This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Background

Very lately, the PREX and the CREX collaboration present skin values, rskin208(newPREX2)=0.278±0.078(exp)±0.012(theor.)fmr_{\rm skin}^{208}({\rm newPREX2})=0.278\pm 0.078\ {\rm(exp)}\pm 0.012\ {\rm(theor.)}\,{\rm fm} and rskin48=0.121±0.026(exp)±0.024(model)r_{\rm skin}^{48}=0.121\pm 0.026\ {\rm(exp)}\pm 0.024\ {\rm(model)}, respectively. We recently determined a neutron-skin value rskin208=0.278±0.035r_{\rm skin}^{208}=0.278\pm 0.035fm from measured reaction cross sections σR(exp)\sigma_{\rm R}({\rm exp}) of p+208Pb scattering in a range of incident energies 1010~{}\,  E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}100MeVwherethechiral(Kyushu)MeVwherethechiral(Kyushu)gmatrixfoldingmodelisreliablefor-matrixfoldingmodelisreliablefor^12C+C+^12Cscattering.ThedataCscattering.Thedataσ_R(exp)areavailableforprotonscatteringonareavailableforprotonscatteringon^58Ni,Ni,^40,48Ca,Ca,^12Ctargets.Purposeitem item PurposeOurfirstaimistotesttheKyushuCtargets.\par\description@item@[Purpose]OurfirstaimistotesttheKyushugmatrixfoldingmodelforp+-matrixfoldingmodelforp+^208PbscatteringinPbscatteringin20   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}180MeV.Oursecondaimistodetermineskinvalues~{}MeV.Oursecondaimistodetermineskinvaluesr_skinandmatterandneutronradii,andmatterandneutronradii,r_mandandr_n,for,for^208Pb,Pb,^58Ni,Ni,^40,48Ca,Ca,^12CfromtheCfromtheσ_R(exp).Methodsitem item MethodsOurmethodistheKyushu.\par\description@item@[Methods]OurmethodistheKyushugmatrixfoldingmodelwiththedensitiesscaledfromtheD1SGHFB+AMPdensities,whereD1SGHFB+AMPstandsforGognyD1SHFB(GHFB)withtheangularmomentumprojection(AMP).Resultsitem item ResultsAsforprotonscattering,wefindthatourmodelisreliablein-matrixfoldingmodelwiththedensitiesscaledfromtheD1S-GHFB+AMPdensities,whereD1S-GHFB+AMPstandsforGogny-D1SHFB(GHFB)withtheangularmomentumprojection(AMP).\par\description@item@[Results]Asforprotonscattering,wefindthatourmodelisreliablein20   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}180MeV.ForMeV.For^208Pb,theskinvaluededucedfromPb,theskinvaluededucedfromσ_R(exp)inin20   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}180MeVisMeVisr_skin^208(σ_R)=0.299 ±0.020fm.Ourresultson~{}fm.Ourresultsonr_skinarecomparedwiththepreviousworks.Conclusionitem item ConclusionOurresultarecomparedwiththepreviousworks.\par\description@item@[Conclusion]Ourresultr_skin^208(σ_R) = 0.299 ±0.020fmagreeswith~{}fmagreeswithr_skin^208(PREX2) = 0.283±0.071fm.Inaddition,ourresult~{}fm.Inaddition,ourresultr_skin^48=0.103 ±0.022fmisconsistentwiththeCREXvalue.~{}fmisconsistentwiththeCREXvalue.\par

Neutron-skin values and matter and neutron radii determined
from reaction cross sections of proton scattering on 12C, 40,48Ca, 58Ni, 208Pb

Tomotsugu Wakasa Department of Physics, Kyushu University, Fukuoka 819-0395, Japan    Shingo Tagami Department of Physics, Kyushu University, Fukuoka 819-0395, Japan    Jun Matsui Department of Physics, Kyushu University, Fukuoka 819-0395, Japan    Maya Takechi Niigata University, Niigata 950-2181, Japan    Masanobu Yahiro [email protected] Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
Abstract
  • Background

    Very lately, the PREX and the CREX collaboration present skin values, rskin208(newPREX2)=0.278±0.078(exp)±0.012(theor.)fmr_{\rm skin}^{208}({\rm newPREX2})=0.278\pm 0.078\ {\rm(exp)}\pm 0.012\ {\rm(theor.)}\,{\rm fm} and rskin48=0.121±0.026(exp)±0.024(model)r_{\rm skin}^{48}=0.121\pm 0.026\ {\rm(exp)}\pm 0.024\ {\rm(model)}, respectively. We recently determined a neutron-skin value rskin208=0.278±0.035r_{\rm skin}^{208}=0.278\pm 0.035fm from measured reaction cross sections σR(exp)\sigma_{\rm R}({\rm exp}) of p+208Pb scattering in a range of incident energies 1010~{}\,  E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}100MeVwherethechiral(Kyushu)MeVwherethechiral(Kyushu)gmatrixfoldingmodelisreliablefor-matrixfoldingmodelisreliablefor^12C+C+^12Cscattering.ThedataCscattering.Thedataσ_R(exp)areavailableforprotonscatteringonareavailableforprotonscatteringon^58Ni,Ni,^40,48Ca,Ca,^12Ctargets.Purposeitem item PurposeOurfirstaimistotesttheKyushuCtargets.\par\description@item@[Purpose]OurfirstaimistotesttheKyushugmatrixfoldingmodelforp+-matrixfoldingmodelforp+^208PbscatteringinPbscatteringin20   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}180MeV.Oursecondaimistodetermineskinvalues~{}MeV.Oursecondaimistodetermineskinvaluesr_skinandmatterandneutronradii,andmatterandneutronradii,r_mandandr_n,for,for^208Pb,Pb,^58Ni,Ni,^40,48Ca,Ca,^12CfromtheCfromtheσ_R(exp).Methodsitem item MethodsOurmethodistheKyushu.\par\description@item@[Methods]OurmethodistheKyushugmatrixfoldingmodelwiththedensitiesscaledfromtheD1SGHFB+AMPdensities,whereD1SGHFB+AMPstandsforGognyD1SHFB(GHFB)withtheangularmomentumprojection(AMP).Resultsitem item ResultsAsforprotonscattering,wefindthatourmodelisreliablein-matrixfoldingmodelwiththedensitiesscaledfromtheD1S-GHFB+AMPdensities,whereD1S-GHFB+AMPstandsforGogny-D1SHFB(GHFB)withtheangularmomentumprojection(AMP).\par\description@item@[Results]Asforprotonscattering,wefindthatourmodelisreliablein20   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}180MeV.ForMeV.For^208Pb,theskinvaluededucedfromPb,theskinvaluededucedfromσ_R(exp)inin20   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}180MeVisMeVisr_skin^208(σ_R)=0.299 ±0.020fm.Ourresultson~{}fm.Ourresultsonr_skinarecomparedwiththepreviousworks.Conclusionitem item ConclusionOurresultarecomparedwiththepreviousworks.\par\description@item@[Conclusion]Ourresultr_skin^208(σ_R) = 0.299 ±0.020fmagreeswith~{}fmagreeswithr_skin^208(PREX2) = 0.283±0.071fm.Inaddition,ourresult~{}fm.Inaddition,ourresultr_skin^48=0.103 ±0.022fmisconsistentwiththeCREXvalue.~{}fmisconsistentwiththeCREXvalue.\par

  • I Introduction

    Many theoretical predictions on the symmetry energy Ssym(ρ)S_{\rm sym}(\rho) have been made so far by taking several experimental and observational constraints on Ssym(ρ)S_{\rm sym}(\rho) and their combinations. In neutron star (NS), the Ssym(ρ)S_{\rm sym}(\rho) and its density (ρ\rho) dependence influence strongly the nature within the star. The symmetry energy Ssym(ρ)S_{\rm sym}(\rho) cannot be measured by experiment directly. In place of Ssym(ρ)S_{\rm sym}(\rho), the neutron-skin thickness rskinr_{\rm skin} is measured to determine the slope parameter LL, since a strong correlation between rskin208r_{\rm skin}^{208} and LL is well known RocaMaza:2011pm.

    Horowitz et al. PRC.63.025501 proposed a direct measurement for neutron skin thickness rskinr_{\rm skin} = rnrpr_{\rm n}-r_{\rm p}, where rnr_{n} and rpr_{\rm p} are the root-mean-square radii of neutrons and protons, respectively.

    The PREX collaboration has reported a new value,

    rskin208(PREX2)=0.283±0.071fm,r_{\rm skin}^{208}({\rm PREX2})=0.283\pm 0.071\,{\rm fm}, (1)

    combining the original Lead Radius EXperiment (PREX) result PRL.108.112502; PRC.85.032501 with the updated PREX2 result Adhikari:2021phr. Very lately, the PREX collaboration has presented an accurate valuePREX:2021umo,

    rskin208(newPREX2)=0.278±0.078(exp)±0.012(theor.)fm,r_{\rm skin}^{208}({\rm newPREX2})=0.278\pm 0.078\ {\rm(exp)}\pm 0.012\ {\rm(theor.)}\,{\rm fm}, (2)

    The value is most reliable for 208Pb. The rskin208(PREX2)r_{\rm skin}^{208}({\rm PREX2}) value is considerably larger than the other experimental values that are significantly model dependent PRL.87.082501; PRC.82.044611; PRL.107.062502; PRL.112.242502. As an exceptional case, a nonlocal dispersive-optical-model (DOM) analysis of Pb208{}^{208}{\rm Pb} deduces rskinDOM=0.25±0.05r_{\rm skin}^{\rm DOM}=0.25\pm 0.05 fm PRC.101.044303 consistent with rskin208(PREX2)r_{\rm skin}^{208}({\rm PREX2}).

    Very recently, the CREX group has presented CREX:2022kgg

    rskin48(CREX)=0.121±0.026(exp)±0.024(model)fm.\displaystyle r_{\rm skin}^{48}({\rm CREX})=0.121\pm 0.026\ {\rm(exp)}\pm 0.024\ {\rm(model)}\,{\rm fm}. (3)

    The CREX value is most reliable for 48Ca.

    The rskin208(PREX2)r_{\rm skin}^{208}({\rm PREX2}) provides crucial tests for the equation of state (EoS) of nuclear matter PRC.102.051303; AJ.891.148; AP.411.167992; EPJA.56.63; JPG.46.093003. For example, Reed et al. Reed:2021nqk report a value of the slope parameter LL and examine the impact of such a stiff symmetry energy on some critical NS observables. They deduce

    L=106±37=69143MeV\displaystyle L=106\pm 37=69\text{--}143~{}{\rm MeV} (4)

    from rskin208(PREX2)r_{\rm skin}^{208}({\rm PREX2}).

    In Ref. TAGAMI2022105155, we accumulated the 206 EoSs from Refs. Akmal:1998cf; RocaMaza:2011pm; Ishizuka:2014jsa; Gonzalez-Boquera:2017rzy; D1P-1999; Gonzalez-Boquera:2017uep; Oertel:2016bki; Piekarewicz:2007dx; Lim:2013tqa; Sellahewa:2014nia; Inakura:2015cla; Fattoyev:2013yaa; Steiner:2004fi; Centelles:2010qh; Dutra:2012mb; Brown:2013pwa; Brown:2000pd; Reinhard:2016sce; Tsang:2019ymt; Ducoin:2010as; Fortin:2016hny; Chen:2010qx; Zhao:2016ujh; Zhang:2017hvh; Wang:2014rva; Lourenco:2020qft in which rskin208r_{\rm skin}^{208} and/or LL is presented. The correlation between rskin208r_{\rm skin}^{208} and LL is more reliable when the number of EoSs is larger. The resulting relation

    L=620.39rskin20857.963MeV\displaystyle L=620.39~{}r_{\rm skin}^{208}-57.963~{}{\rm MeV} (5)

    has a strong correlation with the correlation coefficient R=0.99R=0.99, as shown in Fig. 1.

    Refer to caption
    Figure 1: rskin208r_{\rm skin}^{208} dependence of JJ, LL, KsymK_{\rm sym}, where JJ, LL, KsymK_{\rm sym} are a constant term, the first-derivative and the second-derivative term of the symmetry energy. The dots show 206 EoSs taken from Table of Ref. TAGAMI2022105155. Obviously, the correlation between rskin208r_{\rm skin}^{208} and LL is linear.

    The relation (5) allows us to deduce a constraint on LL from the PREX2 value. The resulting range of LL are L=76165L=76\text{--}165 MeV, while equation shown in Ref. RocaMaza:2011pm yields L=76172L=76\text{--}172 MeV. These values and L=69143MeVL=69\text{--}143~{}{\rm MeV} support stiffer EoSs. The stiffer EoSs allow us to consider the phase transition such as QCD transition in NS. The following EoSs satisfy L=76172L=76\text{--}172 MeV; SkO, FKVW, Rs, SV-sym34, es325, TFa, NLρ\rho, BSR6, Rσ\sigma, Sk-Rs, E0009, Gs, Z271, GM3, PKDD, E0008(TMA), SK272, GM1, Gσ\sigma, Sk-T4, SK255, SV, es35, S271, SkI3, rG2, PC-PK1, SkI2, E0025, PC-LA, rNLC, E0036, rTM1, TM1, NL4, rNL-SH, NL-SH, rNL-RA1, PC-F2, PK1, PC-F1, NL3, rNL3, PC-F3, PC-F4, NL3*, TFb, rNL3*, SkI5, NL2, rNL-Z, TFc, NL1, rNL1, SkI1 in Table I of Ref. TAGAMI2022105155.

    As an indirect measurement, meanwhile, the high-resolution E1E1 polarizability experiment (E1E1pE) yields

    rskin208(E1pE)\displaystyle r_{\rm skin}^{208}(E1{\rm pE}) =\displaystyle= 0.1560.021+0.025=0.1350.181fm\displaystyle 0.156^{+0.025}_{-0.021}=0.135\text{--}0.181~{}{\rm fm} (6)

    for 208Pb Tamii:2011pv

    rskin48(E1pE)\displaystyle r_{\rm skin}^{48}(E1{\rm pE}) =\displaystyle= 0.17±0.03=0.140.20fm\displaystyle 0.17\pm 0.03=0.14\text{--}0.20~{}{\rm fm}~{}~{}~{} (7)

    for 48Ca Birkhan:2016qkr.

    There is no overlap between rskin208(PREX2)r_{\rm skin}^{208}({\rm PREX2}) and rskin208(E1pE)r_{\rm skin}^{208}(E1{\rm pE}) in one σ\sigma level. However, we determined a value of rskin208(exp)r_{\rm skin}^{208}({\rm exp}) from measured reaction cross sections σR(exp)\sigma_{\rm R}({\rm exp}) of p+208Pb scattering in a range of incident energies, 3030~{}\,  E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}100MeVTagami:2020bee;thevalueis~{}MeV~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Tagami:2020bee}{\@@citephrase{(}}{\@@citephrase{)}}};thevalueisr_skin^208(exp)=0.278 ±0.035fm.Ourresultagreeswith~{}fm.OurresultagreeswithR_skin^208(PREX2).Wealsodeduced.Wealsodeducedr_n(exp)=5.722 ±0.035fmand~{}fmandr_m(exp)=5.614 ±0.022fminadditionto~{}fminadditiontor_skin^208(exp).AsforHe+.AsforHe+^208Pbscattering,wedeterminePbscattering,wedeterminer_skin^208(exp)=0.416 ±0.146fmMatsuzaki:2021hdm.OurresultsareconsistentwithPREXIIandthereforesupportslargerslopeparameter~{}fm\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Matsuzaki:2021hdm}{\@@citephrase{(}}{\@@citephrase{)}}}.OurresultsareconsistentwithPREXIIandthereforesupportslargerslopeparameterL.Ourmodelisthechiral(Kyushu).\par Ourmodelisthechiral(Kyushu)gmatrixfoldingmodelwiththedensitiescalculatedwithGognyD1SHFB(D1SGHFB)withtheangularmomentumprojection(AMP)Toyokawa:2017pdd; PRC.101.014620.Forp+-matrixfoldingmodelwiththedensitiescalculatedwithGogny-D1SHFB(D1S-GHFB)withtheangularmomentumprojection(AMP)~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Toyokawa:2017pdd,PRC.101.014620}{\@@citephrase{(}}{\@@citephrase{)}}}.Forp+^208Pbscattering,theneutrondensityisscaledsothatthePbscattering,theneutrondensityisscaledsothatther_nofthescaledneutrondensitycanreproducethedataCarlson:1975zz; Ingemarsson:1999sra; Auce:2005ksonofthescaledneutrondensitycanreproducethedata~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Carlson:1975zz,Ingemarsson:1999sra,Auce:2005ks}{\@@citephrase{(}}{\@@citephrase{)}}}onσ_R,sincethe,sincether_pofD1SGHFB+AMPprotondensityagreeswiththeofD1S-GHFB+AMPprotondensityagreeswithther_p(exp)PRC.90.067304determinedfromelectronscattering.For~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{PRC.90.067304}{\@@citephrase{(}}{\@@citephrase{)}}}determinedfromelectronscattering.For^12CscatteringonCscatteringon^9Be,Be,^12C,C,^27Altargets,wetestedreliabilityoftheKyushuAltargets,wetestedreliabilityoftheKyushugmatrixfoldingmodelandfoundthattheKyushu-matrixfoldingmodelandfoundthattheKyushugmatrixfoldingmodelisreliablein-matrixfoldingmodelisreliablein30   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}100MeVand~{}MeVand250   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}400MeVPRC.101.014620.Thisisthereasonwhywetook~{}MeV~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{PRC.101.014620}{\@@citephrase{(}}{\@@citephrase{)}}}.Thisisthereasonwhywetook30   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}100MeVintheanalysesTagami:2020beeofp+~{}MeVintheanalyses~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Tagami:2020bee}{\@@citephrase{(}}{\@@citephrase{)}}}ofp+^208Pbscattering.Aftertheanalyses,wefindthattheKyushuPbscattering.Aftertheanalyses,wefindthattheKyushugmatrixfoldingmodelreproducesthelowerboundofthedataon-matrixfoldingmodelreproducesthelowerboundofthedataonσ_RKox:1985exfor~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Kox:1985ex}{\@@citephrase{(}}{\@@citephrase{)}}}for^12C+C+^12CscatteringatCscatteringatE_in=10.4MeVpernucleon.The~{}MeVpernucleon.\par\par\par ThegmatrixfoldingmodelisastandardwayofderivingthemicroscopicopticalpotentialforprotonscatteringandnucleusnucleusscatteringNPA.291.299; *NPA.291.317; *NPA.297.206; PR.55.183; *Satchler83; PTP.70.459; *PTP.73.512; *PTP.76.1289; ANP.25.275; PRC.78.044610; *PRC.79.011601; *PRC.80.044614; PRC.89.064611; JPG.42.025104; *JPG.44.079502; PRC.92.024618; *PRC.96.059905; PTEP.2018.023D03; PRC.101.014620; PRL.108.052503.Thefoldingmodeliscomposedofthesinglefoldingmodelforprotonscatteringandthedoublefoldingmodelfornucleusnucleusscattering.TherelationbetweenthesingleandthedoublefoldingmodelisclearlyshowninRef.PRC.89.064611.ApplyingthedoublefoldingmodelbasedonMelbourne-matrixfoldingmodelisastandardwayofderivingthemicroscopicopticalpotentialforprotonscatteringandnucleus-nucleusscattering~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{NPA.291.299,*NPA.291.317,*NPA.297.206,PR.55.183,*Satchler83,PTP.70.459,*PTP.73.512,*PTP.76.1289,ANP.25.275,PRC.78.044610,*PRC.79.011601,*PRC.80.044614,PRC.89.064611,JPG.42.025104,*JPG.44.079502,PRC.92.024618,*PRC.96.059905,PTEP.2018.023D03,PRC.101.014620,PRL.108.052503}{\@@citephrase{(}}{\@@citephrase{)}}}.Thefoldingmodeliscomposedofthesinglefoldingmodelforprotonscatteringandthedoublefoldingmodelfornucleus-nucleusscattering.TherelationbetweenthesingleandthedoublefoldingmodelisclearlyshowninRef.~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{PRC.89.064611}{\@@citephrase{(}}{\@@citephrase{)}}}.Applyingthedouble-foldingmodelbasedonMelbournegmatrixANP.25.275forthedataTakechi:2012zzoninteractioncrosssections,wefoundthat-matrix~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{ANP.25.275}{\@@citephrase{(}}{\@@citephrase{)}}}forthedata~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Takechi:2012zz}{\@@citephrase{(}}{\@@citephrase{)}}}oninteractioncrosssections,wefoundthat^31NeisahalonucleuswithlargedeformationPRL.108.052503,anddeducedthematterradiiNeisahalonucleuswithlargedeformation~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{PRL.108.052503}{\@@citephrase{(}}{\@@citephrase{)}}},anddeducedthematterradiir_mforNeisotopesPRC.85.064613.AlsoforMgisotopes,wedeterminedtheforNeisotopes~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{PRC.85.064613}{\@@citephrase{(}}{\@@citephrase{)}}}.AlsoforMgisotopes,wedeterminedther_mfromfromσ_R(exp)forscatteringofMgisotopesonaforscatteringofMgisotopesona^12CtargetPRC.89.044610.Now,weconsiderprotonscatteringonCtarget~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{PRC.89.044610}{\@@citephrase{(}}{\@@citephrase{)}}}.\par\par\par Now,weconsiderprotonscatteringon^208Pb,Pb,^58Ni,Ni,^40,48Ca,Ca,^12Ctargets,sincethereisnointeractioncrosssectionforprotonscattering.Infact,gooddataonCtargets,sincethereisnointeractioncrosssectionforprotonscattering.Infact,gooddataonσ_RareavailableinRefs.Carlson:1975zz; Ingemarsson:1999sra; Auce:2005ksforareavailableinRefs.~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Carlson:1975zz,Ingemarsson:1999sra,Auce:2005ks}{\@@citephrase{(}}{\@@citephrase{)}}}for^208Pb,RefsAuce:2005ks; Ingemarsson:1999sra; EliyakutRoshko:1995fn; Dicello:1967zz; Bulman:1968ujlforPb,Refs~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Auce:2005ks,Ingemarsson:1999sra,EliyakutRoshko:1995fn,Dicello:1967zz,Bulman:1968ujl}{\@@citephrase{(}}{\@@citephrase{)}}}for^58Ni,Ref.Carlson:1994fqforNi,Ref.~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Carlson:1994fq}{\@@citephrase{(}}{\@@citephrase{)}}}for^48Ca,Refs.Carlson:1975zz; Ingemarsson:1999sra; Auce:2005ksforCa,Refs.~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Carlson:1975zz,Ingemarsson:1999sra,Auce:2005ks}{\@@citephrase{(}}{\@@citephrase{)}}}for^40Ca,andRefs.Auce:2005ks; Ingemarsson:1999sra; Menet:1971zzforCa,andRefs.~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Auce:2005ks,Ingemarsson:1999sra,Menet:1971zz}{\@@citephrase{(}}{\@@citephrase{)}}}for^12C.Wehavealreadyshownthatforp+C.Wehavealreadyshownthatforp+^208PbscatteringthePbscatteringtheσ_Rcalculatedwithcalculatedwithr_skin^208(PREX2)andandr_p(exp)=5.444fmPRC.90.067304ofelectronscatteringreproducethedataat~{}fm~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{PRC.90.067304}{\@@citephrase{(}}{\@@citephrase{)}}}ofelectronscatteringreproducethedataatE_lab = 534.1, 549, 806MeVWAKASA2021104749.Inthispaper,wefirsttesttheKyushuMeV~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{WAKASA2021104749}{\@@citephrase{(}}{\@@citephrase{)}}}.\par\par Inthispaper,wefirsttesttheKyushugmatrixsinglefoldingmodelforp+-matrixsinglefoldingmodelforp+^208Pbscattering,sincethePREX2dataisavailable.WefindthatthepresentmodelisreliableinPbscattering,sincethePREX2dataisavailable.Wefindthatthepresentmodelisreliablein20   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}180MeV,asshowninSec.LABEL:$^208$Pb.Afterthetesting,wedetermine~{}MeV,asshowninSec.~{}\ref{$^{208}$Pb}.Afterthetesting,wedeterminer_m(exp),r_n(exp),r_skin(exp)forfor^208Pb,Pb,^58Ni,Ni,^40,48Ca,Ca,^12CfromtheCfromtheσ_R(exp)inin20   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}180MeV,asshowninSec.LABEL:$^58$Ni,$^48,40$Ca,$^12$C.Foreachnucleus,theD1SGHFB+AMPprotonandneutrondensitiesarescaledsoastoreproduce~{}MeV,asshowninSec.~{}\ref{$^{58}$Ni,$^{48,40}$Ca,$^{12}$C}.Foreachnucleus,theD1S-GHFB+AMPprotonandneutrondensitiesarescaledsoastoreproduceσ_R(exp)underthatconditionthattheunderthatconditionthatther_p(scaling)ofthescaledprotondensityagreeswithofthescaledprotondensityagreeswithr_p(exp)ofelectronscattering.WeexplainourmodelinSec.IIandourresultsinSec.LABEL:Results.SectionLABEL:Summaryisdevotedtoasummary.ofelectronscattering.\par WeexplainourmodelinSec.~{}\ref{Sec-Framework}andourresultsinSec.~{}\ref{Results}.Section\ref{Summary}isdevotedtoasummary.\par

    II Model

    Our model is the Kyushu gg-matrix folding model Toyokawa:2017pdd; PRC.101.014620 with the proton and neutron densities scaled from the D1S-GHFB+AMP densities.

    II.1 The Kyushu gg-matrix folding model

    Kohno calculated the gg matrix for the symmetric nuclear matter, using the Brueckner-Hartree-Fock method with chiral N3LO 2NFs and NNLO 3NFs PRC.88.064005; *PRC.96.059903, where N3LO 3NF is abbreviation of next-to-next-to-next-to-leading-order three-body force and NNLO 2NFs is of next-to-next-to-leading-order two-body force. He set cD=2.5c_{D}=-2.5 and cE=0.25c_{E}=0.25 so that the energy per nucleon can become minimum at ρ=ρ0\rho=\rho_{0}; see Fig. 2 for the definition of cDc_{D} and cEc_{E}. Toyokawa et al. localized the non-local chiral gg matrix into three-range Gaussian forms Toyokawa:2017pdd, using the localization method proposed by the Melbourne group ANP.25.275; PRC.44.73; PRC.49.1309. The resulting local gg matrix is referred to as “Kyushu gg-matrix”. The Kyushu gg-matrix is constructed from chiral interaction with the cutoff 550 MeV. fig-chiral.epsfig-chiral

    Refer to caption
    Figure 2: 3NNFs in NNLO (next-to-next-to-leading-order). Diagram (a) corresponds to the Fujita-Miyazawa 2π\pi-exchange 3NNF (next-to-next-to-next-to-leading-order) PTP.17.360; *PTP.17.366, and diagrams (b) and (c) correspond to 1π\pi-exchange and contact 3NNFs. The solid and dashed lines denote nucleon and pion propagations, respectively, and filled circles and squares stand for vertices. The strength of the filled-square vertex is often called cDc_{D} in diagram (b) and cEc_{E} in diagram (c).

    The Kyushu gg-matrix folding model is successful in reproducing σR\sigma_{\rm R}, differential cross sections dσ/dΩd\sigma/d\Omega, vector analyzing powers AyA_{y} for 4He scattering in Ein=30200E_{\rm in}=30\text{--}200 MeV per nucleon Toyokawa:2017pdd. The success is true for proton scattering at Ein=65E_{\rm in}=65 MeV Toyokawa:2014yma.

    In Ref. Tagami:2019svt, we tested the Kyushu gg-matrix folding model Toyokawa:2017pdd for 12C scattering on 9Be, 12C, 27Al targets in 3030~{}\,  E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}400 MeV.WefoundthattheKyushu~{}MeV.WefoundthattheKyushugmatrixfoldingmodelisreliablefor-matrixfoldingmodelisreliableforσ_Rinin30   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E_in   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}100 MeVand~{}MeVand250   ~<\stackrel{{\scriptstyle<}}{{\widetilde{}}}E