This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Neutrinophilic DM annihilation in a model
with U(1)LμLτ×U(1)HU(1)_{L_{\mu}-L_{\tau}}\times U(1)_{H} gauge symmetry

Keiko I. Nagao [email protected] Department of Physics, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Okayama, 700-0005, Japan    Takaaki Nomura [email protected] College of Physics, Sichuan University, Chengdu 610065, China    Hiroshi Okada [email protected] Asia Pacific Center for Theoretical Physics (APCTP) - Headquarters San 31, Hyoja-dong, Nam-gu, Pohang 790-784, Korea Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea    Takashi Shimomura [email protected] Faculty of Education, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Abstract

We propose a model with two different extra U(1)U(1) gauge symmetries; muon minus tauon symmetry U(1)LμLτU(1)_{{L_{\mu}}-L_{\tau}} and hidden symmetry U(1)HU(1)_{H}. Then, we explain muon anomalous magnetic moment, semi-leptonic decays bs¯b\to s\ell\bar{\ell}, and dark matter. In particular, we find an intriguing dark matter candidate to be verified by Hyper-Kamiokande and JUNO in the future that request neutrinophilic DM with rather light dark matter mass𝒪(10)\sim{\cal O}(10) MeV.

preprint: APCTP Pre2022 - 028preprint: UME-PP-025preprint: KYUSHU-HET-254

I Introduction

An extension of the standard model (SM) of particle physics is required to explain several issues such as the existence of dark matter (DM) and the deviation from the SM prediction of anomalous magnetic dipole of muon (muon g2g-2). One of the interesting possibilities of extending the SM is an introduction of new U(1)U(1) gauge symmetries. Such U(1)U(1) symmetries can guarantee the stability of DM and interactions mediated by new neutral gauge bosons would explain its relic density. Furthermore, if new U(1)U(1) charges are flavor dependent it is possible to address flavor issues such as muon g2g-2 via new gauge bosons. From a theoretical viewpoint, multiple extra U(1)U(1) symmetries can be induced from theory in high energy scale like the string theories.

In 2021, new result of the muon g2g-2 measurement is reported by the E989 collaboration at Fermilab Muong-2:2021ojo :

aμFNAL=116592040(54)×1011.\displaystyle a^{\rm FNAL}_{\mu}=116592040(54)\times 10^{-11}. (1)

Combining the result with the previous BNL one, the muon g2g-2 deviates from the SM prediction by 4.2σ\sigma level Muong-2:2021ojo ; Aoyama:2012wk ; Aoyama:2019ryr ; Czarnecki:2002nt ; Gnendiger:2013pva ; Davier:2017zfy ; Keshavarzi:2018mgv ; Colangelo:2018mtw ; Hoferichter:2019mqg ; Davier:2019can ; Keshavarzi:2019abf ; Kurz:2014wya ; Melnikov:2003xd ; Masjuan:2017tvw ; Colangelo:2017fiz ; Hoferichter:2018kwz ; Gerardin:2019vio ; Bijnens:2019ghy ; Colangelo:2019uex ; Blum:2019ugy ; Colangelo:2014qya ; Hagiwara:2011af as

Δaμnew=(25.1±5.9)×1010.\displaystyle\Delta a^{\rm new}_{\mu}=(25.1\pm 5.9)\times 10^{-10}. (2)

Although results on the hadronic vacuum polarization (HVP) that are estimated by recent lattice calculations Borsanyi:2020mff ; Alexandrou:2022amy ; Ce:2022kxy might weaken the necessity of a new physics effect, it is also shown in refs. Crivellin:2020zul ; deRafael:2020uif ; Keshavarzi:2020bfy  111The relation between HVP for muon g2g-2 and electroweak precision test is also discussed previously in ref. Passera:2008jk . that the lattice results imply new tensions with the HVP extracted from e+ee^{+}e^{-} data and the global fits to the electroweak precision observables. One of the promising ways to explain the anomaly is introduction of U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} gauge symmetry that is often applied for a neutrino mass matrix texture in order to have some predictions as well as explain the neutrino oscillation data in the lepton sector. Here, the associated ZZ^{\prime} boson interaction can provide a sizable contribution to muon g2g-2. In explaining muon g2g-2 anomaly, we need to require the ZZ^{\prime} boson from U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} is as light as 𝒪(10)\mathcal{O}(10) to 𝒪(100)\mathcal{O}(100) MeV and small gauge coupling of 𝒪(104)\mathcal{O}(10^{-4}) to 𝒪(103)\mathcal{O}(10^{-3}). On the other hand, if U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} like the ZZ^{\prime} boson is heavier than 𝒪(10)\mathcal{O}(10) GeV, it affects different phenomenology like the lepton flavor non-universality in semi-leptonic BB meson decay associated with the process bs+b\to s\ell^{+}\ell^{-} Altmannshofer:2014cfa ; Crivellin:2015mga ; Crivellin:2015lwa ; Ko:2017yrd ; Kumar:2020web ; Han:2019diw ; Chao:2021qxq ; Baek:2019qte ; Chen:2017usq ; Borah:2021khc ; Tuckler:2022fkz ; Altmannshofer:2016jzy ; Crivellin:2022obd where some deviation from the SM is observed Hiller:2003js ; Bobeth:2007dw ; Aaij:2014ora ; Aaij:2019wad ; DescotesGenon:2012zf ; Aaij:2015oid ; Aaij:2013qta ; Abdesselam:2016llu ; Wehle:2016yoi ; Aaij:2017vbb ; Aaij:2021vac . Although recent LHCb observation regarding this lepton universality is compatible with the SM prediction LHCb:2022qnv ; LHCb:2022zom , it is still interesting to investigate the effect of the ZZ^{\prime} boson in bs+b\to s\ell^{+}\ell^{-} decays. Thus we are interested in considering multiple U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} like the ZZ^{\prime} bosons whose mass scales are different that provide us richer phenomenological possibilities, which can be realized by introducing multiple U(1)U(1) gauge symmetries. Moreover, considering multiple local U(1)U(1)s, we can have more freedom to accommodate the relic density of DM.

In this paper, we consider a model that has two local U(1)U(1) symmetries. One symmetry is U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} and the other one is hidden U(1)HU(1)_{H} symmetry where the SM fields are not charged under it. After the spontaneous breaking of these symmetries, two ZZ^{\prime} bosons mix each other, and they can interact with the μ\mu and τ\tau flavor leptons in mass basis. Then we have two ZZ^{\prime} bosons whose masses can be hierarchical in some parameter region inducing different phenomenology. Both heavy and light ZZ^{\prime} can contribute to muon g2g-2 and it is possible to explain the experimental measurements. The heavy one can affect lepton non-universality in BB-meson decay when we assume some effective interactions with quarks. Also, the light one can play a role in explaining DM relic density when we choose light DM as 𝒪(10)\mathcal{O}(10) MeV. Interestingly DM annihilation mode is neutrinophilic in our benchmark points and it is safe from current direct and indirect searches constraints. We can test neutrino signals from DM annihilation in future neutrino experiments where we consider Hyper-Kamiokande(HK) and JUNO as promising candidates.

This article is organized as follows. In Sec. II, we introduce our model and show relevant interactions and formulas for phenomenology. In Sec. III, we show our phenomenological analysis of muon g2g-2, DM physics and neutrino signatures. Finally, we devote the summary of our results and the conclusion.

II Model setup and phenomenological formulas

 LLaL_{L}^{a}  eRae_{R}^{a}  νRa\nu_{R}^{a}  χ\chi  HH  φ1\varphi_{1}  φ2\varphi_{2}
SU(2)LSU(2)_{L} 𝟐\bm{2} 𝟏\bm{1} 𝟏\bm{1} 𝟏\bm{1} 𝟐\bm{2} 𝟏\bm{1} 𝟏\bm{1}
U(1)YU(1)_{Y} 12-\frac{1}{2} 1-1 0 0 12\frac{1}{2} 0 0
U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} {0,1,1}\{0,1,-1\} {0,1,1}\{0,1,-1\} {0,1,1}\{0,1,-1\} 0 0 11 11
U(1)HU(1)_{H} 0 0 0 QχQ_{\chi} 0 0 11
Table 1: Charge assignments of the fields under SU(2)L×U(1)Y×U(1)LμLτ×U(1)HSU(2)_{L}\times U(1)_{Y}\times U(1)_{L_{\mu}-L_{\tau}}\times U(1)_{H}, where its upper index aa is the number of family that runs over 131-3.

We propose a model with U(1)LμLτ×U(1)HU(1)_{L_{\mu}-L_{\tau}}\times U(1)_{H} gauge symmetry. The SM leptons and right-handed neutrinos νR\nu_{R} are charged under U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} where second and third generation ones have charge 11 and 1-1, respectively. We also introduce SM singlet Dirac fermion χ\chi with U(1)HU(1)_{H} charge QχQ_{\chi}, which is our DM candidate. In the scalar sector, we introduce the SM Higgs field HH, and the SM singlet scalars φ1\varphi_{1} and φ2\varphi_{2}. HH is neutral under new gauge symmetry while φ1\varphi_{1} and φ2\varphi_{2} have charges {1,0}\{1,0\} and {1,1}\{1,1\} under {U(1)LμLτ,U(1)H}\{U(1)_{L_{\mu}-L_{\tau}},U(1)_{H}\} respectively. All the field contents and their assignments are summarized in Table 1. New terms of Lagrangian and scalar potential are written by

new=gμτX1ρ(μ¯γρμτ¯γρτ+ν¯μγρνμν¯τγρντ)+χ¯[iγμ(μiQχgHX2μ)mχ]χ\displaystyle\mathcal{L}_{\rm new}=g_{\mu\tau}X_{1}^{\rho}(\bar{\mu}\gamma_{\rho}\mu-\bar{\tau}\gamma_{\rho}\tau+\bar{\nu}_{\mu}\gamma_{\rho}\nu_{\mu}-\bar{\nu}_{\tau}\gamma_{\rho}\nu_{\tau})+\bar{\chi}[i\gamma_{\mu}(\partial^{\mu}-iQ_{\chi}g_{H}X_{2}^{\mu})-m_{\chi}]\chi
+|(μigμτX1μ)φ1|2+|(μigμτX1μigHX2μ)φ2|2,\displaystyle\qquad\quad+|(\partial_{\mu}-ig_{\mu\tau}X_{1\mu})\varphi_{1}|^{2}+|(\partial_{\mu}-ig_{\mu\tau}X_{1\mu}-ig_{H}X_{2\mu})\varphi_{2}|^{2}, (3)
V=μH2(HH)+μ12φ1φ1+μ22φ2φ2+λH(HH)2+λ1(φ1φ1)2+λ2(φ2φ2)2\displaystyle V=\mu_{H}^{2}(H^{\dagger}H)+\mu_{1}^{2}\varphi_{1}^{*}\varphi_{1}+\mu_{2}^{2}\varphi_{2}^{*}\varphi_{2}+\lambda_{H}(H^{\dagger}H)^{2}+\lambda_{1}(\varphi^{*}_{1}\varphi_{1})^{2}+\lambda_{2}(\varphi^{*}_{2}\varphi_{2})^{2}
+λHφ1(HH)(φ1φ1)+λHφ2(HH)(φ2φ2)+λφ1φ2(φ1φ1)(φ2φ2),\displaystyle\qquad+\lambda_{H\varphi_{1}}(H^{\dagger}H)(\varphi^{*}_{1}\varphi_{1})+\lambda_{H\varphi_{2}}(H^{\dagger}H)(\varphi^{*}_{2}\varphi_{2})+\lambda_{\varphi_{1}\varphi_{2}}(\varphi^{*}_{1}\varphi_{1})(\varphi^{*}_{2}\varphi_{2}), (4)

where X1μX_{1}^{\mu} and X2μX_{2}^{\mu} are gauge fields of U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} and U(1)HU(1)_{H} with corresponding gauge couplings gμτg_{\mu\tau} and gHg_{H}.

II.1 Scalar sector

In the proposed scenario, we require all the scalar fields develop their vacuum expectation values (VEVs) to break electroweak and U(1)LμLτ×U(1)HU(1)_{L_{\mu}-L_{\tau}}\times U(1)_{H} gauge symmetries denoted by H[0,v/2]T\langle H\rangle\equiv[0,v/\sqrt{2}]^{T} and φ1,2v1,2/2\varphi_{1,2}\equiv v_{1,2}/\sqrt{2}. Then, the scalar fields are written by

H=[w+v+h~+iz2],φ1,2=v1,2+ϕ1,2+iz1,22,H=\left[\begin{array}[]{c}w^{+}\\ \frac{v+\tilde{h}+iz}{\sqrt{2}}\end{array}\right],\quad\varphi_{1,2}=\frac{v_{1,2}+\phi_{1,2}+iz^{\prime}_{1,2}}{\sqrt{2}}, (5)

where w+w^{+} and zz are massless Nambu-Goldstone(NG) bosons which are absorbed by the SM gauge bosons W+W^{+} and ZZ, and linear combinations of z1,2z^{\prime}_{1,2} become NG bosons absorbed by two extra neutral gauge bosons from U(1)LμLτ×U(1)HU(1)_{L_{\mu}-L_{\tau}}\times U(1)_{H}. The VEVs are obtained by conditions 𝒱v=𝒱v1=𝒱v2=0\frac{\partial{\cal V}}{\partial v}=\frac{\partial{\cal V}}{\partial v_{1}}=\frac{\partial{\cal V}}{\partial v_{2}}=0 that are written by

v(μH2+λHφ12v12+λHφ22v22)+λHv3=0,\displaystyle v\left(\mu_{H}^{2}+\frac{\lambda_{H\varphi_{1}}}{2}v_{1}^{2}+\frac{\lambda_{H\varphi_{2}}}{2}v_{2}^{2}\right)+\lambda_{H}v^{3}=0, (6)
v1(μ12+λHφ12v2+λφ1φ22v22)+λ1v13=0,\displaystyle v_{1}\left(\mu_{1}^{2}+\frac{\lambda_{H\varphi_{1}}}{2}v^{2}+\frac{\lambda_{\varphi_{1}\varphi_{2}}}{2}v_{2}^{2}\right)+\lambda_{1}v_{1}^{3}=0, (7)
v2(μ22+λHφ22v2+λφ1φ22v12)+λ2v23=0.\displaystyle v_{2}\left(\mu_{2}^{2}+\frac{\lambda_{H\varphi_{2}}}{2}v^{2}+\frac{\lambda_{\varphi_{1}\varphi_{2}}}{2}v_{1}^{2}\right)+\lambda_{2}v_{2}^{3}=0. (8)

After the scalar fields developing VEVs, neutral scalars h~\tilde{h}, ϕ1\phi_{1} and ϕ2\phi_{2} mix. We assume the mixings between h~\tilde{h} and ϕ1,2\phi_{1,2} are small for simplicity and h~\tilde{h} is identified as the SM Higgs boson. Other scalar bosons are not involved in our phenomenological analysis below and we do not discuss further details in this work 222Collider signatures from a scalar boson decaying into ZZ^{\prime} in the context of U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} are discussed in refs. Das:2022mmh ; Nomura:2020vnk ; Nomura:2018yej . .

II.2 Gauge sector

After spontaneous symmetry breaking, we obtain mass terms for the gauge fields such that

|Dμφ1|2+|Dμφ2|212gμτ2(v12+v22)X1μX1μ+12gH2v22X2μX2μ+gμτgHv22X1μX2μ.\displaystyle|D_{\mu}\varphi_{1}|^{2}+|D_{\mu}\varphi_{2}|^{2}\supset\frac{1}{2}g^{2}_{\mu\tau}(v_{1}^{2}+v_{2}^{2})X^{\mu}_{1}X_{1\mu}+\frac{1}{2}g^{2}_{H}v^{2}_{2}X^{\mu}_{2}X_{2\mu}+g_{\mu\tau}g_{H}v_{2}^{2}X^{\mu}_{1}X_{2\mu}. (9)

We thus obtain mass matrix in the basis of {X1μ,X2μ}\{X^{\mu}_{1},X^{\mu}_{2}\} as

MX1X22=(M12M122M122M22),M_{X_{1}X_{2}}^{2}=\begin{pmatrix}M^{2}_{1}&M^{2}_{12}\\ M^{2}_{12}&M^{2}_{2}\end{pmatrix}, (10)

where M12gμτ2(v12+v22)M^{2}_{1}\equiv g^{2}_{\mu\tau}(v_{1}^{2}+v_{2}^{2}), M22gH2v22M^{2}_{2}\equiv g^{2}_{H}v^{2}_{2} and M122gHgμτv22M^{2}_{12}\equiv g_{H}g_{\mu\tau}v^{2}_{2}. We can diagonalize the mass matrix by orthogonal matrix, and mass eigenvalues and eigenstates are written by

mZ12=12(M12+M22)+12(M12M22)2+4M124,\displaystyle m^{2}_{Z^{\prime}_{1}}=\frac{1}{2}(M^{2}_{1}+M^{2}_{2})+\frac{1}{2}\sqrt{(M^{2}_{1}-M^{2}_{2})^{2}+4M^{4}_{12}}\ , (11)
mZ22=12(M12+M22)12(M12M22)2+4M124,\displaystyle m^{2}_{Z^{\prime}_{2}}=\frac{1}{2}(M^{2}_{1}+M^{2}_{2})-\frac{1}{2}\sqrt{(M^{2}_{1}-M^{2}_{2})^{2}+4M^{4}_{12}}\ , (12)
(X1μX2μ)=(cosθXsinθXsinθXcosθX)(Z1μZ2μ),\displaystyle\begin{pmatrix}X_{1}^{\mu}\\ X^{\mu}_{2}\end{pmatrix}=\begin{pmatrix}\cos\theta_{X}&\sin\theta_{X}\\ -\sin\theta_{X}&\cos\theta_{X}\end{pmatrix}\begin{pmatrix}Z^{\prime\mu}_{1}\\ Z^{\prime\mu}_{2}\end{pmatrix}, (13)

where the mixing angle θX\theta_{X} is obtained from

tan2θX=2M122M12M22.\tan 2\theta_{X}=\frac{2M^{2}_{12}}{M^{2}_{1}-M^{2}_{2}}. (14)

In our scenario, we consider the case of mZ1mZ2m_{Z^{\prime}_{1}}\gg m_{Z^{\prime}_{2}} by choosing gauge couplings and VEVs accordingly. Then Z1Z^{\prime}_{1} interaction is applied to explain BB decay anomalies while Z2Z^{\prime}_{2} dominantly contributes to induce sizable muon g2g-2.

II.3 Gauge interaction in mass basis

In mass basis, we write relevant new gauge interactions as

\displaystyle\mathcal{L}\supset\ gμτ(cXZ1μ+sXZ2μ)(μ¯γμμτ¯γμτ)+gμτ(cXZ1μ+sXZ2μ)(νμ¯γμPLνμντ¯γμPLντ)\displaystyle g_{\mu\tau}(c_{X}Z^{\prime\mu}_{1}+s_{X}Z^{\prime\mu}_{2})(\bar{\mu}\gamma_{\mu}\mu-\bar{\tau}\gamma_{\mu}\tau)+g_{\mu\tau}(c_{X}Z^{\prime\mu}_{1}+s_{X}Z^{\prime\mu}_{2})(\overline{\nu_{\mu}}\gamma_{\mu}P_{L}\nu_{\mu}-\overline{\nu_{\tau}}\gamma_{\mu}P_{L}\nu_{\tau})
+QχgH(sXZ1μ+cXZ2μ)χ¯γμχ,\displaystyle+Q_{\chi}g_{H}(-s_{X}Z^{\prime\mu}_{1}+c_{X}Z^{\prime\mu}_{2})\bar{\chi}\gamma_{\mu}\chi, (15)

where cX(sX)=cosθX(sinθX)c_{X}(s_{X})=\cos\theta_{X}(\sin\theta_{X}).

Our ZZ^{\prime} bosons can decay into leptons {μμ¯,ττ¯,νμν¯μ,ντν¯τ}\{\mu\bar{\mu},\tau\bar{\tau},\nu_{\mu}\bar{\nu}_{\mu},\nu_{\tau}\bar{\nu}_{\tau}\} and χχ¯\chi\bar{\chi} when these modes are kinematically allowed. Partial decay widths of the Z1Z^{\prime}_{1} and Z2Z^{\prime}_{2} bosons are given by

Γ(Z1¯)\displaystyle\Gamma(Z^{\prime}_{1}\to\ell^{\prime}\bar{\ell}^{\prime}) =cX2gμτ28πmZ1(1+43m2mZ1214m2mZ12),\displaystyle=\frac{c_{X}^{2}g^{2}_{\mu\tau}}{8\pi}m_{Z^{\prime}_{1}}\left(1+\frac{4}{3}\frac{m_{\ell^{\prime}}^{2}}{m^{2}_{Z^{\prime}_{1}}}\sqrt{1-\frac{4m^{2}_{\ell^{\prime}}}{m^{2}_{Z^{\prime}_{1}}}}\right),
Γ(Z1νν¯)\displaystyle\Gamma(Z^{\prime}_{1}\to\nu_{\ell^{\prime}}\bar{\nu}_{\ell^{\prime}}) =cX2gμτ28πmZ1,\displaystyle=\frac{c_{X}^{2}g^{2}_{\mu\tau}}{8\pi}m_{Z^{\prime}_{1}},
Γ(Z1χχ¯)\displaystyle\Gamma(Z^{\prime}_{1}\to\chi\bar{\chi}) =Qχ2sX2gH28πmZ1(1+43mχ2mZ1214mχ2mZ12),\displaystyle=\frac{Q_{\chi}^{2}s_{X}^{2}g^{2}_{H}}{8\pi}m_{Z^{\prime}_{1}}\left(1+\frac{4}{3}\frac{m_{\chi}^{2}}{m^{2}_{Z^{\prime}_{1}}}\sqrt{1-\frac{4m^{2}_{\chi}}{m^{2}_{Z^{\prime}_{1}}}}\right),
Γ(Z2¯)\displaystyle\Gamma(Z^{\prime}_{2}\to\ell^{\prime}\bar{\ell}^{\prime}) =sX2gμτ28πmZ2(1+43m2mZ2214m2mZ22),\displaystyle=\frac{s_{X}^{2}g^{2}_{\mu\tau}}{8\pi}m_{Z^{\prime}_{2}}\left(1+\frac{4}{3}\frac{m_{\ell^{\prime}}^{2}}{m^{2}_{Z^{\prime}_{2}}}\sqrt{1-\frac{4m^{2}_{\ell^{\prime}}}{m^{2}_{Z^{\prime}_{2}}}}\right),
Γ(Z2νν¯)\displaystyle\Gamma(Z^{\prime}_{2}\to\nu_{\ell^{\prime}}\bar{\nu}_{\ell^{\prime}}) =sX2gμτ28πmZ2,\displaystyle=\frac{s_{X}^{2}g^{2}_{\mu\tau}}{8\pi}m_{Z^{\prime}_{2}},
Γ(Z2χχ¯)\displaystyle\Gamma(Z^{\prime}_{2}\to\chi\bar{\chi}) =Qχ2cX2gH28πmZ2(1+43mχ2mZ2214mχ2mZ22),\displaystyle=\frac{Q_{\chi}^{2}c_{X}^{2}g^{2}_{H}}{8\pi}m_{Z^{\prime}_{2}}\left(1+\frac{4}{3}\frac{m_{\chi}^{2}}{m^{2}_{Z^{\prime}_{2}}}\sqrt{1-\frac{4m^{2}_{\chi}}{m^{2}_{Z^{\prime}_{2}}}}\right), (16)

where ={μ,τ}\ell^{\prime}=\{\mu,\tau\}. When the Z1,2Z^{\prime}_{1,2} boson mass is 𝒪(10)\mathcal{O}(10) GeV to 𝒪(100)\mathcal{O}(100) GeV, their couplings and masses are strongly constrained by LHC data searching for ppμ+μZ(μ+μ)pp\to\mu^{+}\mu^{-}Z^{\prime}(\to\mu^{+}\mu^{-}) signal CMS:2018yxg . We can also find other constraints in the context of LμLτL_{\mu}-L_{\tau} scenario in ref. Chun:2018ibr which are subdominant in the scenario of this work. The constraint can be relaxed when Z1,2Z^{\prime}_{1,2} dominantly decays into χχ¯\chi\bar{\chi}. We will take this constraint into account in our numerical analysis below.

II.4 Muon g2g-2

In our model, both the Z1Z^{\prime}_{1} and Z2Z^{\prime}_{2} bosons contribute to muon g2g-2 since they interact with muon as given by Eq. (II.3). Calculating one-loop diagrams, we obtain muon g2g-2 such that

Δaμ=gμτ2mμ24π01𝑑x[cX2x2(1x)x2+(1x)rZ1+sX2x2(1x)x2+(1x)rZ2],\Delta a_{\mu}=\frac{g^{2}_{\mu\tau}m^{2}_{\mu}}{4\pi}\int_{0}^{1}dx\left[c_{X}^{2}\frac{x^{2}(1-x)}{x^{2}+(1-x)r_{Z^{\prime}_{1}}}+s_{X}^{2}\frac{x^{2}(1-x)}{x^{2}+(1-x)r_{Z^{\prime}_{2}}}\right], (17)

where rZ1(2)mZ1(2)2/mμ2r_{Z^{\prime}_{1(2)}}\equiv m_{Z^{\prime}_{1(2)}}^{2}/m^{2}_{\mu}. We apply the 3σ3\sigma region obtained by combining FNAL and BNL results that require new contribution to satisfy

(25.13×5.9)×1010Δaμnew(25.1+3×5.9)×1010.(25.1-3\times 5.9)\times 10^{-10}\leq\Delta a^{\rm new}_{\mu}\leq(25.1+3\times 5.9)\times 10^{-10}. (18)

This constraint is imposed in our numerical calculation below.

II.5 Constraint from neutrino trident

Neutrino trident production processes, ν+Nν+N+μ+μ¯\nu+N\to\nu+N+\mu+\bar{\mu}, are neutrino scattering off nucleus producing a muon and anti-muon pair. The cross section of the muon neutrino trident has been measured by past experiments, CHARM-II CHARM-II:1990dvf , CCFR CCFR:1991lpl and NuTeV NuTeV:1999wlw . The current limits on the total cross section are respectively given by

σCHARMIIσSM\displaystyle\frac{\sigma_{\mathrm{CHARM-II}}}{\sigma_{\mathrm{SM}}} =1.58±0.57,\displaystyle=1.58\pm 0.57, (19)
σCCFRσSM\displaystyle\frac{\sigma_{\mathrm{CCFR}}}{\sigma_{\mathrm{SM}}} =0.82±0.28,\displaystyle=0.82\pm 0.28, (20)
σNuTeVσSM\displaystyle\frac{\sigma_{\mathrm{NuTeV}}}{\sigma_{\mathrm{SM}}} =0.720.72+1.73,\displaystyle=0.72^{+1.73}_{-0.72}, (21)

where σSM\sigma_{\mathrm{SM}} is the SM prediction Belusevic:1987cw 333The cross sections were calculated in the V-A theory in Refs.Czyz:1964zz ; Lovseth:1971vv ; Fujikawa:1973vu ; Koike:1971tu ; Koike:1971vg ; Brown:1972vne ..

It was shown in Altmannshofer:2014pba that these limits severely constrain the ZZ^{\prime} mass and its coupling to neutrinos. The sensitivity in on-going and future experiments have been studied, e.g. in Kaneta:2016uyt ; Araki:2017wyg ; Magill:2016hgc ; Ge:2017poy ; Falkowski:2018dmy ; Altmannshofer:2019zhy ; Shimomura:2020tmg . The trident cross section of this model can be obtained by simply replacing the coupling of the SM as

gL/RgL/R2gμτ24GFiaiq2mZi2,\displaystyle g_{L/R}\to g_{L/R}-\frac{\sqrt{2}g_{\mu\tau}^{2}}{4G_{F}}\sum_{i}\frac{a_{i}}{q^{2}-m^{2}_{Z_{i}^{\prime}}}, (22)

where a1=cX2,a2=sX2a_{1}=c_{X}^{2},~{}a_{2}=s_{X}^{2} and gL/Rg_{L/R} is

gL\displaystyle g_{L} =12+sin2θW,\displaystyle=\frac{1}{2}+\sin^{2}\theta_{W}, (23)
gR\displaystyle g_{R} =sin2θW.\displaystyle=\sin^{2}\theta_{W}. (24)

The concrete forms of the amplitudes are given in Shimomura:2020tmg .

To obtain the constraints from the tridents, we have calculated the cross section for CHARM-II and CCFR and compared them with the SM predictions444The result from NuTeV has large uncertainty and includes the null result. Therefore we do not use this result..

II.6 Effective interactions for BK()+B\to K^{(*)}\ell^{+}\ell^{-} and BsB_{s}Bs¯\overline{B_{s}} mixing

Refer to caption
Refer to caption
Figure 1: (a) A diagram inducing Zμb¯γμPLsZ^{\prime}_{\mu}\bar{b}\gamma^{\mu}P_{L}s interaction via mixing between the SM b(s) quark and vector-like quark(s) QVQ_{V} with new U(1)U(1) charge where scalar ϕ\phi connect them. (b) A diagram inducing the interaction via one-loop effect where η\eta is a scalar field with new U(1)U(1) charge.

Firstly we review the mechanisms to explain B decay anomalies by ZZ^{\prime} boson from local U(1)LμLτU(1)_{L_{\mu}-L_{\tau}}. The anomalies can be explained if we have a quark flavor violating interaction Zμb¯γμPLsZ^{\prime}_{\mu}\bar{b}\gamma^{\mu}P_{L}s and ZZ^{\prime}-muon interaction Zνμ¯γνμZ^{\prime}_{\nu}\bar{\mu}\gamma^{\nu}\mu. These interactions induce an effective interaction

eff=4GF2VtbVtsα4πC9(b¯γνPLs)(μ¯γνμ),\mathcal{H}_{\rm eff}=-\frac{4G_{F}}{\sqrt{2}}V_{tb}V^{*}_{ts}\frac{\alpha}{4\pi}C_{9}(\bar{b}\gamma^{\nu}P_{L}s)(\bar{\mu}\gamma_{\nu}\mu), (25)

where the C9C_{9} is a corresponding Wilson coefficient, GFG_{F} is the Fermi constant, VtbV_{tb} and VtsV_{ts} are elements of CKM matrix, and α\alpha is the fine structure constant. To induce Zμb¯γμPLsZ^{\prime}_{\mu}\bar{b}\gamma^{\mu}P_{L}s, we need new fields since the ZZ^{\prime} boson from U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} does not interact with quarks. Possible ways to induce such a flavor violating interaction can be achieved as follows.

  1. 1.

    Zμb¯γμPLsZ^{\prime}_{\mu}\bar{b}\gamma^{\mu}P_{L}s interaction is induced via mixing between U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} charged vector-like quark QVQ_{V} and the SM ones Altmannshofer:2014cfa . We also need a new scalar field ϕ\phi with U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} charge to connect a vector-like quark and SM ones after developing its VEV. An example of diagram inducing the interaction by mixing effect is shown in Fig. 1(a).

  2. 2.

    The interaction is induced at one-loop level by introducing a vector-like quark QVQ_{V} and new scalar field η\eta that are charged under U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} Ko:2017yrd ; Chen:2017usq . An example of diagram inducing the interaction by radiative correction is shown in Fig. 1(b). Interestingly, a scalar field η\eta can be DM candidate.

In fact, they can be obtained by the same field contents, a vector-like quark QVQ_{V} and a scalar field (ϕ=η\phi=\eta) charged under a new U(1)U(1) gauge group(s), where the difference is whether new scalar develops a VEV or not. In this paper, we do not discuss details and we just assume effective X1(2)μb¯γμPLsX_{1(2)\mu}\bar{b}\gamma^{\mu}P_{L}s couplings induced by one of such mechanisms.

In our analysis, we just write effectively induced interactions by

eff=(gbsX1LX1μ+gbsX2LX2μ)bL¯γμsL,\mathcal{L}_{\rm eff}=(g^{L}_{bsX_{1}}X^{\mu}_{1}+g^{L}_{bsX_{2}}X^{\mu}_{2})\overline{b_{L}}\gamma_{\mu}s_{L}, (26)

where we consider couplings gbsX1,2Lg^{L}_{bsX_{1,2}} are free parameters. In mass basis of the gauge bosons {Z1μ,Z2μ}\{Z^{\prime\mu}_{1},Z^{\prime\mu}_{2}\}, the interaction is rewritten by

eff\displaystyle\mathcal{L}_{\rm eff} =[(gbsX1LcXgbsX2LsX)Z1μ+(gbsX1LsX+gbsX2LcX)Z2μ]bL¯γμsL\displaystyle=\left[(g^{L}_{bsX_{1}}c_{X}-g^{L}_{bsX_{2}}s_{X})Z^{\prime\mu}_{1}+(g^{L}_{bsX_{1}}s_{X}+g^{L}_{bsX_{2}}c_{X})Z^{\prime\mu}_{2}\right]\overline{b_{L}}\gamma_{\mu}s_{L}
[gbsZ1LZ1μ+gbsZ2LZ2μ]bL¯γμsL.\displaystyle\equiv\left[g^{L}_{bsZ^{\prime}_{1}}Z^{\prime\mu}_{1}+g^{L}_{bsZ^{\prime}_{2}}Z^{\prime\mu}_{2}\right]\overline{b_{L}}\gamma_{\mu}s_{L}. (27)

Hereafter we consider gbsZ1Lg^{L}_{bsZ^{\prime}_{1}} and gbsZ2Lg^{L}_{bsZ^{\prime}_{2}} as free parameters.

From ZZ^{\prime} exchanging diagram, we obtain contribution to the Wilson coefficient C9C_{9} that is required to explain BB anomalies. Here we assume gbsZ1LgbsZ2Lg^{L}_{bsZ^{\prime}_{1}}\gg g^{L}_{bsZ^{\prime}_{2}} that is required by constraints from BK()ZB\to K^{(*)}Z^{\prime} decay as can be seen in the next subsection. Then contribution to C9C_{9} from Z1Z^{\prime}_{1} exchange is given by

C9ZπcXgμτgbsZ1L2VtbVtsαGFmZ12.C_{9}^{Z^{\prime}}\simeq-\frac{\pi c_{X}g_{\mu\tau}g^{L}_{bsZ^{\prime}_{1}}}{\sqrt{2}V_{tb}V^{*}_{ts}\alpha G_{F}m_{Z^{\prime}_{1}}^{2}}. (28)

Constraint from BsB_{s}Bs¯\overline{B_{s}} mixing : the effective interactions in Eq. (26) also induce the mixing between BsB_{s} and Bs¯\overline{B_{s}} mesons, and a constraint from the meson mixing should be considered. We can find the ratio of BsB_{s}Bs¯\overline{B_{s}} mixing between SM and ZZ^{\prime} contributions as Tuckler:2022fkz ; Altmannshofer:2016jzy

M12ZM12SM(gbsZ1L)2mZ12162π2g2GF(VtbVts)2S0,\frac{M^{Z^{\prime}}_{12}}{M^{\rm SM}_{12}}\simeq\frac{(g^{L}_{bsZ^{\prime}_{1}})^{2}}{m_{Z^{\prime}_{1}}^{2}}\frac{16\sqrt{2}\pi^{2}}{g^{2}G_{F}(V_{tb}V^{*}_{ts})^{2}S_{0}}, (29)

where S02.3S_{0}\simeq 2.3 is the SM loop function Inami:1980fz ; Buchalla:1995vs . Note that we ignored a contribution from Z2Z^{\prime}_{2} since we adopt assumption of gbsZ1LgbsZ2Lg^{L}_{bsZ^{\prime}_{1}}\gg g^{L}_{bsZ^{\prime}_{2}}. Then we rewrite gbsZ1Lg^{L}_{bsZ^{\prime}_{1}} in terms of C9ZC_{9}^{Z^{\prime}} from Eq. (28) as follows:

gbsZ1L=2VtbVtsαπGFC9ZmZ12cXgμτ.g^{L}_{bsZ^{\prime}_{1}}=\sqrt{2}V_{tb}V^{*}_{ts}\frac{\alpha}{\pi}G_{F}C_{9}^{Z^{\prime}}\frac{m_{Z^{\prime}_{1}}^{2}}{c_{X}g_{\mu\tau}}. (30)

Requiring |M12Z|/|M12SM|<0.12|M^{Z^{\prime}}_{12}|/|M^{{\rm SM}}_{12}|<0.12 Charles:2020dfl , we obtain the constraint

mZ1<2.1TeV×cXgμτ|C9Z|.m_{Z^{\prime}_{1}}<2.1\ {\rm TeV}\times\frac{c_{X}g_{\mu\tau}}{|C_{9}^{Z^{\prime}}|}. (31)

We apply the constraint assuming C9Z=1.01C_{9}^{Z^{\prime}}=-1.01 that is the best-fit value in our numerical analysis below.

II.7 BK()ZB\to K^{(*)}Z^{\prime} decay width

In our scenario we consider light Z2Z^{\prime}_{2} to explain muon g2g-2, and we should take into account constraints from BK()ZB\to K^{(*)}Z^{\prime} decay processes that are induced by quark flavor violating coupling in Eq. (II.6). We can estimate decay widths such that Crivellin:2022obd

Γ(BKZ2)=(gsbZ2L)2f+2(mZ22)16πmB2mZ22λ(mB2,mK2,mZ22)32,\displaystyle\Gamma(B\to KZ^{\prime}_{2})=\frac{(g^{L}_{sbZ^{\prime}_{2}})^{2}f^{2}_{+}(m_{Z^{\prime}_{2}}^{2})}{16\pi m_{B}^{2}m^{2}_{Z^{\prime}_{2}}}\lambda(m_{B}^{2},m_{K}^{2},m_{Z^{\prime}_{2}}^{2})^{\frac{3}{2}}, (32)
Γ(BKZ2)\displaystyle\Gamma(B\to K^{*}Z^{\prime}_{2})
=(gsbZ2L)2V2(mZ2)8πmB2(mB+mK)2λ(mB2,mK2,mZ2)32+(gsbZ2L)2A22(mZ22)64πmB2mK2mZ2(mB+mK)2λ(mB2,mK2,mZ22)52\displaystyle=\frac{(g^{L}_{sbZ^{\prime}_{2}})^{2}V^{2}(m^{2}_{Z^{\prime}})}{8\pi m_{B}^{2}(m_{B}+m_{K^{*}})^{2}}\lambda(m_{B}^{2},m_{K^{*}}^{2},m_{Z^{\prime}}^{2})^{\frac{3}{2}}+\frac{(g^{L}_{sbZ^{\prime}_{2}})^{2}A_{2}^{2}(m^{2}_{Z^{\prime}_{2}})}{64\pi m_{B}^{2}m_{K^{*}}^{2}m^{2}_{Z^{\prime}}(m_{B}+m_{K^{*}})^{2}}\lambda(m_{B}^{2},m_{K^{*}}^{2},m_{Z^{\prime}_{2}}^{2})^{\frac{5}{2}}
+(gsbZ2L)2A12(mZ22)[mB4+mK4+mZ4+10mZ22mK22mB2(mK2+mZ22)]64πmB2mK2mZ22λ(mB2,mK2,mZ22)12\displaystyle+\frac{(g^{L}_{sbZ^{\prime}_{2}})^{2}A_{1}^{2}(m^{2}_{Z^{\prime}_{2}})[m_{B}^{4}+m^{4}_{K^{*}}+m^{4}_{Z^{\prime}}+10m^{2}_{Z^{\prime}_{2}}m^{2}_{K^{*}}-2m^{2}_{B}(m^{2}_{K^{*}}+m^{2}_{Z^{\prime}_{2}})]}{64\pi m_{B}^{2}m_{K^{*}}^{2}m_{Z^{\prime}_{2}}^{2}}\lambda(m_{B}^{2},m_{K^{*}}^{2},m_{Z^{\prime}_{2}}^{2})^{\frac{1}{2}}
+(gsbZ2L)2A1(mZ22)A2(mZ22)(mB2mK2mZ22)32πmB2mK2mZ22λ(mB2,mK2,mZ22)32,\displaystyle+\frac{(g^{L}_{sbZ^{\prime}_{2}})^{2}A_{1}(m^{2}_{Z^{\prime}_{2}})A_{2}(m^{2}_{Z^{\prime}_{2}})(m_{B}^{2}-m^{2}_{K^{*}}-m^{2}_{Z^{\prime}_{2}})}{32\pi m_{B}^{2}m_{K^{*}}^{2}m^{2}_{Z^{\prime}_{2}}}\lambda(m_{B}^{2},m_{K^{*}}^{2},m_{Z^{\prime}_{2}}^{2})^{\frac{3}{2}}, (33)

where λ(x,y,z)=x2+y2+z22xy2xz2yz\lambda(x,y,z)=x^{2}+y^{2}+z^{2}-2xy-2xz-2yz and {f+,V,A1,A2}\{f_{+},V,A_{1},A_{2}\} are form factors for BB and K()K^{(*)} mesons Bailey:2015dka . In our scenario, we require mZ2<2mμm_{Z^{\prime}_{2}}<2m_{\mu} and Z2Z^{\prime}_{2} decays into neutrinos or DM that are not observed by the detectors at the experiments searching for rare BB decay modes. We note that narrow width approximation is relevant in our case for Z2Z^{\prime}_{2} decay. We consider Z2Z^{\prime}_{2} decaying into only neutrinos in considering the constraint and decay width is narrow since corresponding coupling is gμτsinθX0.5×0.1g_{\mu\tau}\sin\theta_{X}\lesssim 0.5\times 0.1 in our scenario. We then adopt the following experimental constraints Belle:2017oht ; Belle-II:2021rof

BR(BKνν¯)<1.6×105,BR(BKνν¯)<2.7×105,\displaystyle BR(B\to K\nu\bar{\nu})<1.6\times 10^{-5},\qquad BR(B\to K^{*}\nu\bar{\nu})<2.7\times 10^{-5},
BR(B+K+νν¯)<4.1×105.\displaystyle BR(B^{+}\to K^{+}\nu\bar{\nu})<4.1\times 10^{-5}. (34)

We find that constraint becomes stronger when we take q2q^{2} dependence of detector efficiency into account for B+K+νν¯B^{+}\to K^{+}\nu\bar{\nu} search Belle-II:2021rof since the efficiency is higher for small q2q^{2} region (q2=mZ22(0.2GeV)2q^{2}=m_{Z^{\prime}_{2}}^{2}\lesssim(0.2\ {\rm GeV})^{2}). But we find that the strongest upper bounds of effective coupling gbsZ2Lg^{L}_{bsZ^{\prime}_{2}} for our benchmark points are obtained from constraint on BR(BKνν¯)BR(B\to K^{*}\nu\bar{\nu}) when we assume efficiency for BKZ(νν¯)B\to K^{*}Z^{\prime}(\to\nu\bar{\nu}) is the same as that of BKν¯νB\to K^{*}\bar{\nu}\nu in the SM since q2q^{2} dependence other than B+K+νν¯B^{+}\to K^{+}\nu\bar{\nu} is not known 555The constraint could be stronger when we take q2q^{2} dependence into account since efficiency at small q2q^{2} region could be higher as in the B+K+νν¯B^{+}\to K^{+}\nu\bar{\nu} search..

III Numerical analysis and phenomenological results

In this section, we perform numerical analysis to search for allowed parameter sets that can accommodate required values of muon g2g-2 and C9ZC_{9}^{Z^{\prime}}, evading phenomenological constraints. We then discuss DM physics of the model for benchmark points from allowed parameter sets.

III.1 Parameter scan for muon g2g-2 and BB anomalies

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: The ratio of neutrino trident production cross sections between the SM one and the one including both SM and ZZ^{\prime} contributions. The left(right) plots express cross section ratio as functions of Z1(2)Z^{\prime}_{1(2)} masses. The upper(lower) plots correspond to the ratio in CCFR(CHARM-II) experiments. The shaded regions are excluded by the experiments.

In our analysis, relevant free parameters are

{gμτ,gH,v1,v2},\{g_{\mu\tau},g_{H},v_{1},v_{2}\}, (35)

and our outputs are {mZ1,mZ2,sinθX,Δaμ}\{m_{Z^{\prime}_{1}},m_{Z^{\prime}_{2}},\sin\theta_{X},\Delta a_{\mu}\} obtained from formulae in the previous section. The charge QXQ_{X} for DM is chosen to be 11 for simplicity. We scan our free parameters in the following range:

gμτ[103,101],gH[103,0.5],v1[102,104]GeV,v2[1,103]GeV.\displaystyle g_{\mu\tau}\in[10^{-3},10^{-1}],\quad g_{H}\in[10^{-3},0.5],\quad v_{1}\in[10^{2},10^{4}]\ {\rm GeV},\quad v_{2}\in[1,10^{3}]\ {\rm GeV}. (36)

We then require the following conditions in addition to Eq. (18);

mZ1>5GeV,mZ2<0.2GeV,\displaystyle m_{Z^{\prime}_{1}}>5\ {\rm GeV},\quad m_{Z^{\prime}_{2}}<0.2\ {\rm GeV}, (37)

where the first constraint is motivated to explain bs+b\to s\ell^{+}\ell^{-} anomalies and the second constraint is imposed to realize DM annihilation into neutrinos. In addition, we require Z1Z^{\prime}_{1} dominantly decaying into χχ¯\chi\bar{\chi} by making Γ(Z1χχ¯)Γ(Z1¯,νν¯)\Gamma(Z^{\prime}_{1}\to\chi\bar{\chi})\gg\Gamma(Z^{\prime}_{1}\to\ell^{\prime}\bar{\ell}^{\prime},\nu_{\ell}\bar{\nu}_{\ell^{\prime}}) in Eq. (II.3) imposing the condition

gμτcosθXgHsinθX<3,\frac{g_{\mu\tau}\cos\theta_{X}}{g_{H}\sin\theta_{X}}<3, (38)

in order to relax the constraint from the LHC search for ppμ+μZ(μ+μ)pp\to\mu^{+}\mu^{-}Z^{\prime}(\to\mu^{+}\mu^{-}) signal.

In Fig. 2, we show the ratio of neutrino trident cross section between the SM one and the one including contributions from both the SM and ZZ^{\prime} bosons σZ\sigma_{Z^{\prime}}. The plots in the left(right) sides express the ratio as functions of Z1(2)Z^{\prime}_{1(2)} mass. The upper(lower) plots correspond to the ratio in CCFR(CHARM-II) experiments. The shaded region is excluded by the experiments by 90 %\% confidence level (CL). We find some parameter points are excluded where lighter Z1Z^{\prime}_{1} region and/or heavier Z2Z^{\prime}_{2} region tend to be constrained inducing a larger ratio.

Refer to caption
Refer to caption
Figure 3: Left: correlation between v1v_{1} and v2v_{2} for our allowed region. Right: correlation between gμτg_{\mu\tau} and gHg_{H}.

In the left panel of Fig. 3, we show correlation between v1v_{1} and v2v_{2} for our allowed parameter region. In addition, the right panel of Fig. 3 shows the correlation between two new gauge couplings. We find some correlation between them when we require masses of Z1,2Z^{\prime}_{1,2} as Eq. (37) and muon g2g-2 within 3σ3\sigma CL.

In left(right) plots of Fig. 4, we show the allowed parameter region that satisfies the constraints from neutrino trident and induces sizable muon g2g-2 within 3σ\sigma CL, on {mZ1,gμτ}\{m_{Z^{\prime}_{1}},g_{\mu\tau}\} ({mZ2,gμτsinθX}\{m_{Z^{\prime}_{2}},g_{\mu\tau}\sin\theta_{X}\}) plane. The green shaded region in the left plot is disfavored when we explain bs+b\to s\ell^{+}\ell^{-} anomalies via Z1Z^{\prime}_{1} interaction. Also, for comparison, we added a dotted curve in the same plot indicating the LHC constraint from ppμ+μZ(μ+μ)pp\to\mu^{+}\mu^{-}Z^{\prime}(\to\mu^{+}\mu^{-}) signal search when Z1Z^{\prime}_{1} does not decay into DM; this is not relevant in our case since Z1Z^{\prime}_{1} dominantly decays into DM under our requirement in Eq. (38). We also show excluded region from “e+eμ+μ+invisiblee^{+}e^{-}\to\mu^{+}\mu^{-}+\text{invisible}” search at the Belle II experiment Belle-II:2019qfb as blue shaded region in the right panel of Fig. 4 666There is another constraint from “ppμ+μ+anythingpp\to\mu^{+}\mu^{-}+\text{anything}” search Bishara:2017pje when Z1,2Z^{\prime}_{1,2} mass is few GeV scale. We omit the excluded region since the mass region is outside the plots in Fig. 4. Note also that more parameter region can be tested searching for the “e+eμ+μ+invisiblee^{+}e^{-}\to\mu^{+}\mu^{-}+\text{invisible}” process at the future LHC experiments Elahi:2015vzh ; analysis in the reference indicates that coupling region of gμτsinθX3×104g_{\mu\tau}\sin\theta_{X}\gtrsim 3\times 10^{-4} can be tested for mZ2<2mμm_{Z^{\prime}_{2}}<2m_{\mu} at the HL-LHC with 3 ab-1 integrated luminosity.

In order to discuss DM physics, we choose several benchmark points from our allowed parameter region. In Table 2, we summarize benchmark points (BPs) that satisfy Δaμ\Delta a_{\mu} within 1σ1\sigma C.L. where we also show effective coupling gbsZ1g_{bsZ^{\prime}_{1}} giving C9Z=1.01C_{9}^{Z^{\prime}}=-1.01 and the upper limit of gbsZ2g_{bsZ^{\prime}_{2}} avoiding BB meson decay constraints.

Refer to caption
Refer to caption
Figure 4: The left(right) plot: allowed parameter region that can induce sizable muon g2g-2 within 3σ\sigma range, on {mZ1,gμτ}\{m_{Z^{\prime}_{1}},g_{\mu\tau}\} ({mZ2,gμτsinθX}\{m_{Z^{\prime}_{2}},g_{\mu\tau}\sin\theta_{X}\}) plane. The green-shaded region is disfavored when we explain bs+b\to s\ell^{+}\ell^{-} anomalies. The dotted curve in the left plot is the LHC constraint when Z1Z^{\prime}_{1} cannot decay into the DM. The blue-shaded region in right panel is excluded region from “e+eμ+μ+invisiblee^{+}e^{-}\to\mu^{+}\mu^{-}+\text{invisible}” search at the Belle II experiment.
Input Output
gμτg_{\mu\tau} gHg_{H} v1/GeVv_{1}/{\rm GeV} v2/GeVv_{2}/{\rm GeV} mZ1/GeVm_{Z^{\prime}_{1}}/{\rm GeV} mZ2/GeVm_{Z^{\prime}_{2}}/{\rm GeV} sinθX\sin\theta_{X} Δaμ\Delta a_{\mu} gbsZ1(C9=1.01)g_{bsZ^{\prime}_{1}}^{(C_{9}=-1.01)} gbsZ2maxg_{bsZ^{\prime}_{2}}^{\rm max}
BP1 0.0048 0.16 1.7 ×103\times 10^{3} 47 11 0.19 0.15 2.4×109\times 10^{-9} 3.9×1053.9\times 10^{-5} 5.6×10115.6\times 10^{-11}
BP2 0.0062 0.30 1.3 ×103\times 10^{3} 26 11 0.18 0.11 2.1 ×109\times 10^{-9} 3.1×1053.1\times 10^{-5} 5.3×10115.3\times 10^{-11}
BP3 0.0072 0.33 1.2 ×103\times 10^{3} 24 12 0.19 0.12 3.1 ×109\times 10^{-9} 3.1×1053.1\times 10^{-5} 5.6×10115.6\times 10^{-11}
BP4 0.0056 0.35 1.8 ×103\times 10^{3} 28 14 0.20 0.11 1.5 ×109\times 10^{-9} 5.4×1055.4\times 10^{-5} 5.9×10115.9\times 10^{-11}
Table 2: Benchmark points that satisfy phenomenological constraints.

III.2 Relic density of DM

We discuss the relic density of DM applying our benchmark points for new gauge couplings and Z1,2Z^{\prime}_{1,2} masses. The dominant DM annihilation in our benchmark points is χ¯χZ2νν¯\bar{\chi}\chi\to Z^{\prime}_{2}\to\nu\bar{\nu} via ss-channel, where we consider DM mass less than 0.10.1 GeV so as to forbid annihilation into muon and tauon modes kinematically. We calculate the relic density of DM using MicrOMEGAs 5.2.4 Belanger:2014vza where we input relevant interactions and parameters into the code. Here four BPs in Table. 2 are applied for gauge boson masses and couplings, and we scan DM mass as a free parameter within the range of [0.005,0.1][0.005,0.1] GeV. In Fig. 5, we show the relic density of the DM as a function of mass for each BPs. The observed relic density Ωh2=0.1200±0.0012\Omega h^{2}=0.1200\pm 0.0012 is shown as black dashed line Planck:2018vyg . We find that observed relic density can be obtained at non-resonant regions due to the sizable value of the gHg_{H} coupling.

Refer to caption
Figure 5: Relic density of DM as a function of mass for each BP.

III.3 Neutrino signature from DM annihilation

As discussed in Section III.2, the DM annihilation channel that gives the major contribution at the benchmark points is neutrino pair production. It is the main annihilation channel for the indirect detection of DM as well as relic abundance. Even though the neutrino final state is difficult to detect, the neutrino flux can be monochromatic because the kinetic energy of the neutrino is the same as DM mass in the initial state. The most promising way for detecting such a signal is underground neutrino detectors. Several experiments have already put limits on the current thermally-averaged DM annihilation cross section to neutrinos σv0\langle\sigma v\rangle_{0}. They give the following constraints Palomares-Ruiz:2007trf ; Olivares-DelCampo:2017feq ; Arguelles:2019ouk ; Borexino σv04×10241022\langle\sigma v\rangle_{0}\lesssim 4\times 10^{-24}-10^{-22} cm3/s for the DM mass range of [1-10] MeV and Super-Kamiokande (SK) and KamLAND σv04×10268×1025\langle\sigma v\rangle_{0}\lesssim 4\times 10^{-26}-8\times 10^{-25} cm3/s for the range of [10-103] MeV. These constraints are not so stringent, and a wider parameter range is expected to be verified by Hyper-Kamiokande (HK) and JUNO in the future. Figure 6 shows the current and expected constraints to the proposed model from neutrino detection experiments. The orange, pink, gray and blue-filled regions correspond to constraints by Borexino, KamLAND, SK-ν¯e\bar{\nu}_{e} and SK, respectively. As the next generation experiment, the expected limit by HK for 20 years run time supposing NFW profile Navarro:1995iw is shown in the dashed cyan line Bell:2020rkw . For detailed profile dependence on HK limits, see Ref. Bell:2020rkw . The expected limit by JUNO for 20 years run time is also shown in the red, dot-dashed orange, dashed blue, and dotted light-green lines; each line corresponds to the case of generalized NFW Benito:2019ngh , NFW, Moore Moore:1999gc , and Isothermal Bahcall:1980 profiles of dark matter in the Galaxy Akita:2022lit . Even though the dependence on the dark matter profile is considerable, there is a possibility to generally check BP1 with HK. A similar rough check can be possible for BP1, BP2, and BP4 by JUNO.

Refer to caption
Figure 6: Thermal cross section at the current universe for each BP compared with several experimental constraints and perspective.

IV Summary and Conclusions

In this paper, we have discussed a model in which two different extra U(1)U(1) gauge symmetries are introduced. The one is local U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} symmetry and the other one is hidden U(1)U(1) symmetry under which the SM fields are neutral. After spontaneous symmetry breakings of these U(1)U(1), we have two ZZ^{\prime} bosons that mix each other and they interact with μ\mu and τ\tau flavor leptons. The mass eigenvalues and eigenstates for two ZZ^{\prime} bosons are formulated by gauge interactions in mass basis. We also introduced DM candidate which is Dirac fermion charged under hidden U(1)U(1).

We have derived some phenomenological formulas associated with ZZ^{\prime} interactions such as muon g2g-2, effective interactions for semi-leptonic BB meson decays, BB meson decay width for the mode including light ZZ^{\prime} and K()K^{(*)} meson and cross section for neutrino trident process. Then we have considered a scenario where heavier ZZ^{\prime} has a mass of 𝒪(10)\mathcal{O}(10) GeV and the lighter ZZ^{\prime} has 𝒪(10)\mathcal{O}(10) MeV, and carried out numerical analysis searching for parameter region which is allowed by phenomenological constraints and induce sizable muon g2g-2. Some benchmark points have been found that are phenomenologically viable. For these benchmark points, we have discussed DM physics scanning its mass where DM dominantly annihilates into neutrinos thanks to the gauge mixing and U(1)LμLτU(1)_{L_{\mu}-L\tau}, and found mass points that explain observed relic density. Furthermore, we have estimated DM annihilation cross section in the current universe and discussed the possibility of observing neutrino signatures from DM annihilation at neutrino experiments such as HK and JUNO. It has been found that some benchmark points can be tested at HK and/or JUNO for some DM profiles in the future.

Before closing our paper, it is worthwhile mentioning the neutrino sector. In fact, our model provides a type 𝐂𝐑{\bf C^{R}} in Table 1 of ref. Asai:2018ocx , i.e., (mν1)22=(mν1)330(m_{\nu}^{-1})_{22}=(m_{\nu}^{-1})_{33}\simeq 0, where mνm_{\nu} is neutrino mass matrix that is constructed by canonical seesaw and the neutrino mass texture is determined only via structure of Majorana mass matrix νR\nu_{R}. Therefore, the Dirac mass matrix and the charged-lepton one are diagonal due to the gauged U(1)LμLτU(1)_{L_{\mu}-L_{\tau}} assignments. The 𝐂𝐑{\bf C^{R}} leads us to some predictions such as Dirac CP phase, sum of neutrino masses, and the effective mass for neutrinoless double beta decay which has already been discussed in e.g. ref. Asai:2017ryy .

Acknowledgments

The work was supported by JSPS Grant-in-Aid for Scientific Research (C) 21K03562 and (C) 21K03583 (K. I. N). This research was supported by an appointment to the JRG Program at the APCTP through the Science and Technology Promotion Fund and Lottery Fund of the Korean Government. This was also supported by the Korean Local Governments - Gyeongsangbuk-do Province and Pohang City (H.O.). H. O. is sincerely grateful for KIAS and all the members. The work was also supported by the Fundamental Research Funds for the Central Universities (T. N.). The work was supported by JSPS KAKENHI Grant Nos. JP18K03651, JP18H01210, JP22K03622 and MEXT KAKENHI Grant No. JP18H05543 (T. S.).

References

  • (1) B. Abi et al. [Muon g-2], Phys. Rev. Lett. 126 (2021) no.14, 141801 doi:10.1103/PhysRevLett.126.141801 [arXiv:2104.03281 [hep-ex]].
  • (2) K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T. Teubner, J. Phys. G 38, 085003 (2011) [arXiv:1105.3149 [hep-ph]].
  • (3) T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Phys. Rev. Lett. 109, 111808 (2012) doi:10.1103/PhysRevLett.109.111808 [arXiv:1205.5370 [hep-ph]].
  • (4) T. Aoyama, T. Kinoshita and M. Nio, Atoms 7, no.1, 28 (2019) doi:10.3390/atoms7010028
  • (5) A. Czarnecki, W. J. Marciano and A. Vainshtein, Phys. Rev. D 67, 073006 (2003) [erratum: Phys. Rev. D 73, 119901 (2006)] doi:10.1103/PhysRevD.67.073006 [arXiv:hep-ph/0212229 [hep-ph]].
  • (6) C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, Phys. Rev. D 88, 053005 (2013) doi:10.1103/PhysRevD.88.053005 [arXiv:1306.5546 [hep-ph]].
  • (7) A. Keshavarzi, D. Nomura and T. Teubner, Phys. Rev. D 97, no.11, 114025 (2018) doi:10.1103/PhysRevD.97.114025 [arXiv:1802.02995 [hep-ph]].
  • (8) G. Colangelo, M. Hoferichter and P. Stoffer, JHEP 02, 006 (2019) doi:10.1007/JHEP02(2019)006 [arXiv:1810.00007 [hep-ph]].
  • (9) M. Hoferichter, B. L. Hoid and B. Kubis, JHEP 08, 137 (2019) doi:10.1007/JHEP08(2019)137 [arXiv:1907.01556 [hep-ph]].
  • (10) A. Keshavarzi, D. Nomura and T. Teubner, Phys. Rev. D 101, no.1, 014029 (2020) doi:10.1103/PhysRevD.101.014029 [arXiv:1911.00367 [hep-ph]].
  • (11) A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Phys. Lett. B 734, 144-147 (2014) doi:10.1016/j.physletb.2014.05.043 [arXiv:1403.6400 [hep-ph]].
  • (12) K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004) doi:10.1103/PhysRevD.70.113006 [arXiv:hep-ph/0312226 [hep-ph]].
  • (13) P. Masjuan and P. Sanchez-Puertas, Phys. Rev. D 95, no.5, 054026 (2017) doi:10.1103/PhysRevD.95.054026 [arXiv:1701.05829 [hep-ph]].
  • (14) G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, JHEP 04, 161 (2017) doi:10.1007/JHEP04(2017)161 [arXiv:1702.07347 [hep-ph]].
  • (15) M. Hoferichter, B. L. Hoid, B. Kubis, S. Leupold and S. P. Schneider, JHEP 10, 141 (2018) doi:10.1007/JHEP10(2018)141 [arXiv:1808.04823 [hep-ph]].
  • (16) A. Gérardin, H. B. Meyer and A. Nyffeler, Phys. Rev. D 100, no.3, 034520 (2019) doi:10.1103/PhysRevD.100.034520 [arXiv:1903.09471 [hep-lat]].
  • (17) J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Phys. Lett. B 798, 134994 (2019) doi:10.1016/j.physletb.2019.134994 [arXiv:1908.03331 [hep-ph]].
  • (18) G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub and P. Stoffer, JHEP 03, 101 (2020) doi:10.1007/JHEP03(2020)101 [arXiv:1910.13432 [hep-ph]].
  • (19) T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung and C. Lehner, Phys. Rev. Lett. 124, no.13, 132002 (2020) doi:10.1103/PhysRevLett.124.132002 [arXiv:1911.08123 [hep-lat]].
  • (20) G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Phys. Lett. B 735, 90-91 (2014) doi:10.1016/j.physletb.2014.06.012 [arXiv:1403.7512 [hep-ph]].
  • (21) M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C 77, no.12, 827 (2017) doi:10.1140/epjc/s10052-017-5161-6 [arXiv:1706.09436 [hep-ph]].
  • (22) M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C 80, no.3, 241 (2020) [erratum: Eur. Phys. J. C 80, no.5, 410 (2020)] doi:10.1140/epjc/s10052-020-7792-2 [arXiv:1908.00921 [hep-ph]].
  • (23) S. Borsanyi, Z. Fodor, J. N. Guenther, C. Hoelbling, S. D. Katz, L. Lellouch, T. Lippert, K. Miura, L. Parato and K. K. Szabo, et al. Nature 593 (2021) no.7857, 51-55 doi:10.1038/s41586-021-03418-1 [arXiv:2002.12347 [hep-lat]].
  • (24) C. Alexandrou, S. Bacchio, P. Dimopoulos, J. Finkenrath, R. Frezzotti, G. Gagliardi, M. Garofalo, K. Hadjiyiannakou, B. Kostrzewa and K. Jansen, et al. [arXiv:2206.15084 [hep-lat]].
  • (25) M. Cè, A. Gérardin, G. von Hippel, R. J. Hudspith, S. Kuberski, H. B. Meyer, K. Miura, D. Mohler, K. Ottnad and P. Srijit, et al. [arXiv:2206.06582 [hep-lat]].
  • (26) A. Crivellin, M. Hoferichter, C. A. Manzari and M. Montull, arXiv:2003.04886 [hep-ph].
  • (27) E. de Rafael, Phys. Rev. D 102 (2020) no.5, 056025 [arXiv:2006.13880 [hep-ph]].
  • (28) A. Keshavarzi, W. J. Marciano, M. Passera and A. Sirlin, Phys. Rev. D 102 (2020) no.3, 033002 doi:10.1103/PhysRevD.102.033002 [arXiv:2006.12666 [hep-ph]].
  • (29) M. Passera, W. J. Marciano and A. Sirlin, Phys. Rev. D 78 (2008), 013009 [arXiv:0804.1142 [hep-ph]].
  • (30) W. Altmannshofer, S. Gori, S. Profumo and F. S. Queiroz, JHEP 12 (2016), 106 [arXiv:1609.04026 [hep-ph]].
  • (31) D. Tuckler, [arXiv:2209.03397 [hep-ph]].
  • (32) P. Ko, T. Nomura and H. Okada, Phys. Rev. D 95 (2017) no.11, 111701 [arXiv:1702.02699 [hep-ph]].
  • (33) C. H. Chen and T. Nomura, Phys. Lett. B 777 (2018), 420-427 [arXiv:1707.03249 [hep-ph]].
  • (34) A. Crivellin, G. D’Ambrosio and J. Heeck, Phys. Rev. Lett. 114, 151801 (2015) [arXiv:1501.00993 [hep-ph]].
  • (35) A. Crivellin, G. D’Ambrosio and J. Heeck, Phys. Rev. D 91, no.7, 075006 (2015) [arXiv:1503.03477 [hep-ph]].
  • (36) S. Baek, JHEP 05, 104 (2019) [arXiv:1901.04761 [hep-ph]].
  • (37) Z. L. Han, R. Ding, S. J. Lin and B. Zhu, Eur. Phys. J. C 79, no.12, 1007 (2019) [arXiv:1908.07192 [hep-ph]].
  • (38) N. Kumar, T. Nomura and H. Okada, Chin. Phys. C 46 (2022) no.4, 043106 [arXiv:2002.12218 [hep-ph]].
  • (39) W. Chao, H. Wang, L. Wang and Y. Zhang, Chin. Phys. C 45, no.8, 083105 (2021) [arXiv:2102.07518 [hep-ph]].
  • (40) D. Borah, M. Dutta, S. Mahapatra and N. Sahu, [arXiv:2109.02699 [hep-ph]].
  • (41) W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Phys. Rev. D 89 (2014), 095033 [arXiv:1403.1269 [hep-ph]].
  • (42) A. Crivellin, C. A. Manzari, W. Altmannshofer, G. Inguglia, P. Feichtinger and J. Martin Camalich, Phys. Rev. D 106 (2022) no.3, L031703 doi:10.1103/PhysRevD.106.L031703 [arXiv:2202.12900 [hep-ph]].
  • (43) G. Hiller and F. Kruger, Phys. Rev. D 69, 074020 (2004) [hep-ph/0310219].
  • (44) C. Bobeth, G. Hiller and G. Piranishvili, JHEP 0712, 040 (2007) [arXiv:0709.4174 [hep-ph]].
  • (45) R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  113, 151601 (2014) [arXiv:1406.6482 [hep-ex]].
  • (46) R. Aaij et al. [LHCb], Phys. Rev. Lett. 122 (2019) no.19, 191801 [arXiv:1903.09252 [hep-ex]].
  • (47) R. Aaij et al. [LHCb], [arXiv:2103.11769 [hep-ex]].
  • (48) S. Descotes-Genon, J. Matias, M. Ramon and J. Virto, JHEP 1301, 048 (2013) [arXiv:1207.2753 [hep-ph]].
  • (49) R. Aaij et al. [LHCb Collaboration], JHEP 1602, 104 (2016) [arXiv:1512.04442 [hep-ex]].
  • (50) R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  111, 191801 (2013) [arXiv:1308.1707 [hep-ex]].
  • (51) A. Abdesselam et al. [Belle Collaboration], arXiv:1604.04042 [hep-ex].
  • (52) S. Wehle et al. [Belle Collaboration], arXiv:1612.05014 [hep-ex].
  • (53) R. Aaij et al. [LHCb], JHEP 08 (2017), 055 [arXiv:1705.05802 [hep-ex]].
  • (54) [LHCb], [arXiv:2212.09152 [hep-ex]].
  • (55) [LHCb], [arXiv:2212.09153 [hep-ex]].
  • (56) A. Das, T. Nomura and T. Shimomura, [arXiv:2212.11674 [hep-ph]].
  • (57) T. Nomura and T. Shimomura, Eur. Phys. J. C 81 (2021) no.4, 297 [arXiv:2012.13049 [hep-ph]].
  • (58) T. Nomura and T. Shimomura, Eur. Phys. J. C 79 (2019) no.7, 594 [arXiv:1803.00842 [hep-ph]].
  • (59) T. Inami and C. S. Lim, Prog. Theor. Phys. 65 (1981), 297 [erratum: Prog. Theor. Phys. 65 (1981), 1772] doi:10.1143/PTP.65.297
  • (60) G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68 (1996), 1125-1144 doi:10.1103/RevModPhys.68.1125 [arXiv:hep-ph/9512380 [hep-ph]].
  • (61) J. Charles, S. Descotes-Genon, Z. Ligeti, S. Monteil, M. Papucci, K. Trabelsi and L. Vale Silva, Phys. Rev. D 102 (2020) no.5, 056023 doi:10.1103/PhysRevD.102.056023 [arXiv:2006.04824 [hep-ph]].
  • (62) A. M. Sirunyan et al. [CMS], Phys. Lett. B 792 (2019), 345-368 doi:10.1016/j.physletb.2019.01.072 [arXiv:1808.03684 [hep-ex]].
  • (63) E. J. Chun, A. Das, J. Kim and J. Kim, JHEP 02, 093 (2019) [erratum: JHEP 07, 024 (2019)] doi:10.1007/JHEP02(2019)093 [arXiv:1811.04320 [hep-ph]].
  • (64) J. A. Bailey, A. Bazavov, C. Bernard, C. M. Bouchard, C. DeTar, D. Du, A. X. El-Khadra, J. Foley, E. D. Freeland and E. Gámiz, et al. Phys. Rev. D 93 (2016) no.2, 025026 doi:10.1103/PhysRevD.93.025026 [arXiv:1509.06235 [hep-lat]].
  • (65) J. Grygier et al. [Belle], Phys. Rev. D 96 (2017) no.9, 091101 doi:10.1103/PhysRevD.96.091101 [arXiv:1702.03224 [hep-ex]].
  • (66) G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput.¥ Phys.¥ Commun.¥ ¥bf 192, 322 (2015) [arXiv:1407.6129 [hep-ph]].
  • (67) N. Aghanim et al. [Planck], Astron. Astrophys. 641, A6 (2020) [erratum: Astron. Astrophys. 652, C4 (2021)] doi:10.1051/0004-6361/201833910 [arXiv:1807.06209 [astro-ph.CO]].
  • (68) S. Palomares-Ruiz and S. Pascoli, Phys. Rev. D 77, 025025 (2008) doi:10.1103/PhysRevD.77.025025 [arXiv:0710.5420 [astro-ph]].
  • (69) A. Olivares-Del Campo, C. Bœhm, S. Palomares-Ruiz and S. Pascoli, Phys. Rev. D 97, no.7, 075039 (2018) doi:10.1103/PhysRevD.97.075039 [arXiv:1711.05283 [hep-ph]].
  • (70) C. A. Argüelles, A. Diaz, A. Kheirandish, A. Olivares-Del-Campo, I. Safa and A. C. Vincent, Rev. Mod. Phys. 93, no.3, 035007 (2021) doi:10.1103/RevModPhys.93.035007 [arXiv:1912.09486 [hep-ph]].
  • (71) N. F. Bell, M. J. Dolan and S. Robles, JCAP 09, 019 (2020) doi:10.1088/1475-7516/2020/09/019 [arXiv:2005.01950 [hep-ph]].
  • (72) K. Akita, G. Lambiase, M. Niibo and M. Yamaguchi, JCAP 10, 097 (2022) doi:10.1088/1475-7516/2022/10/097 [arXiv:2206.06755 [hep-ph]].
  • (73) J. F. Navarro, C. S. Frenk and S. D. M. White, Astrophys. J. 462, 563-575 (1996) doi:10.1086/177173 [arXiv:astro-ph/9508025 [astro-ph]].
  • (74) M. Benito, A. Cuoco and F. Iocco, JCAP 03, 033 (2019) doi:10.1088/1475-7516/2019/03/033 [arXiv:1901.02460 [astro-ph.GA]].
  • (75) B. Moore, T. R. Quinn, F. Governato, J. Stadel and G. Lake, Mon. Not. Roy. Astron. Soc. 310, 1147-1152 (1999) doi:10.1046/j.1365-8711.1999.03039.x [arXiv:astro-ph/9903164 [astro-ph]].
  • (76) J. N. Bahcall and R. M. Soneira, , ApJS 44 (1980) 73
  • (77) D. Geiregat et al. [CHARM-II], Phys. Lett. B 245, 271-275 (1990) doi:10.1016/0370-2693(90)90146-W
  • (78) S. R. Mishra et al. [CCFR], Phys. Rev. Lett. 66, 3117-3120 (1991) doi:10.1103/PhysRevLett.66.3117
  • (79) T. Adams et al. [NuTeV], Phys. Rev. D 61, 092001 (2000) doi:10.1103/PhysRevD.61.092001 [arXiv:hep-ex/9909041 [hep-ex]].
  • (80) R. Belusevic and J. Smith, Phys. Rev. D 37, 2419 (1988) doi:10.1103/PhysRevD.37.2419
  • (81) W. Czyz, G. C. Sheppey and J. D. Walecka, Nuovo Cim. 34, 404-435 (1964) doi:10.1007/BF02734586
  • (82) J. Lovseth and M. Radomiski, Phys. Rev. D 3, 2686-2706 (1971) doi:10.1103/PhysRevD.3.2686
  • (83) K. Fujikawa, Annals Phys. 75, 491-502 (1973) doi:10.1016/0003-4916(73)90078-X
  • (84) K. Koike, M. Konuma, K. Kurata and K. Sugano, Prog. Theor. Phys. 46, 1150-1169 (1971) doi:10.1143/PTP.46.1150
  • (85) K. Koike, M. Konuma, K. Kurata and K. Sugano, Prog. Theor. Phys. 46, 1799-1804 (1971) doi:10.1143/PTP.46.1799
  • (86) R. W. Brown, R. H. Hobbs, J. Smith and N. Stanko, Phys. Rev. D 6, 3273-3292 (1972) doi:10.1103/PhysRevD.6.3273
  • (87) W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Phys. Rev. Lett. 113, 091801 (2014) doi:10.1103/PhysRevLett.113.091801 [arXiv:1406.2332 [hep-ph]].
  • (88) Y. Kaneta and T. Shimomura, PTEP 2017, no.5, 053B04 (2017) doi:10.1093/ptep/ptx050 [arXiv:1701.00156 [hep-ph]].
  • (89) T. Araki, S. Hoshino, T. Ota, J. Sato and T. Shimomura, Phys. Rev. D 95, no.5, 055006 (2017) doi:10.1103/PhysRevD.95.055006 [arXiv:1702.01497 [hep-ph]].
  • (90) G. Magill and R. Plestid, Phys. Rev. D 95, no.7, 073004 (2017) doi:10.1103/PhysRevD.95.073004 [arXiv:1612.05642 [hep-ph]].
  • (91) S. F. Ge, M. Lindner and W. Rodejohann, Phys. Lett. B 772, 164-168 (2017) doi:10.1016/j.physletb.2017.06.020 [arXiv:1702.02617 [hep-ph]].
  • (92) A. Falkowski, G. Grilli di Cortona and Z. Tabrizi, JHEP 04, 101 (2018) doi:10.1007/JHEP04(2018)101 [arXiv:1802.08296 [hep-ph]].
  • (93) W. Altmannshofer, S. Gori, J. Martín-Albo, A. Sousa and M. Wallbank, Phys. Rev. D 100, no.11, 115029 (2019) doi:10.1103/PhysRevD.100.115029 [arXiv:1902.06765 [hep-ph]].
  • (94) T. Shimomura and Y. Uesaka, Phys. Rev. D 103, no.3, 035022 (2021) doi:10.1103/PhysRevD.103.035022 [arXiv:2009.13773 [hep-ph]].
  • (95) F. Abudinén et al. [Belle-II], Phys. Rev. Lett. 127 (2021) no.18, 181802 doi:10.1103/PhysRevLett.127.181802 [arXiv:2104.12624 [hep-ex]].
  • (96) I. Adachi et al. [Belle-II], Phys. Rev. Lett. 124 (2020) no.14, 141801 doi:10.1103/PhysRevLett.124.141801 [arXiv:1912.11276 [hep-ex]].
  • (97) F. Bishara, U. Haisch and P. F. Monni, Phys. Rev. D 96 (2017) no.5, 055002 doi:10.1103/PhysRevD.96.055002 [arXiv:1705.03465 [hep-ph]].
  • (98) F. Elahi and A. Martin, Phys. Rev. D 93 (2016) no.1, 015022 doi:10.1103/PhysRevD.93.015022 [arXiv:1511.04107 [hep-ph]].
  • (99) K. Asai, K. Hamaguchi, N. Nagata, S. Y. Tseng and K. Tsumura, Phys. Rev. D 99 (2019) no.5, 055029 doi:10.1103/PhysRevD.99.055029 [arXiv:1811.07571 [hep-ph]].
  • (100) K. Asai, K. Hamaguchi and N. Nagata, Eur. Phys. J. C 77 (2017) no.11, 763 doi:10.1140/epjc/s10052-017-5348-x [arXiv:1705.00419 [hep-ph]].