝐱Qk2(D;)\bm{\phi}\in\operatorname{curl}\,M_{[k-1]}(D;\mathbb{R}^{3})\cap\mathbf{x}Q_{k-2}(D;\mathbb{R}), ϕ=curl𝒖\bm{\phi}=\operatorname{curl}\bm{u} for some 𝒖M[k1](D;3)\bm{u}\in M_{[k-1]}(D;\mathbb{R}^{3}). On the other hand, ϕ=𝐱q\bm{\phi}=\mathbf{x}q for some qQk2(D;)q\in Q_{k-2}(D;\mathbb{R}). Since div(𝐱Qk2)=Qk2\operatorname{div}(\mathbf{x}Q_{k-2})=Q_{k-2}, it follows immediately that q=0q=0. Hence ϕ=0\bm{\phi}=0 and curlM[k1](D;3)𝐱Qk2(D;)={0}\operatorname{curl}\,M_{[k-1]}(D;\mathbb{R}^{3})\cap\mathbf{x}Q_{k-2}(D;\mathbb{R})=\{{0}\} follows.

Furthermore, it is obvious that curlM[k1](D;3)\operatorname{curl}\,M_{[k-1]}(D;\mathbb{R}^{3}) and 𝐱Qk2(D;)\mathbf{x}Q_{k-2}(D;\mathbb{R}) are subspaces of V[k1](D;3)V_{[k-1]}(D;\mathbb{R}^{3}). Note that (3.4)–(3.5) lead to

dimcurlM[k1](D;3)+dim𝐱Qk2(D;)=dimM[k1](D;3)dimQk1(D;)+1+dimQk2(D;)=3k2(k1)k3+1+(k1)3=3k36k2+3k=dimV[k1](D;3).\begin{split}&{\rm{dim}}\operatorname{curl}M_{[k-1]}(D;\mathbb{R}^{3})+{\rm{dim}}\,\mathbf{x}Q_{k-2}(D;\mathbb{R})\\ &={\rm{dim}}\,M_{[k-1]}(D;\mathbb{R}^{3})-{\rm{dim}}\,Q_{k-1}(D;\mathbb{R})+1+{\rm{dim}}\,Q_{k-2}(D;\mathbb{R})\\ &=3k^{2}(k-1)-k^{3}+1+(k-1)^{3}=3k^{3}-6k^{2}+3k={\rm{dim}}V_{[k-1]}(D;\mathbb{R}^{3}).\end{split}

This proves (3.6).

If ϕV[k1](D;3)\bm{\phi}\in V_{[k-1]}(D;\mathbb{R}^{3}) with divϕ=0\operatorname{div}\bm{\phi}=0, then (3.6) shows that there exists some 𝒖M[k1](D;3)\bm{u}\in M_{[k-1]}(D;\mathbb{R}^{3}) such that ϕ=curl𝒖\bm{\phi}=\operatorname{curl}\bm{u}. This implies   ker(div)V[k1](D;3)=curlM[k1](D;3){{\rm{ker}}}(\operatorname{div})\cap V_{[k-1]}(D;\mathbb{R}^{3})=\operatorname{curl}M_{[k-1]}(D;\mathbb{R}^{3}). Moreover, by (3.6), it is straightforward to get

divV[k1](D;3)=Qk2(D;).{\operatorname{div}}V_{[k-1]}(D;\mathbb{R}^{3})=Q_{k-2}(D;\mathbb{R}).

This concludes the proof. ∎

Remark 3.1.

Actually, for nonnegative integers k1k_{1}, k2k_{2}, and k3k_{3}, the exactness of a more general polynomial de Rham complex

(3.7) Pk1+1,k2+1,k3+1(D)M[k1k2k3](D;3)curlV[k1k2k3](D;3)divPk1,k2,k3(D)0\displaystyle\begin{split}\mathbb{R}\stackrel{{\scriptstyle\subseteq}}{{\longrightarrow}}P_{k_{1}+1,k_{2}+1,k_{3}+1}(D)&\stackrel{{\scriptstyle{\nabla}}}{{\longrightarrow}}M_{[k_{1}k_{2}k_{3}]}(D;\mathbb{R}^{3})\\ &\stackrel{{\scriptstyle{\operatorname{curl}}}}{{\longrightarrow}}V_{[k_{1}k_{2}k_{3}]}(D;\mathbb{R}^{3})\stackrel{{\scriptstyle{\operatorname{div}}}}{{\longrightarrow}}P_{k_{1},k_{2},k_{3}}(D){\longrightarrow}0\end{split}

on a contractible domain DD can be proved through similar arguments as that of Lemma 3.1. Here

M[k1k2k3](D;3):=Pk1,k2+1,k3+1(D)×Pk1+1,k2,k3+1(D)×Pk1+1,k2+1,k3(D),M_{[k_{1}k_{2}k_{3}]}(D;\mathbb{R}^{3}):=P_{k_{1},k_{2}+1,k_{3}+1}(D)\times P_{k_{1}+1,k_{2},k_{3}+1}(D)\times P_{k_{1}+1,k_{2}+1,k_{3}}(D),

and

V[k1k2k3](D;3):=Pk1+1,k2,k3(D)×Pk1,k2+1,k3(D)×Pk1,k2,k3+1(D).V_{[k_{1}k_{2}k_{3}]}(D;\mathbb{R}^{3}):=P_{k_{1}+1,k_{2},k_{3}}(D)\times P_{k_{1},k_{2}+1,k_{3}}(D)\times P_{k_{1},k_{2},k_{3}+1}(D).

Define

(3.8) Σ[k](D;𝕊):={𝝈H1(D;𝕊):𝒫n𝝈Pk,k2,k2(D)×Pk2,k,k2(D)×Pk2,k2,k(D),𝒫t𝝈Pk1,k1,k2(D)×Pk1,k2,k1(D)×Pk2,k1,k1(D)},\displaystyle\begin{split}\Sigma_{[k]}(D;\mathbb{S}):=\{&\bm{\sigma}\in H^{1}(D;\mathbb{S}):\\ &\mathscr{P}_{n}\bm{\sigma}\in P_{k,k-2,k-2}(D)\times P_{k-2,k,k-2}(D)\times P_{k-2,k-2,k}(D),\\ &\mathscr{P}_{t}\bm{\sigma}\in P_{k-1,k-1,k-2}(D)\times P_{k-1,k-2,k-1}(D)\times P_{k-2,k-1,k-1}(D)\},\\ \end{split}

and

(3.9) 𝒰[k](D;𝕋):={𝒖H1(D;𝕋):𝒫n𝒖Qk1(D;3),𝒫t𝒖Pk,k2,k1(D)×Pk,k1,k2(D)×Pk1,k,k2(D),𝒫t(𝒖)Pk2,k,k1(D)×Pk2,k1,k(D)×Pk1,k2,k(D)}.\displaystyle\begin{split}\mathcal{U}_{[k]}(D;\mathbb{T}):=\{&\bm{u}\in H^{1}(D;\mathbb{T}):\mathscr{P}_{n}\bm{u}\in Q_{k-1}(D;\mathbb{R}^{3}),\\ &\mathscr{P}_{t}\bm{u}\in P_{k,k-2,k-1}(D)\times P_{k,k-1,k-2}(D)\times P_{k-1,k,k-2}(D),\\ &\mathscr{P}_{t}(\bm{u}^{\intercal})\in P_{k-2,k,k-1}(D)\times P_{k-2,k-1,k}(D)\times P_{k-1,k-2,k}(D)\}.\\ \end{split}
Lemma 3.2.

The following sequence is an exact polynomial divdiv complex on a topological trivial domain D3D\subseteq\mathbb{R}^{3}.

RTV[k](D;3)\xlongrightarrow[]devgrad𝒰[k](D;𝕋)\xlongrightarrow[]symcurlΣ[k](D;𝕊)\xlongrightarrow[]divdivQk2(D;)0.~{}~{}~{}~{}~{}~{}~{}~{}~{}RT\stackrel{{\scriptstyle\subseteq}}{{\longrightarrow}}V_{[k]}(D;\mathbb{R}^{3})\xlongrightarrow[~{}]{\rm{dev}\operatorname{grad}}\mathcal{U}_{[k]}(D;\mathbb{T})\xlongrightarrow[~{}]{\rm{sym}\operatorname{curl}}\Sigma_{[k]}(D;\mathbb{S})\xlongrightarrow[~{}]{\operatorname{div}\operatorname{div}}Q_{k-2}(D;\mathbb{R}){\longrightarrow}0.
Proof.

Apply the exactness of (3.7) recursively and notice that divdiv𝝉=0{\operatorname{div}}{\operatorname{div}}\bm{\tau}=0 for any 𝝉C2(D;𝕂)\bm{\tau}\in C^{2}(D;\mathbb{K}). It is straightforward to see that

divdivΣ[k](D;𝕊)=divdivΣ[k](D;𝕄)=Qk2(D;).{\operatorname{div}}{\operatorname{div}}\Sigma_{[k]}(D;\mathbb{S})={\operatorname{div}}{\operatorname{div}}\Sigma_{[k]}(D;\mathbb{M})=Q_{k-2}(D;\mathbb{R}).

Besides,

RTV[k](D;3)ker(devgrad)H1(D;3)ker(devgrad)=RT.RT\subseteq V_{[k]}(D;\mathbb{R}^{3})\cap{{\rm{ker}}}({\rm{dev}}\operatorname{grad})\subseteq H^{1}(D;\mathbb{R}^{3})\cap{{\rm{ker}}}({\rm{dev}}\operatorname{grad})=RT.

For any 𝒖𝒰[k](D;𝕋)\bm{u}\in\mathcal{U}_{[k]}(D;\mathbb{T}) with symcurl𝒖=0{\rm{sym}}\operatorname{curl}\bm{u}=0, (1.1) shows that there exists 𝒗H1(D;3)\bm{v}\in H^{1}(D;\mathbb{R}^{3}), such that

𝒖=devgrad𝒗=𝒗13(div𝒗)I.\bm{u}={\rm{dev}\,\operatorname{grad}}\,\bm{v}=\nabla\bm{v}-\frac{1}{3}({\operatorname{div}}\bm{v})I.

Simple calculations lead to

3curl𝒖=curl(div𝒗I)=mspn(div𝒗).3\operatorname{curl}\bm{u}=-\operatorname{curl}({\operatorname{div}}\bm{v}I)=\operatorname{mspn}\,\nabla(\operatorname{div}\bm{v}).

This implies div𝒗Qk1(D;){\operatorname{div}}\bm{v}\in Q_{k-1}(D;\mathbb{R}). This and Lemma 3.1 lead to 𝒗V[k](D;3)\bm{v}\in V_{[k]}(D;\mathbb{R}^{3}). Hence

ker(symcurl)𝒰[k](D;𝕋)=devgradV[k](D;3).{{\rm{ker}}}({\rm{sym}}\operatorname{curl})\cap\mathcal{U}_{[k]}(D;\mathbb{T})={\rm{dev}\,\operatorname{grad}}\,V_{[k]}(D;\mathbb{R}^{3}).

In addition, a direct calculation leads to

dim(symcurl𝒰[k](D;𝕋))=dim𝒰[k](D;𝕋)dim(devgradV[k](D;3))=dim𝒰[k](D;𝕋)dimV[k](D;3)+4=5k33k26k+4,\begin{split}&{\rm{dim}}\,({{\rm{sym}}\,{\operatorname{curl}}}\,{\mathcal{U}}_{[k]}(D;\mathbb{T}))={\rm{dim}}\,{\mathcal{U}}_{[k]}(D;\mathbb{T})-{\rm{dim}}\,({\rm{dev}\,{\operatorname{grad}}}{V}_{[k]}(D;\mathbb{R}^{3}))\\ &={\rm{dim}}\,{\mathcal{U}}_{[k]}(D;\mathbb{T})-{\rm{dim}}\,{V}_{[k]}(D;\mathbb{R}^{3})+4=5k^{3}-3k^{2}-6k+4,\end{split}

and

dim(ker(divdiv)Σ[k](D;𝕊))=dimΣ[k](D;𝕊)dim(divdivΣ[k](D;𝕊))=dimΣ[k](D;𝕊)dimQk2(D;)=5k33k26k+4.\begin{split}&{\rm{dim}}\,({\rm{ker}}({\operatorname{div}}\,{\operatorname{div}})\cap\Sigma_{[k]}(D;\mathbb{S}))={\rm{dim}}\,{\Sigma}_{[k]}(D;\mathbb{S})-{\rm{dim}}({\operatorname{div}}\,{\operatorname{div}}{\Sigma}_{[k]}(D;\mathbb{S}))\\ &={\rm{dim}}\,{\Sigma}_{[k]}(D;\mathbb{S})-{\rm{dim}}\,{Q}_{k-2}(D;\mathbb{R})=5k^{3}-3k^{2}-6k+4.\end{split}

This shows

symcurl𝒰[k](D;𝕋)=ker(divdiv)Σ[k](D;𝕊).{{\rm{sym}}{\operatorname{curl}}}\,{\mathcal{U}}_{[k]}(D;\mathbb{T})={\rm{ker}}({\operatorname{div}}\,{\operatorname{div}})\cap{\Sigma}_{[k]}(D;\mathbb{S}).

Thus the exactness of the complex follows. ∎

Given K𝒯K\in\mathcal{T}_{\Box}, the vectorial polynomial space V[k](K;3)V_{[k]}(K;\mathbb{R}^{3}), the traceless matrix valued polynomial space 𝒰[k](K;𝕋)\mathcal{U}_{[k]}(K;\mathbb{T}), and the symmetric matrix valued polynomial space Σ[k](K;𝕊)\Sigma_{[k]}(K;\mathbb{S}) are determined as the shape function spaces of the H1(Ω;3)H^{1}(\Omega;\mathbb{R}^{3}) conforming finite element space Vk,V_{k,\Box}, the H(symcurl,Ω;𝕋)H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) conforming finite element space 𝒰k,\mathcal{U}_{k,\Box}, and the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space Σk,\Sigma_{k,\Box}, respectively. In light of the previous discussion, it suffices to construct the DOFs by imposing the continuity requirements appropriately for each finite element space appearing in the discrete divdiv complex of (1.2).

3.2. H(divdiv)H(\operatorname{div}\operatorname{div})-conforming finite element space

The H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space Σk,\Sigma_{k,\Box} is constructed in this subsection. The shape function space is

Σ[k](K;𝕊):={𝝈H1(K;𝕊):𝒫n𝝈Pk,k2,k2(K)×Pk2,k,k2(K)×Pk2,k2,k(K),𝒫t𝝈Pk1,k1,k2(K)×Pk1,k2,k1(K)×Pk2,k1,k1(K)}\begin{split}\Sigma_{[k]}(K;\mathbb{S}):=\{&\bm{\sigma}\in H^{1}(K;\mathbb{S}):\\ &\mathscr{P}_{n}\bm{\sigma}\in P_{k,k-2,k-2}(K)\times P_{k-2,k,k-2}(K)\times P_{k-2,k-2,k}(K),\\ &\mathscr{P}_{t}\bm{\sigma}\in P_{k-1,k-1,k-2}(K)\times P_{k-1,k-2,k-1}(K)\times P_{k-2,k-1,k-1}(K)\}\end{split}

defined in (3.8) with k3k\geq 3 and K𝒯K\in\mathcal{T}_{\Box}. The global regularity

Σk,H(divdiv,Ω;𝕊)H(div,Ω;𝕊)\Sigma_{k,\Box}\subseteq H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S})\cap H(\operatorname{div},\Omega;\mathbb{S})

stemming from [12] is imposed, which can also be noted as

Σk,{𝝈H(div,Ω;𝕊):div𝝈H(div,Ω;3)}.\Sigma_{k,\Box}\subseteq\{\bm{\sigma}\in H(\operatorname{div},\Omega;\mathbb{S}):\operatorname{div}\bm{\sigma}\in H(\operatorname{div},\Omega;\mathbb{R}^{3})\}.

Actually, this is a sufficient but not necessary continuity condition for a piecewise smooth function to be in the Sobolev space H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}). Sufficient and necessary conditions are presented in [8, Proposition 3.6].

To construct the DOFs of Σk,H(divdiv,Ω;𝕊)H(div,Ω;𝕊)\Sigma_{k,\Box}\subseteq H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S})\cap H(\operatorname{div},\Omega;\mathbb{S}), a polynomial bubble function space is defined by

Σ̊[k](K;𝕊):={𝝈Σ[k](K;𝕊):σii|f=0,iσii|f=0for allfFi(K),σij|f=0for allfFi(K)Fj(K)}.\begin{split}\mathring{\Sigma}_{[k]}(K;\mathbb{S}):=\{\bm{\sigma}\in\Sigma_{[k]}(K;\mathbb{S}):&\sigma_{ii}|_{f}=0,\partial_{i}\sigma_{ii}|_{f}=0~{}\text{for all}~{}f\in F_{i}(K),\\ &\sigma_{ij}|_{f}=0~{}\text{for all}~{}f\in F_{i}(K)\cup F_{j}(K)\}.\end{split}
Remark 3.1.

Recall bK,ib_{K,i} from (3.1). Any matrix valued function 𝝈=(σij)3×3Σ̊[k](K;𝕊)\bm{\sigma}=(\sigma_{ij})_{3\times 3}\in\mathring{\Sigma}_{[k]}(K;\mathbb{S}) implies σij=σji\sigma_{ij}=\sigma_{ji}, and for k4k\geq 4, it holds

σii=bK,i2q,for someqPk2(xi1¯)Pk4(xi)Pk2(xi+1¯),σij=bK,ibK,jq,for someqPk3(xi)Pk3(xj)Pk2(xl),\begin{array}[]{cc}\sigma_{ii}=b_{K,i}^{2}q,~{}~{}\text{for some}~{}~{}q\in P_{k-2}(x_{\overline{i-1}})\cdot P_{k-4}(x_{i})\cdot P_{k-2}(x_{\overline{i+1}}),\\ \sigma_{ij}=b_{K,i}b_{K,j}q,~{}~{}\text{for some}~{}~{}q\in P_{k-3}(x_{i})\cdot P_{k-3}(x_{j})\cdot P_{k-2}(x_{l}),\end{array}

when k=3k=3, σii=0\sigma_{ii}=0, and σij=bK,ibK,jq\sigma_{ij}=b_{K,i}b_{K,j}q, for some qP1(xl)q\in P_{1}(x_{l}).

Theorem 3.1.

Given cube K𝒯K\in\mathcal{T}_{\Box}, the symmetric matrix valued polynomial 𝛔Σ[k](K;𝕊){\bm{\sigma}}\in\Sigma_{[k]}({K};\mathbb{S}) with k3k\geq 3 can be uniquely determined by the following conditions:

(3.10a) (σii1¯,q)e\displaystyle({\sigma}_{i\,\overline{i-1}},{q})_{{e}}\quad for allqPk2(e;),eEi+1¯(K),\displaystyle~{}~{}\text{for all}~{}~{}{q}\in P_{k-2}({e};\mathbb{R}),e\in E_{\overline{i+1}}(K),
(3.10b) (σii1¯,i1¯q)f,(σii+1¯,i+1¯q)f\displaystyle(\sigma_{i\,\overline{i-1}},\partial_{\overline{i-1}}q)_{f},(\sigma_{i\,\overline{i+1}},\partial_{\overline{i+1}}q)_{f}\quad for allqQk2(f;),fFi(K),\displaystyle~{}~{}\text{for all}~{}~{}q\in Q_{k-2}(f;\mathbb{R}),f\in F_{i}(K),
(3.10c) (σii,q)f,(iσii,q)f\displaystyle({\sigma}_{ii},{q})_{{f}},({\partial}_{i}{\sigma}_{ii},{q})_{{f}}\quad for allqQk2(f;),fFi(K),\displaystyle~{}~{}\text{for all}~{}~{}{q}\in Q_{k-2}({f};\mathbb{R}),f\in F_{i}(K),
(3.10d) (𝝈,𝝉)K\displaystyle({\bm{\sigma}},{\bm{\tau}})_{{K}}\quad for all𝝉Σ̊[k](K;𝕊).\displaystyle~{}~{}\text{for all}~{}~{}{\bm{\tau}}\in\mathring{\Sigma}_{[k]}(K;\mathbb{S}).

Here i=1,2,3i=1,2,3 and the definition of n¯\overline{n} is from (2.4).

Remark 3.2.

The continuity of Σk,\Sigma_{k,\Box} is characterized by the continuity of 𝝈𝒏f\bm{\sigma}\bm{n}_{f} and 𝒏fdiv𝝈\bm{n}^{\intercal}_{f}\operatorname{div}\bm{\sigma} across each interface ff as in [12]. The continuity of 𝝈𝒏f\bm{\sigma}\bm{n}_{f} is imposed by the DOFs (3.10b) and the first part of (3.10c). The DOFs (3.10a)–(3.10b) and the second part of (3.10c) ensure the continuity of 𝒏fdiv𝝈\bm{n}^{\intercal}_{f}\operatorname{div}\bm{\sigma} across each interface ff. The interior moments of (3.10d) are derived by the vanishing traces and the symmetry of the tensor.

Proof.

The number of conditions in (3.10) is

12(k1)+12(k2)(k1)+12(k1)2+3(k1)2(k3)+3(k2)2(k1)=6k36k23k+3=3(k+1)(k1)2+3k2(k1)=dimΣ[k](K;𝕊).\begin{split}&12(k-1)+12(k-2)(k-1)+12(k-1)^{2}+3(k-1)^{2}(k-3)\\ &+3(k-2)^{2}(k-1)=6k^{3}-6k^{2}-3k+3\\ &=3(k+1)(k-1)^{2}+3k^{2}(k-1)={\rm{dim}}\Sigma_{[k]}({K};\mathbb{S}).\\ \end{split}

It suffices to prove 𝝈=0{\bm{\sigma}}=0 provided that (3.10) vanish. The vanishing of (3.10c) leads to σii|f=0\sigma_{ii}|_{f}=0 and iσii|f=0\partial_{i}\sigma_{ii}|_{f}=0 for all fFi(K)f\in F_{i}(K). Besides, according to (3.10b), σij|f=0\sigma_{ij}|_{f}=0 holds for all fFi(K)Fj(K)f\in F_{i}(K)\cup F_{j}(K). Thus (3.10d) completes the proof. ∎

In three dimensions, the corresponding global space for the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming element Σk,\Sigma_{k,\Box} is defined by

Σk,:={𝝈H(divdiv,Ω;𝕊):𝝈|KΣ[k](K;𝕊)for allK𝒯,all of the degrees of freedom (3.10) are single-valued}.\begin{split}\Sigma_{k,\Box}:=&\{\bm{\sigma}\in H({\operatorname{div}}\,{\operatorname{div}},\Omega;\mathbb{S}):\bm{\sigma}|_{K}\in\Sigma_{[k]}(K;\mathbb{S})~{}\text{for all}~{}~{}K\in\mathcal{T}_{\Box},\\ &\text{all of the degrees of freedom \eqref{divdivDof3} are single-valued}\}.\end{split}

3.3. H(symcurl)H(\operatorname{sym}\operatorname{curl})-conforming finite element space

This subsection constructs the H(symcurl,Ω;𝕋)H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) conforming finite element space 𝒰k,\mathcal{U}_{k,\Box} which satisfies the inclusion symcurl𝒰k,Σk,\operatorname{sym}\operatorname{curl}\mathcal{U}_{k,\Box}\subseteq\Sigma_{k,\Box}. The shape function space is

𝒰[k](K;𝕋):={𝒖H1(K;𝕋):𝒫n𝒖Qk1(K;3),𝒫t𝒖Pk,k2,k1(K)×Pk,k1,k2(K)×Pk1,k,k2(K),𝒫t(𝒖)Pk2,k,k1(K)×Pk2,k1,k(K)×Pk1,k2,k(K)}\begin{split}\mathcal{U}_{[k]}(K;\mathbb{T}):=\{&\bm{u}\in H^{1}(K;\mathbb{T}):\mathscr{P}_{n}\bm{u}\in Q_{k-1}(K;\mathbb{R}^{3}),\\ &\mathscr{P}_{t}\bm{u}\in P_{k,k-2,k-1}(K)\times P_{k,k-1,k-2}(K)\times P_{k-1,k,k-2}(K),\\ &\mathscr{P}_{t}(\bm{u}^{\intercal})\in P_{k-2,k,k-1}(K)\times P_{k-2,k-1,k}(K)\times P_{k-1,k-2,k}(K)\}\end{split}

defined in (3.9) with k3k\geq 3 and K𝒯K\in\mathcal{T}_{\Box}. To construct the DOFs, the main difficulty arises in the characterization of the continuity of functions in 𝒰k,\mathcal{U}_{k,\Box}. Based on the sufficient continuity condition deduced below, a subspace of H(symcurl,Ω;𝕋)H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) with enhanced regularity will be introduced to attack the difficulty.

Firstly, a conclusion that draws heavily on the traceless property of matrix valued functions is presented in the following lemma.

Lemma 3.3.

Given a traceless matrix valued function 𝐮H(curl,Ω;𝕋)\bm{u}\in H(\operatorname{curl},\Omega;\mathbb{T}), its column vector 𝐮H(div,Ω;𝕋)\bm{u}^{\intercal}\in H(\operatorname{div},\Omega;\mathbb{T}).

Proof.

Let 𝒖=(uij)3×3H(curl,Ω;𝕋)\bm{u}=(u_{ij})_{3\times 3}\in H(\operatorname{curl},\Omega;\mathbb{T}). Note that

1u11+2u21+3u31=1(u22+u33)+2u21+3u31=(2u211u22)+(3u311u33)L2(Ω;).\begin{split}{\partial_{1}u_{11}}&+{\partial_{2}u_{21}}+{\partial_{3}u_{31}}={-\partial_{1}(u_{22}+u_{33})}+{\partial_{2}u_{21}}+{\partial_{3}u_{31}}\\ &=({\partial_{2}u_{21}}-{\partial_{1}u_{22}})+({\partial_{3}u_{31}}-{\partial_{1}u_{33}})\in L^{2}(\Omega;\mathbb{R}).\end{split}

Similar arguments imply div𝒖L2(Ω;3)\operatorname{div}^{*}\bm{u}\in L^{2}(\Omega;\mathbb{R}^{3}). This completes the proof. ∎

For any traceless matrix valued function 𝒖𝒰k,\bm{u}\in\mathcal{U}_{k,\Box}, let 𝝈=symcurl𝒖\bm{\sigma}=\operatorname{sym}\operatorname{curl}\bm{u}. It follows from the inclusion condition symcurl𝒰k,Σk,\operatorname{sym}\operatorname{curl}\,\mathcal{U}_{k,\Box}\subseteq\Sigma_{k,\Box} that the symmetric matrix valued function 𝝈\bm{\sigma} ought to be in the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space Σk,\Sigma_{k,\Box} constructed in Section 3.2. This implies the continuity requirements for 𝝈𝒏f\bm{\sigma}\bm{n}_{f} and div𝝈𝒏f\operatorname{div}\bm{\sigma}\cdot\bm{n}_{f} across each interface ff. The following lemma presents two identities. They motivate the sufficient conditions of enhanced smoothness for 𝒖\bm{u}.

Lemma 3.4.

Given a matrix valued function 𝐮C2(Ω;𝕄)\bm{u}\in C^{2}(\Omega;\mathbb{M}), let 𝛔=symcurl𝐮\bm{\sigma}=\operatorname{sym}\operatorname{curl}\bm{u}. It holds

(3.11a) 𝝈𝒏f=(curl𝒖)𝒏f12(div𝒖)×𝒏f,\displaystyle\bm{\sigma}\bm{n}_{f}=(\operatorname{curl}\bm{u})\bm{n}_{f}-\frac{1}{2}(\operatorname{div}^{*}\bm{u})\times\bm{n}_{f},
(3.11b) (div𝝈)𝒏f=12curl(div𝒖)𝒏f.\displaystyle(\operatorname{div}\bm{\sigma})\cdot\bm{n}_{f}=\frac{1}{2}\operatorname{curl}(\operatorname{div}^{*}\bm{u})\cdot\bm{n}_{f}.

Here ff\in\mathscr{F} is a facet with the unit normal vector 𝐧f\bm{n}_{f}.

Proof.

Elementary calculations lead to

𝝈𝒏f=(curl𝒖12mspn(div𝒖))𝒏f=(curl𝒖)𝒏f12(div𝒖)×𝒏f,(div𝝈)𝒏f=12div(curl𝒖)𝒏f=12curl(div𝒖)𝒏f.\begin{split}&\bm{\sigma}\bm{n}_{f}=(\operatorname{curl}\bm{u}-\frac{1}{2}\operatorname{mspn}(\operatorname{div}^{*}\bm{u}))\bm{n}_{f}=(\operatorname{curl}\bm{u})\bm{n}_{f}-\frac{1}{2}(\operatorname{div}^{*}\bm{u})\times\bm{n}_{f},\\ &(\operatorname{div}\bm{\sigma})\cdot\bm{n}_{f}=\frac{1}{2}\operatorname{div}(\operatorname{curl}\bm{u})^{\intercal}\cdot\bm{n}_{f}=\frac{1}{2}\operatorname{curl}(\operatorname{div}^{*}\bm{u})\cdot\bm{n}_{f}.\end{split}

Remark 3.5.

From Lemma 3.4, given a traceless matrix valued function 𝒖𝒰k,\bm{u}\in\mathcal{U}_{k,\Box}, it follows from symcurl𝒖Σk,\operatorname{sym}\operatorname{curl}\bm{u}\in\Sigma_{k,\Box} that 𝒖×𝒏f\bm{u}\times\bm{n}_{f} and (div𝒖)×𝒏f(\operatorname{div}^{\ast}\bm{u})\times\bm{n}_{f} have to be continuous across each interface ff. This implies that 𝒖H(curl,Ω;𝕋)\bm{u}\in H(\operatorname{curl},\Omega;\mathbb{T}), and then Lemma 3.3 leads to 𝒖H(div,Ω;𝕋)\bm{u}^{\intercal}\in H(\operatorname{div},\Omega;\mathbb{T}), which means div𝒖L2(Ω;3)\operatorname{div}^{\ast}\bm{u}\in L^{2}(\Omega;\mathbb{R}^{3}).

Define

H(symcurl,Ω;𝕋):={𝒖H(curl,Ω;𝕋):𝒖H(div,Ω;𝕋),div𝒖H(curl,Ω;3)},H^{*}(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}):=\{\bm{u}\in H(\operatorname{curl},\Omega;\mathbb{T}):\bm{u}^{\intercal}\in H(\operatorname{div},\Omega;\mathbb{T}),\operatorname{div}^{*}\bm{u}\in H(\operatorname{curl},\Omega;\mathbb{R}^{3})\},

which is a subspace of H(symcurl,Ω;𝕋)H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}). Lemma 3.3 leads to the simplification

(3.12) H(symcurl,Ω;𝕋):={𝒖H(curl,Ω;𝕋):div𝒖H(curl,Ω;3)}.H^{*}(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}):=\{\bm{u}\in H(\operatorname{curl},\Omega;\mathbb{T}):\operatorname{div}^{*}\bm{u}\in H(\operatorname{curl},\Omega;\mathbb{R}^{3})\}.

Motivated by Lemma 3.4, the global regularity 𝒰k,H(symcurl,Ω;𝕋)\mathcal{U}_{k,\Box}\subseteq H^{*}(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) is imposed. To construct the DOFs of 𝒰k,H(symcurl,Ω;𝕋)\mathcal{U}_{k,\Box}\subseteq H^{*}(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}), a polynomial bubble function space is defined by

(3.13) 𝒰̊[k](K;𝕋):={𝒖𝒰[k](K;𝕋):uii|f=0for allf(K),uij|f=0for allfFi(K)Fl(K),iuij|f=0for allfFi(K)}.\displaystyle\begin{split}\mathring{\mathcal{U}}_{[k]}({K};\mathbb{T}):=\{\bm{u}\in\mathcal{U}_{[k]}({K};\mathbb{T}):&{u}_{ii}|_{{f}}=0~{}~{}\text{for all}~{}~{}{f}\in\mathscr{F}({K}),\\ &{u}_{ij}|_{f}=0~{}~{}\text{for all}~{}~{}{f}\in F_{i}({K})\cup F_{l}(K),\\ &\partial_{i}{u}_{ij}|_{{f}}=0~{}~{}\text{for all}~{}~{}{f}\in F_{i}({K})\}.\\ \end{split}
Remark 3.6.

Recall bK:=bK,ibK,jbK,lb_{K}:=b_{K,i}b_{K,j}b_{K,l} and bK,ib_{K,i} from (3.1). For a tensor function 𝒖=(uij)3×3𝒰̊[k](K;𝕋)\bm{u}=(u_{ij})_{3\times 3}\in\,\mathring{\mathcal{U}}_{[k]}({K};\mathbb{T}), it holds that

uii=bKqfor someqQk3(K;),{u}_{ii}=b_{K}q\quad\text{for some}~{}~{}q\in Q_{k-3}({K};\mathbb{R}),
uij=bK,i2bK,lqfor someqPk4(xi)Pk2(xj)Pk3(xl),u_{ij}=b_{K,i}^{2}b_{K,l}\,q\quad\text{for some}~{}~{}q\in P_{k-4}(x_{i})\cdot P_{k-2}(x_{j})\cdot P_{k-3}(x_{l}),

in which {i,j,l}\{i,j,l\} is a permutation of {1,2,3}\{1,2,3\}.

Theorem 3.2.

Given cube K𝒯{K}\in\mathcal{T}_{\Box}, the traceless matrix valued polynomial 𝐮𝒰[k](K;𝕋)\bm{u}\in\mathcal{U}_{[k]}({K};\mathbb{T}) with k3k\geq 3 can be uniquely determined by the following conditions:

(3.14a) uii(a)\displaystyle{u}_{ii}({a})\quad for alla𝒱(K),i=1,2,\displaystyle\text{for all}~{}~{}{a}\in\mathscr{V}({K}),i=1,2,
(3.14b) (uii,q)e\displaystyle({u}_{ii},{q})_{{e}}\quad for allqPk3(e;),e(K),i=1,2,\displaystyle\text{for all}~{}~{}{q}\in P_{k-3}({e};\mathbb{R}),{e}\in\mathscr{E}({K}),i=1,2,
(3.14c) (uji,q)e,(juji,q)e\displaystyle({u}_{ji},{q})_{{e}},({\partial}_{j}{u}_{ji},{q})_{{e}}\quad for allqPk2(e;),eEi(K),\displaystyle\text{for all}~{}~{}{q}\in P_{k-2}({e};\mathbb{R}),e\in E_{i}(K),
(3.14d) (uij,i(iq))f\displaystyle(u_{ij},\partial_{i}(\partial_{i}q))_{f}\quad for allqQk2(f;),fFl(K),\displaystyle\text{for all}~{}~{}q\in Q_{k-2}(f;\mathbb{R}),f\in F_{l}(K),
(3.14e) (uij,lq)f,(iuij,lq)f\displaystyle(u_{ij},\partial_{l}q)_{f},(\partial_{i}u_{ij},\partial_{l}q)_{f}\quad for allqQk2(f;),fFi(K),\displaystyle\text{for all}~{}~{}q\in Q_{k-2}(f;\mathbb{R}),f\in F_{i}(K),
(3.14f) (uii,q)f\displaystyle({u}_{ii},{q})_{{f}}\quad for allqQk3(f;),f(K),i=1,2,\displaystyle\text{for all}~{}~{}{q}\in Q_{k-3}({f};\mathbb{R}),{f}\in\mathscr{F}({K}),i=1,2,
(3.14g) (𝒖,𝒘)K\displaystyle(\bm{u},\bm{w})_{{K}}\quad for all𝒘𝒰̊k(K;𝕋).\displaystyle\text{for all}~{}~{}\bm{w}\in\mathring{\mathcal{U}}_{k}({K};\mathbb{T}).
Remark 3.7.

The continuity of 𝒰k,\mathcal{U}_{k,\Box} is characterized by the continuity of 𝒖×𝒏f\bm{u}\times\bm{n}_{f} and (div𝒖)×𝒏f(\operatorname{div}^{\ast}\bm{u})\times\bm{n}_{f} across each interface ff. The DOFs (3.14a)-(3.14c) and (3.14e)-(3.14f) ensure the continuity of 𝒖×𝒏f\bm{u}\times\bm{n}_{f} across each interface ff. The DOFs (3.14c)–(3.14e) lead to the continuity of (div𝒖)×𝒏f(\operatorname{div}^{\ast}\bm{u})\times\bm{n}_{f} across each interface ff. The interior moments of (3.14g) are derived by the vanishing of (3.14a)–(3.14f) and the traceless property of 𝒖\bm{u}.

Proof.

First off, it is easy to compute

dim𝒰̊[k](K;𝕋)=2(k2)3+6(k3)(k1)(k2)=8k348k2+90k52.{\rm{dim}}\,\mathring{\mathcal{U}}_{[k]}({K};\mathbb{T})=2(k-2)^{3}+6(k-3)(k-1)(k-2)=8k^{3}-48k^{2}+90k-52.

Thus the number of degrees of freedom (3.14) is

16+24(k2)+48(k1)+12(k3)(k1)+24(k1)(k2)+12(k2)2+8k348k2+90k52=8k36k=2k3+6(k+1)(k1)k=dim𝒰[k](K;𝕋).\begin{split}&16+24(k-2)+48(k-1)+12(k-3)(k-1)+24(k-1)(k-2)+12(k-2)^{2}\\ &+8k^{3}-48k^{2}+90k-52=8k^{3}-6k=2k^{3}+6(k+1)(k-1)k={\operatorname{dim}}\,{\mathcal{U}}_{[k]}({K};\mathbb{T}).\\ \end{split}

Then it remains to prove 𝒖=0\bm{u}=0 provided that (3.14a)–(3.14g) vanish. According to (3.14a)–(3.14b) and (3.14f), there exists some qQk3(K;)q\in Q_{k-3}({K};\mathbb{R}) such that uii=bKq{u}_{ii}=b_{K}q. Besides, the DOFs (3.14c)–(3.14e) lead to

uij=bK,i2bK,lq,for someqPk4(xi)Pk2(xj)Pk3(xl).u_{ij}=b_{K,i}^{2}b_{K,l}\,q,~{}~{}\text{for some}~{}~{}q\in P_{k-4}(x_{i})\cdot P_{k-2}(x_{j})\cdot P_{k-3}(x_{l}).

Hence the DOFs (3.14g) complete the proof. ∎

In three dimensions, the corresponding global space for the H(symcurl,Ω;𝕋)H({\rm{sym}\operatorname{curl}},\Omega;\mathbb{T}) conforming finite element 𝒰k,\mathcal{U}_{k,\Box} is defined by

𝒰k,:={𝒖H(symcurl,Ω;𝕋):𝒖|K𝒰[k](K;𝕋)for allK𝒯,all of the degrees of freedom (3.14) are single-valued}.\begin{split}\mathcal{U}_{k,\Box}:=&\{\bm{u}\in H({\rm{sym}\operatorname{curl}},\Omega;\mathbb{T}):\bm{u}|_{K}\in\mathcal{U}_{[k]}(K;\mathbb{T})~{}\text{for all}~{}~{}K\in\mathcal{T}_{\Box},\\ &\text{all of the degrees of freedom \eqref{3dsymcurlDof} are single-valued}\}.\end{split}
Remark 3.8.

On cuboid grids, for any 𝒖𝒰k,\bm{u}\in\mathcal{U}_{k,\Box}, let 𝝈=symcurl𝒖\bm{\sigma}=\operatorname{sym}\operatorname{curl}\bm{u}. Then

σii=i1¯uii+1¯i+1¯uii1¯,σij=12(lujjluii+iuiljujl),i<j.\begin{split}\sigma_{ii}&=\partial_{\overline{i-1}}u_{i\,\overline{i+1}}-\partial_{\overline{i+1}}u_{i\,\overline{i-1}},\\ \sigma_{ij}&=\frac{1}{2}(\partial_{l}u_{jj}-\partial_{l}u_{ii}+\partial_{i}u_{il}-\partial_{j}u_{jl}),i<j.\end{split}

It can be derived from the DOFs (3.14a)–(3.14f) that [uii]f=0[u_{ii}]_{f}=0 for all interfaces ff\in\mathscr{F}, [uij]f=0[u_{ij}]_{f}=0 and [iuij]f=0[\partial_{i}u_{ij}]_{f}=0 for all interfaces fFiFlf\in{F}_{i}\cup{F}_{l}. For each interface fFif\in{F}_{i}, all of the tangential derivatives of [uij]f[u_{ij}]_{f} and [iuij]f[\partial_{i}u_{ij}]_{f} vanish. This implies [σii]f=0[\sigma_{ii}]_{f}=0 and [iσii]f=0[\partial_{i}\sigma_{ii}]_{f}=0 for all interfaces fFif\in{F}_{i}. Besides, a combination of the vanishing of the tangential derivatives of [uii]f[u_{ii}]_{f} on each interface fFif\in{F}_{i} leads to [σij]f=0[\sigma_{ij}]_{f}=0 for all fFiFjf\in{F}_{i}\cup{F}_{j}. This with Lemma 3.2 shows 𝝈Σk,\bm{\sigma}\in\Sigma_{k,\Box}.

3.4. H1H^{1}-conforming finite element space

This subsection constructs the H1(Ω;3)H^{1}(\Omega;\mathbb{R}^{3}) conforming finite element space Vk,V_{k,\Box} which satisfies the inclusion devgradVk,𝒰k,\operatorname{dev}\,\operatorname{grad}V_{k,\Box}\subseteq\mathcal{U}_{k,\Box}. The shape function is

V[k](K;3):=Pk,k1,k1(K)×Pk1,k,k1(K)×Pk1,k1,k(K)V_{[k]}(K;\mathbb{R}^{3}):=P_{k,k-1,k-1}(K)\times P_{k-1,k,k-1}(K)\times P_{k-1,k-1,k}(K)

defined in (3.2) with k3k\geq 3 and K𝒯K\in\mathcal{T}_{\Box}.

Remark 3.9.

It follows from the inclusion condition devgradVk,𝒰k,\operatorname{dev}\,\operatorname{grad}V_{k,\Box}\subseteq\mathcal{U}_{k,\Box} that, for a vector valued function 𝒗Vk,\bm{v}\in V_{k,\Box}, 𝒖=devgrad𝒗\bm{u}=\operatorname{dev}\,\operatorname{grad}\bm{v} has to be in 𝒰k,\mathcal{U}_{k,\Box}. This and Remark 3.5 imply the additional requirement of the continuity of (div𝒖)×𝒏f(\operatorname{div}^{\ast}\bm{u})\times\bm{n}_{f} across all the interfaces ff for 𝒖\bm{u}. Elementary calculations lead to

div(devgrad𝒗)×𝒏f=div(grad𝒗13(div𝒗)𝑰)×𝒏f=23grad(div𝒗)×𝒏f.\operatorname{div}^{\ast}(\operatorname{dev}\,\operatorname{grad}\bm{v})\times\bm{n}_{f}=\operatorname{div}^{*}(\operatorname{grad}\bm{v}-\frac{1}{3}(\operatorname{div}\bm{v})\bm{I})\times\bm{n}_{f}=\frac{2}{3}\operatorname{grad}(\operatorname{div}\bm{v})\times\bm{n}_{f}.

Thus the continuity of the tangential derivatives of div𝒗\operatorname{div}\bm{v} on each interface ff will be imposed on Vk,V_{k,\Box}.

Define

(3.15) H1(div,Ω;3):={𝒗H1(Ω;3):div𝒗H1(Ω;)}.\displaystyle H^{1}(\operatorname{div},\Omega;\mathbb{R}^{3}):=\{\bm{v}\in H^{1}(\Omega;\mathbb{R}^{3}):\operatorname{div}\bm{v}\in H^{1}(\Omega;\mathbb{R})\}.

Remark 3.9 motivates the global regularity Vk,H1(div,Ω;3)V_{k,\Box}\subseteq H^{1}(\operatorname{div},\Omega;\mathbb{R}^{3}). To construct the DOFs of Vk,H1(div,Ω;3)V_{k,\Box}\subseteq H^{1}(\operatorname{div},\Omega;\mathbb{R}^{3}) on each cube K𝒯{K}\in\mathcal{T}_{\Box}, define a polynomial bubble function space as follows,

V̊[k](K;3):={𝒗V[k](K;3):𝒗|f=0for allf(K)ivi|f=0for allfFi(K)}.\begin{split}\mathring{V}_{[k]}({K};\mathbb{R}^{3}):=\{{\bm{v}}\in V_{[k]}({K};\mathbb{R}^{3}):&{\bm{v}}|_{{f}}=0\quad\text{for all}~{}{f}\in\mathscr{F}({K})\\ &{\partial}_{i}{v}_{i}|_{{f}}=0\quad\text{for all}~{}{f}\in F_{i}({K})\}.\end{split}
Remark 3.10.

Recall bK:=bK,ibK,jbK,lb_{K}:=b_{K,i}b_{K,j}b_{K,l} and bK,ib_{K,i} from (3.1). For a vector 𝒗=(v1,v2,v3)V̊[k](K;3)\bm{v}=(v_{1},v_{2},v_{3})^{\intercal}\in\mathring{V}_{[k]}({K};\mathbb{R}^{3}), it holds that

vi=bKbK,iq,for someqPk4(xi)Pk3(xi1¯)Pk3(xi+1¯),i=1,2,3.{v}_{i}=b_{K}b_{K,i}\,q,~{}~{}\text{for some}~{}~{}q\in P_{k-4}({x}_{i})\cdot P_{k-3}({x}_{\overline{i-1}})\cdot P_{k-3}({x}_{\overline{i+1}}),\,i=1,2,3.
Theorem 3.3.

Given cube K𝒯{K}\in\mathcal{T}_{\Box}, a vectorial polynomial 𝐯V[k](K;3)\bm{v}\in V_{[k]}({K};\mathbb{R}^{3}) with k3k\geq 3 can be uniquely determined by the following conditions:

(3.16a) vi(a),ivi(a)\displaystyle{v}_{i}({a}),\partial_{i}{v}_{i}({a})\quad for alla𝒱(K),\displaystyle\text{for all}~{}~{}{a}\in\mathscr{V}({K}),
(3.16b) (vi,q)e\displaystyle({v}_{i},{q})_{{e}}\quad for allqPk4(e;),eEi(K),\displaystyle\text{for all}~{}~{}{q}\in P_{k-4}({e};\mathbb{R}),e\in E_{i}(K),
(3.16c) (vi,q)e,(ivi,q)e\displaystyle({v}_{i},{q})_{{e}},({\partial}_{i}{v}_{i},{q})_{{e}}\quad for allqPk3(e;),eEj(K)El(K),\displaystyle\text{for all}~{}~{}{q}\in P_{k-3}({e};\mathbb{R}),e\in E_{j}(K)\cup E_{l}(K),
(3.16d) (vi,q)f,(ivi,q)f\displaystyle({v}_{i},{q})_{{f}},({\partial}_{i}{v}_{i},{q})_{{f}}\quad for allqQk3(f;),fFi(K),\displaystyle\text{for all}~{}~{}{q}\in Q_{k-3}({f};\mathbb{R}),f\in F_{i}(K),
(3.16e) (vi,iq)f\displaystyle({v}_{{i}},\partial_{i}{q})_{{f}}\quad for allqQk3(f;),fFj(K)Fl(K),\displaystyle\text{for all}~{}~{}{q}\in Q_{k-3}({f};\mathbb{R}),f\in F_{j}(K)\cup F_{l}(K),
(3.16f) (𝒗,𝒘)K\displaystyle({\bm{v}},{\bm{w}})_{{K}}\quad for all𝒘V̊[k](K;3).\displaystyle\text{for all}~{}~{}{\bm{w}}\in\mathring{V}_{[k]}({K};\mathbb{R}^{3}).
Remark 3.11.

The DOFs (3.16a)–(3.16d) ensure the continuity of 𝒗\bm{v} across each interface ff. The DOFs (3.16a) and (3.16c)–(3.16e) lead to the continuity of div𝒗\operatorname{div}\bm{v} across each interface ff. The interior moments of (3.16f) are derived by the vanishing of (3.16a)–(3.16e).

Proof.

Note that dimV̊[k](K;3)=3(k3)(k2)2{\rm{dim}}\mathring{V}_{[k]}({K};\mathbb{R}^{3})=3(k-3)(k-2)^{2}. The number of the DOFs (3.16) is

48+12(k3)+48(k2)+12(k2)2+12(k2)(k3)+3(k3)(k2)2=3k3+3k2=3(k+1)k2=dimV[k](K;3).\begin{split}&48+12(k-3)+48(k-2)+12(k-2)^{2}+12(k-2)(k-3)+3(k-3)(k-2)^{2}\\ &=3k^{3}+3k^{2}=3(k+1)k^{2}={\rm{dim}}V_{[k]}({K};\mathbb{R}^{3}).\\ \end{split}

The vanishing of (3.16a)–(3.16e) leads to vi=bKbK,iq,for someqPk4(xi)Pk3(xi1¯)Pk3(xi+1¯){v}_{i}=b_{K}b_{K,i}\,q,~{}~{}\text{for some}~{}~{}q\in P_{k-4}({x}_{i})\cdot P_{k-3}({x}_{\overline{i-1}})\cdot P_{k-3}({x}_{\overline{i+1}}). Then it follows from (3.16f) that 𝒗=0{\bm{v}}=0. ∎

In three dimensions, the corresponding global space for the H1(Ω;3)H^{1}(\Omega;\mathbb{R}^{3}) conforming finite element Vk,V_{k,\Box} is defined by

Vk,:={𝒗H1(Ω;3):𝒗|KV[k](K;3)for allK𝒯,all of the degrees of freedom (3.16) are single-valued}.\begin{split}V_{k,\Box}:=&\{\bm{v}\in H^{1}(\Omega;\mathbb{R}^{3}):\bm{v}|_{K}\in V_{[k]}(K;\mathbb{R}^{3})~{}\text{for all}~{}~{}K\in\mathcal{T}_{\Box},\\ &\text{all of the degrees of freedom \eqref{3dh1Dof} are single-valued}\}.\end{split}
Remark 3.12.

For any 𝒗Vk,\bm{v}\in V_{k,\Box}, let 𝒖=devgrad𝒗\bm{u}=\operatorname{dev}\,\operatorname{grad}\,\bm{v}, then it holds that

uii=23ivi13(jvj+lvl),uij=jvi.\begin{split}u_{ii}&=\frac{2}{3}\partial_{i}v_{i}-\frac{1}{3}(\partial_{j}v_{j}+\partial_{l}v_{l}),\\ u_{ij}&=\partial_{j}v_{i}.\end{split}

Here i,j,l{i,j,l} is a permutation of {1,2,3}\{1,2,3\}. On each cube K𝒯K\in\mathcal{T}_{\Box}, Lemma 3.2 shows 𝒖|K𝒰[k](K;𝕋)\bm{u}|_{K}\in\mathcal{U}_{[k]}(K;\mathbb{T}). Furthermore, the continuity of 𝒗\bm{v} as well as ivi\partial_{i}v_{i} across each interface ff\in\mathscr{F} implies [uii]f=0[u_{ii}]_{f}=0 for all ff\in\mathscr{F}, [uij]f=0[u_{ij}]_{f}=0 and [iuij]f=0[\partial_{i}u_{ij}]_{f}=0 for all fFiFlf\in{F}_{i}\cup{F}_{l}. Thus, together with Lemma 3.2, 𝒖𝒰k,\bm{u}\in\mathcal{U}_{k,\Box} follows.

4. The finite element spaces on tetrahedral grids

Let 𝒯\mathcal{T}_{\triangle} be a tetrahedral grid of the domain Ω3\Omega\subseteq\mathbb{R}^{3}. This section constructs finite element subspaces Vk+2,H1(Ω;3)V_{k+2,\triangle}\subseteq H^{1}(\Omega;\mathbb{R}^{3}),   𝒰k+1,H(symcurl,Ω;𝕋)\mathcal{U}_{k+1,\triangle}\subseteq H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}), Σk,H(divdiv,Ω;𝕊)\Sigma_{k,\triangle}\subseteq H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}), and Qk2,L2(Ω;)Q_{k-2,\triangle}\subseteq L^{2}(\Omega;\mathbb{R}) on 𝒯\mathcal{T}_{\triangle}. It will be proved that these finite element subspaces form an exact discrete divdiv complex of (1.2).

Since it is difficult to construct a finite element complex of (1.2) by directly using the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space from [12], a modification by moving some degrees of freedom on faces to vertices has been made here. This leads to the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space Σk,\Sigma_{k,\triangle}. As it can be seen below, this modification in some sense enhances the regularity at vertices of the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space Σk,\Sigma_{k,\triangle}. This brings the corresponding enhancement of regularity at vertices of the remaining finite element spaces for the discrete divdiv complex, namely, 𝒰k+1,\mathcal{U}_{k+1,\triangle} and Vk+2,V_{k+2,\triangle}.

Given tetrahedron K𝒯K\in\mathcal{T}_{\triangle}, let 𝐱1\mathbf{x}_{1}, 𝐱2\mathbf{x}_{2}, 𝐱3\mathbf{x}_{3}, 𝐱4\mathbf{x}_{4} be its vertices. Let λi\lambda_{i} denote the ii-th barycentric coordinate of KK, and fif_{i} be the face of KK opposite to 𝐱i\mathbf{x}_{i}. For each ff\in\mathscr{F}, let λf,i\lambda_{f,i} be the ii-th barycentric coordinate with respect to ff.

4.1. H(divdiv)H(\operatorname{div}\operatorname{div})-conforming finite element space

This subsection constructs the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space Σk,\Sigma_{k,\triangle}, which is a modification of that defined in [12, Section 2.4] with enhanced regularity at vertices. This space consists of piecewise polynomials of degree not greater than kk which is a subspace of the space {𝝈H(div,Ω;𝕊):div𝝈H(div,Ω;3)}\{\bm{\sigma}\in H(\operatorname{div},\Omega;\mathbb{S}):\operatorname{div}\bm{\sigma}\in H(\operatorname{div},\Omega;\mathbb{R}^{3})\}.

The following two lemmas are needed for the construction of Σk,\Sigma_{k,\triangle}.

Lemma 4.1 ([3, Theorem 5.1] ).

Given K𝒯K\in\mathcal{T}_{\triangle}, suppose 𝛙Pk(K;3)\bm{\psi}\in P_{k}(K;\mathbb{R}^{3}) with div𝛙=0\operatorname{div}\bm{\psi}=0 and 𝛙𝐧f|f=0\bm{\psi}\cdot\bm{n}_{f}|_{f}=0 for all faces f(K)f\in\mathscr{F}(K). Then there exists some 𝐯Wk+1(K;3)\bm{v}\in W_{k+1}(K;\mathbb{R}^{3}) such that

𝝍=curl𝒗,\bm{\psi}=\operatorname{curl}\bm{v},

where Wk+1(K;3)W_{k+1}(K;\mathbb{R}^{3}) is defined by

Wk+1(K;3):={ϕPk+1(K;3):ϕ×𝒏f|f=0for allf(K)}.W_{k+1}(K;\mathbb{R}^{3}):=\{\bm{\phi}\in P_{k+1}(K;\mathbb{R}^{3}):\bm{\phi}\times\bm{n}_{f}|_{f}=0~{}~{}\text{for all}~{}f\in\mathscr{F}(K)\}.
Lemma 4.2 ([1, Lemma 7.3] ).

Given K𝒯K\in\mathcal{T}_{\triangle}, suppose that 𝛕Pk(K;𝕊)\bm{\tau}\in P_{k}(K;\mathbb{S}) with div𝛕=0\operatorname{div}\bm{\tau}=0 and 𝛕𝐧f|f=0\bm{\tau}\bm{n}_{f}|_{f}=0 for all faces f(K)f\in\mathscr{F}(K). Then there exists 𝐮Mk+2(K;𝕊)\bm{u}\in M_{k+2}(K;\mathbb{S}) such that

𝝉=curlcurl𝒖,\bm{\tau}=\operatorname{curl}\operatorname{curl}^{*}\bm{u},

with

Mk+2(K;𝕊):={𝝉Pk+2(K;𝕊):Λf(𝝉)|f=𝒬f𝝉𝒬f|f=0 for allf(K)},M_{k+2}(K;\mathbb{S}):=\{\bm{\tau}\in P_{k+2}(K;\mathbb{S}):\Lambda_{f}(\bm{\tau})|_{f}=\mathcal{Q}_{f}\bm{\tau}\mathcal{Q}_{f}|_{f}=0~{}~{}\text{ for all}~{}f\in\mathscr{F}(K)\},

where Λf(𝛕):=𝒬f(2ε(𝛕𝐧f)𝛕𝐧f)𝒬f\Lambda_{f}(\bm{\tau}):=\mathcal{Q}_{f}(2\varepsilon(\bm{\tau}\bm{n}_{f})-\frac{\partial\bm{\tau}}{\partial\bm{n}_{f}})\mathcal{Q}_{f} and 𝒬f:=𝐈𝐧f𝐧f\mathcal{Q}_{f}:=\bm{I}-\bm{n}_{f}\bm{n}_{f}^{\intercal} are defined in (2.2) and (2.1) above, respectively.

Define the following two spaces

(4.1) 𝒲k1(K;3):=curlWk(K;3)/RM,\mathcal{W}_{k-1}(K;\mathbb{R}^{3}):=\operatorname{curl}W_{k}(K;\mathbb{R}^{3})/RM,

and

(4.2) k(K;𝕊):=curlcurlMk+2.\mathcal{M}_{k}(K;\mathbb{S}):=\operatorname{curl}\operatorname{curl}^{*}M_{k+2}.

The dimensions of these two spaces are [12, Theorem 2.15]:

dim𝒲k1(K;3)=2k33k25k126,\operatorname{dim}\mathcal{W}_{k-1}(K;\mathbb{R}^{3})=\frac{2k^{3}-3k^{2}-5k-12}{6},

and [1, Theorem 7.2]:

dimk(K;𝕊)=k33k24k+122.\operatorname{dim}\mathcal{M}_{k}(K;\mathbb{S})=\frac{k^{3}-3k^{2}-4k+12}{2}.

The DOFs of the H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) finite element space Σk,\Sigma_{k,\triangle} are stated in the following theorem.

Theorem 4.3.

Given tetrahedron K𝒯K\in\mathcal{T}_{\triangle}, the symmetric matrix valued polynomial 𝛔Pk(K;𝕊)\bm{\sigma}\in P_{k}(K;\mathbb{S}) with k3k\geq 3 can be uniquely determined by the following conditions:

(4.3a) 𝝈(a),div𝝈(a)\displaystyle\bm{\sigma}(a),\operatorname{div}\bm{\sigma}(a)\quad for alla𝒱(K),\displaystyle\text{for all}~{}a\in\mathscr{V}(K),
(4.3b) (𝒕eT𝝈𝒏e±,q)e,((𝒏e±)T𝝈𝒏e±,q)e\displaystyle(\bm{t}_{e}^{T}\bm{\sigma}\bm{n}_{e}^{\pm},q)_{e},((\bm{n}_{e}^{\pm})^{T}\bm{\sigma}\bm{n}_{e}^{\pm},q)_{e}\quad for allqPk2(e;),e(K),\displaystyle\text{for all}~{}q\in P_{k-2}(e;\mathbb{R}),~{}e\in\mathscr{E}(K),
(4.3c) (𝝈𝒏f,𝒒)f\displaystyle(\bm{\sigma}\bm{n}_{f},\bm{q})_{f}\quad for all𝒒Pk3(f;3),f(K),\displaystyle\text{for all}~{}\bm{q}\in P_{k-3}(f;\mathbb{R}^{3}),~{}f\in\mathscr{F}(K),
(4.3d) (div𝝈𝒏f,q)f\displaystyle(\operatorname{div}\bm{\sigma}\cdot\bm{n}_{f},{q})_{f}\quad for allqP~k1(f;),f(K),\displaystyle\text{for all}~{}{q}\in{\widetilde{P}}_{k-1}(f;\mathbb{R}),~{}f\in\mathscr{F}(K),
(4.3e) (𝝈,2q)K\displaystyle(\bm{\sigma},\nabla^{2}q)_{K}\quad for allqPk2(K;),\displaystyle\text{for all}~{}q\in P_{k-2}(K;\mathbb{R}),
(4.3f) (𝝈,𝒒)K\displaystyle(\bm{\sigma},\nabla\bm{q})_{K}\quad for all𝒒𝒲k1(K;3),\displaystyle\text{for all}~{}\bm{q}\in\mathcal{W}_{k-1}(K;\mathbb{R}^{3}),
(4.3g) (𝝈,𝝉)K\displaystyle(\bm{\sigma},\bm{\tau})_{K}\quad for all𝝉k(K;𝕊).\displaystyle\text{for all}~{}\bm{\tau}\in\mathcal{M}_{k}(K;\mathbb{S}).

Here P~k1(f;):={qPk1(f;):qvanishes at all vertices of f}{\widetilde{P}}_{k-1}(f;\mathbb{R}):=\{{q}\in P_{k-1}(f;\mathbb{R}):{q}\,\text{vanishes at all vertices of }f\}.

Remark 4.4.

The DOFs (4.3a)–(4.3c) ensure the continuity of 𝝈𝒏f\bm{\sigma}\bm{n}_{f} across each interface ff, and the DOFs (4.3a) as well as (4.3d) lead to div𝝈H(div;3)\operatorname{div}\bm{\sigma}\in H(\operatorname{div};\mathbb{R}^{3}).

Proof.

The proof is similar as that in [12, Theorem 2.15]. The number of all degrees of freedom (4.3) is

24+12+30(k1)+6(k1)(k2)+4k(k+1)12+(k+1)k(k1)64+2k33k25k126+k33k24k+122=(k+1)(k+2)(k+3)=dimPk(K;𝕊).\begin{split}&24+12+30(k-1)+6(k-1)(k-2)+4k(k+1)-12+\frac{(k+1)k(k-1)}{6}-4\\ &+\frac{2k^{3}-3k^{2}-5k-12}{6}+\frac{k^{3}-3k^{2}-4k+12}{2}=(k+1)(k+2)(k+3)=\operatorname{dim}P_{k}(K;\mathbb{S}).\end{split}

It suffices to prove if the degrees of freedom (4.3) vanish for some 𝝈Pk(K;𝕊)\bm{\sigma}\in P_{k}(K;\mathbb{S}), then 𝝈=0\bm{\sigma}=0. For qPk2(K)q\in P_{k-2}(K), an integration by parts and (4.3a), (4.3c)–(4.3e) lead to

(divdiv𝝈,q)K=(𝝈,2q)Kf(K)(𝝈𝒏f,q)f+f(K)(div𝝈𝒏f,q)f=0.(\operatorname{div}\operatorname{div}\bm{\sigma},q)_{K}=(\bm{\sigma},\nabla^{2}q)_{K}-\sum_{f\in\mathscr{F}(K)}(\bm{\sigma}\bm{n}_{f},\nabla q)_{f}+\sum_{f\in\mathscr{F}(K)}(\operatorname{div}\bm{\sigma}\cdot\bm{n}_{f},q)_{f}=0.

Thus it follows that divdiv𝝈=0\operatorname{div}\operatorname{div}\bm{\sigma}=0. Therefore, Lemma 4.1, (4.3a), and (4.3d) show that there exists some 𝒗Wk(K;3)\bm{v}\in W_{k}(K;\mathbb{R}^{3}), such that div𝝈=curl𝒗\operatorname{div}\bm{\sigma}=\operatorname{curl}\bm{v}. Furthermore, (4.3a)–(4.3c) yield

(4.4) 𝝈𝒏f|f=0for allf(K).\displaystyle\bm{\sigma}\bm{n}_{f}|_{f}=0~{}~{}~{}~{}\text{for all}~{}f\in\mathscr{F}(K).

This and an integration by parts imply the orthogonality of div𝝈\operatorname{div}\bm{\sigma} and the rigid motion space RMRM. Then curl𝒗=0\operatorname{curl}\bm{v}=0 can be derived from (4.3f) and (4.4). That is div𝝈=0\operatorname{div}\bm{\sigma}=0. Hence Lemma 4.2 shows 𝝈=curlcurl𝝎\bm{\sigma}=\operatorname{curl}\operatorname{curl}^{\ast}\bm{\omega} for some 𝝎Mk+2(K;𝕊)\bm{\omega}\in M_{k+2}(K;\mathbb{S}). Finally it follows from (4.3g) that 𝝈=0\bm{\sigma}=0. ∎

In three dimensions, the corresponding global space for the H(divdiv,Ω;𝕊)H({\operatorname{div}}\,{\operatorname{div}},\Omega;\mathbb{S}) conforming element Σk,\Sigma_{k,\triangle} is defined by

(4.5) Σk,:={𝝈H(divdiv,Ω;𝕊):𝝈|KPk(K;𝕊)for allK𝒯,all of the degrees of freedom (4.3) are single-valued}.\displaystyle\begin{split}\Sigma_{k,\triangle}:=&\{\bm{\sigma}\in H({\operatorname{div}}\,{\operatorname{div}},\Omega;\mathbb{S}):\bm{\sigma}|_{K}\in P_{k}(K;\mathbb{S})~{}\text{for all}~{}~{}K\in\mathcal{T}_{\triangle},\\ &\text{all of the degrees of freedom \eqref{DOF:Sig} are single-valued}\}.\end{split}
Remark 4.5.

The H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) conforming finite element space in [12, (3.1)] for solving the fourth order problem can be replaced by Σk,\Sigma_{k,\triangle} in (4.5) with k3k\geq 3. Using the similar arguments as those in [12, Section 3], the well-posedness of this new mixed finite element can be proved. However, to acquire the exact finite element divdiv complex of (1.2) on 𝒯\mathcal{T}_{\triangle} in this paper, kk has to be greater than 33, since the finite element spaces 𝒰k+1,H(symcurl,Ω;𝕋)\mathcal{U}_{k+1,\triangle}\subseteq H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) and Vk+2,H1(Ω;3)V_{k+2,\triangle}\subseteq H^{1}(\Omega;\mathbb{R}^{3}) constructed below are well-defined only for k4k\geq 4.

4.2. H(symcurl)H(\operatorname{sym}\operatorname{curl})-conforming finite element space

This subsection constructs the H(symcurl,Ω;𝕋)H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) conforming finite element space 𝒰k+1,\mathcal{U}_{k+1,\triangle}, which consists of piecewise polynomials of degree not greater than k+1k+1 with k4k\geq 4. As mentioned in Section 3.3, the difficulty is to characterize the continuity of functions in the space 𝒰k+1,\mathcal{U}_{k+1,\triangle}. Besides the H(symcurl,Ω;𝕋)H(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) conformity, the inclusion condition symcurl𝒰k+1,Σk,\operatorname{sym}\operatorname{curl}\mathcal{U}_{k+1,\triangle}\subseteq\Sigma_{k,\triangle} is also required. Recall

H(symcurl,Ω;𝕋):={𝒖H(curl,Ω;𝕋):div𝒖H(curl,Ω;3)}H^{\ast}(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}):=\{\bm{u}\in H(\operatorname{curl},\Omega;\mathbb{T}):\operatorname{div}^{*}\bm{u}\in H(\operatorname{curl},\Omega;\mathbb{R}^{3})\}

from (3.12). Motivated by Lemma 3.4, the global regularity

𝒰k+1,H(symcurl,Ω;𝕋)\mathcal{U}_{k+1,\triangle}\subseteq H^{\ast}(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T})

is also imposed herein.

To construct the DOFs of 𝒰k+1,H(symcurl,Ω;𝕋)\mathcal{U}_{k+1,\triangle}\subseteq H^{\ast}(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}) on 𝒯\mathcal{T}_{\triangle}, a polynomial bubble function space is defined by

(4.6) 𝒫̊k+2div(K;3):={𝒒λ1λ2λ3λ4Pk2(K;3):div𝒒|f=0for allf(K)}.\displaystyle\begin{split}\mathring{\mathcal{P}}^{\operatorname{div}}_{k+2}(K;\mathbb{R}^{3}):=\{&\bm{q}\in\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}P_{k-2}(K;\mathbb{R}^{3}):\\ &\operatorname{div}\bm{q}|_{f}=0~{}~{}\text{for all}~{}f\in\mathscr{F}(K)\}.\end{split}

Note that for any 𝒒𝒫̊k+2div(K;3)\bm{q}\in\mathring{\mathcal{P}}^{\operatorname{div}}_{k+2}(K;\mathbb{R}^{3}), there exists 𝒑Pk2(K;3)\bm{p}\in P_{k-2}(K;\mathbb{R}^{3}) with 𝒑𝒏f|f=0\bm{p}\cdot\bm{n}_{f}|_{f}=0 for all f(K)f\in\mathscr{F}(K) such that 𝒒=λ1λ2λ3λ4𝒑\bm{q}=\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}\bm{p}.

Theorem 4.6.

Given tetrahedron K𝒯K\in\mathcal{T}_{\triangle}, the traceless matrix valued polynomial 𝐮Pk+1(K;𝕋)\bm{u}\in P_{k+1}(K;\mathbb{T}) with k4k\geq 4 can be uniquely determined by the following conditions:

(4.7a) 𝒖(a),𝒖(a),(div𝒖)(a)\displaystyle\bm{u}(a),\nabla\bm{u}(a),\nabla(\operatorname{div}^{*}\bm{u})(a)\quad for alla𝒱(K),\displaystyle\text{for all}~{}a\in\mathscr{V}(K),
(4.7b) (𝒖,𝝎)e\displaystyle(\bm{u},\bm{\omega})_{e}\quad for all𝝎Pk3(e;𝕋),e(K),\displaystyle\text{for all}~{}\bm{\omega}\in P_{k-3}(e;\mathbb{T}),e\in\mathscr{E}(K),
(4.7c) (div𝒖,𝒒)e\displaystyle(\operatorname{div}^{*}\bm{u},\bm{q})_{e}\quad for all𝒒Pk4(e;3),e(K),\displaystyle\text{for all}~{}\bm{q}\in P_{k-4}(e;\mathbb{R}^{3}),e\in\mathscr{E}(K),
(4.7d) (𝒕eT𝝈𝒏e±,q)e,((𝒏e±)T𝝈𝒏e±,q)e\displaystyle(\bm{t}_{e}^{T}\bm{\sigma}\bm{n}_{e}^{\pm},q)_{e},((\bm{n}_{e}^{\pm})^{T}\bm{\sigma}\bm{n}_{e}^{\pm},q)_{e}\quad for allqPk2(e;),e(K),\displaystyle\text{for all}~{}q\in P_{k-2}(e;\mathbb{R}),~{}e\in\mathscr{E}(K),
(4.7e) (𝒖×𝒏f,f𝒒)f\displaystyle(\bm{u}\times\bm{n}_{f},\nabla_{f}\bm{q})_{f}\quad for all𝒒Pk3(f;3),f(K),\displaystyle\text{for all}~{}\bm{q}\in P_{k-3}(f;\mathbb{R}^{3}),~{}f\in\mathscr{F}(K),
(4.7f) (𝒖×𝒏f,curlf𝒒)f\displaystyle(\bm{u}\times\bm{n}_{f},\operatorname{curl}_{f}\bm{q})_{f}\quad for all𝒒𝒫̊k+2(f;3),f(K),\displaystyle\text{for all}~{}\bm{q}\in\mathring{\mathcal{P}}_{k+2}(f;\mathbb{R}^{3}),~{}f\in\mathscr{F}(K),
(4.7g) ((div𝒖)×𝒏f,𝒏f×𝒒×𝒏f)f\displaystyle((\operatorname{div}^{*}\bm{u})\times\bm{n}_{f},\bm{n}_{f}\times\bm{q}\times\bm{n}_{f})_{f}\quad for all𝒒Pk3(f;3),f(K),\displaystyle\text{for all}~{}\bm{q}\in P_{k-3}(f;\mathbb{R}^{3}),~{}f\in\mathscr{F}(K),
(4.7h) (𝝈,𝒒)K\displaystyle(\bm{\sigma},\nabla\bm{q})_{K}\quad for all𝒒𝒲k1(K;3),\displaystyle\text{for all}~{}\bm{q}\in\mathcal{W}_{k-1}(K;\mathbb{R}^{3}),
(4.7i) (𝝈,𝝎)K\displaystyle(\bm{\sigma},\bm{\omega})_{K}\quad for all𝝎k(K;𝕊),\displaystyle\text{for all}~{}\bm{\omega}\in\mathcal{M}_{k}(K;\mathbb{S}),
(4.7j) (𝒖,devgrad𝒒)K\displaystyle(\bm{u},\operatorname{dev}\operatorname{grad}\bm{q})_{K}\quad for all𝒒𝒫̊k+2div(K;3).\displaystyle\text{for all}~{}\bm{q}\in\mathring{\mathcal{P}}^{\operatorname{div}}_{k+2}(K;\mathbb{R}^{3}).

Here 𝐧e±\bm{n}_{e}^{\pm} are two linearly independent normal vectors of the edge ee, 𝐭e\bm{t}_{e} is the unit tangential vector of edge ee, 𝒫̊k+2(f;3):=(λf,1λf,2λf,3)2Pk4(f;3)\mathring{\mathcal{P}}_{k+2}(f;\mathbb{R}^{3}):=(\lambda_{f,1}\lambda_{f,2}\lambda_{f,3})^{2}P_{k-4}(f;\mathbb{R}^{3}), 𝒲k1(K;3)\mathcal{W}_{k-1}(K;\mathbb{R}^{3}) is defined in (4.1), k(K;𝕊)\mathcal{M}_{k}(K;\mathbb{S}) is defined in (4.2), and 𝛔:=symcurl𝐮\bm{\sigma}:=\operatorname{sym}\operatorname{curl}\bm{u}.

Remark 4.7.

The DOFs (4.7a)–(4.7b) and (4.7d)–(4.7f) lead to the continuity of 𝒖×𝒏f\bm{u}\times\bm{n}_{f} across each interface ff. The DOFs (4.7a), (4.7c), and (4.7g) ensure the continuity of (div𝒖)×𝒏f(\operatorname{div}^{\ast}\bm{u})\times\bm{n}_{f} across each interface ff.

Proof.

The number of DOFs given in (4.7) is

32+96+36+48(k2)+18(k3)+30(k1)+6(k1)(k2)12+6(k2)(k3)+4(k1)(k2)+2k33k25k126+k33k24k+122+(k+1)k(k1)22k(k1)=4(k+4)(k+3)(k+2)3=dimPk+1(K;𝕋).\begin{split}&32+96+36+48(k-2)+18(k-3)+30(k-1)+6(k-1)(k-2)-12\\ &+6(k-2)(k-3)+4(k-1)(k-2)+\frac{2k^{3}-3k^{2}-5k-12}{6}+\frac{k^{3}-3k^{2}-4k+12}{2}\\ &+\frac{(k+1)k(k-1)}{2}-2k(k-1)=\frac{4(k+4)(k+3)(k+2)}{3}=\operatorname{dim}P_{k+1}(K;\mathbb{T}).\end{split}

It suffices to prove that for any 𝒖Pk+1(K;𝕋)\bm{u}\in P_{k+1}(K;\mathbb{T}), if 𝒖\bm{u} vanishes on all the DOFs of (4.7), then 𝒖=0\bm{u}=0. The DOFs (4.7a)–(4.7d) show that 𝒖(a),𝒖(a),(div𝒖)\bm{u}(a),\nabla\bm{u}(a),\nabla(\operatorname{div}^{*}\bm{u}) vanish at all vertices, and 𝒖\bm{u}, div𝒖\operatorname{div}^{*}\bm{u}, (symcurl𝒖)𝒏e±(\operatorname{sym}\operatorname{curl}\bm{u})\bm{n}_{e}^{\pm} vanish on all edges. This and (3.11a) show that for any face ff, (curl𝒖)𝒏f=rotf𝒖(\operatorname{curl}\bm{u})\cdot\bm{n}_{f}=\operatorname{rot}_{f}\bm{u} vanishes on f\partial f. This, (4.7e),(4.7f) plus the DOFs of the two dimensional H1H^{1}-conforming finite element in [12, (2.16)–(2.20)] show that 𝒖×𝒏f\bm{u}\times\bm{n}_{f} vanishes on f(K)f\in\mathscr{F}(K). The DOFs (4.7g) show that (div𝒖)×𝒏f(\operatorname{div}^{*}\bm{u})\times\bm{n}_{f} also vanishes on f(K)f\in\mathscr{F}(K).

Since 𝝈=symcurl𝒖\bm{\sigma}=\operatorname{sym}\operatorname{curl}\bm{u}, Lemma 3.4 shows that 𝝈\bm{\sigma} vanishes at the DOFs (4.3a)–(4.3c) and divdiv𝝈=0\operatorname{div}\operatorname{div}\bm{\sigma}=0 on KK. This, (4.7h) and (4.7i) imply that symcurl𝒖=0\operatorname{sym}\operatorname{curl}\bm{u}=0 on KK. Similar arguments as those in [11, Theorem 12] show that there exists 𝒗Pk+2(K;3)\bm{v}\in P_{k+2}(K;\mathbb{R}^{3}) such that

𝒖=devgrad𝒗,\bm{u}=\operatorname{dev}\operatorname{grad}\bm{v},

here 𝒗=λ1λ2λ3λ4𝒘\bm{v}=\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}\bm{w} with 𝒘Pk2(K;3)\bm{w}\in P_{k-2}(K;\mathbb{R}^{3}). A direct calculation shows

div𝒖×𝒏f=div(grad𝒗13(div𝒗)𝑰)×𝒏f=23grad(div𝒗)×𝒏f.\operatorname{div}^{*}\bm{u}\times\bm{n}_{f}=\operatorname{div}^{*}(\operatorname{grad}\bm{v}-\frac{1}{3}(\operatorname{div}\bm{v})\bm{I})\times\bm{n}_{f}=\frac{2}{3}\operatorname{grad}(\operatorname{div}\bm{v})\times\bm{n}_{f}.

Since div𝒖×𝒏f\operatorname{div}^{*}\bm{u}\times\bm{n}_{f} vanishes in each interface f(K)f\in\mathscr{F}(K), the tangential derivative of div𝒗\operatorname{div}\bm{v} also vanishes on the faces. Then div𝒗=0\operatorname{div}\bm{v}=0 on f(K)f\in\mathscr{F}(K), and (4.7j) shows that 𝒖=0\bm{u}=0. This concludes the proof. ∎

In three dimensions, the corresponding global space for the H(symcurl,Ω;𝕋)H({\rm{sym}\,\operatorname{curl}},\Omega;\mathbb{T}) conforming finite element 𝒰k+1,\mathcal{U}_{k+1,\triangle} is defined by

𝒰k+1,:={𝒖H(symcurl,Ω;𝕋):𝒖|KPk+1(K;𝕋)for allK𝒯,all of the degrees of freedom (4.7) are single-valued}.\begin{split}\mathcal{U}_{k+1,\triangle}:=&\{\bm{u}\in H({\rm{sym}\operatorname{curl}},\Omega;\mathbb{T}):\bm{u}|_{K}\in P_{k+1}(K;\mathbb{T})~{}\text{for all}~{}~{}K\in\mathcal{T}_{\triangle},\\ &\text{all of the degrees of freedom \eqref{DOF:Lam} are single-valued}\}.\end{split}

4.3. H1H^{1}-conforming finite element space

This subsection constructs the H1(Ω;3)H^{1}(\Omega;\mathbb{R}^{3}) conforming finite element space Vk+2,V_{k+2,\triangle}. This space consists of vectorial, globally continuous piecewise polynomials of degree not greater than k+2k+2 with k4k\geq 4. Recall

H1(div,Ω;3):={𝒗H1(Ω;3):div𝒗H1(Ω;)}H^{1}(\operatorname{div},\Omega;\mathbb{R}^{3}):=\{\bm{v}\in H^{1}(\Omega;\mathbb{R}^{3}):\operatorname{div}\bm{v}\in H^{1}(\Omega;\mathbb{R})\}

defined in (3.15). Motivated by Remark 3.9, the global regularity Vk+2,H1(div,Ω;3)V_{k+2,\triangle}\subseteq H^{1}(\operatorname{div},\Omega;\mathbb{R}^{3}) is imposed to satisfy the inclusion condition devgradVk+2,𝒰k+1,\operatorname{dev}\,\operatorname{grad}V_{k+2,\triangle}\subseteq\mathcal{U}_{k+1,\triangle}. The DOFs of Vk+2,V_{k+2,\triangle} are stated in the following theorem.

Theorem 4.8.

Given tetrahedron K𝒯K\in\mathcal{T}_{\triangle}, the vector valued polynomial 𝐯Pk+2(K;3)\bm{v}\in P_{k+2}(K;\mathbb{R}^{3}) with k4k\geq 4 can be uniquely determined by the following conditions:

(4.8a) 𝒗(a),𝒗(a),2𝒗(a),2(div𝒗)(a)\displaystyle\bm{v}(a),\nabla\bm{v}(a),\nabla^{2}\bm{v}(a),\nabla^{2}(\operatorname{div}\bm{v})(a)\quad for alla𝒱(K),\displaystyle\text{for all}~{}a\in\mathscr{V}(K),
(4.8b) (𝒗,𝒒)e\displaystyle(\bm{v},\bm{q})_{e}\quad for all𝒒Pk4(e;3),e(K),\displaystyle\text{for all}~{}\bm{q}\in P_{k-4}(e;\mathbb{R}^{3}),~{}e\in\mathscr{E}(K),
(4.8c) (div𝒗,q)e\displaystyle(\operatorname{div}\bm{v},q)_{e}\quad for allqPk5(e;),e(K),\displaystyle\text{for all}~{}q\in P_{k-5}(e;\mathbb{R}),~{}e\in\mathscr{E}(K),
(4.8d) ((𝒗𝒏e+)𝒏e±,q)e,((𝒗𝒕e)𝒏e±,q)e,((𝒗𝒏e)𝒏e+,q)e\displaystyle(\frac{\partial(\bm{v}\cdot\bm{n}_{e}^{+})}{\partial\bm{n}_{e}^{\pm}},q)_{e},(\frac{\partial(\bm{v}\cdot\bm{t}_{e})}{\partial\bm{n}_{e}^{\pm}},q)_{e},(\frac{\partial(\bm{v}\cdot\bm{n}_{e}^{-})}{\partial\bm{n}_{e}^{+}},q)_{e}\quad for allqPk3(e;),e(K),\displaystyle\text{for all}~{}q\in P_{k-3}(e;\mathbb{R}),~{}e\in\mathscr{E}(K),
(4.8e) ((div𝒗)𝒏e±,q)e\displaystyle(\frac{\partial(\operatorname{div}\bm{v})}{\partial\bm{n}_{e}^{\pm}},q)_{e}\quad for allqPk4(e;),e(K),\displaystyle\text{for all}~{}q\in P_{k-4}(e;\mathbb{R}),~{}e\in\mathscr{E}(K),
(4.8f) (𝒗,𝒒)f\displaystyle(\bm{v},\bm{q})_{f}\quad for all𝒒Pk4(f;3),f(K),\displaystyle\text{for all}~{}\bm{q}\in P_{k-4}(f;\mathbb{R}^{3}),~{}f\in\mathscr{F}(K),
(4.8g) (div𝒗,q)f\displaystyle(\operatorname{div}\bm{v},q)_{f}\quad for allqPk5(f;),f(K),\displaystyle\text{for all}~{}q\in P_{k-5}(f;\mathbb{R}),~{}f\in\mathscr{F}(K),
(4.8h) (𝒗,𝒒)K\displaystyle(\bm{v},\bm{q})_{K}\quad for all𝒒P̊k+2div(K;3).\displaystyle\text{for all}~{}\bm{q}\in\mathring{P}^{\operatorname{div}}_{k+2}(K;\mathbb{R}^{3}).

Here 𝐧e±\bm{n}_{e}^{\pm} are two linearly independent normal vectors of the edge ee, 𝐭e\bm{t}_{e} is the unit tangential vector of edge ee, and P̊k+2div(K;3)\mathring{P}^{\operatorname{div}}_{k+2}(K;\mathbb{R}^{3}) is defined in (4.6) above.

Remark 4.9.

The DOFs (4.8a)–(4.8b), (4.8d), and (4.8f) are imposed to ensure the continuity of 𝒗\bm{v} on each interface. The DOFs (4.8a), (4.8c)–(4.8e), and (4.8g) are imposed to ensure the continuity of div𝒗\operatorname{div}\bm{v} on each interface.

Proof.

Since there are (k+5)(k+4)(k+3)/2(k+5)(k+4)(k+3)/2 degrees of freedom defined in (4.8), it suffices to prove that for any 𝒗Pk+2(T;3)\bm{v}\in P_{k+2}(T;\mathbb{R}^{3}), if 𝒗\bm{v} vanishes at all degrees of freedom in (4.8), then 𝒗\bm{v} is identically zero.

It is easy to see that 𝒗,𝒗,2𝒗,2(div𝒗)\bm{v},\nabla\bm{v},\nabla^{2}\bm{v},\nabla^{2}(\operatorname{div}\bm{v}) vanish at all vertices. Then the DOFs (4.8b),(4.8c),(4.8e) imply that 𝒗,div𝒗,(div𝒗)\bm{v},\operatorname{div}\bm{v},\nabla(\operatorname{div}\bm{v}) vanish on all edges. Since div𝒗=(𝒗𝒏e+)𝒏e++(𝒗𝒏e)𝒏e+(𝒗𝒕e)𝒕e\operatorname{div}\bm{v}=\frac{\partial(\bm{v}\cdot\bm{n}_{e}^{+})}{\partial\bm{n}_{e}^{+}}+\frac{\partial(\bm{v}\cdot\bm{n}_{e}^{-})}{\partial\bm{n}_{e}^{-}}+\frac{\partial(\bm{v}\cdot\bm{t}_{e})}{\partial\bm{t}_{e}}, the DOFs (4.8d) show that 𝒗\nabla\bm{v} vanish on all edges. It then follows from (4.8f) and (4.8g) that 𝒗,div𝒗\bm{v},\operatorname{div}\bm{v} vanish on all faces. Thus (4.8h) concludes the proof. ∎

In three dimensions, the corresponding global space for the H1(Ω;3)H^{1}(\Omega;\mathbb{R}^{3}) conforming finite element Vk+2,V_{k+2,\triangle} is defined by

Vk+2,:={𝒗H1(Ω;3):𝒗|KPk+2(K;3)for allK𝒯,all of the degrees of freedom (4.8) are single-valued}.\begin{split}V_{k+2,\triangle}:=&\{\bm{v}\in H^{1}(\Omega;\mathbb{R}^{3}):\bm{v}|_{K}\in P_{k+2}(K;\mathbb{R}^{3})~{}\text{for all}~{}~{}K\in\mathcal{T}_{\triangle},\\ &\text{all of the degrees of freedom \eqref{DOF:V} are single-valued}\}.\end{split}

5. The discrete divdiv complex

The finite element analogy of the divdiv complex (1.1) is presented in this section, and the discrete complexes consist of those conforming finite elements introduced in the previous two sections. The exactness of the finite element divdiv complexes on cuboid and tetrahedral grids is proved respectively.

5.1. The finite element divdiv complex on cuboid grids

This subsection studies the finite element divdiv complex of (1.2) on cuboid grids 𝒯\mathcal{T}_{\Box}. Remark 3.8 and Remark 3.12 show devgradVk,𝒰k,\operatorname{dev}\operatorname{grad}\,V_{k,\Box}\subseteq\mathcal{U}_{k,\Box} and symcurl𝒰k,Σk,\operatorname{sym}\operatorname{curl}\mathcal{U}_{k,\Box}\subseteq\Sigma_{k,\Box}.

Lemma 5.1.

For any 𝐮𝒰k,\bm{u}\in\mathcal{U}_{k,\Box} with symcurl𝐮=0\operatorname{sym}\operatorname{curl}\bm{u}=0, there exists some 𝐯Vk,{\bm{v}}\in{V}_{k,\Box} such that 𝐮=devgrad𝐯\bm{u}=\operatorname{dev}\operatorname{grad}\bm{v}.

Proof.

For any 𝒖𝒰k,\bm{u}\in\mathcal{U}_{k,\Box} and symcurl𝒖=0\operatorname{sym}\operatorname{curl}\bm{u}=0, there exists some 𝒗H1(Ω;3)\bm{v}\in H^{1}(\Omega;\mathbb{R}^{3}), such that 𝒖=devgrad𝒗\bm{u}=\operatorname{dev}\operatorname{grad}\bm{v}. The exactness of the polynomial complex in Lemma 3.2 shows 𝒗|KV[k](K;3){\bm{v}}|_{K}\in{V}_{[k]}({K};\mathbb{R}^{3}) on each cube K𝒯K\in\mathcal{T}_{\Box}. To prove 𝒗Vk,\bm{v}\in V_{k,\Box}, it suffices to verify the continuity of 𝒗\bm{v} as well as ivi\partial_{i}v_{i} across each interface ff\in\mathscr{F}. The identities

Πf(𝒖𝒏f)=f(𝒗𝒏f),𝒬f,sym(𝒖×𝒏f)=εf(𝒗×𝒏f)for all f\Pi_{{f}}(\bm{u}^{\intercal}{\bm{n}_{f}})={\nabla}_{{f}}({\bm{v}}\cdot{\bm{n}_{f}}),~{}~{}~{}~{}~{}~{}\mathcal{Q}_{{f},{\rm{sym}}}(\bm{u}\times{\bm{n}_{f}})={\varepsilon}_{{f}}({\bm{v}}\times{\bm{n}_{f}})\quad\text{for all }~{}~{}{f}\in\mathscr{F}

lead to

[𝒗𝒏f]fP0(f;),[𝒗×𝒏f]fRM(f)for all f.[{\bm{v}}\cdot{\bm{n}_{f}}]_{{f}}\in P_{0}({f};\mathbb{R}),~{}~{}~{}~{}~{}~{}[{\bm{v}}\times{\bm{n}_{f}}]_{{f}}\in RM(f)\quad\text{for all }~{}~{}{f}\in\mathscr{F}.

This implies

[vi]f=c0,[vj]f=c2c1xj,[vl]f=c3+c1xlfor allfi,i=1,2,3[{v}_{i}]_{{f}}=c_{0},~{}~{}~{}~{}[{v}_{j}]_{{f}}=c_{2}-c_{1}{x}_{j},~{}~{}~{}~{}[{v}_{l}]_{{f}}=c_{3}+c_{1}{x}_{l}\quad\text{for all}~{}f\in\mathscr{F}_{i},~{}~{}i=1,2,3

with parameters c0c_{0}, c1c_{1}, c2c_{2}, c3c_{3}. Recall uii=ivi13div𝒗{u}_{ii}={\partial}_{i}{v}_{i}-\frac{1}{3}{\rm{div}}{\bm{v}}, and [uii]f=0[{u}_{ii}]_{{f}}=0 for all f{f}\in\mathscr{F}. Thus

(5.1) [ivi]f=[jvj]f=[lvl]f=0.\displaystyle[{\partial}_{i}{v}_{i}]_{{f}}=[{\partial}_{j}{v}_{j}]_{{f}}=[{\partial}_{l}{v}_{l}]_{{f}}=0.

This shows that c1c_{1} is zero. Therefore [𝒗]fP0(f;)[{\bm{v}}]_{{f}}\in P_{0}({f};\mathbb{R}) for all f{f}\in\mathscr{F}. As RT=ker(devgrad)RT={\rm{ker}}(\rm{dev}\operatorname{grad}), the constraint 𝒗(xb,yb,zb)=0{\bm{v}}(x_{b},y_{b},z_{b})=0 can be imposed. Hence [𝒗]f=0[{\bm{v}}]_{{f}}=0 for all f{f}\in\mathscr{F}. This plus (5.1) prove 𝒗Vk,{\bm{v}}\in{V}_{k,\Box}. ∎

Theorem 5.2.

The finite element sequence

RTVk,\xlongrightarrow[]devgrad𝒰k,\xlongrightarrow[]symcurlΣk,\xlongrightarrow[]divdivQk2,0~{}~{}~{}~{}~{}~{}~{}~{}~{}RT\stackrel{{\scriptstyle\subseteq}}{{\longrightarrow}}{V}_{k,\Box}\xlongrightarrow[~{}]{{{\rm{dev}\,{\operatorname{grad}}}}}\mathcal{U}_{k,\Box}\xlongrightarrow[~{}]{{{\rm{sym}}\,{\operatorname{curl}}}}{\Sigma}_{k,\Box}\xlongrightarrow[~{}]{{{\rm{div}}\,{\operatorname{div}}}}{Q}_{k-2,\Box}{\longrightarrow}0

is a divdiv complex, which is exact on a contractible domain.

Proof.

The inclusion divdivΣk,Qk2,\operatorname{div}\operatorname{div}\Sigma_{k,\Box}\subseteq Q_{k-2,\Box} is easy to verify. It remains to prove Qk2,divdivΣk,Q_{k-2,\Box}\subseteq\operatorname{div}\operatorname{div}\Sigma_{k,\Box}. If the inclusion does not hold, then there exists some qQk2,q\in Q_{k-2,\Box} and q0q\neq 0, such that

(divdiv𝝉,q)Ω=0for all𝝉Σk,.({\operatorname{div}}\,{\operatorname{div}}\bm{\tau},q)_{\Omega}=0~{}~{}~{}\text{for all}~{}~{}\bm{\tau}\in\Sigma_{k,\Box}.

Integration by parts and the continuity of 𝝉𝒏f\bm{\tau}\bm{n}_{f} as well as 𝒏fdiv𝝉\bm{n}_{f}^{\intercal}\operatorname{div}\bm{\tau} across each interface ff leads to (𝝉,2q)K=0(\bm{\tau},\nabla^{2}q)_{K}=0 for any 𝝉Σk,\bm{\tau}\in\Sigma_{k,\Box}, and thus qP1(K;)q\in P_{1}(K;\mathbb{R}). Take 𝝉Σk,\bm{\tau}\in\Sigma_{k,\Box} such that its DOFs vanish except the following DOFs

(iτii,[q]fi)fi=([q]fi,[q]fi)fifor somefi.(\partial_{i}\tau_{ii},[q]_{f_{i}})_{f_{i}}=([q]_{f_{i}},[q]_{f_{i}})_{f_{i}}~{}~{}~{}\text{for some}~{}~{}f_{i}\in{\mathscr{F}}.

Then an integration by parts results in

0=(divdiv𝝉,q)Ω=fh(div𝝉𝒏f,[q]f)f=[q]fi0,fi2.0=({\operatorname{div}}\,{\operatorname{div}}\bm{\tau},q)_{\Omega}=\sum_{f\in{\mathscr{F}}_{h}}(\operatorname{div}{\bm{\tau}}\cdot\bm{n}_{f},[q]_{f})_{f}=\|[q]_{f_{i}}\|^{2}_{0,f_{i}}.

This shows [q]fi=0[q]_{f_{i}}=0. The arbitrariness of the choice of fif_{i}\in\mathscr{F} leads to q=0q=0. The contradiction occurs.

Besides,

dimsymcurl𝒰k,=dim𝒰k,dimdevgradVk,=dim𝒰k,dimVk,+dimRT=4#𝒱+(k+3)#+(4k210k+2)#+(5k327k2+42k16)#𝒯h+4,\begin{split}{\rm{dim}}\,{\rm{sym}\operatorname{curl}}\,\mathcal{U}_{k,\Box}&={\rm{dim}}\,\mathcal{U}_{k,\Box}-{\rm{dim}}\,{\rm{dev}\operatorname{grad}}V_{k,\Box}={\rm{dim}}\,\mathcal{U}_{k,\Box}-{\rm{dim}}\,V_{k,\Box}+{\rm{dim}}\,RT\\ &=-4\#\mathscr{V}+(k+3)\#\mathscr{E}+(4k^{2}-10k+2)\#\mathscr{F}\\ &\quad+(5k^{3}-27k^{2}+42k-16)\#\mathcal{T}_{h}+4,\end{split}

and

dimker(divdiv)Σk,=dimΣk,dimdivdivΣk,=dimΣk,dimQk2,=(k1)#+(4k210k+6)#+(5k327k2+42k20)#𝒯h.\begin{split}{\rm{dim}}\,{{\rm{ker}}(\operatorname{div}\operatorname{div})}\cap\Sigma_{k,\Box}&={\rm{dim}}\,\Sigma_{k,\Box}-{\rm{dim}}\,{\operatorname{div}}{\operatorname{div}}\Sigma_{k,\Box}={\rm{dim}}\,\Sigma_{k,\Box}-{\rm{dim}}\,Q_{k-2,\Box}\\ &=(k-1)\#\mathscr{E}+(4k^{2}-10k+6)\#\mathscr{F}\\ &\quad+(5k^{3}-27k^{2}+42k-20)\#\mathcal{T}_{h}.\end{split}

Here #𝒮\#\mathcal{S} is the number of the elements in the finite set SS. According to Euler’s formula #+1=#𝒱+##𝒯h\#\mathscr{E}+1=\#\mathscr{V}+\#\mathscr{F}-\#\mathcal{T}_{h},

dimker(divdiv)Σk,=dimsymcurl𝒰k,.{\rm{dim}}\,{{\rm{ker}}(\operatorname{div}\operatorname{div})}\cap\Sigma_{k,\Box}={\rm{dim}}\,{\rm{sym}\operatorname{curl}}\,\mathcal{U}_{k,\Box}.

This concludes the proof. ∎

5.2. The finite element divdiv complex on tetrahedral grids

This subsection derives and studies the discrete divdiv complex of (1.2) on tetrahedral grids. Since devgradH1(div,Ω;3)H(symcurl,Ω;𝕋)\operatorname{dev}\operatorname{grad}H^{1}(\operatorname{div},\Omega;\mathbb{R}^{3})\subseteq H^{*}(\operatorname{sym}\operatorname{curl},\Omega;\mathbb{T}), it follows from the proof of Theorem 4.8 and Theorem 4.6 that devgradVk+2,𝒰k+1,\operatorname{dev}\operatorname{grad}V_{k+2,\triangle}\subseteq\mathcal{U}_{k+1,\triangle} and symcurl𝒰k+1,Σk,\operatorname{sym}\operatorname{curl}\,\mathcal{U}_{k+1,\triangle}\subseteq\Sigma_{k,\triangle}.

Lemma 5.3.

For any 𝐮𝒰k+1,\bm{u}\in\mathcal{U}_{k+1,\triangle} with symcurl𝐮=0\operatorname{sym}\operatorname{curl}\bm{u}=0, there exists some 𝐯Vk+2,\bm{v}\in V_{k+2,\triangle} such that 𝐮=devgrad𝐯\bm{u}=\operatorname{dev}\operatorname{grad}\bm{v}.

Proof.

For any 𝒖𝒰k+1,\bm{u}\in\mathcal{U}_{k+1,\triangle} with symcurl𝒖=0\operatorname{sym}\operatorname{curl}\bm{u}=0, there exists some 𝒗H1(Ω;3)\bm{v}\in H^{1}(\Omega;\mathbb{R}^{3}) consisting of piecewise polynomials of degree no more than k+2k+2 such that 𝒖=devgrad𝒗\bm{u}=\operatorname{dev}\operatorname{grad}\bm{v}[7, Lemma 3.2]. Note that

div𝒖=div(grad𝒗13(div𝒗)𝑰)=23grad(div𝒗)L2(Ω;3),\operatorname{div}^{*}\bm{u}=\operatorname{div}^{*}(\operatorname{grad}\bm{v}-\frac{1}{3}(\operatorname{div}\bm{v})\bm{I})=\frac{2}{3}\operatorname{grad}(\operatorname{div}\bm{v})\in L^{2}(\Omega;\mathbb{R}^{3}),

and div𝒗L2(Ω;)\operatorname{div}\bm{v}\in L^{2}(\Omega;\mathbb{R}), hence 𝒗H1(div,Ω;3)\bm{v}\in H^{1}(\operatorname{div},\Omega;\mathbb{R}^{3}). Since 𝒗\bm{v} is a discrete function, 𝒗\bm{v} and div𝒗\operatorname{div}\bm{v} are continuous at vertices, on edges, and in faces. Then the continuity of 𝒖,div𝒖\bm{u},\operatorname{div}^{*}\bm{u} on edges and at vertices imply that 𝒗,(div𝒗)\nabla\bm{v},\nabla(\operatorname{div}\bm{v}) are also continuous on edges and at vertices. Then pw2𝒗=pw𝒖+13(div𝒗𝑰)\nabla_{pw}^{2}\bm{v}=\nabla_{pw}\bm{u}+\frac{1}{3}\nabla(\operatorname{div}\bm{v}\bm{I}) is continuous at all vertices. Finally, the continuity of pw(div𝒖)\nabla_{pw}(\operatorname{div}^{*}\bm{u}) at vertices implies that pw2(div𝒗)\nabla_{pw}^{2}(\operatorname{div}\bm{v}) is continuous at vertices. Hence 𝒗Vk+2,\bm{v}\in V_{k+2,\triangle}. ∎

Lemma 5.3 proves the surjection of the operator devgrad:Vk+2,ker(symcurl)𝒰k+1,\operatorname{dev}\operatorname{grad}:V_{k+2,\triangle}\rightarrow\operatorname{ker}(\operatorname{sym}\operatorname{curl})\cap\mathcal{U}_{k+1,\triangle} and the following lemma shows that the operator divdiv:Σk,Qk2,\operatorname{div}\operatorname{div}:\Sigma_{k,\triangle}\rightarrow Q_{k-2,\triangle} is surjective.

Lemma 5.4.

For any qhQk2,q_{h}\in Q_{k-2,\triangle} with k3k\geq 3, there exists some 𝐮hΣk,\bm{u}_{h}\in\Sigma_{k,\triangle} such that divdiv𝐮h=qh\operatorname{div}\operatorname{div}\bm{u}_{h}=q_{h}.

Proof.

For any qhQk2,q_{h}\in Q_{k-2,\triangle}, there exists some nonstandard Brezzi-Douglas-Marini element 𝒗hH(div,Ω;3)\bm{v}_{h}\in H(\operatorname{div},\Omega;\mathbb{R}^{3}) consisting of piecewise polynomials of degree not greater than k1k-1 such that div𝒗h=qh\operatorname{div}\bm{v}_{h}=q_{h}(see [17, (2.18)]). Then it suffices to prove that there exists some 𝒖hΣk,\bm{u}_{h}\in\Sigma_{k,\triangle} so that

(divdiv𝒖hdiv𝒗h,ph)=0for allphQk2,.(\operatorname{div}\operatorname{div}\bm{u}_{h}-\operatorname{div}\bm{v}_{h},p_{h})=0\quad\text{for all}~{}p_{h}\in Q_{k-2,\triangle}.

The construction of 𝒖h\bm{u}_{h} will be carried out in two steps. Recall

P~k1(f;)={qPk1(f;):qvanishes at all vertices of f}{\widetilde{P}}_{k-1}(f;\mathbb{R})=\{{q}\in P_{k-1}(f;\mathbb{R}):{q}\,\text{vanishes at all vertices of }f\}

from Theorem 4.3. First set the DOFs (4.3a), (4.3d) by

𝒖h(a)=0,div𝒖h(a)=𝒗h(a)for alla𝒱,\bm{u}_{h}(a)=0,\operatorname{div}\bm{u}_{h}(a)=\bm{v}_{h}(a)\quad\text{for all}~{}a\in\mathscr{V},
(div𝒖h𝒏f,𝒒)f=(𝒗h𝒏f,𝒒)ffor all𝒒P~k1(f;3)andf.\begin{split}(\operatorname{div}\bm{u}_{h}\cdot\bm{n}_{f},\bm{q})_{f}=(\bm{v}_{h}\cdot\bm{n}_{f},\bm{q})_{f}\quad\text{for all}~{}\bm{q}\in{\widetilde{P}}_{k-1}(f;\mathbb{R}^{3})~{}~{}\text{and}~{}~{}f\in\mathscr{F}.\end{split}

Next, set the DOFs (4.3c), (4.3g) by

(𝒖h𝒏f,𝒒)f=0for allqPk3(f;3)/P0(f;3)andf,(\bm{u}_{h}\bm{n}_{f},\bm{q})_{f}=0\quad\text{for all}~{}q\in P_{k-3}(f;\mathbb{R}^{3})/P_{0}(f;\mathbb{R}^{3})\quad\text{and}~{}f\in\mathscr{F},
(𝒖h,2q)K=(𝒗h,q)Kfor allqPk2(K;)/P1(K;)andK𝒯h.(\bm{u}_{h},\nabla^{2}q)_{K}=(\bm{v}_{h},\nabla q)_{K}\quad\text{for all}~{}q\in P_{k-2}(K;\mathbb{R})/P_{1}(K;\mathbb{R})~{}~{}\text{and}~{}~{}K\in\mathcal{T}_{h}.

It follows from the above DOFs that

div𝒖h𝒏f=𝒗h𝒏ffor allf.\operatorname{div}\bm{u}_{h}\cdot\bm{n}_{f}=\bm{v}_{h}\cdot\bm{n}_{f}\quad\text{for all}~{}f\in\mathscr{F}.

Then for any phPk2(K;)/P1(K;)p_{h}\in P_{k-2}(K;\mathbb{R})/P_{1}(K;\mathbb{R}), it holds

(divdiv𝒖hdiv𝒗h,ph)K\displaystyle(\operatorname{div}\operatorname{div}\bm{u}_{h}-\operatorname{div}\bm{v}_{h},p_{h})_{K} =(div𝒖h𝒗h,ph)K\displaystyle=-(\operatorname{div}\bm{u}_{h}-\bm{v}_{h},\nabla p_{h})_{K}
=f(K)(𝒖h𝒏f,ph)f+(𝒖h,2ph)K(𝒗h,ph)K.\displaystyle=-\sum_{f\in\mathscr{F}(K)}(\bm{u}_{h}\bm{n}_{f},\nabla p_{h})_{f}+(\bm{u}_{h},\nabla^{2}p_{h})_{K}-(\bm{v}_{h},\nabla p_{h})_{K}.

If phP1(K;)p_{h}\in P_{1}(K;\mathbb{R}), then ph=(a,b,c)TP0(K;3)\nabla p_{h}=(a,b,c)^{T}\in P_{0}(K;\mathbb{R}^{3}). By induction, there exists 3#3\#\mathscr{F} constants f{af,bf,cf}\cup_{f\in\mathscr{F}}\{a_{f},b_{f},c_{f}\} which satisfy

f(K)af\displaystyle-\sum_{f\in\mathscr{F}(K)}a_{f} =(𝒗h,𝑰1)K,for allK𝒯h,\displaystyle=(\bm{v}_{h},\bm{I}_{1})_{K},\quad\text{for all}~{}K\in\mathcal{T}_{h},
f(K)bf\displaystyle-\sum_{f\in\mathscr{F}(K)}b_{f} =(𝒗h,𝑰2)K,for allK𝒯h,\displaystyle=(\bm{v}_{h},\bm{I}_{2})_{K},\quad\text{for all}~{}K\in\mathcal{T}_{h},
f(K)cf\displaystyle-\sum_{f\in\mathscr{F}(K)}c_{f} =(𝒗h,𝑰3)K,for allK𝒯h.\displaystyle=(\bm{v}_{h},\bm{I}_{3})_{K},\quad\text{for all}~{}K\in\mathcal{T}_{h}.

Here 𝑰1:=(1,0,0)\bm{I}_{1}:=(1,0,0)^{\intercal}, 𝑰2:=(0,1,0)\bm{I}_{2}:=(0,1,0)^{\intercal}, 𝑰3:=(0,0,1)\bm{I}_{3}:=(0,0,1)^{\intercal}, and #\#\mathscr{F} denotes the number of faces in the finite set \mathscr{F}.

The second step is to set the DOFs (4.3c) by

(𝒖h𝒏f,𝑰1)f=af,(𝒖h𝒏f,𝑰2)f=bf,(𝒖h𝒏f,𝑰3)f=cf,for allf,(\bm{u}_{h}\bm{n}_{f},\bm{I}_{1})_{f}=a_{f},\quad(\bm{u}_{h}\bm{n}_{f},\bm{I}_{2})_{f}=b_{f},\quad(\bm{u}_{h}\bm{n}_{f},\bm{I}_{3})_{f}=c_{f},\quad\text{for all}~{}f\in\mathscr{F},

and set the other DOFs to be zero. On each element K𝒯K\in\mathcal{T}_{\triangle}, the above construction of 𝒖h\bm{u}_{h} shows, for any phPk2(K;)p_{h}\in P_{k-2}(K;\mathbb{R}), that

(divdiv𝒖hdiv𝒗h,ph)K=f(K)(𝒖h𝒏f,ph)f+(𝒖h,2ph)K(𝒗h,ph)K=0.(\operatorname{div}\operatorname{div}\bm{u}_{h}-\operatorname{div}\bm{v}_{h},p_{h})_{K}=-\sum_{f\in\mathscr{F}(K)}(\bm{u}_{h}\bm{n}_{f},\nabla p_{h})_{f}+(\bm{u}_{h},\nabla^{2}p_{h})_{K}-(\bm{v}_{h},\nabla p_{h})_{K}=0.

This concludes the proof. ∎

The exactness of the discrete complex (1.2) is proved in the following theorem.

Theorem 5.5.

The finite element sequence

RTVk+2,\xlongrightarrow[]devgrad𝒰k+1,\xlongrightarrow[]symcurlΣk,\xlongrightarrow[]divdivQk2,0~{}~{}~{}~{}~{}~{}~{}~{}~{}RT\stackrel{{\scriptstyle\subseteq}}{{\longrightarrow}}{V}_{k+2,\triangle}\xlongrightarrow[~{}]{{{\rm{dev}\,{\operatorname{grad}}}}}\mathcal{U}_{k+1,\triangle}\xlongrightarrow[~{}]{{{\rm{sym}}\,{\operatorname{curl}}}}{\Sigma}_{k,\triangle}\xlongrightarrow[~{}]{{{\rm{div}}\,{\operatorname{div}}}}{Q}_{k-2,\triangle}{\longrightarrow}0

is a divdiv complex, which is exact on a contractible domain.

Proof.

It only remains to check the dimension. Notice that the global dimension of Vk+2,V_{k+2,\triangle} is

36#𝒱+(11k29)#+(2k211k+15)#+k34k2+3k2#𝒯h.36\#\mathscr{V}+(11k-29)\#\mathscr{E}+(2k^{2}-11k+15)\#\mathscr{F}+\frac{k^{3}-4k^{2}+3k}{2}\#\mathcal{T}_{h}.

Here #𝒮\#\mathcal{S} is the number of the elements in the finite set SS. Similarly, by the degrees of freedom defined above, the global dimension of 𝒰k+1,\mathcal{U}_{k+1,\triangle} is

41#𝒱+(16k30)#+(4k215k+11)#+4k312k24k+123#𝒯h.41\#\mathscr{V}+(16k-30)\#\mathscr{E}+(4k^{2}-15k+11)\#\mathscr{F}+\frac{4k^{3}-12k^{2}-4k+12}{3}\#\mathcal{T}_{h}.

The global dimension of Σk,\Sigma_{k,\triangle} is

9#𝒱+(5k5)#+(2k24k)#+(k32k23k)#𝒯h,9\#\mathscr{V}+(5k-5)\#\mathscr{E}+(2k^{2}-4k)\#\mathscr{F}+(k^{3}-2k^{2}-3k)\#\mathcal{T}_{h},

and the global dimension of Qk2,Q_{k-2,\triangle} is k3k6#𝒯h\frac{k^{3}-k}{6}\#\mathcal{T}_{h}.

By Euler’s formula #𝒱#+##𝒯h=1\#\mathscr{V}-\#\mathscr{E}+\#\mathscr{F}-\#\mathcal{T}_{h}=1, it holds that

dimVk+2,dim𝒰k+1,+dimΣk,dimQk2,=4=dimRT.\operatorname{dim}V_{k+2,\triangle}-\operatorname{dim}\mathcal{U}_{k+1,\triangle}+\operatorname{dim}\Sigma_{k,\triangle}-\operatorname{dim}Q_{k-2,\triangle}=4=\operatorname{dim}RT.

This concludes the proof. ∎

References

  • [1] Douglas N. Arnold, Gerard Awanou, and Ragnar Winther. Finite elements for symmetric tensors in three dimensions. Math. Comp., 77(263):1229–1251, 2008,.
  • [2] Douglas N. Arnold and Kaibo Hu. Complexes from complexes. Foundations of Computational Mathematics, (1):1–36, 2021.
  • [3] Daniele Boffi, Franco Brezzi, and Michel Fortin. Mixed finite element methods and applications. Heidelberg: Springer, 2013.
  • [4] Franco Brezzi and Michel Fortin. Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.
  • [5] Long Chen and Xuehai Huang. Finite elements for divdiv-conforming symmetric tensors. arXiv e-prints, page arXiv:2005.01271, May 2020.
  • [6] Long Chen and Xuehai Huang. Finite elements for divdiv-conforming symmetric tensors in arbitrary dimension. arXiv e-prints, page arXiv:2106.13384, June 2021.
  • [7] Long Chen and Xuehai Huang. Finite elements for divdiv conforming symmetric tensors in three dimensions. Math. Comp., accepted (2021).
  • [8] Thomas Führer, Norbert Heuer, and Antti H. Niemi. An ultraweak formulation of the Kirchhoff-Love plate bending model and DPG approximation. Math. Comp., 88(318):1587–1619, 2019.
  • [9] Jun Hu. Finite element approximations of symmetric tensors on simplicial grids in n\mathbb{R}^{n}: the higher order case. J. Comput. Math., 33(3):283–296, 2015.
  • [10] Jun Hu and Yizhou Liang. Conforming discrete gradgrad-complexes in three dimensions. Math. Comp., 90(330):1637–1662, 2021.
  • [11] Jun Hu, Yizhou Liang, and Rui Ma. Conforming finite element DIVDIV complexes and the application for the linearized Einstein-Bianchi system. SIAM J. Numer. Anal., accepted (2022).
  • [12] Jun Hu, Rui Ma, and Min Zhang. A family of mixed finite elements for the biharmonic equations on triangular and tetrahedral grids. Sci. China Math., 64(12):2793–2816, 2021.
  • [13] Jun Hu and Shangyou Zhang. A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math., 58(2):297–307, 2015.
  • [14] Jun Hu and Shangyou Zhang. Finite element approximations of symmetric tensors on simplicial grids in n\mathbb{R}^{n}: the lower order case. Math. Models Methods Appl. Sci., 26(9):1649–1669, 2016.
  • [15] Dirk Pauly and Walter Zulehner. The divDiv-complex and applications to biharmonic equations. Appl. Anal., 99(9):1579–1630, 2020.
  • [16] Vincent Quenneville-Belair. A New Approach to Finite Element Simulations of General Relativity. ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)–University of Minnesota.
  • [17] Rolf Stenberg. A nonstandard mixed finite element family. Numer. Math., 115(1):131–139, 2010.