This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\floatsetup

[figure]captionskip=0pt,font=footnotesize \floatsetup[subfigure]captionskip=0pt,font=footnotesize

Neutrino Lorentz invariance violation from the CPTCPT-even SME coefficients through a tensor interaction with cosmological scalar fields

Rubén Cordero [email protected] Departamento de Física, Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, Unidad Adolfo López Mateos, Edificio 9, 07738 Ciudad de México, Mexico    Luis A. Delgadillo [email protected] Departamento de Física, Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, Unidad Adolfo López Mateos, Edificio 9, 07738 Ciudad de México, Mexico Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China    O. G. Miranda [email protected] Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN Apdo. Postal 14-740 07000 Ciudad de México, Mexico    C. A. Moura [email protected] Centro de Ciências Naturais e Humanas, Universidade Federal do ABC - UFABC, Av. dos Estados, 5001, 09210-580, Santo André-SP, Brazil
(February 11, 2025)
Abstract

Numerous non-standard interactions between neutrinos and scalar fields have been suggested in the literature. In this work, we have outlined the case of tensorial neutrino non-standard interactions with scalar fields, which can be related to the effective CPTCPT-even dimension-4 operators of the Standard Model Extension (SME). We illustrate how bounds placed on these parameters can be associated with limits on the energy scale of the proposed neutrino interactions with cosmic scalars. Besides, as a case study, we employ a DUNE-like experimental configuration to assess the projected sensitivities to the CPTCPT-even isotropic cαβc_{\alpha\beta} and ZZ-spatial cαβZZc_{\alpha\beta}^{ZZ} SME coefficients. For the case of the isotropic SME coefficients, an upper limit on the energy scale of the interaction can be placed. The current IceCube experiment and upcoming neutrino experiments such as DUNE, KM3NeT, IceCube-Gen2, and GRAND proposals, may clarify these classes of neutrino non-standard interactions.

I Introduction

The discovery of the Universe’s accelerating expansion Riess et al. (1998); Perlmutter et al. (1999) is one of the most important, captivating, and puzzling open questions in cosmology Sahni (2004); Alam et al. (2004). Several proposals to architecture Dark Matter (DM) and Dark Energy (DE) have been investigated in the literature. The Lambda Cold Dark Matter (Λ\LambdaCDM) model is among the most popular explanations for cosmological observations, although recent results from the Dark Energy Spectroscopic Instrument (DESI) Adame et al. (2024) show some tension with this model. Different candidates for DM particles have been considered, ranging in a very wide mass spectrum, making the Weakly Interacting Massive Particle (WIMP) paradigm one of the best motivated from a theoretical point of view Arbey and Mahmoudi (2021). However, despite thorough searches for WIMPs, they all have failed to find any signature.

Other DM and DE candidates have also been studied in an effort to find a plausible explanation to the cosmological observations. For instance, ultralight scalars are well-motivated proposals for cosmological DM Magana and Matos (2012); Ferreira (2021); Suárez et al. (2014); Hui et al. (2017); Matos et al. (2024). Moreover, several ultralight scalars become apparent within the context of string theories Arvanitaki et al. (2010); Cicoli et al. (2022); Acharya et al. (2010); Marsh (2016)111Some strategies to hunt for ultralight scalars as cosmological DM involve atomic clocks Arvanitaki et al. (2015), resonant-mass detectors Arvanitaki et al. (2016) and atomic gravitational wave detectors Arvanitaki et al. (2018). Scalar fields minimally coupled to gravity are sufficiently justified models of DE Li et al. (2011), namely quintessence Wetterich (1988); Zlatev et al. (1999), symmetrons Kading:2023hdb ; Burrage:2018zuj , and k-essence Chiba et al. (2000); Armendariz-Picon et al. (2000, 2001); Melchiorri et al. (2003); Chiba (2002); Chimento and Feinstein (2004); Chimento (2004).

In k-essence models, the scalar field plays a significant role in describing the DE puzzle. This field could have adequate behavior at early epochs and can reproduce the dynamical effects of the cosmological constant at late times. Classes of k-essence Lagrangians were introduced in several settings, for example, as a possible model for inflation Armendariz-Picon et al. (1999); Garriga and Mukhanov (1999). Subsequently, k-essence models were used as another possibility to describe the characteristics of DE and as an alternative mechanism for unifying DE and DM Scherrer (2004). Purely kinetic k-essence models de Putter and Linder (2007); Gao and Yang (2010) are, in a way, as simple as quintessence models, because they rely only on one function (FF) through the expression of the Lagrangian density =F(X){\mathcal{L}}=F(X), where XX is the kinetic term.

Among other proposals, there are second-order derivative scalar field models, or generalized galileons Nicolis et al. (2009); de Rham and Tolley (2010); Goon et al. (2011a, b), with the property that their equations of motion are second-order.

Interesting examples of this class of models are the so-called kinetic gravity braiding models, that are formulated from a Lagrangian that includes a D’Alambertian operator and an arbitrary function of a non-canonical kinetic term giving rise to appealing cosmological effects Deffayet et al. (2010); Pujolas et al. (2011); Kimura and Yamamoto (2011); Maity (2013).

At the cosmological level, all the aforementioned models of DM and DE can be described as a perfect fluid through their energy-momentum tensor TφμνT_{\varphi}^{\mu\nu} Weinberg (2008). At present, discrimination among them could be done at the level of the energy-momentum tensor perturbations. On the other hand, the search for signatures confirming the existence of scalars is an important challenge. Proposals considering the interaction of scalar fields with neutrinos have demonstrated that a possible signature might be detected in long-baseline neutrino experiments Berlin (2016); de Salas et al. (2016); Krnjaic et al. (2018); Brdar et al. (2018); Smirnov and Xu (2019); Dev et al. (2021); Losada et al. (2022, 2023); Huang et al. (2022); Cordero et al. (2023); Sen and Smirnov (2024) or via modifications to the ultrahigh energy neutrino fluxes Barranco et al. (2011); Reynoso and Sampayo (2016). Besides, it has also been argued that interactions of neutrinos with scalars, if they exist, could induce an apparent violation of Lorentz and CPTCPT symmetries in the neutrino sector Gu et al. (2007); Ando et al. (2009); Klop and Ando (2018); Capozzi et al. (2018); Farzan and Palomares-Ruiz (2019); Ge and Murayama (2019); Gherghetta and Shkerin (2023); Argüelles et al. (2023a, b); Lambiase and Poddar (2024); Cordero and Delgadillo (2024); Argüelles et al. (2024). These scalars can be identified as either DM or DE candidates. We refer to Kostelecky and Mewes (2004a); Diaz (2016); Torri (2020); Moura and Rossi-Torres (2022); Barenboim (2022) for comprehensive reviews concerning Lorentz and CPTCPT symmetry violations in the neutrino sector, within the Standard Model Extension (SME) framework Colladay and Kostelecky (1998). An initial proposal for CPTCPT violation in the neutrino sector was discussed in Ref. Barenboim and Lykken (2003).

Recently, there has been an increased interest in searches for Lorentz invariance and CPTCPT-breakdowns in neutrino oscillation experiments Barenboim et al. (2019); Abbasi et al. (2022); Sahoo et al. (2022); Agarwalla et al. (2023); Raikwal et al. (2023); Crivellin:2020oov ; Testagrossa et al. (2023); Shukla:2024fnw . For instance, comprehensive studies of the isotropic CPTCPT-even SME coefficient, (cL)TT(c_{L})^{TT}, at different long-baseline experiments can be found in Refs. Agarwalla et al. (2023); Raikwal et al. (2023)222As shown in Díaz et al. (2020), it is possible to relate the isotropic SME coefficients (cL)TT(c_{L})^{TT} with the effects of the violation of the equivalence principle (VEP) in the neutrino sector. Besides, there is a correspondence between quantum-decoherence effects in neutrinos and the effective coefficients of the SME Barenboim and Mavromatos (2005); De Romeri et al. (2023); Barenboim and Gago (2024). In Ref. Delgadillo:2024bae , we examine the phenomenology of isotropic and anisotropic CPTCPT-odd SME coefficients, (aL)T(a_{L})^{T} and (aL)Z(a_{L})^{Z}, considering the Deep Underground Neutrino Experiment (DUNE) Abi et al. (2020a) configuration.

In this paper, we consider the possibility of tensorial neutrino non-standard interactions with scalar fields; such as quintessence and other related DE models, as well as the case of ultralight dark matter (ULDM). We focus on the scenario where the CPTCPT-even SME coefficients could correspond to a tensorial interaction of neutrinos with cosmological scalar fields. In this scenario, an apparent Lorentz-violating signature may manifest and give a sizable signal at upcoming and present neutrino oscillation experiments. Besides, as a case of study, we asses the projected sensitivities of a DUNE-like setup to these types of LIV scenarios. This is the first time sensitivities for the CPTCPT-even SME coefficients (cL)ZZ(c_{L})^{ZZ} at DUNE are presented.

The manuscript is organized as follows: In Section II, we introduce the theoretical foundations, where the basics of Lorentz invariance violations are presented together with the necessary Lagrangian formalism to describe the several models of scalar fields useful to model DM and DE. In Section III, we describe the phenomenology of a tensorial neutrino interaction with scalar fields as either DM or DE candidates and its connection with the CPTCPT-even SME coefficients (cL)αβμν(c_{L})_{\alpha\beta}^{\mu\nu}. In Section IV, we assess the sensitivities to the CPTCPT-even SME coefficients, (cL)αβμν(c_{L})_{\alpha\beta}^{\mu\nu}, considering the DUNE configuration. Finally, we give our conclusions.

II Theoretical framework

Within the SME framework, violations of Lorentz invariance (LIV) in the fermion sector, are parameterized by the effective Lagrangian Barenboim (2022)

effψ=SMψ+LIV+h.c.,\mathcal{L}_{\text{eff}}^{\psi}=\mathcal{L}_{\text{SM}}^{\psi}+\mathcal{L}_{\text{LIV}}+\text{h.c.}\,, (1)

where SMψ\mathcal{L}_{\text{SM}}^{\psi} is the Standard Model (SM) fermion Lagrangian, LIV\mathcal{L}_{\text{LIV}} being the Lorentz and CPTCPT-violating Lagrangian term,

LIV=12{pαβμψ¯αγμψβ+qαβμψ¯αγ5γμψβirαβμνψ¯αγμνψβisαβμνψ¯αγ5γμνψβ}.-\mathcal{L}_{\text{LIV}}=\frac{1}{2}\Big{\{}p^{\mu}_{\alpha\beta}\bar{\psi}_{\alpha}\gamma_{\mu}\psi_{\beta}+q^{\mu}_{\alpha\beta}\bar{\psi}_{\alpha}\gamma_{5}\gamma_{\mu}\psi_{\beta}-ir^{\mu\nu}_{\alpha\beta}\bar{\psi}_{\alpha}\gamma_{\mu}\partial_{\nu}\psi_{\beta}-is^{\mu\nu}_{\alpha\beta}\bar{\psi}_{\alpha}\gamma_{5}\gamma_{\mu}\partial_{\nu}\psi_{\beta}\Big{\}}\,. (2)

In the case of neutrinos, it is convenient to define

(aL)αβμ=(p+q)αβμand(cL)αβμν=(r+s)αβμν,(a_{L})^{\mu}_{\alpha\beta}=(p+q)^{\mu}_{\alpha\beta}\,\,\,\,\,{\rm and}\,\,\,\,\,(c_{L})^{\mu\nu}_{\alpha\beta}=(r+s)^{\mu\nu}_{\alpha\beta}\,, (3)

where the (aL)αβμ(a_{L})^{\mu}_{\alpha\beta} coefficients are CPTCPT-odd, while the (cL)αβμν(c_{L})^{\mu\nu}_{\alpha\beta} coefficients are CPTCPT-even. These type of CPTCPT-conserving terms, (cL)αβμν(c_{L})^{\mu\nu}_{\alpha\beta}, were studied in the context of a Finslerian Geometrical model Antonelli et al. (2018), violations of diffeomorphism invariance Reyes:2024hqi ; Santos:2024iyc , and neutrino interactions with a k-essence field Gauthier et al. (2010). For other scenarios of neutrino-dark energy interactions, we refer the reader to Refs. Khalifeh and Jimenez (2021a, b, 2022).

Lately, it has been suggested that violations of Lorentz invariance and CPTCPT symmetry in the neutrino sector may arise from a neutrino-current coupled with a dynamical cosmic field, φ(t)\varphi(t) (see, e.g., Refs. Gu et al. (2007); Ando et al. (2009); Klop and Ando (2018); Capozzi et al. (2018); Argüelles et al. (2023b); Lambiase and Poddar (2024); Cordero and Delgadillo (2024))

(aL)αβμν¯αγμ(1γ5)νβyαβμφΛν¯αγμ(1γ5)νβ,(a_{L})^{\mu}_{\alpha\beta}\bar{\nu}_{\alpha}\gamma_{\mu}(1-\gamma_{5})\nu_{\beta}\rightarrow y_{\alpha\beta}\frac{\partial^{\mu}\varphi}{\Lambda}\bar{\nu}_{\alpha}\gamma_{\mu}(1-\gamma_{5})\nu_{\beta}, (4)

being yαβy_{\alpha\beta} some coupling constants, Λ\Lambda the energy scale of the interaction, and φ=φ(t)\varphi=\varphi(t) a time-varying scalar field, which could be identified as either a dark matter or dark energy candidate. 333For ultra-relativistic neutrinos, the phenomenology with axion-like dark matter is the same as the ultralight dark matter scenario Lambiase and Poddar (2024); Gherghetta and Shkerin (2023); Huang and Nath (2018). Here, violations of the Lorentz and CPTCPT symmetries emerge via the CPTCPT-odd SME coefficients (aL)αβμyαβμφΛ1(a_{L})_{\alpha\beta}^{\mu}\rightarrow y_{\alpha\beta}\partial^{\mu}\varphi\Lambda^{-1}.

Motivated by the aforementioned proposals, let us consider the corresponding free scalar field Lagrangian and its energy-momentum tensor, which are relevant for describing both, scalar field dark matter and dark energy quintessence Weinberg (2008); Ferreira (2021); Wetterich (1988),

φ=12gμνμφνφ+V(φ),Tφμν=2gδδgμν[g(12gλσλφσφ+V(φ))].\begin{split}&\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \mathcal{L}_{\varphi}=\frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi+V(\varphi),\\ &\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ T^{\mu\nu}_{\varphi}=\frac{2}{\sqrt{-g}}\frac{\delta}{\delta g_{\mu\nu}}\Big{[}\sqrt{-g}\Big{(}\frac{1}{2}g^{\lambda\sigma}\partial_{\lambda}\varphi\partial_{\sigma}\varphi+V(\varphi)\Big{)}\Big{]}\,.\end{split} (5)

Therefore, the scalar field energy-momentum tensor TφμνT^{\mu\nu}_{\varphi} can be expressed as

Tφμν=gμν(12gλσλφσφ+V(φ))gλμgσνλφσφ,T^{\mu\nu}_{\varphi}=g^{\mu\nu}\Big{(}\frac{1}{2}g^{\lambda\sigma}\partial_{\lambda}\varphi\partial_{\sigma}\varphi+V(\varphi)\Big{)}-g^{\lambda\mu}g^{\sigma\nu}\partial_{\lambda}\varphi\partial_{\sigma}\varphi, (6)

and we identify the density and pressure of the scalar field φ\varphi as

ρφ=12gμνμφνφ+V(φ)andpφ=12gμνμφνφV(φ).\begin{split}&\rho_{\varphi}=-\frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi+V(\varphi)\,\,\,\,\,{\rm and}\\ &p_{\varphi}=-\frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi-V(\varphi)\,.\end{split} (7)

The scalar field four-velocity, UμU^{\mu}, is given as

Uμ=μφgλσλφσφ.U^{\mu}=\frac{-\partial_{\mu}\varphi}{\sqrt{-g^{\lambda\sigma}\partial_{\lambda}\varphi\partial_{\sigma}\varphi}}\,. (8)

The isotropy and homogeneity of space-time require the stress-energy-momentum tensor for a free scalar field, φ\varphi, to be that of a perfect fluid,

Tφij=pφδji;Tφi0=Tφ0i=0;Tφ00=ρφ,Tφμν=pφgμν+(pφ+ρφ)UμUν,\begin{split}&T^{ij}_{\varphi}=p_{\varphi}\delta^{i}_{j};\leavevmode\nobreak\ \leavevmode\nobreak\ T^{i0}_{\varphi}=T_{\varphi 0i}=0;\leavevmode\nobreak\ \leavevmode\nobreak\ T^{00}_{\varphi}=\rho_{\varphi},\\ &T^{\mu\nu}_{\varphi}=p_{\varphi}g^{\mu\nu}+(p_{\varphi}+\rho_{\varphi})U^{\mu}U^{\nu},\end{split} (9)

subject to the constraint gμνUμUν=1g_{\mu\nu}U^{\mu}U^{\nu}=-1. The conservation of TφμνT^{\mu\nu}_{\varphi} in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background leads to the continuity equation,

0Tφ00=ρ˙φ+3a˙a(pφ+ρφ)=0,\partial_{0}T^{00}_{\varphi}=\dot{\rho}_{\varphi}+3\frac{\dot{a}}{a}(p_{\varphi}+\rho_{\varphi})=0\,, (10)

which gives the equation of motion of the scalar field,

φ¨+3Hφ˙+dV(φ)dφ=0.\ddot{\varphi}+3H\dot{\varphi}+\frac{dV(\varphi)}{d\varphi}=0\,. (11)

Nevertheless, dark energy can be modeled by a k-essence field φ\varphi which has very appealing properties and is described by the Lagrangian density =K(φ,X)\mathcal{L}=K(\varphi,X) Armendariz-Picon et al. (2000) which is associated with the following energy-momentum tensor,

Tμνφ=K,XμφνφgμνK,\displaystyle T_{\mu\nu}^{\varphi}=K,_{X}\nabla_{\mu}\varphi\nabla_{\nu}\varphi-g_{\mu\nu}K\,, (12)

where X=αφαφ/2X=\nabla_{\alpha}\varphi\nabla^{\alpha}\varphi/2 is the kinetic term and K,X=K/XK,_{X}=\partial K/\partial X. The energy density and pressure are given by

ρφ=2XK,XKand\displaystyle\rho_{\varphi}=2XK_{,X}-K\,\,\,\,\,{\rm and}\,\,\,\,\, pφ=K,\displaystyle p_{\varphi}=K\,\,, (13)

respectively, and the equation of motion can be obtained from the continuity equation,

(2XK,XX+K,X)φ¨+K,Xφφ˙2+3HK,Xφ˙=K,φ,(2XK_{,XX}+K_{,X})\ddot{\varphi}+K_{,X\varphi}\dot{\varphi}^{2}+3HK_{,X}\dot{\varphi}=K_{,\varphi}\,, (14)

where K,Xφ=2K/XφK_{,X\varphi}=\partial^{2}K/\partial X\partial\varphi and K,φ=K/φK_{,\varphi}=\partial K/\partial\varphi.

Another possible interesting scalar field used to describe the dark energy evolution is the braided scalar field described by the Lagrangian:

=φG(X,φ),\displaystyle\mathcal{L}=\square\;\varphi G\left(X,\varphi\right), (15)

where φ=μμφ\square\;\varphi=\nabla^{\mu}\nabla_{\mu}\varphi and the function GG is arbitrary Pujolas et al. (2011). The energy-momentum tensor, TμνφT_{\mu\nu}^{\varphi}, in covariant form, is given by

Tμνφ=2gδSφδgμν=XμφνφgμνPφμGνφνGμφ,\displaystyle T_{\mu\nu}^{\varphi}=\frac{2}{\sqrt{-g}}\frac{\delta S_{\varphi}}{\delta g^{\mu\nu}}=\mathcal{L}_{X}\nabla_{\mu}\varphi\nabla_{\nu}\varphi-g_{\mu\nu}P_{\varphi}-\nabla_{\mu}G\nabla_{\nu}\varphi-\nabla_{\nu}G\nabla_{\mu}\varphi\,\,\,, (16)

where Pφ=λφλGφP_{\varphi}=\nabla^{\lambda}\varphi\nabla_{\lambda}G_{\varphi}, and Gφ=G/φG_{\varphi}=\partial G/\partial\varphi. This energy-momentum tensor can be described in terms of an imperfect fluid Pujolas et al. (2011) . We start defining some quantities to describe relativistic fluids. A local rest frame is set defining the normalized four-velocity UμU_{\mu}

Uμμφ2X,UμUμ=1,\displaystyle U_{\mu}\equiv\frac{\nabla_{\mu}\varphi}{\sqrt{2X}},\quad U_{\mu}U^{\mu}=1, (17)
aμUννUμ,\displaystyle a_{\mu}\equiv U^{\nu}\nabla_{\nu}U_{\mu}, (18)

with aμa_{\mu} is the four-acceleration which is orthogonal to velocity, Uμaμ=0U_{\mu}a^{\mu}=0. The expansion, ϑ\vartheta, and the diffusivity, Ω\Omega, are written as

ϑ=μUμ,Ω=2XGX,\displaystyle\vartheta=\nabla_{\mu}U^{\mu},\quad\Omega=2XG_{X}, (19)

where GX=G/XG_{X}=\partial G/\partial X. The energy-momentum tensor also can be expressed in this way:

Tμνφ=ρφUμUνμνpφ+Uμqν+Uνqμ,\displaystyle T_{\mu\nu}^{\varphi}=\rho_{\varphi}U_{\mu}U_{\nu}-\perp_{\mu\nu}p_{\varphi}+U_{\mu}q_{\nu}+U_{\nu}q_{\mu}, (20)

where m=2X=φ˙m=\sqrt{2X}=\dot{\varphi} is the chemical potential, qμ=mΩaμq_{\mu}=-m\Omega a_{\mu} is the heat flux (purely spatial, Uμqμ=0U_{\mu}q^{\mu}=0) and μν=gμνUμUν\perp_{\mu\nu}=g_{\mu\nu}-U_{\mu}U_{\nu} is the transverse projector. The energy density and isotropic pressure are:

ρφ\displaystyle\rho_{\varphi} \displaystyle\equiv TμνφUμUν=2XGφ+ϑmΩ,\displaystyle T_{\mu\nu}^{\varphi}U^{\mu}U^{\nu}=-2XG_{\varphi}+\vartheta m\Omega, (21)
pφ\displaystyle p_{\varphi} \displaystyle\equiv 13Tφμνμν=2XGφΩm˙.\displaystyle-\frac{1}{3}T^{\mu\nu}_{\varphi}\perp_{\mu\nu}=-2XG_{\varphi}-\Omega\dot{m}. (22)

The conservation of TμνφT_{\mu\nu}^{\varphi} using these definitions can be expressed as:

UνμTφμν=ρφ˙+ϑ(ρφ+pφ)λ(mΩaλ)+mΩaλaλ=0.\displaystyle U_{\nu}\nabla_{\mu}T^{\mu\nu}_{\varphi}=\dot{\rho_{\varphi}}+\vartheta\left(\rho_{\varphi}+p_{\varphi}\right)-\nabla_{\lambda}\left(m\Omega a^{\lambda}\right)+m\Omega a_{\lambda}a^{\lambda}=0. (23)

The equation of motion for φ\varphi can be obtained from the last equation

μ[2GφμφφGXμφ+GXμX]=λφλGφ.\displaystyle\nabla_{\mu}\left[2G_{\varphi}\nabla^{\mu}\varphi-\square\varphi G_{X}\nabla^{\mu}\varphi+G_{X}\nabla^{\mu}X\right]=\nabla^{\lambda}\varphi\nabla_{\lambda}G_{\varphi}. (24)

In the cosmological background, the evolution of the scalar field reduces to the dynamics of a perfect fluid which is described only through its energy density and pressure.

III Tensorial neutrino LIV

Consider the effective Lagrangian (see Appendix A for further details)

eff=iλαβM4Tφμνν¯αγμ(1γ5)ννβ,-\mathcal{L}_{\text{eff}}=-i\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}T^{\mu\nu}_{\varphi}\bar{\nu}_{\alpha}\gamma_{\mu}(1-\gamma_{5})\partial_{\nu}\nu_{\beta}, (25)

being λαβ\lambda_{\alpha\beta} a coupling constant matrix, MM_{*} the energy scale of the interaction, and TφμνT^{\mu\nu}_{\varphi} is the tensor associated to the scalar field φ\varphi, for instance those of Eqs. (6), (12), and (16). Hence, we can identify the CPTCPT-even LIV coefficients of the SME (cL)αβμν=cαβμν(c_{L})^{\mu\nu}_{\alpha\beta}=c^{\mu\nu}_{\alpha\beta} as

cαβμνλαβM4Tφμν.c^{\mu\nu}_{\alpha\beta}\rightarrow\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}T^{\mu\nu}_{\varphi}. (26)

Here, the scalar field φ\varphi could be one of the DM or DE candidates described in Section II. Besides, the effective interaction (Eq. 25) may induce potential scattering among the neutrinos and the scalar particles. However, such interactions would be expected to be negligible (see Appendix B of Ref. Klop and Ando (2018)). Henceforth, we discuss the case of a tensorial neutrino-scalar field interaction. 444A study of the the back-reaction effects from the tensorial neutrino-scalar field interaction is beyond the scope of this work.

III.1 Isotropic LIV coefficients cαβc_{\alpha\beta} from a neutrino-scalar field interaction

From the effective Lagrangian in Eq. (25), the corresponding isotropic CPTCPT-even LIV coefficients cαβc_{\alpha\beta} are

cαβ=cαβ00λαβM4Tφ00=λαβM4ρφ,c_{\alpha\beta}=c_{\alpha\beta}^{00}\rightarrow\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}T^{00}_{\varphi}=\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}\rho_{\varphi}, (27)

considering the scalar field φ\varphi as ultralight dark matter (ULDM) Suárez et al. (2014); Ferreira (2021), with corresponding local DM density in the Milky Way, ρφ,ρDM,2×106\rho_{\varphi,\odot}\sim\rho_{\text{DM},\odot}\simeq 2\times 10^{-6} eV4 de Salas et al. (2019); de Salas and Widmark (2021); Sivertsson et al. (2022), an accelerator-based experiment similar to DUNE, with sensitivity cαβ[110]×1025c_{\alpha\beta}\sim[1-10]\times 10^{-25} (left panel of Fig. 1 in Sec. IV), could potentially probe an energy scale of the interaction

M[36]×104eV(λαβ/𝒪(1))(ρφ,/106eV4).M_{*}\sim[3-6]\times 10^{4}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\lambda_{\alpha\beta}/\mathcal{O}(1)\big{)}\leavevmode\nobreak\ \big{(}\rho_{\varphi,\odot}/10^{-6}\leavevmode\nobreak\ \text{eV}^{4}\big{)}. (28)

On the other hand, if the scalar field φ\varphi is considered to be a DE candidate, namely quintessence, the corresponding dark energy density ρφDE3ρDMavg1010\rho_{\varphi}^{\text{DE}}\simeq 3\rho_{\text{DM}}^{\text{avg}}\sim 10^{-10} eV4, in this scenario, the DUNE setup could potentially probe an energy scale

M[510]×103eV(λαβ/𝒪(1))(ρφDE/1010eV4).M_{*}\sim[5-10]\times 10^{3}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\lambda_{\alpha\beta}/\mathcal{O}(1)\big{)}\leavevmode\nobreak\ \big{(}\rho_{\varphi}^{\text{DE}}/10^{-10}\leavevmode\nobreak\ \text{eV}^{4}\big{)}. (29)

At the cosmological level, the aforementioned models of dark energy outlined in Section II, can be described by a dynamical scalar field φ(t)\varphi(t), thus, for all cases, they would predict Tφ00=ρφDET^{00}_{\varphi}=\rho_{\varphi}^{\text{DE}}. However, limits from astrophysical neutrinos (60TeVEν60\leavevmode\nobreak\ \text{TeV}\lesssim E_{\nu}\lesssim PeV) employing the IceCube astrophysical neutrino flavour data-set constraint cαβ1034c_{\alpha\beta}\lesssim 10^{-34} Abbasi et al. (2022) (such limits are expected to be improved by the combination of a two-detector fit, namely IceCube-Gen2 and GRAND Testagrossa et al. (2023)), therefore 555Besides, in the standard model, neutrinos are part of the SU(2)LSU(2)_{L} doublet, hence, we could have potentially induced LIV effects for the charged leptons. However, for the case of electrons, limits from astrophysical observations constraint cee(80to 4)×1020c_{ee}\in(-80\leavevmode\nobreak\ \text{to}\leavevmode\nobreak\ 4)\times 10^{-20} Kostelecky and Russell (2011), which are several orders of magnitude weaker than the constraints derived in the neutrino sector cαβ1034c_{\alpha\beta}\lesssim 10^{-34} Abbasi et al. (2022).

cαβλαβM4ρφ1034,c_{\alpha\beta}\sim\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}\rho_{\varphi}\lesssim 10^{-34}\leavevmode\nobreak\ , (30)

considering φ\varphi as DM, ultra-high energy (UHE) neutrino experiments could potentially be sensitive to an energy scale

M107eV(λαβ/𝒪(1))(ρφ,/106eV4)(cαβ/1034),M_{*}\gtrsim 10^{7}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\lambda_{\alpha\beta}/\mathcal{O}(1)\big{)}\leavevmode\nobreak\ \big{(}\rho_{\varphi,\odot}/10^{-6}\leavevmode\nobreak\ \text{eV}^{4}\big{)}\leavevmode\nobreak\ \big{(}c_{\alpha\beta}/\lesssim 10^{-34}\big{)}\leavevmode\nobreak\ , (31)

on the other hand, considering φ\varphi as DE, UHE neutrino experiments could potentially be sensitive to an energy scale

M106eV(λαβ/𝒪(1))(ρφDE/1010eV4)(cαβ/1034).M_{*}\gtrsim 10^{6}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\lambda_{\alpha\beta}/\mathcal{O}(1)\big{)}\leavevmode\nobreak\ \big{(}\rho_{\varphi}^{\text{DE}}/10^{-10}\leavevmode\nobreak\ \text{eV}^{4}\big{)}\leavevmode\nobreak\ \big{(}c_{\alpha\beta}/\lesssim 10^{-34}\big{)}. (32)

In Table. 2, we display the energy scale reach MM_{*} at IceCube as well as other neutrino experiments. Besides, considering only the derivative coupling on the scalar fields (see Appendix A), unitarity bounds in collisions with quarks at the LHC set M30M_{*}\gtrsim 30 GeV, while unitarity bounds from LEP when colliding electrons and positrons impose M3M_{*}\gtrsim 3 GeV Brax and Burrage (2014).

III.2 Directional dependent LIV coefficients from a neutrino-scalar field interaction

Searches of directional dependent LIV effects can be performed at neutrino experiments such as the KM3NeT neutrino telescope and the IceCube neutrino observatory, with neutrino energies Eν105E_{\nu}\gtrsim 10^{5} GeV Klop and Ando (2018); Telalovic and Bustamante (2023). For instance, regarding directional dependent Lorentz violating effects in the ZZ-direction, the projected sensitivities of a neutrino long-baseline experiment similar to DUNE to the CPTCPT-even ZZ-spatial LIV coefficients are, cαβZZ[110]×1024c_{\alpha\beta}^{ZZ}\sim[1-10]\times 10^{-24} (right panel of Fig. 1 in Sec. IV) and cααZZcττZZ[110]×1024c_{\alpha\alpha}^{ZZ}-c_{\tau\tau}^{ZZ}\simeq[1-10]\times 10^{-24} (right panel of Fig. 2 in Sec. IV), both at 95% C.L., accordingly.

From the phenomenological Lagrangian in Eq. (25), the corresponding CPTCPT-even ZZ-spatial LIV coefficients in terms of the scalar field tensor are

cαβZZλαβM4(TφZZ+δTφZZ),c_{\alpha\beta}^{ZZ}\rightarrow\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}(T^{ZZ}_{\varphi}+\delta T^{ZZ}_{\varphi}), (33)

where δTφμν\delta T_{\varphi}^{\mu\nu} accounts for the perturbations of the scalar field tensor TφμνT^{\mu\nu}_{\varphi}. However, perturbations for the several dark energy models outlined: quintessence, k-essence, or kinetic gravity braiding models, are expected to be different. 666A detail study of the energy-momentum perturbations for these models is beyond the scope of this paper and we leave it for a future work. Subsequently, we refer to the dark energy quintessence model for simplicity. Still, a similar phenomenology applies to the other dark energy models.

The perturbed stress-energy-momentum tensor for the scalar field φ(t)\varphi(t), with perturbation δφ(t,x)\delta\varphi(t,\textbf{x}) in the FLRW background with a Newtonian gauge is given as Magana and Matos (2012)

δTφij=δpφδji;δTφi0=1a(φ˙(t)i(δφ));δTφ00=δρφ.\delta T^{ij}_{\varphi}=\delta p_{\varphi}\delta^{i}_{j};\leavevmode\nobreak\ \leavevmode\nobreak\ \delta T^{i0}_{\varphi}=-\frac{1}{a}\big{(}\dot{\varphi}(t)\partial_{i}(\delta\varphi)\big{)};\leavevmode\nobreak\ \leavevmode\nobreak\ \delta T^{00}_{\varphi}=\delta\rho_{\varphi}. (34)

Considering φ\varphi as ULDM, from the equation of state of the scalar field pφ=ωρφp_{\varphi}=\omega\rho_{\varphi}, with ω=0\omega=0, the leading contribution TφZZ=0T^{ZZ}_{\varphi}=0, hence, in this case the CPTCPT-even ZZ-spatial LIV coefficients are

|cαβZZ|λαβM4|δTφZZ|λαβM4|(φ˙(t)δφ˙(t,x)φ˙2(t)Φ(t,x)V(φ),φδφ(t,x))|,|c_{\alpha\beta}^{ZZ}|\rightarrow\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}|\delta T^{ZZ}_{\varphi}|\sim\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}\big{|}\big{(}\dot{\varphi}(t)\dot{\delta\varphi}(t,\textbf{x})-\dot{\varphi}^{2}(t)\Phi(t,\textbf{x})-V(\varphi)_{,\varphi}\leavevmode\nobreak\ \delta\varphi(t,\textbf{x})\big{)}\big{|}, (35)

here Φ(t,x)\Phi(t,\textbf{x}) plays the role of the gravitational potential, while δφ(t,x)\delta\varphi(t,\textbf{x}) is the scalar field perturbation Magana and Matos (2012). On the other hand, if φ\varphi is a DE candidate (quintessence) from the equation of state of the scalar field pφ=ωρφDEp_{\varphi}=\omega\rho_{\varphi}^{\text{DE}}, with ω=1\omega=-1,

|cαβZZ|λαβM4|TφZZ+δTφZZ|λαβM4ρφDE.|c_{\alpha\beta}^{ZZ}|\rightarrow\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}|T^{ZZ}_{\varphi}+\delta T^{ZZ}_{\varphi}|\sim\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}\rho_{\varphi}^{\text{DE}}. (36)

For instance, in Table. 2, we show the energy scale reach MM_{*} within this scenario, considering limits set on the CPTCPT-even SME coefficients (cαβZZc_{\alpha\beta}^{ZZ}) from several neutrino experimental configurations. In a similar fashion, considering φ\varphi as either ULDM or DE quintessence, the leading contribution TφTZ=0T^{TZ}_{\varphi}=0 (Eq. 9), therefore, the CPTCPT-even coefficients from the TZTZ-sector can be described as

|cαβTZ|λαβM4|δTφTZ|λαβM4|1a(φ˙(t)zδφ(t,x,y,z))|.|c_{\alpha\beta}^{TZ}|\rightarrow\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}|\delta T^{TZ}_{\varphi}|\sim\frac{\lambda_{\alpha\beta}}{M_{*}^{4}}\Big{|}-\frac{1}{a}\big{(}\dot{\varphi}(t)\frac{\partial}{\partial z}\delta\varphi(t,x,y,z)\big{)}\Big{|}. (37)

IV Numerical analysis and expected sensitivities

Long-baseline neutrino oscillation experiments play a significant role in both deciphering mysteries within the traditional three-neutrino oscillation picture and exploring other novel physics scenarios, including the potential breaking of the Lorentz and CPTCPT symmetries. Hence, as a case of study, we will focus on a long-baseline experimental configuration, the Deep Underground Neutrino Experiment (DUNE), which is a next-generation accelerator-based neutrino oscillation experiment that will consist of up to 40 kt of liquid argon (far) detector located at the Sanford underground research facility (SURF) in South Dakota Abi et al. (2020b). Moreover, this configuration is expected to deliver a neutrino flux with a mean neutrino energy EνE_{\nu}\sim 3 GeV, which will be located at a distance of LL\sim 1300 km from the beam source (on-axis) at Fermilab (we refer the reader to Refs. Agarwalla et al. (2023); Abi et al. (2020a), for a detailed discussion regarding the experimental configuration).

In order to obtain sensitivities to the LIV coefficients at DUNE, we use the GLoBES software Huber et al. (2005, 2007) and its additional NSI tool snu.c Kopp (2008); Kopp et al. (2007) which was modified to implement the CPTCPT-even coefficients of the SME at the Hamiltonian level. Moreover, to simulate the DUNE configuration, we employ the available GLoBES ancillary files Abi et al. (2021) and specifications from the Technical Design Report (TDR) configuration Abi et al. (2020a). Furthermore, in this work, we have contemplated a 1010-year running time, evenly distributed among neutrino and anti-neutrino modes. To simulate the DUNE event spectra, we consider the reconstructed neutrino and anti-neutrino energy range from 0 to 18 GeV for both appearance and disappearance channels. While elaborating our sensitivity plots, we performed a full spectral analysis with a total of 70 bins in the aforementioned energy range (having non-uniform bin widths). We have 64 bins each having a width of 0.125 GeV in the energy range of 0 to 8 GeV, and 6 bins with variable widths beyond 8 GeV Abi et al. (2021).

In this analysis, we have considered the following Hamiltonian

H=H0+HMSW+HLIV,H=H_{0}+H_{\text{MSW}}+H_{\text{LIV}}, (38)

here, H0H_{0} and HMSWH_{\text{MSW}} are the standard neutrino Hamiltonian in vacuum and matter, respectively. Besides, HLIVH_{\text{LIV}} is the contribution from the Lorentz invariance violation (LIV) sector, which can be parameterized as Kostelecky and Mewes (2004b); Diaz et al. (2009); Mishra et al. (2023)

HLIV=Eν2[(3N^Z2)(cL)αβTT+(3N^Z21)(cL)αβZZ2N^Z(cL)αβTZ],H_{\text{LIV}}=-\frac{E_{\nu}}{2}\big{[}(3-\hat{N}_{Z}^{2})(c_{L})_{\alpha\beta}^{TT}+(3\hat{N}_{Z}^{2}-1)(c_{L})_{\alpha\beta}^{ZZ}-2\hat{N}_{Z}(c_{L})_{\alpha\beta}^{TZ}\big{]}, (39)

where EνE_{\nu} is the neutrino energy, (cL)αβμν(c_{L})_{\alpha\beta}^{\mu\nu} are the CPTCPT-even LIV coefficients of the SME (being α,β=e,μ,τ\alpha,\beta=e,\mu,\tau, and μ,ν=T,X,Y,Z\mu,\nu=T,X,Y,Z), for non-diagonal αβ\alpha\neq\beta, cαβμν=|cαβμν|eiϕαβμνc_{\alpha\beta}^{\mu\nu}=|c_{\alpha\beta}^{\mu\nu}|e^{i\phi_{\alpha\beta}^{\mu\nu}} (from now on, we will denote (cL)αβμν=cαβμν(c_{L})^{\mu\nu}_{\alpha\beta}=c_{\alpha\beta}^{\mu\nu}, and (cL)αβTT=cαβ(c_{L})^{TT}_{\alpha\beta}=c_{\alpha\beta} ), and

N^Z=sinχsinθcosϕ+cosχcosθ,\hat{N}^{Z}=-\sin\chi\sin\theta\cos\phi+\cos\chi\cos\theta, (40)

is the spatial ZZ-component factor, expressed in terms of local spherical coordinates at the detector, that represents the direction of neutrino propagation in the Sun-centered frame. Being χ\chi the colatitude of the detector, θ\theta the angle at the detector between the beam direction and vertical, and ϕ\phi the angle between the beam and east of south Kostelecky and Mewes (2004b). In the particular case of the DUNE location, N^Z0.16\hat{N}^{Z}\simeq 0.16 Delgadillo:2024bae .

IV.1 Sensitivity to CPTCPT-even SME coefficients

In order to assess the statistical significance to CPTCPT-even SME coefficients, we employ a chi-squared test, we have considered the muon neutrino disappearance channel P(νμνμ)P(\nu_{\mu}\rightarrow\nu_{\mu}) as well as the electron neutrino appearance channel P(νμνe)P(\nu_{\mu}\rightarrow\nu_{e}), from a muon-neutrino beam with neutrino and antineutrino data sets. 777A detailed discussion of the impact of the CPTCPT-even SME coefficients in the neutrino oscillation probability is beyond of the scope of this work. The total χ2\chi^{2}-function is provided as in Ref. Cordero et al. (2023)

χ2=kχ~k2+χprior2,\chi^{2}=\sum_{k}\tilde{\chi}^{2}_{k}+\chi^{2}_{\text{prior}}, (41)

where the corresponding χ~k2\tilde{\chi}^{2}_{k}-function for each channel (kk), appearance or disappearance is given as in Ref. Huber et al. (2002)

χ~k2=minζj[inbin2{Ni,test3ν+LIV(Π,Γ,{ζj})Ni,true3ν+Ni,true3νlogNi,true3νNi,test3ν+LIV(Π,Γ,{ζj})}+jnsyst(ζjσj)2],\begin{split}&\tilde{\chi}_{k}^{2}=\min_{\zeta_{j}}\Bigg{[}\sum_{i}^{n_{\text{bin}}}2\Bigg{\{}N_{i,\text{test}}^{3\nu+\text{LIV}}(\Pi,\Gamma,\{\zeta_{j}\})-N_{i,\text{true}}^{3\nu}+N_{i,\text{true}}^{3\nu}\log\frac{N_{i,\text{true}}^{3\nu}}{N_{i,\text{test}}^{3\nu+\text{LIV}}(\Pi,\Gamma,\{\zeta_{j}\})}\Bigg{\}}\\ &\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ +\sum_{j}^{n_{\text{syst}}}\Big{(}\frac{\zeta_{j}}{\sigma_{j}}\Big{)}^{2}\Bigg{]},\end{split} (42)

here, Ni,true3νN_{i,\text{true}}^{3\nu} refers to the simulated events at the ii-th energy bin (considering the standard three neutrino oscillations picture), while Ni,test3ν+LIV(Π,Γ,{ζj})N_{i,\text{test}}^{3\nu+\text{LIV}}(\Pi,\Gamma,\{\zeta_{j}\}) are the computed events at the ii-th energy bin including CPTCPT-even SME coefficients (one parameter at a time). In addition, Π={θ12,θ13,θ23,δCP,Δm212,Δm312}\Pi=\{\theta_{12},\theta_{13},\theta_{23},\delta_{CP},\Delta m_{21}^{2},\Delta m^{2}_{31}\} is the set of neutrino oscillation parameters, while Γ={|cαβ|,ϕαβ,cαα,,|cαβZZ|,ϕαβZZ,cααZZ,}\Gamma=\{|c_{\alpha\beta}|,\phi_{\alpha\beta},c_{\alpha\alpha},\leavevmode\nobreak\ \cdots,|c_{\alpha\beta}^{ZZ}|,\phi_{\alpha\beta}^{ZZ},c_{\alpha\alpha}^{ZZ},\cdots\} is the set of either isotropic (cαβc_{\alpha\beta}), ZZ-spatial (cαβZZc_{\alpha\beta}^{ZZ}) or (cαβTZc_{\alpha\beta}^{TZ}) SME coefficients, where {ζj}\{\zeta_{j}\} are the nuisance parameters to account for the systematic uncertainties. Furthermore, σj\sigma_{j} are the systematic uncertainties as reported in the DUNE TDR Abi et al. (2020a). Besides, to obtain our simulated events; we have considered the corresponding neutrino oscillation parameters as true values, namely Δm212=7.5×105eV2\Delta m^{2}_{21}=7.5\times 10^{-5}\leavevmode\nobreak\ \text{eV}^{2}, Δm312=2.55×103eV2\Delta m^{2}_{31}=2.55\times 10^{-3}\leavevmode\nobreak\ \text{eV}^{2}, θ12=34.3\theta_{12}=34.3^{\circ}, θ13=8.53\theta_{13}=8.53^{\circ}, θ23=49.26\theta_{23}=49.26^{\circ}, and δCP=1.08π\delta_{CP}=1.08\pi, corresponding to the best-fit values with normal mass ordering (NO) from Ref. de Salas et al. (2021) as displayed in Tab. 1.

Table 1: Standard oscillation parameters used in our analysis de Salas et al. (2021). We consider the normal mass ordering (NO) throughout this study.
Oscillation parameter best-fit NO
θ12\theta_{12} 34.3
θ23\theta_{23} 49.26
θ13\theta_{13} 8.53
Δm212\Delta m^{2}_{21} [10-5 eV2] 7.5
|Δm312||\Delta m_{31}^{2}| [10-3 eV2] 2.55
δCP/π\delta_{CP}/\pi 1.08

Furthermore, to include external input and marginalization for the standard oscillation parameters (in the total χ2\chi^{2}-function), Gaussian priors Huber et al. (2002) are utilized,

χprior2=pnpriors(Πp,trueΠp,test)2σp2,\chi^{2}_{\text{prior}}=\sum_{p}^{n_{\text{priors}}}\frac{\big{(}\Pi_{p,\text{true}}-\Pi_{p,\text{test}}\big{)}^{2}}{\sigma^{2}_{p}}, (43)

the central values of the oscillation parameter priors (Πp,true\Pi_{p,\text{true}}) were fixed to their best-fit de Salas et al. (2021), considering the normal mass ordering, σp\sigma_{p} is the uncertainty on the oscillation prior, which corresponds to a 1σ\sigma error (68.27% confidence level C.L. ).

(a)
Refer to caption
(b)
Refer to caption
Figure 1: Projected 95% C.L. sensitivities to the SME coefficients |cαβμν||c^{\mu\nu}_{\alpha\beta}| at the DUNE (TDR setup). Here, we have marginalized over the corresponding LIV phases ϕαβ\phi_{\alpha\beta} and ϕαβZZ\phi_{\alpha\beta}^{ZZ} from [02π-2\pi], as well as θ23\theta_{23} and δCP\delta_{CP}, considering a 1σ\sigma uncertainty of 10% and 15%, respectively. All the remaining oscillation parameters were fixed to their NO best fit values de Salas et al. (2021). Refer to the text for details.

In Fig. 1, we display our results of the expected 95% C.L. sensitivities to the non-diagonal SME coefficients, namely the isotropic |cαβ|1.1×1024|c_{\alpha\beta}|\lesssim 1.1\times 10^{-24} (left panel) and ZZ-spatial |cαβZZ|6.2×1024|c_{\alpha\beta}^{ZZ}|\lesssim 6.2\times 10^{-24} (right panel), for the DUNE configuration. Here, we have marginalized over the corresponding LIV phases ϕαβ\phi_{\alpha\beta} and ϕαβZZ\phi_{\alpha\beta}^{ZZ} from [02π-2\pi], as well as the atmospheric mixing angle θ23\theta_{23} and the leptonic phase δCP\delta_{CP}, considering a 1σ\sigma uncertainty of 10% and 15% around their NO best-fit values, as displayed in Table 1. All the remaining oscillation parameters were fixed to their best fit value with normal mass ordering de Salas et al. (2021). Our results of the projected sensitivities to the isotropic LIV coefficients |cαβ|\absolutevalue{c_{\alpha\beta}}, are in agreement with those from Refs. Agarwalla et al. (2023); Raikwal et al. (2023). However, main differences arising on the total number of bins and energy range selected for the reconstructed neutrino energies, as well as the neutrino oscillation benchmark values considered in the calculation of the expected number of events.

To put our results in perspective, existing bounds from the Super-Kamiokande experiment constraint |ceμ|<8.0×1027|c_{e\mu}|<8.0\times 10^{-27} and |ceτ|<9.3×1025|c_{e\tau}|<9.3\times 10^{-25} at 95%\% C.L. Abe et al. (2015), while IceCube sets Re(cμτ)<7×1034\text{Re}(c_{\mu\tau})<7\times 10^{-34} with a Bayes factor >31.6>31.6 Abbasi et al. (2022). Furthermore, a test for Lorentz and CPTCPT violation with the MiniBooNE low-energy excess restrict ceμZZ<(2.6±0.8)×1019c_{e\mu}^{ZZ}<(2.6\pm 0.8)\times 10^{-19} Katori (2010); Kostelecky and Russell (2011), while limits from the Double Chooz experiment set Re(ceτZZ)<4.9×1017(c^{ZZ}_{e\tau})<4.9\times 10^{-17} Katori and Spitz (2014). For projected sensitivities and some experimental constraints on the LIV coefficients, cαβc_{\alpha\beta} and cαβZZc_{\alpha\beta}^{ZZ}, see Tab. 2.

Regarding the diagonal SME coefficients cααcττc_{\alpha\alpha}-c_{\tau\tau} and cααZZcττZZc_{\alpha\alpha}^{ZZ}-c_{\tau\tau}^{ZZ}, we have fixed cττ=0c_{\tau\tau}=0, as well as cττZZ=0c_{\tau\tau}^{ZZ}=0, since we can redefine the diagonal elements up to a global constant.

(a)
Refer to caption
(b)
Refer to caption
Figure 2: Expected 95% C.L. sensitivities to the diagonal SME coefficients cααμνcττμνc^{\mu\nu}_{\alpha\alpha}-c^{\mu\nu}_{\tau\tau} at the DUNE (TDR setup). Here, we have marginalized over the corresponding mixing angle θ23\theta_{23} and δCP\delta_{CP}, considering a 1σ\sigma uncertainty of 10% and 15%, respectively. All the remaining oscillation parameters were fixed to their NO best fit values de Salas et al. (2021). Refer to the text for details.

Our results of the projected 95% C.L. sensitivities to the cααcττc_{\alpha\alpha}-c_{\tau\tau} (left panel) and cααZZcττZZc_{\alpha\alpha}^{ZZ}-c_{\tau\tau}^{ZZ} (right panel) coefficients at the DUNE experiment are shown in Fig. 2. We have marginalized over the corresponding atmospheric mixing angle θ23\theta_{23} and Dirac CPCP-violating phase δCP\delta_{CP}, considering a 1σ\sigma uncertainty of 10% and 15% around their NO best-fit values, as show in Table 1. All the remaining oscillation parameters were fixed to their best fit value with normal mass ordering de Salas et al. (2021). We observe that the DUNE will be able to set limits on the isotropic CPTCPT-even SME coefficients ceecττ<1.4×1024c_{ee}-c_{\tau\tau}<1.4\times 10^{-24} and cμμcττ<2.3×1024c_{\mu\mu}-c_{\tau\tau}<2.3\times 10^{-24}, while for the ZZ-spatial LIV coefficients ceeZZcττZZ<5.1×1024c_{ee}^{ZZ}-c_{\tau\tau}^{ZZ}<5.1\times 10^{-24} and cμμZZcττZZ<7.1×1024c_{\mu\mu}^{ZZ}-c_{\tau\tau}^{ZZ}<7.1\times 10^{-24}, all of them at 95% confidence level. For instance, the null observation of LIV at the IceCube neutrino observatory constraint Re(cee)<6×1033(c_{ee})<6\times 10^{-33} and Re(cττ)<8×1034(c_{\tau\tau})<8\times 10^{-34} with a Bayes factor >31.6>31.6 Abbasi et al. (2022).

(a)
Refer to caption
(b)
Refer to caption
Figure 3: Projected 95% C.L. sensitivities at the DUNE (TDR setup), in the |cαβZZ||cαβ||c^{ZZ}_{\alpha\beta}|-|c_{\alpha\beta}| and (cααZZcττZZ)(cααcττ)(c^{ZZ}_{\alpha\alpha}-c^{ZZ}_{\tau\tau})-(c_{\alpha\alpha}-c_{\tau\tau}) planes, respectively. Here, we have marginalized over the corresponding LIV phases ϕαβ\phi_{\alpha\beta} and ϕαβZZ\phi_{\alpha\beta}^{ZZ} from [02π-2\pi], as well as θ23\theta_{23} and δCP\delta_{CP}, considering a 1σ\sigma uncertainty of 10% and 15%, respectively. All the remaining oscillation parameters were fixed to their NO best fit values de Salas et al. (2021). Refer to the text for details.

In Fig. 3, we display the expected 95% C.L. sensitivity regions for the case of the DUNE setup in the |cαβZZ||cαβ||c_{\alpha\beta}^{ZZ}|-|c_{\alpha\beta}| and (cααZZcττZZ)(cααcττ)(c_{\alpha\alpha}^{ZZ}-c_{\tau\tau}^{ZZ})-(c_{\alpha\alpha}-c_{\tau\tau}) planes, left and right panel, respectively. We have marginalized over the corresponding LIV phases ϕαβ\phi_{\alpha\beta} and ϕαβZZ\phi_{\alpha\beta}^{ZZ} from [02π-2\pi], as well as the atmospheric mixing angle θ23\theta_{23} and the leptonic CPCP phase δCP\delta_{CP}, considering a 1σ\sigma uncertainty of 10% and 15% around their NO best-fit values, as displayed in Table 1. It is observed that flavor-changing LIV coefficients from the (eμe-\mu) and (μτ\mu-\tau) sectors may be constrained approximately three times more effectively by the DUNE configuration than by those from the (eτe-\tau) sector, namely |ceτ|<1.3×1024(|ceτZZ|=0)|c_{e\tau}|<1.3\times 10^{-24}\leavevmode\nobreak\ (|c_{e\tau}^{ZZ}|=0), and |ceτZZ|<6.9×1024(|ceτ|=0)|c_{e\tau}^{ZZ}|<6.9\times 10^{-24}\leavevmode\nobreak\ (|c_{e\tau}|=0), all limits at 95% C.L.

(a)
Refer to caption
(b)
Refer to caption
Figure 4: Expected 95% C.L. sensitivities |cαβTZ||c^{TZ}_{\alpha\beta}| and cααTZcττTZc^{TZ}_{\alpha\alpha}-c^{TZ}_{\tau\tau} at the DUNE (TDR setup). Here, we have marginalized over the corresponding LIV phases ϕαβTZ\phi_{\alpha\beta}^{TZ} from [02π-2\pi], as well as θ23\theta_{23} and δCP\delta_{CP}, considering a 1σ\sigma uncertainty of 10% and 15%, respectively. All the remaining oscillation parameters were fixed to their NO best fit values de Salas et al. (2021). Refer to the text for details.

In Fig. 4, we show in left (right) panel, the projected 95% C.L. sensitivities to the SME coefficients |cαβTZ||c^{TZ}_{\alpha\beta}| and cααTZcττTZc^{TZ}_{\alpha\alpha}-c^{TZ}_{\tau\tau}, considering the DUNE configuration. We have marginalized over the corresponding LIV phases ϕαβTZ\phi_{\alpha\beta}^{TZ} from [02π-2\pi], as well as the atmospheric mixing angle θ23\theta_{23} and the leptonic CPCP phase δCP\delta_{CP}, considering a 1σ\sigma uncertainty of 10% and 15%, accordingly. We observe that the sensitivities in the TZTZ-sector (|ceμTZ|,|cμτTZ|)4.2×1024(|c^{TZ}_{e\mu}|,\leavevmode\nobreak\ |c^{TZ}_{\mu\tau}|)\lesssim 4.2\times 10^{-24}, are not as competitive as those from the isotropic and ZZ-spatial sectors (|ceμ|,|cμτ|)0.35×1024(|c_{e\mu}|,\leavevmode\nobreak\ |c_{\mu\tau}|)\lesssim 0.35\times 10^{-24}, and (|ceμZZ|,|cμτZZ|)1.2×1024(|c_{e\mu}^{ZZ}|,\leavevmode\nobreak\ |c_{\mu\tau}^{ZZ}|)\lesssim 1.2\times 10^{-24}, as illustrated in the left and right panels of Fig. 1. Which can be partially understood from their functional dependence in the Hamiltonian HLIVH_{\text{LIV}} of LIV (Eq. 39)

HLIVEν2[3cαβcαβZZ2N^ZcαβTZ+𝒪(N^Z2)],N^Z0.1.-H_{\text{LIV}}\simeq\frac{E_{\nu}}{2}\big{[}3c_{\alpha\beta}-c_{\alpha\beta}^{ZZ}-2\hat{N}_{Z}c_{\alpha\beta}^{TZ}+\mathcal{O}(\hat{N}_{Z}^{2})\big{]},\leavevmode\nobreak\ \leavevmode\nobreak\ \hat{N}_{Z}\sim 0.1\leavevmode\nobreak\ . (44)

Besides, the null observation of Lorentz violation employing the low-energy excess data set of the MiniBooNE experiment set ceμTZ<(5.9±1.7)×1020c^{TZ}_{e\mu}<(5.9\pm 1.7)\times 10^{-20} Katori (2010), while bounds from the Double Chooz experiment constraint Re(ceτTZ)<3.2×1017(c^{TZ}_{e\tau})<3.2\times 10^{-17} Katori and Spitz (2014); Kostelecky and Russell (2011).

Table 2: Current limits and projected sensitivities (shown in parenthesis), last column shows the interaction energy scale MM_{*} associated to the SME coefficients cαβμνc_{\alpha\beta}^{\mu\nu}.
 LIV sector Limit (Sensitivity) Interaction energy scale
  neutrino Re(cμτ)<7×1034\text{Re}(c_{\mu\tau})<7\times 10^{-34}, IceCube Abbasi et al. (2022) M107eV(ρφ,DM)M_{*}\gtrsim 10^{7}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi,\odot}^{\text{DM}}\big{)}
  neutrino |ceμ|<8.0×1027|c_{e\mu}|<8.0\times 10^{-27}, Super-Kamiokande Abe et al. (2015) M105eV(ρφ,DM)M_{*}\gtrsim 10^{5}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi,\odot}^{\text{DM}}\big{)}
  neutrino |ceτ|<9.3×1025|c_{e\tau}|<9.3\times 10^{-25}, Super-Kamiokande Abe et al. (2015) M3×104eV(ρφ,DM)M_{*}\gtrsim 3\times 10^{4}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi,\odot}^{\text{DM}}\big{)}
  neutrino ceμZZ<(2.6±0.8)×1019c_{e\mu}^{ZZ}<(2.6\pm 0.8)\times 10^{-19}, MiniBooNE Katori (2010); Kostelecky and Russell (2011) M2×102eV(ρφDE)M_{*}\gtrsim 2\times 10^{2}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi}^{\text{DE}}\big{)}
  neutrino Re(ceτZZ)<4.9×1017(c^{ZZ}_{e\tau})<4.9\times 10^{-17}, Double Chooz Katori and Spitz (2014) M6×101eV(ρφDE)M_{*}\gtrsim 6\times 10^{1}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi}^{\text{DE}}\big{)}
  neutrino (|cαβ|[110]×1025|c_{\alpha\beta}|\sim[1-10]\times 10^{-25}), DUNE Raikwal et al. (2023); Agarwalla et al. (2023) M[36]×104eV(ρφ,DM)M_{*}\sim[3-6]\times 10^{4}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi,\odot}^{\text{DM}}\big{)}
  neutrino (|cαβ|[110]×1025|c_{\alpha\beta}|\sim[1-10]\times 10^{-25}), DUNE (this work) M[36]×104eV(ρφ,DM)M_{*}\sim[3-6]\times 10^{4}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi,\odot}^{\text{DM}}\big{)}
  neutrino (|cαβZZ|[110]×1024|c_{\alpha\beta}^{ZZ}|\sim[1-10]\times 10^{-24}), DUNE (this work) M[23]×103eV(ρφDE)M_{*}\sim[2-3]\times 10^{3}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi}^{\text{DE}}\big{)}
  neutrino Re(cee)<6×1033(c_{ee})<6\times 10^{-33}, IceCube Abbasi et al. (2022) M6×106eV(ρφ,DM)M_{*}\gtrsim 6\times 10^{6}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi,\odot}^{\text{DM}}\big{)}
  neutrino Re(cττ)<8×1034(c_{\tau\tau})<8\times 10^{-34}, IceCube Abbasi et al. (2022) M107eV(ρφ,DM)M_{*}\gtrsim 10^{7}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi,\odot}^{\text{DM}}\big{)}
  neutrino (ceecττ1.3×1024c_{ee}-c_{\tau\tau}\simeq 1.3\times 10^{-24}), DUNE (this work) M3×104eV(ρφ,DM)M_{*}\sim 3\times 10^{4}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi,\odot}^{\text{DM}}\big{)}
  neutrino (cμμcττ2.2×1024c_{\mu\mu}-c_{\tau\tau}\simeq 2.2\times 10^{-24}), DUNE (this work) M3×104eV(ρφ,DM)M_{*}\sim 3\times 10^{4}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi,\odot}^{\text{DM}}\big{)}
  neutrino   (ceeZZcττZZ5.0×1024c_{ee}^{ZZ}-c_{\tau\tau}^{ZZ}\simeq 5.0\times 10^{-24}), DUNE (this work) M2×103eV(ρφDE)M_{*}\sim 2\times 10^{3}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi}^{\text{DE}}\big{)}
  neutrino   (cμμZZcττZZ7.0×1024c_{\mu\mu}^{ZZ}-c_{\tau\tau}^{ZZ}\simeq 7.0\times 10^{-24}), DUNE (this work) M2×103eV(ρφDE)M_{*}\sim 2\times 10^{3}\leavevmode\nobreak\ \text{eV}\leavevmode\nobreak\ \big{(}\rho_{\varphi}^{\text{DE}}\big{)}
  electron 80cee/10204-80\lesssim c_{ee}/10^{-20}\lesssim 4 Kostelecky and Russell (2011)

V Conclusions

In contemporary cosmology, one of the most fascinating puzzles are the dark matter and dark energy conundrum. One of the most common fields employed to describe dark energy is the scalar field. Furthermore, a scalar field can also characterize ultralight dark matter, which is one of the most promising alternatives for dark matter.

On the other hand, if the CPTCPT and Lorentz symmetries are broken at very high energies, well beyond the electroweak scale, oscillations of high energy neutrinos may probe energy scales where this possible violations arise. The aforementioned violation of Lorentz invariance might arise from neutrino non-standard interactions with scalar fields.

In this paper, we have outlined the case of an effective tensorial neutrino–scalar field interaction. The corresponding scalar field could be identified as either a dark energy or dark matter candidate. Moreover, within this framework, the effective neutrino interaction with cosmological scalar fields can be associated to the CPTCPT-even SME coefficients via the energy momentum-tensor TφμνT^{\mu\nu}_{\varphi} (Sec. III). In the case of the isotropic coefficients cαβc_{\alpha\beta}, a simple relation can be established in terms of the energy densities (ρφ\rho_{\varphi}) for DE or DM (Eq. 27). Therefore, bounds and sensitivities set on the CPTCPT-even SME coefficients (cαβμνc^{\mu\nu}_{\alpha\beta}) may be related to the energy scale (MM_{*}) of this interaction.

Furthermore, we estimate sensitivities to the dimension-four CPTCPT-even SME coefficients cαβμνc^{\mu\nu}_{\alpha\beta} of the SME, particularly the isotropic cαβc_{\alpha\beta} and ZZ-spatial cαβZZc_{\alpha\beta}^{ZZ}. For an accelerator-based experiment similar to DUNE, our predicted sensitivities at 95% C.L. are |cαβ|[110]×1025|c_{\alpha\beta}|\sim[1-10]\times 10^{-25} (left panel of Fig. 1) and |cαβZZ|[110]×1024|c_{\alpha\beta}^{ZZ}|\sim[1-10]\times 10^{-24} (right panel of Fig. 1), while for the diagonal LIV coefficients ceecττ1.3×1024c_{ee}-c_{\tau\tau}\simeq 1.3\times 10^{-24} and cμμcττ2.2×1024c_{\mu\mu}-c_{\tau\tau}\simeq 2.2\times 10^{-24} (left panel of Fig. 2); ceeZZcττZZ5.0×1024c_{ee}^{ZZ}-c_{\tau\tau}^{ZZ}\simeq 5.0\times 10^{-24} and cμμZZcττZZ7.0×1024c_{\mu\mu}^{ZZ}-c_{\tau\tau}^{ZZ}\simeq 7.0\times 10^{-24} (right panel of Fig. 2). Our results are summarized in Table 2.

Upcoming and present neutrino experiments such as the DUNE, KM3NeT, IceCube-Gen2 and GRAND proposals; as well as the IceCube neutrino observatory, could shed more light on these types of neutrino interactions.

This paper represents the views of the authors and should not be considered a DUNE collaboration paper.

Acknowledgments

This work was partially supported by SNII-México and CONAHCyT research Grant No. A1-S-23238. Additionally the work of R. C. was partially supported by COFAA-IPN, Estímulos al Desempeño de los Investigadores (EDI)-IPN and SIP-IPN Grant No. 20241624.

Appendix A Details of a tensorial neutrino interaction

A possible realization of the tensorial coupling discussed in this work could arise from conformal coupling and disformal transformations where the scalar field couples to different kinds of matter fields in the form Gauthier et al. (2010); Brax (2012); Brax and Burrage (2014); Carrillo González et al. (2021); Yazdani Ahmadabadi and Mohseni Sadjadi (2024, 2022)

SM=d4xg~m(Ψ~i,g~μνi),S_{M}=\int d^{4}x\sqrt{-\tilde{g}}{\mathcal{L}}_{m}(\tilde{\Psi}_{i},\tilde{g}^{i}_{\mu\nu})\,\,, (45)

where g~\tilde{g} is the determinant of the metric g~μνi\tilde{g}^{i}_{\mu\nu} and the disformal transformation can be written as Bekenstein (1993); Deffayet and Garcia-Saenz (2020); Zumalacárregui and García-Bellido (2014)

g~μν=a(φ,X)gμν+b(φ,X)μφνφ.\tilde{g}_{\mu\nu}=a(\varphi,X)g_{\mu\nu}+b(\varphi,X)\partial_{\mu}\varphi\partial_{\nu}\varphi\,\,. (46)

Disformal transformations have been applied to a wide range of topics in cosmology, from inflation Kaloper (2004) through dark matter Bekenstein (2004), dark energy Zumalacarregui et al. (2010) and its cosmological implications van de Bruck et al. (2013). Besides, disformal transformations have been applied in generalized Palatini gravities Olmo et al. (2009), and it has been studied their possible non-trivial effects on radiation and signatures in laboratory tests Brax et al. (2012). Following the construction presented in Brax (2012); Brax and Burrage (2014) we can decompose the transformation in the following form 888In fact, there are more general disformal transformations akin Ikeda et al. (2023), g¯μν=F0gμν+F1φμφν+2F2φ(μXν)+F3XμXν\bar{g}_{\mu\nu}=F_{0}g_{\mu\nu}+F_{1}\varphi_{\mu}\varphi_{\nu}+2F_{2}\varphi_{(\mu}X_{\nu)}+F_{3}X_{\mu}X_{\nu} where φμ:=μφ\varphi_{\mu}:=\nabla_{\mu}\varphi, Xμ:=μXX_{\mu}:=\nabla_{\mu}X. The functions FiF_{i} depend on the variables φ,X,Y,Z\varphi,X,Y,Z, where Y:=φμXμY:=\varphi^{\mu}X_{\mu} and Z:=XμXμZ:=X^{\mu}X_{\mu}. However, the consistency of the fermionic coupling requires that F3=0F_{3}=0 Takahashi et al. (2023).

g~μν=gμν+α(φ,X,M)gμν+β(φ,X)M4μφνφ=gμν+hμν,\tilde{g}_{\mu\nu}=g_{\mu\nu}+\alpha(\varphi,X,M_{*})g_{\mu\nu}+\frac{\beta(\varphi,X)}{M_{*}^{4}}\partial_{\mu}\varphi\partial_{\nu}\varphi=g_{\mu\nu}+h_{\mu\nu}\,\,, (47)

where MM_{*} is related to energy scale of the interaction. Considering the hμνh_{\mu\nu} term as a small correction to gμνg_{\mu\nu}, we can expand the action at first order and obtain a derivative coupling of the scalar field with matter

SM=d4xgm(Ψi,gμνi)+id4xg12Tiμν(α(φ,X,M)gμν+β(φ,X)M4μφνφ),S_{M}=\int d^{4}x\sqrt{-{g}}{\mathcal{L}}_{m}({\Psi}_{i},{g}^{i}_{\mu\nu})+\sum_{i}\int d^{4}x\sqrt{-{g}}\frac{1}{2}T^{\mu\nu}_{i}\left(\alpha(\varphi,X,M_{*})g_{\mu\nu}+\frac{\beta(\varphi,X)}{M_{*}^{4}}\partial_{\mu}\varphi\partial_{\nu}\varphi\right)\,\,, (48)

where the sum considers different matter components and Tμν=2gδSMδgμνT^{\mu\nu}=\frac{2}{\sqrt{-g}}\frac{\delta S_{M}}{\delta g_{\mu\nu}} is the energy momentum tensor of the matter fields. In the case of fermions

SM=d4xgi2(Ψ¯γμDμΨDμΨ¯γμΨ+2imΨ¯Ψ),S_{M}=\int d^{4}x\sqrt{-{g}}\frac{-i}{2}(\bar{\Psi}\gamma^{\mu}D_{\mu}\Psi-D_{\mu}\bar{\Psi}\gamma^{\mu}\Psi+2im\bar{\Psi}\Psi)\,, (49)

and the energy-momentum tensor is

TμνΨ=i2(Ψ¯γ(μDν)ΨD(μΨ¯γν)Ψ).T_{\mu\nu}^{\Psi}=-\frac{i}{2}(\bar{\Psi}\gamma_{(\mu}D_{\nu)}\Psi-D_{(\mu}\bar{\Psi}\gamma_{\nu)}\Psi)\,. (50)

Therefore, the interaction term can be written as

SI=d4xgi4(Ψ¯γ(μDν)ΨD(μΨ¯γν)Ψ)(α(φ,X,M)gμν+β(φ,X)M4μφνφ).S_{I}=-\int d^{4}x\sqrt{g}\frac{i}{4}(\bar{\Psi}\gamma_{(\mu}D_{\nu)}\Psi-D_{(\mu}\bar{\Psi}\gamma_{\nu)}\Psi)\left(\alpha(\varphi,X,M_{*})g^{\mu\nu}+\frac{\beta(\varphi,X)}{M_{*}^{4}}\partial^{\mu}\varphi\partial^{\nu}\varphi\right)\,. (51)

It is convenient to select a particular choice of the α\alpha and β\beta functions to construct the energy-momentum tensor TφμνT_{\varphi}^{\mu\nu} for the scalar field φ\varphi in the interaction

SI=d4xgik2M4(Ψ¯γ(μDν)Ψ+h.c.)Tφμν.S_{I}=\int d^{4}x\sqrt{-g}\frac{ik}{2M_{*}^{4}}(\bar{\Psi}\gamma_{(\mu}D_{\nu)}\Psi+\text{h.c.}\,)T_{\varphi}^{\mu\nu}\,. (52)

The effective Lagrangian has a similar structure that appears in modified gravity Asimakis et al. (2023) where there is a coupling of the energy-momentum tensor with the Einstein tensor and a proposal of a coupling among the energy-momentum tensor and vector and scalar fields Beltrán Jiménez et al. (2018). Moreover, a similar interaction was proposed in Refs. Kehagias (2011); Ciuffoli et al. (2013) in the context of Galileon-neutrino couplings. For neutrinos, the interaction term can be written as

SI=d4xgiλαβ2M4(ν¯αγ(μ(1γ5)Dν)νβ+h.c.)Tφμν.S_{I}=\int d^{4}x\sqrt{-g}\frac{i\lambda_{\alpha\beta}}{2M_{*}^{4}}(\bar{\nu}_{\alpha}\gamma_{(\mu}(1-\gamma_{5})D_{\nu)}\nu_{\beta}+\text{h.c.}\,)T_{\varphi}^{\mu\nu}\,. (53)

In cases where the Minkowski metric (ημν\eta_{\mu\nu}) is a good approximation, the former relation reduces to

SI=d4xηiλαβ2M4(ν¯αγμ(1γ5)ννβ+h.c.)Tφμν.S_{I}=\int d^{4}x\sqrt{-\eta}\frac{i\lambda_{\alpha\beta}}{2M_{*}^{4}}(\bar{\nu}_{\alpha}\gamma_{\mu}(1-\gamma_{5})\partial_{\nu}\nu_{\beta}+\text{h.c.}\,)T_{\varphi}^{\mu\nu}\,. (54)

References