This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nesting and Degeneracy of Mie Resonances of Dielectric Cavities within Zero-Index Materials

Xueke Duan1 These authors contributed equally to this work.    Haoxiang Chen1 These authors contributed equally to this work.    Yun Ma1 These authors contributed equally to this work.    Zhiyuan Qian1    Qi Zhang1    Yun Lai4    Ruwen Peng4    Qihuang Gong1,2,3    Ying Gu1,2,3 [email protected] 1State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
2Frontiers Science Center for Nano-optoelectronics &\& Collaborative Innovation Center of Quantum Matter &\& Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
4 National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract

Resonances in optical cavities have been used to manipulate light propagation, enhance light-matter interaction, modulate quantum states, and so on. However, in traditional cavities, the permittivity contrast in and out the cavity is not so high. Recently, zero-index materials (ZIMs) with unique properties and specific applications have attracted great interest. By putting optical cavity into ZIMs, the extreme circumstance with infinite permittivity contrast can be obtained. Here, we theoretically study Mie resonances of dielectric cavities embedded in ZIMs with ε0\varepsilon\approx 0, or μ0\mu\approx 0, or (ε,μ)0(\varepsilon,\mu)\approx 0. Owing to ultrahigh contrast ratio of ε\varepsilon or μ\mu in and out the cavities, with fixed wavelength, a series of Mie resonances with the same angular mode number ll but with different cavity radii are obtained; more interestingly, its 2l2^{l}-TM (TE) and 2l+12^{l+1}-TE (TM) modes have the same resonant solution for the cavity in ε0\varepsilon\approx 0 (μ0\mu\approx 0) material, and the resonance degeneracy also occurs between 2l2^{l}-TM mode and 2l2^{l}-TE mode for (ε,μ)0(\varepsilon,\mu)\approx 0 material. We further use resonance degeneracy to modulate the Purcell effect of quantum emitter inside the cavity. The results of resonance nesting and degeneracy will provide an additional view or freedom to enhance the performance of cavity behaviors.

Zero-index materials (ZIMs) Liberal and Engheta (2017a); Engheta (2013), including ε\varepsilon near zero (ENZ), μ\mu near zero (MNZ), and both ε\varepsilon and μ\mu near zero (EMNZ) materials, have attracted great interest. They have been experimentally realized in natural materials Kim et al. (2016); Naik et al. (2011), engineered dispersion waveguides Edwards et al. (2008); Vesseur et al. (2013); Liberal et al. (2017), photonic crystals Huang et al. (2011), and metamaterials Maas et al. (2013); Moitra et al. (2013); Li et al. (2015); Pollard et al. (2009). Owing to near zero ε\varepsilon or μ\mu Liberal and Engheta (2017a); Engheta (2013), the electric field will decouple with the magnetic field in the ZIMs accompanied by constant phase distribution. With many attractive properties, like supercoupling Silveirinha and Engheta (2007, 2006); Marcos et al. (2015); Liberal et al. (2017), directional radiation phase pattern Alu et al. (2007), large optical nonlinearity Alam et al. (2018); lam et al. (2016), random control of reflection and refraction Luo et al. (2018, 2015); Nguyen et al. (2010); Liberal et al. (2018), and resonance “pinning” effect Kim et al. (2016); Schulz et al. (2016), ZIMs have been used in coherent perfect absorption Simin and Klaus (2012), cloaking Chu et al. (2018), waveguide connection Silveirinha and Engheta (2007, 2006), optical antennas Kim et al. (2016); Schulz et al. (2016), and so on. However, these studies only focus on the zero index of bulk material itself rather than the huge index contrast in and out the bulk ZIMs.

Optical cavities are ubiquitous, whose resonances can be used to manipulate light propagation, enhance light-matter interaction, modulate quantum states, and generate quantum sources. With the contrast of indexes (ε,μ\varepsilon,\mu) in and out of the cavities, optical responses such as surface plasmon resonance Kelly et al. (2003); Kreibig and Vollmer (1995); Lian et al. (2015) and dielectric resonance Gastine et al. (1967); Affolter and Eliasson (1973); Richtmyer (1939); Jahani and Jacob (2016); Kuznetsov et al. (2016) occur, characterized as strong local field enhancement. In traditional cavities, once the wavelength is fixed, resonance nesting with different size cavity and resonance degeneracy in nanoscale cavity, though which will provide additional degree of freedom to enhance the performance of photonic devices, have never been reported before. Despite with the highest contrast ratio of ε\varepsilon or μ\mu in and out the cavity embedded in the ZIMs, only electric dipole resonance of dielectric cavity has been demonstrated to modify the photon-emitter interaction Liberal et al. (2016); Liberal and Engheta (2017b); Silveirinha (2014); Liberal and Engheta (2016).

Here, we analytically solve Mie resonances of dielectric spherical cavities embedded in ENZ, MNZ, and EMNZ background respectively [Fig. 1]. Unusually, for the same angular mode number ll, a series of Mie resonances with different radii can be achieved at a fixed wavelength, so called resonance nesting. More interestingly, the 2l2^{l}-TM (TE) mode of the dielectric cavity has the same resonant frequency as that of its 2l+12^{l+1}-TE (TM) mode for the ENZ (MNZ) material; while for EMNZ material, the resonance degeneracy occurs between its 2l2^{l}-TM and 2l2^{l}-TE modes. The nesting and degeneracy of optical modes originate from the ultrahigh contrast ratio of ε\varepsilon or μ\mu in and out the cavities. Therefore, these phenomena also exist in nonspherical dielectric cavities surrounded by ZIMs. We also find that degenerate resonances own different linewidth, in other word, as the order ll becomes higher, the linewidth becomes narrower. All above analytical results are confirmed by the numerical finite element method. Owing to the resonance degeneracy of optical modes enabled by ZIMs, the interference or superposition between the modes is expected. Then we used resonance degeneracy to modulate the photon-emitter interaction inside the cavity. The resonance degeneracy and nesting enabled by zero-index materials may have potential application in light manipulation, light-matter interaction, and photonic devices.

Refer to caption
Figure 1: The spherical cavity with zero-index background. The dielectric sphere (the white part) with radius of RR embedded in the infinite ZIM (the blue part).

The spherical cavity with ZIM background is shown in Fig. 1. The dielectric sphere (the white part) with the radius of RR and dielectric constant ε1\varepsilon_{1} and magnetic permeability μ1\mu_{1} is embedded in the infinite ZIM (the blue part) with ε2\varepsilon_{2} and μ2\mu_{2}. In spherical coordinate system, different optical modes of dielectric spherical cavity are usually labeled as TMlm/TElm modes Mie (1908); Debye (1909); Bohren and Huffman (1976); Gastine et al. (1967); Affolter and Eliasson (1973); SM (ials), where TM means transverse magnetic mode and TE means transverse electric mode; l=1,2,3l=1,2,3..., the angular mode number, decides the polarity of the modes (2l2^{l}-modes), for example, l=1l=1 means the dipole mode (2-mode) and l=2l=2 means the quadrupole mode (4-mode); mm is the azimuthal mode number and satisfies mlm\leq l. As solving the Mie resonances of the cavity modes, we can take m=0m=0 as an example because mm has no effect on the resonance conditions. On this premise, Mie resonances of cavity modes can be categorized into 2l2^{l}-TM and 2l2^{l}-TE Mie resonances.

First considering the 2l2^{l}-TM modes in the spherical cavity, because the magnetic field of the TM modes has no radial component, so the electromagnetic fields inside and outside the sphere can be written as SM (ials):

𝐇TMl={𝐌l(2)+a𝐌l(1),r<R,c𝐌l(3),rR,𝐄TMl={k1iε1ε0ω(𝐍l(2)+a𝐍l(1)),r<R,k2iε2ε0ω(c𝐍l(3)),rR,\begin{array}[]{l}{\bf H}_{\mathrm{TM}}^{l}=\left\{\begin{array}[]{c}{\bf M}_{l}^{(2)}+a{\bf M}_{l}^{(1)},\quad r<R,\\ c{\bf M}_{l}^{(3)},\quad r\geq R,\\ \end{array}\right.\\ {\bf E}_{\mathrm{TM}}^{l}=\left\{\begin{array}[]{c}-\dfrac{k_{1}}{i\varepsilon_{1}\varepsilon_{0}\omega}\left({\bf N}_{l}^{(2)}+a{\bf N}_{l}^{(1)}\right),\quad r<R,\\ -\dfrac{k_{2}}{i\varepsilon_{2}\varepsilon_{0}\omega}\left(c{\bf N}_{l}^{(3)}\right),\quad r\geq R,\end{array}\right.\\ \end{array} (1)

where aa and cc are coefficients to be determined, 𝐌\bf M and 𝐍\bf N are two sets of Mie bases Mie (1908); Debye (1909); Bohren and Huffman (1976) on which the electromagnetic field can be expanded. 𝐌l(j=1,2,3)=Plθzl(j)(x)𝐞^ϕ{\bf M}_{l}^{(j=1,2,3)}=-\dfrac{\partial\mathrm{P}_{l}}{\partial\theta}z_{l}^{(j)}(x)\hat{\mathbf{e}}_{\phi}, and 𝐍l(j=1,2,3)=zl(j)(x)xl(l+1)Pl𝐞^r+1x[xzl(j)(x)]xPlθ𝐞^θ{\bf N}_{l}^{(j=1,2,3)}=\dfrac{z_{l}^{(j)}(x)}{x}l(l+1)\mathrm{P}_{l}\hat{\mathbf{e}}_{r}+\dfrac{1}{x}\dfrac{\partial\left[xz_{l}^{(j)}(x)\right]}{\partial x}\dfrac{\partial\mathrm{P}_{l}}{\partial\theta}\hat{\mathbf{e}}_{\theta}, in which x=krx=kr and kk is the wavenumber, labeled as k1k_{1} in the sphere and k2k_{2} out the sphere; zl(j)z_{l}^{(j)} mean different kind of spherical harmonic functions respectively: spherical Bessel function jlj_{l}, spherical Neumann function nln_{l}, and spherical Hankel function of the first kind hl(1)h_{l}^{(1)} which is a linear combination of jlj_{l} and nln_{l}, i.e. hl(1)=jl+inlh_{l}^{(1)}=j_{l}+in_{l}. For simplicity, we make ηl(x)xjl(x),ζl(x)xnl(x),ξl(x)xhl(1)(x)\eta_{l}(x)\equiv xj_{l}(x),\zeta_{l}(x)\equiv xn_{l}(x),\xi_{l}(x)\equiv xh_{l}^{(1)}(x). PlP_{l} is the associated Legendre function. More details are shown in Ref. SM (ials).

According to the continuous tangential electric field strength and magnetic field strength on the boundary (r=Rr=R), for the 2l2^{l}-TM modes we get a linear equations with two coefficients aa and cc SM (ials):

{ε~(ζl(ρ)+aηl(ρ))=cξl(sρ),ζl(ρ)+aηl(ρ)=cξl(sρ)s,\left\{\begin{array}[]{l}\tilde{\varepsilon}\left(\zeta_{l}^{\prime}(\rho)+a\eta_{l}^{\prime}(\rho)\right)=c\xi_{l}^{\prime}(s\rho),\\ \zeta_{l}(\rho)+a\eta_{l}(\rho)=c\dfrac{\xi_{l}(s\rho)}{s},\end{array}\right. (2)

in which ρ=k1R\rho=k_{1}R, ε~=ε2/ε1,μ~=μ2/μ1,s=k2/k1=ε~μ~\tilde{\varepsilon}=\varepsilon_{2}/\varepsilon_{1},\tilde{\mu}=\mu_{2}/\mu_{1},s=k_{2}/k_{1}=\sqrt{\tilde{\varepsilon}\tilde{\mu}}.

When the spherical cavity is resonant, aa and cc would go to extrema, which can be satisfied when the denominators of aa and cc are zero:

ε~ηl(ρ)ξl(sρ)=sηl(ρ)ξl(sρ).\tilde{\varepsilon}\eta_{l}^{\prime}(\rho)\xi_{l}(s\rho)=s\eta_{l}(\rho)\xi_{l}^{\prime}(s\rho). (3)

This is the limit situation for the resonance, whose premise of real solution can be naturally met by ZIMs with s0s\approx 0. In addition, with s0s\approx 0, ξl(sρ)al(sρ)l\xi_{l}(s\rho)\approx a_{l}(s\rho)^{-l} and ξl(sρ)(l)al(sρ)(l+1)\xi_{l}^{\prime}(s\rho)\approx(-l)a_{l}(s\rho)^{-(l+1)} SM (ials), substituting them into Eq. (3), we obtain:

ε~ρηl(ρ)+lηl(ρ)=0,\tilde{\varepsilon}\rho\eta_{l}^{\prime}(\rho)+l\eta_{l}(\rho)=0, (4)

which is the ideal Mie resonance condition for the 2l2^{l}-TM modes of spherical cavity embedded in ZIMs. Furthermore, for ENZ and EMNZ media, ε~0\tilde{\varepsilon}\approx 0, so Eq. (4) can be simplified to ηl(ρ)=0\eta_{l}(\rho)=0. Ideal resonance conditions only can be achieved when s=0s=0 or ss is very near zero, but in fact, the small imaginary part of ε2\varepsilon_{2} or μ2\mu_{2} will make a little influence on the 2l2^{l}-TM Mie resonances SM (ials).

It is worth mentioning that in addition to ZIMs, s0s\approx 0 can also be satisfied by the situation that ε1ε2\varepsilon_{1}\gg\varepsilon_{2}, i.e. the high index cavity embedded in low index material (like air). However, as discussed in Ref. SM (ials), the same resonant conditions as above can be achieved only when ε1\varepsilon_{1} is very high (more than 900).

For the 2l2^{l}-TE modes in the spherical cavity, the electromagnetic fields inside and outside the sphere are written as SM (ials):

𝐄TEl={𝐌l(2)+b𝐌l(1),r<R,d𝐌l(3),rR,𝐇TEl={k1iμ1μ0ω(𝐍l(2)+b𝐍l(1)),r<R,k2iμ2μ0ω(d𝐍l(3)),rR,\begin{array}[]{l}{\bf E}_{\mathrm{TE}}^{l}=\left\{\begin{array}[]{c}{\bf M}_{l}^{(2)}+b{\bf M}_{l}^{(1)},\quad r<R,\\ d{\bf M}_{l}^{(3)},\quad r\geq R,\\ \end{array}\right.\\ {\bf H}_{\mathrm{TE}}^{l}=\left\{\begin{array}[]{c}\dfrac{k_{1}}{i\mu_{1}\mu_{0}\omega}\left({\bf N}_{l}^{(2)}+b{\bf N}_{l}^{(1)}\right),\quad r<R,\\ \dfrac{k_{2}}{i\mu_{2}\mu_{0}\omega}\left(d{\bf N}_{l}^{(3)}\right),\quad r\geq R,\end{array}\right.\\ \end{array} (5)

where bb and dd are coefficients to be determined,

According to the continuous tangential electric field strength and magnetic field strength on the boundary (r=Rr=R), for the 2l2^{l}-TE modes we can get a linear equations with two unknown numbers bb and dd SM (ials):

{μ~(ζl(ρ)+bηl(ρ))=dξl(sρ),ζl(ρ)+bηl(ρ)=1sdξl(sρ).\left\{\begin{array}[]{l}\tilde{\mu}\left(\zeta_{l}^{\prime}(\rho)+b\eta_{l}^{\prime}(\rho)\right)=d\xi_{l}^{\prime}(s\rho),\\ \zeta_{l}(\rho)+b\eta_{l}(\rho)=\dfrac{1}{s}d\xi_{l}(s\rho).\end{array}\right. (6)

When in resonant, for s0s\approx 0, the determinant of the coefficients of bb and dd should be zero, i.e.

μ~ηl(ρ)ξl(sρ)=sηl(ρ)ξl(sρ).\tilde{\mu}\eta_{l}^{\prime}(\rho)\xi_{l}(s\rho)=s\eta_{l}(\rho)\xi_{l}^{\prime}(s\rho). (7)

Take further simplification of ξl(sρ)\xi_{l}(s\rho), and we can get:

μ~ρηl(ρ)+lηl(ρ)=0,\tilde{\mu}\rho\eta_{l}^{\prime}(\rho)+l\eta_{l}(\rho)=0, (8)

which is the ideal Mie resonance condition for the 2l2^{l}-TE modes of spherical cavity embedded in ZIMs. Specially, for MNZ and EMNZ media, μ~0\tilde{\mu}\approx 0, so Eq. (8) can be simplified to ηl(ρ)=0\eta_{l}(\rho)=0. Similarly, the small imaginary part of ε2\varepsilon_{2} or μ2\mu_{2} will have effect on the 2l2^{l}-TE Mie resonances but different with that on the 2l2^{l}-TM Mie resonances SM (ials).

The Mie resonance conditions for 2l2^{l}-TM and 2l2^{l}-TE modes of dielectric spherical cavity placed in ENZ, MNZ, or EMNZ media are listed in Table. 1B. When the background varies from ENZ to EMNZ, the resonance conditions of the 2l2^{l}-TM modes have no change, but that of the 2l2^{l}-TE modes are modulated and become the same as the 2l2^{l}-TM modes when μ2\mu_{2} is also near zero. For the MNZ background, vice versa SM (ials).

Table 1A: The Mie resonance conditions for 2l2^{l}-TM and 2l2^{l}-TE modes of dielectric spherical cavity embedded in ZIM.
ENZ MNZ EMNZ
2l2^{l}-TM mode ηl(ρ)=0\eta_{l}(\rho)=0 ε~ρηl(ρ)+lηl(ρ)=0\tilde{\varepsilon}\rho\eta_{l}^{\prime}(\rho)+l\eta_{l}(\rho)=0 ηl(ρ)=0\eta_{l}(\rho)=0
2l2^{l}-TE mode μ~ρηl(ρ)+lηl(ρ)=0\tilde{\mu}\rho\eta_{l}^{\prime}(\rho)+l\eta_{l}(\rho)=0 ηl(ρ)=0\eta_{l}(\rho)=0 ηl(ρ)=0\eta_{l}(\rho)=0
Table 1B: The Mie resonance conditions for 2-, 4- and 8- TM/TE modes of dielectric spherical cavity embedded in ZIM.
111A: sinρρcosρ=0\sin\rho-\rho\cos\rho=0; B: sinρ=0\sin\rho=0; C: (3ρ2)sinρ3ρcosρ=0(3-\rho^{2})\sin\rho-3\rho\cos\rho=0; D: (156ρ2)sinρ(15ρρ3)cosρ=0(15-6\rho^{2})\sin\rho-(15\rho-\rho^{3})\cos\rho=0 2-TM 2-TE 4-TM 4-TE 8-TM 8-TE
ENZ (μ2=μ1)(\mu_{2}=\mu_{1}) A B C A D C
MNZ (ε2=ε1)(\varepsilon_{2}=\varepsilon_{1}) B A A C C D
EMNZ A A C C D D

It can be seen that the resonance conditions are related to ηl(ρ)\eta_{l}(\rho) and its derivative ηl(ρ)\eta_{l}^{\prime}(\rho). Give the expression of ηl(ρ)\eta_{l}(\rho) with l=1,2,3l=1,2,3:

η1(ρ)=ρ1(sinρρcosρ),η2(ρ)=ρ2[(3ρ2)sinρ3ρcosρ],η3(ρ)=ρ3[(156ρ2)sinρ(15ρρ3)cosρ].\begin{array}[]{c}\eta_{1}(\rho)={\rho}^{-1}(\sin\rho-\rho\cos\rho),\\ \eta_{2}(\rho)={\rho^{-2}}\left[\left(3-\rho^{2}\right)\sin\rho-3\rho\cos\rho\right],\\ \eta_{3}(\rho)={\rho^{-3}}\left[\left(15-6\rho^{2}\right)\sin\rho-\left(15\rho-\rho^{3}\right)\cos\rho\right].\end{array} (9)

Using the above formula and Table. 1B, we can get the resonance conditions for 2-, 4-, and 8- TE/TM modes, which are listed in Table. 1B. For conciseness, we use A to indicate sinρρcosρ=0\sin\rho-\rho\cos\rho=0, B to sinρ=0\sin\rho=0, C to (3ρ2)sinρ3ρcosρ=0(3-\rho^{2})\sin\rho-3\rho\cos\rho=0 and D to (156ρ2)sinρ(15ρρ3)cosρ=0(15-6\rho^{2})\sin\rho-(15\rho-\rho^{3})\cos\rho=0. More specially, if the refractive index n=ε1μ1n=\sqrt{\varepsilon_{1}\mu_{1}} of the sphere is 1, the resonant condition A can be replaced by R/λ=0.7151,1.2295R/\lambda=0.7151,1.2295..., B by R/λ=0.5,1.0R/\lambda=0.5,1.0..., C by R/λ=0.9173,1.4475R/\lambda=0.9173,1.4475..., and D by R/λ=1.1122,1.6579R/\lambda=1.1122,1.6579..., where λ\lambda is the wavelength in the vacuum.All above results are confirmed by the numerical finite element method SM (ials). While when the refractive index nn is not 1, the nR/λnR/\lambda will be the above values when resonant.

Refer to caption
Figure 2: Resonance nesting of (a) 2-TM and (b) 2-TE modes for the air sphere embedded in the ENZ medium when the resonant wavelength is fixed at 630 nm. The insets are corresponding electric field distributions with different RR (boundaries are shown as grey circles). Here, ε2\varepsilon_{2} is set as 0.01i0.01i, μ2=1\mu_{2}=1.
Refer to caption
Figure 3: The normalized radiation power spectra of degenerate modes of air spherical cavity with R=450.5R=450.5 nm in different ZIM: (a) 2-TM and 4-TE modes in ENZ, (b) 2-TE and 4-TM modes in MNZ, and (c) 2-TM and 2-TE modes in EMNZ material. The insets are their electric field distributions.

Different to plasmonic particles embedded in non-zero index media that usually have only one resonant R/λR/\lambda value for one mode Kelly et al. (2003); Kreibig and Vollmer (1995); Lian et al. (2015); Duan et al. (2019), in the spherical cavity with ZIM background, there are series of R/λR/\lambda values for each 2l2^{l}-TM/TE Mie resonance. Namely, if the optical wavelength is fixed, the same Mie resonance can be achieved in spherical cavities with different radii RR, which is called as “resonance nesting”. As shown in Fig. 2, when the resonant wavelength is fixed at 630 nm ( take an example, also can be at other wavelengths SM (ials)), the radiation power (P=12Re(E×H)dSP=\oiint\frac{1}{2}\operatorname{Re}\left(\vec{E}^{*}\times\vec{H}\right)\cdot\mathrm{d}\vec{S} ) spectra of 2-TM resonance for ENZ case are analytically obtained at R=451.1R=451.1 nm, 776.5 nm, 1096.7 nm…, and the spectra of 2-TE resonance at R=315.5R=315.5 nm, 631.2 nm, 947.0 nm…. It can be seen from the insets of Fig. 2 (a) (or (b)) that the electric field distributions of the three cavities are consistent in form, which just implies these cavities support the same kind resonance. While the values of cavity loss κ\kappa are different, and the larger the cavity, the smaller the loss, because of the increase of lossless energy storage space. It is noted that, the resonant R/λR/\lambda values are little bigger than ideal values due to the imaginary part of ε2\varepsilon_{2}, and approach ideal values with decreasing the imaginary part SM (ials). Besides, the resonance nesting of 2-/4- modes for different ZIMs background is shown in Ref. SM (ials).

In addition to the nesting of the same polar mode, there is also the degeneracy between different polar modes. From Table. 1B, it can be seen that for the ENZ case when μ1=μ2\mu_{1}=\mu_{2}, the 2l2^{l}-TM and 2l+12^{l+1}-TE Mie resonances have the same resonance condition, i.e. the same cavity can support both 2l2^{l}-TM and 2l+12^{l+1}-TE modes at the same wavelength. Fig. 3 (a) gives the normalized radiation power spectra of the 2-TM mode and 4-TE mode in the air cavity with R=450.5R=450.5 nm embedded in ENZ background with ε2=0.01i\varepsilon_{2}=0.01i and μ2=1\mu_{2}=1. The little resonance shifts of the two modes originate from the effect of imaginary part of ε2\varepsilon_{2} SM (ials). Furthermore, the values of κ\kappa of the two degenerate modes are different, i.e., κ=12\kappa=12 nm for the 2-TM mode but κ=4\kappa=4 nm for the 4-TE mode. In a word, the same cavity support two modes with different loss: the higher the ll, the smaller the loss, due to less radiation. The electric field distribution, for 2-TM mode, is discontinuous on the boundary due to the exist of radial component of 𝐄\bf E which suddenly changes with the high contrast ratio of ε2\varepsilon_{2} and ε1\varepsilon_{1}; but for 4-TE mode, the opposite is true SM (ials).

Refer to caption
Figure 4: The Purcell factors of the zz-polarized or xx-polarized dipole emitter moving along the xx-axis in the air cavity with ENZ background. The electric field distributions of points a-f are shown in insets. Here, R=451.1R=451.1 nm, ε2=0.01i\varepsilon_{2}=0.01i, and μ2=1\mu_{2}=1.

The resonant degeneracy also happens between the 2l2^{l}-TE and 2l+12^{l+1}-TM Mie resonances for the MNZ case when ε1=ε2\varepsilon_{1}=\varepsilon_{2} [Table. 1B]. As shown in Fig. 3 (b), the normalized radiation power spectra of the 2l2^{l}-TE (TM) mode for the MNZ case are same with that of the 2l2^{l}-TM (TE) mode for the ENZ case, because of the symmetry of electromagnetic field expressions. In the same way, the little difference between the resonant wavelength of the 2-TE and 4-TM modes caused by the influence of imaginary part of μ2\mu_{2} (here μ2=0.01i\mu_{2}=0.01i and ε2=1\varepsilon_{2}=1). The electric field distribution, no matter for 2-TE or 4-TM mode, is continuous on the boundary because ε2=ε1\varepsilon_{2}=\varepsilon_{1}; and specially for the 2-TE mode, the electric field is almost zero out the sphere. The magnetic field distribution of the 2l2^{l}-TM mode of ENZ case is same with the electric distribution of the 2l2^{l}-TE mode of the MNZ case, and vice versa.

For the EMNZ case, the resonant degeneracy occurs between the 2l2^{l}-TM and 2l2^{l}-TE modes. It can be seen from the Fig. 3 (c) that the normalized radiation power spectra for 2-TM and 2-TE modes overlaps together with the same cavity loss κ=12.6\kappa=12.6 nm. The electric field distribution of the 2-TM mode has the same form with that in the ENZ case and the 2-TE mode is similar with that in the MNZ case. Although resonance conditions of 2l2^{l}-TM mode for ENZ case, 2l2^{l}-TE mode for MNZ case and 2l2^{l}-TM mode for EMNZ case have the same form, but they can not be regarded as degenerate because of the different electromagnetic backgrounds.

Next, we used resonance degeneracy to study the photon-emitter interaction. Here, we take the air cavity with radius R=451.1R=451.1 nm embedded in ENZ medium as an example. Choosing the surface where the electric field strength out the cavity is reduced to 1/e1/e of that on the boundary, we estimate that the mode volume is about 11R311R^{3}, and then the coupling strength gg is no more than 1meV when the transition dipole moment is 0.5 enm SM (ials); Ren et al. (2017), much lower than the cavity loss κ\kappa which is about 37 meV for 2-TM mode and 12.5 meV for 4-TE mode SM (ials). So the interaction between the photon and the dipole emitter is at the weak coupling region in this system, and then we study the Purcell effect Purcell (1946) of the emitter.

We build spherical module in the COMSOL Multiphysics software to calculate Purcell factors by the the ratio of the radiated power of the emitter in the cavity and that of the emitter in the vacuum SM (ials). When the dipole emitter is at the center of the cavity, only the 2-TM mode can be excited, but the 4-TE mode can be inspired when the emitter moves to the edge [Fig. 4]. For the zz-polarized emitter, the 2-TM mode (point a ) or 4-TE mode (point e and d) or both of them (points b and c) can be excited and the Purcell factor can keep above 10. It experiences two maximum values due to the interference or superposition between 2-TM mode and 4-TE modes. While for the xx-polarized emitter, no matter where the emitter is, only the 2-TM mode is excited and the Purcell factor decrease to zero near the boundary. In addition, the Purcell factors will increase greatly if the imaginary part of the background decreases SM (ials).

In summary, we have analytically solved the Mie resonances of dielectric spherical cavities embedded in the ENZ, MNZ, and EMNZ materials. We have theoretically revealed the phenomena of resonance nesting and resonance degeneracy existing in zero-index materials. The nesting and degeneracy originate from the high contrast ratio of ε\varepsilon or μ\mu in and out the cavities, thus if the cavities with large ε\varepsilon or μ\mu embedded in the low index materials, the same phenomena will occur SM (ials). Owing to possessing the same physical principle, resonance nesting will also exist in other geometrical cavities embedded in ZIMs and resonance degeneracy will occur in spherical symmetrical cavities because of the common spherical harmonics. In contrast to previous mode degeneracy generally occurring between +l+l and l-l, the mode degeneracy here with different angular mode number ll will provide an additional way to realize quantum entanglement and quantum operation. The resonance degeneracy enabled by ZIMs may have potential application in light manipulation, light-matter interaction, and photonic devices.

Acknowledgements.
This work is supported by the National Key R&\&D Program of China under Grant No. 2018YFB1107200, by the National Natural Science Foundation of China under Grants Nos. 11525414, 11974032, 11734001, and 11974176, and by the Key R&\&D Program of Guangdong Province under Grant No. 2018B030329001.

References

  • Liberal and Engheta (2017a) I. Liberal and N. Engheta, Nat. Photonics 11, 149 (2017a).
  • Engheta (2013) N. Engheta, Science 340, 286 (2013).
  • Kim et al. (2016) J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva,  and N. Engheta, Optica 3, 339 (2016).
  • Naik et al. (2011) G. V. Naik, J. Kim,  and A. Boltasseva, Opt. Mater. Express 1, 1090 (2011).
  • Edwards et al. (2008) B. Edwards, A. Alu, M. E. Young, M. Silveirinha,  and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008).
  • Vesseur et al. (2013) E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta,  and A. Polman, Phys. Rev. Lett. 110, 013902 (2013).
  • Liberal et al. (2017) I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards,  and N. Engheta, Science 355, 1058 (2017).
  • Huang et al. (2011) X. Huang, Y. Lai, Z. H. Hang, H. Zheng,  and C. T. Chan, Nat. Mater. 10, 582 (2011).
  • Maas et al. (2013) R. Maas, J. Parsons, N. Engheta,  and A. Polman, Nat. Photonics 7, 907 (2013).
  • Moitra et al. (2013) P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs,  and J. Valentine, Nat. Photonics 7, 791 (2013).
  • Li et al. (2015) Y. Li, S. Kita, P. Munoz, O. Reshef, D. I. Vulis, M. Yin, M. Loncar,  and E. Mazur, Nat. Photonics 9, 738 (2015).
  • Pollard et al. (2009) R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats,  and V. A. Podolskiy, Phys. Rev. Lett. 102, 127405 (2009).
  • Silveirinha and Engheta (2007) M. G. Silveirinha and N. Engheta, Phys. Rev. B 76, 245109 (2007).
  • Silveirinha and Engheta (2006) M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).
  • Marcos et al. (2015) J. S. Marcos, M. G. Silveirinha,  and N. Engheta, Phys. Rev. B 91, 195112 (2015).
  • Alu et al. (2007) A. Alu, M. G. Silveirinha, A. Salandrino,  and N. Engheta, Phys. Rev. B 75, 155410 (2007).
  • Alam et al. (2018) M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon,  and R. W. Boyd, Nat. Photonics 12, 79 (2018).
  • lam et al. (2016) M. Z. lam, I. De Leon,  and R. W. Boyd, Science 352, 795 (2016).
  • Luo et al. (2018) J. Luo, J. Li,  and Y. Lai, Phys. Rev. X 8, 031035 (2018).
  • Luo et al. (2015) J. Luo, Z. Hang, C. T. Chan,  and Y. Lai, Laser Photon. Rev. 9, 523 (2015).
  • Nguyen et al. (2010) V. C. Nguyen, L. Chen,  and H. Klaus, Phys. Rev. Lett. 105, 233908 (2010).
  • Liberal et al. (2018) I. Liberal, Y. Li,  and N. Engheta, Nanophotonics 7, 1117 (2018).
  • Schulz et al. (2016) S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon,  and R. W. Boyd, Phys. Rev. A 93, 063846 (2016).
  • Simin and Klaus (2012) F. Simin and H. Klaus, Phys. Rev. B 86, 165103 (2012).
  • Chu et al. (2018) H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou,  and Y. Lai, Light-Sci. Appl. 7, 50 (2018).
  • Kelly et al. (2003) K. Kelly, E. Coronado, L. Zhao,  and G. Schatz, . Phys. Chem. B 107, 668 (2003).
  • Kreibig and Vollmer (1995) U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag Berlin Heidelberg New York, 1995).
  • Lian et al. (2015) H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang,  and Q. Gong, Phys. Rev. Lett. 114, 193002 (2015).
  • Gastine et al. (1967) M. Gastine, L. Courtols,  and J. DorMann, IEEE Trans. Microw. Theory Tech. MT15, 694 (1967).
  • Affolter and Eliasson (1973) P. Affolter and B. Eliasson, IEEE Trans. Microw. Theory Tech. MT21, 573 (1973).
  • Richtmyer (1939) R. Richtmyer, J. Appl. Phys. 10, 391 (1939).
  • Jahani and Jacob (2016) S. Jahani and Z. Jacob, Nat. Nanotechnol. 11, 23 (2016).
  • Kuznetsov et al. (2016) A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar,  and B. Luk’yanchuk, Science 354, 846 (2016).
  • Liberal et al. (2016) I. Liberal, A. M. Mahmoud,  and N. Engheta, Nat. Commun. 7, 10989 (2016).
  • Liberal and Engheta (2017b) I. Liberal and N. Engheta, Proc. Natl. Acad. Sci. U. S. A. 114, 822 (2017b).
  • Silveirinha (2014) M. G. Silveirinha, Phys. Rev. A 89, 023813 (2014).
  • Liberal and Engheta (2016) I. Liberal and N. Engheta, Sci. Adv. 2, e1600987 (2016).
  • Mie (1908) G. Mie, Ann. Phys.-Berlin 25, 377 (1908).
  • Debye (1909) P. Debye, Ann. Phys.-Berlin 30, 57 (1909).
  • Bohren and Huffman (1976) C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH Co. KGaA, 1976).
  • SM (ials)   (Supplemental Material for Nesting and Degeneracy of Mie Resonances of Dielectric Cavities within Zero-Index Materials).
  • Duan et al. (2019) X. Duan, F. Zhang, Z. Qian, H. Hao, L. Shan, Q. Gong,  and Y. Gu, Opt. Express 27, 7426 (2019).
  • Ren et al. (2017) J. Ren, Y. Gu, D. Zhao, F. Zhang, Z. Tiancai,  and Q. Gong, Phys. Rev. Lett. 118, 073604 (2017).
  • Purcell (1946) E. Purcell, Phys. Rev. 69, 681 (1946).