This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

Neutrinos in the flavor-dependent U(1)FU(1)_{F} model

Jin-Lei Yang1,2,3111[email protected],Jie Li1,2,3222[email protected] Department of Physics, Hebei University, Baoding, 071002, China1
Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Baoding, 071002, China2
Research Center for Computational Physics of Hebei Province, Baoding, 071002, China3
Abstract

The neutrino oscillation experiments provide definitive evidence of new physics beyond the Standard Model (SM), and the neutrino mass-squared differences and flavor mixing have been precisely measured. This study examines the neutrino sector within the flavor-dependent U(1)FU(1)_{F} model, where the unique fermion sector can simultaneously address both the flavor mixing puzzle and the mass hierarchy puzzle. It is found that the lightest neutrino is naturally massless in this model, and the predicted neutrino mass-squared differences, flavor mixing angles, Dirac CP phase agree well with the experimental measurements. Additionally, the effects of the Dirac CP phase and Majorana CP phase on the theoretical predictions of the neutrino transition magnetic dipole moments are analyzed.

I Introduction

The fermion sector in the Standard Model (SM) exhibits a large hierarchical structure of masses across the three families, and the quark flavor mixings described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix Cabibbo:1963yz ; Kobayashi:1973fv are not predicted from first principles within the SM. These phenomena are known as the mass hierarchy puzzle and the flavor puzzle, which indicate the observed fermionic mass spectrum and mixings are still enigmatic in particle physics. Additionally, the observed tiny but nonzero neutrino masses and flavor mixing among the three generations of neutrinos not only make the flavor puzzle in the SM more acutely, but also provide unambiguous evidence of new physics (NP) beyond the SM.

Addressing the mass hierarchy puzzle, flavor puzzle, nonzero neutrino masses and neutrino mixings, the flavor-dependent U(1)FU(1)_{F} model (FDM) proposed in our previous work Yang:2024kfs ; Yang:2024znv simultaneously accounts for these phenomena. Furthermore, the analysis demonstrates that the six quark masses, the CKM matrix can be accurately fitted within the model. This study focuses on exploring whether the neutrino sector within the FDM can account for the neutrino-related observations. Experimentally, the observed neutrino mass-squared differences are ParticleDataGroup:2024cfk

Δm122mν22mν12=(7.53±0.18)×105eV2,\displaystyle\Delta m_{12}^{2}\equiv m_{\nu_{2}}^{2}-m_{\nu_{1}}^{2}=(7.53\pm 0.18)\times 10^{-5}\;{\rm eV}^{2},
Δm232mν32mν22(2.455±0.028)×103eV2,(NH)\displaystyle\Delta m_{23}^{2}\equiv m_{\nu_{3}}^{2}-m_{\nu_{2}}^{2}\approx(2.455\pm 0.028)\times 10^{-3}\;{\rm eV}^{2},\;({\rm NH})
Δm322mν22mν32(2.529±0.029)×103eV2,(IH)\displaystyle\Delta m_{32}^{2}\equiv m_{\nu_{2}}^{2}-m_{\nu_{3}}^{2}\approx(2.529\pm 0.029)\times 10^{-3}\;{\rm eV}^{2},\;({\rm IH}) (1)

where NH, IH correspond to normal hierarchy (NH) and inverse hierarchy (IH) neutrino masses respectively. For Majorana neutrinos, the observed neutrino oscillations can be expressed as

UPMNS=(c12c13s12c13s13eiδs12c23c12s13s23eiδc12c23s12s13s23eiδc13s23,s12s23c12s13c23eiδc12s23s12s13c23eiδc13c23)\displaystyle U_{\rm PMNS}=\left(\begin{array}[]{ccc}c_{12}c_{13}&s_{12}c_{13}&s_{13}e^{-i\delta}\\ -s_{12}c_{23}-c_{12}s_{13}s_{23}e^{i\delta}&c_{12}c_{23}-s_{12}s_{13}s_{23}e^{i\delta}&c_{13}s_{23},\\ s_{12}s_{23}-c_{12}s_{13}c_{23}e^{i\delta}&-c_{12}s_{23}-s_{12}s_{13}c_{23}e^{i\delta}&c_{13}c_{23}\end{array}\right) (5)
×diag(eiρ,eiσ,1),\displaystyle\qquad\qquad\times{\rm diag}(e^{i\rho},e^{i\sigma},1), (6)

where cijcosθijc_{ij}\equiv\cos\theta_{ij}, sijsinθijs_{ij}\equiv\sin\theta_{ij}, δ\delta is usually referred to as the Dirac CP phase, and ρ,σ\rho,\;\sigma are the possible CP phases for Majorana neutrinos. Particle Data Group (PDG) ParticleDataGroup:2024cfk collects the measured results of the mixing angles θij\theta_{ij} and the Dirac CP phase δ\delta, the results read

s122=0.307±0.013,s132=(2.19±0.07)×102,δ=(1.19±0.22)π\displaystyle s_{12}^{2}=0.307\pm 0.013,\;s_{13}^{2}=(2.19\pm 0.07)\times 10^{-2},\;\delta=(1.19\pm 0.22)\pi
s232=0.5580.021+0.015(NH),s232=0.5530.024+0.016(IH).\displaystyle s_{23}^{2}=0.558^{+0.015}_{-0.021}\;\;({\rm NH}),\;s_{23}^{2}=0.553^{+0.016}_{-0.024}\;\;({\rm IH}). (7)

Massive and mixing neutrinos can induce the nonzero neutrino transition magnetic dipole moments (MDM), which are predicted to be zero in the SM. Furthermore, Dirac and Majorana neutrinos exhibit different structures in their transition MDM Fujikawa:1980yx ; Pal:1981rm ; Nieves:1981zt ; Kayser:1982br ; Shrock:1982sc ; Kayser:1984ge ; Bell:2005kz ; Bell:2006wi ; Giunti:2014ixa ; Xu:2019dxe ; Ge:2022cib . Therefore, observing the neutrino transition MDM is a crucial method to explore the neutrino-related NP. The transition MDM can be tested experimentally in various ways. For instance, measurements of neutrino scattering cross sections with electron peaks in the low momentum transfer region (e.g., the reactor experiment GEMMA Beda:2013mta and the solar experiment Borexino Borexino:2017fbd ), stellar cooling observations of red giants Diaz:2019kim and white dwarfs Corsico:2014mpa ; MillerBertolami:2014oki ; Hansen:2015lqa , and future dark matter direct detection experiments such as Xenon1T XENON:2020rca and PandaX PandaX-II:2020udv ; PandaX-II:2021nsg hold the potential to observe the neutrino transition MDM. Additionally, nonzero Majorana neutrino transition MDM within the core of supernova explosions may leave a potentially observable imprint on the energy spectra of neutrinos and antineutrinos from supernovae deGouvea:2012hg ; deGouvea:2013zp . Therefore, we also present the predicted neutrino transition MDM in the FDM.

The paper is organized as follows: In Sec.II, we present the lepton sector, including the charged lepton mass matrix, the neutrino mass matrix, and the analytical calculations of the neutrino transition MDM within the FDM. In Sec.III, we first investigate whether the lepton sector within the FDM can accommodate the measured neutrino mass-squared differences and flavor mixings. Subsequently, the numerical results of the neutrino transition MDM are presented and analyzed. We conclude the paper with a summary of findings and discussions in Sec. IV.

II Lepton sector and neutrino transition MDM in the FDM

The FDM extends the SM by a U(1)FU(1)_{F} local gauge group associated with the particles’ flavor, with the third-generation fermions possessing zero U(1)FU(1)_{F} charge. Consequently, the third generation of right-handed neutrino is trivial under SU(2)LU(1)YU(1)FSU(2)_{L}\otimes U(1)_{Y}\otimes U(1)_{F}. As a result, only two right-handed neutrinos with nonzero U(1)FU(1)_{F} charges are introduced, and naturally realizing the so-called minimal see-saw Ma:1998zg ; Frampton:2002qc ; Xing:2020ald in this model333The minimal seesaw mechanism warrants consideration and study for several compelling reasons, for example, its predictive power is enhanced by the significant reduction in the number of free parameters associated with the minimal seesaw mechanism. Further analysis about the minimal see-saw can be found in Refs. Gu:2006wj ; Davidson:2006tg ; Chan:2007ng ; Guo:2006qa ; Ren:2008yi ; Xing:2007zj ; Xing:2009ce ; Hirsch:2009ra ; Deppisch:2010fr ; Xing:2011ur ; Mondal:2012jv ; Abada:2014vea ; Abada:2014zra ; Luo:2014upa ; Mohapatra:2015gwa ; Nath:2018hjx ; Huang:2018wqp ; Xing:2020ezi ; CarcamoHernandez:2019eme .. The charges of fermions corresponding to SU(2)LU(1)YU(1)FSU(2)_{L}\otimes U(1)_{Y}\otimes U(1)_{F} are

L1(2,YL,z),L2(2,YL,z),L3(2,YL,0),\displaystyle L_{1}\sim(2,Y_{L},z),L_{2}\sim(2,Y_{L},-z),L_{3}\sim(2,Y_{L},0),
R1(1,YR,z),R2(1,YR,z),R3(1,YR,0),\displaystyle R_{1}\sim(1,Y_{R},-z),R_{2}\sim(1,Y_{R},z),R_{3}\sim(1,Y_{R},0),
νR1(1,0,z),νR2(1,0,z),\displaystyle\nu_{R_{1}}\sim(1,0,-z),\nu_{R_{2}}\sim(1,0,z), (8)

where nonzero zz denotes the U(1)FU(1)_{F} charge, LiL_{i} (L=l,qL=l,\;q) denote the ii-generation left-handed fermion doublets, RiR_{i} (R=u,d,eR=u,\;d,\;e) denotes the ii-generation right-handed fermion singlets in the SM, νRi(i=1,2)\nu_{R_{i}}\;(i=1,2) denote the right-handed neutrinos. The scalar sector of the model is extended by two doublets and one singlet

Φ1=(ϕ1+12(iA1+S1+v1))(2,12,z),\displaystyle\Phi_{1}=\left(\begin{array}[]{c}\phi_{1}^{+}\\ \frac{1}{\sqrt{2}}(iA_{1}+S_{1}+v_{1})\end{array}\right)\sim(2,\frac{1}{2},z), (11)
Φ2=(ϕ2+12(iA2+S2+v2))(2,12,z),\displaystyle\Phi_{2}=\left(\begin{array}[]{c}\phi_{2}^{+}\\ \frac{1}{\sqrt{2}}(iA_{2}+S_{2}+v_{2})\end{array}\right)\sim(2,\frac{1}{2},-z), (14)
Φ3=(ϕ3+12(iA3+S3+v3))(2,12,0),\displaystyle\Phi_{3}=\left(\begin{array}[]{c}\phi_{3}^{+}\\ \frac{1}{\sqrt{2}}(iA_{3}+S_{3}+v_{3})\end{array}\right)\sim(2,\frac{1}{2},0), (17)
χ=12(iAχ+Sχ+vχ)(1,0,2z),\displaystyle\chi=\frac{1}{\sqrt{2}}(iA_{\chi}+S_{\chi}+v_{\chi})\sim(1,0,2z), (18)

where vi(i=1, 2, 3),vχv_{i}\;(i=1,\;2,\;3),\;v_{\chi} are the VEVs of Φi,χ\Phi_{i},\;\chi respectively.

Based on the local gauge symmetry and gauge charges in Eqs. (8, 18), the Yukawa couplings in the FDM can be written as

Y=Yu33q¯3Φ~3uR3+Yd33q¯3Φ3dR3+Yu32q¯3Φ~1uR2+Yu23q¯2Φ~1uR3+Yd32q¯3Φ2dR2\displaystyle\mathcal{L}_{Y}=Y_{u}^{33}\bar{q}_{3}\tilde{\Phi}_{3}u_{R_{3}}+Y_{d}^{33}\bar{q}_{3}\Phi_{3}d_{R_{3}}+Y_{u}^{32}\bar{q}_{3}\tilde{\Phi}_{1}u_{R_{2}}+Y_{u}^{23}\bar{q}_{2}\tilde{\Phi}_{1}u_{R_{3}}+Y_{d}^{32}\bar{q}_{3}\Phi_{2}d_{R_{2}}
+Yd23q¯2Φ2dR3+Yu21q¯2Φ~3uR1+Yu12q¯1Φ~3uR2+Yd21q¯2Φ3dR1+Yd12q¯1Φ3dR2\displaystyle\qquad\;+Y_{d}^{23}\bar{q}_{2}\Phi_{2}d_{R_{3}}+Y_{u}^{21}\bar{q}_{2}\tilde{\Phi}_{3}u_{R_{1}}+Y_{u}^{12}\bar{q}_{1}\tilde{\Phi}_{3}u_{R_{2}}+Y_{d}^{21}\bar{q}_{2}\Phi_{3}d_{R_{1}}+Y_{d}^{12}\bar{q}_{1}\Phi_{3}d_{R_{2}}
+Yu31q¯3Φ~2uR1+Yu13q¯1Φ~2uR3+Yd31q¯3Φ1dR1+Yd13q¯1Φ1dR3+Ye33l¯3Φ3eR3\displaystyle\qquad\;+Y_{u}^{31}\bar{q}_{3}\tilde{\Phi}_{2}u_{R_{1}}+Y_{u}^{13}\bar{q}_{1}\tilde{\Phi}_{2}u_{R_{3}}+Y_{d}^{31}\bar{q}_{3}\Phi_{1}d_{R_{1}}+Y_{d}^{13}\bar{q}_{1}\Phi_{1}d_{R_{3}}+Y_{e}^{33}\bar{l}_{3}\Phi_{3}e_{R_{3}}
+Ye32l¯3Φ2eR2+Ye23l¯2Φ2eR3+Ye21l¯2Φ3eR1+Ye12l¯1Φ3eR2+Ye31l¯3Φ1eR1\displaystyle\qquad\;+Y_{e}^{32}\bar{l}_{3}\Phi_{2}e_{R_{2}}+Y_{e}^{23}\bar{l}_{2}\Phi_{2}e_{R_{3}}+Y_{e}^{21}\bar{l}_{2}\Phi_{3}e_{R_{1}}+Y_{e}^{12}\bar{l}_{1}\Phi_{3}e_{R_{2}}+Y_{e}^{31}\bar{l}_{3}\Phi_{1}e_{R_{1}}
+Ye13l¯1Φ1eR3+YR11ν¯R1cνR1χ+YR22ν¯R2cνR2χ+YD21l¯2Φ~3νR1+YD12l¯1Φ~3νR2\displaystyle\qquad\;+Y_{e}^{13}\bar{l}_{1}\Phi_{1}e_{R_{3}}+Y_{R}^{11}\bar{\nu}^{c}_{R_{1}}\nu_{R_{1}}\chi+Y_{R}^{22}\bar{\nu}^{c}_{R_{2}}\nu_{R_{2}}\chi^{*}+Y_{D}^{21}\bar{l}_{2}\tilde{\Phi}_{3}\nu_{R_{1}}+Y_{D}^{12}\bar{l}_{1}\tilde{\Phi}_{3}\nu_{R_{2}}
+YD31l¯3Φ~2νR1+YD32l¯3Φ~1νR2+h.c..\displaystyle\qquad\;+Y_{D}^{31}\bar{l}_{3}\tilde{\Phi}_{2}\nu_{R_{1}}+Y_{D}^{32}\bar{l}_{3}\tilde{\Phi}_{1}\nu_{R_{2}}+h.c.. (19)

As mentioned above, the quark sector in this model have been analyzed in our previous work Yang:2024kfs ; Yang:2024znv , we focus on the lepton sector in this work. After Φ1,Φ2,Φ3,χ\Phi_{1},\;\Phi_{2},\;\Phi_{3},\;\chi receive nonzero VEVs, the mass matrices of charged leptons and neutrinos can be written as

me=(0me,12me,13me,210me,23me,31me,32me,33),mν=(0MDTMDMR),\displaystyle m_{e}=\left(\begin{array}[]{ccc}0&m_{e,12}&m_{e,13}\\ m_{e,21}&0&m_{e,23}\\ m_{e,31}&m_{e,32}&m_{e,33}\end{array}\right),\;m_{\nu}=\left(\begin{array}[]{cc}0&M_{D}^{T}\\ M_{D}&M_{R}\end{array}\right), (25)

where MDM_{D} is 2×32\times 3 Dirac mass matrix and MRM_{R} is 2×22\times 2 Majorana mass matrix, and

me,11=me,22=0,me,33=12Ye33v3,me,12=12Ye12v3,me,21=12Ye21v3,\displaystyle m_{e,11}=m_{e,22}=0,\;m_{e,33}=\frac{1}{\sqrt{2}}Y_{e}^{33}v_{3},\;m_{e,12}=\frac{1}{\sqrt{2}}Y_{e}^{12}v_{3},\;m_{e,21}=\frac{1}{\sqrt{2}}Y_{e}^{21}v_{3},
me,13=12Ye13v1,me,31=12Ye31v1,me,23=12Ye23v2,me,32=12Ye32v2,\displaystyle m_{e,13}=\frac{1}{\sqrt{2}}Y_{e}^{13}v_{1},\;m_{e,31}=\frac{1}{\sqrt{2}}Y_{e}^{31}v_{1},\;m_{e,23}=\frac{1}{\sqrt{2}}Y_{e}^{23}v_{2},\;m_{e,32}=\frac{1}{\sqrt{2}}Y_{e}^{32}v_{2},
MD,11=MD,22=0,MD,12=12YD12v3,MD,21=12YD21v3,MD,31=12YD31v1,\displaystyle M_{D,11}=M_{D,22}=0,\;M_{D,12}=\frac{1}{\sqrt{2}}Y_{D}^{12}v_{3},\;M_{D,21}=\frac{1}{\sqrt{2}}Y_{D}^{21}v_{3},\;M_{D,31}=\frac{1}{\sqrt{2}}Y_{D}^{31}v_{1},
MD,32=12YD32v2,MR,12=MR,21=0,MR,11=12YR11vχ,MR,22=12YR22vχ.\displaystyle M_{D,32}=\frac{1}{\sqrt{2}}Y_{D}^{32}v_{2},\;M_{R,12}=M_{R,21}=0,\;M_{R,11}=\frac{1}{\sqrt{2}}Y_{R}^{11}v_{\chi},\;M_{R,22}=\frac{1}{\sqrt{2}}Y_{R}^{22}v_{\chi}. (26)

The Hermitian charged lepton mass matrix444The Hermitian property ensures that the eigenvalues of charged lepton mass matrix are real, which represent the observed masses of the charged leptons. Additionally, the invariance under charge conjugation in the lepton sector further supports the requirement for the mass matrix to be Hermitian. requires real me,33m_{e,33} and

Ye12=Ye21,Ye13=Ye31,Ye23=Ye32.\displaystyle Y_{e}^{12}=Y_{e}^{21*},\;Y_{e}^{13}=Y_{e}^{31*},\;Y_{e}^{23}=Y_{e}^{32*}. (27)

Then the Hermitian mass matrix for charged lepton can be written as

me=(0me,12me,13me,120me,23me,31me,32me,33).\displaystyle m_{e}=\left(\begin{array}[]{ccc}0&m_{e,12}&m_{e,13}\\ m_{e,12}^{*}&0&m_{e,23}\\ m_{e,31}^{*}&m_{e,32}^{*}&m_{e,33}\end{array}\right). (31)

Taking the measured charged lepton masses as inputs, one can obtain me,33m_{e,33}, |me,23||m_{e,23}|, |me,12||m_{e,12}| under the approximation |me,12|,|me,13|,|me,23|me,33|m_{e,12}|,\;|m_{e,13}|,\;|m_{e,23}|\ll m_{e,33} as

me,33=me1+me2+me3,\displaystyle m_{e,33}=m_{e_{1}}+m_{e_{2}}+m_{e_{3}},
|me,23|=[(me1+me2)me,33|me,13|2]1/2,\displaystyle|m_{e,23}|=[(m_{e_{1}}+m_{e_{2}})m_{e,33}-|m_{e,13}|^{2}]^{1/2},
|me,12|=|me,13||me,23||me,33|cos(θe,12+θe,23θe,13)\displaystyle|m_{e,12}|=\frac{|m_{e,13}||m_{e,23}|}{|m_{e,33}|}\cos(\theta_{e,12}+\theta_{e,23}-\theta_{e,13})
+{[|me,13||me,23||me,33|2cos(θe,12+θe,23θe,13)]2+me1me2|me,33|2}1/2|me,33|,\displaystyle\qquad\qquad+\Big{\{}[\frac{|m_{e,13}||m_{e,23}|}{|m_{e,33}|^{2}}\cos(\theta_{e,12}+\theta_{e,23}-\theta_{e,13})]^{2}+\frac{m_{e_{1}}m_{e_{2}}}{|m_{e,33}|^{2}}\Big{\}}^{1/2}|m_{e,33}|, (32)

where θe,ij(ij=12, 13, 23)\theta_{e,ij}\;(ij=12,\;13,\;23) are defined as me,ij=|me,ij|eiθe,ijm_{e,ij}=|m_{e,ij}|e^{i\theta_{e,ij}}, and mek(k=1, 2, 3)m_{e_{k}}\;(k=1,\;2,\;3) is kk-generation charged lepton mass. For the 5×55\times 5 neutrino mass matrix mνm_{\nu} defined in Eq. (25), we can derive the 3×33\times 3 light Majorana neutrino mass matrix m^ν\hat{m}_{\nu} by taking MDTMR11M_{D}^{T}M_{R}^{-1}\ll 1

m^νMDTMR1MD=(MD,122MR,220MD,12MD,32MR,220MD,212MR,11MD,21MD,31MR,11MD,12MD,32MR,22MD,21MD,31MR,11MD,312MR,11+MD,322MR,22).\displaystyle\hat{m}_{\nu}\approx-M_{D}^{T}M_{R}^{-1}M_{D}=-\left(\begin{array}[]{ccc}\frac{M_{D,12}^{2}}{M_{R,22}}&0&\frac{M_{D,12}M_{D,32}}{M_{R,22}}\\ 0&\frac{M_{D,21}^{2}}{M_{R,11}}&\frac{M_{D,21}M_{D,31}}{M_{R,11}}\\ \frac{M_{D,12}M_{D,32}}{M_{R,22}}&\frac{M_{D,21}M_{D,31}}{M_{R,11}}&\frac{M_{D,31}^{2}}{M_{R,11}}+\frac{M_{D,32}^{2}}{M_{R,22}}\end{array}\right). (36)

m^ν\hat{m}_{\nu} can be simplified by simple calculation and redefined as

m^ν=(m^ν,110m^ν,130m^ν,22m^ν,23m^ν,13m^ν,23m^ν,132m^ν,11+m^ν,232m^ν,22),\displaystyle\hat{m}_{\nu}=\left(\begin{array}[]{ccc}\hat{m}_{\nu,11}&0&\hat{m}_{\nu,13}\\ 0&\hat{m}_{\nu,22}&\hat{m}_{\nu,23}\\ \hat{m}_{\nu,13}&\hat{m}_{\nu,23}&\frac{\hat{m}_{\nu,13}^{2}}{\hat{m}_{\nu,11}}+\frac{\hat{m}_{\nu,23}^{2}}{\hat{m}_{\nu,22}}\end{array}\right), (40)

where

m^ν,11=MD,122MR,22,m^ν,22=MD,212MR,11,\displaystyle\hat{m}_{\nu,11}=-\frac{M_{D,12}^{2}}{M_{R,22}},\;\hat{m}_{\nu,22}=-\frac{M_{D,21}^{2}}{M_{R,11}},
m^ν,13=MD,12MD,32MR,22,m^ν,23=MD,21MD,31MR,11.\displaystyle\hat{m}_{\nu,13}=-\frac{M_{D,12}M_{D,32}}{M_{R,22}},\;\hat{m}_{\nu,23}=-\frac{M_{D,21}M_{D,31}}{M_{R,11}}. (41)

It is straightforward to verify that the determinant of the mass matrix defined in Eq. (40) is zero, indicating that one of the three light neutrinos in the FDM must be massless. In this scenario, the masses of the other two light neutrinos can be fixed by the measured neutrino mass-squared differences in Eq. (1), i.e. for the NH and IH neutrino masses we have

mν1NH=0eV,mν2NH=(0.753±0.018)1/2×102eV,\displaystyle m_{\nu_{1}}^{\rm NH}=0\;{\rm eV},\;m_{\nu_{2}}^{\rm NH}=(0.753\pm 0.018)^{1/2}\times 10^{-2}\;{\rm eV},
mν3NH=(25.303±0.298)1/2×102eV,\displaystyle m_{\nu_{3}}^{\rm NH}=(25.303\pm 0.298)^{1/2}\times 10^{-2}\;{\rm eV}, (42)
mν3IH=0eV,mν1IH=(24.537±0.308)1/2×102eV,\displaystyle m_{\nu_{3}}^{\rm IH}=0\;{\rm eV},\;m_{\nu_{1}}^{\rm IH}=(24.537\pm 0.308)^{1/2}\times 10^{-2}\;{\rm eV},
mν2IH=(25.29±0.29)1/2×102eV.\displaystyle m_{\nu_{2}}^{\rm IH}=(25.29\pm 0.29)^{1/2}\times 10^{-2}\;{\rm eV}. (43)

Taking the neutrino masses above as inputs, we can fix two of the free parameters in Eq. (40) by solving the two following equations

[|m^ν,22|2(|m^ν,11|2+|m^ν,13|2|m^ν,11||m^ν,22|)2+2|m^ν,11|2|m^ν,22||m^ν,23|2(|m^ν,22|\displaystyle\Big{[}|\hat{m}_{\nu,22}|^{2}(|\hat{m}_{\nu,11}|^{2}+|\hat{m}_{\nu,13}|^{2}-|\hat{m}_{\nu,11}||\hat{m}_{\nu,22}|)^{2}+2|\hat{m}_{\nu,11}|^{2}|\hat{m}_{\nu,22}||\hat{m}_{\nu,23}|^{2}(|\hat{m}_{\nu,22}|
|m^ν,11|)+|m^ν,11|2×|m^ν,23|4+2|m^ν,11||m^ν,22||m^ν,13|2|m^ν,23|2cosθ]\displaystyle-|\hat{m}_{\nu,11}|)+|\hat{m}_{\nu,11}|^{2}\times|\hat{m}_{\nu,23}|^{4}+2|\hat{m}_{\nu,11}||\hat{m}_{\nu,22}||\hat{m}_{\nu,13}|^{2}|\hat{m}_{\nu,23}|^{2}\cos\theta\Big{]}
×[|m^ν,22|2(|m^ν,13|2+|m^ν,11|2+|m^ν,11||m^ν,22|)2+2|m^ν,11|2|m^ν,23|2|m^ν,22|(|m^ν,11|\displaystyle\times\Big{[}|\hat{m}_{\nu,22}|^{2}(|\hat{m}_{\nu,13}|^{2}+|\hat{m}_{\nu,11}|^{2}+|\hat{m}_{\nu,11}||\hat{m}_{\nu,22}|)^{2}+2|\hat{m}_{\nu,11}|^{2}|\hat{m}_{\nu,23}|^{2}|\hat{m}_{\nu,22}|(|\hat{m}_{\nu,11}|
+|m^ν,22|)+|m^ν,11|2|m^ν,23|4+2|m^ν,13|2|m^ν,23|2|m^ν,11||m^ν,22|cosθ]\displaystyle+|\hat{m}_{\nu,22}|)+|\hat{m}_{\nu,11}|^{2}|\hat{m}_{\nu,23}|^{4}+2|\hat{m}_{\nu,13}|^{2}|\hat{m}_{\nu,23}|^{2}|\hat{m}_{\nu,11}||\hat{m}_{\nu,22}|\cos\theta\Big{]}
=|mν,11|4|mν,22|4(mνa2mνb2)2,\displaystyle=|m_{\nu,11}|^{4}|m_{\nu,22}|^{4}(m_{\nu_{a}}^{2}-m_{\nu_{b}}^{2})^{2}, (44)
|m^ν,11|4|m^ν,22|2+|m^ν,11|2|m^ν,22|4+2|m^ν,13|2|m^ν,11|2|m^ν,22|2+2|m^ν,23|2|m^ν,11|2|m^ν,22|2\displaystyle|\hat{m}_{\nu,11}|^{4}|\hat{m}_{\nu,22}|^{2}+|\hat{m}_{\nu,11}|^{2}|\hat{m}_{\nu,22}|^{4}+2|\hat{m}_{\nu,13}|^{2}|\hat{m}_{\nu,11}|^{2}|\hat{m}_{\nu,22}|^{2}+2|\hat{m}_{\nu,23}|^{2}|\hat{m}_{\nu,11}|^{2}|\hat{m}_{\nu,22}|^{2}
+|m^ν,13|4|m^ν,22|2+|m^ν,23|4|m^ν,11|2+2|m^ν,13|2|m^ν,23|2|m^ν,11||m^ν,2|cosθ\displaystyle+|\hat{m}_{\nu,13}|^{4}|\hat{m}_{\nu,22}|^{2}+|\hat{m}_{\nu,23}|^{4}|\hat{m}_{\nu,11}|^{2}+2|\hat{m}_{\nu,13}|^{2}|\hat{m}_{\nu,23}|^{2}|\hat{m}_{\nu,11}||\hat{m}_{\nu,2}|\cos\theta
=|m^ν,11|2|m^ν,22|2(mνa2+mνb2),\displaystyle=|\hat{m}_{\nu,11}|^{2}|\hat{m}_{\nu,22}|^{2}(m_{\nu_{a}}^{2}+m_{\nu_{b}}^{2}), (45)

where θ=2θν,13+θν,22θν,112θν,23\theta=2\theta_{\nu,13}+\theta_{\nu,22}-\theta_{\nu,11}-2\theta_{\nu,23}, and θν,αβ\theta_{\nu,\alpha\beta} (αβ=11, 22, 13, 23\alpha\beta=11,\;22,\;13,\;23) is the phase of m^ν,αβ\hat{m}_{\nu,\alpha\beta}, i.e. m^ν,αβ=|m^ν,αβ|eiθν,αβ\hat{m}_{\nu,\alpha\beta}=|\hat{m}_{\nu,\alpha\beta}|e^{i\theta_{\nu,\alpha\beta}}.

Considering the nonzero neutrino masses and flavor mixings, we can obtain the nonzero neutrino transition MDM, which may have significant astrophysical consequences. Generally, the MDM of Dirac fermions can be written as

MDM=12μijDψ¯iσμνψjFμν,\displaystyle\mathcal{L}_{\rm MDM}=\frac{1}{2}\mu_{ij}^{D}\bar{\psi}_{i}\sigma^{\mu\nu}\psi_{j}F_{\mu\nu}, (46)

where i,ji,j are the indices of generation, ψi,j\psi_{i,j} are the four component fermions, FμνF_{\mu\nu} is the electromagnetic field strength, σμν=i2[γμ,γν]\sigma^{\mu\nu}=\frac{i}{2}[\gamma^{\mu},\gamma^{\nu}], and μijD\mu_{ij}^{D} (iji\neq j) is the transition MDM between ψi\psi_{i} and ψj\psi_{j}. After matching between the effective theory and the full theory, one can get all high dimension operators together with their coefficients. And it is enough to retain the dimension 6 operators Feng:2008cn ; Feng:2008nm ; Feng:2009gn

𝒪1L,R=eψ¯i(i/𝒟)3PL,Rψj,\displaystyle{\mathcal{O}}_{1}^{L,R}=e\bar{\psi}_{i}(i/\!\!\!\!\mathcal{D})^{3}P_{L,R}\psi_{j},
𝒪2L,R=e(i𝒟μψi)¯γμFσPL,Rψj,\displaystyle{\mathcal{O}}_{2}^{L,R}=e\overline{(i{\mathcal{D}}_{\mu}\psi_{i})}\gamma^{\mu}F\cdot\sigma P_{L,R}\psi_{j},
𝒪3L,R=eψ¯iFσγμPL,R(i𝒟μψj),\displaystyle{\mathcal{O}}_{3}^{L,R}=e\bar{\psi}_{i}F\cdot\sigma\gamma^{\mu}P_{L,R}(i{\mathcal{D}}_{\mu}\psi_{j}),
𝒪4L,R=eψ¯i(μFμν)γνPL,Rψj,\displaystyle{\mathcal{O}}_{4}^{L,R}=e\bar{\psi}_{i}(\partial^{\mu}F_{\mu\nu})\gamma^{\nu}P_{L,R}\psi_{j},
𝒪5L,R=emψiψ¯i(i/𝒟)2PL,Rψj,\displaystyle{\mathcal{O}}_{5}^{L,R}=em_{\psi_{i}}\bar{\psi}_{i}(i/\!\!\!\!\mathcal{D})^{2}P_{L,R}\psi_{j},
𝒪6L,R=emψiψ¯iFσPL,Rψj,\displaystyle{\mathcal{O}}_{6}^{L,R}=em_{\psi_{i}}\bar{\psi}_{i}F\cdot\sigma P_{L,R}\psi_{j}, (47)

in the following calculations. In Eq. (47), 𝒟μ=μ+ieAμ{\mathcal{D}}_{\mu}=\partial_{\mu}+ieA_{\mu} and AμA_{\mu} denotes the photon field, PL,R=(1γ5)/2P_{L,R}=(1\mp\gamma_{5})/2, mψim_{\psi_{i}} is the mass of fermion ψi\psi_{i}. It is obvious that, all dimension 66 operators in Eq. (47) induce the effective couplings among photons and fermions, and only the operators 𝒪2L,R{\mathcal{O}}_{2}^{L,R}, 𝒪3L,R{\mathcal{O}}_{3}^{L,R}, 𝒪6L,R{\mathcal{O}}_{6}^{L,R} can make contributions to the MDM of fermions. In addition, if the full theory is invariant under the combined transformation of charge conjugation, parity and time reversal (CPT), the Wilson coefficients C2L,RC_{2}^{L,R}, C3L,RC_{3}^{L,R}, C6L,RC_{6}^{L,R} of the corresponding operators 𝒪2L,R{\mathcal{O}}_{2}^{L,R}, 𝒪3L,R{\mathcal{O}}_{3}^{L,R}, 𝒪6L,R{\mathcal{O}}_{6}^{L,R} satisfy the relations

C3L,R=(C2R,L),C6L=(C6R).\displaystyle C_{3}^{L,R}=(C_{2}^{R,L})^{*},\;\;\;C_{6}^{L}=(C_{6}^{R})^{*}. (48)

After applying the equations of motion to the external fermions, the transition MDM μijD\mu_{ij}^{D} can be written in the form of C2LC_{2}^{L}, C2RC_{2}^{R}, C6RC_{6}^{R} as

μijD=4me(mψiC2R+mψjC2L+mψiC6R)μB,\displaystyle\mu_{ij}^{D}=4m_{e}\Re(m_{\psi_{i}}C_{2}^{R}+m_{\psi_{j}}C_{2}^{L*}+m_{\psi_{i}}C_{6}^{R})\mu_{B}, (49)

where ()\Re(\cdot\cdot\cdot) denote the operation to take the real part of a complex number, mem_{e} is the electron mass, the Bohr magneton μB\mu_{B} is defined as μBe/(2me)\mu_{B}\equiv e/(2m_{e}).

Refer to caption
Figure 1: The one-loop diagrams contributing to the TMM of Majorana neutrinos in the FDM.

In the FDM, the Feynman diagrams contributing to neutrino transition MDM are plotted in Fig. 1. Then the nonzero coefficients can be written by neglecting the tiny Yukawa couplings of neutrinos as

C2L(a)=12MW2CLWekνiCLWekνj[I1(xek,xW)I3(xek,xW)],\displaystyle C_{2}^{L(a)}=\frac{1}{2M_{W}^{2}}C_{L}^{We_{k}\nu_{i}}C_{L}^{We_{k}\nu_{j}}\Big{[}I_{1}(x_{e_{k}},x_{W})-I_{3}(x_{e_{k}},x_{W})\Big{]},
C2L(b)=12MW2CLWekνiCLWekνj[I2(xek,xW)+I3(xek,xW)],\displaystyle C_{2}^{L(b)}=\frac{1}{2M_{W}^{2}}C_{L}^{We_{k}\nu_{i}}C_{L}^{We_{k}\nu_{j}}\Big{[}I_{2}(x_{e_{k}},x_{W})+I_{3}(x_{e_{k}},x_{W})\Big{]},
C2L(c)=14MW2CLHke¯lνiCLHke¯lνj[I3(xel,xHk)I2(xel,xHk)],\displaystyle C_{2}^{L(c)}=\frac{1}{4M_{W}^{2}}C_{L}^{H_{k}\bar{e}_{l}\nu_{i}}C_{L}^{H_{k}\bar{e}_{l}\nu_{j}}\Big{[}I_{3}(x_{e_{l}},x_{H_{k}})-I_{2}(x_{e_{l}},x_{H_{k}})\Big{]},
C2L(d)=14MW2CLHke¯lνiCLHke¯lνj[2I2(xel,xHk)I1(xel,xHk)I3(xel,xHk)],\displaystyle C_{2}^{L(d)}=\frac{1}{4M_{W}^{2}}C_{L}^{H_{k}\bar{e}_{l}\nu_{i}}C_{L}^{H_{k}\bar{e}_{l}\nu_{j}}\Big{[}2I_{2}(x_{e_{l}},x_{H_{k}})-I_{1}(x_{e_{l}},x_{H_{k}})-I_{3}(x_{e_{l}},x_{H_{k}})\Big{]}, (50)

where CabcLC_{abc}^{L} is the coupling constant for left-hand part of particles a,b,ca,\;b,\;c, xi=mi2/MW2x_{i}=m_{i}^{2}/M_{W}^{2}, MWM_{W} is the W boson mass and Zhang:2014iva ; Yang:2021duj

I1(x1,x2)=116π2[1+logx2x2x1x1logx1x2logx2(x2x1)2],\displaystyle I_{1}(x_{1},x_{2})=\frac{1}{16\pi^{2}}\Big{[}\frac{1+\log x_{2}}{x_{2}-x_{1}}-\frac{x_{1}\log x_{1}-x_{2}\log x_{2}}{(x_{2}-x_{1})^{2}}\Big{]},
I2(x1,x2)=132π2[3+2logx2x2x12x2+4x2logx2(x2x1)22x12logx12x22logx2(x2x1)3],\displaystyle I_{2}(x_{1},x_{2})=\frac{1}{32\pi^{2}}\Big{[}\frac{3+2\log x_{2}}{x_{2}-x_{1}}-\frac{2x_{2}+4x_{2}\log x_{2}}{(x_{2}-x_{1})^{2}}-\frac{2x_{1}^{2}\log x_{1}-2x_{2}^{2}\log x_{2}}{(x_{2}-x_{1})^{3}}\Big{]},
I3(x1,x2)=196π2[11+6logx2x2x115x2+18x2logx2(x2x1)2+6x22+18x22logx2(x2x1)3\displaystyle I_{3}(x_{1},x_{2})=\frac{1}{96\pi^{2}}\Big{[}\frac{11+6\log x_{2}}{x_{2}-x_{1}}-\frac{15x_{2}+18x_{2}\log x_{2}}{(x_{2}-x_{1})^{2}}+\frac{6x_{2}^{2}+18x_{2}^{2}\log x_{2}}{(x_{2}-x_{1})^{3}}
+6x13logx16x23logx2(x2x1)4].\displaystyle\qquad\qquad\quad+\frac{6x_{1}^{3}\log x_{1}-6x_{2}^{3}\log x_{2}}{(x_{2}-x_{1})^{4}}\Big{]}. (51)

Eq. (50) shows that the contributions from the charged Higgs are proportional to the couplings CLHke¯lνiC_{L}^{H_{k}\bar{e}_{l}\nu_{i}}, which are suppressed by the small charged lepton masses. As a result, the contributions to the neutrino transition MDM in the FDM are dominated by those from the WW boson-related interactions. Moreover, only C2L=C2L(a)+C2L(b)+C2L(c)+C2L(d)C_{2}^{L}=C_{2}^{L(a)}+C_{2}^{L(b)}+C_{2}^{L(c)}+C_{2}^{L(d)} is predicted to be nonzero in the FDM as shown in Eq. (50), hence the transition MDM of Majorana neutrinos in the FDM can be written as

μij=μijDμjiD,\displaystyle\mu_{ij}=\mu_{ij}^{D}-\mu_{ji}^{D}, (52)

with

μijD=4me(mνjC2L)μB,\displaystyle\mu_{ij}^{D}=4m_{e}\Re(m_{\nu_{j}}C_{2}^{L*})\mu_{B}, (53)

and mνjm_{\nu_{j}} denotes the neutrino mass.

XENONnT XENON:2022ltv presented an upper bound on the MDM of solar neutrinos, which reads μsolar<6.3×1012μB\mu_{\rm solar}<6.3\times 10^{-12}\mu_{B}. In general, μsolar\mu_{\rm solar} can be approximated by the transition MDM of neutrinos approximately as Akhmedov:2022txm

μsolar=|μ12|2c132+|μ13|2(c132c122+s132)+|μ23|2(c132s122+s132).\displaystyle\mu_{\rm solar}=|\mu_{12}|^{2}c_{13}^{2}+|\mu_{13}|^{2}(c_{13}^{2}c_{12}^{2}+s_{13}^{2})+|\mu_{23}|^{2}(c_{13}^{2}s_{12}^{2}+s_{13}^{2}). (54)

III Numerical results

The measured neutrino mass-squared differences in Eq. (1), flavor mixings in Eq. (6) and charged lepton masses will impose strict constraints on the parameters in Eq. (26). Generally, mem_{e} in Eq. (25) and m^ν\hat{m}_{\nu} in Eq. (40) can be diagonalized by

mediag=ULe,meURe,mνdiag=Uν,Tm^νUν,\displaystyle m_{e}^{\rm diag}=U_{L}^{e,\dagger}m_{e}U_{R}^{e},\;m_{\nu}^{\rm diag}=U^{\nu,T}\hat{m}_{\nu}U^{\nu}, (55)

where ULe,URe,UνU_{L}^{e},\;U_{R}^{e},\;U^{\nu} are the 3×33\times 3 unitary matrices. Then UPMNSU_{\rm PMNS} in the FDM can be defined theoretically as

UPMNS=ULe,Uν.\displaystyle U_{\rm PMNS}=U_{L}^{e,\dagger}\cdot U^{\nu}. (56)

PDG collects the measured results of |UPMNS||U_{\rm PMNS}| and Dirac CP phase δ\delta in 3σ3\sigma ranges, and we consider ParticleDataGroup:2024cfk

0.801<|UPMNS|11<0.842, 0.518<|UPMNS|12<0.580, 0.143<|UPMNS|13<0.155,\displaystyle 0.801<|U_{\rm PMNS}|_{11}<0.842,\;0.518<|U_{\rm PMNS}|_{12}<0.580,\;0.143<|U_{\rm PMNS}|_{13}<0.155,
0.498<|UPMNS|22<0.690, 0.634<|UPMNS|23<0.770, 0.53π<δ<1.85π\displaystyle 0.498<|U_{\rm PMNS}|_{22}<0.690,\;0.634<|U_{\rm PMNS}|_{23}<0.770,\;0.53\pi<\delta<1.85\pi (57)

in the numerical calculations. To confront the predictions of UPMNSU_{\rm PMNS} with the experimental data, we extract the standard-parametrization parameters according to the formulas Xing:2020ald

s13=|UPMNS|13,s12=|UPMNS|121(|UPMNS|13)2,s23=|UPMNS|231(|UPMNS|13)2,\displaystyle s_{13}=|U_{\rm PMNS}|_{13},\;s_{12}=\frac{|U_{\rm PMNS}|_{12}}{\sqrt{1-(|U_{\rm PMNS}|_{13})^{2}}},\;s_{23}=\frac{|U_{\rm PMNS}|_{23}}{\sqrt{1-(|U_{\rm PMNS}|_{13})^{2}}},
δ=arg(UPMNS,12UPMNS,23UPMNS,13UPMNS,22+s122c132s132s232c12s12c132s13c23s23),\displaystyle\delta={\rm arg}\Big{(}\frac{U_{\rm PMNS,12}U_{\rm PMNS,23}U_{\rm PMNS,13}^{*}U_{\rm PMNS,22}^{*}+s_{12}^{2}c_{13}^{2}s_{13}^{2}s_{23}^{2}}{c_{12}s_{12}c_{13}^{2}s_{13}c_{23}s_{23}}\Big{)},
ρ=arg(UPMNS,11UPMNS,13)δ,σ=arg(UPMNS,12UPMNS,13)δ.\displaystyle\rho={\rm arg}(U_{\rm PMNS,11}U_{\rm PMNS,13}^{*})-\delta,\;\sigma={\rm arg}(U_{\rm PMNS,12}U_{\rm PMNS,13}^{*})-\delta. (58)

In the context of the minimal seesaw mechanism, the Majorana CP phase associated with the massless neutrino has no physical impact. Consequently, only a single Majorana CP phase is physically relevant Xing:2020ald , i.e. σ\sigma in the NH case (mν1=0m_{\nu_{1}}=0) and σρ\sigma-\rho which can be redefined as σ\sigma Mei:2003gn in the IH case (mν3=0m_{\nu_{3}}=0). In addition, to determine the best fit for the mass-squared differences in Eq. (1) and the flavor mixings, Dirac CP phase δ\delta in Eq. (7), we perform a χ2\chi^{2} test, which can be constructed as

χ2=1(OithOiexpσiexp)2,\displaystyle\chi^{2}=\sum_{1}\Big{(}\frac{O_{i}^{\rm th}-O_{i}^{\rm exp}}{\sigma_{i}^{\rm exp}}\Big{)}^{2}, (59)

where OithO_{i}^{\rm th} denotes the ii-th observable computed theoretically, OiexpO_{i}^{\rm exp} is the corresponding experimental value and σiexp\sigma_{i}^{\rm exp} is the uncertainty in OiexpO_{i}^{\rm exp}.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Scanning the parameter space in Eq. (60), and keeping the mass-squared differences, flavor mixings in the experimental 3σ3\sigma ranges, the results of |m^ν,13||m^ν,11||\hat{m}_{\nu,13}|-|\hat{m}_{\nu,11}| (a1a_{1}), |m^ν,23||m^ν,22||\hat{m}_{\nu,23}|-|\hat{m}_{\nu,22}| (b1b_{1}), |me,13||m^ν,13||m_{e,13}|-|\hat{m}_{\nu,13}| (c1c_{1}), |m^ν,23|cosθ|\hat{m}_{\nu,23}|-\cos\theta (d1d_{1}) for NH neutrino masses are plotted, where the red stars denote the best fit corresponding to χ2=0.169\chi^{2}=\mathbf{0.169}. Similarly, the results for IH neutrino masses are plotted in (a2a_{2}, b2b_{2}, c2c_{2}, d2d_{2}), where the best fit corresponding to χ2=0.312\chi^{2}=\mathbf{0.312}.

Taking the charged lepton masses me=0.511MeV,mμ=105.658MeV,mτ=1.777GeVm_{e}=0.511\;{\rm MeV},\;m_{\mu}=105.658\;{\rm MeV},\;m_{\tau}=1.777\;{\rm GeV} as inputs, we scan the parameter space

|m^ν,11|(106, 101)eV,|m^ν,22|(106, 101)eV,|me,13|(0, 0.3)GeV,\displaystyle|\hat{m}_{\nu,11}|\sim(10^{-6},\;10^{-1})\;{\rm eV},\;|\hat{m}_{\nu,22}|\sim(10^{-6},\;10^{-1})\;{\rm eV},\;|m_{e,13}|\sim(0,\;0.3)\;{\rm GeV},
θν,αβ(π,π),θe,ij(π,π),\displaystyle\theta_{\nu,\alpha\beta}\sim(-\pi,\;\pi),\;\theta_{e,ij}\sim(-\pi,\;\pi), (60)

where αβ=11,22,13,23\alpha\beta=11,22,13,23, ij=12,13,23ij=12,13,23, me,33m_{e,33}, |me,12||m_{e,12}|, |me,23||m_{e,23}|, |m^ν,13||\hat{m}_{\nu,13}|, |m^ν,23||\hat{m}_{\nu,23}| can be obtained by Eqs. (32, 44, 45). Then keeping the mass-squared differences in Eq. (1) in the experimental 3σ3\sigma ranges and Eq. (57) in the scanning, we plot the results of |m^ν,13||m^ν,11||\hat{m}_{\nu,13}|-|\hat{m}_{\nu,11}|, |m^ν,23||m^ν,22||\hat{m}_{\nu,23}|-|\hat{m}_{\nu,22}|, |me,13||m^ν,13||m_{e,13}|-|\hat{m}_{\nu,13}|, |m^ν,23|cosθ|\hat{m}_{\nu,23}|-\cos\theta for NH neutrino masses in Fig. 2 (a1a_{1}), Fig. 2 (b1b_{1}), Fig. 2 (c1c_{1}), Fig. 2 (d1d_{1}) respectively. Similarly, the results of |m^ν,13||m^ν,11||\hat{m}_{\nu,13}|-|\hat{m}_{\nu,11}| (a2a_{2}), |m^ν,23||m^ν,22||\hat{m}_{\nu,23}|-|\hat{m}_{\nu,22}| (b2b_{2}), |me,13||m^ν,13||m_{e,13}|-|\hat{m}_{\nu,13}| (c2c_{2}), |m^ν,13|cosθ|\hat{m}_{\nu,13}|-\cos\theta (d2d_{2}) for IH neutrino masses are also plotted in Fig. 2. The red stars denote the best fit corresponding to χ2=0.169\chi^{2}=\mathbf{0.169} for NH neutrino masses and χ2=0.312\chi^{2}=\mathbf{0.312} for IH neutrino masses. The results of the best fit are listed in Tab. 1,

Observables OithO_{i}^{\rm th} OiexpO_{i}^{\rm exp} Deviations in %\%
NH
Δm122\Delta m_{12}^{2}[eV2] 7.56×1057.56\times 10^{-5} 7.53×1057.53\times 10^{-5} 0.40
Δm232\Delta m_{23}^{2}[eV2] 2.457×1032.457\times 10^{-3} 2.455×1032.455\times 10^{-3} 0.08
s122s_{12}^{2} 0.299 0.307 2.61
s132s_{13}^{2} 2.18×1022.18\times 10^{-2} 2.19×1022.19\times 10^{-2} 0.46
s232s_{23}^{2} 0.552 0.558 1.08
δ\delta 1.16π1.16\pi 1.19π1.19\pi 2.52
IH
Δm122\Delta m_{12}^{2}[eV2] 7.40×1057.40\times 10^{-5} 7.53×1057.53\times 10^{-5} 1.73
Δm322\Delta m_{32}^{2}[eV2] 2.522×1032.522\times 10^{-3} 2.529×1032.529\times 10^{-3} 0.28
s122s_{12}^{2} 0.307 0.307 0.00
s132s_{13}^{2} 2.20×1022.20\times 10^{-2} 2.19×1022.19\times 10^{-2} 0.46
s232s_{23}^{2} 0.538 0.553 2.71
δ\delta 1.22π1.22\pi 1.19π1.19\pi 2.52
Table 1: The results obtained for the best fit corresponding to χ2=0.169\chi^{2}=\mathbf{0.169} and χ2=0.312\chi^{2}=\mathbf{0.312} for NH and IH neutrino masses respectively.

where various OiexpO_{i}^{\rm exp} are listed in the third column and σiexp\sigma_{i}^{\rm exp} are take from Eqs. (1, 7). The parameters for the best fit listed in Tab. 1 are

NH:m^ν,11=0.00120e1.46ieV,m^ν,22=0.0234e0.0665ieV,m^ν,13=0.00443e0.678ieV,\displaystyle{\rm NH:}\;\hat{m}_{\nu,11}=0.00120e^{-1.46i}\;{\rm eV},\;\hat{m}_{\nu,22}=0.0234e^{0.0665i}\;{\rm eV},\;\hat{m}_{\nu,13}=0.00443e^{-0.678i}\;{\rm eV},
m^ν,23=0.0234e2.52ieV,me,13=0.12e2.94iGeV,θe,12=0.040,θe,23=1.30,\displaystyle\qquad\;\hat{m}_{\nu,23}=0.0234e^{2.52i}\;{\rm eV},\;m_{e,13}=0.12e^{2.94i}\;{\rm GeV},\;\theta_{e,12}=-0.040,\;\theta_{e,23}=-1.30,\quad
IH:m^ν,11=0.0475e1.00ieV,m^ν,22=0.0282e2.87ieV,m^ν,13=0.0116e2.27ieV,\displaystyle{\rm IH:}\;\hat{m}_{\nu,11}=0.0475e^{-1.00i}\;{\rm eV},\;\hat{m}_{\nu,22}=0.0282e^{2.87i}\;{\rm eV},\;\hat{m}_{\nu,13}=0.0116e^{-2.27i}\;{\rm eV},
m^ν,23=0.0251e1.86ieV,me,13=0.0399e2.98iGeV,θe,12=1.34,θe,23=0.397.\displaystyle\qquad\;\hat{m}_{\nu,23}=0.0251e^{-1.86i}\;{\rm eV},\;m_{e,13}=0.0399e^{-2.98i}\;{\rm GeV},\;\theta_{e,12}=-1.34,\;\theta_{e,23}=-0.397.
(61)

Fig. 2 and Tab. 1 clearly demonstrate that for both NH and IH neutrino masses, the lepton sector in the FDM can fit the measured charged lepton masses, the mass-squared differences of neutrinos and flavor mixings described by the PMNS matrix well. The preferred parameter spaces for NH and IH neutrino masses are notably different, as can be observed by comparing Fig. 2 (a1a_{1}, b1b_{1}, c1c_{1}, d1d_{1}) with Fig. 2 (a2a_{2}, b2b_{2}, c2c_{2}, d2d_{2}). To match the measured mass-squared differences of neutrinos, the values of |m^ν,13||\hat{m}_{\nu,13}|, |m^ν,23||\hat{m}_{\nu,23}| are related closely to the selected values of |m^ν,11||\hat{m}_{\nu,11}|, |m^ν,22||\hat{m}_{\nu,22}|, cosθ\cos\theta as shown in Fig. 2 (a1a_{1}, a2a_{2}, b1b_{1}, b2b_{2}, d1d_{1}, d2d_{2}), and the fact can be easily understood from Eqs. (44, 45). Additionally, to fit the measured PMNS matrix elements, the value of |me,13||m_{e,13}| is also related to the chosen values of |m^ν,13||\hat{m}_{\nu,13}|.

Refer to caption
Refer to caption
Figure 3: Based on the results obtained in Fig. 2, the allowed range of δσ\delta-\sigma is plotted, where (a) for NH neutrino masses and (b) for IH neutrino masses.

As discussed earlier, observing the transition MDM of neutrinos experimentally is one of the most effective methods for providing definitive evidence of neutrino-related NP, particularly the Dirac and Majorana neutrinos have quite different structures in their MDM. To investigate the effects of Dirac CP phase δ\delta and Majorana CP phase σ\sigma on the transition MDM of neutrinos, we present the allowed range of δσ\delta-\sigma based on the results obtained in Fig. 2, where Fig. 3 (a) for NH neutrino masses and Fig. 3 (b) for IH neutrino masses. The picture shows obviously that the ranges 0.53πδ1.85π0.53\pi\leq\delta\leq 1.85\pi (3σ3\sigma ranges provided by PDG) and 0σ2π0\leq\sigma\leq 2\pi are allowed. Then, the results of |μ12||\mu_{12}|, |μ13||\mu_{13}|, |μ23||\mu_{23}|, |μsolar||\mu_{\rm solar}| versus δ\delta are plotted in Fig. 4 (a), (b), (c), (d) respectively. In these plots, the black curves represent the results for NH neutrino masses, the red curves represent the results for IH neutrino masses, and the solid, dashed, dotted curves correspond to σ=0.1π, 0.3π, 0.5π\sigma=0.1\pi,\;0.3\pi,\;0.5\pi respectively.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: The results of |μ12||\mu_{12}| (a), |μ13||\mu_{13}| (b), |μ23||\mu_{23}| (c), |μsolar||\mu_{\rm solar}| (d) versus δ\delta are plotted. The black curves denote the results for NH neutrino masses, the red curves denote the results for IH neutrino masses, and the solid, dashed, dotted curves denote the results for σ=0.1π, 0.3π, 0.5π\sigma=0.1\pi,\;0.3\pi,\;0.5\pi respectively.

Fig. 4 illustrates that the Dirac CP phase δ\delta and the Majorana CP phase σ\sigma, significantly affect |μ12||\mu_{12}|, |μ13||\mu_{13}|, |μ23||\mu_{23}|, |μsolar||\mu_{\rm solar}|. However, |μ13||\mu_{13}| is nearly independent of σ\sigma as shown in Fig. 4 (b). The comparison of the black and red curves in Fig. 4 suggests that precise measurements of |μ12||\mu_{12}|, |μ13||\mu_{13}|, |μ23||\mu_{23}|, |μsolar||\mu_{\rm solar}| could help determine the hierarchy of neutrino masses. For both NH and IH neutrino masses, |μ12||\mu_{12}|, |μ23||\mu_{23}|, |μsolar||\mu_{\rm solar}| become extremely small when δπ\delta\approx\pi while |μ13||\mu_{13}| does not exhibit this behavior. Moreover, the contributions from σ\sigma to |μ12||\mu_{12}| can cancel those from δ\delta by selecting appropriate values for σ\sigma and δ\delta, resulting in the presence of additional valleys in Fig. 4 (a). It is also noteworthy that |μ12||\mu_{12}|, |μ13||\mu_{13}|, |μ23||\mu_{23}| can reach approximately 5×1023μB5\times 10^{-23}\mu_{B}, 1.2×1023μB1.2\times 10^{-23}\mu_{B}, 3×1021μB3\times 10^{-21}\mu_{B}, respectively. Observations of supernova fluxes in the JUNO experiment may reveal the effects of collective spin-flavour oscillations due to the Majorana neutrino transition MDM about 1021μB10^{-21}\mu_{B} JUNO:2015zny ; Giunti:2015gga ; Lu:2016ipr . Studies of Majorana neutrino transition MDMs in the context of supernova explosions deGouvea:2012hg ; deGouvea:2013zp indicate that these moments may leave a potentially observable imprint on the energy spectra of neutrinos and antineutrinos from supernovae, even for the moments as small as 1024μB10^{-24}\mu_{B}. Other new possibilities for neutrino transition MDMs visualization in extreme astrophysical environments are considered recently in Refs. Grigoriev:2017wff ; Kurashvili:2017zab . These suggest that the transition MDMs of Majorana neutrinos predicted in the FDM have a potential to be observed. Moreover, once the Dirac CP phase δ\delta is measured precisely, the Majorana CP phase σ\sigma can be determined through the observations of neutrino transition MDMs. This is because the predicted neutrino transition MDMs in the framework of FDM are dominated by δ\delta, σ\sigma and the lightest neutrino mass (which is predicted to be 0 in the FDM). In this case, all of the free parameters in Eq. (31), Eq. (40) are determined by charged lepton mass, neutrino masses, PMNS matrix including Dirac CP phase δ\delta and Majorana CP phase σ\sigma. It indicates that the parameter space of the FDM is much more tightly constrained, and the predictive power of the FDM in the lepton sector is enhanced greatly.

IV Summary

Fitting the neutrino-related measurements theoretically is important for exploring NP theories beyond the SM. Motivated by the flavor-related mass matrices of neutrinos and charged leptons in the FDM, our focus is on the neutrino sector in the model. Analytical calculations of the neutrino masses reveal that the lightest neutrino is predicted to be massless in the FDM, with the masses of the other two neutrinos being determined by the measured neutrino mass-squared differences. And determining the neutrino masses is one of the most important purposes of the next generation neutrino-related experiments. The numerical results demonstrate that, for both NH and IH neutrino masses, the lepton sector in the FDM can accurately fit the measured charged lepton masses, the neutrino mass-squared differences, the flavor mixing angles and the Dirac CP phase. Furthermore, the dominant contributions to the neutrino transition MDM in the model come from the WW boson-related interactions. The Dirac CP phase δ\delta and the Majorana CP phase σ\sigma significantly influence the theoretical predictions of these neutrino transition MDM. It is also noteworthy that the predicted values of |μ12||\mu_{12}|, |μ13||\mu_{13}|, |μ23||\mu_{23}|, |μsolar||\mu_{\rm solar}| can reach about 5×1023μB5\times 10^{-23}\mu_{B}, 1.2×1023μB1.2\times 10^{-23}\mu_{B}, 3×1021μB3\times 10^{-21}\mu_{B}, 4×1021μB4\times 10^{-21}\mu_{B} respectively, which may have the potential to be observed in the JUNO experiment and the energy spectra of neutrinos from supernovae. Once the Dirac CP phase δ\delta and neutrino transition MDMs are measured precisely, all of the free parameters in Eq. (31), Eq. (40) are determined by charged lepton mass, neutrino masses, PMNS matrix including Dirac CP phase δ\delta and Majorana CP phaseσ\sigma, which greatly enhances the predictive power of the FDM in the lepton sector.

Acknowledgements.
The work has been supported by the National Natural Science Foundation of China (NNSFC) with Grants No. 12075074, No. 12235008, Hebei Natural Science Foundation for Distinguished Young Scholars with Grant No. A2022201017, No. A2023201041, Natural Science Foundation of Guangxi Autonomous Region with Grant No. 2022GXNSFDA035068, and the youth top-notch talent support program of the Hebei Province.

References

  • (1) N. Cabibbo, Phys. Rev. Lett. 10, 531-533 (1963).
  • (2) M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652-657 (1973).
  • (3) J. L. Yang, H. B. Zhang and T. F. Feng, Phys. Lett. B 853, 138677 (2024).
  • (4) J. L. Yang, H. B. Zhang and T. F. Feng, Eur. Phys. J. C 84, no.6, 616 (2024).
  • (5) S. Navas et al. [Particle Data Group], Phys. Rev. D 110, no.3, 030001 (2024).
  • (6) K. Fujikawa and R. Shrock, Phys. Rev. Lett. 45, 963 (1980).
  • (7) P. B. Pal and L. Wolfenstein, Phys. Rev. D 25, 766 (1982).
  • (8) J. F. Nieves, Phys. Rev. D 26, 3152 (1982).
  • (9) B. Kayser, Phys. Rev. D 26, 1662 (1982).
  • (10) R. E. Shrock, Nucl. Phys. B 206, 359-379 (1982).
  • (11) B. Kayser, Phys. Rev. D 30, 1023 (1984).
  • (12) N. F. Bell, V. Cirigliano, M. J. Ramsey-Musolf, P. Vogel and M. B. Wise, Phys. Rev. Lett. 95, 151802 (2005).
  • (13) N. F. Bell, M. Gorchtein, M. J. Ramsey-Musolf, P. Vogel and P. Wang, Phys. Lett. B 642, 377-383 (2006).
  • (14) C. Giunti and A. Studenikin, Rev. Mod. Phys. 87, 531 (2015).
  • (15) X. J. Xu, Phys. Rev. D 99, no.7, 075003 (2019).
  • (16) S. F. Ge and P. Pasquini, Phys. Lett. B 841, 137911 (2023).
  • (17) A. G. Beda, V. B. Brudanin, V. G. Egorov, D. V. Medvedev, V. S. Pogosov, E. A. Shevchik, M. V. Shirchenko, A. S. Starostin and I. V. Zhitnikov, Phys. Part. Nucl. Lett. 10, 139-143 (2013).
  • (18) M. Agostini et al. [Borexino], Phys. Rev. D 96, no.9, 091103 (2017).
  • (19) S. A. Díaz, K. P. Schröder, K. Zuber, D. Jack and E. E. B. Barrios, [arXiv:1910.10568 [astro-ph.SR]].
  • (20) A. H. Córsico, L. G. Althaus, M. M. Miller Bertolami, S. O. Kepler and E. García-Berro, JCAP 08, 054 (2014).
  • (21) M. M. Miller Bertolami, Astron. Astrophys. 562, A123 (2014).
  • (22) B. M. S. Hansen, H. Richer, J. Kalirai, R. Goldsbury, S. Frewen and J. Heyl, Astrophys. J. 809, no.2, 141 (2015).
  • (23) E. Aprile et al. [XENON], Phys. Rev. D 102, no.7, 072004 (2020).
  • (24) X. Zhou et al. [PandaX-II], Chin. Phys. Lett. 38, no.1, 011301 (2021) [erratum: Chin. Phys. Lett. 38, no.10, 109902 (2021)].
  • (25) C. Cheng et al. [PandaX-II], Phys. Rev. Lett. 126, no.21, 211803 (2021).
  • (26) A. de Gouvea and S. Shalgar, JCAP 10, 027 (2012).
  • (27) A. de Gouvea and S. Shalgar, JCAP 04, 018 (2013).
  • (28) E. Ma, D. P. Roy and U. Sarkar, Phys. Lett. B 444, 391-396 (1998).
  • (29) P. H. Frampton, S. L. Glashow and T. Yanagida, Phys. Lett. B 548, 119-121 (2002).
  • (30) Z. z. Xing and Z. h. Zhao, Rept. Prog. Phys. 84, no.6, 066201 (2021).
  • (31) P. H. Gu, H. Zhang and S. Zhou, Phys. Rev. D 74, 076002 (2006).
  • (32) S. Davidson, G. Isidori and A. Strumia, Phys. Lett. B 646, 100-104 (2007).
  • (33) A. H. Chan, H. Fritzsch, S. Luo and Z. z. Xing, Phys. Rev. D 76, 073009 (2007).
  • (34) W. l. Guo, Z. z. Xing and S. Zhou, Int. J. Mod. Phys. E 16, 1-50 (2007).
  • (35) P. Ren and Z. z. Xing, Phys. Lett. B 666, 48-56 (2008).
  • (36) Z. z. Xing, Phys. Lett. B 660, 515-521 (2008).
  • (37) Z. z. Xing, Phys. Lett. B 679, 255-259 (2009).
  • (38) M. Hirsch, T. Kernreiter, J. C. Romao and A. Villanova del Moral, JHEP 01, 103 (2010).
  • (39) F. F. Deppisch and A. Pilaftsis, Phys. Rev. D 83, 076007 (2011).
  • (40) Z. z. Xing, Phys. Rev. D 85, 013008 (2012).
  • (41) S. Mondal, S. Biswas, P. Ghosh and S. Roy, JHEP 05, 134 (2012).
  • (42) A. Abada and M. Lucente, Nucl. Phys. B 885, 651-678 (2014).
  • (43) A. Abada, G. Arcadi and M. Lucente, JCAP 10, 001 (2014).
  • (44) S. Luo and Z. z. Xing, Phys. Rev. D 90, no.7, 073005 (2014).
  • (45) R. N. Mohapatra and C. C. Nishi, JHEP 08, 092 (2015).
  • (46) N. Nath, Z. z. Xing and J. Zhang, Eur. Phys. J. C 78, no.4, 289 (2018).
  • (47) G. y. Huang, Z. z. Xing and J. y. Zhu, Chin. Phys. C 42, no.12, 123108 (2018).
  • (48) Z. z. Xing and D. Zhang, Phys. Lett. B 807, 135598 (2020).
  • (49) A. E. Cárcamo Hernández and S. F. King, Nucl. Phys. B 953, 114950 (2020).
  • (50) T. F. Feng, L. Sun and X. Y. Yang, Nucl. Phys. B 800, 221-252 (2008).
  • (51) T. F. Feng, L. Sun and X. Y. Yang, Phys. Rev. D 77, 116008 (2008).
  • (52) T. F. Feng and X. Y. Yang, Nucl. Phys. B 814, 101-141 (2009).
  • (53) H. B. Zhang, T. F. Feng, Z. F. Ge and S. M. Zhao, JHEP 02, 012 (2014).
  • (54) J. L. Yang, H. B. Zhang, C. X. Liu, X. X. Dong and T. F. Feng, JHEP 08, 086 (2021).
  • (55) E. Aprile et al. [XENON], Phys. Rev. Lett. 129, no.16, 161805 (2022).
  • (56) E. Akhmedov and P. Martínez-Miravé, JHEP 10, 144 (2022).
  • (57) J. w. Mei and Z. z. Xing, Phys. Rev. D 69, 073003 (2004).
  • (58) F. An et al. [JUNO], J. Phys. G 43, no.3, 030401 (2016).
  • (59) C. Giunti, K. A. Kouzakov, Y. F. Li, A. V. Lokhov, A. I. Studenikin and S. Zhou, Annalen Phys. 528, 198-215 (2016).
  • (60) J. S. Lu, Y. F. Li and S. Zhou, Phys. Rev. D 94, no.2, 023006 (2016).
  • (61) A. Grigoriev, A. Lokhov, A. Studenikin and A. Ternov, JCAP 11, 024 (2017).
  • (62) P. Kurashvili, K. A. Kouzakov, L. Chotorlishvili and A. I. Studenikin, Phys. Rev. D 96, no.10, 103017 (2017).