This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Neutrinoless double-beta decay in a finite volume from relativistic effective field theory

Y. L. Yang State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China    P. W. Zhao [email protected] State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
Abstract

The neutrinoless double-beta decay process nnppeenn\rightarrow ppee within the light Majorana-exchange scenario is studied using the relativistic pionless effective field theory (EFT) in finite-volume cubic boxes with the periodic boundary conditions. Using the low-energy two-nucleon scattering observables from lattice QCD available at mπ=300m_{\pi}=300, 450, 510, and 806 MeV, the leading-order nnppeenn\rightarrow ppee transition matrix elements are predicted and their volume dependence is investigated. The predictions for the nnppeenn\rightarrow ppee transition matrix elements can be directly compared to the lattice QCD calculations of the nnppeenn\rightarrow ppee process at the same pion masses. In particular for the matrix element at mπ=806m_{\pi}=806 MeV, the predictions with relativistic pionless EFT are confronted to the recent first lattice QCD evaluation. Therefore, the present results are expected to play a crucial role in the benchmark between the nuclear EFTs and the upcoming lattice QCD calculations of the nnppeenn\rightarrow ppee process, which would provide a nontrivial test on the predictive power of nuclear EFTs on neutrinoless double-beta decay.

I Introduction

Neutrinoless double-beta decay (0νββ0\nu\beta\beta) is a second-order weak process, where a nucleus decays to its neighboring nucleus by turning two neutrons to two protons, emitting two electrons but no corresponding antineutrinos [1]. It violates the lepton number conservation of the Standard Model (SM) of particle physics and, if observed, would confirm that neutrinos are of Majorana nature [2, 3]. The theoretical calculations of the 0νββ0\nu\beta\beta decay rate, combined with experimental searches [4, 5, 6, 7, 8, 9, 10, 11], will advance our knowledge of beyond-Standard-Model (BSM) mechanisms that may be responsible for this process. Moreover, the theoretical predictions of the expected decay rate in the given BSM scenarios will benefit the planned experiments on 0νββ0\nu\beta\beta [12]. However, the theoretical calculations so far suffer from considerable uncertainties, which hamper the interpretation of current experimental limits on 0νββ0\nu\beta\beta and potential future discoveries.

A major source of uncertainty in calculating the 0νββ0\nu\beta\beta decay rate is the nuclear matrix elements between the initial and final nuclear states. For the isotopes of experimental interest for 0νββ0\nu\beta\beta searches, such uncertainties stem from both the approximations in nuclear-structure models used to solve the many-body wave function, as well as the uncertainties in the 0νββ0\nu\beta\beta decay operator [13]. The latter can be singled out by studying the amplitude of 0νββ0\nu\beta\beta decay in the two-nucleon sector, i.e., nnppeenn\rightarrow ppee, since the two-body wave function can be accurately solved in this case. Although the nnppeenn\rightarrow ppee transition is not observed in the free space, it occurs as the key subprocess in the 0νββ0\nu\beta\beta decay in nuclei.

Nuclear effective field theories (EFTs) play an important role in addressing the uncertainties of nuclear matrix elements. Depending on the energy regime of interest, the nuclear EFTs include the chiral EFT [14, 15], designed for momenta of the order of the pion mass mπm_{\pi}, and the pionless EFT [16, 17, 18, 19, 20, 21], which focuses on momenta well below mπm_{\pi} (For recent reviews, see Refs. [22, 23, 24]). Based on a power-counting scheme, they can provide an order-by-order routine to improve the 0νββ0\nu\beta\beta decay operator, which can then be used as inputs in nuclear-structure calculations. The 0νββ0\nu\beta\beta decay operators derived from the nuclear EFTs under various BSM scenarios [25, 26, 27, 28, 29, 30, 31, 32, 33], as well as their impacts on the nuclear matrix elements [34, 35, 36, 37, 38, 39, 40], have been extensively studied in the literature. Here, we focus on the widely considered BSM scenario, the light Majorana-neutrino exchange [41]. At leading order (LO), according to the Weinberg power counting of chiral EFT, the only contribution to the 0νββ0\nu\beta\beta decay operator comes from the long-range neutrino exchange [27]. However, in the nonrelativistic heavy-baryon formulation, a renormalization-group analysis showed that a nnppeenn\rightarrow ppee contact term should be promoted to LO to ensure renomalizability [28, 29]. The low-energy constant (LEC) of this contact term is so far highly uncertain because it can only be fixed by fitting to lepton-number-violating data, currently unavailable. Subsequently, a synthetic datum of the nnppeenn\rightarrow ppee amplitude is proposed by developing a generalized Cottingham formula [31, 32]. Nevertheless, this approach introduces model-dependent inputs for elastic intermediate states and neglects inelastic contributions, and the resulting uncertainties need to be further scrutinized.

In contrast to the nonrelativistic formulation, it was recently found that the uncertain nnppeenn\rightarrow ppee contact term is not required at LO in the relativistic formulation of chiral EFT [33]. This formulation is similar to the so-called modified Weinberg approach [42] developed for two-nucleon scattering, proven to be useful to improve the renormalizability of two-nucleon scattering phase shifts [42] and the binding energies of few-body systems [43, 44]. Thanks to the milder ultraviolet behavior of the relativistic scattering equation, the nnppeenn\rightarrow ppee amplitude from long-range neutrino exchange is ultraviolet finite and, thus, can be properly renormalized without promoting the uncertain contact term to the LO decay operator [33]. As a result, the nnppeenn\rightarrow ppee amplitudes are predicted in a way that is free of model-dependent inputs beyond the EFT framework and can serve as alternative synthetic data to estimate the LEC of the LO nnppeenn\rightarrow ppee contact term in the nonrelativistic formulation. The predicted nnppeenn\rightarrow ppee amplitudes from the relativistic chiral EFT are slightly larger, by about 10%-40% than the amplitudes from the generalized Cottingham formula [31], depending on the kinematics. This discrepancy in the amplitudes will in turn propagate to the contact-term contribution in nuclear structure calculations of realistic 0νββ0\nu\beta\beta decay. Therefore, it is crucial to validate the nnppeenn\rightarrow ppee amplitudes obtained by the existing approaches.

A direct way to validate the EFT predictions on the nnppeenn\rightarrow ppee amplitudes is to perform first-principles lattice QCD (LQCD) calculations that incorporate the dynamics of quarks and gluons [45, 46, 47, 48, 49, 50, 51]. In fact, LQCD has already demonstrated its reach and capability in constraining the pionic amplitudes for the 0νββ0\nu\beta\beta processes ππee\pi^{-}\pi^{-}\rightarrow ee and ππ+ee\pi^{-}\rightarrow\pi^{+}ee within the light Majorana-neutrino exchange scenario [52, 53, 54] and the ππ+ee\pi^{-}\rightarrow\pi^{+}ee process within a heavy-scale scenario [55]. The LQCD calculations of the processes involving two nucleons are more complicated. The LQCD computations for the two-neutrino double beta decay nnppeeν¯eν¯enn\rightarrow ppee\overline{\nu}_{e}\overline{\nu}_{e} [56, 57] and, recently, the 0νββ0\nu\beta\beta decay nnppeenn\rightarrow ppee [58] have been achieved. However, these calculations are currently tractable only at unphysical heavy pion masses, due to the computational cost. Therefore, to directly benchmark with the available and upcoming LQCD results of the nnppeenn\rightarrow ppee process, the nuclear EFTs need to be implemented at the heavy pion masses same as those in the LQCD calculations.

In addition, the LQCD calculations of the matrix elements are implemented on a finite-volume lattice in Euclidean spacetime, which means that there are no asymptotic states. In contrast, the nuclear EFTs calculate the scattering amplitudes within the infinite volume in Minkowski spacetime. The matching procedure between the Euclidean finite-volume matrix elements and the infinite-volume scattering amplitude for the nnppeenn\rightarrow ppee process has been developed [59, 60]. It builds upon the major developments in recent years in accessing transition amplitudes in hadronic physics from the corresponding finite-volume Euclidean matrix elements [61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71] and, in particular, the similar procedure developed for two-neutrino double-beta decay nnppeeν¯eν¯enn\rightarrow ppee\overline{\nu}_{e}\overline{\nu}_{e} [72]. First, the connection between the Euclidean matrix element, accessible in LQCD, and its Minkowski counterpart is constructed. Then, the nonrelativistic formulation of LO pionless EFT is implemented in a finite volume to derive the Minkowski counterpart of the LQCD matrix element. The Minkowski matrix element depends on the LEC of the LO nnppeenn\rightarrow ppee contact term in the pionless EFT, whose size is still uncertain. In Ref. [60], this LEC is estimated from the generalized Cottingham formula [31, 32]. However, this estimation is only applicable at the physical pion mass. At the unphysical heavy pion mass tractable in the LQCD calculations, the nonrelativistic pionless EFT needs to fit the LQCD results of the nnppeenn\rightarrow ppee matrix elements to fix the unknown LEC of nnppeenn\rightarrow ppee contact term, instead of making predictions.

In this work, we implement the relativistic formulation of pionless EFT in a finite volume at various pion masses, to predict the Minkowski matrix elements that can be directly compared to the LQCD calculations of the nnppeenn\rightarrow ppee process. Different from the nonrelativistic case, we estimate the LEC of the LO nnppeenn\rightarrow ppee contact term by integrating out the pion contributions to the long-range neutrino potential in the relativistic chiral EFT. This is possible because the long-range nnppeenn\rightarrow ppee amplitudes are renormalizable in the relativistic chiral EFT [33]. For the physical pion mass, we compare the scattering amplitudes from the relativistic formulation with the previous nonrelativistic results in Ref. [60] with the contact term fixed by the generalized Cottingham formula [31]. For the unphysical pion masses mπ=300m_{\pi}=300, 450, 510, and 806 MeV, using the available two-nucleon observables from the LQCD calculations  [73, 74, 75, 76, 77] as inputs, we present the EFT predictions of the LO Minkowski matrix elements in finite volumes, as well as the scattering amplitude in the infinite volume. Finally, we compare the EFT predictions and the first LQCD evaluation of matrix element at mπ=806m_{\pi}=806 MeV [58] with the same finite volume. The present results can be used in the future benchmarks between the nuclear EFTs and the LQCD calculations of the nnppeenn\rightarrow ppee process, which would provide a solid assessment of the predictive power of nuclear EFTs on 0νββ0\nu\beta\beta decay. The results are also expected to be instructive for the analysis of the systematic uncertainties in the future LQCD calculations of the nnppeenn\rightarrow ppee process.

II Theoretical framework

In section II.1, we describe the relativistic formulation of pionless EFT [42, 44, 33] employed to evaluate the nnppeenn\rightarrow ppee amplitudes. In section II.2, we briefly introduce the implementation of the relativistic formulation of pionless EFT in a finite volume, closely following the derivations in Refs. [59, 60] for the nonrelativistic case.

II.1 Relativistic formulation of pionless EFT

The pionless EFT is based on the tenet that the few-nucleon processes at very low energies, i.e., QmπQ\ll m_{\pi}, are not sensitive to the details associated with pions or other meson exchanges [24]. Then, all mesons can be integrated out and the effective Lagrangian contains nucleon and lepton degrees of freedom, organized according to the number of derivatives. The observables are expanded in Q/mπQ/m_{\pi}, where QQ is the low-energy scale of the order of the binding momentum γ=mNBNN\gamma=\sqrt{m_{N}B_{NN}} or of the inverse of the scattering length aa. At LO, the effective Lagrangian reads

ΔL=0=Ψ¯(iγμμmN)ΨαCα2(Ψ¯ΓαΨ)2+12Ψ¯(lμγμ+gAlμγμγ5)Ψ,\begin{split}\mathcal{L}_{\Delta L=0}&=\overline{\Psi}({\rm i}\gamma^{\mu}\partial_{\mu}-m_{N})\Psi-\sum_{\alpha}\frac{C_{\alpha}}{2}(\overline{\Psi}\Gamma_{\alpha}\Psi)^{2}+\frac{1}{2}\overline{\Psi}(l_{\mu}\gamma^{\mu}+g_{A}l_{\mu}\gamma^{\mu}\gamma_{5})\Psi,\end{split} (1)

with Ψ\Psi the nucleon field , mNm_{N} the nucleon mass, LECs CαC_{\alpha}, α=S,V,AV,T\alpha=S,V,AV,T, and Γα\Gamma_{\alpha} the corresponding Dirac gamma matrices. The nucleons are coupled to the electroweak current lμl_{\mu} via both vector coupling gV=1g_{V}=1 and axial coupling gA=1.27g_{A}=1.27. Here, we neglect the dependence of gAg_{A} on the unphysical pion mass. This dependence can be easily taken into account once its value is provided by the LQCD calculations at the corresponding pion mass since it only provides constant factors on the neutrino potential. The electroweak current reads lμ=22GFVudτ+e¯γμveL+h.c.l_{\mu}=-2\sqrt{2}G_{F}V_{ud}\tau^{+}\overline{e}\gamma_{\mu}v_{eL}+{\rm h.c.}, with the Fermi constant GFG_{F} and the VudV_{ud} element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [78, 79].

After expanding the nucleon field in terms of the free Dirac spinors u(𝒑,s)u(\bm{p},s) with positive energies in momentum space and keeping only the leading term of u(𝒑,s)u(\bm{p},s) expanding in powers of small momenta 𝒑\bm{p}, the LO strong potential takes the following form,

VS(𝒑,𝒑)=mNωpmNωp[CS+CV(CAV2CT)𝝈1𝝈2],\begin{split}V_{S}(\bm{p}^{\prime},\bm{p})&=\frac{m_{N}}{\omega_{p^{\prime}}}\frac{m_{N}}{\omega_{p}}[C_{S}+C_{V}-(C_{AV}-2C_{T})\bm{\sigma}_{1}\cdot\bm{\sigma}_{2}],\end{split} (2)

where 𝒑\bm{p}^{\prime} and 𝒑\bm{p} are the nucleon’s final and initial momenta in the center-of-mass frame, respectively, and ωp=(mN2+p2)1/2\omega_{p}=(m_{N}^{2}+p^{2})^{1/2}. At the leading order of pionless EFT, the interaction only contributes to the ss wave. Here, we consider the S01{}^{1}S_{0} channel relevant for the nnppeenn\rightarrow ppee process, in which 𝝈1𝝈2=3\bm{\sigma}_{1}\cdot\bm{\sigma}_{2}=-3, and the LEC C=CS+CV+3(CAV2CT)C=C_{S}+C_{V}+3(C_{AV}-2C_{T}) determines the interaction strength in this channel. As in the nonrelativistic case, the LEC CC scales as 𝒪(4π/(mNQ))\mathcal{O}(4\pi/(m_{N}Q)) so that the LO amplitudes consist of a resummation of the LO interaction VSV_{S} and the low-energy pole in the two-nucleon S01{}^{1}S_{0} amplitude can be reproduced. In particular, for the two-nucleon scattering process, the amplitude reads

iS(E)=iVS(p,p)+d3k(2π)3(i)VS(p,k)iE2ωk+i0+iS(E).{\rm i}\mathcal{M}_{S}(E)=-{\rm i}V_{S}(p,p)+\int\frac{{\rm d}^{3}k}{(2\pi)^{3}}(-{\rm i})V_{S}(p,k)\frac{{\rm i}}{E-2\omega_{k}+{\rm i}0^{+}}{\rm i}\mathcal{M}_{S}(E). (3)

with p=14E2mN2p=\sqrt{\frac{1}{4}E^{2}-m_{N}^{2}}. After regularizing the contact term with a separable regulator, VS(p,p)VS(p,p)fΛ(p)fΛ(p)V_{S}(p^{\prime},p)\rightarrow V_{S}(p^{\prime},p)f_{\Lambda}(p^{\prime})f_{\Lambda}(p), with momentum cutoff Λ\Lambda, the scattering amplitude takes the form

S(E)=1CΛ1IΛ(E),\mathcal{M}_{S}(E)=-\frac{1}{C_{\Lambda}^{-1}-I_{\Lambda}(E)}, (4)

where the “bubble integral” reads

IΛ(E)=d3k(2π)3mN2ωk21E2ωk+i0+[fΛ(k)]2.I_{\Lambda}(E)=\int\frac{{\rm d}^{3}k}{(2\pi)^{3}}\frac{m_{N}^{2}}{\omega_{k}^{2}}\frac{1}{E-2\omega_{k}+{\rm i}0^{+}}[f_{\Lambda}(k)]^{2}. (5)

The divergence of the “bubble integral” is absorbed into the cutoff dependence of the LEC CΛC_{\Lambda} and the resulting scattering amplitude is cutoff-independent as Λ\Lambda\rightarrow\infty. For the two-nucleon bound state, the energy eigenvalue EE and the momentum-space wave function ϕE(𝒑)\phi_{E}(\bm{p}) are obtained by solving the following eigen equation

(E2ωp)ϕ(𝒑)=d3k(2π)3VS(p,k)ϕ(𝒌).(E-2\omega_{p})\phi(\bm{p})=\int\frac{{\rm d}^{3}k}{(2\pi)^{3}}V_{S}(p,k)\phi(\bm{k}). (6)

Beyond LO, the strong interactions arise from the Lorentz-invariant contact Lagrangian with an increasing number of derivatives (See Ref. [80] for the expressions of the contact Lagrangian up to fourth-order derivatives). Here, we consider the ordering of the contact terms in the relativistic pionless EFT to be the same as its nonrelativistic counterpart, because they both should reproduce the effective range expansion order by order, pcotδ(p)=1a+12rp2p\cot\delta(p)=-\frac{1}{a}+\frac{1}{2}rp^{2}\ldots, with the ellipse denoting high-order momentum dependences. The subleading contribution is given by the effective range rO(mπ1)r\sim O(m_{\pi}^{-1}), and it is of the order O(Q/mπ)O(Q/m_{\pi}) relative to the LO contribution. Once properly renormalized, the difference between the LO relativistic and nonrelativistic pionless EFTs is that the former includes higher-order terms dictated by the Lorentz invariance. For example, the LO relativistic EFT yields a small effective range of rO(mN1)r\sim O(m_{N}^{-1}), while the nonrelativistic theory yields exactly zero effective range r=0r=0.

In this work, we consider the standard mechanism of 0νββ0\nu\beta\beta decay, in which the lepton number violation at low energies is dominated by a Majorana mass term

ΔL=2=mββ2νeLTCνeL,\mathcal{L}_{\Delta L=2}=-\frac{m_{\beta\beta}}{2}\nu^{T}_{eL}C\nu_{eL}, (7)

where C=iγ2γ0C={\rm i}\gamma_{2}\gamma_{0} denotes the charge conjugation matrix and mββm_{\beta\beta} the effective neutrino mass. Following naive dimension analysis, the LO neutrino potential is contributed only by the long-range exchange of a potential neutrino,

VνL(𝒑,𝒑)=(1+3gA2)mNωpmNωp1|𝒑𝒑|2,V_{\nu{\rm L}}(\bm{p}^{\prime},\bm{p})=(1+3g_{A}^{2})\frac{m_{N}}{\omega_{p^{\prime}}}\frac{m_{N}}{\omega_{p}}\frac{1}{|\bm{p}^{\prime}-\bm{p}|^{2}}, (8)

and its contribution is O(Q2)O(Q^{-2}). Similar to the strong potential, there are mN/ωpm_{N}/\omega_{p} factors coming from the expansion of the nucleon field without performing the nonrelativistic reduction. However, in pionless EFT, it is known that contact operators in weak processes are typically enhanced when SS waves are involved [81, 24]. This leads to the existence of a contact term in the LO neutrino potential–despite being expected two orders down in the naive dimension analysis

VνCT(𝒑,𝒑)=2mNωpmNωpgνNN.V_{\nu{\rm CT}}(\bm{p}^{\prime},\bm{p})=-2\frac{m_{N}}{\omega_{p^{\prime}}}\frac{m_{N}}{\omega_{p}}g_{\nu}^{NN}. (9)

with gνNNg_{\nu}^{NN} the corresponding LEC. However, different from the nonrelativistic case, gνNNg_{\nu}^{NN} does not serve as a counterterm that absorbs the ultraviolet divergence, since the LO long-range amplitude itself is ultraviolet finite [33]. As a result, the contact-term contribution to the LO amplitude is finite in relativistic pionless EFT and can be estimated by integrating out the pion contributions in the relativistic chiral EFT, as we will demonstrate below.

Refer to caption
Figure 1: Diagrams contributing to the LO long-range nnppeenn\rightarrow ppee amplitude. The amplitude 0ν(int)\mathcal{M}^{({\rm int})}_{\rm 0\nu} excluding neutrino exchanges on the external legs is shown by the last diagram. The double and plain lines denote nucleons and leptons, respectively. The squares denote insertions of neutrino potential VνV_{\nu}. The empty circles denote the nucleon axial and vector currents coupled to neutrino exchange. The gray circles represent the LO two-nucleon scattering amplitude S\mathcal{M}_{S}.

The LO long-range nnppeenn\rightarrow ppee amplitude can be schematically written as

0ν,L=mββ(1+3gA2)(VνLSII¯S+SJS),\begin{split}\mathcal{M}_{0\nu,{\rm L}}&=-m_{\beta\beta}(1+3g_{A}^{2})\left(V_{\nu{\rm L}}-\mathcal{M}_{S}I^{\infty}-\overline{I}^{\infty}\mathcal{M}_{S}+\mathcal{M}_{S}J^{\infty}\mathcal{M}_{S}\right),\end{split} (10)

with S\mathcal{M}_{S} is the LO two-nucleon scattering amplitude [Eq. (4)], and II^{\infty} and JJ^{\infty} are the one- and two-loop integrals with a neutrino exchange. Here, the four terms correspond to the four diagrams depicted in Fig. 1. The first three terms are the contributions in which a neutrino propagates between two external nucleons. The last term, where a neutrino propagates between two nucleons dressed by strong interactions in both the initial and final states, is the subject of matching to LQCD matrix elements [59],

0ν,L(int)(Ef,Ei)=mββ(1+3gA2)S(Ef)J(Ef,Ei)S(Ei),\mathcal{M}_{0\nu,{\rm L}}^{({\rm int})}(E_{f},E_{i})=-m_{\beta\beta}(1+3g_{A}^{2})\mathcal{M}_{S}(E_{f})J^{\infty}(E_{f},E_{i})\mathcal{M}_{S}(E_{i}), (11)

where JJ^{\infty} takes the form,

J(Ef,Ei)=d3k1(2π)3d3k2(2π)3mN2ωk121Ef2ωk1+i0+mN2ωk221Ei2ωk2+i0+1|𝒌1𝒌2|2.J^{\infty}(E_{f},E_{i})=\int\frac{{\rm d}^{3}k_{1}}{(2\pi)^{3}}\frac{{\rm d}^{3}k_{2}}{(2\pi)^{3}}\frac{m_{N}^{2}}{\omega_{k_{1}}^{2}}\frac{1}{E_{f}-2\omega_{k_{1}}+{\rm i}0^{+}}\frac{m_{N}^{2}}{\omega_{k_{2}}^{2}}\frac{1}{E_{i}-2\omega_{k_{2}}+{\rm i}0^{+}}\frac{1}{|\bm{k}_{1}-\bm{k}_{2}|^{2}}. (12)

This two-loop integral is ultraviolet finite in the present relativistic formulation, but divergent in the nonrelativistic case. This is because, in the nonrelativistic approach, the 1/mN1/m_{N} expansion is carried out for the integrand making its ultraviolet behavior more singular and resulting in a logarithmic divergence.

Now, we discuss the contact-term contribution to the LO nnppeenn\rightarrow ppee amplitude. It is well known that the coupling of the axial current to pions gives rise to the Goldberg-Treiman relation between the pseudoscalar and axial contribution to the weak form factor. In the relativistic chiral EFT, this effect is included in the LO long-range neutrino potential,

δVνL(𝒑,𝒑)=gA2mNωpmNωp|𝒑𝒑|2+2mπ2(|𝒑𝒑|2+mπ2)2,\delta V_{\nu\rm L}(\bm{p}^{\prime},\bm{p})=-g_{A}^{2}\frac{m_{N}}{\omega_{p^{\prime}}}\frac{m_{N}}{\omega_{p}}\frac{|\bm{p}^{\prime}-\bm{p}|^{2}+2m_{\pi}^{2}}{\left(|\bm{p}^{\prime}-\bm{p}|^{2}+m_{\pi}^{2}\right)^{2}}, (13)

while in the relativistic pionless EFT, the contributions from δVνL\delta V_{\nu\rm L} are integrated out and will manifest in the form of a contact term. Therefore, the LO contact term gνNNg_{\nu}^{NN} can be estimated by the contribution of δVνL\delta V_{\nu\rm L}. This is achieved by inserting δVνL\delta V_{\nu\rm L} into the four diagrams in Fig. 1 and considering mπm_{\pi} as a hard scale. The first tree-level diagram is just δVνLO(mπ2)\delta V_{\nu\rm L}\sim O(m_{\pi}^{-2}), i.e., next-to-next-to-leading order (NNLO). The contribution of the second diagram can be written as gA2δIπ(Ef,Ei)S(Ei)-g_{A}^{2}\delta I^{\infty}_{\pi}(E_{f},E_{i})\mathcal{M}_{S}(E_{i}) with δIπ(Ef,Ei)\delta I^{\infty}_{\pi}(E_{f},E_{i}) the one loop integral with an insertion of δVνL\delta V_{\nu\rm L},

δI(Ef,Ei)=d3k(2π)3mN2ωk21Ef2ωk+i0+|𝒌𝒑i|2+2mπ2(|𝒌𝒑i|2+mπ2)2.\delta I^{\infty}(E_{f},E_{i})=\int\frac{{\rm d}^{3}k}{(2\pi)^{3}}\frac{m_{N}^{2}}{\omega_{k}^{2}}\frac{1}{E_{f}-2\omega_{k}+{\rm i}0^{+}}\frac{|\bm{k}-\bm{p}_{i}|^{2}+2m_{\pi}^{2}}{\left(|\bm{k}-\bm{p}_{i}|^{2}+m_{\pi}^{2}\right)^{2}}. (14)

Expanding this integral around the threshold Ef=Ei=0E_{f}=E_{i}=0, we have δI(Ef,Ei)=δI(0,0)+O(Q2/mπ2)\delta I^{\infty}(E_{f},E_{i})=\delta I^{\infty}(0,0)+O(Q^{2}/m_{\pi}^{2}). Then, Iπ(0,0)I_{\pi}^{\infty}(0,0) is just a function of the hard scales mπm_{\pi} and MM, and dimension analysis determines δI(Ef,Ei)O(mN/(4πmπ))\delta I^{\infty}(E_{f},E_{i})\sim O\left(m_{N}/(4\pi m_{\pi})\right). Since the scaling of S\mathcal{M}_{S} is O(4π/(mNQ))O(4\pi/(m_{N}Q)), the contribution of second diagram is subleading, O((mπQ)1)O((m_{\pi}Q)^{-1}). Following the above analysis, the contribution of the third diagram is also subleading, O((mπQ)1)O((m_{\pi}Q)^{-1}), but the contribution of the fourth diagram is instead LO, O(Q2)O(Q^{-2}). The latter takes the form

δ0ν(int)(Ef,Ei)=mββgA2S(Ef)δJ(Ef,Ei)S(Ei)\delta\mathcal{M}_{0\nu}^{({\rm int})}(E_{f},E_{i})=m_{\beta\beta}g_{A}^{2}\mathcal{M}_{S}(E_{f})\delta J^{\infty}(E_{f},E_{i})\mathcal{M}_{S}(E_{i}) (15)

with

δJ(Ef,Ei)=d3k1(2π)3d3k2(2π)3mN2ωk121Ef2ωk1+i0+mN2ωk221Ei2ωk2+i0+|𝒌1𝒌2|2+2mπ2(|𝒌1𝒌2|2+mπ2)2.\delta J^{\infty}(E_{f},E_{i})=\int\frac{{\rm d}^{3}k_{1}}{(2\pi)^{3}}\frac{{\rm d}^{3}k_{2}}{(2\pi)^{3}}\frac{m_{N}^{2}}{\omega_{k_{1}}^{2}}\frac{1}{E_{f}-2\omega_{k_{1}}+{\rm i}0^{+}}\frac{m_{N}^{2}}{\omega_{k_{2}}^{2}}\frac{1}{E_{i}-2\omega_{k_{2}}+{\rm i}0^{+}}\frac{|\bm{k}_{1}-\bm{k}_{2}|^{2}+2m_{\pi}^{2}}{(|\bm{k}_{1}-\bm{k}_{2}|^{2}+m_{\pi}^{2})^{2}}. (16)

This two-loop integral has a mass dimension of two and thus scales as O(mN2/(4π)2)O\left(m_{N}^{2}/(4\pi)^{2}\right). As a result, δ0ν(int)(Ef,Ei)O(Q2)\delta\mathcal{M}_{0\nu}^{({\rm int})}(E_{f},E_{i})\sim O(Q^{-2}) and needs to accounted for by a LO contact term. The contact term contributes to the amplitude as

0ν,CT(int)(Ef,Ei)=2mββg~νNN(mN4π)2S(Ef)S(Ei)\mathcal{M}_{0\nu,{\rm CT}}^{({\rm int})}(E_{f},E_{i})=2m_{\beta\beta}\tilde{g}_{\nu}^{NN}\left(\frac{m_{N}}{4\pi}\right)^{2}\mathcal{M}_{S}(E_{f})\mathcal{M}_{S}(E_{i}) (17)

after defining the dimensionless LEC g~νNN\tilde{g}_{\nu}^{NN},

g~νNN=(4πmNC)2gνNN.\tilde{g}_{\nu}^{NN}=\left(\frac{4\pi}{m_{N}C}\right)^{2}g_{\nu}^{NN}. (18)

By matching Eqs. (15) and (17) at the threshold Ef=Ei=0E_{f}=E_{i}=0, the dimensionless LEC can be determined,

g~νNN=(4π)22mN2gA2δJ(0,0).\tilde{g}_{\nu}^{NN}=\frac{(4\pi)^{2}}{2m_{N}^{2}}g_{A}^{2}\delta J^{\infty}(0,0). (19)

In addition to the contribution originating from the coupling of pions, there could be other unknown short-range contributions to the LO LEC g~νNN\tilde{g}_{\nu}^{NN} in the relativistic pionless EFT. By comparing the pionless and chiral EFT amplitudes, the unknown short-range contributions in the pionless EFT corresponds to the g~νNN\tilde{g}_{\nu}^{NN} contact-term contribution in the chiral EFT. It then follows that, based on Weinberg power counting, g~νNN\tilde{g}_{\nu}^{NN} contribution is expect to be suppressed by two orders in the chiral expansion, i.e., O(Q2/Λχ2)O(Q^{2}/\Lambda_{\chi}^{2}) with ΛχmN\Lambda_{\chi}\sim m_{N} the break down scale of chiral EFT. Based on this estimation, the uncertainty of the estimation by Eq. (19) can be considered subleading, since Q2/mN2Q/mπQ^{2}/m_{N}^{2}\lesssim Q/m_{\pi} when mπ806m_{\pi}\leq 806 MeV (see Table 1).

Finally, adding up the long-range and contact-term contributions, the amplitude is given by

0ν(int)(Ef,Ei)=mββ𝒮(Ef)[(1+3gA2)J(Ef,Ei)2g~νNN(mN4π)2]𝒮(Ei).\mathcal{M}_{0\nu}^{({\rm int})}(E_{f},E_{i})=-m_{\beta\beta}\mathcal{M_{S}}(E_{f})\left[(1+3g_{A}^{2})J^{\infty}(E_{f},E_{i})-2\tilde{g}_{\nu}^{NN}\left(\frac{m_{N}}{4\pi}\right)^{2}\right]\mathcal{M_{S}}(E_{i}). (20)

II.2 Implementation in a finite volume

In this work, we implement the relativistic pionless EFT in a finite-volume (FV) cubic box with spatial extent LL and the periodic boundary conditions. Considering the nnppeenn\rightarrow ppee process with the kinematics that the two electrons in the final state are at rest, the Euclidean four-point function accessible from LQCD can be analytically continued to the Minkowski spacetime [59],

𝒯L(M)(Ef,Ei)=dz0Ld3z[Ef,L|T[𝒥(z0,𝒛)Sν(z0,𝒛)𝒥(0)]|Ei,L]L,\mathcal{T}_{L}^{(M)}(E_{f},E_{i})=\int{\rm d}z_{0}\int_{L}{\rm d}^{3}z[\langle E_{f},L|T[\mathcal{J}(z_{0},\bm{z})S_{\nu}(z_{0},\bm{z})\mathcal{J}(0)]|E_{i},L\rangle]_{L}, (21)

where the subscript LL on the spatial integral indicates that the integral is performed over the FV cubic box and |E,L|E,L\rangle is the normalized FV ss-wave two-nucleon state with the center-of-mass energy EE. Here, 𝒥\mathcal{J} denotes the hadronic part of the weak current, and the neutrino propagator Sν(z0,𝒛)S_{\nu}(z_{0},\bm{z}) in a finite volume is given by the Fourier transformation

Sν(z0,𝒛)=1L3𝒒2πL3𝒒𝟎dq02πei𝒒𝒛iq0z0imββq02𝒒2+i0+,S_{\nu}(z_{0},\bm{z})=\frac{1}{L^{3}}\sum_{\begin{subarray}{c}\bm{q}\in\frac{2\pi}{L}\mathbb{Z}^{3}\\ \bm{q}\neq\bm{0}\end{subarray}}\int\frac{{\rm d}q_{0}}{2\pi}{\rm e}^{{\rm i}\bm{q}\cdot\bm{z}-{\rm i}q_{0}z_{0}}\frac{-{\rm i}m_{\beta\beta}}{q_{0}^{2}-\bm{q}^{2}+{\rm i}0^{+}}, (22)

ignoring the small nonzero neutrino mass. Because the space is limited to a box with the periodic boundary conditions, the momentum modes are discretized, only taking the values with 2π/L2\pi/L times three-dimensional Cartesian vectors with integer components. The infrared divergence is regulated by removing the zero-momentum mode of neutrinos.

The energy eigenvalues of the two-nucleon states are also discretized in a finite volume. Their discrete values EnE_{n} are directly related to the two-nucleon scattering amplitudes in the infinite volume, by the Lüscher quantization condition 1(En)=0\mathcal{F}^{-1}(E_{n})=0 [82, 83]. For the S01{}^{1}S_{0} channel considered in this work, it is

1(E)=4πmN(1πL𝒵00[1,(pL2π)2]+ip)1+S(E),\mathcal{F}^{-1}(E)=\frac{4\pi}{m_{N}}\left(-\frac{1}{\pi L}\mathcal{Z}_{00}\left[1,\left(\frac{pL}{2\pi}\right)^{2}\right]+{\rm i}p\right)^{-1}+\mathcal{M}_{S}(E), (23)

where 𝒵00\mathcal{Z}_{00} is the zeta function defined in Ref. [82] and S(E)\mathcal{M}_{S}(E) is the scattering amplitude defined in Eq. (4).

For the case in which the initial and final states are “scattering” states, the Minkowski matrix element 𝒯L(M)\mathcal{T}_{L}^{(M)} is calculated as following [59],

L6|𝒯L(M)(Ef,Ei)|2=|(Ef)||0ν(int,L)(Ef,Ei)|2|(Ei)|,L^{6}|\mathcal{T}_{L}^{(M)}(E_{f},E_{i})|^{2}=|\mathcal{R}(E_{f})||\mathcal{M}^{({\rm int},L)}_{0\nu}(E_{f},E_{i})|^{2}|\mathcal{R}(E_{i})|, (24)

where two FV quantities 0ν(int,L)\mathcal{M}^{({\rm int},L)}_{0\nu} and \mathcal{R} are involved. The former one corresponds to the amplitude (Eq. 20) in a finite volume [59, 60],

0ν(int,L)(Ef,Ei)=mββ𝒮(Ef)[(1+3gA2)JL(Ef,Ei)2g~νNN(mN4π)2]𝒮(Ei).\mathcal{M}_{0\nu}^{({\rm int},L)}(E_{f},E_{i})=-m_{\beta\beta}\mathcal{M_{S}}(E_{f})\left[(1+3g_{A}^{2})J^{L}(E_{f},E_{i})-2\tilde{g}_{\nu}^{NN}\left(\frac{m_{N}}{4\pi}\right)^{2}\right]\mathcal{M_{S}}(E_{i}). (25)

The function JLJ^{L} resembles the function JJ^{\infty} in the infinite volume [Eq. (12)], with the momentum integrals replaced by the sum of discrete momentum modes,

JL(Ef,Ei)=1L6𝒌𝟏,𝒌𝟐2πL3𝒌𝟏𝒌𝟐mN2ωk121Ef2ωk1mN2ωk221Ei2ωk21|𝒌1𝒌2|2.J^{L}(E_{f},E_{i})=\frac{1}{L^{6}}\sum_{\begin{subarray}{c}\bm{k_{1}},\bm{k_{2}}\in\frac{2\pi}{L}\mathbb{Z}^{3}\\ \bm{k_{1}}\neq\bm{k_{2}}\end{subarray}}\frac{m_{N}^{2}}{\omega_{k_{1}}^{2}}\frac{1}{E_{f}-2\omega_{k_{1}}}\frac{m_{N}^{2}}{\omega_{k_{2}}^{2}}\frac{1}{E_{i}-2\omega_{k_{2}}}\frac{1}{|\bm{k}_{1}-\bm{k}_{2}|^{2}}. (26)

Here, the imaginary part of the propagator is dropped since now the denominator takes nonzero discrete values. The FV quantity (E)\mathcal{R}(E) is the generalized Lellouch-Lüscher residue matrix [61],

(En)=limEEn(EEn)(E)=(d1dE|E=En)1,\mathcal{R}(E_{n})=\lim_{E\rightarrow E_{n}}(E-E_{n})\mathcal{F}(E)=\left(\left.\frac{\rm d\mathcal{F}^{-1}}{{\rm d}E}\right|_{E=E_{n}}\right)^{-1}, (27)

which is the residue of the FV function \mathcal{F} (23) at FV energies EnE_{n}.

For the case in which the initial and final states are bound states, E=2MBE=2M-B with B>0B>0, the Minkowski matrix element 𝒯L(M)\mathcal{T}_{L}^{(M)} is calculated by

𝒯L(M)(Ef,Ei)=mββ1L6𝒌𝟏,𝒌𝟐2πL3𝒌𝟏𝒌𝟐ϕEf,L(𝒌1)VνL(𝒌1,𝒌2)ϕEi,L(𝒌2)2mββg~νNN(MB4π)2|ϕ(𝟎)|2.\begin{split}\mathcal{T}_{L}^{(M)}(E_{f},E_{i})&=m_{\beta\beta}\frac{1}{L^{6}}\sum_{\begin{subarray}{c}\bm{k_{1}},\bm{k_{2}}\in\frac{2\pi}{L}\mathbb{Z}^{3}\\ \bm{k_{1}}\neq\bm{k_{2}}\end{subarray}}\phi^{*}_{E_{f},L}(\bm{k}_{1})V_{\nu{\rm L}}(\bm{k}_{1},\bm{k}_{2})\phi_{E_{i},L}(\bm{k}_{2})\\ &-2m_{\beta\beta}\tilde{g}_{\nu}^{NN}\left(\frac{MB}{4\pi}\right)^{2}|\phi(\bm{0})|^{2}.\end{split} (28)

with ϕE,L(𝒌)\phi_{E,L}(\bm{k}) the normalized momentum-space wave function of the FV state |E,L|E,L\rangle in Eq. (21). On the right hand side, the first and the second terms are respectively the expectations of the long-range neutrino potential VνLV_{\nu\rm L} in Eq. (8) and the contact term in Eq. (9) regulated with the same separable regulator as the one for the strong interaction. The wave function ϕE,L\phi_{E,L} is solved by Eq. (6) with discrete momentum modes. Although there is no two-nucleon bound state in the S01{}^{1}S_{0} channel at the physical pion mass, the above matrix element is relevant for the study at the unphysical pion masses. At the unphysical pion masses, two nucleons might exhibit a S01{}^{1}S_{0} bound state predicted by the LQCD calculations [73, 74, 75, 76]. Note that there is an ongoing discussion on whether such a bound state exists at the unphysical pion masses, as several newer works [84, 85, 77, 86] do not identify such a bound state.

III Numerical details

In this work, we consider several box sizes in the range of L=8L=8-16 fm at the physical pion mass, and L=4L=4-6 fm at the unphysical pion masses in accordance with the existing LQCD calculations of two-nucleon systems [73, 74, 75, 76]. We focus on the scattering amplitudes and the FV matrix elements with equal initial and final energies, Ef=Ei=EE_{f}=E_{i}=E. This neglects the masses of the two electrons in the final state of the nnppeenn\rightarrow ppee process, since they are much smaller than the intervals between the discrete FV energies. Throughout this work, the effective neutrino mass mββm_{\beta\beta} is set to 1 MeV. For the LO strong potential, we use an exponential regulator fΛ(k)=ek4/Λ4f_{\Lambda}(k)={\rm e}^{-k^{4}/\Lambda^{4}}.

III.1 Calculations in the infinite volume

The momentum integrals (5), (12), (6) associated with the calculations in the infinite volume are all calculated numerically using Gaussian quadrature. For the calculations of the scattering amplitudes, the real and imaginary parts of the two-nucleon free propagator are calculated separately,

1E2ωk+i0+=P(1E2ωk)iπδ(E2ωk).\frac{1}{E-2\omega_{k}+{\rm i}0^{+}}=P\left(\frac{1}{E-2\omega_{k}}\right)-{\rm i}\pi\delta(E-2\omega_{k}). (29)

Here, PP denotes principle-value integral and it is eliminated by a standard subtraction technique [87]. The eigen equation (6) for the bound states is solved by matrix diagonalization on the Gaussian grids.

However, special care has to be taken for the infrared singularity of the neutrino potential. For the calculation of the scattering amplitude 0ν(int)\mathcal{M}_{0\nu}^{({\rm int})}, inserting the separation (29) into the expression of the two-loop integral JJ^{\infty} (12), we have

ReJ(Ef,Ei)=0k12dk12π2[mN2ωk12P(1Ef2ωk2)0k22dk22π2mN2ωk22P(1Ei2ωk2)14k1k2ln(k1+k2)2(k1k2)2]mN232π2mNωpfmNωpilnpf+pi|pfpi|.\begin{split}{\rm Re}J^{\infty}(E_{f},E_{i})&=\int_{0}^{\infty}\frac{k_{1}^{2}{\rm d}k_{1}}{2\pi^{2}}\left[\frac{m_{N}^{2}}{\omega_{k_{1}}^{2}}P\left(\frac{1}{E_{f}-2\omega_{k_{2}}}\right)\int_{0}^{\infty}\frac{k_{2}^{2}{\rm d}k_{2}}{2\pi^{2}}\right.\\ &\left.\frac{m_{N}^{2}}{\omega_{k_{2}}^{2}}P\left(\frac{1}{E_{i}-2\omega_{k_{2}}}\right)\frac{1}{4k_{1}k_{2}}\ln\frac{(k_{1}+k_{2})^{2}}{(k_{1}-k_{2})^{2}}\right]-\frac{m_{N}^{2}}{32\pi^{2}}\frac{m_{N}}{\omega_{p_{f}}}\frac{m_{N}}{\omega_{p_{i}}}\ln\frac{p_{f}+p_{i}}{|p_{f}-p_{i}|}.\end{split} (30)

On the right-hand side, there are logarithmic divergences in the two terms when Ef=EiE_{f}=E_{i}. We introduce a subtraction technique making use of the analytic expression of the following two-loop integral,

IΛ=0Λk12dk12π2P(1Efk12/mN)0k22dk22π2P(1Eik22/mN)14k1k2ln(k1+k2)2(k1k2)2=mN232π2lnΛ2pi2|pf2pi2|.\begin{split}I^{\infty}_{\Lambda}&=\int_{0}^{\Lambda}\frac{k_{1}^{2}{\rm d}k_{1}}{2\pi^{2}}P\left(\frac{1}{E_{f}-k_{1}^{2}/m_{N}}\right)\int_{0}^{\infty}\frac{k_{2}^{2}{\rm d}k_{2}}{2\pi^{2}}P\left(\frac{1}{E_{i}-k_{2}^{2}/m_{N}}\right)\frac{1}{4k_{1}k_{2}}\ln\frac{(k_{1}+k_{2})^{2}}{(k_{1}-k_{2})^{2}}\\ &=\frac{m_{N}^{2}}{32\pi^{2}}\ln\frac{\Lambda^{2}-p_{i}^{2}}{|p_{f}^{2}-p_{i}^{2}|}.\end{split} (31)

Denoting the integral term in Eq. (30) as II^{\infty}, then we have

ReJ(Ef,Ei)=(ImN2ωpfωpiIΛ)+mN2ωpfωpimN232π2lnΛ2pi2(pf+pi2){\rm Re}J^{\infty}(E_{f},E_{i})=\left(I^{\infty}-\frac{m_{N}^{2}}{\omega_{p_{f}}\omega_{p_{i}}}I^{\infty}_{\Lambda}\right)+\frac{m_{N}^{2}}{\omega_{p_{f}}\omega_{p_{i}}}\frac{m_{N}^{2}}{32\pi^{2}}\ln\frac{\Lambda^{2}-p_{i}^{2}}{(p_{f}+p_{i}^{2})} (32)

Now, the two terms are both infrared convergent when Ef=EiE_{f}=E_{i} and we have confirmed the numerical stability using the above expression.

For the calculations of the matrix element 𝒯L(M)\mathcal{T}_{L}^{(M)} between bound states, the infrared singularity of the neutrino potential is treated with the Lande subtraction [88, 89, 90, 91],

0dk2π214kpln(k+p)2(kp)2k2f(k)=0dk2π214kpln(k+p)2(kp)2[k2f(k)p2f(p)]+18pf(p)\int_{0}^{\infty}\frac{{\rm d}k}{2\pi^{2}}\frac{1}{4kp}\ln\frac{(k+p)^{2}}{(k-p)^{2}}k^{2}f(k)=\int_{0}^{\infty}\frac{{\rm d}k}{2\pi^{2}}\frac{1}{4kp}\ln\frac{(k+p)^{2}}{(k-p)^{2}}[k^{2}f(k)-p^{2}f(p)]+\frac{1}{8}pf(p) (33)

with f(p)f(p) an arbitrary smooth function.

III.2 Calculations in a finite volume

For the calculations of the matrix elements 𝒯L(M)\mathcal{T}_{L}^{(M)} between the “scattering” states, the FV quantity JLJ^{L} (26), which involves summation over the discrete three-momenta 𝒌1,𝒌2=𝒏2π/L\bm{k}_{1},\bm{k}_{2}=\bm{n}2\pi/L with 𝒏3\bm{n}\in\mathbb{Z}^{3}, is calculated using the method of tail-singularity separation (TSS) described in Ref. [92]. In this method, the summation is split into two pieces. One piece contains the singular contributions around 𝒌1=𝒌2\bm{k}_{1}=\bm{k}_{2}, but it is exponentially decaying when |𝒌1|,|𝒌2||\bm{k}_{1}|,|\bm{k}_{2}|\rightarrow\infty. The other piece contains a power-law decaying tail at |𝒌1|,|𝒌2||\bm{k}_{1}|,|\bm{k}_{2}|\rightarrow\infty, but it is sufficiently smooth so that it can be approximated by its integral counterpart. Based on this method, we calculate JLJ^{L} as the following

JL(E,E)=mN24(2π)6{𝒏13m~m~2+n121ω~n1ω~p[𝒳sum(𝒏1,p~2)+eα(n12p~2)𝒳int(n12,p~2)]+4π0n12dn1m~m~2+n121eα(n12p~2)ω~n1ω~p𝒳int(n12,p~2)}+O(eπ2/α),\begin{split}J^{L}(E,E)&=\frac{m_{N}^{2}}{4(2\pi)^{6}}\left\{\sum_{\begin{subarray}{c}\bm{n}_{1}\in\mathbb{Z}^{3}\end{subarray}}\frac{\tilde{m}}{\tilde{m}^{2}+n_{1}^{2}}\frac{1}{\tilde{\omega}_{n_{1}}-\tilde{\omega}_{p}}\left[\mathcal{X}_{\rm sum}(\bm{n}_{1},\tilde{p}^{2})+{\rm e}^{-\alpha(n_{1}^{2}-\tilde{p}^{2})}\mathcal{X}_{\rm int}(n_{1}^{2},\tilde{p}^{2})\right]\right.\\ &\left.+4\pi\int_{0}^{\infty}n_{1}^{2}{\rm d}n_{1}\frac{\tilde{m}}{\tilde{m}^{2}+n_{1}^{2}}\frac{1-{\rm e}^{-\alpha(n_{1}^{2}-\tilde{p}^{2})}}{\tilde{\omega}_{n_{1}}-\tilde{\omega}_{p}}\mathcal{X}_{\rm int}(n_{1}^{2},\tilde{p}^{2})\right\}+O({\rm e}^{-\pi^{2}/\alpha}),\end{split} (34)

where m~=2πmN/L\tilde{m}=2\pi m_{N}/L, p~=2πp/L\tilde{p}=2\pi p/L, ω~=(m~2+p~2)1/2\tilde{\omega}=(\tilde{m}^{2}+\tilde{p}^{2})^{1/2}, and

𝒳sum(𝒏1,p~2)=𝒏23𝒏2𝒏1m~m~2+n221ω~n2ω~p1|𝒏1𝒏2|2[1(1eα(n22p~2))(1eα|𝒏1𝒏2|2)]𝒳int(n12,p2~)=d3n2m~m~2+n221eα(n22p~2)ω~n2ω~p1eα|𝒏1𝒏2|2|𝒏1𝒏2|2αm~m~2+n121eα(n12p~2)ω~n1ω~p.\begin{split}\mathcal{X}_{\rm sum}(\bm{n}_{1},\tilde{p}^{2})&=\sum_{\begin{subarray}{c}\bm{n}_{2}\in\mathbb{Z}^{3}\\ \bm{n}_{2}\neq\bm{n}_{1}\end{subarray}}\frac{\tilde{m}}{\tilde{m}^{2}+n_{2}^{2}}\frac{1}{\tilde{\omega}_{n_{2}}-\tilde{\omega}_{p}}\frac{1}{|\bm{n}_{1}-\bm{n}_{2}|^{2}}\left[1-(1-{\rm e}^{-\alpha(n_{2}^{2}-\tilde{p}^{2})})(1-{\rm e}^{-\alpha|\bm{n}_{1}-\bm{n}_{2}|^{2}})\right]\\ \mathcal{X}_{\rm int}(n_{1}^{2},\tilde{p^{2}})&=\int{\rm d}^{3}n_{2}\frac{\tilde{m}}{\tilde{m}^{2}+n_{2}^{2}}\frac{1-{\rm e}^{-\alpha(n_{2}^{2}-\tilde{p}^{2})}}{\tilde{\omega}_{n_{2}}-\tilde{\omega}_{p}}\frac{1-{\rm e}^{-\alpha|\bm{n}_{1}-\bm{n}_{2}|^{2}}}{|\bm{n}_{1}-\bm{n}_{2}|^{2}}-\alpha\frac{\tilde{m}}{\tilde{m}^{2}+n_{1}^{2}}\frac{1-{\rm e}^{-\alpha(n_{1}^{2}-\tilde{p}^{2})}}{\tilde{\omega}_{n_{1}}-\tilde{\omega}_{p}}.\end{split} (35)

In the expression of 𝒳int\mathcal{X}_{\rm int}, the second term removes the value at the pole 𝒏2=𝒏1\bm{n}_{2}=\bm{n}_{1} when replacing 𝒏2d3n2\sum_{\bm{n}_{2}}\rightarrow\int{\rm d}^{3}n_{2}. We use α=0.01\alpha=0.01 and truncate the integer Cartesian coordinates at |nx|,|ny|,|nz|32|n_{x}|,|n_{y}|,|n_{z}|\leq 32 in the present calculations. Under this condition, we evaluate the geometric constants 𝒳2\mathcal{X}_{2} with a single sum and 24\mathcal{R}_{24} with double sums, as defined in Eq. (A1) of Ref. [93], by using the TSS method. We obtain 𝒳2=91.18\mathcal{X}_{2}=91.18 and 24=170.9\mathcal{R}_{24}=170.9, which agrees with the corresponding results of Ref. [93] up to four significant figures.

For the calculations of the matrix element 𝒯L(M)\mathcal{T}_{L}^{(M)} between the bound states, they can be straightforwardly calculated using Eq. (28), once the bound-state wave function ϕE,L\phi_{E,L} is solved. When solving the bound-state wave function, we truncate the integer sum at |nx|,|ny|,|nz|ΛL/(2π)|n_{x}|,|n_{y}|,|n_{z}|\leq\Lambda L/(2\pi). The number of momentum modes could reach several thousand, making direct diagonalization intractable. Therefore, we use the imaginary-time propagation starting from an initial wave function ϕi\phi_{i} to solve for the bound-state wave function

ϕE,L=limNτ(eHΔτ)Nτϕi,\begin{split}\phi_{E,L}=\lim_{N_{\tau}\rightarrow\infty}({\rm e}^{-H\Delta\tau})^{N_{\tau}}\phi_{i},\end{split} (36)

where Δτ\Delta\tau is a small imaginary-time step, and eHΔτ{\rm e}^{-H\Delta\tau} is expanded up to O(Δτ2)O(\Delta\tau^{2}). This is particularly efficient because of the separable form of the potential,

Hϕ(𝒑)=2ωpϕ(𝒑)+CΛfΛ(p2)1L3𝒌2πL3fΛ(k2)ϕ(𝒌),H\phi(\bm{p})=2\omega_{p}\phi(\bm{p})+C_{\Lambda}f_{\Lambda}(p^{2})\frac{1}{L^{3}}\sum_{\bm{k}\in\frac{2\pi}{L}\mathbb{Z}^{3}}f_{\Lambda}(k^{2})\phi(\bm{k}), (37)

so the numerical complexity scales linearly with the number of momentum modes, instead of cubicly when using direct diagonalization. We take the initial wave function to be ϕi(𝒑)=ep2/mN2\phi_{i}(\bm{p})={\rm e}^{-p^{2}/m_{N}^{2}}, but using a different form should not affect the final results once the imaginary-time projection converges.

III.3 Determination of low-energy constants

Table 1: The nucleon masses mNm_{N} and the two-nucleon binding energies BnnB_{nn} in the S01{}^{1}S_{0} channel at mπ=300m_{\pi}=300, 450, 510, and 806. The LEC CΛC_{\Lambda} for the LO strong potential, determined at Λ=50\Lambda=50 fm-1 using these inputs, are shown in the fourth column. The LEC g~νNN\tilde{g}_{\nu}^{NN} for the LO nnppeenn\rightarrow ppee contact term, determined by Eq. (19), are shown in the last column. The uncertainty of g~νNN\tilde{g}_{\nu}^{NN} from the LQCD inputs is smaller than the last digit and thus not shown. At the physical pion mass, since no S01{}^{1}S_{0} bound state exists, the LEC CΛC_{\Lambda} is instead fixed by the scattering length a=23.74a=-23.74 fm. At mπ=806m_{\pi}=806 MeV, two sets of LQCD inputs are considered (see text for details).
mπm_{\pi} (MeV) mNm_{N} (MeV) BnnB_{nn} (MeV) CΛC_{\Lambda} (fm2) g~νNN\tilde{g}_{\nu}^{NN}
140 938.9 - -0.4157 1.66
300 [75] 1055(4) 8.5()0.9+1.7\left({}^{+1.7}_{-0.9}\right) -0.3666()24+14\left({}^{+14}_{-24}\right) 1.20
450 [76] 1226(2) 13.1()3.1+3.0\left({}^{+3.0}_{-3.1}\right) -0.2875()25+29\left({}^{+29}_{-25}\right) 1.03
510 [73] 1320(3) 7.4(1.4) -0.2483()14+15\left({}^{+15}_{-14}\right) 1.00
806 [74] 1634(18) 15.9(3.8) -0.1780()17+19\left({}^{+19}_{-17}\right) 0.85
806 [77] 1636(18) 3.3(7)3.3(7) 0.1585()31+40-0.1585\left({}^{+40}_{-31}\right) 0.85

At the leading order of relativistic pionless EFT, there are two LECs CΛC_{\Lambda} and g~νNN\tilde{g}_{\nu}^{NN} that need to be determined for predicting the scattering amplitudes and matrix elements for the nnppeenn\rightarrow ppee process. For CΛC_{\Lambda}, it is the strength of the short-range strong potential and can be fixed by one low-energy observable in the S01{}^{1}S_{0} channel. The observables used to determine CΛC_{\Lambda} are shown in Table 1. At the physical pion mass, there is no S01{}^{1}S_{0} bound state, so we fix it using the experimental scattering length a=23.74a=-23.74 fm. At the unphysical pion masses, several LQCD calculations yielded deeply bound S01{}^{1}S_{0} two-nucleon state [75, 76, 73, 74]. However, many other LQCD studies [94, 95, 85, 77, 86] did not obtain such bound states, raising concerns on whether or not the previous works correctly determined the two-nucleon spectrum. There are several explanations for this issue and it is still not completely conclusive whether S01{}^{1}S_{0} two-nucleon state is bound or unbound at unphysical large pion masses [96]. Nevertheless, the results from the present work could be easily adjusted to updated LQCD values of two-nucleon binding energies or scattering lengths. For example, in Table 1, we considered both the older (without asterisk) [74] and the latest (with asterisk) [77] LQCD values of BnnB_{nn} at mπ=806m_{\pi}=806 MeV. For mπ=300m_{\pi}=300, 400, 510, and 806 MeV, the LEC CΛC_{\Lambda} is fixed using the two-nucleon binding energy BnnB_{nn} in the infinite volume, extrapolated from the FV energies provided by the LQCD calculations. For mπ=806m_{\pi}=806^{*} MeV, the LQCD result of BnnB_{nn} is only available at a single finite volume L=4.6L=4.6 fm and, thus, the fitting of the LEC CΛC_{\Lambda} is performed at the same finite volume.

Refer to caption
Figure 2: (Color online). The cutoff dependence of the long-range contribution to the LO Minkowski matrix elements 𝒯(M)\mathcal{T}^{(M)} for the ground-state-to-ground-state transitions in the infinite volume at the pion masses mπ=300m_{\pi}=300, 450, 510, and 806 MeV, obtained from the relativistic pionless EFT. Here, the effective neutrino mass mββm_{\beta\beta} is set to 1 MeV.

In Fig. 2, we show the cutoff dependence of the long-range contribution to the LO Minkowski matrix elements between the ground states in the infinite volume, 𝒯(M)=E0|Vν|E0\mathcal{T}^{(M)}=\langle E_{0}|V_{\nu}|E_{0}\rangle, at the unphysical pion masses. Here, the LEC CΛC_{\Lambda} is fitted to the center value of BnnB_{nn} in Table 1. As expected, the long-range contribution to the matrix elements all converge as the cutoff Λ\Lambda goes to infinity. For the unphysical pion masses considered here, convergence can be reached at Λ50\Lambda\lesssim 50 fm-1 on the 1%1\% level. As shown in Ref. [33], this is also true for the amplitudes at the physical pion mass. Therefore, we take the amplitudes and matrix elements at Λ=50\Lambda=50 fm-1 as the renormalized results in the present study. The values of LEC CΛC_{\Lambda} are listed in Table 1.

For the LEC g~νNN\tilde{g}_{\nu}^{NN} in the LO contact term in the neutrino potential, it is determined by integrating out the contribution from the coupling of the nucleonic axial current to pions, using Eq. 19. They are also calculated from the mπm_{\pi} and mNm_{N} values provided by the experiments or LQCD calulations. The values of LEC g~νNN\tilde{g}_{\nu}^{NN} are listed in Table 1. Their values are indeed O(1)O(1), as expected. They take positive values and, thus, the contact term contribution reduces the magnitude of the nnppeenn\rightarrow ppee amplitude.

IV Results and discussion

Refer to caption
Figure 3: The amplitudes |0ν(int)||\mathcal{M}^{\rm(int)}_{0\nu}| at the physical pion mass obtained from the relativistic and nonrelativistic LO pionless EFT, as functions of the center-of-mass kinetic energy Ekin=E2mNE_{\rm kin}=E-2m_{N} in the initial and final states. For the nonrelativistic results, the nnppeenn\rightarrow ppee contact term is fitted to the synthetic datum provided by the generalized Cottingham formula [31]. The effective neutrino mass mββm_{\beta\beta} is set to 1 MeV.

We first discuss the nnppeenn\rightarrow ppee amplitudes at the physical pion mass. In Fig. 3, the absolute value of the infinite-volume amplitude 0ν(int)\mathcal{M}^{(\rm int)}_{0\nu} is plotted against the center-of-mass kinetic energy Ekin=E2mNE_{\rm kin}=E-2m_{N}. The amplitudes obtained from the relativistic formulation are compared to those obtained from the nonrelativistic formulation. For the latter, dimensional regularization scheme is adopted to regularize the ultraviolet divergence, introducing the renormalization scale μ=mπ\mu=m_{\pi}, and the LEC for the nnppeenn\rightarrow ppee contact term is fitted to the synthetic datum provided by the generalized Cottingham formula [31], yielding g~νNN(μ=mπ)=4.09±0.21\tilde{g}_{\nu}^{NN}(\mu=m_{\pi})=4.09\pm 0.21. For the energy above the threshold, the nonrelativistic results are consistent with the relativistic ones at 20%20\% level. For the energy under the threshold, the relative difference between the nonrelativistic and relativistic results grows with decreasing energy. The amplitude under the threshold is not observable in the continuum, as the kinetic energy cannot be negative. Nevertheless, it can show up in the matching to the LQCD results, because energies can go below the threshold in finite volumes (e.g., see Fig. 4).

Refer to caption
Figure 4: (Color online). The finite-volume quantities |0ν(int,L)||\mathcal{M}^{({\rm int},L)}_{0\nu}| at the physical pion mass obtained from the LO relativistic pionless EFT, as functions of the center-of-mass kinetic energy Ekin=E2mNE_{\rm kin}=E-2m_{N} in the initial and final states. The infinite-volume (IFV) amplitude |0ν(int)||\mathcal{M}^{({\rm int})}_{0\nu}| is shown by the solid line. The empty circles denote the values of |0ν(int,L)||\mathcal{M}^{({\rm int},L)}_{0\nu}| at the finite-volume energies of the ground states and the first excited states. The effective neutrino mass mββm_{\beta\beta} is set to 1 MeV.

Figure 4 depicts the volume dependence of the FV quantity 0ν(int,L)\mathcal{M}^{({\rm int},L)}_{0\nu} obtained from the relativistic pionless EFT. The FV energies of the ground and first-excited states are shown by the empty circles. The infinite-volume amplitude 0ν(int)\mathcal{M}^{({\rm int})}_{0\nu} is also shown for comparison. For the energy above the threshold Ekin>0E_{\rm kin}>0, 0ν(int,L)\mathcal{M}^{({\rm int},L)}_{0\nu} exhibits several singularities in contrast to its infinite-volume counter part 0ν(int)\mathcal{M}^{({\rm int})}_{0\nu}. The singularities come from the two-nucleon propagator in Eq. (26), as its denominator becomes zero for the momentum modes in which two nucleons are on-shell, Ekin=2mN2+(2π𝒏/L)22mNE_{\rm kin}=2\sqrt{m_{N}^{2}+(2\pi\bm{n}/L)^{2}}-2m_{N} with 𝒏3\bm{n}\in\mathbb{Z}^{3}. They do not exist in the infinite volume because the on-shell momentum modes contribute to the imaginary part of the propagator instead of being divergent [see Eq. (12)]. In between the singularities, the value of 0ν(int,L)\mathcal{M}^{({\rm int},L)}_{0\nu} is generally smaller its infinite-volume counterpart 0ν(int)\mathcal{M}^{({\rm int})}_{0\nu}.

For the energy below the threshold Ekin<0E_{\rm kin}<0, 0ν(int,L)\mathcal{M}^{({\rm int},L)}_{0\nu} behaves smoothly as a function of energy. In the limit of LL\rightarrow\infty, the values of 0ν(int,L)\mathcal{M}^{({\rm int},L)}_{0\nu} should approach the infinite-volume amplitude 0ν(int)\mathcal{M}^{({\rm int})}_{0\nu}. For the range L=16L=16 fm, 0ν(int,L)\mathcal{M}^{({\rm int},L)}_{0\nu} is already close to 0ν(int)\mathcal{M}^{({\rm int})}_{0\nu} within 10%10\% at the FV ground-state energies.

Refer to caption
Figure 5: (Color online). The volume dependence of the two-nucleon binding energies BnnB_{nn} and the LO Minkowski matrix elements 𝒯L(M)\mathcal{T}^{(M)}_{L} for the ground-state-to-ground-state nnppeenn\rightarrow ppee transition at the pion masses mπ=300m_{\pi}=300, 450, 510, and 806 MeV, obtained from the LO relativistic pionless EFT. The results are calculated at integer values of LL and slightly shifted in the horizontal direction for clarity. Their infinite-volume (IFV) limits are also shown for comparison. The error bars are obtained by varying the input data of the two-nucleon binding energies BnnB_{nn} from the LQCD calculations within their margins of errors. The effective neutrino mass mββm_{\beta\beta} is set to 1 MeV.

Next, we show the results for the matrix elements at the unphysical pion masses mπ=300m_{\pi}=300, 450, 510, and 806 MeV. In these cases, a two-nucleon bound state in the S01{}^{1}S_{0} channel at each pion mass is predicted by the LQCD calculations [75, 76, 73, 74, 77]. Figure 5 depicts the volume dependence of the two-nucleon binding energies BnnB_{nn} and the LO Minkowski matrix elements 𝒯L(M)\mathcal{T}^{(M)}_{L} for the ground-state-to-ground-state nnppeenn\rightarrow ppee transition, as well as their infinite-volume limits. The factor L3L^{3} is added for 𝒯L(M)\mathcal{T}^{(M)}_{L} to give the correct normalization in the infinite-volume limit LL\rightarrow\infty. The Minkowski matrix element generally decreases when the pion mass becomes smaller.

For each pion mass, the binding energy BnnB_{nn} becomes significantly large for small box sizes L3L\lesssim 3 fm and comes close to the infinite-volume value at L=6L=6 fm. However, this is not the case for the nnppeenn\rightarrow ppee matrix element. At the heaviest pion mass mπ=806m_{\pi}=806 MeV, it increases from 33% of the infinite-volume limit at L=2L=2 fm to 75% at L=6L=6 fm. At the lightest pion mass mπ=300m_{\pi}=300 MeV, it increases from 14% of the infinite-volume limit at L=2L=2 fm to only 50% at L=6L=6 fm. The value of L3𝒯L(M)L^{3}\mathcal{T}^{(M)}_{L} increases slowly with increasing box size, so a much larger box size is needed to approach the infinite-volume limit.

The different volume dependence between the binding energy and the nnppeenn\rightarrow ppee matrix element is due to the fact that the strong interaction is short-range while the neutrino exchange is long-range. The photon exchange responsible for the electromagnetic interactions is also long-range, and it is known that the FV corrections for the electromagnetic interactions exhibit a power-law scaling with volume [97], instead of an exponential scaling for the short-range strong interactions. Besides approaching the infinite-volume limit by increasing the box size, one could also extrapolate the results obtained using relatively small box sizes. We extrapolate the values of L3𝒯L(M)L^{3}\mathcal{T}^{(M)}_{L} at L=4L=4, 5, 6 fm to infinite volume by considering the leading O(1/L)O(1/L) correction. The extrapolation reduces the difference against the infinite-volume limit, but systematic deviation remains. At the heaviest pion mass mπ=806m_{\pi}=806 MeV, the extrapolated result overestimates the infinite-volume value by about 10%. While at the lightest pion mass mπ=300m_{\pi}=300 MeV, the extrapolated result underestimates the infinite-volume value by about 20%.

Refer to caption
Figure 6: (Color online). The amplitudes |0ν(int)||\mathcal{M}^{({\rm int})}_{0\nu}| at different pion masses obtained from the LO relativistic pionless EFT, as functions of the center-of-mass kinetic energy Ekin=E2mNE_{\rm kin}=E-2m_{N} in the initial and final states. The shaded uncertainties are obtained by varying the input data of the two-nucleon binding energies BnnB_{nn} from the LQCD calculations within their margins of errors. The effective neutrino mass mββm_{\beta\beta} is set to 1 MeV.

Figure 6 depicts the absolute value of the amplitude 0ν(int)\mathcal{M}^{({\rm int})}_{0\nu} at different pion masses. The shaded uncertainties are obtained by varying the input data from the LQCD calculations within their margins of errors. For the energy above the threshold, the amplitudes |0ν(int)||\mathcal{M}^{({\rm int})}_{0\nu}| at the unphysical pion masses are significantly smaller than that at the physical pion mass. |0ν(int)||\mathcal{M}^{({\rm int})}_{0\nu}| drops rapidly with increasing energy, which is similar at both the physical and unphysical masses.

For the energy below the threshold, however, the amplitude |0ν(int)||\mathcal{M}^{({\rm int})}_{0\nu}| exhibits very different behavior at the unphysical pion masses compared to that at the physical pion mass. In particular, the amplitude |0ν(int)||\mathcal{M}^{({\rm int})}_{0\nu}| diverges at the energy of two-nucleon bound state at each unphysical pion mass, because the bound-state energy is the pole of the two-nucleon scattering amplitude MS(E)M_{S}(E). For the nnppeenn\rightarrow ppee transition between bound states, the scattering amplitude |0ν(int)||\mathcal{M}^{({\rm int})}_{0\nu}| (and also |0ν(int,L)||\mathcal{M}^{({\rm int},L)}_{0\nu}|) is not well-defined and one should directly calculate the Minkowski matrix element 𝒯(M)\mathcal{T}^{(M)} (𝒯L(M)\mathcal{T}^{(M)}_{L}) using bound-state wave functions. Such divergence does not exist at the physical pion mass since there is no two-nucleon bound state in the S01{}^{1}S_{0} channel.

Refer to caption
Figure 7: (Color online). The finite-volume quantities |0ν(int,L)||\mathcal{M}^{({\rm int},L)}_{0\nu}| at the unphysical pion masses obtained from the LO relativistic pionless EFT, as functions of the center-of-mass kinetic energy Ekin=E2mNE_{\rm kin}=E-2m_{N} in the initial and final states. The empty circles denote the values of |0ν(int,L)||\mathcal{M}^{({\rm int},L)}_{0\nu}| at the finite-volume energies of the ground states and the first excited states. The infinite-volume (IFV) amplitudes |0ν(int)||\mathcal{M}^{({\rm int})}_{0\nu}| are also shown by the solid lines. Here, the results are obtained using the central values of the two-nucleon binding energies BnnB_{nn} from the LQCD calculations as inputs. The effective neutrino mass mββm_{\beta\beta} is set to 1 MeV.

In Fig. 7, the FV quantities |0ν(int,L)||\mathcal{M}^{({\rm int},L)}_{0\nu}| at the unphysical pion masses with the box sizes L=4,5,6L=4,5,6 fm are depicted in comparison with the results in the infinite volume, as functions of the center-of-mass kinetic energy above the threshold. Here, the results are obtained using the central values of LEC in Table 1 and the uncertainties from the LQCD inputs are not shown. The behavior of |0ν(int,L)||\mathcal{M}^{({\rm int},L)}_{0\nu}| at the unphysical pion masses are similar to that at the physical pion mass except for the locations of singularities. This is because |0ν(int,L)||\mathcal{M}^{({\rm int},L)}_{0\nu}| diverges at the neighborhood of the integer multiples of 4π2/(L2mN)4\pi^{2}/(L^{2}m_{N}), at which the two nucleons can become on-shell in the FV two-loop integral JLJ^{L} [Eq. (26)]. As a result, the singularities are denser at heavier pion mass, since the nucleon mass increases with increasing pion mass, and for larger spatial volumes. The FV energies of the ground states and the first excited states in the different spatial volumes are shown by the empty circles. The values of |0ν(int,L)||\mathcal{M}^{({\rm int},L)}_{0\nu}| at the FV energies are significantly smaller than the infinite-volume amplitude |0ν(int)||\mathcal{M}^{({\rm int})}_{0\nu}|.

Table 2: The Minkowski matrix elements 𝒯L(M)\mathcal{T}^{(M)}_{L} for the ground-state-to-ground-state and first-excited-state-to-first-excited-state nnppeenn\rightarrow ppee transitions at the pion masses mπ=300m_{\pi}=300, 450, 510, and 806 MeV, predicted by the LO relativistic pionless EFT. The finite-volume energies E0E_{0} and E1E_{1} for the ground states and the first excited states are also shown, respectively. The uncertainties are obtained by varying the input data of the two-nucleon binding energies BnnB_{nn} from the LQCD calculations within their margins of errors.
mπm_{\pi} (MeV) LL (fm) E0E_{0} (MeV) 𝒯L(M)(E0,E0)\mathcal{T}^{(M)}_{L}(E_{0},E_{0}) (MeV5) E1E_{1} (MeV) 𝒯L(M)(E1,E1)\mathcal{T}^{(M)}_{L}(E_{1},E_{1}) (MeV5)
4 -16.8()0.7+1.3\left({}^{+1.3}_{-0.7}\right) 4.1()0.1+0.2×106\left({}^{+0.2}_{-0.1}\right)\times 10^{6} 31.6()1.5+0.9\left({}^{+0.9}_{-1.5}\right) 1.9()0.2+0.1×108\left({}^{+0.1}_{-0.2}\right)\times 10^{8}
300 5 -12.9()0.7+1.3\left({}^{+1.3}_{-0.7}\right) 2.5()0.1+0.2×106\left({}^{+0.2}_{-0.1}\right)\times 10^{6} 17.3()1.2+0.7\left({}^{+0.7}_{-1.2}\right) 1.8()0.2+0.1×108\left({}^{+0.1}_{-0.2}\right)\times 10^{8}
6 -10.8()0.7+1.4\left({}^{+1.4}_{-0.7}\right) 1.7()0.1+0.1×106\left({}^{+0.1}_{-0.1}\right)\times 10^{6} 10.2()0.9+0.5\left({}^{+0.5}_{-0.9}\right) 1.6()0.3+0.2×108\left({}^{+0.2}_{-0.3}\right)\times 10^{8}
4 -18.6()2.3+2.3\left({}^{+2.3}_{-2.3}\right) 6.6()0.6+0.5×106\left({}^{+0.5}_{-0.6}\right)\times 10^{6} 23.7()1.7+2.2\left({}^{+2.2}_{-1.7}\right) 2.3()0.3+0.4×108\left({}^{+0.4}_{-0.3}\right)\times 10^{8}
450 5 -15.5()2.4+2.5\left({}^{+2.5}_{-2.4}\right) 4.1()0.4+0.3×106\left({}^{+0.3}_{-0.4}\right)\times 10^{6} 11.4()1.2+1.5\left({}^{+1.5}_{-1.2}\right) 1.7()0.4+0.4×108\left({}^{+0.4}_{-0.4}\right)\times 10^{8}
6 -14.1()2.6+2.6\left({}^{+2.6}_{-2.6}\right) 2.8()0.3+0.2×106\left({}^{+0.2}_{-0.3}\right)\times 10^{6} 6.3()0.7+1.1\left({}^{+1.1}_{-0.7}\right) 1.2()0.3+0.5×108\left({}^{+0.5}_{-0.3}\right)\times 10^{8}
4 -13.7()1.0+1.0\left({}^{+1.0}_{-1.0}\right) 6.1()0.4+0.4×106\left({}^{+0.4}_{-0.4}\right)\times 10^{6} 24.2()1.2+1.3\left({}^{+1.3}_{-1.2}\right) 3.0()0.2+0.2×108\left({}^{+0.2}_{-0.2}\right)\times 10^{8}
510 5 -10.6()1.0+1.1\left({}^{+1.1}_{-1.0}\right) 3.7()0.3+0.3×106\left({}^{+0.3}_{-0.3}\right)\times 10^{6} 13.1()0.9+1.0\left({}^{+1.0}_{-0.9}\right) 2.5()0.3+0.3×108\left({}^{+0.3}_{-0.3}\right)\times 10^{8}
6 -9.0()1.1+1.2\left({}^{+1.2}_{-1.1}\right) 2.5()0.2+0.2×106\left({}^{+0.2}_{-0.2}\right)\times 10^{6} 7.7()0.7+0.8\left({}^{+0.8}_{-0.7}\right) 2.0()0.3+0.4×108\left({}^{+0.4}_{-0.3}\right)\times 10^{8}
4 -18.6()3.2+3.0\left({}^{+3.0}_{-3.2}\right) 1.2()0.1+0.1×107\left({}^{+0.1}_{-0.1}\right)\times 10^{7} 13.1()1.4+1.8\left({}^{+1.8}_{-1.4}\right) 2.6()0.5+0.6×108\left({}^{+0.6}_{-0.5}\right)\times 10^{8}
806 5 -16.7()3.5+3.3\left({}^{+3.3}_{-3.5}\right) 7.2()0.8+0.6×106\left({}^{+0.6}_{-0.8}\right)\times 10^{6} 6.3()0.8+1.1\left({}^{+1.1}_{-0.8}\right) 1.6()0.5+0.7×108\left({}^{+0.7}_{-0.5}\right)\times 10^{8}
6 -16.0()3.6+3.5\left({}^{+3.5}_{-3.6}\right) 4.6()0.4+0.3×106\left({}^{+0.3}_{-0.4}\right)\times 10^{6} 3.4()0.5+0.7\left({}^{+0.7}_{-0.5}\right) 9.3()0.4+0.6×108\left({}^{+0.6}_{-0.4}\right)\times 10^{8}

In Table 2, we provide the values of the LO Minkowski matrix elements 𝒯L(M)\mathcal{T}^{(M)}_{L} for the ground-state-to-ground-state and first-excited-state-to-first-excited-state nnppeenn\rightarrow ppee transitions in finite volumes with L=4L=4, 5, and 6 fm. The precision of the predicted matrix elements is mostly within 10%-20%. This precision is in accordance with the precision of the two-nucleon binding energies BnnB_{nn} from the LQCD calculations (Table 1) used as inputs. In addition to the uncertainty from the LQCD input, there are also uncertainties from the truncation of EFT and the estimation of the LO LEC g~νNN\tilde{g}_{\nu}^{NN}, as discussed in Sec. II.1. For the former, the uncertainty arises from neglecting the strong potential and neutrino potential beyond LO, expected to be O(Q/mπ)O(Q/m_{\pi}). For the latter, it takes into account the known LO contribution from the coupling of pions to axial currents, and its uncertainty comes from the possible unknown short-range contributions. This unknown short-range contributions is expected to be subleading based on the comparison between the pionless and chiral EFTs. Therefore, we expect the truncation uncertainty of the predictions of relativistic pionless EFT is of the order of O(Q/mπ)O(Q/m_{\pi}), with QQ estimated by the two-nucleon binding energy mNBnn\sqrt{m_{N}B_{nn}} or the inverse scattering length a1a^{-1}. For mπ=300m_{\pi}=300, 450, 510, and 806 MeV, the truncation uncertainties are expected to be of the order of 32%32\%, 28%28\%, 19%19\%, and 20%20\%, respectively. In general, the truncation uncertainty should become smaller for heavier pion mass for the relativistic pionless EFT.

Finally, we present a comparison with the first evaluation of the ground-state-to-ground-state nnppeenn\rightarrow ppee matrix element on the lattice with L=4.6L=4.6 fm at mπ=806m_{\pi}=806 MeV, achieved by NPLQCD Collaboration [58]. For the S01{}^{1}S_{0} two-nucleon energy at this pion mass, there exists a discrepancy between the older results [74, 98, 99] and the latest result [77] by NPLQCD Collaboration. Such discrepancy is suspected to be due to the misidentification of the two-nucleon spectrum through “false plateaus” in the older works, yielding a deeply bound two-nucleon state [49, 50, 96]. Several newer works [84, 85, 77, 86] have not identified such deeply bound two-nucleon state. Nevertheless, there are several explanations and this issue is still not completely settled [49, 50, 96]. Here, we used both the older and the latest results for the two-nucleon energy from Refs. [74, 77] as inputs of the EFT (Table 1), as they are both consistent with the one yielded in the nnppeenn\rightarrow ppee calculation [58]. The results are shown below,

|𝒯L(M)|EFT={8.7()1.0+0.7×106MeV5(Bnn17MeV)1.7()0.4+0.7×106MeV5(Bnn3MeV),|𝒯L(M)|LQCD=1.75()0.36+0.36×106MeV5.\begin{split}&\left|\mathcal{T}^{(M)}_{L}\right|_{\rm EFT}=\left\{\begin{split}&8.7\left({}^{+0.7}_{-1.0}\right)\times 10^{6}\ {\rm MeV}^{5}\quad(B_{nn}\simeq 17\ {\rm MeV})\\ &1.7\left({}^{+0.7}_{-0.4}\right)\times 10^{6}\ {\rm MeV}^{5}\quad(B_{nn}\simeq 3\ {\rm MeV})\\ \end{split},\right.\\ &\left|\mathcal{T}^{(M)}_{L}\right|_{\rm LQCD}=1.75\left({}^{+0.36}_{-0.36}\right)\times 10^{6}\ {\rm MeV}^{5}.\end{split} (38)

If the latest results of the two-nucleon energy [77] is adopted, the EFT prediction of the matrix element is consistent with the LQCD result, within the uncertainty coming from the inputs. However, if the deeply bound two-nucleon energy from the older calculation [74] is adopted, the matrix element is significantly larger than the LQCD result. This is because the neutrino exchange potential behaves as 1/r1/r in the coordinate space, and the larger the binding energy, the more compact the two-nucleon system. In addition, the physical value of the axial coupling constant gA=1.27g_{A}=1.27 is used here, while gAg_{A} should slightly decrease with increasing pion mass [100] and this could slightly decrease the present EFT prediction. Nevertheless, the agreement between the present EFT prediction (using the newest results of the two-nucleon energy [77]) and the first LQCD evaluation for the nnppeenn\rightarrow ppee matrix element is very encouraging. To be more conclusive, future benchmarks should be carried out after the LQCD calculations reduce the uncertainties in the two-nucleon energy. In addition, we anticipate more LQCD calculations of the nnppeenn\rightarrow ppee matrix elements at different pion masses or finite volumes. Then, the systematic comparison between the EFT matrix elements and the LQCD ones could be a stringent benchmark for the validity of EFT predictions on the nnppeenn\rightarrow ppee process.

V Summary

In this work, the neutrinoless double-beta decay process nnppeenn\rightarrow ppee within the light Majorana-neutrino exchange scenario is studied in a finite volume based on the leading-order relativistic pionless EFT. The finite-volume Minkowski matrix elements of the nnppeenn\rightarrow ppee process are predicted for the pion masses mπ=300m_{\pi}=300, 450, 510, and 806 MeV, at which the LQCD calculations of the two-nucleon energies exist. These results can be directly compared to the results from LQCD calculations of the nnppeenn\rightarrow ppee process at the same pion masses.

The previous studies [59, 60] presented the matching framework between the finite-volume matrix elements from LQCD and the infinite-volume scattering amplitude from the nonrelativistic pionless EFT for the nnppeenn\rightarrow ppee process. The scattering amplitudes and finite-volume Minkowski matrix elements of the nnppeenn\rightarrow ppee process are calculated at the physical pion masses [60], where the size of the LO nnppeenn\rightarrow ppee contact term is determined by the generalized Cottingham formula [31]. However, such determination of the contact term is not applicable at the unphysical pion masses. Different from the nonrelativistic studies, the present work presents a relativistic study, where the size of the contact term is determined by integrating out the pion contributions to the long-range neutrino potential in the relativistic chiral EFT. This is possible thanks to the fact that the long-range nnppeenn\rightarrow ppee amplitudes are renormalizable at leading order in the relativistic chiral EFT [33], in contrast to the nonrelativistic case. The obtained amplitudes at the physical pion mass are consistent with the previous nonrelativistic results at 20% level. In addition, the nnppeenn\rightarrow ppee processes at the unphysical pion masses mπ=300m_{\pi}=300, 450, 510, and 806 MeV are studied in a finite volume for the first time, based on the relativistic pionless EFT, using the two-nucleon energies from the existing LQCD calculations [75, 76, 73, 74, 77].

At the unphysical pion masses, the renormalization-group invariance of the leading-order Minkowski matrix elements is confirmed. Then, the matrix elements are predicted in several different volumes to investigate their volume dependence. It is found that a much larger volume than those implemented in the present LQCD studies of two-nucleon systems (typically with cubic-box sizes in the range of L=L=4-6 fm) is required to approach the infinite-volume limits of the nnppeenn\rightarrow ppee matrix elements, due to the long-range nature of neutrino exchange. The finite-volume results can be improved by the extrapolation considering the leading O(1/L)O(1/L) correction, but systematic deviations from the infinite-volume limit remain for about 10%-20%, depending on the pion mass.

Finally, the relativistic pionless EFT predictions of the Minkowski matrix elements in several finite volumes are presented for the ground-state-to-ground-state and first-excited-state-to-first-excited-state nnppeenn\rightarrow ppee transitions at the pion masses mπ=300m_{\pi}=300, 450, 510, and 806 MeV. These results allow direct benchmarks between EFT and LQCD on the nnppeenn\rightarrow ppee process, especially at the heavy pion masses that are numerically more favorable for LQCD. In particular, the EFT predictions for mπ=806m_{\pi}=806 MeV are compared with the first LQCD evaluation of the ground-state-to-ground-state nnppeenn\rightarrow ppee matrix element at a finite volume of L=4.6L=4.6 fm [58]. Using the latest LQCD value of two-nucleon energy in a same lattice setup  [77] as inputs, the relativistic pionless EFT yields a nnppeenn\rightarrow ppee matrix element in good agreement with the LQCD evaluation. This is not the case if the deeply bound two-nucleon energy from the older LQCD calculation [74] is used.

The present results motivate future studies of the nnppeenn\rightarrow ppee process from LQCD at different pion masses and finite volumes. In addition, the present leading-order study on the nnppeenn\rightarrow ppee process in a finite volume also provides the basis for such studies at higher orders, where the LECs associated with subleading lepton-number-breaking contact terms have to be determined via matching to LQCD calculations.

Acknowledgements.
This work has been supported in part by the National Natural Science Foundation of China (Grants No. 123B2080, No. 12141501, No. 11935003), and the High-performance Computing Platform of Peking University. We acknowledge the funding support from the State Key Laboratory of Nuclear Physics and Technology, Peking University (Grant No. NPT2023ZX03).

References

  • Furry [1939] W. H. Furry, On Transition Probabilities in Double Beta-Disintegration, Phys. Rev. 56, 1184 (1939).
  • Schechter and Valle [1982] J. Schechter and J. W. F. Valle, Neutrinoless double-β\beta decay in SU(2)×\timesU(1) theories, Phys. Rev. D 25, 2951 (1982).
  • Zel’dovich and Khlopov [1981] Y. B. Zel’dovich and M. Y. Khlopov, Study of the neu-trino mass in a double beta-decay, JETP Lett. 34, 141 (1981).
  • Aalseth et al. [2018] C. E. Aalseth et al. (Majorana Collaboration), Search for Neutrinoless Double-β\beta Decay in Ge76{}^{76}\mathrm{Ge} with the Majorana Demonstrator, Phys. Rev. Lett. 120, 132502 (2018).
  • Adams et al. [2020] D. Q. Adams et al. (CUORE Collaboration), Improved Limit on Neutrinoless Double-Beta Decay in Te130{}^{130}\mathrm{Te} with CUORE, Phys. Rev. Lett. 124, 122501 (2020).
  • Agostini et al. [2020] M. Agostini et al. (GERDA Collaboration), Final Results of GERDA on the Search for Neutrinoless Double-β\beta Decay, Phys. Rev. Lett. 125, 252502 (2020).
  • Albert et al. [2018] J. B. Albert et al. (EXO-200 Collaboration), Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector, Phys. Rev. Lett. 120, 072701 (2018).
  • Armengaud et al. [2021] E. Armengaud et al. (CUPID-Mo Collaboration), New Limit for Neutrinoless Double-Beta Decay of Mo100{}^{100}\mathrm{Mo} from the CUPID-Mo Experiment, Phys. Rev. Lett. 126, 181802 (2021).
  • Arnold et al. [2017] R. Arnold et al. (NEMO-3 Collaboration), Search for Neutrinoless Quadruple-β\beta Decay of Nd150{}^{150}\mathrm{Nd} with the NEMO-3 Detector, Phys. Rev. Lett. 119, 041801 (2017).
  • Gando et al. [2016] A. Gando et al. (KamLAND-Zen Collaboration), Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117, 082503 (2016).
  • Dai et al. [2022] W. H. Dai et al. (CDEX Collaboration), Search for neutrinoless double-beta decay of Ge76{}^{76}\mathrm{Ge} with a natural broad energy germanium detector, Phys. Rev. D 106, 032012 (2022).
  • Agostini et al. [2023] M. Agostini, G. Benato, J. A. Detwiler, J. Menéndez, and F. Vissani, Toward the discovery of matter creation with neutrinoless ββ\beta\beta decay, Rev. Mod. Phys. 95, 025002 (2023).
  • Engel and Menéndez [2017] J. Engel and J. Menéndez, Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review, Rep. Prog. Phys. 80, 046301 (2017).
  • Weinberg [1990] S. Weinberg, Nuclear forces from chiral lagrangians, Phys. Lett. B 251, 288 (1990).
  • Weinberg [1991] S. Weinberg, Effective chiral lagrangians for nucleon-pion interactions and nuclear forces, Nucl. Phys. B 363, 3 (1991).
  • Kaplan et al. [1998a] D. B. Kaplan, M. J. Savage, and M. B. Wise, A new expansion for nucleon-nucleon interactions, Physi. Lett. B 424, 390 (1998a).
  • Kaplan et al. [1998b] D. B. Kaplan, M. J. Savage, and M. B. Wise, Two-nucleon systems from effective field theory, Nucl. Phys. B 534, 329 (1998b).
  • van Kolck [1999] U. van Kolck, Effective field theory of short-range forces, Nucl. Phys. A 645, 273 (1999).
  • Bedaque and van Kolck [1998] P. Bedaque and U. van Kolck, Nucleon-deuteron scattering from an effective field theory, Phys. Lett. B 428, 221 (1998).
  • Bedaque et al. [1998] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Effective theory for neutron-deuteron scattering: Energy dependence, Phys. Rev. C 58, R641 (1998).
  • Chen et al. [1999] J.-W. Chen, G. Rupak, and M. J. Savage, Nucleon-nucleon effective field theory without pions, Nucl. Phys. A 653, 386 (1999).
  • Epelbaum et al. [2009] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Modern theory of nuclear forces, Rev. Mod. Phys. 81, 1773 (2009).
  • Machleidt and Entem [2011] R. Machleidt and D. R. Entem, Chiral effective field theory and nuclear forces, Phys. Rep. 503, 1 (2011).
  • Hammer et al. [2020] H.-W. Hammer, S. König, and U. van Kolck, Nuclear effective field theory: Status and perspectives, Rev. Mod. Phys. 92, 025004 (2020).
  • Prézeau et al. [2003] G. Prézeau, M. Ramsey-Musolf, and P. Vogel, Neutrinoless double β\beta decay and effective field theory, Phys. Rev. D 68, 034016 (2003).
  • Cirigliano et al. [2017] V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, and E. Mereghetti, Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven, J. High Energy Phys. 2017 (12), 82.
  • Cirigliano et al. [2018a] V. Cirigliano, W. Dekens, E. Mereghetti, and A. Walker-Loud, Neutrinoless double-β\beta decay in effective field theory: The light-Majorana neutrino-exchange mechanism, Phys. Rev. C 97, 065501 (2018a).
  • Cirigliano et al. [2018b] V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti, S. Pastore, and U. van Kolck, New Leading Contribution to Neutrinoless Double-β\beta Decay, Phys. Rev. Lett. 120, 202001 (2018b).
  • Cirigliano et al. [2019a] V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, and R. B. Wiringa, Renormalized approach to neutrinoless double-β\beta decay, Phys. Rev. C 100, 055504 (2019a).
  • Dekens et al. [2020] W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, and G. Zhou, Sterile neutrinos and neutrinoless double beta decay in effective field theory, J. High Energy Phys. 2020 (6), 97.
  • Cirigliano et al. [2021a] V. Cirigliano, W. Dekens, J. de Vries, M. Hoferichter, and E. Mereghetti, Toward Complete Leading-Order Predictions for Neutrinoless Double β\beta Decay, Phys. Rev. Lett. 126, 172002 (2021a).
  • Cirigliano et al. [2021b] V. Cirigliano, W. Dekens, J. de Vries, M. Hoferichter, and E. Mereghetti, Determining the leading-order contact term in neutrinoless double β\beta decay, J. High Energy Phys. 2021 (5), 289.
  • Yang and Zhao [2024] Y. Yang and P. Zhao, Relativistic model-free prediction for neutrinoless double beta decay at leading order, Phys. Lett. B 855, 138782 (2024).
  • Menéndez et al. [2011] J. Menéndez, D. Gazit, and A. Schwenk, Chiral Two-Body Currents in Nuclei: Gamow-Teller Transitions and Neutrinoless Double-Beta Decay, Phys. Rev. Lett. 107, 062501 (2011).
  • Pastore et al. [2018] S. Pastore, J. Carlson, V. Cirigliano, W. Dekens, E. Mereghetti, and R. B. Wiringa, Neutrinoless double-β\beta decay matrix elements in light nuclei, Phys. Rev. C 97, 014606 (2018).
  • Wang et al. [2018] L.-J. Wang, J. Engel, and J. M. Yao, Quenching of nuclear matrix elements for 0νββ0\nu\beta\beta decay by chiral two-body currents, Phys. Rev. C 98, 031301 (2018).
  • Jokiniemi et al. [2021] L. Jokiniemi, P. Soriano, and J. Menéndez, Impact of the leading-order short-range nuclear matrix element on the neutrinoless double-beta decay of medium-mass and heavy nuclei, Phys. Lett. B 823, 136720 (2021).
  • Yao et al. [2021] J. M. Yao, A. Belley, R. Wirth, T. Miyagi, C. G. Payne, S. R. Stroberg, H. Hergert, and J. D. Holt, Ab initio benchmarks of neutrinoless double-β\beta decay in light nuclei with a chiral Hamiltonian, Phys. Rev. C 103, 014315 (2021).
  • Weiss et al. [2022] R. Weiss, P. Soriano, A. Lovato, J. Menendez, and R. B. Wiringa, Neutrinoless double-β\beta decay: Combining quantum Monte Carlo and the nuclear shell model with the generalized contact formalism, Phys. Rev. C 106, 065501 (2022).
  • Belley et al. [2024] A. Belley, J. M. Yao, B. Bally, J. Pitcher, J. Engel, H. Hergert, J. D. Holt, T. Miyagi, T. R. Rodríguez, A. M. Romero, S. R. Stroberg, and X. Zhang, Ab Initio Uncertainty Quantification of Neutrinoless Double-Beta Decay in Ge76{}^{76}\mathrm{Ge}Phys. Rev. Lett. 132, 182502 (2024).
  • Weinberg [1979] S. Weinberg, Baryon- and Lepton-Nonconserving Processes, Phys. Rev. Lett. 43, 1566 (1979).
  • Epelbaum and Gegelia [2012] E. Epelbaum and J. Gegelia, Weinberg’s approach to nucleon-nucleon scattering revisited, Phys. Lett. B 716, 338 (2012).
  • Epelbaum et al. [2017] E. Epelbaum, J. Gegelia, U.-G. Meißner, and D.-L. Yao, Renormalization of the three-boson system with short-range interactions revisited, Eur. Phys. J. A 53, 98 (2017).
  • Yang and Zhao [2022] Y. L. Yang and P. W. Zhao, A consistent description of the relativistic effects and three-body interactions in atomic nuclei, Phys. Lett. B 835, 137587 (2022).
  • Briceõ et al. [2015] R. A. Briceõ, Z. Davoudi, and T. C. Luu, Nuclear reactions from lattice QCD, J. Phys. G 42, 023101 (2015).
  • Cirigliano et al. [2019b] V. Cirigliano, Z. Davoudi, T. Bhattacharya, T. Izubuchi, P. E. Shanahan, S. Syritsyn, M. L. Wagman, and U. S. Q. C. D. Collaboration, The role of Lattice QCD in searches for violations of fundamental symmetries and signals for new physics, Eur. Phys. J. A 55, 197 (2019b).
  • Kronfeld et al. [2019] A. S. Kronfeld, D. G. Richards, W. Detmold, R. Gupta, H.-W. Lin, K.-F. Liu, A. S. Meyer, R. Sufian, and S. Syritsyn, Lattice QCD and neutrino-nucleus scattering, Eur. Phys. J. A 55, 196 (2019).
  • Cirigliano et al. [2020] V. Cirigliano, W. Detmold, A. Nicholson, and P. Shanahan, Lattice QCD Inputs for nuclear double beta decay, Prog. Part. Nucl. Phys. 112, 103771 (2020).
  • Drischler et al. [2021] C. Drischler, W. Haxton, K. McElvain, E. Mereghetti, A. Nicholson, P. Vranas, and A. Walker-Loud, Towards grounding nuclear physics in QCD, Prog. Part. Nucl. Phys. 121, 103888 (2021).
  • Davoudi et al. [2021] Z. Davoudi, W. Detmold, P. Shanahan, K. Orginos, A. Parreño, M. J. Savage, and M. L. Wagman, Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes, Phys. Rep. 900, 1 (2021).
  • Cirigliano et al. [2022] V. Cirigliano, Z. Davoudi, J. Engel, R. J. Furnstahl, G. Hagen, U. Heinz, H. Hergert, M. Horoi, C. W. Johnson, A. Lovato, E. Mereghetti, W. Nazarewicz, A. Nicholson, T. Papenbrock, S. Pastore, M. Plumlee, D. R. Phillips, P. E. Shanahan, S. R. Stroberg, F. Viens, A. Walker-Loud, K. A. Wendt, and S. M. Wild, Towards precise and accurate calculations of neutrinoless double-beta decay, J. Phys. G 49, 120502 (2022).
  • Feng et al. [2019] X. Feng, L.-C. Jin, X.-Y. Tuo, and S.-C. Xia, Light-Neutrino Exchange and Long-Distance Contributions to 0ν2β0\nu 2\beta Decays: An Exploratory Study on ππee\pi\pi\rightarrow eePhys. Rev. Lett. 122, 022001 (2019).
  • Tuo et al. [2019] X.-Y. Tuo, X. Feng, and L.-C. Jin, Long-distance contributions to neutrinoless double beta decay ππ+ee{\pi}^{-}\rightarrow{\pi}^{+}eePhys. Rev. D 100, 094511 (2019).
  • Detmold and Murphy [2020] W. Detmold and D. J. Murphy, Neutrinoless double beta decay from lattice QCD: The long-distance ππ+ee\pi^{-}\rightarrow\pi^{+}e^{-}e^{-} amplitude, arXiv:2004.07404  (2020).
  • Nicholson et al. [2018] A. Nicholson, E. Berkowitz, H. Monge-Camacho, D. Brantley, N. Garron, C. C. Chang, E. Rinaldi, M. A. Clark, B. Joó, T. Kurth, B. C. Tiburzi, P. Vranas, and A. Walker-Loud, Heavy physics contributions to neutrinoless double beta decay from qcd, Phys. Rev. Lett. 121, 172501 (2018).
  • Shanahan et al. [2017] P. E. Shanahan, B. C. Tiburzi, M. L. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, and M. J. Savage (NPLQCD Collaboration), Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β\beta Decay Phenomenology, Phys. Rev. Lett. 119, 062003 (2017).
  • Tiburzi et al. [2017] B. C. Tiburzi, M. L. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, M. J. Savage, and P. E. Shanahan (NPLQCD Collaboration), Double-β\beta decay matrix elements from lattice quantum chromodynamics, Phys. Rev. D 96, 054505 (2017).
  • Davoudi et al. [2024] Z. Davoudi, W. Detmold, Z. Fu, A. V. Grebe, W. Jay, D. Murphy, P. Oare, P. E. Shanahan, and M. L. Wagman (NPLQCD Collaboration), Long-distance nuclear matrix elements for neutrinoless double-beta decay from lattice QCD, Phys. Rev. D 109, 114514 (2024).
  • Davoudi and Kadam [2021] Z. Davoudi and S. V. Kadam, Path from Lattice QCD to the Short-Distance Contribution to 0νββ0\nu\beta\beta Decay with a Light Majorana Neutrino, Phys. Rev. Lett. 126, 152003 (2021).
  • Davoudi and Kadam [2022] Z. Davoudi and S. V. Kadam, Extraction of low-energy constants of single- and double-β\beta decays from lattice QCD: A sensitivity analysis, Phys. Rev. D 105, 094502 (2022).
  • Lellouch and Lüscher [2001] L. Lellouch and M. Lüscher, Weak transition matrix elements from finite-volume correlation functions, Commun. Math. Phys. 219, 31 (2001).
  • Detmold and Savage [2004] W. Detmold and M. J. Savage, Electroweak matrix elements in the two-nucleon sector from lattice QCD, Nucl. Phys. A 743, 170 (2004).
  • Meyer [2011] H. B. Meyer, Lattice QCD and the Timelike Pion Form Factor, Phys. Rev. Lett. 107, 072002 (2011).
  • Briceño and Davoudi [2013] R. A. Briceño and Z. Davoudi, Moving multichannel systems in a finite volume with application to proton-proton fusion, Phys. Rev. D 88, 094507 (2013).
  • Bernard et al. [2012] V. Bernard, D. Hoja, U.-G. Meißner, and A. Rusetsky, Matrix elements of unstable states, J. High Energy Phys. 2012 (9), 23.
  • Briceño et al. [2015] R. A. Briceño, M. T. Hansen, and A. Walker-Loud, Multichannel 121\rightarrow 2 transition amplitudes in a finite volume, Phys. Rev. D 91, 034501 (2015).
  • Briceño and Hansen [2015] R. A. Briceño and M. T. Hansen, Multichannel 020\rightarrow 2 and 121\rightarrow 2 transition amplitudes for arbitrary spin particles in a finite volume, Phys. Rev. D 92, 074509 (2015).
  • Briceño and Hansen [2016] R. A. Briceño and M. T. Hansen, Relativistic, model-independent, multichannel 222\rightarrow 2 transition amplitudes in a finite volume, Phys. Rev. D 94, 013008 (2016).
  • Christ et al. [2015] N. H. Christ, X. Feng, G. Martinelli, and C. T. Sachrajda, Effects of finite volume on the KLKS{K}_{L}-{K}_{S} mass difference, Phys. Rev. D 91, 114510 (2015).
  • Briceño et al. [2020] R. A. Briceño, Z. Davoudi, M. T. Hansen, M. R. Schindler, and A. Baroni, Long-range electroweak amplitudes of single hadrons from Euclidean finite-volume correlation functions, Phys. Rev. D 101, 014509 (2020).
  • Feng et al. [2021] X. Feng, L.-C. Jin, Z.-Y. Wang, and Z. Zhang, Finite-volume formalism in the 2HI+HI22\stackrel{{\scriptstyle{H}_{I}+{H}_{I}}}{{\rightarrow}}2 transition: An application to the lattice QCD calculation of double beta decays, Phys. Rev. D 103, 034508 (2021).
  • Davoudi and Kadam [2020] Z. Davoudi and S. V. Kadam, Two-neutrino double-β\beta decay in pionless effective field theory from a Euclidean finite-volume correlation function, Phys. Rev. D 102, 114521 (2020).
  • Yamazaki et al. [2012] T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi, and A. Ukawa, Helium nuclei, deuteron, and dineutron in 2+12\mathbf{+}1 flavor lattice qcd, Phys. Rev. D 86, 074514 (2012).
  • Beane et al. [2013] S. R. Beane, E. Chang, S. D. Cohen, W. Detmold, H. W. Lin, T. C. Luu, K. Orginos, A. Parreño, M. J. Savage, and A. Walker-Loud (NPLQCD Collaboration), Light nuclei and hypernuclei from quantum chromodynamics in the limit of SU(3) flavor symmetry, Phys. Rev. D 87, 034506 (2013).
  • Yamazaki et al. [2015] T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi, and A. Ukawa, Study of quark mass dependence of binding energy for light nuclei in 2+12+1 flavor lattice QCD, Phys. Rev. D 92, 014501 (2015).
  • Illa et al. [2021] M. Illa, S. R. Beane, E. Chang, Z. Davoudi, W. Detmold, D. J. Murphy, K. Orginos, A. Parreño, M. J. Savage, P. E. Shanahan, M. L. Wagman, and F. Winter (NPLQCD Collaboration), Low-energy scattering and effective interactions of two baryons at mπ450  MeV{m}_{\pi}\sim 450\text{ }\text{ }\mathrm{MeV} from lattice quantum chromodynamics, Phys. Rev. D 103, 054508 (2021).
  • Amarasinghe et al. [2023] S. Amarasinghe, R. Baghdadi, Z. Davoudi, W. Detmold, M. Illa, A. Parreño, A. V. Pochinsky, P. E. Shanahan, and M. L. Wagman, Variational study of two-nucleon systems with lattice QCD, Phys. Rev. D 107, 094508 (2023).
  • Cabibbo [1963] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10, 531 (1963).
  • Kobayashi and Maskawa [1973] M. Kobayashi and T. Maskawa, CP-Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49, 652 (1973).
  • Xiao et al. [2019] Y. Xiao, L.-S. Geng, and X.-L. Ren, Covariant nucleon-nucleon contact Lagrangian up to order 𝒪(q4)\mathcal{O}({q}^{4})Phys. Rev. C 99, 024004 (2019).
  • Bedaque and van Kolck [2002] P. F. Bedaque and U. van Kolck, EFFECTIVE FIELD THEORY FOR FEW-NUCLEON SYSTEMS*, Ann. Rev. Nucl. Part. Sci. 52, 339 (2002).
  • Lüscher [1986] M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories, Commun. Math. Phys. 105, 153 (1986).
  • Lüscher [1991] M. Lüscher, Two-particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354, 531 (1991).
  • Francis et al. [2019] A. Francis, J. R. Green, P. M. Junnarkar, C. Miao, T. D. Rae, and H. Wittig, Lattice QCD study of the HH dibaryon using hexaquark and two-baryon interpolators, Phys. Rev. D 99, 074505 (2019).
  • Hörz et al. [2021] B. Hörz, D. Howarth, E. Rinaldi, A. Hanlon, C. C. Chang, C. Körber, E. Berkowitz, J. Bulava, M. A. Clark, W. T. Lee, C. Morningstar, A. Nicholson, P. Vranas, and A. Walker-Loud, Two-nucleon SS-wave interactions at the SU(3) flavor-symmetric point with mudmsphys{m}_{ud}\approx{m}_{s}^{\text{phys}}: A first lattice QCD calculation with the stochastic Laplacian Heaviside method, Phys. Rev. C 103, 014003 (2021).
  • Detmold et al. [2024] W. Detmold, M. Illa, W. I. Jay, A. Parreǹo, R. J. Perry, P. E. Shanahan, and M. L. Wagman, Constraints on the finite volume two-nucleon spectrum at mπ806m_{\pi}\simeq 806 MeV, arXiv:2404.12039  (2024).
  • Glöckle [1983] W. Glöckle, The Quantum Mechanical Few-Body Problem, edited by W. Beiglböck, E. H. Lieb, T. Regge, and W. Thirring (Springer-Verlag Berlin, 1983).
  • Kwon and Tabakin [1978] Y. R. Kwon and F. Tabakin, Hadronic atoms in momentum space, Phys. Rev. C 18, 932 (1978).
  • Landau [1983] R. H. Landau, Coupled bound and continuum eigenstates in momentum space, Phys. Rev. C 27, 2191 (1983).
  • [90] Lande, private communication in Refs. [89] and [88],  .
  • Ivanov and Mitroy [2001] I. Ivanov and J. Mitroy, Treatment of the Coulomb singularity in momentum space calculations, Comp. Phys. Commun. 134, 317 (2001).
  • Tan [2008] S. Tan, Three-boson problem at low energy and implications for dilute bose-einstein condensates, Phys. Rev. A 78, 013636 (2008).
  • Beane and Savage [2014] S. R. Beane and M. J. Savage, Two-particle elastic scattering in a finite volume including QED, Phys. Rev. D 90, 074511 (2014).
  • Ishii et al. [2012] N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, K. Murano, H. Nemura, and K. Sasaki, Hadron-hadron interactions from imaginary-time Nambu-Bethe-Salpeter wave function on the lattice, Phys. Lett. B 712, 437 (2012).
  • Inoue et al. [2012] T. Inoue, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, N. Ishii, K. Murano, H. Nemura, and K. Sasaki, Two-baryon potentials and H-dibaryon from 3-flavor lattice QCD simulations, Nucl. Phys. A 881, 28 (2012), progress in Strangeness Nuclear Physics.
  • Tews et al. [2022] I. Tews, Z. Davoudi, A. Ekström, J. D. Holt, K. Becker, R. Briceño, D. J. Dean, W. Detmold, C. Drischler, T. Duguet, E. Epelbaum, A. Gasparyan, J. Gegelia, J. R. Green, H. W. Grießhammer, A. D. Hanlon, M. Heinz, H. Hergert, M. Hoferichter, M. Illa, D. Kekejian, A. Kievsky, S. König, H. Krebs, K. D. Launey, D. Lee, P. Navrátil, A. Nicholson, A. Parreño, D. R. Phillips, M. Płoszajczak, X.-L. Ren, T. R. Richardson, C. Robin, G. H. Sargsyan, M. J. Savage, M. R. Schindler, P. E. Shanahan, R. P. Springer, A. Tichai, U. v. Kolck, M. L. Wagman, A. Walker-Loud, C.-J. Yang, and X. Zhang, Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives, Few-Body Systems 63, 67 (2022).
  • Davoudi and Savage [2014] Z. Davoudi and M. J. Savage, Finite-volume electromagnetic corrections to the masses of mesons, baryons, and nuclei, Phys. Rev. D 90, 054503 (2014).
  • Berkowitz et al. [2017] E. Berkowitz, T. Kurth, A. Nicholson, B. Joó, E. Rinaldi, M. Strother, P. M. Vranas, and A. Walker-Loud, Two-nucleon higher partial-wave scattering from lattice QCD, Physics Letters B 765, 285 (2017).
  • Wagman et al. [2017] M. L. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, M. J. Savage, and P. E. Shanahan (NPLQCD Collaboration), Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics, Phys. Rev. D 96, 114510 (2017).
  • Chang et al. [2018] C. C. Chang, A. N. Nicholson, E. Rinaldi, E. Berkowitz, N. Garron, D. A. Brantley, H. Monge-Camacho, C. J. Monahan, C. Bouchard, M. A. Clark, B. Joó, T. Kurth, K. Orginos, P. Vranas, and A. Walker-Loud, A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics, Nature 558, 91 (2018).