This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

NbReSi: A Noncentrosymetric Superconductor with Large Upper Critical Field

H. Su Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China    T. Shang [email protected] Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China    F. Du Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China    C. F. Chen Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China    H. Q. Ye Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China    X. Lu Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China    C. Cao Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China Condensed Matter Group, Department of Physics, Hangzhou Normal University, Hangzhou 311121, China    M. Smidman Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China    H. Q. Yuan [email protected] Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310058, China
Abstract

We report the discovery of superconductivity in noncentrosymmetric NbReSi, which crystallizes in a hexagonal ZrNiAl-type crystal structure with space group P6¯2mP\bar{6}2m (No. 189). Bulk superconductivity, with TcT_{c} = 6.5 K was characterized via electrical-resistivity, magnetization, and heat-capacity measurements. The low-temperature electronic specific heat suggests a fully gapped superconducting state in NbReSi, while a large upper critical field of μ0Hc2(0)\mu_{0}H_{\mathrm{c2}}(0) \sim 12.6 T is obtained, which is comparable to the weak-coupling Pauli limit. The electronic band-structure calculations show that the density of states at the Fermi level are dominated by Re and Nb dd-orbitals, with a sizeable band splitting induced by the antisymmetric spin-orbit coupling. NbReSi represents another candidate material for revealing the puzzle of time-reversal symmetry breaking observed in some Re-based superconductors and its relation to the lack of inversion symmetry.

preprint: Preprint:

I Introduction

Noncentrosymmetric superconductors (NCSC), where the crystal structure lacks an inversion center, have been widely investigated after the discovery of superconductivity (SC) in heavy fermion compound CePt3Si [1]. The lack of inversion symmetry gives rise to antisymmetric spin orbit coupling (ASOC), which causes band splitting near the Fermi level. As a consequence, the superconducting pairing may be a mixture of spin singlet and spin triplet states [2, 3]. Unconventional physical properties closely related to such a mixed pairings have been observed in NCSCs, e.g., superconducting gap nodes [4, 5, 6, 7, 8], multiband SC [9, 10, 11, 12]. On the other hand, \textcolorblacklarge upper critical field exceeding the Pauli limit is observed in some NCSCs [1, 13, 14, 15, 16].

Unconventional SC has been reported in different families of heavy fermion NCSCs, e.g., CePt3Si [1], CeTX3TX_{3} (TT = transition metal, XX = Si or Ge) [17, 18, 19, 20] and UIr [21]. In these compounds, the strong correlations or magnetic fluctuations can hinder the identification of the role played by the broken inversion symmetry in giving rise to unconventional superconducting properties, and as such non-magnetic weakly-correlated NCSCs have been investigated. For instance, while Li2Pd3B behaves as a fully-gapped two-band superconductor, an increase of ASOC (via Pt-for-Pd substitution) leads to Li2Pt3B being a nodal superconductor, indicating a dominant triplet component [4, 22, 23]. In addition, a growing number of NCSCs have also been found to exhibit time-reversal symmetry (TRS) breaking (i.e., spontaneous magnetic fields) in their superconducting state, such as, CaPtAs [7], LaNiC2 [24], Zr3Ir [25], and \textcolorblackLa7TMTM3 (TMTM = Ni, Rh, Pd, Ir) [26, 27, 28, 29]. In some of these NCSCs, the ASOC is rather weak, and there is evidence for fully gapped superconductivity (SC) similar to ss-wave superconductors, and the origin of the TRS breaking is generally not yet well understood.

Recently, the α\alpha-Mn-type noncentrosymmetric Re-based superconductors have attracted considerable interest, mainly due to the observation of broken time reversal symmetry at the onset of SC [30, 31, 32, 33]. On the other hand, in a few Re-free α\alpha-Mn-type superconductors, e.g., Mg10Ir19B16 and Nb0.5Os0.5 [34, 35], TRS is preserved. Recent muon-spin relaxation (μ\muSR) studies on Re1-xMox alloys revealed that spontaneous magnetic fields below TcT_{c} were observed only in elementary rhenium and in Re0.88Mo0.12 [33, 36], which both have centrosymmetric crystal structures. By contrast, TRS is preserved in the Re1-xMox alloys for x>x> 0.12, independent of their centro- or noncentrosymmetric crystal structures [36]. Moreover, TRS is preserved in both centro- or noncentrosymmetric rhenium-boron superconductors [37]. All these results suggest that a noncentrosymmetric structure and thus the ASOC is not essential in realizing TRS breaking in Re-based superconductors, and its origins require further investigations.

The ZrNiAl-type compounds are another important family of noncentrosymmetric superconductors. (Zr,Hf)RuP [38] and ZrRu(As,Si) [39, 40], which were synthesized under high pressure, exhibit relatively high superconducting transition temperatures TcT_{c}\sim 10 K. Both ZrRuAs [41] and LaPdIn [42] are fully-gapped superconductors with preserved TRS. NbReSi also crystallizes in a ZrNiAl-type structure [43], but its physical properties are not yet well studied.

In this paper, we report a systematic study of the superconducting properties of noncentrosymmetric NbReSi by means of electrical-resistivity, magnetization, and heat-capacity measurements, as well as by electronic band-structure calculations. It is found that NbReSi is a fully-gapped superconductor with a superconducting transition temperature TcT_{c} = 6.5 K and exhibits a large upper critical field of μ0Hc2\mu_{0}H_{c2} = 12.6 T. The electronic band-structure calculations suggest a sizable band splitting caused by the ASOC.

II Experimental details

Polycrystalline NbReSi samples were prepared by arc melting stoichiometric amounts of Nb slugs (99.95%\%, Alfa Aesar), Re powders (99.99%\%, Alfa Aesar) and Si chunks (99.9999%\%, Alfa Aesar) in high-purity argon atmosphere, with Ti metal used as oxygen getter. The samples were flipped and remelted several times to improve the homogeneity. The crystal structure and phase purity were checked by powder x-ray diffraction (XRD) measured on a Rigaku diffractometer with Cu Kα\alpha radiation. The electrical-resistivity and heat-capacity measurements were performed on Quantum Design Physical Property Measurement System (PPMS) with a 3He cryostat. The magnetization measurements were carried out using Quantum Design Magnetic Property Measurement System (MPMS). The electronic band-structures were calculated by means of the density-functional theory (DFT) implemented in the Vienna ab-initio simulation package (VASP). The Perdew-Burke-Ernzerhoff (PBE) functional in the generalized gradient approximation was employed.

Refer to caption
Figure 1: (a) Powder x-ray diffraction pattern of NbReSi. The vertical bars are the calculated Bragg reflection positions for a ZrNiAl-type crystal structure. (b) Crystal structure of NbReSi. Nb, Re, and Si atoms are shown by green, grey, and blue spheres, respectively.
Refer to caption
Figure 2: (a) Temperature dependence of the electrical resistivity of NbReSi below 10 K. The data between 2 and 300 K is shown in the inset. (b) Temperature dependence of the magnetic susceptibility, measured in an applied field of 1 mT using both the ZFC and FC protocols. \textcolorblackThe demagnetization factor is estimated to be about 0.2, considering the cuboid sample has the shape of c/ac/a\sim1.4 and c/bc/b\sim2.7 with field applied along cc-direction [44, 45].
Refer to caption
Figure 3: \textcolorblackLower critical fields Hc1H_{c1} vs. temperature of NbReSi. Solid line is a fit to μ0Hc1(T)=μ0Hc1(0)[1(T/Tc)2]\mu_{0}H_{c1}(T)=\mu_{0}H_{c1}(0)[1-(T/T_{c})^{2}]. The inset plots the field-dependent magnetization recorded at various temperatures. For each temperature, Hc1H_{c1} was determined as the value where M(H)M(H) starts deviating from linearity (see black solid line).
Refer to caption
Figure 4: Zero-field electronic specific heat Ce/TC_{e}/T versus temperature for NbReSi. The red solid line through the data represents a fit to an ss-wave model with a single gap. The inset shows the total specific heat C/TC/T versus T2T^{2}, where the blue line is a fit to C/T=γn+βT2C/T=\gamma_{n}+\beta T^{2}.
Refer to caption
Figure 5: Temperature dependence of the electrical resistivity (a) and specific heat (b) of NbReSi under various magnetic fields up to 13 T. To better show the superconducting transitions, the phonon contribution β\betaT2T^{2} was subtracted from the specific heat. (c) The upper critical field Hc2H_{c2} versus the reduced temperature TcT_{c}/Tc(0)T_{c}(0) for NbReSi. The solid line represents a fit to the WHH model, while the dashed line marks the Pauli limit.
Refer to caption
Figure 6: Electronic band structure of NbReSi, calculated (a) without, and (b) with spin orbit coupling. (c) The total and partial (Re 5dd and Nb 4dd orbitals) densities of states near the Fermi level when SOC is considered.

III Results and Discussion

Powder XRD patterns of NbReSi measured at room temperature are shown in Fig. 1(a). Almost all the reflections can be well indexed by a hexagonal ZrNiAl-type structure with space group P6¯2mP\bar{6}2m (No. 189) (see vertical green bars). The peaks with rather weak intensity [marked by star symbols in Fig. 1(a)] corresponds to additional phases, which could be due to binary Re-Si or Nb-Si phases that do not lead to extrinsic transitions. The determined lattice parameters aa = 6.7194(3) Å and cc = 3.4850(2) Å are consistent with the previous reports [43]. The crystal structure of NbReSi is shown in Fig. 1(b), where the NbSi- and ReSi-layers are alternately stacked along the cc-axis. In the unit cell, Nb and Re atoms occupy noncentrosymmetric 3gg and 3ff sites, while the two Si-sites (2dd and 1aa) are centrosymmetric.

The temperature dependence of the electrical resistivity ρ(T)\rho(T) [see inset of Fig. 2(a)], collected in zero magnetic field from 2 to 300 K, reveals a metallic character of NbReSi. The main panel of Fig. 2(a) shows the enlarged plot of ρ(T)\rho(T) below 10 K. There is a sharp superconducting transition below TconsetT^{\mathrm{onset}}_{c} = 6.9 K, reaching zero resistivity at TczeroT^{\mathrm{zero}}_{c} = 6.5 K, \textcolorblackwhich is slightly higher than the previous reported TcT_{c} value (i.e., 5.1 K) [46]. The bulk SC of NbReSi was confirmed by the magnetic susceptibility measurements. The temperature dependence of the dcdc magnetic susceptibility χ(T)\chi(T) of NbReSi, measured in a field of 1 mT under field-cooled (FC) and zero-field-cooled (ZFC) processes, is shown in Fig. 2(b). A clear diamagnetic signal appears below the superconducting transition at TcT_{c} = 6.5 K. The large differences between the FC- and ZFC-susceptibilities are typical of type-II superconductors, where the magnetic flux is pinned once the material is cooled in an applied field. After accounting for the demagnetization factor, the superconducting shielding fraction is close to 100%.

\textcolor

blackTo determine the lower critical field Hc1H_{\mathrm{c1}}, the field-dependent magnetization M(H)M(H) of NbReSi was collected at various temperatures up to TcT_{c} using a ZFC-protocol. Some representative M(H)M(H) curves are shown in the inset of Fig. 3. For each temperature, Hc1H_{\mathrm{c1}} was determined as the value where M(H)M(H) deviates from linearity (solid line in the inset of Fig. 3). Taking into account the demagnetization factor, the Hc1H_{\mathrm{c1}} are summarized in the main panel of Fig. 3 as a function of temperature, where the zero-temperature lower critical field μ0Hc1(0)\mu_{0}H_{\mathrm{c1}}(0) = 10.1(1) mT is also determined.

To study the SC of NbReSi, we also performed heat-capacity measurements. The jump in the specific heat at TcT_{c} again demonstrates bulk SC in NbReSi (see Fig. 4). In the normal state, the specific heat can be analyzed using C(T)/T=γnC(T)/T=\gamma_{n} + β\betaT2T^{2}, where γn\gamma_{n} is the normal-state electronic specific-heat coefficient and β\betaT2T^{2} represents the phonon contribution. As shown by the solid line in the inset of Fig. 4, γn\gamma_{n} = 8.23(2) mJ mol-1 K-2 and β\beta = 0.160(3) mJ mol-1 K-4 were obtained for NbReSi. The Debye temperature ΘD\Theta_{D} = 331 K was calculated via ΘD=(12π4Rn/5β)1/3\Theta_{D}=(12\pi^{4}Rn/5\beta)^{1/3}, where RR = 8.314 J mol-1 K-1 is the gas constant and n=3n=3 is the number of atoms per formula. The electron-phonon coupling constant λep\lambda_{\mathrm{ep}} was estimated to be 0.66 using the McMillan formula [47]:

λep=1.04+μln(ΘD/1.45Tc)(10.62μ)ln(ΘD/1.45Tc)1.04,\lambda_{\mathrm{ep}}=\frac{1.04+\mu^{*}\mathrm{ln}(\Theta_{D}/1.45T_{c})}{(1-0.62\mu^{*})\mathrm{ln}(\Theta_{D}/1.45T_{c})-1.04}, (1)

where the Coulomb pseudo-potential μ\mu^{*} is fixed to a typical value of 0.13 for metallic materials. The density of states (DOS) at the Fermi level N(EF)N(E_{F}) can be estimated by N(EF)=3γn/π2kB2N(E_{F})=3\gamma_{n}/\pi^{2}k_{B}^{2} [48], which yields N(EF)N(E_{F}) = 3.47 states eV-1f.u.-1.

After subtracting the phonon contribution, the zero-field electronic specific heat Ce/TC_{e}/T of NbReSi is shown in Fig. 4 as a function of temperature. The scaled specific jump at TcT_{c}, Δ\DeltaCC/γnTc\gamma_{n}T_{c} = 1.18, is smaller than the BCS value of 1.43. The reduced specific-heat jump at TcT_{c} is typically attributed to multiband SC or gap anisotropy. The contribution of SC to the electronic specific heat can be calculated via Ce/T=dS/dTC_{e}/T=\mathrm{d}S/\mathrm{d}T, where SS is the entropy and can be written as [49]:

S(T)=3γnkBπ302π0[(1f)ln(1f)+flnf]dϵdϕ.S(T)=-\frac{3\gamma_{n}}{k_{B}\pi^{3}}\int_{0}^{2\pi}\int_{0}^{\infty}[(1-f)\mathrm{ln}(1-f)+f\mathrm{ln}f]\mathrm{d}\epsilon\mathrm{d}\phi. (2)

Here f=(1+eE/kBT)1f=(1+e^{E/k_{B}T})^{-1} is the Fermi function and EE = ϵ2+Δ2(T)\sqrt{\epsilon^{2}+\Delta^{2}(T)}. The temperature-dependent superconducting energy gap is approximated to Δ(T)\Delta(T) = Δ(0)tanh1.82[1.018(Tc/T1)]0.51\Delta(0)\tanh{1.82[1.018(T_{c}/T-1)]^{0.51}}, where Δ(0)\Delta(0) is the superconducting gap at 0 K. The red solid line in Fig. 4 represents a fit to the single-gap ss-wave model. The derived gap value Δ(0)\Delta(0) = 1.75 kBTck_{B}T_{c} is close to the BCS value of 1.76 kBTck_{B}T_{c}, implying weak-coupling SC. It is noted that single-gap behaviors have been reported in other noncentrosymmetric Re-based superconductors, e.g., Re6(Ti,Zr,Hf) [50, 51, 52], Re24Ti5 [32], Re0.82Nb0.18 [33, 53], Re3[54], and TaReSi [55].

To study the upper critical field Hc2H_{c2} of NbReSi, the electrical resistivity and heat capacity were measured under various applied magnetic fields up to 13 T. As shown in Figs. 5(a) and (b), the superconducting transitions are gradually suppressed to lower temperatures and become broader with increases the magnetic field. When the magnetic field is larger than 4 T, the specific heat starts to show an upturn at low temperatures, which becomes more prominent as increasing field and is likely due to the nuclear Schottky anomaly. With such an upturn anomaly, it is difficult to precisely determine the field dependence of the specific heat coefficient that might provide important insights into the gap symmetry. The upper critical field of NbReSi extracted from the electrical resistivity and specific heat are displayed in Fig. 5(c) as a function of the reduced temperature Tc/Tc(0)T_{c}/T_{c}(0). Here TcT_{c} is determined as the temperature where zero resistivity is reached, while for the specific heat, it is defined as the midpoint of specific-heat jump. The Hc2H_{c2} values determined using different techniques are highly consistent. It can be seen that the electrical resistivity reaches zero value before cooling to the lowest temperature in a field of 12 T, while in the 13 T curve the transition can still been observed, indicating that the upper critical field Hc2(0)H_{c2}(0) at zero temperature is slightly larger than the weak coupling Pauli limit value of 1.86TcT_{c} = 12.1 T. Moreover, the data agree well with the Werthamer-Helfand- Hohenberg (WHH) model in the absence of paramagnetic limiting (i.e., with a Maki parameter αM\alpha_{M} = 0) [56], yielding a zero-temperature value of μ0Hc2(0)\mu_{0}H_{c2}(0) = 12.6 T. The upper critical field larger than the weak-coupling Pauli limit has been reported in some other NCSCs, e.g., (Nb,Ta)Rh2B2 [14] and K2Cr3As3 [15] and Y2C3 [57]. These results suggest the possibility that the effects of paramagnetic limiting may be reduced or absent in NbReSi superconductor. This can arise due to the Cooper pairs having a finite zero-temperature spin-susceptibility, which is a feature of both triplet SC and the admixture of spin-singlet and spin-triplet NCSCs under the influence of strong ASOC [3]. Alternatively, paramagnetic limiting fields larger than 1.86TcT_{c} can also arise from a superconducting gap larger than the weak-coupling value, or deviations of the gg-factor from the free electron value gg = 2 [2, 58]. While the former appears unlikely from our specific-heat analysis, confirmation of such a finite spin susceptibility requires studying the anisotropy of the upper critical fields, and utilizing nuclear magnetic resonance (NMR) to examine the Knight shift.

\textcolor

blackThe Ginzburg-Landau (GL) coherence length ξGL\xi_{\mathrm{GL}} can be calculated from the upper critical field μ0Hc2(0)\mu_{0}H_{c2}(0) using

μ0Hc2(0)=Φ02πξGL2,\mu_{0}H_{c2}(0)=\frac{\Phi_{0}}{2\pi\xi_{GL}^{2}}, (3)

where Φ0\Phi_{0} is the magnetic flux quantum, yielding ξGL\xi_{\mathrm{GL}} = 5.11 nm for NbReSi. The magnetic penetration depth λGL\lambda_{\mathrm{GL}} = 243.8 nm can be obtained via:

μ0Hc1(0)=Φ04πλGL2lnλGLξGL.\mu_{0}H_{c1}(0)=\frac{\Phi_{0}}{4\pi\lambda_{\mathrm{GL}}^{2}}\mathrm{ln}\frac{\lambda_{\mathrm{GL}}}{\xi_{\mathrm{GL}}}. (4)

The GL parameter κGL\kappa_{\mathrm{GL}} = λGL/ξGL\lambda_{\mathrm{GL}}/\xi_{\mathrm{GL}} = 49.3 is much larger than the threshold value of 1/2\sqrt{2}, indicating that NbReSi is a strongly type-II superconductor. The thermodynamic critical field μ0Hc(0)\mu_{0}H_{c}(0) can be estimated from

μ0Hc1(0)μ0Hc2(0)=μ0Hc(0)2lnκGL,\mu_{0}H_{c1}(0)\mu_{0}H_{c2}(0)=\mu_{0}H_{c}(0)^{2}\mathrm{ln}\kappa_{\mathrm{GL}}, (5)

yielding a value of 181 mT for NbReSi.

To get more insight into the underlying electronic properties of NbReSi, we also performed the electronic band-structure calculations based on DFT, with and without considering the spin-orbit coupling. As shown in Fig. 6, several bands crossing the Fermi level can be identified. By taking into account the SOC, the band splitting EASOCE_{\mathrm{ASOC}} near the Fermi level is estimated to be 180 meV. Its energy scale to the superconducting energy gap, i.e., EASOC/kBTcE_{\mathrm{ASOC}}/k_{B}T_{c} \sim 350, is relatively large compared with many other NCSC [3]. Such a large band splitting suggests an significant effect of ASOC. Relatively more obvious band splitting along cc-axis related to the high symmetry lines Γ\Gamma-A and M-L suggest a possible anisotropy in NbReSi, which remains verified on single crystal measurements. Figure 6(c) shows the total and partial density of states (DOS) for NbReSi within the energy scale of -1 to 1 eV. The calculated DOS at the Fermi level N(EF)N(E_{F}) \sim 3.94 states eV-1 f.u.-1 is compatible with the value 3.47 states eV-1 f.u.-1 determined from the normal-state electronic specific-heat coefficient. The contributions to N(EF)N(E_{F}) mainly arise from Re-5dd and Nb-4dd orbits, while the contributions from other orbits or orbits of Si atoms are negligible. Both Re 5dd and Nb 4dd orbits exhibit relatively large SOC, which results in the large band splitting near the Fermi level.

In noncentrosymmetric superconductors, the ASOC in principle can lift the degeneracy of the electronic bands and thus, the admixture of spin-singlet and spin-triplet pairing states is allowed. For NbReSi, the specific-heat results suggest a fully-gapped superconducting state, more consistent with spin-singlet pairing. To further understand the superconducting pairings and the effect of ASOC in NbReSi, the μ\muSR or NMR studies will be very helpful. For comparison, the superconducting- and normal-state properties of NbReSi, as well as the recently reported NCSC TaReSi are summarized in Table 1. Different from NbReSi, TaReSi crystallizes in an orthorhombic TiFeSi-type structure (ImaIma2, No. 46)(see Table. 1[55] . Though TaReSi exhibits a comparable TcT_{c} value to NbReSi and fully-gapped SC, its upper critical field is much smaller, well below the Pauli limit, i.e., Hc2/HpH_{c2}/H_{p} \sim 0.68. Whether such distinct upper critical fields in these two compounds are related to the strength of ASOC or other factors requires further investigations.

The large Hc2H_{c2} that is comparable to the Pauli limit seems to be a general feature in Re-based superconducting alloys, including the α\alpha-Mn type materials and NbReSi, and centrosymmetric Re3W, in spite of the preserved or broken TRS in their superconducting states [3, 59, 60]. The origin of a large Hc2H_{c2} is not yet fully understood. It is also possible that the Hc2H_{c2} can be enhanced due to the presence of disorder and nonmagnetic impurities [61]. The upper critical field exceeds the weak coupling Pauli limit in NbReSi, but the determination of whether paramagnetic limiting is weakened or absent in this compound requires further studies on high-quality single crystal.

In addition, the observation of TRS breaking in some Re-based superconductors suggests an important role played by Re. While the previous μ\muSR studies on the Re-free ZrNiAl-type ZrRuAs and LaPdIn suggest a preserved TRS in their superconducting states [41, 42]. Therefore, it is of particular interest to determine whether the TRS is broken in the superconducting state of NbReSi, which might further shed light on the origin of TRS breaking in the Re-based superconductor.

Table 1: Superconducting and normal-state properties of NbReSi and TaReSi. Data of TaReSi were taken from Ref. 55

. Parameters Unit NbReSi TaReSi Space group - P6¯2mP\bar{6}2m ImaIma2 TcT_{c} K 6.5 5.32 \textcolorblackμ0Hc1(0)\mu_{0}H_{c1}(0) mT 10.1 6.27 μ0Hc2(0)\mu_{0}H_{c2}(0) T 12.6 6.6 μ0Hc(0)\mu_{0}H_{c}(0) mT 181 114 μ0HP(0)\mu_{0}H_{P}(0) T 12.1 9.73 \textcolorblackλGL(0)\lambda_{\mathrm{GL}}(0) Å 2519 3373 \textcolorblackξGL(0)\xi_{\mathrm{GL}}(0) Å 51 137 θD\theta_{\mathrm{D}} K 331 338 N(EF)N(E_{\mathrm{F}}) states eV-1 f.u.-1 3.94 2.28 Δ\DeltaCelC_{\mathrm{el}}/γn\gamma_{n}TcT_{c} - 1.18 1.07 Δ(0)\Delta(0)/kBTck_{\mathrm{B}}T_{c} - 1.75 1.4

IV Summary

To summarize, the noncentrosymmetric NbReSi superconductor were synthesized and investigated by means of the electrical-resistivity, magnetization, and heat-capacity measurements, as well as via electronic band structure calculations. We found that NbReSi shows bulk superconductivity at TcT_{c} = 6.5 K. Its upper critical field μ0Hc2(0)\mu_{0}H_{c2}(0) = 12.6 T is comparable to the weak coupling Pauli limit. The low-temperature zero-field electronic specific heat data suggest nodeless SC, with a gap value close to the BCS theoretical value. The specific-heat discontinuity and the electron-phonon coupling constant λep\lambda_{\mathrm{ep}} suggest weak-coupling SC in NbReSi. Electronic band structure calculations reveal a relatively large band splitting near the Fermi level due to the presence of a strong ASOC. These results suggest that NbReSi represents a new candidate material to study the broken TRS in the superconducting state of weakly correlated NCSCs.

V Acknowledgments

This work was supported by the Key R&D Program of Zhejiang Province, China (2021C01002), the National Natural Science Foundation of China (No. 11874320, No. 12034017, and No. 11974306), and the National Key R&D Program of China (No. 2017YFA0303100). T. Shang acknowledge the support from the Natural Science Foundation of Shanghai (Grant No. 21ZR1420500 and No. 21JC1402300).

References

  • Bauer et al. [2004] E. Bauer, G. Hilscher, H. Michor, C. Paul, E. W. Scheidt, A. Gribanov, Y. Seropegin, H. Noël, M. Sigrist, and P. Rogl, Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si\mathrm{CePt_{3}Si}Phys. Rev. Lett. 92, 027003 (2004).
  • Bauer and Sigrist [2012] E. Bauer and M. Sigrist, Non-centrosymmetric superconductors: introduction and overview, Vol. 847 (Springer Science & Business Media, 2012).
  • Smidman et al. [2017] M. Smidman, M. B. Salamon, H. Q. Yuan, and D. F. Agterberg, Superconductivity and spin–orbit coupling in non-centrosymmetric materials:: a review, Rep. Prog. Phys. 80, 036501 (2017).
  • Yuan et al. [2006] H. Q. Yuan, D. F. Agterberg, N. Hayashi, P. Badica, D. Vandervelde, K. Togano, M. Sigrist, and M. B. Salamon, ss-wave spin-triplet order in superconductors without inversion symmetry:: Li2Pd3B\mathrm{Li_{2}Pd_{3}B} and Li2Pt3B\mathrm{Li_{2}Pt_{3}B}Phys. Rev. Lett. 97, 017006 (2006).
  • Bonalde et al. [2005] I. Bonalde, W. Brämer-Escamilla, and E. Bauer, Evidence for line nodes in the superconducting energy gap of noncentrosymmetric CePt3Si\mathrm{CePt_{3}Si} from magnetic penetration depth measurements, Phys. Rev. Lett. 94, 207002 (2005).
  • Xie et al. [2020] W. Xie, P. Zhang, B. Shen, W. Jiang, G. Pang, T. Shang, C. Cao, M. Smidman, and H. Yuan, CaPtAs\mathrm{CaPtAs}: A new noncentrosymmetric superconductor, Sci. China Phys. Mech. Astron. 63, 237412 (2020).
  • Shang et al. [2020a] T. Shang, M. Smidman, A. Wang, L.-J. Chang, C. Baines, M. K. Lee, Z. Y. Nie, G. M. Pang, W. Xie, W. B. Jiang, M. Shi, M. Medarde, T. Shiroka, and H. Q. Yuan, Simultaneous nodal superconductivity and time-reversal symmetry breaking in the noncentrosymmetric superconductor CaPtAs\mathrm{CaPtAs}Phys. Rev. Lett. 124, 207001 (2020a).
  • Pang et al. [2015] G. M. Pang, M. Smidman, W. B. Jiang, J. K. Bao, Z. F. Weng, Y. F. Wang, L. Jiao, J. L. Zhang, G. H. Cao, and H. Q. Yuan, Evidence for nodal superconductivity in quasi-one-dimensional K2Cr3As3\mathrm{K_{2}Cr_{3}As_{3}}Phys. Rev. B 91, 220502(R) (2015).
  • Chen et al. [2013a] J. Chen, L. Jiao, J. L. Zhang, Y. Chen, L. Yang, M. Nicklas, F. Steglich, and H. Q. Yuan, Evidence for two-gap superconductivity in the non-centrosymmetric compound LaNiC2\mathrm{LaNiC_{2}}New J. Phys. 15, 053005 (2013a).
  • Kuroiwa et al. [2008] S. Kuroiwa, Y. Saura, J. Akimitsu, M. Hiraishi, M. Miyazaki, K. H. Satoh, S. Takeshita, and R. Kadono, Multigap superconductivity in sesquicarbides La2C3\mathrm{La_{2}C_{3}} and Y2C3\mathrm{Y_{2}C_{3}}Phys. Rev. Lett. 100, 097002 (2008).
  • Harada et al. [2007] A. Harada, S. Akutagawa, Y. Miyamichi, H. Mukuda, Y. Kitaoka, and J. Akimitsu, Multigap superconductivity in Y2C3\mathrm{Y_{2}C_{3}}:: a 13C-NMR study, J. Phys. Soc. Jpn. 76, 023704 (2007).
  • Chen et al. [2011] J. Chen, M. B. Salamon, S. Akutagawa, J. Akimitsu, J. Singleton, J. L. Zhang, L. Jiao, and H. Q. Yuan, Evidence of nodal gap structure in the noncentrosymmetric superconductor Y2C3\mathrm{Y_{2}C_{3}}Phys. Rev. B 83, 144529 (2011).
  • Kimura et al. [2007] N. Kimura, K. Ito, H. Aoki, S. Uji, and T. Terashima, Extremely high upper critical magnetic field of the noncentrosymmetric heavy fermion superconductor CeRhSi3\mathrm{CeRhSi_{3}}Phys. Rev. Lett. 98, 197001 (2007).
  • Carnicom et al. [2018] E. M. Carnicom, W. Xie, T. Klimczuk, J. Lin, K. Górnicka, Z. Sobczak, N. P. Ong, and R. J. Cava, TaRh2B2\mathrm{TaRh_{2}B_{2}} and NbRh2B2\mathrm{NbRh_{2}B_{2}}:: superconductors with a chiral noncentrosymmetric crystal structure, Sci. Adv. 4, eaar7969 (2018).
  • Kong et al. [2015] T. Kong, S. L. Bud’ko, and P. C. Canfield, Anisotropic Hc2{H}_{c2}, thermodynamic and transport measurements, and pressure dependence of Tc{T}_{c} in K2Cr3As3\mathrm{K_{2}Cr_{3}As_{3}} single crystals, Phys. Rev. B 91, 020507(R) (2015).
  • Arushi et al. [2020] Arushi, D. Singh, P. K. Biswas, A. D. Hillier, and R. P. Singh, Unconventional superconducting properties of noncentrosymmetric re5.5Ta{\mathrm{re}}_{5.5}\mathrm{Ta}Phys. Rev. B 101, 144508 (2020).
  • Kimura et al. [2005] N. Kimura, K. Ito, K. Saitoh, Y. Umeda, H. Aoki, and T. Terashima, Pressure-induced superconductivity in noncentrosymmetric heavy-fermion CeRhSi3\mathrm{CeRhSi_{3}}Phys. Rev. Lett. 95, 247004 (2005).
  • Sugitani et al. [2006] I. Sugitani, Y. Okuda, H. Shishido, T. Yamada, A. Thamizhavel, E. Yamamoto, T. D. Matsuda, Y. Haga, T. Takeuchi, R. Settai, and Y. Onuki, Pressure-induced heavy-fermion superconductivity in antiferromagnet CeIrSi3\mathrm{CeIrSi_{3}} without inversion symmetry, J. Phys. Soc. Jpn. 75, 043703 (2006).
  • Settai et al. [2007] R. Settai, I. Sugitani, Y. Okuda, A. Thamizhavel, M. Nakashima, Y. Ōnuki, and H. Harima, Pressure-induced superconductivity in CeCoGe3\mathrm{CeCoGe_{3}} without inversion symmetry, J. Magn. Magn. Mater. 310, 844 (2007).
  • Honda et al. [2010] F. Honda, I. Bonalde, S. Yoshiuchi, Y. Hirose, T. Nakamura, K. Shimizu, R. Settai, and Y. Onuki, Pressure-induced superconductivity in non-centrosymmetric compound CeIrGe3\mathrm{CeIrGe_{3}}Physica C 470, S543 (2010).
  • Akazawa et al. [2004] T. Akazawa, H. Hidaka, T. Fujiwara, T. C. Kobayashi, E. Yamamoto, Y. Haga, R. Settai, and Y. Onuki, Pressure-induced superconductivity in ferromagnetic UIr without inversion symmetry, J. Phys.: Condens. Matter 16, L29 (2004).
  • Takeya et al. [2007] H. Takeya, M. ElMassalami, S. Kasahara, and K. Hirata, Specific-heat studies of the spin-orbit interaction in noncentrosymmetric Li2(Pd1xPtx)3B\mathrm{Li_{2}(Pd_{1-x}Pt_{x})_{3}B} (x=0,0.5,1)(x=0,0.5,1) superconductors, Phys. Rev. B 76, 104506 (2007).
  • Nishiyama et al. [2007] M. Nishiyama, Y. Inada, and G.-q. Zheng, Spin triplet superconducting state due to broken inversion symmetry in Li2Pt3B\mathrm{Li_{2}Pt_{3}B}Phys. Rev. Lett. 98, 047002 (2007).
  • Hillier et al. [2009] A. D. Hillier, J. Quintanilla, and R. Cywinski, Evidence for time-reversal symmetry breaking in the noncentrosymmetric superconductor LaNiC2\mathrm{LaNiC_{2}}Phys. Rev. Lett. 102, 117007 (2009).
  • Shang et al. [2020b] T. Shang, S. K. Ghosh, J. Z. Zhao, L.-J. Chang, C. Baines, M. K. Lee, D. J. Gawryluk, M. Shi, M. Medarde, J. Quintanilla, and T. Shiroka, Time-reversal symmetry breaking in the noncentrosymmetric Zr3Ir\mathrm{Zr_{3}Ir} superconductor, Phys. Rev. B 102, 020503(R) (2020b).
  • Arushi et al. [2021] Arushi, D. Singh, A. D. Hillier, M. S. Scheurer, and R. P. Singh, Time-reversal symmetry breaking and multigap superconductivity in the noncentrosymmetric superconductor la7ni3{\mathrm{la}}_{7}{\mathrm{ni}}_{3}Phys. Rev. B 103, 174502 (2021).
  • Singh et al. [2020] D. Singh, M. S. Scheurer, A. D. Hillier, D. T. Adroja, and R. P. Singh, Time-reversal-symmetry breaking and unconventional pairing in the noncentrosymmetric superconductor la7rh3{\mathrm{la}}_{7}{\mathrm{rh}}_{3}Phys. Rev. B 102, 134511 (2020).
  • Mayoh et al. [2021] D. A. Mayoh, A. D. Hillier, G. Balakrishnan, and M. R. Lees, Evidence for the coexistence of time-reversal symmetry breaking and bardeen-cooper-schrieffer-like superconductivity in la7pd3{\mathrm{la}}_{7}{\mathrm{pd}}_{3}Phys. Rev. B 103, 024507 (2021).
  • Barker et al. [2015] J. A. T. Barker, D. Singh, A. Thamizhavel, A. D. Hillier, M. R. Lees, G. Balakrishnan, D. M. Paul, and R. P. Singh, Unconventional superconductivity in La7Ir3\mathrm{La_{7}Ir_{3}} revealed by muon spin relaxation: Introducing a new family of noncentrosymmetric superconductor that breaks time-reversal symmetry, Phys. Rev. Lett. 115, 267001 (2015).
  • Singh et al. [2014] R. P. Singh, A. D. Hillier, B. Mazidian, J. Quintanilla, J. F. Annett, D. M. Paul, G. Balakrishnan, and M. R. Lees, Detection of time-reversal symmetry breaking in the noncentrosymmetric superconductor Re6Zr\mathrm{Re_{6}Zr} using muon-spin spectroscopy, Phys. Rev. Lett. 112, 107002 (2014).
  • Singh et al. [2017] D. Singh, J. A. T. Barker, A. Thamizhavel, D. M. Paul, A. D. Hillier, and R. P. Singh, Time-reversal symmetry breaking in the noncentrosymmetric superconductor Re6Hf\mathrm{Re_{6}Hf}:: further evidence for unconventional behavior in the α\alpha-Mn family of materials, Phys. Rev. B 96, 180501(R) (2017).
  • Shang et al. [2018a] T. Shang, G. M. Pang, C. Baines, W. B. Jiang, W. Xie, A. Wang, M. Medarde, E. Pomjakushina, M. Shi, J. Mesot, H. Q. Yuan, and T. Shiroka, Nodeless superconductivity and time-reversal symmetry breaking in the noncentrosymmetric superconductor Re24Ti5\mathrm{Re_{24}Ti_{5}}Phys. Rev. B 97, 020502(R) (2018a).
  • Shang et al. [2018b] T. Shang, M. Smidman, S. K. Ghosh, C. Baines, L. J. Chang, D. J. Gawryluk, J. A. T. Barker, R. P. Singh, D. M. Paul, G. Balakrishnan, E. Pomjakushina, M. Shi, M. Medarde, A. D. Hillier, H. Q. Yuan, J. Quintanilla, J. Mesot, and T. Shiroka, Time-reversal symmetry breaking in Re-based superconductors, Phys. Rev. Lett. 121, 257002 (2018b).
  • Aczel et al. [2010] A. A. Aczel, T. J. Williams, T. Goko, J. P. Carlo, W. Yu, Y. J. Uemura, T. Klimczuk, J. D. Thompson, R. J. Cava, and G. M. Luke, Muon spin rotation/relaxation measurements of the noncentrosymmetric superconductor Mg10Ir19B16Phys. Rev. B 82, 024520 (2010).
  • Singh et al. [2018a] D. Singh, J. A. T. Barker, A. Thamizhavel, A. D. Hillier, D. M. Paul, and R. P. Singh, Superconducting properties and μ\muSR study of the noncentrosymmetric superconductor Nb0.5Os0.5J. Phys.: Condens. Mat. 30, 075601 (2018a).
  • Shang et al. [2020c] T. Shang, C. Baines, L.-J. Chang, D. J. Gawryluk, E. Pomjakushina, M. Shi, M. Medarde, and T. Shiroka, Re1-xMox as an ideal test case of time-reversal symmetry breaking in unconventional superconductors, npj Quantum Mater. 5, 76 (2020c).
  • Shang et al. [2021] T. Shang, W. Xie, J. Z. Zhao, Y. Chen, D. J. Gawryluk, M. Medarde, M. Shi, H. Q. Yuan, E. Pomjakushina, and T. Shiroka, Multigap superconductivity in centrosymmetric and noncentrosymmetric rhenium-boron superconductors, Phys. Rev. B 103, 184517 (2021).
  • Barz et al. [1980] H. Barz, H. C. Ku, G. P. Meisner, Z. Fisk, and B. T. Matthias, Ternary transition metal phosphides: High-temperature superconductors, Proc. Natl. Acad. Sci. U.S.A. 77, 3132 (1980).
  • Meisner et al. [1983] G. Meisner, H. Ku, and H. Barz, Superconducting equiatomic ternary transition metal arsenides, Mater. Res. Bull. 18, 983 (1983).
  • Shirotani et al. [1999] I. Shirotani, K. Tachi, Y. Konno, S. Todo, and T. Yagi, Superconductivity of the ternary ruthenium compounds HfRuP and ZrRuX (X = P, As, Si or Ge) prepared at a high pressure, Philos. Mag. B 79, 767 (1999).
  • Das et al. [2021] D. Das, D. T. Adroja, M. R. Lees, R. W. Taylor, Z. S. Bishnoi, V. K. Anand, A. Bhattacharyya, Z. Guguchia, C. Baines, H. Luetkens, G. B. G. Stenning, L. Duan, X. Wang, and C. Jin, Probing the superconducting gap structure in the noncentrosymmetric topological superconductor ZrRuAs, Phys. Rev. B 103, 144516 (2021).
  • Su et al. [2021] H. Su, Z. Y. Nie, F. Du, S. S. Luo, A. Wang, Y. J. Zhang, Y. Chen, P. K. Biswas, D. T. Adroja, C. Cao, M. Smidman, and H. Q. Yuan, Fully gapped superconductivity with preserved time-reversal symmetry in noncentrosymmetric LaPdIn, Phys. Rev. B 104, 024505 (2021).
  • Yarmolyuk and Gladishevs’kii [1974] Y. P. Yarmolyuk and E. I. Gladishevs’kii, New ternary compounds of equiatomic composition in the systems of two transition metals and silicon or germanium, Dopov. Akad. Nauk Ukr. RSR, Ser. B, 11, 1030 (1974).
  • Aharoni [1998] A. Aharoni, Demagnetizing factors for rectangular ferromagnetic prisms, J. Appl. Phys. 83, 3432 (1998).
  • Osborn [1945] J. A. Osborn, Demagnetizing Factors of the General Ellipsoid, Phys. Rev. 67, 351 (1945).
  • Rao et al. [1985] G. V. S. Rao, K. Wagner, G. Balakrishnan, J. Janaki, W. Paulus, R. Schöllhorn, V. S. Subramanian, and U. Poppe, Structure and superconductivity studies on ternary equiatomic silicides, MMMMSiSiBull. Mater. Sci. 7, 215 (1985).
  • McMillan [1968] W. L. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167, 331 (1968).
  • Kittel et al. [1996] C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics, Vol. 8 (Wiley New York, 1996).
  • Tinkham [2004] M. Tinkham, Introduction to superconductivity (Courier Corporation, 2004).
  • Singh et al. [2018b] D. Singh, K. P. Sajilesh, J. A. T. Barker, D. M. Paul, A. D. Hillier, and R. P. Singh, Time-reversal symmetry breaking in the noncentrosymmetric superconductor Re6Ti\mathrm{Re_{6}Ti}Phys. Rev. B 97, 100505(R) (2018b).
  • Mayoh et al. [2017] D. A. Mayoh, J. A. T. Barker, R. P. Singh, G. Balakrishnan, D. M. Paul, and M. R. Lees, Superconducting and normal-state properties of the noncentrosymmetric superconductor Re6Zr\mathrm{Re_{6}Zr}Phys. Rev. B 96, 064521 (2017).
  • Singh et al. [2016] D. Singh, A. D. Hillier, A. Thamizhavel, and R. P. Singh, Superconducting properties of the noncentrosymmetric superconductor Re6Hf\mathrm{Re_{6}Hf}Phys. Rev. B 94, 054515 (2016).
  • Chen et al. [2013b] J. Chen, L. Jiao, J. L. Zhang, Y. Chen, L. Yang, M. Nicklas, F. Steglich, and H. Q. Yuan, BCS-like superconductivity in the noncentrosymmetric compounds NbxRe1x\mathrm{Nb_{x}Re_{1-x}} (0.13x0.380.13\leq x\leq 0.38), Phys. Rev. B 88, 144510 (2013b).
  • Biswas et al. [2012] P. K. Biswas, A. D. Hillier, M. R. Lees, and D. M. Paul, Comparative study of the centrosymmetric and noncentrosymmetric superconducting phases of Re3W\mathrm{Re_{3}W} using muon spin spectroscopy and heat capacity measurements, Phys. Rev. B 85, 134505 (2012).
  • Sajilesh and Singh [2021] K. P. Sajilesh and R. P. Singh, Superconducting properties of the non-centrosymmetric superconductors TaXSi (X = Re, Ru), Supercond. Sci. Technol. 34, 055003 (2021).
  • Werthamer et al. [1966] N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Temperature and purity dependence of the superconducting critical field, Hc2{H}_{c2}. iii. electron spin and spin-orbit effects, Phys. Rev. 147, 295 (1966).
  • Yuan et al. [2011] H. Yuan, J. Chen, J. Singleton, S. Akutagawa, and J. Akimitsu, Large upper critical field in non-centrosymmetric superconductor Y2C3\mathrm{Y_{2}C_{3}}J. Phys. Chem. Solids 72, 577 (2011).
  • Clogston [1962] A. M. Clogston, Upper limit for the critical field in hard superconductors, Phys. Rev. Lett. 9, 266 (1962).
  • Biswas et al. [2011] P. K. Biswas, M. R. Lees, A. D. Hillier, R. I. Smith, W. G. Marshall, and D. M. Paul, Structure and superconductivity of two different phases of Re3W\mathrm{Re_{3}W}Phys. Rev. B 84, 184529 (2011).
  • Shang and Shiroka [2021] T. Shang and T. Shiroka, Time-reversal symmetry breaking in Re-based superconductors:: recent developments, Front. Phys. 9, 270 (2021).
  • Gurevich [2003] A. Gurevich, Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors, Phys. Rev. B 67, 184515 (2003).