This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Near invariance of quasi-energy spectrum of Floquet Hamiltonians

Amir Sagiv Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA [email protected]  and  Michael I. Weinstein Department of Applied Physics and Applied Mathematics and Department of Mathematics, Columbia University, New York, NY 10027, USA [email protected]
Abstract.

The spectral analysis of the unitary monodromy operator, associated with a time-periodically (paramatrically) forced Schrödinger equation, is a question of longstanding interest. Here, we consider this question for Hamiltonians of the form

Hε(t)=H0+εaW(εat,i),H^{\varepsilon}(t)=H^{0}+\varepsilon^{a}W(\varepsilon^{a}t,-i\nabla)\,,

where H0H^{0} is an unperturbed autonomous Hamiltonian, a1a\geq 1, and W(T,)W(T,\cdot) has a period of Tper>0T_{\rm per}>0. In particular, in the small ε>0\varepsilon>0 regime, we seek a comparison between the spectral properties of the monodromy operator, the one-period flow map associated with the Hε(t)H^{\varepsilon}(t) dynamics, and that of the autonomous (unforced) flow, exp[iH0Tperεa]\exp[-iH^{0}T_{\rm per}\varepsilon^{-a}]. We consider H0H^{0} which is spatially periodic on n\mathbb{R}^{n} with respect to a lattice. Using the decomposition of H0H^{0} and Hε(t)H^{\varepsilon}(t) into their actions on spaces (Floquet-Bloch fibers) of pseudo-periodic functions, we establish a near spectral-invariance property for the monodromy operator, when acting data which are ε\varepsilon-localized in energy and quasi-momentum. Our analysis requires the following steps: (i) spectrally-localized data are approximated by band-limited (Floquet-Bloch) wavepackets; (ii) the envelope dynamics of such wavepackets is well approximated by an effective (homogenized) PDE, and (iii) an exact invariance property for band-limited Floquet-Bloch wavepackets, which follows from the effective dynamics. We apply our general results to a number of periodic Hamiltonians, H0H^{0}, of interest in the study of photonic and quantum materials.

1. Introduction

We consider a class of nn-dimensional Schrödinger equations with time-periodic forcing, governing ψ=ψ(t,𝐱)\psi=\psi(t,{\bf x}), a complex-valued function of 𝐱n{\bf x}\in\mathbb{R}^{n} and tt\in\mathbb{R}:

(1.1) itψ=Hε(t)ψ,Hε(t)H0ψ+εaW(εat,i)ψ,i\partial_{t}\psi=H^{\varepsilon}(t)\psi\,,\qquad H^{\varepsilon}(t)\equiv H^{0}\psi+\varepsilon^{a}W(\varepsilon^{a}t,-i\nabla)\psi\ ,

where, a1a\geq 1, the operator H0H^{0} is self-adjoint on L2(n)L^{2}(\mathbb{R}^{n}), and for each TT\in\mathbb{R} the operator W(T,i)W(T,-i\nabla) is also self-adjoint on L2(n)L^{2}(\mathbb{R}^{n}). Furthermore, TW(T,)T\mapsto W(T,\cdot) is periodic of period TperT_{\rm per}, i.e., W(T,)=W(T+Tper.)W(T,\cdot)=W(T+T_{\rm per}.\cdot) for all TT\in\mathbb{R}. Hence,

(1.2) tHε(t)is periodic of periodTperεTperεa,a1.t\mapsto H^{\varepsilon}(t)\quad\textrm{is periodic of period}~{}~{}T_{\rm per}^{\varepsilon}\equiv T_{\rm per}\varepsilon^{-a}\,,\qquad a\geq 1\,.

We consider (1.1) for ε>0\varepsilon>0 and small: the regime of small and slowly varying time-periodic forcing. Very briefly, wave-packet initial-data will deform on a time-scale which depends on its spectral localization. The parameter a1a\geq 1 is therefore chosen so that this time-scale and the forcing period TperεεaT_{\rm per}^{\varepsilon}\sim\varepsilon^{-a} are matched; see Section 1.1.

Since Hε(t)H^{\varepsilon}(t) is time-dependent (non-autonomous), the spectra of the family of operators {Hε(t)}t\{H^{\varepsilon}(t)\}_{t\in\mathbb{R}} does not determine the time-dynamics (1.1). Instead, one must study the period mapping for (1.1). For initial data ψ(t)|t=0=ψ0L2(n)\psi(t)\big{|}_{t=0}=\psi_{0}\in L^{2}(\mathbb{R}^{n}), the solution ψ(t)L2(n)\psi(t)\in L^{2}(\mathbb{R}^{n}) of the initial value problem (1.1) is defined by the unitary operator

(1.3a) ψε(t)=Uε(t)ψ0.\psi^{\varepsilon}(t)=U^{\varepsilon}(t)\psi_{0}\,.
The period mapping, or monodromy operator, is the unitary operator
(1.3b) MεUε(Tperε):L2(n)L2(n).M^{\varepsilon}\equiv U^{\varepsilon}(T_{\rm per}^{\varepsilon}):L^{2}(\mathbb{R}^{n})\to L^{2}(\mathbb{R}^{n})\,.

The driven and undriven problems can be compared by viewing the autonomous case W=0W=0, i.e., the dynamics of itψ=H0ψi\partial_{t}\psi=H^{0}\psi, as having (trivial) TperεT_{\rm per}^{\varepsilon} periodicity. In this case, U0(t)=eiH0tU^{0}(t)=e^{-iH^{0}t} and the monodromy operator is

(1.4) M0ε=eiH0Tperε.M^{\varepsilon}_{0}=e^{-iH^{0}T_{\rm per}^{\varepsilon}}\ .

The spectrum of M0εM^{\varepsilon}_{0} acting in L2(n)L^{2}(\mathbb{R}^{n}) has a simple relation to the spectrum of H0H^{0}:

(1.5) SpecL2(n)(M0ε)={eiETperε|ESpecL2(n)(H0)}.{\rm Spec}_{L^{2}(\mathbb{R}^{n})}(M^{\varepsilon}_{0})=\left\{e^{-iET_{\rm per}^{\varepsilon}}~{}~{}|~{}~{}E\in{\rm Spec}_{L^{2}(\mathbb{R}^{n})}(H^{0})\right\}.

This relation motivates the notion of quasi-energy: A point on the spectrum of the monodromy operator zSpecL2(n)(Mε)S1z\in{\rm Spec}_{L^{2}(\mathbb{R}^{n})}(M^{\varepsilon})\subseteq S^{1} can be written as z=eiTperενz=e^{-iT_{\rm per}^{\varepsilon}\nu}. The phase TperενT_{\rm per}^{\varepsilon}\nu is called a Floquet exponent, and ν/2π\nu\in\mathbb{R}/2\pi\mathbb{Z} is called a quasi-energy. We ask:

Question 1.

What is the relation between the spectrum of the monodromy operator MεM^{\varepsilon} and that of M0εM^{\varepsilon}_{0}, arising from the non-trivial time-periodic forcing?

In general time-periodic settings, beyond being unitary, very little is known about the spectrum of the monodromy operator; see the discussion of Section 1.2.

In this paper, we gain insight on this question for the class of operators MεM^{\varepsilon}, where the unperturbed Hamiltonian, H0H^{0}, is periodic with respect to spatial translations in a lattice Λ𝐱n\Lambda\subset\mathbb{R}_{\bf x}^{n}, i.e., V(𝐱+𝐯)=V(𝐱)V({\bf x}+{\bf v})=V({\bf x}) for all 𝐯Λ{\bf v}\in\Lambda and all 𝐱n{\bf x}\in\mathbb{R}^{n}. Since H0H^{0} commutes with Λ\Lambda-translations, it may be decomposed into its action on distinct spaces of 𝐤{\bf k}- pseudo-periodic functions, where 𝐤{\bf k} varies over the Brillouin zone; see Section 2.1. This decomposition allows us to formulate and address a spectrally-local version of Question 1:

Question 2.

What is the relation between the spectrum of the monodromy operator MεM^{\varepsilon} and that of M0εM^{\varepsilon}_{0}, when restricted to L2(n)L^{2}(\mathbb{R}^{n}) data concentrated near an energy EE_{\star} and quasi-momentum 𝐤{\bf k}_{\star}?

1.1. Discussion of main results

We begin by discussing more specifically the type of spectral localization we have in mind. First, fix a general quasi-momentum 𝐤{\bf k}_{\star} and energy EE_{\star}, and consider initial data which is “ε\varepsilon- spectrally localized” with respect to H0H^{0}– a Bloch wave-packet of band-width ε\varepsilon (see Proposition 4.7). The (unforced) evolution of such data by U0(t)=eiH0tU^{0}(t)=e^{-iH^{0}t}, on large finite time-scales, has the structure of a slowly-varying spatial and temporal modulation of Bloch modes with energy EE_{\star} and quasi-momentum 𝐤{\bf k}_{\star}. The slow evolution is described by an effective Hamiltonian, which is determined by the local character of the band structure (energy dispersion curves and eigenspaces) near (𝐤,E)({\bf k}_{\star},E_{\star}). The effective Hamiltonian captures the transport and spreading dynamics of such data.

We choose the forcing time-scale of our time-dependent Hamiltonian, Hε(t)H^{\varepsilon}(t), so that there is a non-trivial interplay between the unforced transport dynamics and the effect of time-dependent forcing. 111Such balancing corresponds to what is typically done in experiments. For example, a wavepacket excitation is designed by a choice of a laser frequency and pulse band-width, and balanced with forcing to measure effects on experimentally accessible spatial and temporal scales. The parameter a1a\geq 1 in (1.1) is chosen to achieve this balance of effects. For example, the choice a=1a=1 in (1.1) is appropriate for the dynamics where our Bloch wavepacket is concentrated near a point where the dispersion is locally linear, thus allowing for simple transport or conical diffraction, for example. In Section 5 we discuss a number of examples.

A key to our analysis is the space BLε{\rm BL}_{\varepsilon} of band-limited wavepackets (Definition 4.1): the space of Fourier band-limited envelope modulations of Bloch modes (𝐤{\bf k}_{\star} pseudo-periodic eigenstates) of H0H^{0} with energy EE_{\star}. BLε{\rm BL}_{\varepsilon} states are good approximations to ε\varepsilon- spectrally localized a Floquet-Bloch wavepackets of band-width ε\varepsilon (Proposition 4.7, also [39]).

Let Πε\Pi^{\varepsilon} denote the spectral measure associated with unitary operator MεM^{\varepsilon} (see Section 2); let 𝒫0ε\mathcal{P}_{0}^{\varepsilon} be the projection onto the subspace of L2(n)L^{2}(\mathbb{R}^{n}), which is the space of functions which are ε\varepsilon- localized, with respect to H0H^{0}, in quasi-momentum and energy about (𝐤,E)({\bf k}_{\star},E_{\star}). In particular, note that 𝒫0εM0ε=M0ε𝒫0ε\mathcal{P}_{0}^{\varepsilon}M_{0}^{\varepsilon}=M_{0}^{\varepsilon}\mathcal{P}_{0}^{\varepsilon}. Our main near-invariance results are:

  1. (1)

    Theorem 4.4 [Near invariance on range(𝒫0ε){\rm range}(\mathcal{P}_{0}^{\varepsilon})] Let S1\mathcal{I}\subset S^{1} denote any arc such that the spectrum of M0ε𝒫0εM^{\varepsilon}_{0}\circ\mathcal{P}_{0}^{\varepsilon} is contained in \mathcal{I}. Then, for ε>0\varepsilon>0 sufficiently small,

    Πε[]𝒫0ε=𝒫0ε+𝒪B(L2(n))(εn+1)\Pi^{\varepsilon}\left[\mathcal{I}\right]\circ\mathcal{P}_{0}^{\varepsilon}=\mathcal{P}_{0}^{\varepsilon}+\mathcal{O}_{B(L^{2}(\mathbb{R}^{n}))}(\varepsilon^{n+1})

    or equivalently Πε[S1]𝒫0ε=𝒪B(L2(n))(εn+1).\Pi^{\varepsilon}\left[S^{1}\setminus\mathcal{I}\right]\circ\mathcal{P}_{0}^{\varepsilon}=\mathcal{O}_{B(L^{2}(\mathbb{R}^{n}))}(\varepsilon^{n+1})\,. This provides an answer to Question 2: when states in the range of 𝒫0ε\mathcal{P}_{0}^{\varepsilon} evolve under the forced monodromy operator, MεM^{\varepsilon}, the resulting state has very small projection onto quasi-energies far from their quasi-energies under M0ε=exp(iH0Tperε)M^{\varepsilon}_{0}=\exp(-iH_{0}T_{\rm per}^{\varepsilon}). Equivalently, denoting the spectral measure of M0εM^{\varepsilon}_{0} by Π0ε\Pi^{\varepsilon}_{0},

    (Πε[]Π0ε[])𝒫0ε=𝒪B(L2(n))(εn+1).\left(\Pi^{\varepsilon}[\mathcal{I}]-\Pi^{\varepsilon}_{0}[\mathcal{I}]\right)\circ\mathcal{P}_{0}^{\varepsilon}=\mathcal{O}_{B(L^{2}(\mathbb{R}^{n}))}(\varepsilon^{n+1})\,.

Underlying the proof of Theorem 4.4 is the following strict invariance result on BLε{\rm BL}_{\varepsilon}, the space of band-limited wave-packets:

  1. (2)

    Theorem 4.6 [Strict invariance on BLε{\rm BL}_{\varepsilon}] Let \mathcal{I} be as in Theorem 4.4. Then, for all ε>0\varepsilon>0 and sufficiently small, we have the following strict invariance property for the evolution of BLε{\rm BL}_{\varepsilon} under the flow of MεM^{\varepsilon}:

    Πε[]ProjBLε=ProjBLε,\Pi^{\varepsilon}\left[\mathcal{I}\right]\circ{\rm Proj}_{{\rm BL}_{\varepsilon}}={\rm Proj}_{{\rm BL}_{\varepsilon}},

    or equivalently, Πε[S1]ProjBLε=0\Pi^{\varepsilon}\left[S^{1}\setminus\mathcal{I}\right]\circ{\rm Proj}_{{\rm BL}_{\varepsilon}}=0.

Remark 1.1.

These results are not obtainable by standard perturbation theory. Indeed, although the forcing term in (1.1) is multiplied by a small parameter, εa\varepsilon^{a}, the monodromy operator MεM^{\varepsilon} is determined by the evolution on a time-scale of length εa\varepsilon^{-a} (the period of the forcing). Hence, formally, the cumulative contribution of forcing is of order one.


1.2. Relevant analytical work on temporally-forced Hamiltonian PDEs

In the present article, we give a novel perspective on the L2(n)L^{2}(\mathbb{R}^{n}) spectrum of parametrically (periodically) forced Schrödinger equations. Here, we draw connections between our result and other approaches to similar problems.

Reducibility

By translation invariance with respect to a lattice (see Section 2.1), the dynamics of (1.1) can reduce to the spectral study of the Floquet Hamiltonian

𝒦itHε(t),\mathcal{K}\equiv i\partial_{t}-H^{\varepsilon}(t)\,,

over the family of spaces {L2(S1;L𝐤2)}𝐤\{L^{2}(S^{1};L^{2}_{{\bf k}})\}_{{\bf k}\in\mathcal{B}}. For each fixed 𝐤{\bf k}, spectral problems of this latter type correspond to time-periodically forced wave equations on the spatial torus. By constructing a change of variables which approximately maps the original Hamiltonian to an autonomous Hamiltonian (reducibility), it is shown that 𝒦(t)\mathcal{K}(t) has pure point spectra, with quantitative control on the effect of the forcing on the unperturbed point spectrum [4, 3, 9, 13, 21, 30]. These results hypothesize very strong rate of growth assumptions on the point eigenvalues of H0H^{0}. For Schrödinger operators, the Weyl asymptotics imply that these growth assumptions are only satisfied for spatial dimension n=1n=1. An exception to that is [9], which establish analogous results for n2n\geq 2 for the case where |V(x)||V(x)| is assumed to be sufficiently small. To the best of our knowledge, beyond these works, the nature of the spectrum of 𝒦\mathcal{K} remains an open problem [30].

Adiabatic Theory

Adiabatic theory studies the time-dynamics generated by Hamiltonians, which are slowly varying in time:

(1.6) itψε(t)=H(εt)ψε(t), 0<ε1.i\partial_{t}\psi^{\varepsilon}(t)=H(\varepsilon t)\psi^{\varepsilon}(t),\ 0<\varepsilon\ll 1.

The mapping s[0,1]H(s)s\in[0,1]\mapsto H(s) defines a curve of Hamiltonians acting in a Hilbert space \mathcal{H}, of some specified regularity. A common setting is that the initial data ψ(0)\psi(0) is taken to be in the range of P(0)P(0), a spectral projector associated with an isolated subset of the spectrum of H(0)H(0). Under general assumptions, one has that for times 0t𝒪(ε1)0\leq t\lesssim\mathcal{O}(\varepsilon^{-1}), the solution ψε(t)\psi^{\varepsilon}(t) is well-approximated by a vector, ψ~(t)\tilde{\psi}(t), which, for each tt is in the range of spectral projector P(t)P(t), associated with the family of instantaneous Hamiltonians {H(s)}0s1\{H(s)\}_{0\leq s\lesssim 1}. The order of the approximation with respect to ε\varepsilon depends on the smoothness of sH(s)s\mapsto H(s); see, for example, [2, 6, 8, 14, 16, 22, 24, 31, 32].

While slowly varying in time, the class of Hamiltonians we study, Hε(t)H^{\varepsilon}(t) in (1.1), has a different structure, and so does not fall into the category of Hamiltonians (1.6). Moreover, in most adiabatic theorems, the spectral gap assumption used to construct the family of time-dependent projections, {P(s)}\{P(s)\}. In contrast, our near-invariance results are in terms of a fixed, time-independent projections and subspaces, i.e. 𝒫0ε\mathcal{P}_{0}^{\varepsilon}, its range, and BLε{\rm BL}_{\varepsilon}.

1.3. Outline of the paper.

In Section 2 we provide necessary background on Floquet-Bloch theory of periodic Hamiltonians, the spectral theorem for unitary operators, and introduce relevant notation. Section 3 presents a brief intuitive introduction to effective dynamics and homogenization of periodic Hamiltonians. The main results of this article are presented in Section 4. In Section 5 we demonstrate how these results apply to a number of specific periodic Hamiltonians, H0H^{0} and the associated HεH^{\varepsilon}, of physical interest. The proofs of the main results are presented in Section 6. Finally, a formal derivation of an effective transport equation (see Section 5.1) is presented in Section 7.

1.4. Acknowledgments

AS would like to thank P. Kuchment and V. Rom-Kedar, whose questions inspired this research. This research was supported in part by National Science Foundation grants DMS-1620418, DMS-1908657 and DMS-1937254 (MIW) as well as Simons Foundation Math + X Investigator Award #376319 (MIW, AS) and the AMS-Simons Travel Grant (AS).

2. Mathematical Preliminaries

2.1. Floquet-Bloch theory

We consider Hamiltonians H0=Δ+VH^{0}=-\Delta+V, where VV is periodic with respect to a lattice Λ=𝐯1𝐯n\Lambda=\mathbb{Z}{\bf v}_{1}\oplus\cdots\oplus\mathbb{Z}{\bf v}_{n}, where {𝐯1,,𝐯n}\{{\bf v}_{1},\dots,{\bf v}_{n}\} is a linearly independent set of vectors in n\mathbb{R}^{n}. 222We believe our analysis can be extended to general classes of elliptic operators (scalar Hamiltonians and systems) H0H^{0}, whose coefficients are periodic with respect to a lattice; see [29]. Since H0H^{0} commutes with lattice translations, the Hamiltonian H0H^{0} admits a fiber-decomposition H0=H𝐤0𝑑𝐤H^{0}=\int^{\oplus}_{\mathcal{B}}H_{\bf k}^{0}\,d{\bf k}, where H𝐤0H^{0}_{\bf k} denotes the operator H0H^{0} acting in the space L𝐤2L^{2}_{\bf k}, consisting of Lloc2L^{2}_{\rm loc} functions which are 𝐤{\bf k}- pseudoperiodic, i.e. ψL𝐤2\psi\in L^{2}_{\bf k} if ψ(𝐱+𝐯)=ei𝐤𝐯ψ(𝐱)\psi({\bf x}+{\bf v})=e^{i{\bf k}\cdot{\bf v}}\psi({\bf x}) a.e. in 𝐱2{\bf x}\in\mathbb{R}^{2}. The set \mathcal{B} is the Brillouin zone, a choice of fundamental cell in (𝐱n)=𝐤n(\mathbb{R}_{\bf x}^{n})^{*}=\mathbb{R}^{n}_{\bf k}. For each quasimomentum, 𝐤{\bf k}\in\mathcal{B}, H𝐤0H_{{\bf k}}^{0} is self-adjoint and compact resolvent. Hence, for each 𝐤{\bf k}, H𝐤0H_{{\bf k}}^{0} has a real sequence of discrete eigenvalues of finite multiplicity

E1(𝐤)E2(𝐤)Eb(𝐤),E_{1}({\bf k})\leq E_{2}({\bf k})\leq\dots\leq E_{b}({\bf k})\leq\dots\,,

tending to infinity. The corresponding L𝐤2L^{2}_{\bf k} eigenfunctions, denoted by Φb(𝐱;𝐤)\Phi_{b}({\bf x};{\bf k}):

H0Φb(𝐱;𝐤)=Eb(𝐤)Φb(𝐱;𝐤),𝐱Φb(𝐱,𝐤)L𝐤2,H^{0}\Phi_{b}({\bf x};{\bf k})=E_{b}({\bf k})\Phi_{b}({\bf x};{\bf k})\,,\qquad{\bf x}\mapsto\Phi_{b}({\bf x},{\bf k})\in L^{2}_{\bf k}\,,

or equivalently 𝐱ei𝐤𝐱Φb(𝐱,𝐤)L2(n/Λ){\bf x}\mapsto e^{-i{\bf k}\cdot{\bf x}}\Phi_{b}({\bf x},{\bf k})\in L^{2}(\mathbb{R}^{n}/\Lambda). These eigenfunctions may be chosen to form an orthonormal basis for L𝐤2L^{2}_{\bf k}. Each function 𝐤Eb(𝐤){\bf k}\mapsto E_{b}({\bf k}) is continuous and piecewise analytic [28, Theorem 5.5], and hence Lipschitz continuous.

Each image, Eb()E_{b}(\mathcal{B}), is a subinterval of \mathbb{R} called the bthb^{\rm th} spectral band. The graphs of 𝐤Eb(𝐤){\bf k}\mapsto E_{b}({\bf k}) are called dispersion surfaces. The collection of all pairs (𝐤,Eb(𝐤))({\bf k},E_{b}({\bf k})) and corresponding normalized L𝐤2L^{2}_{\bf k} eigenfunctions, Φb(𝐱;𝐤)\Phi_{b}({\bf x};{\bf k}), is called the band structure of H0H^{0}. Finally, the family of Floquet-Bloch modes 𝐤{Φb(,𝐤)}b1\cup_{{\bf k}\in\mathcal{B}}\{\Phi_{b}(\cdot,{\bf k})\}_{b\geq 1} is complete in L2(n)L^{2}(\mathbb{R}^{n}); for any fL2(n)f\in L^{2}(\mathbb{R}^{n}),

f(𝐱)=1vol()b1Φb(,𝐤),fL2(n)Φb(𝐱,𝐤)𝑑𝐤,f({\bf x})=\frac{1}{{\rm vol}(\mathcal{B})}\sum_{b\geq 1}\int_{\mathcal{B}}\left\langle\Phi_{b}(\cdot,{\bf k}),f\right\rangle_{L^{2}(\mathbb{R}^{n})}\Phi_{b}({\bf x},{\bf k})d{\bf k}\,,

where the sum is interpreted as a convergence of partial sums in L2(n)L^{2}(\mathbb{R}^{n}). For simplicity, we will assume henceforward that vol()=1{\rm vol}(\mathcal{B})=1.

2.2. Uε(t)U^{\varepsilon}(t), MεM^{\varepsilon} and its associated spectral measure

In (1.3a) we introduced the (unitary in L2(n)L^{2}(\mathbb{R}^{n})) evolution Uε(t)U^{\varepsilon}(t) associated with the dynamics (1.1). In this section we give a brief outline of a construction of Uε(t)U^{\varepsilon}(t) and then discuss the spectral measure of the associated monodromy operator. Under very general assumptions on H0H^{0} and the operators {W(t,)}\{W(t,\cdot)\}, a unitary propagator can be shown to exist using semigroup methods, see [34, Section 5] and [37, Section X.12].

From U0(t)=eiH0tU^{0}(t)=e^{-iH^{0}t} and Uε(t)U^{\varepsilon}(t), we obtain the unitary monodromy operators M0εM_{0}^{\varepsilon} and MεM^{\varepsilon} which, by the spectral theorem, are equipped with associated spectral (projection-valued) measures Π0ε\Pi^{\varepsilon}_{0} and Πε\Pi^{\varepsilon}, respectively. For completeness, we review the definition and properties of a spectral measure and the spectral theorem for unitary operators. We refer the reader to [7, 17, 38, 40] for details.

Let \mathcal{H} be a Hilbert space, let XX be a set, and Σ\Sigma a σ\sigma-algebra in XX. A map Π:ΣB()\Pi:\Sigma\to B(\mathcal{H}), the Banach space of bounded linear operators on \mathcal{H}, is called a projection-valued measure if the following properties hold:

  1. (1)

    Π(I)\Pi(I) is an orthogonal projection for every IΣI\in\Sigma.

  2. (2)

    Π()=0\Pi(\emptyset)=0 and Π(X)=Id\Pi(X)={\rm Id}.

  3. (3)

    If {Ij}j1Σ\{I_{j}\}_{j\geq 1}\subset\Sigma are disjoint then

    Π(j1Ij)v=j1Π(Ij)v,v.\Pi\left(\bigcup\limits_{j\geq 1}I_{j}\right)v=\sum\limits_{j\geq 1}\Pi(I_{j})v\,,\qquad v\in\mathcal{H}\,.
  4. (4)

    Π(I1I2)=Π(I1)Π(I2)\Pi(I_{1}\cap I_{2})=\Pi(I_{1})\Pi(I_{2}) for all I1,I2ΣI_{1},I_{2}\in\Sigma.

Theorem 2.1.

Let UU be a unitary operator on \mathcal{H}. There exists a unique projection-valued measure Π=ΠU\Pi=\Pi_{U} on the Borel σ\sigma-algebra of S1S^{1}, which contains the spectrum of UU, such that for every ff\in\mathcal{H}

S1z𝑑Π(z)f=Uf.\int\limits_{S^{1}}z\,d\Pi(z)f=Uf\,.

2.3. Notation and conventions

  1. (1)

    We adopt the convention of considering all N\mathbb{C}^{N} vectors as column vectors. If a,bNa,b\in\mathbb{C}^{N}, ab=aba^{\top}b=a\cdot b.

  2. (2)

    Fourier transform on L2(n)L^{2}(\mathbb{R}^{n}): For a function, ff, defined on n\mathbb{R}^{n}, define its Fourier transform as

    f^(ξ)=[f](ξ)=f^(ξ)1(2π)nnf(x)eiξx𝑑x.\hat{f}(\xi)=\mathcal{F}[f](\xi)=\hat{f}(\xi)\equiv\frac{1}{(2\pi)^{n}}\int\limits_{\mathbb{R}^{n}}f(x)e^{-i\xi\cdot x}\,dx.\,

    Furthermore, introduce

    gˇ(x)1(2π)nng(ξ)eixξ𝑑ξ.\check{g}(x)\equiv\frac{1}{(2\pi)^{n}}\int\limits_{\mathbb{R}^{n}}g(\xi)e^{ix\cdot\xi}\,d\xi.

    The mappings ff^f\mapsto\hat{f} and ggˇg\mapsto\check{g} map Schwartz class, 𝒮(n)\mathcal{S}(\mathbb{R}^{n}), to itself and for all f𝒮(n)f\in\mathcal{S}(\mathbb{R}^{n}), we have the Plancherel identity fL2(n)=f^L2(n)\|f\|_{L^{2}(\mathbb{R}^{n})}=\|\hat{f}\|_{L^{2}(\mathbb{R}^{n})} and the inversion formula (f^)ˇ=f\left(\hat{f}\right)^{\check{}}=f. Hence, fˇ=1f\check{f}=\mathcal{F}^{-1}f on 𝒮(n)\mathcal{S}(\mathbb{R}^{n}). By density, both mappings extend to bounded linear transformations on L2(n)L^{2}(\mathbb{R}^{n}) which satisfy the Plancherel identity, and the inversion formula.

  3. (3)

    Pauli matrices are given by σ0=I\sigma_{0}={\rm I}, and

    σ1=(0110),σ2=(0ii0),σ3=(1001).\sigma_{1}=\left(\begin{array}[]{cc}0&1\\ 1&0\end{array}\right)\,,\qquad\sigma_{2}=\left(\begin{array}[]{cc}0&-i\\ i&0\end{array}\right)\,,\qquad\sigma_{3}=\left(\begin{array}[]{cc}1&0\\ 0&-1\end{array}\right)\,.
  4. (4)

    For a vector 𝐯=(v1,v2)2{\bf v}=(v_{1},v_{2})\in\mathbb{C}^{2}, we write (v1,v2)(σ1,σ2)=v1σ1+v2σ2(v_{1},v_{2})\cdot(\sigma_{1},\sigma_{2})=v_{1}\sigma_{1}+v_{2}\sigma_{2}.

3. Wavepackets, the geometry of dispersion surfaces, and periodic homogenization

Our spectrally local formulation concerning the quasi-energy spectrum Hε(t)H^{\varepsilon}(t), Question 2. is a natural relaxation of Question 1. In physical settings, a crystalline structure is experimentally probed in a narrow spectral range, e.g. a bulk material is externally excited (e.g. electrically, optically, elastically, acoustically). Such settings induce the propagation of spectrally localized wavepackets (quasi-particles), whose envelope dynamics are given by a simplified effective Hamiltonian.

To illustrate this last point and how effective Hamiltonians emerge, consider the following “toy model” of continuously translation-invariant and time-periodically forced Hamiltonian dynamics governing a wave-field ψ=ψ(t,𝐱)\psi=\psi(t,{\bf x}):

(3.1) {itψ(t,𝐱)=E(i)ψ+εa(εat)ψψ(0,𝐱)=ψ0(𝐱),\begin{cases}i\partial_{t}\psi(t,{\bf x})&=E(-i\nabla)\psi\ +\ \varepsilon^{a}\mathcal{F}(\varepsilon^{a}t)\psi\\ \psi(0,{\bf x})&=\psi_{0}({\bf x})\,,\end{cases}

where ψ0\psi_{0} is sufficiently smooth and localized on n\mathbb{R}^{n}. The real-valued dispersion relation ξE(ξ)\xi\mapsto E(\xi) is, for simplicity, taken to be smooth. Clearly, an explicit solution can be given in terms of the Fourier transform, but our goal here will be to discuss the notion of effective dynamics.

Consider initial data whose Fourier transform is concentrated near ξn\xi_{\star}\in\mathbb{R}^{n}:

ψ0ϵ^(ξ)=ϵnΨ^0(ϵ1(ξξ)),Ψ^0𝒮(n), 0<ϵ1.\widehat{\psi^{\epsilon}_{0}}(\xi)=\epsilon^{-n}\widehat{\Psi}_{0}(\epsilon^{-1}(\xi-\xi_{\star}))\,,\qquad\widehat{\Psi}_{0}\in\mathcal{S}(\mathbb{R}^{n})\,,\ 0<\epsilon\ll 1.

The solution of the initial value problem (3.1) may be written as:

ψϵ(t,𝐱)=ei(ξ𝐱E(ξ)t)ei([E(ξ+ϵξ~)E(ξ)]t+ξ~(ϵ𝐱)+Θ(ϵat)]Ψ^0(ξ~)𝑑ξ~,\psi^{\epsilon}(t,{\bf x})=e^{i(\xi_{\star}\cdot{\bf x}-E(\xi_{\star})t)}\int e^{i\left([E(\xi_{\star}+\epsilon\tilde{\xi})-E(\xi_{\star})]t+\tilde{\xi}(\epsilon{\bf x})+\Theta(\epsilon^{a}t)\right]}\widehat{\Psi}_{0}(\tilde{\xi})d\tilde{\xi},

where

Θ(T)=0T(s)𝑑s.\Theta(T)=\int_{0}^{T}\mathcal{F}(s)ds.

If E(ξ)0\nabla E(\xi_{\star})\neq 0, then by Taylor expansion of E(ξ)E(\xi) about ξ\xi_{\star}, we obtain the following approximation of the solution ψϵ(t,𝐱)\psi_{\epsilon}(t,{\bf x}) of (3.1) with a=1a=1, which is valid on the time scale: 0tϵ10\leq t\lesssim\epsilon^{-1}:

ψϵ(t,𝐱)ei(ξ𝐱E(ξ)t)B(ϵt,ϵ𝐱),\psi_{\epsilon}(t,{\bf x})\approx e^{i(\xi_{\star}\cdot{\bf x}-E(\xi_{\star})t)}\cdot B(\epsilon t,\epsilon{\bf x}),\

where the envelope B(T,X)B(T,X) is governed by a driven transport equation

iTB(T,X)=[iξE(ξ)X+Θ(T)]B(T,X).i\partial_{T}B(T,X)=\left[\ i\nabla_{\xi}E(\xi_{\star})\cdot\nabla_{X}\ +\ \Theta(T)\right]B(T,X)\,.

If, on the other hand, E(ξ)=0\nabla E(\xi_{\star})=0 and D𝐤2E(ξ)D_{\bf k}^{2}E(\xi_{\star}), the n×nn\times n Hessian matrix, is non-singular, then we obtain the following approximate solution ψϵ(t,𝐱)\psi_{\epsilon}(t,{\bf x}) of (3.1) with a=2a=2, which is valid on the time scale: 0tϵ20\leq t\lesssim\epsilon^{-2}:

ψϵ(t,𝐱)ei(ξ𝐱E(ξ)t)B(ε2t,ε𝐱),\psi_{\epsilon}(t,{\bf x})\approx e^{i(\xi_{\star}\cdot{\bf x}-E(\xi_{\star})t)}\cdot B(\varepsilon^{2}t,\varepsilon{\bf x})\,,

where B(T,X)B(T,X) satisfies an (generally anisotropic) effective Schrödinger equation:

iTB(T,X)=[X12Dξ2E(ξ)X+Θ(T)]B(T,X).i\partial_{T}B(T,X)=\left[\ \nabla_{X}\cdot\frac{1}{2}D_{\xi}^{2}E(\xi_{\star})\nabla_{X}\ +\ \Theta(T)\right]B(T,X)\,.

In each case, the function B(T,X)B(T,X), which provides the slow envelope evolution, is governed by a time-dependent effective Hamiltonian:

(3.2) iTB(T,X)=Heff(i,T)B(T,X),i\partial_{T}B(T,X)=H_{\rm eff}(-i\nabla,T)B(T,X),

in which both the effects of deformation under H0H^{0} and temporal forcing are captured. Note also that Heff(i,T)H_{\rm eff}(-i\nabla,T) commutes with continuous spatial translations and therefore can be analyzed using the Fourier transform.

In general, for spatially homogeneous media and for the case of crystalline (lattice periodic) media described by H0H^{0}, which is invariant under discrete translations in a lattice, the dispersion relation eigenvalue-branches may be degenerate. At such degeneracies the dispersion relations 𝐤Eb(𝐤){\bf k}\mapsto E_{b}({\bf k}) may not be smooth, although they are Lipschitz continuous if H0H^{0} is self-adjoint. Furthermore, in such cases, the eigenvector maps 𝐤Φb(𝐱;𝐤){\bf k}\mapsto\Phi_{b}({\bf x};{\bf k}) may even be multivalued. 333 In this paper, we discuss only isolated point degeneracies. Other types of band degeneracies may arise. Examples are (i) the touching of two bands along a submanifold of quasi-momenta due the underlying symmetries and (ii) degeneracies of infinite multiplicity such as “flat bands,” as in e.g., the Landau Hamiltonian [19]. We do not treat these situations in the present work. Nevertheless, Fourier-type analysis (based on Floquet-Bloch modes) and multiple-scale / homogenization methods can be used to rigorously derive, with accompanying error bounds, effective envelope dynamics. Examples are

  1. (i)

    effective mass Schrödinger equations [1, 20] when EE_{\star} corresponding is at an isolated band edge, at which the dispersion surface is generically quadratic,

  2. (ii)

    effective Dirac equations (with time-independent and time-dependent Hamiltonians) for dispersion surfaces touching conically (Dirac points) [12, 18, 39],

  3. (iii)

    effective matrix-Schrödinger equations, for quadratically degenerate dispersion surfaces [25], and

  4. (iv)

    effective Dirac operators of magnetic type for non-uniform spatial deformations of honeycomb media [15]

4. Main results

4.1. Hypotheses and definitions

Our first assumption concerns the character of the energy band structure near (𝐤,E)({\bf k}_{\star},E_{\star}); in particular if (𝐤,E)({\bf k}_{\star},E_{\star}) is a degeneracy, then this degeneracy is isolated:

Hypothesis 1 (Spectral separation).

Let (𝐤,E)({\bf k}_{\star},E_{\star}) be such that H𝐤0H^{0}_{{\bf k}_{\star}} has an eigenvalue EE_{\star} of multiplicity N1N\geq 1, i.e., for some b1{b_{\star}}\geq 1

(4.1) Eb1(𝐤)<E=Eb(𝐤)=Eb+1(𝐤)==Eb+N1(𝐤)<Eb+N(𝐤).E_{{b_{\star}}-1}({\bf k}_{\star})<E_{\star}=E_{{b_{\star}}}({\bf k}_{\star})=E_{{b_{\star}}+1}({\bf k}_{\star})=\dots=E_{{b_{\star}}+N-1}({\bf k}_{\star})<E_{{b_{\star}}+N}({\bf k}_{\star})\,.

Furthermore, (𝐤,E)({\bf k}_{\star},E_{\star}) is isolated in the band structure in the sense that

Eb1(𝐤)<E<Eb+N(𝐤)E_{{b_{\star}}-1}({\bf k})<E_{\star}<E_{{b_{\star}}+N}({\bf k})

for all 𝐤{\bf k} in an open neighborhood of the quasimomentum 𝐤{\bf k}_{\star}. Introduce an orthonormalize basis for the degenerate eigenspace:

{Φb(𝐱,𝐤)|bbb+N1}.\{\Phi_{b}({\bf x},{\bf k}_{\star})~{}~{}|~{}~{}b_{\star}\leq b\leq b_{\star}+N-1\}\,.

With Question 2 in mind and assuming spectral separation as defined in Hypothesis 1, we define a projection, 𝒫0ε\mathcal{P}_{0}^{\varepsilon}, associated with a subspace of L2(n)L^{2}(\mathbb{R}^{n}) consisting of states, which are superpositions of modes whose quasimomenta and energy are near (𝐤,E)({\bf k}_{\star},E_{\star}):

(4.2) 𝒫0ε|𝐤𝐤|<εProj(|H𝐤0E|<Lε)𝑑𝐤,\mathcal{P}_{0}^{\varepsilon}\equiv\int\limits_{|{\bf k}-{\bf k}_{\star}|<\varepsilon}{\rm Proj}\left(\left|H^{0}_{{\bf k}}-E_{\star}\right|<L\varepsilon\right)\,d{\bf k}\,,

where L>0L>0 is fixed.

We next present two additional assumptions concerning the underlying wave-packet dynamics. Let (𝐤,E)({\bf k}_{\star},E_{\star}) satisfy the spectral separation Hypothesis 1 with parameters N1N\geq 1 and b1b\geq 1. Denote the vector of degenerate Floquet-Bloch modes:

Φ(𝐱)(Φb(𝐱;𝐤)Φb+N1(𝐱;𝐤)).\Phi_{\star}({\bf x})\equiv\left(\begin{array}[]{c}\Phi_{b_{\star}}({\bf x};{\bf k}_{\star})\\ \vdots\\ \Phi_{{b_{\star}}+N-1}({\bf x};{\bf k}_{\star})\end{array}\right)\ .

We next introduce the subspace of L2(n)L^{2}(\mathbb{R}^{n}), consisting of Fourier band-limited wave-packets, which are modulations Φ\Phi_{\star}.

Definition 4.1 (Band-limited wave-packets).

For fixed parameters ε,d0>0\varepsilon,d_{0}>0, we define:

(4.3) BLε\displaystyle{\rm BL}_{\varepsilon} {u=α(ε𝐱)Φ(𝐱):supp(α^)Bd0(0)andαL2(n;N)},\displaystyle\equiv\{u=\alpha(\varepsilon{\bf x})^{\top}\Phi_{\star}({\bf x})\ :\ {\rm supp}(\hat{\alpha})\subseteq B_{d_{0}}(0)~{}~{}{\rm and}~{}~{}\alpha\in L^{2}(\mathbb{R}^{n};\mathbb{C}^{N})~{}\}\,,
Hypothesis 2 (Translation invariant effective dynamics).

There is a one-parameter family of unitary operators on BLε{\rm BL}_{\varepsilon}, Ueffε(t)U^{\varepsilon}_{\rm eff}(t), with the following properties:

  1. (1)

    (Spatially translation invariant effective dynamics)
    For ψ0=α0(ε𝐱)Φ(𝐱)BLε\psi_{0}=\alpha_{0}^{\top}(\varepsilon{\bf x})\Phi({\bf x})\in{\rm BL}_{\varepsilon}, Ueffε(t)U^{\varepsilon}_{\rm eff}(t) is defined by:

    Ueffε(t)ψ0=eiEtneiξε𝐱𝒰^eff(εat;ξ)α^0(ξ)𝑑ξΦ(𝐱).U^{\varepsilon}_{\rm eff}(t)\psi_{0}=e^{-iE_{\star}t}\int\limits_{\mathbb{R}^{n}}e^{i\xi\cdot\varepsilon{\bf x}}\widehat{\mathscr{U}}_{\rm eff}(\varepsilon^{a}t;\xi)\hat{\alpha}_{0}(\xi)\,d\xi\cdot\Phi_{\star}({\bf x})\,.

    where (T,ξ)𝒰^eff(T;ξ)(T,\xi)\mapsto\widehat{\mathscr{U}}_{\rm eff}(T;\xi) is a smooth mapping from T×ξn\mathbb{R}_{T}\times\mathbb{R}_{\xi}^{n} into the space of unitary N×NN\times N matrices.

  2. (2)

    (Approximation by effective dynamics)
    Let Ueffε(t)U^{\varepsilon}_{\rm eff}(t) be defined as in (1). If ψ0BLε\psi_{0}\in{\rm BL}_{\varepsilon}, then

    (4.4) limε0+sup0tTperε(Ueffε(t)Uε(t))ψ0L2(n)=0,\lim\limits_{\varepsilon\to 0^{+}}\sup_{0\leq t\leq T_{\rm per}^{\varepsilon}}\|\left(U_{\rm eff}^{\varepsilon}(t)-U^{\varepsilon}(t)\right)\psi_{0}\|_{L^{2}(\mathbb{R}^{n})}=0\,,

where TperεT_{\rm per}^{\varepsilon} is given in (1.2).

Remark 4.2.

For ψ0=α0(ε𝐱)Φ(𝐱)BLε\psi_{0}=\alpha_{0}^{\top}(\varepsilon{\bf x})\Phi({\bf x})\in{\rm BL}_{\varepsilon}, Hypothesis 2 implies slow envelope effective dynamics. Indeed, let

α(T,X)=𝒰eff(T;i)[α0](T,X).\alpha(T,X)=\mathscr{U}_{\rm eff}(T;-i\nabla)[\alpha_{0}](T,X).

Then, using the space-time scaling 𝒮ε[f](𝐱,t)=f(ε𝐱,εat)\mathcal{S}_{\varepsilon}[f]({\bf x},t)=f(\varepsilon{\bf x},\varepsilon^{a}t), we may write:

Ueffε(t)ψ0=𝒮ε𝒰eff(t;i)[α0]𝒮ε1Φ(𝐱)=α(εat,ε𝐱)Φ(𝐱).U^{\varepsilon}_{\rm eff}(t)\psi_{0}=\mathcal{S}_{\varepsilon}\circ\mathscr{U}_{\rm eff}(t;-i\nabla)[\alpha_{0}]\cdot\mathcal{S}^{-1}_{\varepsilon}\Phi_{\star}({\bf x})=\alpha(\varepsilon^{a}t,\varepsilon{\bf x})\cdot\Phi_{\star}({\bf x}).

Equivalently, α(T,X)\alpha(T,X) evolves under the effective Hamiltonian Heff(T,i)H_{\rm eff}(T,-i\nabla), which generates the unitary flow 𝒰eff\mathcal{U}_{\rm eff}:

iTα=Heff(T,i)α,α(0,X)=α0(X).i\partial_{T}\alpha=H_{\rm eff}(T,-i\nabla)\alpha,\quad\alpha(0,X)=\alpha_{0}(X).

The effective evolution operator, Ueffε(t)U_{\rm eff}^{\varepsilon}(t), naturally gives rise to an

(4.5) Effective monodromy operator defined on BLε:MeffεUeffε(Tperε);\textrm{{\it Effective monodromy operator defined on ${\rm BL}_{\varepsilon}$}:}\quad M_{\rm eff}^{\varepsilon}\equiv U_{\rm eff}^{\varepsilon}(T_{\rm per}^{\varepsilon});

for ψ0=α0(ε𝐱)Φ(𝐱)BLε\psi_{0}=\alpha_{0}^{\top}(\varepsilon{\bf x})\Phi({\bf x})\in{\rm BL}_{\varepsilon},

(Meffεψ0)(𝐱)=𝒰eff(T;i)[α0](ε𝐱)Φ(𝐱).(M_{\rm eff}^{\varepsilon}\psi_{0})({\bf x})=\mathscr{U}_{\rm eff}(T;-i\nabla)[\alpha_{0}](\varepsilon{\bf x})\cdot\Phi_{\star}({\bf x})\ .
Hypothesis 3 (Spectrum of the effective monodromy operator).

For every d0>0d_{0}>0 sufficiently small there exists g0[0,π)g_{0}\in[0,\pi) such that

(4.6) SpecBLε(Meffε){eiν|ν(ETperεg0,ETperε+g0)}.{\rm Spec}_{{\rm BL}_{\varepsilon}}(M^{\varepsilon}_{\rm eff})\subseteq\left\{e^{-i\nu}~{}|\nu\in\left(E_{\star}T_{\rm per}^{\varepsilon}-g_{0},E_{\star}T_{\rm per}^{\varepsilon}+g_{0}\right)\right\}\,.
Remark 4.3 (Notational assumption; E=0E_{\star}=0 from here on).

In the proofs of our results below we shall, without loss of generality, by replacing H0H^{0} by H0EH^{0}-E_{\star}, set E=0E_{\star}=0. Under this convention, (4.6) in Hypothesis 3 simply reads

(4.7) SpecBLε(Meffε){eiν|ν(g0,g0)}.{\rm Spec}_{{\rm BL}_{\varepsilon}}(M^{\varepsilon}_{\rm eff})\subseteq\left\{e^{-i\nu}~{}|\nu\in\left(-g_{0},g_{0}\right)\right\}\,.

4.2. A theorem on near-invariance of quasi-energy spectrum

Since the monodromy operator MεM^{\varepsilon} is unitary (see (1.3)), MεM^{\varepsilon} has a spectral representation as an integral with respect to a projection-valued spectral measure, Πε\Pi^{\varepsilon}, which is supported on the unit circle; see Sec. 2.2. We now state our main theorem, which addresses Question 2.

Denote by (a,b)(a,b) the arc {eiy|y(a,b)}S1\{e^{-iy}~{}~{}|~{}~{}y\in(a,b)\}\subseteq S^{1}.

Theorem 4.4 (Near invariance).

Consider the periodically forced Schroedinger equation (1.1). Assume that for some quasi-momentum / energy pair (𝐤,E)=(𝐤,0)({\bf k}_{\star},E_{\star})=({\bf k}_{\star},0) (see Remark 4.3) Hypotheses 13 are satisfied. Let 𝒫0ε\mathcal{P}_{0}^{\varepsilon}, defined in (4.2), denote the L2(n)L^{2}(\mathbb{R}^{n}) projection onto Bloch modes of H0H^{0} of energy and quasi-momentum in an ε\varepsilon neighborhood of (𝐤,E)=(𝐤,0)({\bf k}_{\star},E_{\star})=({\bf k}_{\star},0).

Then, for every g(g0,π)g\in(g_{0},\pi) there exists ε0>0\varepsilon_{0}>0 such that for all ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}) and every uL2(n)u\in L^{2}(\mathbb{R}^{n}), then

(4.8) Πε[(g,g)]𝒫0ε=𝒫0ε+𝒪(L2)(εn+1).\Pi^{\varepsilon}\left[(-g,g)\right]\circ\mathcal{P}_{0}^{\varepsilon}\ =\mathcal{P}_{0}^{\varepsilon}+\mathcal{O}_{\mathcal{B}(L^{2})}(\varepsilon^{n+1}).\

Theorem 4.4 is a near-invariance (or stability) result for a spectral subspace associated with H0H^{0}, the range of 𝒫0ε\mathcal{P}_{0}^{\varepsilon}, under the perturbed dynamics Hε(t)H^{\varepsilon}(t). Indeed, let A¯=0\underline{A}=0; Then, under Hypothesis 1, the non-driven monodromy operator M0εM^{\varepsilon}_{0}, restricted to the range of 𝒫0ε\mathcal{P}_{0}^{\varepsilon}, is given by:

M0ε𝒫0εu(𝐱)=b=bb+N1|𝐤𝐤|<εΦb(;𝐤),uΦb(𝐱;𝐤)eiEb(𝐤)Tperεd𝐤.M^{\varepsilon}_{0}\mathcal{P}_{0}^{\varepsilon}u({\bf x})=\sum_{b=b_{\star}}^{b_{\star}+N-1}\int\limits_{|{\bf k}-{\bf k}_{\star}|<\varepsilon}\left\langle\Phi_{{b_{\star}}}(\cdot;{\bf k}),u\rangle\Phi_{{b_{\star}}}({\bf x};{\bf k})\right\rangle e^{-iE_{b}({\bf k})T_{\rm per}^{\varepsilon}}\,d{\bf k}\,.

Since the dispersion surfaces are Lipschitz continuous, there is a constant C>0C>0 such that for |𝐤𝐤|ε|{\bf k}-{\bf k}_{\star}|\lesssim\varepsilon and for all bbb+N1b_{\star}\leq b\leq b_{\star}+N-1 we have

|Eb(𝐤)|C|𝐤𝐤|+𝒪(ε2)=𝒪(ε).|E_{b}({\bf k})|\leq C\cdot|{\bf k}-{\bf k}_{\star}|+\mathcal{O}(\varepsilon^{2})=\mathcal{O}(\varepsilon)\,.

Denoting the spectral measure of M0εM^{\varepsilon}_{0} by Π0ε\Pi^{\varepsilon}_{0}, we have that for a fixed gg and sufficiently small ε>0\varepsilon>0, by inspecting the explicitly expression above,

(4.9) Π0ε[(g,g)]𝒫0ε=𝒫0εandΠ0ε[S1(g,g)]𝒫0ε=0.\Pi_{0}^{\varepsilon}\left[(-g,g)\right]\circ\mathcal{P}_{0}^{\varepsilon}=\mathcal{P}_{0}^{\varepsilon}\quad{\rm and}\quad\Pi_{0}^{\varepsilon}\left[S^{1}\setminus(-g,g)\right]\circ\mathcal{P}_{0}^{\varepsilon}=0\,.

As discussed in Remark 1.1, it is non-trivial that a form of (4.9) persists for time-periodic forcing A¯0\underline{A}\neq 0 in (1.1), due to the formally order-one cumulative effect of a perturbation of size εa\varepsilon^{a} on the time-scale TperεεaT_{\rm per}^{\varepsilon}\sim\varepsilon^{-a}.

4.3. The main result for the space of band limited wavepackets BLε{\rm BL}_{\varepsilon}

As a step toward the proof of Theorem 4.4, we first prove its analog, Theorem 4.6, a strict invariance property for functions in BLε{\rm BL}_{\varepsilon} (see (4.3)), a closed subspace of L2(n)L^{2}(\mathbb{R}^{n}). Since BLε{\rm BL}_{\varepsilon} approximates the range of 𝒫0ε\mathcal{P}_{0}^{\varepsilon} (Proposition 4.7), we can then use Theorem 4.6 to prove Theorem 4.4, which concerns the range of 𝒫0ε\mathcal{P}_{0}^{\varepsilon}.

Lemma 4.5 ([39]).

There exists ε0>0\varepsilon_{0}>0, such that for all 0<ε<ε0<\varepsilon<\varepsilon, BLε{\rm BL}_{\varepsilon} defined in (4.3) is a closed subspace of L2(n)L^{2}(\mathbb{R}^{n}). Hence, L2(n)L^{2}(\mathbb{R}^{n}) has the decomposition

L2(n)=BLεBLε,L^{2}(\mathbb{R}^{n})={\rm BL}_{\varepsilon}\oplus{\rm BL}_{\varepsilon}^{\perp}\,,

with corresponding orthogonal projections on L2(n)L^{2}(\mathbb{R}^{n}) denoted

ProjBLε{\rm Proj}_{{\rm BL}_{\varepsilon}}andProjBLε=IProjBLε{\rm Proj}_{{\rm BL}_{\varepsilon}}^{\perp}={\rm I}-{\rm Proj}_{{\rm BL}_{\varepsilon}}.

BLε{\rm BL}_{\varepsilon} is a very natural space with which to study the effects of time-dependent forcing. In fact, the proof of Theorem 4.4, follows from its analog for the space BLε{\rm BL}_{\varepsilon}:

Theorem 4.6 (Invariance on BLε{\rm BL}_{\varepsilon}).

Consider (1.1) and suppose it satisfies Hypotheses 13 at some quasi-momentum energy pair (𝐤,E=0)({\bf k}_{\star},E_{\star}=0). Fix d0(0,π)d_{0}\in(0,\pi) and g>0g>0 such that g(g0,π)g\in(g_{0},\pi). Then, for every g(g0,π)g\in(g_{0},\pi) there exists ε0>0\varepsilon_{0}>0 such that for all ε(0,ε0)\varepsilon\in(0,\varepsilon_{0})

(4.10) Πε[(g,g)]ProjBLε=ProjBLε,\Pi^{\varepsilon}\left[(-g,g)\right]\circ{\rm Proj}_{{\rm BL}_{\varepsilon}}={\rm Proj}_{{\rm BL}_{\varepsilon}}\ ,

Equivalently,

(4.11) Πε[S1(g,g)]ProjBLε=0.\Pi^{\varepsilon}\left[S^{1}\setminus(-g,g)\right]\circ{\rm Proj}_{{\rm BL}_{\varepsilon}}=0\,.

Theorem 4.6 is proved in Section 6. Here, we first use it to give a proof of the main result, Theorem 4.4 (concerning 𝒫0ε\mathcal{P}_{0}^{\varepsilon}).

Proof of the main result, Theorem 4.4.

To prove Theorem 4.4 we shall use Theorem 4.6 above and the following Proposition, which is proved in Section 6.1:

Proposition 4.7 (BLε{\rm BL}_{\varepsilon} approximates ran(𝒫0ε){\rm ran}(\mathcal{P}^{\varepsilon}_{0})).

There exists ε0>0\varepsilon_{0}>0 such that for every 0<ε<ε00<\varepsilon<\varepsilon_{0} the following holds: for every fL2(n)f\in L^{2}(\mathbb{R}^{n}) there is a uε[f]BLεu_{\varepsilon}[f]\in{\rm BL}_{\varepsilon} with d0=1d_{0}=1 (see (4.3)) such that

(4.12) 𝒫0εf=uε[f]+𝒪(εn+1fL2(n)).\mathcal{P}_{0}^{\varepsilon}f=u_{\varepsilon}[f]+\mathcal{O}\left(\varepsilon^{n+1}\|f\|_{L^{2}(\mathbb{R}^{n})}\right)\,\,.

Conversely, there exists C>0C>0 such that for every uBLεu\in{\rm BL}_{\varepsilon} with d0d_{0} sufficiently small, then

(4.13) (I𝒫0ε)uL2(n)Cεn+1uL2(n).\left\|\left(I-\mathcal{P}_{0}^{\varepsilon}\right)u\right\|_{L^{2}(\mathbb{R}^{n})}\leq C\varepsilon^{n+1}\left\|u\right\|_{L^{2}(\mathbb{R}^{n})}\,.

By Proposition 4.7, 𝒫0εu=ubl+r\mathcal{P}_{0}^{\varepsilon}u=u_{\rm bl}+r, where ublBLεu_{\rm bl}\in{\rm BL}_{\varepsilon} and rL2=𝒪(εn+1vL2)\|r\|_{L^{2}}=\mathcal{O}(\varepsilon^{n+1}\|v\|_{L^{2}}). Now

Πε[S1(g,g)]𝒫0εu\displaystyle\Pi^{\varepsilon}\left[S^{1}\setminus(-g,g)\right]\circ\mathcal{P}_{0}^{\varepsilon}u =Πε[S1(g,g)]ubl+Πε[S1(g,g)]r\displaystyle=\Pi^{\varepsilon}\left[S^{1}\setminus(-g,g)\right]u_{\rm bl}+\Pi^{\varepsilon}\left[S^{1}\setminus(-g,g)\right]r
=0+Πε[S1(g,g)]r,\displaystyle=0+\Pi^{\varepsilon}\left[S^{1}\setminus(-g,g)\right]r\,,

where, since ublBLεu_{\rm bl}\in{\rm BL}_{\varepsilon}, the last equality is the result of Theorem 4.6. Finally, since Πε[S1(g,g)]\Pi^{\varepsilon}\left[S^{1}\setminus(-g,g)\right] is a projection,

Πε[S1(g,g)]rL2(n)rL2(n)=𝒪(εn+1),\left\|\Pi^{\varepsilon}\left[S^{1}\setminus(-g,g)\right]r\right\|_{L^{2}(\mathbb{R}^{n})}\leq\left\|r\right\|_{L^{2}(\mathbb{R}^{n})}=\mathcal{O}(\varepsilon^{n+1})\,,

which completes the proof. ∎

5. Applications of the main result, Theorem 4.4

In this section we apply Theorem 4.4 to time-periodically forced (Floquet) Hamiltonians of the form:

(5.1) Hε(t)=H0+2iεaA¯(εat).H^{\varepsilon}(t)=-H^{0}+2i\varepsilon^{a}\underline{A}(\varepsilon^{a}t)\cdot\nabla\,.

Here, A¯:n\underline{A}:\mathbb{R}\to\mathbb{R}^{n} is TperT_{\rm per}-periodic with zero mean, i.e., 0TperA¯(T)𝑑T=0\int_{0}^{T_{\rm per}}\underline{A}(T)\,dT=0. A discussion, with references, of how this class of models arises in condensed matter physics and photonics is presented in Appendix A.

The setting of Theorem 4.4 is a Floquet Hamiltonian, here (5.1), and a neighborhood of an energy quasi-momentum pair (E,𝐤)(E_{\star},{\bf k}_{\star}) in the band structure of H0H^{0}, in which the class of wave-packet initial data are spectrally localized. Here, we characterize the local character of the band structure at (E,𝐤)(E_{\star},{\bf k}_{\star}) by a number of parameters. As in Hypothesis 1, we denote by NN the multiplicity of EE_{\star}. The parameter aa in (5.1) is chosen to match the rate at which to energy, EE, deviates from EE_{\star} for |𝐤𝐤||{\bf k}-{\bf k}_{\star}| small. Table 1 summarizes four cases of physical interest, which are discussed in the following subsections.

Section dispersion rate aa NN, degeneracy order dimension nn effective equation
5.1 11 11 n1n\geq 1 Transport (5.3)
5.2 11 2(+conical touching)\begin{subarray}{c}2\\ \text{(+conical touching)}\end{subarray} n=2n=2 Dirac system (5.7)
5.3 22 11 n1n\geq 1 Schrödinger (5.8)
5.4 22 2(+quadratic touching)\begin{subarray}{c}2\\ \text{(+quadratic touching)}\end{subarray} n=2n=2 Schrödinger system (5.9)
Table 1. Summary of examples discussed in Subsections 5.1-5.4. Parameters NN and aa are defined in (1.1) and Hypothesis 1, respectively.

In what follows, BLε{\rm BL}_{\varepsilon} wavepackets are always denoted by u(𝐱)=α(ε𝐱)Φ(𝐱)u({\bf x})=\alpha(\varepsilon{\bf x})^{\top}\Phi({\bf x}), where the dimension of α\alpha and Φ\Phi is NN, the degree of the degeneracy at (𝐤,E)({\bf k}_{\star},E_{\star}).

In the non-driven case, i.e., when A¯=0\underline{A}=0, the effective/homogenized models, which govern the large time dynamics of wave-packet envelopes, are continuously translation-invariant PDEs of the form iTα=Heff(i)αi\partial_{T}\alpha=H_{\rm eff}(-i\nabla)\alpha; see references below. Our analysis shows that, for (5.1) with A¯0\underline{A}\neq 0, the dynamics of wave-packet envelopes, is governed by

iTα=Heff(i,T)α,i\partial_{T}\alpha=H_{\rm eff}(-i\nabla,T)\alpha,

where the non-autonomous Hamiltonian Heff(i,T)H_{\rm eff}(-i\nabla,T) is obtained from arising from Heff(i)H_{\rm eff}(-i\nabla) via the formal replacement iXPA¯(T)iX+A¯(T).-i\nabla_{X}\mapsto P_{\underline{A}}(T)\equiv-i\nabla_{X}+\underline{A}(T)\,. In each example below, we display Heff(i,T)H_{\rm eff}(-i\nabla,T).

5.1. EE_{\star} simple and (𝐤,E)({\bf k}_{\star},E_{\star}) a non-critical point - ballistic transport

For a given Hamiltonian H0H^{0}, let (𝐤,b)({\bf k}_{\star},b_{\star}) be a pair of a quasi-momentum and index bb_{\star}\in\mathbb{N} such that Eb(𝐤)=0E_{b_{\star}}({\bf k}_{\star})=0 is a simple eigenvalue of H0H^{0} in L𝐤2L^{2}_{{\bf k}_{\star}} with a linear dispersion relation, i.e.,

(5.2a) Eb1(𝐤)<E<Eb+1(𝐤),E_{b_{\star}-1}({\bf k}_{\star})<E_{\star}<E_{b_{\star}+1}({\bf k}_{\star})\,,
and
(5.2b) 𝐜kEb(𝐤)|𝐤=𝐤0,{\bf c}\equiv-\vec{\nabla}_{k}E_{b_{\star}}({\bf k})|_{{\bf k}={\bf k}_{\star}}\neq 0\,,
where 𝐜n{\bf c}\in\mathbb{R}^{n} (since the dispersion surfaces are real-valued).

By continuity of the energy bands, Hypothesis 1 holds. The effective Hamiltonian, governing the BLε{\rm BL}_{\varepsilon}- wave-packet envelope α(X,T)\alpha(X,T), is given by

(5.3) Heff(i,T)\displaystyle H_{\rm eff}(-i\nabla,T) =𝐜PA¯(T)=𝐜(iX+A¯(T)).\displaystyle={\bf c}\cdot P_{\underline{A}(T)}={\bf c}\left(-i\nabla_{X}+\underline{A}(T)\right).

In this case, following the notations of Hypothesis 2, Uε(t)Ueffε(t)L2ε\|U^{\varepsilon}(t)-U_{\rm eff}^{\varepsilon}(t)\|_{L^{2}}\lesssim\varepsilon for tε1t\lesssim\varepsilon^{-1}. The proof of this statement follows closely that of the doubly degenerate (see Section 5.2), which is presented in detail in [39]. We include a formal derivation of (5.3) in Section 7.

To verify Hypothesis 3, we apply the Fourier transform (in the XX variable) [α(T,X)](ξ)=α^(T;ξ)\mathcal{F}[\alpha(T,X)](\xi)=\hat{\alpha}(T;\xi), and get the family of ODE initial value problems, parametrized by ξn\xi\in\mathbb{R}^{n}:

iTα^(T;ξ)=𝐜(ξ+A¯(T))α^(T;ξ),α^(0;ξ)=α^0(ξ),i\partial_{T}\hat{\alpha}(T;\xi)={\bf c}\cdot\left(\xi+\underline{A}(T)\right)\hat{\alpha}(T;\xi),\ \hat{\alpha}(0;\xi)=\hat{\alpha}_{0}(\xi),

for which the solution is

(5.4) α^(T;ξ)=exp[i𝐜(ξT+h(T))]α^0(ξ),h(T)0TA¯(T)𝑑T.\hat{\alpha}(T;\xi)=\exp\left[-i{\bf c}\cdot\left(\xi T+\textbf{h}(T)\right)\right]\ \hat{\alpha}_{0}(\xi)\,,\qquad\textbf{h}(T)\equiv\int\limits_{0}^{T}\underline{A}(T^{\prime})\,dT^{\prime}\,.

Hence, for a fixed d0>0d_{0}>0 and uBLεu\in{\rm BL}_{\varepsilon},

(5.5) MeffεuUeffε(Tperε1)u=(2π)nεn2|ξ|d0eiξε𝐱α^0(ξ)ei𝐜ξTperΦ(x)𝑑ξ.M_{\rm eff}^{\varepsilon}u\equiv U_{\rm eff}^{\varepsilon}(T_{\rm per}\varepsilon^{-1})u=(2\pi)^{-n}\varepsilon^{\frac{n}{2}}\int\limits_{|\xi|\leq d_{0}}e^{i\xi\cdot\varepsilon{\bf x}}\hat{\alpha}_{0}(\xi)e^{-i{\bf c}\cdot\xi T_{\rm per}}\Phi(x)\,d\xi\,.

And so, by choosing wavepackets supported on the ball |ξ|<d0|\xi|<d_{0},

σ(Meffε)onBLε={eiy|y[d0Tper|𝐜|,d0Tper|𝐜|]},\sigma(M_{\rm eff}^{\varepsilon})~{}~{}\text{on}~{}~{}{\rm BL}_{\varepsilon}=\{e^{iy}~{}~{}|~{}~{}y\in[-d_{0}T_{\rm per}|{\bf c}|,d_{0}T_{\rm per}|{\bf c}|]~{}\}\,,

which verifies Hypothesis 3.

5.2. EE_{\star} of multiplicity two; conical touching of dispersion surfaces at (𝐤,E)({\bf k}_{\star},E_{\star}), a Dirac point

An example which plays an important role in the modeling of two-dimensional materials such as graphene is the case where H0=Δ+V(𝐱)H^{0}=-\Delta+V({\bf x}), where VV is a honeycomb lattice potential, i.e. VV has the symmetries of a honeycomb tiling of 2\mathbb{R}^{2}. (A one-dimensional variant of such potentials, dimer potentials, was studied in [10] and the following discussion can adapted to this setting as well.) For generic honeycomb lattice potentials, conical degeneracies (Dirac points) occur in the band structure at pairs (𝐤,E)({\bf k}_{\star},E_{\star}), where 𝐤{\bf k}_{\star} is any vertex (high symmetry quasimomentum) of the hexagonal Brillouin zone [11]. In a neighborhood of a Dirac point one has two consecutive dispersion surfaces, E(𝐤)E+(𝐤)E_{-}({\bf k}_{\star})\leq E_{+}({\bf k}_{\star}), satisfying

(5.6) E±(𝐤)=E±vD|𝐤𝐤|+𝒪(|𝐤𝐤|2),vD>0.E_{\pm}({\bf k})=E_{\star}\pm v_{\rm D}|{\bf k}-{\bf k}_{\star}|+\mathcal{O}\left(|{\bf k}-{\bf k}_{\star}|^{2}\right)\,,\ v_{\rm D}>0.

The slope of the cone, vDv_{\rm D}, is referred to as the Dirac or Fermi velocity. From (5.2b) we see that Hypothesis 1 is satisfied.

Hypothesis 2 is also satisfied for this class of equations. Indeed, in [39], we proved, with scaling parameter a=1a=1 (see (5.6)), that the effective envelope dynamics of (5.1) for data including BLε{\rm BL}_{\varepsilon} are governed by a driven Dirac Hamiltonian:

(5.7) Heff(T,iX)\displaystyle H_{\rm eff}(T,-i\nabla_{X}) =vD(σ1,σ2)(PA¯1(T),PA¯2(T))\displaystyle=v_{\rm D}\left(\sigma_{1},\sigma_{2}\right)\cdot\left(P_{\underline{A}_{1}(T)},P_{\underline{A}_{2}(T)}\right)

Finally, Hypothesis 3 follows from analysis in [39]. There, we apply the Fourier transform to the effective Dirac equation above, and find the eigenvalues of its monodromy operator at Fourier momentum: ξ=(0,0)\xi=(0,0)^{\top}. By continuity with respect to ξ\xi, one can find g0g_{0} for a sufficiently small d0d_{0} to satisfy Hypothesis 3.

5.3. EE_{\star} simple, (𝐤,E)({\bf k}_{\star},E_{\star}) a non-degenerate critical (quadratic) point of a band

Suppose (𝐤,E)({\bf k}_{\star},E_{\star}) is such that EE_{\star} is a simple L𝐤2L^{2}_{{\bf k}_{\star}}-eigenvalue of H0H^{0} and 𝐤{\bf k}_{\star} is a non-degenerate critical point of the band dispersion function EbE_{b}: 𝐤Eb(𝐤)=0\vec{\nabla}_{{\bf k}}E_{b}({\bf k}_{\star})=\vec{0} and detD𝐤2Eb(𝐤)0\det D_{{\bf k}}^{2}E_{b}({\bf k}_{\star})\neq 0. Then, a=2a=2, and the envelope dynamics for are given by an driven effective Schrödinger-type Hamiltonian:

(5.8) Heff(T,iX)\displaystyle H_{\rm eff}(T,-i\nabla_{X}) =PA¯(T)12D𝐤2E(𝐤)PA¯(T).\displaystyle=P_{\underline{A}(T)}\cdot\frac{1}{2}D^{2}_{\bf k}E({\bf k}_{\star})P_{\underline{A}(T)}\,.

The validity on time scales of order ε2\varepsilon^{-2}, and therefore Hypothesis 2 follows along the lines of [1] or [39].

Note that such quadratic points may occur at spectral band edges, in which case the Hessian D𝐤2E(𝐤)D_{{\bf k}}^{2}E({\bf k}_{\star}) is positive or negative definite or at (𝐤,E)({\bf k}_{\star},E_{\star}); or where EE_{\star} is interior to a spectral band, in which case the Hessian D𝐤2E(𝐤)D_{{\bf k}}^{2}E({\bf k}_{\star}) might have an indefinite signature. Finally, a similar homogenization argument can be carried in the case where 𝐤Eb(𝐤)0\vec{\nabla}_{{\bf k}}E_{b}({\bf k}_{\star})\neq\vec{0} and D𝐤2E(𝐤)D_{{\bf k}}^{2}E({\bf k}_{\star}) non-degenerate. In this case one gets a Schrödinger equation on the time-scales of ε2\varepsilon^{-2}, with a drift term on the time-scale of ε1\varepsilon^{-1}; see, for example, [1].

5.4. EE_{\star} of multiplicity two; quadratic touching of two dispersion surfaces at (𝐤,E)({\bf k}_{\star},E_{\star})

Consider a two-dimensional Hamiltonian H0=Δ+V(𝐱)H^{0}=-\Delta+V({\bf x}) where the potential VV which is periodic with respect to the lattice Λ=2\Lambda=\mathbb{Z}^{2}, real-valued, even, and invariant under a π/2\pi/2- rotation. We can take the Brillouin zone, \mathcal{B}, to be a square, centered at the origin in 𝐤2\mathbb{R}^{2}_{\bf k}. The vertices of \mathcal{B} are high-symmetry quasi-momenta. In [25] it is proved that the band structure of H0H^{0} has consecutive band dispersion surfaces which touch quadratically over the vertices of \mathcal{B} at an eigenvalue with a two-fold degenerate eigenvalue.

Hence, we consider (5.1) with a=2a=2 for BLε{\rm BL}_{\varepsilon} data near these high-symmetry 𝐤{\bf k}_{\star}-points. The effective envelope dynamics of BLε{\rm BL}_{\varepsilon} data can be shown, in a manner analogous to the derivation in [26], to be governed by the matrix-Schrödinger effective Hamiltonian:

(5.9a) Heff(i,T)=α(PA1(T)2+PA2(T)2)σ0+γ~(PA1(T)2PA,22)σ2+2βPA1(T)PA2(T)σ1,H_{\rm eff}\left(-i\nabla,T\right)=\alpha\left(P_{{}_{A_{1}(T)}}^{2}+P_{{}_{A_{2}(T)}}^{2}\right)\sigma_{0}+\tilde{\gamma}\left(P_{{}_{A_{1}(T)}}^{2}-P_{A,2}^{2}\right)\sigma_{2}+2\beta P_{{}_{A_{1}(T)}}P_{{}_{A_{2}(T)}}\sigma_{1}\,,
where
(5.9b) PAj(T)iXj+Aj(T),j=1,2.P_{{}_{A_{j}(T)}}\equiv-i\partial_{X_{j}}+A_{j}(T)\,,~{}~{}j=1,2\,.

Here, the coefficients α,γ~,β\alpha,\tilde{\gamma},\beta\in\mathbb{R} and can be expressed as L2(/2)L^{2}(\mathbb{R}/\mathbb{Z}^{2}) inner products involving a basis for the 22-dimensional L𝐤2kernelL^{2}_{{\bf k}_{\star}}-{\rm kernel} of (H0E)(H^{0}-E_{\star}); see [26], and σ0,σ1,σ2\sigma_{0},\sigma_{1},\sigma_{2} are Pauli matrices. As in the case of the effective Dirac equation (Section 5.2), Hypothesis 3 is verified as follows: (i) Fourier-transforming (5.9) yields a system of 22 linear and time-periodic system of (Floquet) ODES, which is parametrized by ξ\xi. (ii) Since this matrix defining this system of ODEs has trace equal to 0 and is continuous in ξ\xi, the Floquet multipliers e±iμ(ξ)e^{\pm i\mu(\xi)} are continuous functions of ξ\xi on unit circle. (iii) Hence, for BLε{\rm BL}_{\varepsilon} data with a fixed band-width d0>0d_{0}>0 (see Definition 4.1), there exists a continuous function g0(d0)g_{0}(d_{0}) such that the BLε{\rm BL}_{\varepsilon} data of MeffεM^{\varepsilon}_{\rm eff} is contained in the arc (g0(d0),g0(d0))(-g_{0}(d_{0}),g_{0}(d_{0})).

6. Proof of Theorem 4.6

Let us first recall the following centering lemma for unitary operators. Intuitively, it says that if a unitary operator acts on a function which is spectrally localized, it is approximately the same as acting as a multiplication operator. We proved a weaker version of this lemma in [39], and include the proof here for completeness.

Lemma 6.1.

Let S1\mathcal{I}\subset S^{1} such that Πε()u=u\Pi^{\varepsilon}(\mathcal{I})u=u and let eiν0e^{-i\nu_{0}}\in\mathcal{I} be the mid-point of the arch \mathcal{I}. Then

Mεu=eiν0u+η,where,ηL2(n)2sin(||S14)u,M^{\varepsilon}u=e^{-i\nu_{0}}u+\eta\,,\qquad{\rm where}\,,\qquad\|\eta\|_{L^{2}(\mathbb{R}^{n})}\leq 2\sin\left(\frac{\left|\mathcal{I}\right|_{S^{1}}}{4}\right)\cdot\|u\|\,,

where ||S1\left|\mathcal{I}\right|_{S^{1}} is the arclength of \mathcal{I}.

Proof.

Let z0=eiν0z_{0}=e^{-i\nu_{0}}. Then

Mεu\displaystyle M^{\varepsilon}u =z𝑑Πε(z)u\displaystyle=\int\limits_{\mathcal{I}}zd\Pi^{\varepsilon}(z)u
=(z0z0z)𝑑Πε(z)u\displaystyle=\int\limits_{\mathcal{I}}\left(z_{0}-z_{0}-z\right)d\Pi^{\varepsilon}(z)u
=z0u+η,whereη(zz0)𝑑Πε(z)u.\displaystyle=z_{0}u+\eta\,,\quad{\rm where}\quad\eta\equiv\int\limits_{\mathcal{I}}\left(z-z_{0}\right)d\Pi^{\varepsilon}(z)u\,.

Since z0=eiν0z_{0}=e^{-i\nu_{0}}, we only need to bound ηL2\|\eta\|_{L^{2}}. By the spectral theorem (see Sec. 2.2), we have that

ηL2(n)2\displaystyle\|\eta\|_{L^{2}(\mathbb{R}^{n})}^{2} =|zz0|2dΠε(z)u,uL2(n)\displaystyle=\int\limits_{\mathcal{I}}|z-z_{0}|^{2}\langle d\Pi^{\varepsilon}(z)u,u\rangle_{L^{2}(\mathbb{R}^{n})}
maxz|zz0|2S1dΠε(z)u,uL2(n)\displaystyle\leq\max\limits_{z\in\mathcal{I}}|z-z_{0}|^{2}\cdot\int\limits_{S^{1}}\langle d\Pi^{\varepsilon}(z)u,u\rangle_{L^{2}(\mathbb{R}^{n})}
=maxeiν|eiνeiν0|2u2\displaystyle=\max\limits_{e^{-i\nu}\in\mathcal{I}}|e^{-i\nu}-e^{-i\nu_{0}}|^{2}\cdot\|u\|^{2}
4sin2(||S14)u2,\displaystyle\leq 4\sin^{2}\left(\frac{\left|\mathcal{I}\right|_{S^{1}}}{4}\right)\cdot\|u\|^{2}\,,

where we have used the expression for the arc length: |eiβeiβ|S1=2sin(|ββ|/2)|e^{i\beta}-e^{i\beta^{\prime}}|_{S^{1}}=2\sin(|\beta-\beta^{\prime}|/2) for any β,β[0,2π)\beta,\beta^{\prime}\in[0,2\pi) with |ββ|π|\beta-\beta^{\prime}|\leq\pi, combined with the fact that ν0\nu_{0} is the mid-point of \mathcal{I}. ∎

Proof of Theorem 4.6 .

To prove (4.11), let vBLεv\in{\rm BL}_{\varepsilon} and let

vΠε[S1(g,g)]v,v^{\prime}\equiv\Pi^{\varepsilon}\left[S^{1}\setminus(-g,g)\right]v\,,

for g(g0,π)g\in(g_{0},\pi), where g0g_{0} is defined in Hypothesis 3. We will now show that v=0v^{\prime}=0. Lemma 6.1 implies that, since π\pi is the midpoint of the arch =S1(g,g)\mathcal{I}=S^{1}\setminus(-g,g),

Mεv=eiπv+ηv=v+ηv,whereηvL2(n)2sin(πg2)vL2(n).M^{\varepsilon}v^{\prime}=e^{-i\pi}v^{\prime}+\eta_{v^{\prime}}=-v^{\prime}+\eta_{v^{\prime}}\,,\qquad{\rm where}\quad\|\eta_{v^{\prime}}\|_{L^{2}(\mathbb{R}^{n})}\leq 2\sin\left(\frac{\pi-g}{2}\right)\cdot\|v^{\prime}\|_{L^{2}(\mathbb{R}^{n})}\,.

Hence

(MεMeffε)vL2(n)\displaystyle\left\|\left(M^{\varepsilon}-M_{\rm eff}^{\varepsilon}\right)v^{\prime}\right\|_{L^{2}(\mathbb{R}^{n})} =(IdMeffε)v+ηvL2(n)\displaystyle=\left\|\left(-{\rm Id}-M_{\rm eff}^{\varepsilon}\right)v^{\prime}+\eta_{v^{\prime}}\right\|_{L^{2}(\mathbb{R}^{n})}
(IdMeffε)vL2(n)ηvL2(n)\displaystyle\geq\left\|\left(-{\rm Id}-M_{\rm eff}^{\varepsilon}\right)v^{\prime}\right\|_{L^{2}(\mathbb{R}^{n})}-\left\|\eta_{v^{\prime}}\right\|_{L^{2}(\mathbb{R}^{n})}
(6.1) (IdMeffε)vL2(n)2sin(πg2)vL2(n).\displaystyle\geq\left\|\left(-{\rm Id}-M_{\rm eff}^{\varepsilon}\right)v^{\prime}\right\|_{L^{2}(\mathbb{R}^{n})}-2\sin\left(\frac{\pi-g}{2}\right)\cdot\left\|v^{\prime}\right\|_{L^{2}(\mathbb{R}^{n})}\,.

To bound (IdMeffε)vL2(n)\|\left(-{\rm Id}-M_{\rm eff}^{\varepsilon}\right)v^{\prime}\|_{L^{2}(\mathbb{R}^{n})} from below, we will prove the following lemma:

Lemma 6.2.

For any g(g0,π)g\in(g_{0},\pi) there exists ε0>0\varepsilon_{0}>0 such that for all ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}), ν0(g0,π]\nu_{0}\in(g_{0},\pi],444An analogous formula holds if ν0[π,2πg0)\nu_{0}\in[\pi,2\pi-g_{0}). and any fBLεf\in{\rm BL}_{\varepsilon},

(eiν0Meffε)fL2(n)2sin(ν0g02)fL2(n).\left\|\left(e^{-i\nu_{0}}-M_{\rm eff}^{\varepsilon}\right)f\right\|_{L^{2}(\mathbb{R}^{n})}\geq 2\sin\left(\frac{\nu_{0}-g_{0}}{2}\right)\left\|f\right\|_{L^{2}(\mathbb{R}^{n})}\,.

Let us first use lemma 6.2 with ν0=π\nu_{0}=\pi to prove the main result, Theorem 4.6, and then return to its proof. Combined with (6.1), we have that

(MεMeffε)vL2(n)\displaystyle\left\|\left(M^{\varepsilon}-M_{\rm eff}^{\varepsilon}\right)v^{\prime}\right\|_{L^{2}(\mathbb{R}^{n})} 2sin(πg02)vL2(n)2sin(πg2)vL2(n)\displaystyle\geq\cdots\geq 2\sin\left(\frac{\pi-g_{0}}{2}\right)\left\|v^{\prime}\right\|_{L^{2}(\mathbb{R}^{n})}-2\sin\left(\frac{\pi-g}{2}\right)\cdot\left\|v^{\prime}\right\|_{L^{2}(\mathbb{R}^{n})}
2[sin(πg02)sin(πg2)]vL2(n).\displaystyle\geq 2\left[\sin\left(\frac{\pi-g_{0}}{2}\right)-\sin\left(\frac{\pi-g}{2}\right)\right]\cdot\left\|v^{\prime}\right\|_{L^{2}(\mathbb{R}^{n})}\,.

On the other hand, since vBLεv^{\prime}\in{\rm BL}_{\varepsilon}, Hypothesis 2 regarding the effective dynamics provides an upper bound on (MεMeffε)vL2(n)\|\left(M^{\varepsilon}-M_{\rm eff}^{\varepsilon}\right)v^{\prime}\|_{L^{2}(\mathbb{R}^{n})}. When combined this yields that

2[sin(πg02)sin(πg2)]vL2(n)(MεMeffε)vL2(n)o(ε)vL2(n).2\left[\sin\left(\frac{\pi-g_{0}}{2}\right)-\sin\left(\frac{\pi-g}{2}\right)\right]\cdot\left\|v^{\prime}\right\|_{L^{2}(\mathbb{R}^{n})}\leq\left\|\left(M^{\varepsilon}-M_{\rm eff}^{\varepsilon}\right)v^{\prime}\right\|_{L^{2}(\mathbb{R}^{n})}\leq o(\varepsilon)\cdot\left\|v^{\prime}\right\|_{L^{2}(\mathbb{R}^{n})}\,.

Since π>g>g0\pi>g>g_{0}, the difference on the left-hand side above is always positive. Therefore, for sufficiently small ε>0\varepsilon>0, the above inequality is only possible if v=0v^{\prime}=~{}0. ∎

Proof of Lemma 6.2 .

By the explicit form of MeffεM_{\rm eff}^{\varepsilon} given in Hypothesis 2, we can write for every fBLεf\in{\rm BL}_{\varepsilon},

(eiν0Meffε)f\displaystyle\left(e^{-i\nu_{0}}-M_{\rm eff}^{\varepsilon}\right)f =εn2|ξ|d0eiξε𝐱[(eiν0IdM^effε(ξ))α^0(ξ)]Φ(𝐱)𝑑ξ\displaystyle=\varepsilon^{\frac{n}{2}}\int\limits_{|\xi|\leq d_{0}}e^{-i\xi\cdot\varepsilon{\bf x}}\,\left[\left(e^{-i\nu_{0}}{\rm Id}-\hat{M}_{\rm eff}^{\varepsilon}(\xi)\right)\hat{\alpha}_{0}(\xi)\right]^{\top}\Phi({\bf x})\,d\xi
(6.2) =εn2γ(ε𝐱)Φ(𝐱).\displaystyle=\varepsilon^{\frac{n}{2}}\gamma(\varepsilon{\bf x})^{\top}\Phi({\bf x})\,.

where

(6.3) γ(X)|ξ|d0eiξX[(eiν0IdMeffε(ξ))α^0(ξ)]𝑑ξ\gamma(X)\equiv\int\limits_{|\xi|\leq d_{0}}e^{-i\xi\cdot X}\,\left[\left(e^{-i\nu_{0}}{\rm Id}-M_{\rm eff}^{\varepsilon}(\xi)\right)\hat{\alpha}_{0}(\xi)\right]\,d\xi

Next, we recall the following averaging lemma from [39, Lemma 4.5]:

Lemma 6.3.

Let qL2(n)q\in L^{2}(\mathbb{R}^{n}) such that supp(q^)B(0,d){\rm supp}(\hat{q})\subseteq B(0,d) for some d>0d>0, and let pL2(Ω)p\in L^{2}(\Omega) be Λ\Lambda-periodic. Then, there exists ε0>0\varepsilon_{0}>0 which depends on dd, such that for any fixed 0<ε<ε00<\varepsilon<\varepsilon_{0},

(6.4) np(𝐱)q(ε𝐱)𝑑𝐱=εn(Ωp(𝐱)𝑑bx)(nq(X)𝑑X).\int\limits_{\mathbb{R}^{n}}p({\bf x})q(\varepsilon{\bf x})\,d{\bf x}=\varepsilon^{-n}\left(\int\limits_{\Omega}p({\bf x})\,dbx\right)\cdot\left(\int\limits_{\mathbb{R}^{n}}q(X)\,dX\right)\,.

Applying Lemma 6.3 to (6.2) yields, using the orthonormality of Φb,,Φb+N1\Phi_{b},\ldots,\Phi_{b+N-1} (for brevity, set b=1b=1 without loss of generality)

εn2γ(ε𝐱)Φ(𝐱)L2(n)2\displaystyle\left\|\varepsilon^{\frac{n}{2}}\gamma(\varepsilon{\bf x})\Phi({\bf x})\right\|_{L^{2}(\mathbb{R}^{n})}^{2} =εnn|γ(ε𝐱)Φ(𝐱)|2𝑑𝐱\displaystyle=\varepsilon^{n}\int\limits_{\mathbb{R}^{n}}\left|\gamma(\varepsilon{\bf x})^{\top}\Phi({\bf x})\right|^{2}\,d{\bf x}
=εnnj,m=1Nγj(ε𝐱)Φj(𝐱)γ¯m(ε𝐱)Φ¯m(𝐱)d𝐱\displaystyle=\varepsilon^{n}\int\limits_{\mathbb{R}^{n}}\sum\limits_{j,m=1}^{N}\gamma_{j}(\varepsilon{\bf x})\Phi_{j}({\bf x})\bar{\gamma}_{m}(\varepsilon{\bf x})\bar{\Phi}_{m}({\bf x})\,d{\bf x}
=εnεnj,m=1Nγm,γjL2(N)Φm,ΦjL𝐤2\displaystyle=\varepsilon^{n}\varepsilon^{-n}\sum\limits_{j,m=1}^{N}\langle\gamma_{m},\gamma_{j}\rangle_{L^{2}(\mathbb{R}^{N})}\cdot\langle\Phi_{m},\Phi_{j}\rangle_{L^{2}_{{\bf k}_{\star}}}
=j=1NγjL2(n)2=γL2(n;N)2,\displaystyle=\sum\limits_{j=1}^{N}\|\gamma_{j}\|^{2}_{L^{2}(\mathbb{R}^{n})}=\|\gamma\|_{L^{2}(\mathbb{R}^{n};\mathbb{C}^{N})}^{2}\,,

where in applying Lemma 6.3, we used the fact that, while the support of the Fourier transform of γjγ¯m\gamma_{j}\bar{\gamma}_{m} might not be B(0,d0)B(0,d_{0}), it is still compact.

Hence, to prove Lemma 6.2, we need to bound the norm of γL2(n;N)\|\gamma\|_{L^{2}(\mathbb{R}^{n};\mathbb{C}^{N})} from below. We now note that for every ξn\xi\in\mathbb{R}^{n}, the Fourier-transformed monodromy M^effε(ξ)\hat{M}_{\rm eff}^{\varepsilon}(\xi) is an N×NN\times N unitary matrix (where NN is the degree of the degeneracy in Hypothesis 1). Let P(ξ)P(\xi) be the unitary matrix which diagonlizes the monodromy, i.e.,

M^effε(ξ)=P(ξ)D(ξ)P(ξ),D(ξ),j=eiνj(ξ)δj,,1j,N.\hat{M}_{\rm eff}^{\varepsilon}(\xi)=P(\xi)D(\xi)P^{*}(\xi)\,,\qquad D(\xi)_{\ell,j}=e^{-i\nu_{j}(\xi)}\delta_{j,\ell}\,,\quad 1\leq j,\ell\leq N\,.

Hence, using Plancharel theorem and the orthogonality of P(ξ)P(\xi), we have that

γL2(n)2\displaystyle\left\|\gamma\right\|_{L^{2}(\mathbb{R}^{n})}^{2} =|ξ|d0eiξX[P(ξ)(eiν0IdD(ξ))P(ξ)α^0(ξ)]𝑑ξL2(Xn;N)2\displaystyle=\left\|\int\limits_{|\xi|\leq d_{0}}e^{-i\xi\cdot X}\,\left[P(\xi)\left(e^{-i\nu_{0}}{\rm Id}-D(\xi)\right)P^{*}(\xi)\hat{\alpha}_{0}(\xi)\right]\,d\xi\right\|_{L^{2}(\mathbb{R}^{n}_{X};\mathbb{C}^{N})}^{2}
=P(ξ)(eiν0IdD(ξ))P(ξ)α^0(ξ)L2(ξn;N)2\displaystyle=\left\|P(\xi)\left(e^{-i\nu_{0}}{\rm Id}-D(\xi)\right)P^{*}(\xi)\hat{\alpha}_{0}(\xi)\right\|_{L^{2}(\mathbb{R}^{n}_{\xi};\mathbb{C}^{N})}^{2}
=(eiν0IdD(ξ))P(ξ)α^0(ξ)L2(ξn;N)2\displaystyle=\left\|\left(e^{-i\nu_{0}}{\rm Id}-D(\xi)\right)P^{*}(\xi)\hat{\alpha}_{0}(\xi)\right\|_{L^{2}(\mathbb{R}^{n}_{\xi};\mathbb{C}^{N})}^{2}
=j=1N(eiν0eiνj(ξ))(P(ξ)α^0(ξ))jL2(ξn)2\displaystyle=\sum\limits_{j=1}^{N}\left\|\left(e^{-i\nu_{0}}-e^{-i\nu_{j}(\xi)}\right)\left(P^{*}(\xi)\hat{\alpha}_{0}(\xi)\right)_{j}\right\|_{L^{2}(\mathbb{R}^{n}_{\xi})}^{2}
=j=1N|ξ|d0|eiν0eiνj(ξ)|2|(P(ξ)α^0(ξ))j|2𝑑ξ\displaystyle=\sum\limits_{j=1}^{N}\int\limits_{|\xi|\leq d_{0}}\left|e^{-i\nu_{0}}-e^{-i\nu_{j}(\xi)}\right|^{2}\left|\left(P^{*}(\xi)\hat{\alpha}_{0}(\xi)\right)_{j}\right|^{2}\,d\xi
j=1Nmin|ξ|d0|eiν0eiνj(ξ)|2(P(ξ)α^0(ξ))jL2(ξn)2\displaystyle\geq\sum\limits_{j=1}^{N}\min\limits_{|\xi^{\prime}|\leq d_{0}}\left|e^{-i\nu_{0}}-e^{-i\nu_{j}(\xi^{\prime})}\right|^{2}\cdot\left\|\left(P^{*}(\xi)\hat{\alpha}_{0}(\xi)\right)_{j}\right\|_{L^{2}(\mathbb{R}^{n}_{\xi})}^{2}
min|ξ|d0min1jN|eiν0eiνj(ξ)Tper|2α0L2(n;N)2\displaystyle\geq\min\limits_{|\xi|\leq d_{0}}\min\limits_{1\leq j\leq N}\left|e^{-i\nu_{0}}-e^{-i\nu_{j}(\xi)T_{\rm per}}\right|^{2}\cdot\left\|\alpha_{0}\right\|_{L^{2}(\mathbb{R}^{n};\mathbb{C}^{N})}^{2}
4sin2(ν0g02)α0L2(n;N)2,\displaystyle\geq 4\sin^{2}\left(\frac{\nu_{0}-g_{0}}{2}\right)\cdot\left\|\alpha_{0}\right\|_{L^{2}(\mathbb{R}^{n};\mathbb{C}^{N})}^{2}\,,

where the last inequality is derived from the arc-length formula between two angels, as well as from Hypothesis 3 on the spectrum of MeffεM_{\rm eff}^{\varepsilon}.

6.1. Proof of Proposition 4.7

We note here that the proof of Proposition 4.7 is very similar to that which appears in [39]. However, due to many changes in the notation and change in dimensionality, we include it here for completeness.

6.1.1. From projections to wavepackets; proof of (4.12)

Let ε>0\varepsilon>0 be taken sufficiently small, and let fL2(n)f\in L^{2}(\mathbb{R}^{n}). Express H0H^{0} acting in L2(2)L^{2}(\mathbb{R}^{2}) as a direct integral H0=Hk0𝑑𝐤H^{0}=\int^{\oplus}_{\mathcal{B}}H^{0}_{k}\,d{\bf k}, where H𝐤0H^{0}_{\bf k} denotes the operator H=Δ+VH=-\Delta+V acting in L𝐤2L^{2}_{\bf k}. Then, taking Eb(𝐤)=0E_{b}({\bf k}_{\star})=0 without loss of generality, we can rewrite (4.2)

(6.5) 𝒫0ε\displaystyle\mathcal{P}_{0}^{\varepsilon} =𝑑𝐤χ(|𝐤𝐤|ε<1)ProjL𝐤2(|H𝐤0|<Lε)f\displaystyle=\int\limits_{\mathcal{B}}\,d{\bf k}\ \chi\left(\frac{|{\bf k}-{\bf k}_{\star}|}{\varepsilon}<1\right){\rm Proj}_{L^{2}_{\bf k}}(|H_{\bf k}^{0}|<L\varepsilon)\,f
(6.6) =𝑑𝐤χ(|𝐤𝐤|ε<1)[12πi|ζ|=2Lε(ζIH𝐤)1𝑑ζ]f,\displaystyle=\int\limits_{\mathcal{B}}\,d{\bf k}\,\chi\left(\frac{|{\bf k}-{\bf k}_{\star}|}{\varepsilon}<1\right)\left[\frac{1}{2\pi i}\oint\limits_{|\zeta|=2L\varepsilon}\,(\zeta I-H_{\bf k})^{-1}\ d\zeta\right]\,f\,,

where the the factor 22 in the 2Lε2L\varepsilon radius in the contour integral is not necessarily sharp. In order to expand for 𝐤{\bf k} near 𝐤{\bf k}_{\star}, we next express the operators H𝐤H_{\bf k} in terms of operators which acts in the fixed space L𝐤2L^{2}_{{\bf k}_{\star}}. Note that H𝐤=ei𝐤𝐱H(𝐤)ei𝐤𝐱H_{\bf k}=e^{i{\bf k}\cdot{\bf x}}H({\bf k})e^{-i{\bf k}\cdot{\bf x}}, where H(𝐤)(+i𝐤)2+VH({\bf k})\equiv-(\nabla+i{\bf k})^{2}+V acts in L2(n/Λ)L^{2}(\mathbb{R}^{n}/\Lambda). Furthermore, (ζIH𝐤)1=ei𝐤𝐱(ζIH(𝐤))1ei𝐤𝐱(\zeta I-H_{\bf k})^{-1}=e^{i{\bf k}\cdot{\bf x}}(\zeta I-H({\bf k}))^{-1}e^{-i{\bf k}\cdot{\bf x}}.

Substitution into (6.6) yields

\displaystyle\cdots =𝑑𝐤ei𝐤𝐱χ(|𝐤𝐤|ε<1)[12πi|ζ|=2Lε(ζIH(𝐤))1𝑑ζ]ei𝐤𝐱f\displaystyle=\int\limits_{\mathcal{B}}\,d{\bf k}\,e^{i{\bf k}\cdot{\bf x}}\chi\left(\frac{|{\bf k}-{\bf k}_{\star}|}{\varepsilon}<1\right)\left[\frac{1}{2\pi i}\oint\limits_{|\zeta|=2L\varepsilon}\ (\zeta I-H({\bf k}))^{-1}\ \,d\zeta\right]\,e^{-i{\bf k}\cdot{\bf x}}f
=𝑑κei(𝐤+κ)𝐱χ(κε<1)[12πi|ζ|=2Lε(ζIH(𝐤+κ))1𝑑ζ]ei(𝐤+κ)𝐱f.\displaystyle=\int\limits_{\mathcal{B}}\,d\kappa\,e^{i({\bf k}_{\star}+\kappa)\cdot{\bf x}}\chi\left(\frac{\kappa}{\varepsilon}<1\right)\left[\frac{1}{2\pi i}\oint\limits_{|\zeta|=2L\varepsilon}\,(\zeta I-H({\bf k}_{\star}+\kappa))^{-1}\ d\zeta\,\right]\,e^{-i({\bf k}_{\star}+\kappa)\cdot{\bf x}}f\,.

The contour integral inside the square brackets is smooth L2(2/Λ)L^{2}(\mathbb{R}^{2}/\Lambda)-valued function of κ\kappa, and so by Taylor expansion:

=\displaystyle\cdots= 𝑑κei(𝐤+κ)𝐱χ(|κ|ε<1)[12πi|ζ|=2Lε(ζIH(𝐤))1𝑑ζ]ei(𝐤+κ)𝐱f\displaystyle\int\limits_{\mathcal{B}}\,d\kappa\,e^{i({\bf k}_{\star}+\kappa)\cdot{\bf x}}\chi\left(\frac{|\kappa|}{\varepsilon}<1\right)\left[\frac{1}{2\pi i}\oint\limits_{|\zeta|=2L\varepsilon}\,(\zeta I-H({\bf k}_{\star}))^{-1}\,d\zeta\right]\,e^{-i({\bf k}_{\star}+\kappa)\cdot{\bf x}}f
(6.7) +χ(κε<1)κError[f;κ]𝑑κ.\displaystyle+\int\limits_{\mathcal{B}}\,\chi\left(\frac{\kappa}{\varepsilon}<1\right)\ \kappa\ \mathcal{\rm Error}[f;\kappa]\ d\kappa\,.

The last term in (6.7) is linear in ff and easily seen to be bounded in L2(2)L^{2}(\mathbb{R}^{2}) by εn+1fL2\varepsilon^{n+1}\|f\|_{L^{2}} since the domain of integration is over a disc of radius ε\varepsilon.

The dominant term in (6.7) may be re-expressed as

𝑑κχ(|κ|ε<1)eiκ𝐱[12πi|ζ|=2Lεei𝐊𝐱(ζIH(𝐤))1ei𝐊𝐱𝑑ζ]eiκ𝐱f(𝐱)\displaystyle\int\limits_{\mathcal{B}}\,d\kappa\,\chi\left(\frac{|\kappa|}{\varepsilon}<1\right)e^{i\kappa\cdot{\bf x}}\left[\frac{1}{2\pi i}\oint\limits_{|\zeta|=2L\varepsilon}\,e^{i{\bf K}\cdot{\bf x}}(\zeta I-H({\bf k}_{\star}))^{-1}e^{-i{\bf K}\cdot{\bf x}}\,d\zeta\right]\,e^{-i\kappa\cdot{\bf x}}f({\bf x})
=\displaystyle\quad= 𝑑κχ(|κ|ε<1)eiκ𝐱[12πi|ζED|=2Lε(ζIH𝐤)1𝑑ζ]eiκ𝐱f(𝐱)\displaystyle\int\limits_{\mathcal{B}}\,d\kappa\,\chi\left(\frac{|\kappa|}{\varepsilon}<1\right)e^{i\kappa\cdot{\bf x}}\left[\frac{1}{2\pi i}\oint\limits_{|\zeta-E_{D}|=2L\varepsilon}\,(\zeta I-H_{{\bf k}_{\star}})^{-1}\,d\zeta\right]\,e^{-i\kappa\cdot{\bf x}}f({\bf x})
=\displaystyle= 𝑑κχ(|κ|ε<1)eiκ𝐱ProjL𝐤2(|H𝐤|<2Lε)eiκ𝐱f(𝐱)\displaystyle\int\limits_{\mathcal{B}}\,d\kappa\,\chi\left(\frac{|\kappa|}{\varepsilon}<1\right)e^{i\kappa\cdot{\bf x}}\ {\rm Proj}_{L^{2}_{{\bf k}_{\star}}}(|H_{{\bf k}_{\star}}|<2L\varepsilon)\ e^{-i\kappa\cdot{\bf x}}f({\bf x})
=𝑑κχ(|κ|ε<a)eiκ𝐱Φ(𝐱;𝐤)[n𝑑𝐲Φ(𝐲;𝐤)¯f(𝐲)eiκ𝐲]\displaystyle=\int\limits_{\mathcal{B}}\ d\kappa\ \chi\left(\frac{|\kappa|}{\varepsilon}<a\right)\ e^{i\kappa\cdot{\bf x}}\ \Phi^{\top}({\bf x};{\bf k}_{\star})\left[\int\limits_{\mathbb{R}^{n}}\,d{\bf y}\,\overline{\Phi({\bf y};{\bf k}_{\star})}f({\bf y})e^{-i\kappa\cdot{\bf y}}\right]
=Φ(𝐱;𝐤)n𝑑𝐲Φ(𝐲;𝐤)¯(𝐲)f(𝐲)[𝑑κχ(|κ|ε<1)eiκ(𝐱𝐲)]\displaystyle=\Phi^{\top}({\bf x};{\bf k}_{\star})\int\limits_{\mathbb{R}^{n}}\,d{\bf y}\,\overline{\Phi({\bf y};{\bf k}_{\star})}({\bf y})f({\bf y})\left[\int\limits_{\mathcal{B}}\,d\kappa\,\chi\left(\frac{|\kappa|}{\varepsilon}<1\right)e^{i\kappa\cdot({\bf x}-{\bf y})}\right]
=Φ(𝐱;𝐤)n𝑑𝐲Φ(𝐲;𝐊)¯f(𝐲)[n𝑑κχ(|κ|ε<1)eiκ(𝐱𝐲)]\displaystyle=\Phi^{\top}({\bf x};{\bf k}_{\star})\int\limits_{\mathbb{R}^{n}}\,d{\bf y}\,\overline{\Phi({\bf y};{\bf K})}f({\bf y})\left[\int\limits_{\mathbb{R}^{n}}\,d\kappa\,\chi\left(\frac{|\kappa|}{\varepsilon}<1\right)e^{i\kappa\cdot({\bf x}-{\bf y})}\right]

In all, we have that

(6.8) 𝒫0εf\displaystyle\mathcal{P}_{0}^{\varepsilon}f =uε[f]+𝒪L2(n)(εn+1fL2),\displaystyle=u_{\varepsilon}[f]+\mathcal{O}_{L^{2}(\mathbb{R}^{n})}\left(\varepsilon^{n+1}\|f\|_{L^{2}}\right)\,,

where

uε[f](𝐱)\displaystyle u_{\varepsilon}[f]({\bf x}) Φ(𝐱;𝐤)βε[f](𝐱),and\displaystyle\equiv\Phi^{\top}({\bf x};{\bf k}_{\star})\beta_{\varepsilon}[f]({\bf x}),\quad{\rm and}
(6.9) βε[f](𝐱)\displaystyle\beta_{\varepsilon}[f]({\bf x}) [(Φ(;𝐤)¯f)ξ1[χ(|ξ|ε<1)]](𝐱),\displaystyle\equiv\left[\ \left(\overline{\Phi(\cdot;{\bf k}_{\star})}f\right)\ast\mathcal{F}_{\xi}^{-1}\left[\chi\left(\frac{|\xi|}{\varepsilon}<1\right)\right]\ \right]({\bf x})\,,

where 1[g](ξ)\mathcal{F}^{-1}[g](\xi) denotes the inverse Fourier transform and \ast denotes convolution. We next show that uεBLεu_{\varepsilon}\in{\rm BL}_{\varepsilon} with d0=1d_{0}=1 by showing that [βε[f]]χ(|ξ|<ε)L2(n)\mathcal{F}[\beta_{\varepsilon}[f]]\in\chi(|\xi|<\varepsilon)L^{2}(\mathbb{R}^{n}). Indeed by the convolution rule,

[βε[f]](ξ)=[(Φ(;𝐤)¯f)1[χ(|ξ|ε<1)]]=[Φ(;𝐤)¯f](ξ)χ(|ξ|ε<1),\mathcal{F}[\beta_{\varepsilon}[f]](\xi)=\mathcal{F}\left[\left(\overline{\Phi(\cdot;{\bf k}_{\star})}f\right)\ast\mathcal{F}^{-1}\left[\chi\left(\frac{|\xi|}{\varepsilon}<1\right)\right]\right]=\mathcal{F}[\overline{\Phi(\cdot;{\bf k}_{\star})}f](\xi)\cdot\chi\left(\frac{|\xi|}{\varepsilon}<1\right),

which is supported in {|ξ|<εa}\{|\xi|<\varepsilon a\}. This completes the proof of (4.12).

Remark 6.4.

This proof shows that, more generally, if the definition of 𝒫0ε\mathcal{P}_{0}^{\varepsilon} would have been changed to a project onto the disc |𝐤𝐤|<aε|{\bf k}-{\bf k}_{\star}|<a\varepsilon with a1a\neq 1, then the Proposition would have carried through with a different value of d0d_{0}.

6.1.2. From wavepackets to projections; proof of (4.13)

Consider u(𝐱)BLεu({\bf x})\in{\rm BL}_{\varepsilon} for some d0(0,1)d_{0}\in(0,1) and ε>0\varepsilon>0 sufficiently small, then by definition of (4.3), there exists αεL2(n;N)\alpha_{\varepsilon}\in L^{2}(\mathbb{R}^{n};\mathbb{C}^{N}) such that

u(𝐱)=Φ(𝐱;𝐤)αε(𝐱),where[αε](ξ)=χ(|ξ|ε<d0)[αε](ξ).u({\bf x})=~{}\Phi^{\top}({\bf x};{\bf k}_{\star})\alpha_{\varepsilon}({\bf x})\,,\quad\textrm{where}\quad\mathcal{F}\left[\alpha_{\varepsilon}\right](\xi)=\chi\left(\frac{|\xi|}{\varepsilon}<d_{0}\right)\mathcal{F}\left[\alpha_{\varepsilon}\right](\xi)\,.

On the other hand, by (6.8), for any BLε{\rm BL}_{\varepsilon} function and ε>0\varepsilon>0 sufficiently small, there exists a function γε\gamma_{\varepsilon} such that

(6.10) 𝒫0εu=Φ(𝐱,𝐤)γε[u](𝐱)+𝒪(εn+1uL2(n)).\mathcal{P}_{0}^{\varepsilon}u=\Phi^{\top}({\bf x},{\bf k}_{\star})\gamma_{\varepsilon}[u]({\bf x})+\mathcal{O}(\varepsilon^{n+1}\|u\|_{L^{2}(\mathbb{R}^{n})})\,.

To prove (4.13) it suffices to show that γε(𝐱)=αε(𝐱)\gamma_{\varepsilon}({\bf x})=\alpha_{\varepsilon}({\bf x}). Substitution of u=Φ(𝐱;𝐤)αε(𝐱)u=\Phi^{\top}({\bf x};{\bf k}_{\star})\alpha_{\varepsilon}({\bf x}) into (6.9) yields

γε[u]=(Φ(;𝐤)¯Φ(;𝐤)αε)1[χ(|ξ|ε<1)].\gamma_{\varepsilon}[u]=\left(\overline{\Phi(\cdot;{\bf k}_{\star})}\Phi^{\top}(\cdot;{\bf k}_{\star})\alpha_{\varepsilon}\right)\ast\mathcal{F}^{-1}\left[\chi\left(\frac{|\xi|}{\varepsilon}<1\right)\right]\,.

We next compute the Fourier transform of γε[u]\gamma_{\varepsilon}[u]. For bj<b+Nb\leq j<b+N,

[γε[g]]j\displaystyle\mathcal{F}\left[\gamma_{\varepsilon}[g]\right]_{j} =[Φ(𝐱;𝐤)¯Φ(𝐱;𝐤)αε(𝐱)]jχ(|ξ|ε<1)\displaystyle=\mathcal{F}[\overline{\Phi({\bf x};{\bf k}_{\star})}\Phi^{\top}({\bf x};{\bf k}_{\star})\alpha_{\varepsilon}({\bf x})]_{j}~{}\cdot\chi\left(\frac{|\xi|}{\varepsilon}<1\right)
(6.11) ==bN+b1[Φj(𝐱;𝐤)¯Φ(𝐱;𝐤)αε,(𝐱)]χ(|ξ|ε<1)\displaystyle=\sum\limits_{\ell=b}^{N+b-1}\mathcal{F}[\overline{\Phi_{j}({\bf x};{\bf k}_{\star})}\Phi_{\ell}({\bf x};{\bf k}_{\star})\alpha_{\varepsilon,\ell}({\bf x})]~{}\cdot\chi\left(\frac{|\xi|}{\varepsilon}<1\right)

Consider the expression being summed in (6.11). Since Φj(𝐱;𝐤)=ei𝐤𝐱ϕj(𝐱;𝐤)\Phi_{j}({\bf x};{\bf k}_{\star})=e^{i{\bf k}_{\star}\cdot{\bf x}}\phi_{j}({\bf x};{\bf k}_{\star}) with ϕj(𝐱;𝐤)L2(n/Λ)\phi_{j}({\bf x};{\bf k}_{\star})\in L^{2}(\mathbb{R}^{n}/\Lambda) periodic, we have

pj,(𝐱)Φj(𝐱,𝐤)¯Φ(𝐱,𝐤)=ϕj(𝐱,𝐤)¯ϕ(𝐱,𝐤)L2(n/Λ).\displaystyle p_{j,\ell}({\bf x})\equiv\overline{\Phi_{j}({\bf x},{\bf k}_{\star})}\Phi_{\ell}({\bf x},{\bf k}_{\star})=\overline{\phi_{j}({\bf x},{\bf k}_{\star})}\phi_{\ell}({\bf x},{\bf k}_{\star})\in L^{2}(\mathbb{R}^{n}/\Lambda)\,.

We expand pj,(𝐱)p_{j,\ell}({\bf x}) for each j,=1,2j,\ell=1,2 in a Fourier series with respect to the lattice Λ\Lambda: for every gL2(n/Λ)g\in L^{2}(\mathbb{R}^{n}/\Lambda),

g(𝐱)=𝐧Λg^(𝐧)ei𝐧𝐱,g^(𝐧)Ωei𝐧𝐱g(𝐱)𝑑𝐱.g({\bf x})=\sum_{{\bf n}\in\Lambda^{*}}\hat{g}({\bf n})e^{i{\bf n}\cdot{\bf x}}\,,\qquad\hat{g}({\bf n})\equiv\int\limits_{\Omega}e^{-i{\bf n}\cdot{\bf x}}g({\bf x})\,d{\bf x}\,.

Substituting the Fourier series into (6.11) yields

[γε[u]]j\displaystyle\mathcal{F}[\gamma_{\varepsilon}[u]]_{j} ==nN+b1[𝐧Λp^j,(𝐧)ei𝐧xαε,(𝐱)]χ(|ξ|ε<1)\displaystyle=\sum\limits_{\ell=n}^{N+b-1}\mathcal{F}\left[\sum\limits_{{\bf n}\in\Lambda^{*}}\hat{p}_{j,\ell}({\bf n})e^{i{\bf n}\cdot x}\alpha_{\varepsilon,\ell}({\bf x})\right]~{}\cdot\chi\left(\frac{|\xi|}{\varepsilon}<1\right)
==nN+b1𝐧Λp^j,(𝐧)[ei𝐧xαε,(𝐱)]χ(|ξ|ε<1)\displaystyle=\sum\limits_{\ell=n}^{N+b-1}\sum\limits_{{\bf n}\in\Lambda^{*}}\hat{p}_{j,\ell}({\bf n})\mathcal{F}\left[e^{i{\bf n}\cdot x}\alpha_{\varepsilon,\ell}({\bf x})\right]~{}\cdot\chi\left(\frac{|\xi|}{\varepsilon}<1\right)
(6.12) ==nN+b1𝐧Λp^j,(𝐧)α^ε,(ξ𝐧)χ(|ξ|ε<1)\displaystyle=\sum\limits_{\ell=n}^{N+b-1}\sum\limits_{{\bf n}\in\Lambda^{*}}\hat{p}_{j,\ell}({\bf n})\hat{\alpha}_{\varepsilon,\ell}\left(\xi-{\bf n}\right)~{}\cdot\chi\left(\frac{|\xi|}{\varepsilon}<1\right)

Note that by definition, αε^\hat{\alpha_{\varepsilon}} has compact support in the disc of radius εa\varepsilon a around the origin. In the expansion above in (6.12), for ε>0\varepsilon>0 sufficiently small, the only term that does not vanish only if (i) |ξ𝐧|<ε|\xi-{\bf n}|<\varepsilon (with 𝐧Λ{\bf n}\in\Lambda^{*}) and (ii) due to the χ(|ξ|<ε)\chi(|\xi|<\varepsilon) term, if |ξ|<ε|\xi|<\varepsilon. Hence, the only non-zero term in (6.12) arises from the lattice point 𝐧=0{\bf n}=\vec{0}. Then, by definition of the Fourier coefficient p^j,(0)\hat{p}_{j,\ell}(\vec{0}) and the orthogonality of the different Φj\Phi_{j}’s, we have that

[γε[u]]j\displaystyle\mathcal{F}[\gamma_{\varepsilon}[u]]_{j} ==bN+b1p^j,(0)α^ε,(ξ)χ(|ξ|ε<1)\displaystyle=\sum\limits_{\ell=b}^{N+b-1}\hat{p}_{j,\ell}(\vec{0})\hat{\alpha}_{\varepsilon,\ell}\left(\xi\right)~{}\cdot\chi\left(\frac{|\xi|}{\varepsilon}<1\right)
==nN+b1ΩΦj(𝐲;𝐤)¯Φl(𝐲;𝐤)𝑑𝐲α^ε,(ξ)χ(|ξ|ε<1)\displaystyle=\sum\limits_{\ell=n}^{N+b-1}\int_{\Omega}\overline{\Phi_{j}({\bf y};{\bf k}_{\star})}\Phi_{l}({\bf y};{\bf k}_{\star})\,d{\bf y}\ \hat{\alpha}_{\varepsilon,\ell}\left(\xi\right)~{}\cdot\chi\left(\frac{|\xi|}{\varepsilon}<1\right)
=α^ε,j(ξ)χ(|ξ|ε<1)=Vol(Ω)1α^ε,j(ξ).\displaystyle=\hat{\alpha}_{\varepsilon,j}\left(\xi\right)~{}\cdot\chi\left(\frac{|\xi|}{\varepsilon}<1\right)={\rm Vol}(\Omega)^{-1}\hat{\alpha}_{\varepsilon,j}\left(\xi\right)\,.

Summarizing, we have γε[u]=αε\gamma_{\varepsilon}[u]=\alpha_{\varepsilon} and and so substitution into (6.10) yields

(6.13) ProjL2(2)(|H0E|ε)u=u(𝐱)+𝒪(εn+1uL2(2)).{\rm Proj}_{L^{2}(\mathbb{R}^{2})}(|H^{0}-E_{\star}|\leq\varepsilon)u=u({\bf x})+\mathcal{O}(\varepsilon^{n+1}\|u\|_{L^{2}(\mathbb{R}^{2})})\,.

This is equivalent to (4.13). The proof of Proposition 4.7 is now complete.

7. Effective transport dynamics

Consider (5.1) with a=1a=1 and initial data of the form

(7.1) ψ0(𝐱)=εn2α0(ε𝐱)Φb(𝐱;𝐤),α0Hs(n),\psi_{0}({\bf x})=\varepsilon^{\frac{n}{2}}\alpha_{0}(\varepsilon{\bf x})\Phi_{b}({\bf x};{\bf k}_{\star})\,,\qquad\alpha_{0}\in H^{s}(\mathbb{R}^{n})\,,

for sufficiently high s>0s>0, and where the εn2\varepsilon^{\frac{n}{2}} factor keeps the overall norm of ψ0\psi_{0} independent of ε\varepsilon. Initial data in BLε{\rm BL}_{\varepsilon} is then a sub-class of (7.1). In this subsection, we formally derive the effective transport equation and its propagator UeffεU_{\rm eff}^{\varepsilon}, as given in (LABEL:eq:transport).

To construct a solution, we assume separation of scales, with slow time variables

Tεt,Xε𝐱,T\equiv\varepsilon t\,,\quad X\equiv\varepsilon{\bf x}\,,

and introduce the expansion

ψ(t,x)=ψ0(t,x)+εψ1(t,x)+\psi(t,x)=\psi^{0}(t,x)+\varepsilon\psi^{1}(t,x)+\cdots

where for every j0j\geq 0

ψj(t,x)=Ψj(t,x,T,X)|T=εt,X=εx.\psi^{j}(t,x)=\Psi^{j}(t,x,T,X)|_{T=\varepsilon t,X=\varepsilon x}\,.

By expanding

tt+εT,𝐱+εX,ΔΔ𝐱+2ε𝐱X+ΔX.\partial_{t}\mapsto\partial_{t}+\varepsilon T\,,\quad\vec{\nabla}\mapsto\vec{\nabla}_{{\bf x}}+\varepsilon\vec{\nabla}_{X}\,,\quad\Delta\mapsto\Delta_{{\bf x}}+2\varepsilon\vec{\nabla}_{{\bf x}}\cdot\vec{\nabla}_{X}+\Delta_{X}\,.

and substituting into (1.1), we solve for each power of ε\varepsilon.

Order ε0\varepsilon^{0}.

(itH0)Ψ0=0,Ψ(t=0,T=0,x,X)=α0(X)Φ(𝐱),(i\partial_{t}-H^{0})\Psi^{0}=0\,,\qquad\Psi(t=0,T=0,x,X)=\alpha_{0}(X)\Phi({\bf x})\,,

and so Ψ0(t,T,𝐱,X)=α0(X)Φ(𝐱)\Psi^{0}(t,T,{\bf x},X)=\alpha_{0}(X)\Phi({\bf x}).

Order ε1\varepsilon^{1}.

(itH0)Ψ1=(iT+2𝐱X+2iA¯(T)𝐱)Ψ0.(i\partial_{t}-H^{0})\Psi^{1}=\left(-i\partial_{T}+2\vec{\nabla}_{{\bf x}}\cdot\vec{\nabla}_{X}+2i\underline{A}(T)\cdot\vec{\nabla}_{{\bf x}}\right)\Psi^{0}\,.

To invert (itH0)(i\partial_{t}-H^{0}) in L𝐤2L^{2}_{{\bf k}_{\star}} and solve for Ψ1\Psi^{1}, we need to verify that the right hand side is L𝐤2L^{2}_{{\bf k}} orthogonal to the kernel, i.e., to Φ=Φb(;𝐤)\Phi=\Phi_{b}(\cdot;{\bf k}) (from here on, we suppress the 𝐤{\bf k}_{\star} and bb dependence for brevity).

Here, it is useful to note that (5.2) is equivalent to a statement on the Bloch mode Φb(x;𝐤)\Phi_{b}(x;{\bf k}_{\star}):

Lemma 7.1.

Given (5.2), then

(7.2) Φb(;𝐤),2Φb(;𝐤)L𝐤2=i𝐜0.\langle\Phi_{b}(\cdot;{\bf k}_{\star}),2\vec{\nabla}\Phi_{b}(\cdot;{\bf k}_{\star})\rangle_{L^{2}_{{\bf k}_{\star}}}=i{\bf c}\neq\vec{0}\,.

Combining Lemma 7.1 and normalizing Φ,ΦL𝐤2=1\langle\Phi,\Phi\rangle_{L^{2}_{{\bf k}_{\star}}}=1, we get the desired result

iTα(T,X)=i𝐜(X+iA¯(T))α.i\partial_{T}\alpha(T,X)=i{\bf c}\cdot\left(\vec{\nabla}_{X}+i\underline{A}(T)\right)\alpha\,.
Proof of Lemma 7.1.

By definition, Φ\Phi satisfies

HΦ(𝐱;𝐤)=E(𝐤)Φ,ΦL𝐤2.H\Phi({\bf x};{\bf k})=E({\bf k})\Phi\,,\qquad\Phi\in L^{2}_{{\bf k}}\,.

Write

(7.3) Φ(𝐱;𝐤)=ei𝐤𝐱p𝐤(𝐱),p𝐤Lper2(Ω),\Phi({\bf x};{\bf k})=e^{i{\bf k}\cdot{\bf x}}p_{{\bf k}}({\bf x})\,,\qquad p_{{\bf k}}\in L^{2}_{\rm per}(\Omega)\,,

which transforms the TISE to

(7.4) H^(𝐤)p𝐤=E(𝐤)p𝐤,H^(𝐤)H2i𝐤x+|𝐤|2.\hat{H}({{\bf k}})p_{{\bf k}}=E({\bf k})p_{{\bf k}}\,,\qquad\hat{H}({\bf k})\equiv H-2i{\bf k}\cdot\vec{\nabla}_{x}+|{\bf k}|^{2}\,.

We now take k\vec{\nabla}_{k} on both sides of (7.4). By noting that

kH^(𝐤)=2ix+2𝐤,\vec{\nabla}_{k}\hat{H}({\bf k})=-2i\vec{\nabla}_{x}+2{\bf k}\,,

we get that

H^(𝐤)kp𝐤2ixp𝐤+2𝐤p𝐤=kE(𝐤)p𝐤+E(𝐤)kp𝐤.\hat{H}({\bf k})\vec{\nabla}_{k}p_{{\bf k}}-2i\vec{\nabla}_{x}p_{{\bf k}}+2{\bf k}p_{{\bf k}}=\vec{\nabla}_{k}E({\bf k})p_{{\bf k}}+E({\bf k})\vec{\nabla}_{k}p_{{\bf k}}\,.

We rearrange some of the terms and take the inner product from the left with p𝐤p_{{\bf k}}

p𝐤,p𝐤kE(𝐤)=p𝐤,(H^(𝐤)E(𝐤))kp𝐤p𝐤,2ixp𝐤+p𝐤,2𝐤p𝐤.\langle p_{{\bf k}},p_{{\bf k}}\vec{\nabla}_{k}E({\bf k})\rangle=\left\langle p_{{\bf k}},\left(\hat{H}({\bf k})-E({\bf k})\right)\vec{\nabla}_{k}p_{{\bf k}}\right\rangle-\langle p_{{\bf k}},2i\vec{\nabla}_{x}p_{{\bf k}}\rangle+\langle p_{{\bf k}},2{\bf k}p_{{\bf k}}\rangle\,.

Here we note that, by definition ϕ(;𝐤)2=p𝐤2=1\|\phi(\cdot;{\bf k})\|_{2}=\|p_{{\bf k}}\|_{2}=1. Moreover, since H^(𝐤)E(𝐤)\hat{H}({\bf k})-E({\bf k}) is self-adjoint, combined with (7.4), the first inner product on the right-hand side vanishes. By differentiating (7.3), we get

kE(𝐤)\displaystyle\vec{\nabla}_{k}E({\bf k}) =p𝐤,2(ix+𝐤)p𝐤\displaystyle=\langle p_{{\bf k}},2(-i\vec{\nabla}_{x}+{\bf k})p_{{\bf k}}\rangle
=Φ(𝐱;𝐤)ei𝐤𝐱,2ix(Φ(𝐱;𝐤))ei𝐤𝐱\displaystyle=\left\langle\Phi({\bf x};{\bf k})e^{-i{\bf k}\cdot{\bf x}},-2i\vec{\nabla}_{x}\left(\Phi({\bf x};{\bf k})\right)e^{-i{\bf k}\cdot{\bf x}}\right\rangle
=Φ(;𝐤),2ixΦ(;𝐤).\displaystyle=-\langle\Phi(\cdot;{\bf k}),2i\vec{\nabla}_{x}\Phi(\cdot;{\bf k})\rangle\,.

Appendix A Physical interpretations of the model

An example of physical interest is the case of (5.1), i.e., (1.1) with W(T,i)=2iA¯(T)W(T,-i\nabla)=-2i\underline{A}(T)\cdot\nabla. Note here that (5.1) can be transformed to an equivalent “magnetic” form

itψ=(i+εaA¯(εat))2ψ+Vψ,i\partial_{t}\psi=(i\vec{\nabla}+\varepsilon^{a}\underline{A}(\varepsilon^{a}t))^{2}\psi+V\psi,

where A¯\underline{A} is a vector potential. This class of PDEs arises in physical settings, such as:

  1. (a)

    The modeling of time periodic conductors (e.g., graphene), excited by a time-varying electric field [35, 41]. Here, H0=Δ+VH^{0}=-\Delta+V is a single-electron Hamiltonian for graphene and time-dependence in Hε(t)H^{\varepsilon}(t) models the excitation of the graphene sheet by an external electric field with no magnetic field (by Maxwell’s equations, since A¯\underline{A} is constant in space, see e.g., [27]).

  2. (b)

    For n=1,2n=1,2, the propagation of light in a periodic array of helically coiled optical fiber waveguides [5, 23, 33, 36]. Here, the Schrödinger equation describes the propagation in the time-like longitudinal direction of a continuous-wave (CW) laser beam propagating through a hexagonal or triangular transverse array of optical fiber waveguides. Beginning with Maxwell’s equations, under the nearly monochromatic and paraxial approximations, one obtains iψz(z,𝐱)=H0ψi\psi_{z}(z,{\bf x})=H^{0}\psi for the longitudinal evolution of the slowly varying envelope of the classical electric field. Suppose the fibers are longitudinally coiled. Then, in a rotating coordinate frame, we obtain (1.1) where the time-periodic perturbation, A¯\underline{A}, captures effect of periodic coiling.

References

  • [1] G. Allaire and A. Piatnitski. Homogenization of the schrödinger equation and effective mass theorems. Communications in mathematical physics, 258(1):1–22, 2005.
  • [2] J. Avron, R. Seiler, and L. Yaffe. Adiabatic theorems and applications to the quantum hall effect. Communications in Mathematical Physics, 110(1):33–49, 1987.
  • [3] D. Bambusi. Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I. Trans. Amer. Math. Soc., 370:1823–1865, 2017.
  • [4] D. Bambusi and S. Grafi. Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Comm. Math. Phys., 219:465–480, 2001.
  • [5] M. Bellec, C. Michel, H. Zhang, S. Tzortzakis, and P. Delplace. Non-diffracting states in one-dimensional floquet photonic topological insulators. EPL (Europhysics Letters), 119(1):14003, 2017.
  • [6] E. Davies and H. Spohn. Open quantum systems with time-dependent hamiltonians and their linear response. Journal of Statistical Physics, 19(5):511–523, 1978.
  • [7] E. B. Davies. Spectral theory and differential operators, volume 42. Cambridge University Press, 1996.
  • [8] W. De Roeck, A. Elgart, and M. Fraas. Locobatic theorem for disordered media and validity of linear response. arXiv preprint arXiv:2203.03786, 2022.
  • [9] H. Eliasson and S. Kuksin. On reducibility of Schrödinger equations with quasiperiodic in time potentials. Comm. Math. Phys., 289:125–135, 2008.
  • [10] C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein. Topologically protected states in one-dimensional systems. Memoirs of the American Mathematical Society, 247(1173), 2017.
  • [11] C. L. Fefferman and M. I. Weinstein. Honeycomb lattice potentials and Dirac points. J. Amer. Math. Soc., 25(4):1169–1220, 2012.
  • [12] C. L. Fefferman and M. I. Weinstein. Wave packets in honeycomb lattice structures and two-dimensional Dirac equations. Commun. Math. Phys., 326:251–286, 2014.
  • [13] R. Feola, B. Grébert, and T. Nguyen. Reducibility of Schrödinger equation on a zoll manifold with unbounded potential. Journal of Mathematical Physics, 61(7):071501, 2020.
  • [14] L. Garrido. Generalized adiabatic invariance. Journal of Mathematical Physics, 5(3):355–362, 1964.
  • [15] J. Guglielmon, M. C. Rechtsman, and M. I. Weinstein. Landau levels in strained two-dimensional photonic crystals. Phys. Rev. A, 103:013505, 2021.
  • [16] G. A. Hagedorn and A. Joye. Elementary exponential error estimates for the adiabatic approximation. Journal of mathematical analysis and applications, 267(1):235–246, 2002.
  • [17] B. C. Hall. Quantum theory for mathematicians. Springer, 2013.
  • [18] S. N. Hameedi, A. Sagiv, and M. I. Weinstein. Radiative decay of edge states in floquet media. arXiv preprint arXiv:2201.11219, 2022.
  • [19] M. Z. Hasan and C. L. Kane. Colloquium: Topological Insulators. Reviews of Modern Physics, 82:3045, 2010.
  • [20] M. A. Hoefer and M. I. Weinstein. Defect modes and homogenization of periodic Schrödinger operators. SIAM journal on mathematical analysis, 43(2):971–996, 2011.
  • [21] J. Howland. Floquet operators with singular spectrum. II. Ann. de l’I.H.P. Sec. A, 50(3):325–334, 1989.
  • [22] A. Joye. Adiabatic lindbladian evolution with small dissipators. Communications in Mathematical Physics, 391(1):223–267, 2022.
  • [23] M. Jürgensen, S. Mukherjee, and M. C. Rechtsman. Quantized nonlinear thouless pumping. Nature, 596(7870):63–67, 2021.
  • [24] T. Kato. On the adiabatic theorem of quantum mechanics. Journal of the Physical Society of Japan, 5(6):435–439, 1950.
  • [25] R. T. Keller, J. L. Marzuola, B. Osting, and M. I. Weinstein. Spectral band degeneracies of π/2\pi/2-rotationally invariant periodic schrodinger operators. Multiscale Modeling & Simulation, 16(4):1684–1731, 2018.
  • [26] R. T. Keller, J. L. Marzuola, B. Osting, and M. I. Weinstein. Erratum: Spectral band degeneracies of π/2\pi/2-rotationally invariant periodic schrödinger operators. Multiscale Modeling & Simulation, 18(3):1371–1373, 2020.
  • [27] J. Krieger and G. Iafrate. Time evolution of Bloch electrons in a homogeneous electric field. Physical Review B, 33(8):5494, 1986.
  • [28] P. Kuchment. Floquet Theory for Partial Differential Equations, volume 60. Birkhauser, Basel, 2012.
  • [29] P. Kuchment. An overview of periodic elliptic operators. Bull. Amer. Math. Soc., 53(3):343–414, 2016.
  • [30] R. Montalto and M. Procesi. Linear Schrödinger equation with an almost periodic potential. SIAM Journal on Mathematical Analysis, 53(1):386–434, 2021.
  • [31] G. Nenciu. On the adiabatic theorem of quantum mechanics. Journal of Physics A: Mathematical and General, 13(2):L15, 1980.
  • [32] G. Nenciu. Linear adiabatic theory. exponential estimates. Communications in mathematical physics, 152(3):479–496, 1993.
  • [33] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, and O. Zilberberg. Topological photonics. Reviews of Modern Physics, 91(1):015006, 2019.
  • [34] A. Pazy. Semigroups of linear operators and applications to partial differential equations, volume 44. Springer Science & Business Media, 2012.
  • [35] P. M. Perez-Piskunow, G. Usaj, C. A. Balseiro, and L. F. Torres. Floquet chiral edge states in graphene. Physical Review B, 89(12):121401, 2014.
  • [36] M. C. Rechtsman, Y. Plotnik, J. M. Zeuner, D. Song, Z. Chen, A. Szameit, and M. Segev. Topological creation and destruction of edge states in photonic graphene. Phys. Rev. Lett., 111:103901, 2013.
  • [37] M. Reed and B. Simon. II: Fourier Analysis, Self-Adjointness, volume 2. Elsevier, 1975.
  • [38] M. Reed and B. Simon. Methods of Modern Mathematical Physics: Analysis of Operators, Volume IV. Academic Press, 1978.
  • [39] A. Sagiv and M. I. Weinstein. Effective gaps in continuous floquet hamiltonians. SIAM Journal on Mathematical Analysis, 54(1):986–1021, 2022.
  • [40] M. Taylor. Partial differential equations II: Qualitative studies of linear equations, volume 116. Springer Science & Business Media, 2013.
  • [41] Y. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik. Observation of Floquet-Bloch states on the surface of a topological insulator. Science, 342(6157):453–457, 2013.