This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Navier–Stokes regularity criteria in sum spaces

Evan Miller McMaster University, Department of Mathematics, [email protected]
Abstract

In this paper, we will consider regularity criteria for the Navier–Stokes equation in mixed Lebesgue sum spaces. In particular, we will prove regularity criteria that only require control of the velocity, vorticity, or the positive part of the second eigenvalue of the strain matrix, in the sum space of two scale critical spaces. This represents a significant step forward, because each sum space regularity criterion covers a whole family of scale critical regularity criteria in a single estimate. In order to show this, we will also prove a new inclusion and inequality for sum spaces in families of mixed Lebesgue spaces with a scale invariance that is also of independent interest.

1 Introduction

The Navier–Stokes equation is one of the fundamental equations of fluid dynamics. For incompressible flow, meaning the density of the fluid is constant, the Navier–Stokes equation is given by

tuνΔu+(u)u+p\displaystyle\partial_{t}u-\nu\Delta u+(u\cdot\nabla)u+\nabla p =0\displaystyle=0 (1.1)
u\displaystyle\nabla\cdot u =0,\displaystyle=0, (1.2)

where uu is the velocity, ν>0\nu>0 is the kinematic viscosity, and pp is the pressure. When ν=0,\nu=0, this reduces to the Euler equation for inviscid fluids. The first equation expresses Newton’s second law, with tu+(u)u\partial_{t}u+(u\cdot\nabla)u the acceleration in the Lagrangian frame, and νΔu+p,\nu\Delta u+\nabla p, the force divided by the mass—noting that the pressure pp in (1.1) is actually the physical pressure divided by the density of the fluid in question. We will note here that the pressure can be determined entirely in terms of the velocity using the divergence free constraint and inverting the Laplacian with

Δp=i,j=13ujxiuixj.-\Delta p=\sum_{i,j=1}^{3}\frac{\partial u_{j}}{\partial x_{i}}\frac{\partial u_{i}}{\partial x_{j}}. (1.3)

Because the gradient of pressure is a Lagrange multiplier for the divergence free constraint, it is possible to drop this term by using the Helmholtz projection onto the space of divergence free vector fields. We can rewrite the equation as

tuνΔu+Pdf((u)u)=0.\partial_{t}u-\nu\Delta u+P_{df}((u\cdot\nabla)u)=0. (1.4)

Two other crucially important objects for the study of the Navier–Stokes equation are the strain and the vorticity. The strain is the symmetric part of u,\nabla u, with

Sij=12(iuj+jui).S_{ij}=\frac{1}{2}\left(\partial_{i}u_{j}+\partial_{j}u_{i}\right). (1.5)

The evolution equation for the strain is given by

tSνΔS+(u)S+S2+14ωω14|ω|2I3+Hess(p)=0.\partial_{t}S-\nu\Delta S+(u\cdot\nabla)S+S^{2}+\frac{1}{4}\omega\otimes\omega-\frac{1}{4}|\omega|^{2}I_{3}+\operatorname*{Hess}(p)=0. (1.6)

The vorticity is given by ω=×u,\omega=\nabla\times u, and is a vector representation of the anti-symmetric part of u.\nabla u. The evolution equation for the vorticity is given by

tωνΔω+(u)ωSω=0.\partial_{t}\omega-\nu\Delta\omega+(u\cdot\nabla)\omega-S\omega=0. (1.7)

While the velocity tells us how a parcel of the fluid is advected, the vorticity tells us how a parcel of the fluid is rotated, and the strain tells us how a parcel of the fluid is deformed, and for that reason is also known as the deformation matrix.

In his ground breaking work on the Navier–Stokes equation [Leray], Leray proved the existence of weak solutions to the Navier–Stokes equation in L([0,+);L2)L2([0,+);H˙1)L^{\infty}\left([0,+\infty);L^{2}\right)\cap L^{2}\left([0,+\infty);\dot{H}^{1}\right) for generic initial data u0L2.u^{0}\in L^{2}. Leray proved the existence of weak solutions in the sense of distributions satisfying the energy inequality

12u(,t)L22+ν0tu(,τ)L22dτ12u0L22,\frac{1}{2}\|u(\cdot,t)\|_{L^{2}}^{2}+\nu\int_{0}^{t}\|\nabla u(\cdot,\tau)\|_{L^{2}}^{2}\mathop{}\!\mathrm{d}\tau\leq\frac{1}{2}\left\|u^{0}\right\|_{L^{2}}^{2}, (1.8)

for all t>0.t>0. For strong solutions, this inequality holds with equality. While Leray-Hopf weak solutions, as such solutions are generally known, must exist globally in time, they are not known to be either smooth or unique.

Kato and Fujita developed the notion of mild solutions based on the heat semi-group [KatoFujita]. Mild solutions of the Navier–Stokes equation satisfy the equation

tuνΔu=Pdf((u)u),\partial_{t}u-\nu\Delta u=-P_{df}((u\cdot\nabla)u), (1.9)

in the sense of convolution with the heat kernel as in Duhamel’s formula.

Kato and Fujita proved that mild solutions must exist locally in time for initial data in H˙1\dot{H}^{1} uniformly in terms of the H˙1\dot{H}^{1} norm, and furthermore that such solutions must be unique and have higher regularity [KatoFujita]. We will give a precise statement of the definition of a mild solution and Kato and Fujita’s local existence theorem in section 2.

While, unlike Leray-Hopf weak solutions, mild solutions must be smooth and unique, they may not exist globally in time. This represents a major conundrum, because while it is not really a problem if smooth solutions of the Navier–Stokes equation develop singularities in finite-times—mathematical singularities describe many phenomena that actually exist in nature, from the shock waves that develop when the sound barrier is broken to the formation of black holes—for any notion of a solution to be physically meaningful, there should at least be a guarantee that solutions are unique, as the Navier–Stokes equation is a deterministic model.

The Navier–Stokes equation has a scale invariance. If uu is a solution of the Navier–Stokes equation then so is uλ,u^{\lambda}, for all λ>0,\lambda>0, where

uλ(x,t)=λu(λx,λ2t).u^{\lambda}(x,t)=\lambda u(\lambda x,\lambda^{2}t). (1.10)

We will note that for initial data, this rescaling becomes

u0,λ(x)=λu0(λx).u^{0,\lambda}(x)=\lambda u^{0}(\lambda x). (1.11)

Kato proved the existence of smooth solutions globally in time for small initial data in L3,L^{3}, which is critical with respect to this scaling in [KatoL3], and this was later extending by Koch and Tataru to the critical space BMO1BMO^{-1} in [KochTataru].

It is also possible to guarantee that a solution must remain smooth as long as there is control on some scale critical quantity is controlled. The Ladyzhenskaya-Prodi-Serrin regularity criterion [Ladyzhenskaya, Prodi, Serrin] states that if uLTpLxq,2p+3q=1,3<q+,u\in L^{p}_{T}L^{q}_{x},\frac{2}{p}+\frac{3}{q}=1,3<q\leq+\infty, then the solution is smooth and can be continued to a smooth solution for some time T~>T.\tilde{T}>T. In particular, if Tmax<+,T_{max}<+\infty, then

0Tmaxu(,t)Lqpdt=+,\int_{0}^{T_{max}}\|u(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t=+\infty, (1.12)

where TmaxT_{max} is the maximal time of existence for a mild solution for some initial data u0Hdf1.u^{0}\in H^{1}_{df}. This was then extended to the endpoint case p=+,q=3p=+\infty,q=3 by Escauriaza, Seregin, and Šverák in [ESS], where they showed that if Tmax<+,T_{max}<+\infty, then

lim suptTmaxu(,t)L3=+.\limsup_{t\to T_{max}}\|u(\cdot,t)\|_{L^{3}}=+\infty. (1.13)

This result was improved by Seregin in [SereginL3], where the the limit supremum in (1.13) was replaced with the limit, and recently further improved by Tao, who proved a triply logarithmic lower bound on the rate of blowup of the L3L^{3} norm [TaoL3]. Somewhat more precisely, Tao showed that for an absolute constant c>0,c>0, if Tmax<+T_{max}<+\infty,

lim suptTmaxu(,t)L3(logloglog1Tmaxt)c=+.\limsup_{t\to T_{max}}\frac{\|u(\cdot,t)\|_{L^{3}}}{\left(\log\log\log\frac{1}{T_{max}-t}\right)^{c}}=+\infty. (1.14)

The Ladyzhenskaya-Prodi-Serrin regularity criterion has also been strengthened to require control in a family of scale critical spaces involving the endpoint Besov space, LTpB˙,σL^{p}_{T}\dot{B}^{\sigma}_{\infty,\infty} [ChenZhangBesov, KOTbesov, KozonoShimadaBesov], while the Escauriaza-Seregin-Šverák regularity criterion has been strengthened to require control in time of the scale-critical nonendpoint Besov spaces, LTB˙p,q1+3pL^{\infty}_{T}\dot{B}^{-1+\frac{3}{p}}_{p,q} [AlbrittonBesov, GKPbesov].

In this paper, we will extend the Ladyzhenskaya-Prodi-Serrin regularity criterion to the sum space LTpLxq+LT2Lx,L^{p}_{T}L^{q}_{x}+L^{2}_{T}L^{\infty}_{x}, for all 2p+3q=1,3<q<+.\frac{2}{p}+\frac{3}{q}=1,3<q<+\infty. Our precise result is as follows.

Theorem 1.1.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let 3<q<+,2p+3q=1,3<q<+\infty,\frac{2}{p}+\frac{3}{q}=1, and let u=v+σ.u=v+\sigma. Then for all 0<T<Tmax0<T<T_{max}

u(,T)L22u0L22exp(Cpνp10Tv(,t)Lqpdt+1ν0Tσ(,t)L2dt),\|\nabla u(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\frac{1}{\nu}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t\right), (1.15)

where CpC_{p} depends only on p.p. In particular if Tmax<+,T_{max}<+\infty, then

Cpνp10Tmaxv(,t)Lqpdt+1ν0Tmaxσ(,t)L2dt=+.\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T_{max}}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\frac{1}{\nu}\int_{0}^{T_{max}}\|\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t=+\infty. (1.16)

We will note that this is a significant advance because the regularity criterion in the sum space LTpLxq+LT2LxL^{p}_{T}L^{q}_{x}+L^{2}_{T}L^{\infty}_{x} contains within it the whole family of regularity criteria in the spaces LTpLxq,L^{p^{\prime}}_{T}L^{q^{\prime}}_{x}, where 2p+3q=1,\frac{2}{p^{\prime}}+\frac{3}{q^{\prime}}=1, and qq+.q\leq q^{\prime}\leq+\infty. We will prove this inclusion in section 4.

There is a very large literature on regularity criteria for the Navier–Stokes equation. In addition to the aforementioned Ladyzhenskaya-Prodi-Serrin regularity criterion, regularity criteria have also been proven involving the vorticity, particularly the celebrated Beale-Kato-Madja regularity criterion [BKM], which applies both to solutions of the Euler and Navier–Stokes equations. There have also been a number of scale-critical, component-reduction-type regularity criteria that only require control on a certain part of the solution, including just two components of the vorticity (ω1,ω2,0)(\omega_{1},\omega_{2},0)—or equivalently e3×ωe_{3}\times\omega [ChaeVort], the derivative in just one direction 3u\partial_{3}u [KukavicaZiane], and just one component of the velocity u3u_{3} [CheminZhang, CheminZhangZhang].

All of these component reduction results have a physical significance in that they can be seen as saying that blowup must in some sense be fully three dimensional and isotropic. For the 2D Navier–Stokes equation, there are global smooth solutions, and e3×ω,3u,e_{3}\times\omega,\partial_{3}u, and u3u_{3} are all identically zero. If solutions of the 3D Navier–Stokes equation is treated as a perturbation of the 2D Navier–Stokes equation, this means that these regularity criteria can be seen as perturbation conditions. If e3×ω,3u,e_{3}\times\omega,\partial_{3}u, or u3u_{3} remain finite in the appropriate scale critical space, then our solution is close enough to being 2D to guarantee regularity. This is also consistent with the phenomenological picture of turbulence developed by Kolmogorov, which rests on the assumption that turbulence is locally isotropic at sufficiently small scales [Kolmogorov].

Another component reduction regularity criterion involves the positive part of the second eigenvalue of the strain matrix. If Tmax<+,T_{max}<+\infty, then for all 2p+3q=2,32<q+,\frac{2}{p}+\frac{3}{q}=2,\frac{3}{2}<q\leq+\infty,

0Tmaxλ2+(,t)Lqpdt=+.\int_{0}^{T_{max}}\|\lambda_{2}^{+}(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t=+\infty. (1.17)

This was first proven by Neustupa and Penel [NeustupaPenel1, NeustupaPenel2, NeustupaPenel3] and independently by the author using somewhat different methods in [MillerStrain]. This component reduction regularity criterion has a particular geometric interpretation. When the strain has two positive eigenvalues, it means that there is stretching in two directions and compression more strongly in a third, and therefore there is planar stretching and axial compression. When the strain has two negative eigenvalues, it means that there is compression in two directions, and stretching more strongly in a third, and therefore this is planar compression and axial stretching. The regularity criterion in (1.17) therefore implies that finite-time blowup for the Navier–Stokes equation requires unbounded planar stretching.

We can generalize the regularity criterion (1.17) to a regularity criterion on λ2+\lambda_{2}^{+} in the sum space LTpLxq+LT1LxL^{p}_{T}L^{q}_{x}+L^{1}_{T}L^{\infty}_{x}.

Theorem 1.2.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let λ1(x,t)λ2(x,t)λ3(x,t)\lambda_{1}(x,t)\leq\lambda_{2}(x,t)\leq\lambda_{3}(x,t) be the eigenvalues of the strain, S(x,t)S(x,t), and let λ2+=max(0,λ2)\lambda_{2}^{+}=\max\left(0,\lambda_{2}\right). Let 32<q<+,2p+3q=2,\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2, and let λ2+=f+g.\lambda_{2}^{+}=f+g. Then for all 0<T<Tmax0<T<T_{max}

S(,T)L22S0L22exp(Cpνp10Tf(,t)Lqpdt+20Tg(,t)Ldt),\|S(\cdot,T)\|_{L^{2}}^{2}\leq\left\|S^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T}\|g(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right), (1.18)

where CpC_{p} depends only on p.p. In particular if Tmax<+,T_{max}<+\infty, then

Cpνp10Tmaxf(,t)Lqpdt+20Tmaxg(,t)Ldt=+.\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T_{max}}\|f(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T_{max}}\|g(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t=+\infty. (1.19)

Finally, we will note that we can also express the regularity criterion for the vorticity in terms of sum space LTpLxq+LT1LxL^{p}_{T}L^{q}_{x}+L^{1}_{T}L^{\infty}_{x}.

Theorem 1.3.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let 32<q<+,2p+3q=2,\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2, and let ω=v+σ.\omega=v+\sigma. Then for all 0<T<Tmax0<T<T_{max}

ω(,T)L22ω0L22exp(Cpνp10Tv(,t)Lqpdt+20Tσ(,t)Ldt),\|\omega(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\omega^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right), (1.20)

where CpC_{p} depends only on p.p. In particular if Tmax<+,T_{max}<+\infty, then

Cpνp10Tmaxv(,t)Lqpdt+20Tmaxσ(,t)Ldt=+.\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T_{max}}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T_{max}}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t=+\infty. (1.21)

Given that we have proven a number of regularity criteria in Lebesgue sum spaces of the form LtpLxq+LTkLxL^{p}_{t}L^{q}_{x}+L^{k}_{T}L^{\infty}_{x}, it is a natural to consider the structure of such sum spaces in more detail. In particular, we will consider what spaces are contained in this sum space. If we are working with standard Lebesgue spaces, rather than mixed spaces, it is a well known result—see for instance Chapter 6.1 in [Folland]—that for all 1q<q<+,1\leq q^{\prime}<q<+\infty,

LqLq+L.L^{q}\subset L^{q^{\prime}}+L^{\infty}. (1.22)

In fact, it is straightforward to show this inclusion also holds if LqL^{q} is replaced with Lq,,L^{q,\infty}, the endpoint Lorentz space also known as weak Lq,L^{q}, in which case we have

Lq,Lq+L.L^{q,\infty}\subset L^{q^{\prime}}+L^{\infty}. (1.23)

Note that in Theorem 1.1 we have a scaling relation 2p+3q=1\frac{2}{p}+\frac{3}{q}=1, so if we take (p,q),(p,q),(p^{\prime},q^{\prime}),(p,q), and (2,),(2,\infty), satisfying this scaling relations and q<q<+,q^{\prime}<q<+\infty, then the point (p,q)(p,q) is in some sense in between (p,q)(p^{\prime},q^{\prime}) and (2,)(2,\infty), so there is a reason to expect we may have an inclusion of the form LTpLxqLTpLxq+LT2LxL_{T}^{p}L_{x}^{q}\subset L_{T}^{p^{\prime}}L_{x}^{q^{\prime}}+L_{T}^{2}L_{x}^{\infty} analogous to the inclusion (1.22). We will show that this inclusion does hold, and we do in fact have a slightly stronger inclusion.

Theorem 1.4.

Suppose 1k<+,1m<+,1\leq k<+\infty,1\leq m<+\infty, and suppose

kp+mq=1,\frac{k}{p}+\frac{m}{q}=1, (1.24)

and

kp+mq=1,\frac{k}{p^{\prime}}+\frac{m}{q^{\prime}}=1, (1.25)

with m<q<q<+.m<q^{\prime}<q<+\infty. Then

LTpLxq,LTpLxq+LTkLx.L_{T}^{p}L_{x}^{q,\infty}\subset L_{T}^{p^{\prime}}L_{x}^{q^{\prime}}+L_{T}^{k}L_{x}^{\infty}. (1.26)

In particular, for all fLTpLxq,f\in L_{T}^{p}L_{x}^{q,\infty}, we have the explicit decomposition, f=g+hf=g+h with gLTpLxq,hLTkLx,g\in L_{T}^{p^{\prime}}L_{x}^{q^{\prime}},h\in L_{T}^{k}L_{x}^{\infty}, where

g(x,t)={f(x,t),if |f(x,t)|>f(,t)Lq,pk0,if |f(x,t)|f(,t)Lq,pk,g(x,t)=\begin{cases}f(x,t),&\text{if }|f(x,t)|>\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}\\ 0,&\text{if }|f(x,t)|\leq\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}\end{cases}, (1.27)

and

h(x,t)={f(x,t),if |f(x,t)|f(,t)Lq,pk0,if |f(x,t)|>f(,t)Lq,pk,h(x,t)=\begin{cases}f(x,t),&\text{if }|f(x,t)|\leq\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}\\ 0,&\text{if }|f(x,t)|>\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}\end{cases}, (1.28)

and we have the bounds

0Tg(,t)Lqpdt(qqq)pq0Tf(,t)Lq,pdt,\int_{0}^{T}\|g(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\mathop{}\!\mathrm{d}t\leq\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t, (1.29)

and

0Th(,t)Lkdt0Tf(,t)Lq,pdt.\int_{0}^{T}\|h(\cdot,t)\|_{L^{\infty}}^{k}\mathop{}\!\mathrm{d}t\leq\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t. (1.30)
Remark 1.5.

We know from Theorem 1.4 that for all

2p+3q=1,\frac{2}{p}+\frac{3}{q}=1, (1.31)

and

2p+3q=1,\frac{2}{p^{\prime}}+\frac{3}{q^{\prime}}=1, (1.32)

3<q<q<+,3<q^{\prime}<q<+\infty,

LTpLxq,LTpLxq+LT2Lx.L_{T}^{p}L_{x}^{q,\infty}\subset L_{T}^{p^{\prime}}L_{x}^{q^{\prime}}+L_{T}^{2}L_{x}^{\infty}. (1.33)

This means that the regularity criterion in Theorem 1.1 in the sum space LTpLxq+LT2LxL^{p^{\prime}}_{T}L^{q^{\prime}}_{x}+L^{2}_{T}L^{\infty}_{x} contains within it the whole family of regularity criteria in the spaces LTpLxq,,L^{p}_{T}L^{q,\infty}_{x}, where 2p+3q=1,\frac{2}{p}+\frac{3}{q}=1, and q<q<+.q^{\prime}<q<+\infty. Theorem 1.4 implies that this whole family of scale critical regularity criteria can be contained in a single estimate.

Likewise we can see from Theorem 1.4 that for all

1p+32q=1,\frac{1}{p}+\frac{3}{2q}=1, (1.34)

and

1p+32q=1,\frac{1}{p^{\prime}}+\frac{3}{2q^{\prime}}=1, (1.35)

32<q<q<+,\frac{3}{2}<q^{\prime}<q<+\infty,

LTpLxq,LTpLxq+LT1Lx.L_{T}^{p}L_{x}^{q,\infty}\subset L_{T}^{p^{\prime}}L_{x}^{q^{\prime}}+L_{T}^{1}L_{x}^{\infty}. (1.36)

This implies that the regularity criteria in Theorems 1.2 and 1.3, on λ2+\lambda_{2}^{+} and ω\omega respectively, in the sum space LTpLxq+LT1LxL^{p^{\prime}}_{T}L^{q^{\prime}}_{x}+L^{1}_{T}L^{\infty}_{x} contain within themselves the whole family of regularity criteria in the spaces LTpLxq,,L^{p}_{T}L^{q,\infty}_{x}, where 2p+3q=2,\frac{2}{p}+\frac{3}{q}=2, and q<q<+.q^{\prime}<q<+\infty.

These regularity criteria represent a significant advance not only because they have been improved to only requiring control on two different pieces of u,λ2+u,\lambda_{2}^{+}, or ω\omega in two different scale critical spaces rather than requiring control on all of u,λ2+u,\lambda_{2}^{+}, or ω\omega in a single scale critical space, but particularly because these regularity criteria contain a whole family of scale critical regularity criteria in a single estimate.

Remark 1.6.

For a large number of evolution equations in nonlinear PDEs, scaling laws and scale invariant spaces play a very important role. This is true not just for the Navier–Stokes equation, but also for the nonlinear Schrödinger equation, the nonlinear wave equation, and many other nonlinear evolution equations. Suppose we have a nonlinear evolution equation on d×+\mathbb{R}^{d}\times\mathbb{R}^{+} with a scale invariance

uλ(x,t)=λau(λx,λbt),u^{\lambda}(x,t)=\lambda^{a}u(\lambda x,\lambda^{b}t), (1.37)

with 0<an0<a\leq n and aba\leq b. Then for all bp+nq=a,\frac{b}{p}+\frac{n}{q}=a, the space LTpLxqL_{T}^{p}L_{x}^{q} is scale invariant.

Applying Theorem 1.4 we can see that for three sets of exponents this family of scale invariant spaces (p,q),(p,q)(p^{\prime},q^{\prime}),(p,q) and (ba,),\left(\frac{b}{a},\infty\right), with na<q<q<+,\frac{n}{a}<q^{\prime}<q<+\infty, we have

LTpLxq,LTpLxq+LTbaLx.L_{T}^{p}L_{x}^{q,\infty}\subset L_{T}^{p^{\prime}}L_{x}^{q^{\prime}}+L_{T}^{\frac{b}{a}}L_{x}^{\infty}. (1.38)

This means that Theorem 1.4 may have broader applications to nonlinear evolution equations, as the growth of families of scale critical LTpLxqL^{p}_{T}L^{q}_{x} norms is ubiquitous in the theory of nonlinear evolution equations.

Remark 1.7.

One natural question to consider about Theorem 1.4 is whether the inclusion will still hold if the control if relaxed to being in weak LpL^{p} in time, in addition to weak LqL^{q} in space. As we have already noted, for purely spatial variables we have

Lq,(3)Lq(3)+L(3),L^{q,\infty}\left(\mathbb{R}^{3}\right)\subset L^{q^{\prime}}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right), (1.39)

when q<q<+q^{\prime}<q<+\infty, so this certainly gives some hope that the inclusion in Theorem 1.4 will still hold when the control in time is slightly relaxed, yielding

LTp,Lxq,LTpLxq+LTkLx.L_{T}^{p,\infty}L_{x}^{q,\infty}\subset L_{T}^{p^{\prime}}L_{x}^{q^{\prime}}+L_{T}^{k}L_{x}^{\infty}. (1.40)

Based on the proof of Theorem 1.4, it does not appear that this inclusion holds, however we do not have a counterexample at this time. We will discuss this more in section 4, after we have proven Theorem 1.4.

Conjecture 1.8.

Suppose 1k<+,1<m<+,1\leq k<+\infty,1<m<+\infty, and suppose

kp+mq=1,\frac{k}{p}+\frac{m}{q}=1, (1.41)

and

kp+mq=1,\frac{k}{p^{\prime}}+\frac{m}{q^{\prime}}=1, (1.42)

with mq<q<+.m\leq q^{\prime}<q<+\infty. Then

LTp,Lxq,LTpLxq+LTkLx.L_{T}^{p,\infty}L_{x}^{q,\infty}\not\subset L_{T}^{p^{\prime}}L_{x}^{q^{\prime}}+L_{T}^{k}L_{x}^{\infty}. (1.43)

Finally we will consider the endpoint of the scale critical regularity criteria, where p=+.p=+\infty. We will note that the requirement in Theorem 1.1 that q>3q>3 and the requirement in Theorems 1.2 and 1.3 that q>32,q>\frac{3}{2}, imply that p<+p<+\infty. As we have previously mentioned, Escauriaza, Seregin, and Šverák showed that if Tmax<+,T_{max}<+\infty, then

lim suptTmaxu(,t)L3=+,\limsup_{t\to T_{max}}\|u(\cdot,t)\|_{L^{3}}=+\infty, (1.44)

which covers the endpoint case LTLx3.L^{\infty}_{T}L^{3}_{x}. Applying the Sobolev inequality, this immediately implies that

lim suptTmaxω(,t)L32=+,\limsup_{t\to T_{max}}\|\omega(\cdot,t)\|_{L^{\frac{3}{2}}}=+\infty, (1.45)

so we also have the endpoint regularity criterion for vorticity in LTLx32.L^{\infty}_{T}L^{\frac{3}{2}}_{x}. The proof of the endpoint regularity criteria in [ESS] is quite technical, and is not based on applying a Grönwall estimate to control enstrophy growth, so in order to establish a regularity criteria for the velocity in LTLx3+LT2LxL^{\infty}_{T}L^{3}_{x}+L^{2}_{T}L^{\infty}_{x} or a regularity criteria for the vorticity in LTLx32+LT1Lx,L^{\infty}_{T}L^{\frac{3}{2}}_{x}+L^{1}_{T}L^{\infty}_{x}, would require methods well beyond those used in this paper. For the positive part of the second eigenvalue of the strain matrix, it still remains an open question whether Tmax<+T_{max}<+\infty implies that

lim suptTmaxλ2+(,t)L32=+.\limsup_{t\to T_{max}}\|\lambda_{2}^{+}(\cdot,t)\|_{L^{\frac{3}{2}}}=+\infty. (1.46)

The author showed in [MillerStrain] that if Tmax<+,T_{max}<+\infty, then

lim suptTmaxλ2+(,t)L323(π2)43ν.\limsup_{t\to T_{max}}\left\|\lambda_{2}^{+}(\cdot,t)\right\|_{L^{\frac{3}{2}}}\geq 3\left(\frac{\pi}{2}\right)^{\frac{4}{3}}\nu. (1.47)

We are able to generalize this result to the sum space case.

Theorem 1.9.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation, and suppose hL1([0,Tmax);+)h\in L^{1}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right). Let

f(x,t)={λ2+(x,t),if λ2+(x,t)>h(t)0,if λ2+(x,t)h(t).f(x,t)=\begin{cases}\lambda_{2}^{+}(x,t),&\text{if }\lambda_{2}^{+}(x,t)>h(t)\\ 0,&\text{if }\lambda_{2}^{+}(x,t)\leq h(t)\end{cases}. (1.48)

If Tmax<+,T_{max}<+\infty, then

lim suptTmaxf(,t)L323(π2)43ν.\limsup_{t\to T_{max}}\left\|f(\cdot,t)\right\|_{L^{\frac{3}{2}}}\geq 3\left(\frac{\pi}{2}\right)^{\frac{4}{3}}\nu. (1.49)

We do not have a regularity criteria for λ2+LTLx32+LT1Lx\lambda_{2}^{+}\in L^{\infty}_{T}L^{\frac{3}{2}}_{x}+L^{1}_{T}L^{\infty}_{x} in general, but we do have a regularity criteria in this sum space so long as the portion in LTLx32L^{\infty}_{T}L^{\frac{3}{2}}_{x} is small, rather than just finite. We will note that the piece of λ2+\lambda_{2}^{+} in LT1LxL^{1}_{T}L^{\infty}_{x} is given by

g(x,t)={λ2+(x,t),if λ2+(x,t)h(t)0,if λ2+(x,t)>h(t).g(x,t)=\begin{cases}\lambda_{2}^{+}(x,t),&\text{if }\lambda_{2}^{+}(x,t)\leq h(t)\\ 0,&\text{if }\lambda_{2}^{+}(x,t)>h(t)\end{cases}. (1.50)

We will also show analogous results to Theorem 1.9 for uu and ω\omega.

Theorem 1.10.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation, and suppose hL2([0,Tmax);+)h\in L^{2}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right). Let

v(x,t)={u(x,t),if |u(x,t)|>h(t)0,if |u(x,t)|h(t).v(x,t)=\begin{cases}u(x,t),&\text{if }|u(x,t)|>h(t)\\ 0,&\text{if }|u(x,t)|\leq h(t)\end{cases}. (1.51)

If Tmax<+,T_{max}<+\infty, then

lim suptTmaxv(,t)L33(π2)23ν.\limsup_{t\to T_{max}}\left\|v(\cdot,t)\right\|_{L^{3}}\geq\sqrt{3}\left(\frac{\pi}{2}\right)^{\frac{2}{3}}\nu. (1.52)
Theorem 1.11.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation, and suppose hL1([0,Tmax);+)h\in L^{1}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right). Let

v(x,t)={ω(x,t),if |ω(x,t)|>h(t)0,if |ω(x,t)|h(t).v(x,t)=\begin{cases}\omega(x,t),&\text{if }|\omega(x,t)|>h(t)\\ 0,&\text{if }|\omega(x,t)|\leq h(t)\end{cases}. (1.53)

If Tmax<+,T_{max}<+\infty, then

lim suptTmaxv(,t)L323π43256ν.\limsup_{t\to T_{max}}\left\|v(\cdot,t)\right\|_{L^{\frac{3}{2}}}\geq\frac{3\pi^{\frac{4}{3}}}{2^{\frac{5}{6}}}\nu. (1.54)

Recently, Barker and Prange showed that if (x0,Tmax)\left(x_{0},T_{max}\right) is a singular point for a local energy solution of the Navier–Stokes equation, then

u(,t)L3(BR(x0))Cν,\|u(\cdot,t)\|_{L^{3}\left(B_{R}(x_{0})\right)}\geq C\nu, (1.55)

where R=O(Tmaxt)R=O(\sqrt{T_{max}-t}) and CC is a universal constant [BarkerPrange]. Theorem 1.10 can be seen as complimenting this result. Barker and Prange showed that near a singular point, the L3L^{3} norm of uu must be bounded below when restricting to smaller and smaller neighborhoods of x0x_{0} as tTmaxt\to T_{max}, whereas Theorem 1.10 requires that the L3L^{3} norm of uu must be bounded below when restricting only to larger and larger values of uu as tTmaxt\to T_{max}. Both results give lower bounds on the concentration of critical norms near singularities: Barker and Prange’s result gives a lower bound on the concentration of the L3L^{3} norm of uu in the domain as a solution approaches the blowup time, whereas Theorem 1.10 gives a lower bound on the concentration of the L3L^{3} norm in the range as tTmaxt\to T_{max}.

While it remains an open question whether λ2+(,t)L32\|\lambda_{2}^{+}(\cdot,t)\|_{L^{\frac{3}{2}}} must blow up as tTmaxt\to T_{max} if Tmax<+T_{max}<+\infty, Theorem 1.9 and some further analysis that we will discuss in section 3 suggest that this norm must blowup in order for a smooth solution of the Navier–Stokes equation to develop singularities in finite-time.

Conjecture 1.12.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation, and Tmax<+.T_{max}<+\infty. Then

lim suptTmaxλ2+(,t)L32=+.\limsup_{t\to T_{max}}\|\lambda_{2}^{+}(\cdot,t)\|_{L^{\frac{3}{2}}}=+\infty. (1.56)
Remark 1.13.

Using Theorem 1.4, we can strengthen the regularity criteria in Theorems 1.1, 1.2, and 1.3, by further enlarging the space. We can relax the control required in Theorem 1.1 from the space LTpLxq+LT2LxL^{p}_{T}L^{q}_{x}+L^{2}_{T}L^{\infty}_{x} to the slightly larger space LTpLxq,+LT2Lx.L^{p}_{T}L^{q,\infty}_{x}+L^{2}_{T}L^{\infty}_{x}. Likewise we can relax the control required in Theorems 1.2 and 1.3 from the space LTpLxq+LT1LxL^{p}_{T}L^{q}_{x}+L^{1}_{T}L^{\infty}_{x} to the slightly large space LTpLxq,+LT1Lx.L^{p}_{T}L^{q,\infty}_{x}+L^{1}_{T}L^{\infty}_{x}. These corollaries are stated below.

Corollary 1.14.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let 3<q<+,2p+3q=1,3<q<+\infty,\frac{2}{p}+\frac{3}{q}=1, and let u=v+σ.u=v+\sigma. Then for all 0<T<Tmax0<T<T_{max}

u(,T)L22u0L22exp(C~p0Tv(,t)Lq,pdt+2ν0Tσ(,t)L2dt),\|\nabla u(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\tilde{C}_{p}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+\frac{2}{\nu}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t\right), (1.57)

where

C~p=Cpνp1(qqq)pq+2ν,\tilde{C}_{p}=\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}+\frac{2}{\nu}, (1.58)

with CpC_{p^{\prime}} is taken as in Theorem 1.1, and 3<q<q,2p+3q=1.3<q^{\prime}<q,\frac{2}{p^{\prime}}+\frac{3}{q^{\prime}}=1. In particular if Tmax<+,T_{max}<+\infty, then

C~p0Tv(,t)Lq,pdt+2ν0Tσ(,t)L2dt=+.\tilde{C}_{p}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+\frac{2}{\nu}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t=+\infty. (1.59)
Corollary 1.15.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let 32<q<+,2p+3q=2,\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2, and let λ2+=f+g.\lambda_{2}^{+}=f+g. Then for all 0<T<Tmax0<T<T_{max}

S(,T)L22S0L22exp(C~p0Tf(,t)Lq,pdt+20Tg(,t)Ldt),\|S(\cdot,T)\|_{L^{2}}^{2}\leq\left\|S^{0}\right\|_{L^{2}}^{2}\exp\left(\tilde{C}_{p}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T}\|g(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right), (1.60)

where

C~p=Cpνp1(qqq)pq+2,\tilde{C}_{p}=\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}+2, (1.61)

with CpC_{p^{\prime}} is taken as in Theorem 1.2, and 32<q<q,2p+3q=2.\frac{3}{2}<q^{\prime}<q,\frac{2}{p^{\prime}}+\frac{3}{q^{\prime}}=2. In particular if Tmax<+,T_{max}<+\infty, then

C~p0Tf(,t)Lq,pdt+20Tg(,t)Ldt=+.\tilde{C}_{p}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T}\|g(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t=+\infty. (1.62)
Corollary 1.16.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let 32<q<+,2p+3q=2,\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2, and let ω=v+σ\omega=v+\sigma. Then for all 0<T<Tmax,0<T<T_{max},

ω(,T)L22ω0L22exp(Cp~0Tv(,t)Lq,pdt+20Tσ(,t)Ldt),\|\omega(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\omega^{0}\right\|_{L^{2}}^{2}\exp\left(\tilde{C_{p}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right), (1.63)

where

C~p=Cpνp1(qqq)pq+2,\tilde{C}_{p}=\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}+\sqrt{2}, (1.64)

with CpC_{p^{\prime}} is taken as in Theorem 1.3, and 32<q<q,2p+3q=2.\frac{3}{2}<q^{\prime}<q,\frac{2}{p^{\prime}}+\frac{3}{q^{\prime}}=2. In particular if Tmax<+,T_{max}<+\infty, then

Cp~0Tv(,t)Lq,pdt+20Tσ(,t)Ldt=+.\tilde{C_{p}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t=+\infty. (1.65)

In section 2, we will define our notation and the main spaces used in the paper, and we will state the precise definition of mild solutions, as well as some of the classical results that we will use in the paper. In section 3, we will consider regularity criteria in sum spaces in terms of λ2+\lambda_{2}^{+}, proving Theorems 1.2 and 1.9. In section 4, we will discuss the structure of mixed Lebesgue sum spaces, proving Theorem 1.4, and we will also introduce the distribution function and weak LqL^{q}, proving a number of the core properties. In section 5, we will consider regularity criteria in sum spaces in terms of uu, proving Theorems 1.1 and 1.10. In section 6, we will consider regularity criteria in sum spaces in terms of ω\omega, proving Theorems 1.3 and 1.11.

2 Definitions and notation

Before proceeding with the proofs of our results, we need to define a number of spaces. First we will define the inhomogeneous Hilbert spaces on 3.\mathbb{R}^{3}.

Definition 2.1.

For all α,\alpha\in\mathbb{R}, let

uHα2=3(1+4π2|ξ|2)α|u^(ξ)|2dξ,\|u\|_{H^{\alpha}}^{2}=\int_{\mathbb{R}^{3}}\left(1+4\pi^{2}|\xi|^{2}\right)^{\alpha}\left|\hat{u}(\xi)\right|^{2}\mathop{}\!\mathrm{d}\xi, (2.1)

and let

Hα(3)={u𝒮(3):uHα<+},H^{\alpha}\left(\mathbb{R}^{3}\right)=\left\{u\in\mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right):\|u\|_{H^{\alpha}}<+\infty\right\}, (2.2)

where 𝒮(3)\mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right) is the space of tempered distributions.

We have defined the space Hα(3)H^{\alpha}\left(\mathbb{R}^{3}\right); now we will define the space H˙α(3)\dot{H}^{\alpha}\left(\mathbb{R}^{3}\right).

Definition 2.2.

For all α,\alpha\in\mathbb{R}, let

uH˙α2=3(2π)2α|ξ|2α|u^(ξ)|2dξ,\|u\|_{\dot{H}^{\alpha}}^{2}=\int_{\mathbb{R}^{3}}(2\pi)^{2\alpha}|\xi|^{2\alpha}\left|\hat{u}(\xi)\right|^{2}\mathop{}\!\mathrm{d}\xi, (2.3)

and let

H˙α(3)={u𝒮(3):uH˙α<+}.\dot{H}^{\alpha}\left(\mathbb{R}^{3}\right)=\left\{u\in\mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right):\|u\|_{\dot{H}^{\alpha}}<+\infty\right\}. (2.4)

Note that Hα(3)H^{\alpha}\left(\mathbb{R}^{3}\right) is a Hilbert space for all α,\alpha\in\mathbb{R}, while H˙(3)\dot{H}\left(\mathbb{R}^{3}\right) is a Hilbert space for all 32<α<32,-\frac{3}{2}<\alpha<\frac{3}{2}, although is still well defined outside of this range. We will further note that for all uH˙1(3)u\in\dot{H}^{1}\left(\mathbb{R}^{3}\right)

uH˙1=uL2,\|u\|_{\dot{H}^{1}}=\|\nabla u\|_{L^{2}}, (2.5)

and for all uH1(3)u\in H^{1}\left(\mathbb{R}^{3}\right)

uH12=uL22+uL22\|u\|_{H^{1}}^{2}=\|u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2} (2.6)

Another property of H˙1\dot{H}^{1} is the Sobolev embedding H˙1(3)L6(3),\dot{H}^{1}\left(\mathbb{R}^{3}\right)\hookrightarrow L^{6}\left(\mathbb{R}^{3}\right), and the related Sobolev inequality.

Theorem 2.3.

For all fL6(3),f\in L^{6}\left(\mathbb{R}^{3}\right),

fL613(2π)23fL2.\|f\|_{L^{6}}\leq\frac{1}{\sqrt{3}}\left(\frac{2}{\pi}\right)^{\frac{2}{3}}\|\nabla f\|_{L^{2}}. (2.7)

Theorem 2.3 was first proven by Sobolev in [Sobolev], and the sharp version of this inequality was proven by Talenti [Talenti]. For a thorough reference on this inequality and certain generalizations, see also [LiebLoss]. The Sobolev inequality will play an essential role in the proof of each of the regularity criterion, by allowing us to make use of the dissipation due to viscosity in controlling the solution.

Next we will define the subspaces of divergence free vector fields in the spaces H˙α(3;3)\dot{H}^{\alpha}\left(\mathbb{R}^{3};\mathbb{R}^{3}\right) and Hα(3;3)H^{\alpha}\left(\mathbb{R}^{3};\mathbb{R}^{3}\right) This is useful because by building the divergence free constraint, u=0,\nabla\cdot u=0, into our function space, we can treat the Navier–Stokes equation as an evolution equation on this function space and not a system of equations. We will do this by expressing condition u=0\nabla\cdot u=0 in Fourier space, where it can be written as ξu^(ξ)=0.\xi\cdot\hat{u}(\xi)=0.

Definition 2.4.

For all α\alpha\in\mathbb{R}

H˙dfα={uH˙α(3;3):ξu^(ξ)=0,almost everywhere ξ3}.\dot{H}^{\alpha}_{df}=\left\{u\in\dot{H}^{\alpha}\left(\mathbb{R}^{3};\mathbb{R}^{3}\right):\xi\cdot\hat{u}(\xi)=0,\text{almost everywhere }\xi\in\mathbb{R}^{3}\right\}. (2.8)
Definition 2.5.

For all α\alpha\in\mathbb{R}

Hdfα={uHα(3;3):ξu^(ξ)=0,almost everywhere ξ3}.H^{\alpha}_{df}=\left\{u\in H^{\alpha}\left(\mathbb{R}^{3};\mathbb{R}^{3}\right):\xi\cdot\hat{u}(\xi)=0,\text{almost everywhere }\xi\in\mathbb{R}^{3}\right\}. (2.9)

Now that we have defined the space H˙df1\dot{H}^{1}_{df}, we will give the precise definition of a mild solution, developed by Fujita and Kato in [KatoFujita].

Definition 2.6.

Suppose uC([0,T);H˙df1).u\in C\left([0,T);\dot{H}^{1}_{df}\right). Then uu is a mild solution to the Navier–Stokes equation if for all 0t<T0\leq t<T

u(,t)=eνtΔu0+0teν(tτ)ΔPdf((u)u)(,τ)dτ,u(\cdot,t)=e^{\nu t\Delta}u^{0}+\int_{0}^{t}e^{\nu(t-\tau)\Delta}P_{df}\left(-(u\cdot\nabla)u\right)(\cdot,\tau)\mathop{}\!\mathrm{d}\tau, (2.10)

where etΔe^{t\Delta} is the operator associated with the heat semi-group given by convolution with the heat kernel.

Note that by using the projection PdfP_{df} onto the space H˙df1,\dot{H}^{1}_{df}, we are able to build the divergence free constraint into the definition of the solution without treating it as a separate equation to satisfy, and in particular without any need to make reference to the pressure. Kato and Fujita also proved the local in time existence of mild solutions, as well as their uniqueness and higher regularity. The proof is based on a Picard iteration scheme using the heat kernel, and the argument can only be made to close when TT is sufficiently small in terms of u0H˙1\left\|u^{0}\right\|_{\dot{H}^{1}}. The precise statement of their result is as follows.

Theorem 2.7.

For all u0H˙df1,u^{0}\in\dot{H}^{1}_{df}, there exists a unique mild solution to the Navier Stokes equation uC([0,T);H1˙df),u\in C\left([0,T);\dot{H^{1}}_{df}\right), u(,0)=u0,u(\cdot,0)=u^{0}, where T=Cν3u0H1˙4T=\frac{C\nu^{3}}{||u^{0}||_{\dot{H^{1}}}^{4}}, and CC is an absolute constant independent of uu and ν.\nu. Furthermore, this solution will have higher regularity, uC((0,T)×3).u\in C^{\infty}\left((0,T)\times\mathbb{R}^{3}\right).

Note that if we take u(,t),u(\cdot,t), as initial data, the uniqueness result in Theorem 2.7 combined with the lower bound on the time of existence, implies that

TmaxtCν3u(,t)H˙14,T_{max}-t\geq\frac{C\nu^{3}}{\|u(\cdot,t)\|_{\dot{H}^{1}}^{4}}, (2.11)

and therefore if Tmax<+,T_{max}<+\infty, then for all 0t<Tmax0\leq t<T_{max}

u(,t)H˙14Cν3Tmaxt.\|u(\cdot,t)\|_{\dot{H}^{1}}^{4}\geq\frac{C\nu^{3}}{T_{max}-t}. (2.12)

We also need to define the mixed Lebesgue space LTpLxqL^{p}_{T}L^{q}_{x}.

Definition 2.8.

for all 1p,q+,1\leq p,q\leq+\infty,

LTpLxq=Lp([0,T);Lq(3)).L^{p}_{T}L^{q}_{x}=L^{p}\left([0,T);L^{q}\left(\mathbb{R}^{3}\right)\right). (2.13)

For 1p<+1\leq p<+\infty

fLTpLxq=(0Tf(,t)Lqpdt)1p,\|f\|_{L^{p}_{T}L^{q}_{x}}=\left(\int_{0}^{T}\|f(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t\right)^{\frac{1}{p}}, (2.14)

and for p=,p=\infty,

fLTLxq=esssup0t<Tf(,t)Lq.\|f\|_{L^{\infty}_{T}L^{q}_{x}}=\operatorname*{ess\,sup}_{0\leq t<T}\|f(\cdot,t)\|_{L^{q}}. (2.15)

Note that throughout the paper we will often drop the 3\mathbb{R}^{3} when referring to Lq(3)L^{q}\left(\mathbb{R}^{3}\right) or H˙1(3)\dot{H}^{1}\left(\mathbb{R}^{3}\right). We will sometimes use the notation

Lxq=Lq(3),L^{q}_{x}=L^{q}\left(\mathbb{R}^{3}\right), (2.16)

when necessary for clarity in cases where both spatial and time variables are involved.

Additionally, we must define sum spaces, which play such an essential role our in results.

Definition 2.9.

Let XX and YY be Banach spaces, and let VV be a vector space with X,YV.X,Y\subset V. Then

X+Y={x+y:xX,yY}.X+Y=\left\{x+y:x\in X,y\in Y\right\}. (2.17)

Furthermore, X+YX+Y is a Banach space with norm

fX+Y=infg+h=fgX+hY.\|f\|_{X+Y}=\inf_{g+h=f}\|g\|_{X}+\|h\|_{Y}. (2.18)

Finally we will define enstrophy.

Definition 2.10.

Let uC([0,Tmax;H˙df1)u\in C\left([0,T_{max};\dot{H}^{1}_{df}\right) be a mild solution of the Navier–Stokes equation. Then for all 0t<T0\leq t<T the enstrophy is given by

(t)\displaystyle\mathcal{E}(t) =12ω(,t)L22\displaystyle=\frac{1}{2}\|\omega(\cdot,t)\|_{L^{2}}^{2} (2.19)
=12u(,t)L22\displaystyle=\frac{1}{2}\|\nabla u(\cdot,t)\|_{L^{2}}^{2} (2.20)
=SL22.\displaystyle=\|S\|_{L^{2}}^{2}. (2.21)

The enstrophy plays an important role in the Navier–Stokes equation, because as we showed in (2.12), if Tmax<+,T_{max}<+\infty, then for all 0t<Tmax0\leq t<T_{max}

u(,t)H˙14Cν3Tmaxt.\|u(\cdot,t)\|_{\dot{H}^{1}}^{4}\geq\frac{C\nu^{3}}{T_{max}-t}. (2.22)

In particular, this means that if Tmax<+,T_{max}<+\infty, then

limtTmax(t)\displaystyle\lim_{t\to T_{max}}\mathcal{E}(t) =limtTmax12u(,t)H˙12\displaystyle=\lim_{t\to T_{max}}\frac{1}{2}\|u(\cdot,t)\|_{\dot{H}^{1}}^{2} (2.23)
=+.\displaystyle=+\infty. (2.24)

Consequently, the proofs of all of our regularity criteria will rely on estimates for the growth of enstrophy defined in terms of S,u,S,u, or ω\omega, because it is sufficient to control enstrophy up until some time TT, to guarantee that a smooth solution can be continued to some time T~>T.\tilde{T}>T.

Note that the various definitions of enstrophy in terms of S,u,S,u, and ω\omega are equivalent due to an isometry for the strain, vorticity and gradient of divergence free vector fields proven by the author in [MillerStrain].

Proposition 2.11.

For all uH˙dfα+1,u\in\dot{H}^{\alpha+1}_{df},

uH˙α2\displaystyle\|\nabla u\|_{\dot{H}^{\alpha}}^{2} =ωH˙α2\displaystyle=\|\omega\|_{\dot{H}^{\alpha}}^{2} (2.25)
=12SH˙α2.\displaystyle=\frac{1}{2}\|S\|_{\dot{H}^{\alpha}}^{2}. (2.26)

We have now introduced all the spaces that we will use in this paper with the exception of Lq,L^{q,\infty}. We will leave the definition of this space until section 4, where it fits more naturally, in order to keep the presentation of the sum space inclusion in Theorem 1.4 self-contained.

3 Middle eigenvalue regularity criterion

In this section we will consider regularity criteria for λ2+\lambda_{2}^{+} in sum spaces of scale invariant spaces. We will begin by recalling an estimate for enstrophy growth proven by the author in [MillerStrain], variants of which were also considered in [NeustupaPenel1, ChaeStrain].

Proposition 3.1.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Then for all 0<t<Tmax0<t<T_{max}

tS(,t)L22\displaystyle\partial_{t}\|S(\cdot,t)\|_{L^{2}}^{2} =2νSH˙1243det(S)\displaystyle=-2\nu\|S\|_{\dot{H}^{1}}^{2}-4\int_{\mathbb{R}^{3}}\det(S) (3.1)
2νSH˙12+23λ2+|S|2,\displaystyle\leq-2\nu\|S\|_{\dot{H}^{1}}^{2}+2\int_{\mathbb{R}^{3}}\lambda_{2}^{+}|S|^{2}, (3.2)

where λ1(x,t)λ2(x,t)λ3(x,t)\lambda_{1}(x,t)\leq\lambda_{2}(x,t)\leq\lambda_{3}(x,t) are the eigenvalues of S(x,t)S(x,t), and λ2+=max(0,λ2)\lambda_{2}^{+}=\max\left(0,\lambda_{2}\right).

Using this estimate for enstrophy growth, we will prove Theorem 1.2, which is restated here for the reader’s convenience.

Theorem 3.2.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let 32<q<+,2p+3q=2,\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2, and let λ2+=f+g.\lambda_{2}^{+}=f+g. Then for all 0<T<Tmax0<T<T_{max}

S(,T)L22S0L22exp(Cpνp10Tf(,t)Lqpdt+20Tg(,t)Ldt),\|S(\cdot,T)\|_{L^{2}}^{2}\leq\left\|S^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T}\|g(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right), (3.3)

where CpC_{p} depends only on p.p. In particular if Tmax<+,T_{max}<+\infty, then

Cpνp10Tmaxf(,t)Lqpdt+20Tmaxg(,t)Ldt=+.\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T_{max}}\|f(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T_{max}}\|g(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t=+\infty. (3.4)
Proof.

We know that if Tmax<+,T_{max}<+\infty, then

limTTmaxS(,T)L22=+,\lim_{T\to T_{max}}\|S(\cdot,T)\|_{L^{2}}^{2}=+\infty, (3.5)

so it suffices to prove the bound (3.3). We can see from the inequality in Proposition 3.1, that for all 0<t<Tmax,0<t<T_{max},

tS(,t)L22\displaystyle\partial_{t}\|S(\cdot,t)\|_{L^{2}}^{2} 2νSH˙12+23λ2+|S|2\displaystyle\leq-2\nu\|S\|_{\dot{H}^{1}}^{2}+2\int_{\mathbb{R}^{3}}\lambda_{2}^{+}|S|^{2} (3.6)
=2νSH˙12+23(f+g)|S|2\displaystyle=-2\nu\|S\|_{\dot{H}^{1}}^{2}+2\int_{\mathbb{R}^{3}}(f+g)|S|^{2} (3.7)
2νSH˙12+2fLq|S|2Lr+2gL|S|2L1\displaystyle\leq-2\nu\|S\|_{\dot{H}^{1}}^{2}+2\|f\|_{L^{q}}\left\||S|^{2}\right\|_{L^{r}}+2\|g\|_{L^{\infty}}\left\||S|^{2}\right\|_{L^{1}} (3.8)
=2νSH˙12+2fLqSL2r2+2gLSL22,\displaystyle=-2\nu\|S\|_{\dot{H}^{1}}^{2}+2\|f\|_{L^{q}}\|S\|_{L^{2r}}^{2}+2\|g\|_{L^{\infty}}\|S\|_{L^{2}}^{2}, (3.9)

where 1r+1q=1,\frac{1}{r}+\frac{1}{q}=1, and we have applied Hölder’s inequality with exponents q,rq,r and 1,.1,\infty.

Next we observe that 32<q<,\frac{3}{2}<q<\infty, and so 1<r<3,1<r<3, and consequently 2<2r<6.2<2r<6. Let ρ=32q.\rho=\frac{3}{2q}. We can see that 0<ρ<1,0<\rho<1, and

(1ρ)12+ρ16\displaystyle(1-\rho)\frac{1}{2}+\rho\frac{1}{6} =12ρ3\displaystyle=\frac{1}{2}-\frac{\rho}{3} (3.10)
=1212q\displaystyle=\frac{1}{2}-\frac{1}{2q} (3.11)
=1212(11r)\displaystyle=\frac{1}{2}-\frac{1}{2}\left(1-\frac{1}{r}\right) (3.12)
=12r.\displaystyle=\frac{1}{2r}. (3.13)

Therefore, we can interpolate between L2L^{2} and L6L^{6} and find that

SL2rSL2132qSL632q.\|S\|_{L^{2r}}\leq\|S\|_{L^{2}}^{1-\frac{3}{2q}}\|S\|_{L^{6}}^{\frac{3}{2q}}. (3.14)

Plugging back into (3.9), and applying the Sobolev inequality (Theorem 2.3), we find that

tS(,t)L22\displaystyle\partial_{t}\|S(\cdot,t)\|_{L^{2}}^{2} 2νSH˙12+2fLqSL223qSL63q+2gLSL22\displaystyle\leq-2\nu\|S\|_{\dot{H}^{1}}^{2}+2\|f\|_{L^{q}}\|S\|_{L^{2}}^{2-\frac{3}{q}}\|S\|_{L^{6}}^{\frac{3}{q}}+2\|g\|_{L^{\infty}}\|S\|_{L^{2}}^{2} (3.15)
2νSH˙12+CfLqSL223qSH˙13q+2gLSL22\displaystyle\leq-2\nu\|S\|_{\dot{H}^{1}}^{2}+C\|f\|_{L^{q}}\|S\|_{L^{2}}^{2-\frac{3}{q}}\|S\|_{\dot{H}^{1}}^{\frac{3}{q}}+2\|g\|_{L^{\infty}}\|S\|_{L^{2}}^{2} (3.16)
=2νSH˙12+CfLqSL22pSH˙13q+2gLSL22\displaystyle=-2\nu\|S\|_{\dot{H}^{1}}^{2}+C\|f\|_{L^{q}}\|S\|_{L^{2}}^{\frac{2}{p}}\|S\|_{\dot{H}^{1}}^{\frac{3}{q}}+2\|g\|_{L^{\infty}}\|S\|_{L^{2}}^{2} (3.17)

Let b=2q3.b=\frac{2q}{3}. Clearly 1<b<+,1<b<+\infty, and recalling that 2p+3q=2,\frac{2}{p}+\frac{3}{q}=2, we can see that

1p+1b\displaystyle\frac{1}{p}+\frac{1}{b} =1p+32q\displaystyle=\frac{1}{p}+\frac{3}{2q} (3.18)
=1.\displaystyle=1. (3.19)

Applying Young’s inequality with exponents p,bp,b we find

CνfLqSL22pSH˙13qCpνpfLqpSL22+2SH˙12.\frac{C}{\nu}\|f\|_{L^{q}}\|S\|_{L^{2}}^{\frac{2}{p}}\|S\|_{\dot{H}^{1}}^{\frac{3}{q}}\leq\frac{C_{p}}{\nu^{p}}\|f\|_{L^{q}}^{p}\|S\|_{L^{2}}^{2}+2\|S\|_{\dot{H}^{1}}^{2}. (3.20)

This immediately implies that

2νSH˙12+CfLqSL22pSH˙13qCpνp1fLqpSL22.-2\nu\|S\|_{\dot{H}^{1}}^{2}+C\|f\|_{L^{q}}\|S\|_{L^{2}}^{\frac{2}{p}}\|S\|_{\dot{H}^{1}}^{\frac{3}{q}}\leq\frac{C_{p}}{\nu^{p-1}}\|f\|_{L^{q}}^{p}\|S\|_{L^{2}}^{2}. (3.21)

Note that while we are not keeping track of the value of the constant CpC_{p}, it is nevertheless independent of ν\nu, and is determined solely in terms of pp and the value of the sharp Sobolev constant. From this we may conclude that

tS(,t)L22(Cpνp1fLqp+2gL)SL22.\partial_{t}\|S(\cdot,t)\|_{L^{2}}^{2}\leq\left(\frac{C_{p}}{\nu^{p-1}}\|f\|_{L^{q}}^{p}+2\|g\|_{L^{\infty}}\right)\|S\|_{L^{2}}^{2}. (3.22)

Applying Grönwall’s inequality we find that for all 0<T<Tmax,0<T<T_{max},

S(,T)L22S0L22exp(0T(Cpνp1f(,t)Lqp+2g(,t)L)dt),\|S(\cdot,T)\|_{L^{2}}^{2}\leq\left\|S^{0}\right\|_{L^{2}}^{2}\exp\left(\int_{0}^{T}\left(\frac{C_{p}}{\nu^{p-1}}\|f(\cdot,t)\|_{L^{q}}^{p}+2\|g(\cdot,t)\|_{L^{\infty}}\right)\mathop{}\!\mathrm{d}t\right), (3.23)

and this completes the proof. ∎

It is clear in general that the LxL^{\infty}_{x} norm is effective for controlling values of λ2+(x,t)\lambda_{2}^{+}(x,t) in the large regions of 3\mathbb{R}^{3} where it is relatively small. Therefore, Theorem 3.2, implies that the LTpLxq,L^{p}_{T}L^{q}_{x}, norm must be large in the small regions of space where λ2+(x,t)\lambda_{2}^{+}(x,t) takes large values, and that in this sense λ2+\lambda_{2}^{+} must exhibit concentrated blowup in the critical norms LTpLxqL^{p}_{T}L^{q}_{x}, for all 32<q<+.\frac{3}{2}<q<+\infty. We will prove a corollary that quantifies this phenomenon, requiring the concentration of the LTpLxqL^{p}_{T}L^{q}_{x} norm at large values in the range, for all 32<q<+,2p+3q=2\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2.

Corollary 3.3.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation, and suppose hL1([0,Tmax);+)h\in L^{1}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right). Let 32<q<+,2p+3q=2,\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2, and let

f(x,t)={λ2+(x,t),if λ2+(x,t)>h(t)0,if λ2+(x,t)h(t).f(x,t)=\begin{cases}\lambda_{2}^{+}(x,t),&\text{if }\lambda_{2}^{+}(x,t)>h(t)\\ 0,&\text{if }\lambda_{2}^{+}(x,t)\leq h(t)\end{cases}. (3.24)

Then for all 0<T<Tmax0<T<T_{max}

S(,T)L22S0L22exp(Cpνp10Tf(,t)Lqpdt+20Th(t)dt),\|S(\cdot,T)\|_{L^{2}}^{2}\leq\left\|S^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T}h(t)\mathop{}\!\mathrm{d}t\right), (3.25)

where CpC_{p} depends only on p.p. In particular if Tmax<+,T_{max}<+\infty, then

0Tmaxf(,t)Lqpdt=+.\int_{0}^{T_{max}}\|f(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t=+\infty. (3.26)
Proof.

We will begin by letting

g(x,t)={λ2+(x,t),if λ2+(x,t)h(t)0,if λ2+(x,t)>h(t)g(x,t)=\begin{cases}\lambda_{2}^{+}(x,t),&\text{if }\lambda_{2}^{+}(x,t)\leq h(t)\\ 0,&\text{if }\lambda_{2}^{+}(x,t)>h(t)\end{cases} (3.27)

We can see immediately that for all 0<t<Tmax,0<t<T_{max},

g(,t)Lh(t),\|g(\cdot,t)\|_{L^{\infty}}\leq h(t), (3.28)

and that

λ2+=f+g.\lambda_{2}^{+}=f+g. (3.29)

Therefore we can apply Theorem 3.2 and find that

S(,T)L22\displaystyle\|S(\cdot,T)\|_{L^{2}}^{2} S0L22exp(Cpνp10Tf(,t)Lqpdt+20Tg(,t)Ldt)\displaystyle\leq\left\|S^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T}\|g(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right) (3.30)
S0L22exp(Cpνp10Tf(,t)Lqpdt+20Th(t)dt).\displaystyle\leq\left\|S^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T}h(t)\mathop{}\!\mathrm{d}t\right). (3.31)

Next we will note, as in Theorem 3.2, that if Tmax<+,T_{max}<+\infty, then

limTTmaxS(,T)L22=+.\lim_{T\to T_{max}}\|S(\cdot,T)\|_{L^{2}}^{2}=+\infty. (3.32)

Therefore we can conclude that if Tmax<+,T_{max}<+\infty, then

Cpνp10Tmaxf(,t)Lqpdt+20Tmaxh(t)dt=+.\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T_{max}}\|f(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T_{max}}h(t)\mathop{}\!\mathrm{d}t=+\infty. (3.33)

However, we know by hypothesis that

0Tmaxh(t)dt<+,\int_{0}^{T_{max}}h(t)\mathop{}\!\mathrm{d}t<+\infty, (3.34)

so we may conclude that

0Tmaxf(,t)Lqpdt=+.\int_{0}^{T_{max}}\|f(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t=+\infty. (3.35)

This completes the proof. ∎

This concentrated blowup in LTpLxq,L^{p}_{T}L^{q}_{x}, for 2p+3q=2,\frac{2}{p}+\frac{3}{q}=2, with q>32,q>\frac{3}{2}, arbitrarily close to 32\frac{3}{2}, heavily suggests that if Tmax<+,T_{max}<+\infty, then

lim suptTmaxλ2+(,t)L32=+,\limsup_{t\to T_{max}}\left\|\lambda_{2}^{+}(\cdot,t)\right\|_{L^{\frac{3}{2}}}=+\infty, (3.36)

and so Conjecture 1.12 holds, although to establish this result is still beyond the scope of the methods used in this paper. In [MillerStrain], the author showed that If Tmax<+,T_{max}<+\infty, then

lim suptTmaxλ2+(,t)L323(π2)43ν.\limsup_{t\to T_{max}}\left\|\lambda_{2}^{+}(\cdot,t)\right\|_{L^{\frac{3}{2}}}\geq 3\left(\frac{\pi}{2}\right)^{\frac{4}{3}}\nu. (3.37)

We will prove the sum space analogue of this result now, which is also the endpoint case of Corollary 3.3.

Theorem 3.4.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation, and suppose hL1([0,Tmax);+)h\in L^{1}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right). Let

f(x,t)={λ2+(x,t),if λ2+(x,t)>h(t)0,if λ2+(x,t)h(t).f(x,t)=\begin{cases}\lambda_{2}^{+}(x,t),&\text{if }\lambda_{2}^{+}(x,t)>h(t)\\ 0,&\text{if }\lambda_{2}^{+}(x,t)\leq h(t)\end{cases}. (3.38)

If Tmax<+,T_{max}<+\infty, then

lim suptTmaxf(,t)L323(π2)43ν.\limsup_{t\to T_{max}}\left\|f(\cdot,t)\right\|_{L^{\frac{3}{2}}}\geq 3\left(\frac{\pi}{2}\right)^{\frac{4}{3}}\nu. (3.39)
Proof.

Suppose toward contradiction that Tmax<+T_{max}<+\infty and

lim suptTmaxf(,t)L32<3(π2)43ν.\limsup_{t\to T_{max}}\left\|f(\cdot,t)\right\|_{L^{\frac{3}{2}}}<3\left(\frac{\pi}{2}\right)^{\frac{4}{3}}\nu. (3.40)

This implies that there exists ϵ>0,\epsilon>0, such that for all Tmaxϵ<t<Tmax,T_{max}-\epsilon<t<T_{max},

f(,t)L32<3(π2)43ν.\left\|f(\cdot,t)\right\|_{L^{\frac{3}{2}}}<3\left(\frac{\pi}{2}\right)^{\frac{4}{3}}\nu. (3.41)

We will again let

g(x,t)={λ2+(x,t),if λ2+(x,t)h(t)0,if λ2+(x,t)>h(t)g(x,t)=\begin{cases}\lambda_{2}^{+}(x,t),&\text{if }\lambda_{2}^{+}(x,t)\leq h(t)\\ 0,&\text{if }\lambda_{2}^{+}(x,t)>h(t)\end{cases} (3.42)

We can see immediately that for all 0<t<Tmax,0<t<T_{max},

g(,t)Lh(t),\|g(\cdot,t)\|_{L^{\infty}}\leq h(t), (3.43)

and that

λ2+=f+g.\lambda_{2}^{+}=f+g. (3.44)

Using the estimate for enstrophy growth in Proposition 3.1, Hölder’s inequality, and Sobolev’s inequality, we find that for all Tmaxδ<t<TmaxT_{max}-\delta<t<T_{max}

tS(,t)L22\displaystyle\partial_{t}\|S(\cdot,t)\|_{L^{2}}^{2} 2νSH˙12+23λ2+|S|2\displaystyle\leq-2\nu\|S\|_{\dot{H}^{1}}^{2}+2\int_{\mathbb{R}^{3}}\lambda_{2}^{+}|S|^{2} (3.45)
=2νSH˙12+23f|S|2+23g|S|2\displaystyle=-2\nu\|S\|_{\dot{H}^{1}}^{2}+2\int_{\mathbb{R}^{3}}f|S|^{2}+2\int_{\mathbb{R}^{3}}g|S|^{2} (3.46)
2νSH˙12+2fL32SL62+2gLSL22\displaystyle\leq-2\nu\|S\|_{\dot{H}^{1}}^{2}+2\|f\|_{L^{\frac{3}{2}}}\|S\|_{L^{6}}^{2}+2\|g\|_{L^{\infty}}\|S\|_{L^{2}}^{2} (3.47)
2νSH˙12+23(π2)43fL32SH˙12+2hSL22\displaystyle\leq-2\nu\|S\|_{\dot{H}^{1}}^{2}+\frac{2}{3\left(\frac{\pi}{2}\right)^{\frac{4}{3}}}\|f\|_{L^{\frac{3}{2}}}\|S\|_{\dot{H}^{1}}^{2}+2h\|S\|_{L^{2}}^{2} (3.48)
=2νSH˙12(1+fL323(π2)43ν)+2hSL22.\displaystyle=2\nu\|S\|_{\dot{H}^{1}}^{2}\left(-1+\frac{\|f\|_{L^{\frac{3}{2}}}}{3\left(\frac{\pi}{2}\right)^{\frac{4}{3}}\nu}\right)+2h\|S\|_{L^{2}}^{2}. (3.49)

Recall that by hypothesis for all Tmaxϵ<t<Tmax,T_{max}-\epsilon<t<T_{max},

fL323(π2)43ν<1,\frac{\|f\|_{L^{\frac{3}{2}}}}{3\left(\frac{\pi}{2}\right)^{\frac{4}{3}}\nu}<1, (3.50)

so we can conclude that for all Tmaxϵ<t<Tmax,T_{max}-\epsilon<t<T_{max},

tS(,t)L222hSL22.\partial_{t}\|S(\cdot,t)\|_{L^{2}}^{2}\leq 2h\|S\|_{L^{2}}^{2}. (3.51)

Applying Grönwall’s inequality we can see that for all Tmaxϵ<T<TmaxT_{max}-\epsilon<T<T_{max}

S(,T)L22S(,Tmaxϵ)L22exp(2TmaxϵTh(t)dt).\|S(\cdot,T)\|_{L^{2}}^{2}\leq\left\|S(\cdot,T_{max}-\epsilon)\right\|_{L^{2}}^{2}\exp\left(2\int_{T_{max}-\epsilon}^{T}h(t)\mathop{}\!\mathrm{d}t\right). (3.52)

Recalling that hL1([0,Tmax;+),h\in L^{1}\left([0,T_{max};\mathbb{R}^{+}\right), we can see that

lim supTTmaxS(,T)L22\displaystyle\limsup_{T\to T_{max}}\|S(\cdot,T)\|_{L^{2}}^{2} S(,Tmaxϵ)L22exp(2TmaxϵTmaxh(t)dt)\displaystyle\leq\left\|S(\cdot,T_{max}-\epsilon)\right\|_{L^{2}}^{2}\exp\left(2\int_{T_{max}-\epsilon}^{T_{max}}h(t)\mathop{}\!\mathrm{d}t\right) (3.53)
<+.\displaystyle<+\infty. (3.54)

This contradicts our assumption that Tmax<+,T_{max}<+\infty, so this completes the proof. ∎

Before we move on to considering the structure of the mixed Lebesgue sum spaces, we will show that if Tmax<+,T_{max}<+\infty, and

lim suptTmaxf(,t)L32<+,\limsup_{t\to T_{max}}\|f(\cdot,t)\|_{L^{\frac{3}{2}}}<+\infty, (3.55)

then we can conclude that f(,t)0f(\cdot,t)\rightharpoonup 0 weakly in L32L^{\frac{3}{2}} as tTmax,t\to T_{max}, where ff is λ2+\lambda_{2}^{+} restricted to the points in its domain where it takes large values. We will need to establish the following proposition before we can prove this statement.

Proposition 3.5.

Suppose fLq(3),1<q<+f\in L^{q}\left(\mathbb{R}^{3}\right),1<q<+\infty and there exists R>0,R>0, such that for all x3,x\in\mathbb{R}^{3}, f(x)=0f(x)=0 or |f(x)|>R.|f(x)|>R. Then for all 1p<q,1\leq p<q,

fLpp1RqpfLqq.\|f\|_{L^{p}}^{p}\leq\frac{1}{R^{q-p}}\|f\|_{L^{q}}^{q}. (3.56)
Proof.

We know that for all x3,x\in\mathbb{R}^{3}, f(x)=0f(x)=0 or |f(x)|>R,|f(x)|>R, and so for all x3,x\in\mathbb{R}^{3}, such that f(x)0,f(x)\neq 0,

|f(x)|qpRqp1.\frac{|f(x)|^{q-p}}{R^{q-p}}\geq 1. (3.57)

Therefore we may compute that

fLpp\displaystyle\|f\|_{L^{p}}^{p} =3|f(x)|pdx\displaystyle=\int_{\mathbb{R}^{3}}|f(x)|^{p}\mathop{}\!\mathrm{d}x (3.58)
3|f(x)|p|f(x)|qpRqpdx\displaystyle\leq\int_{\mathbb{R}^{3}}|f(x)|^{p}\frac{|f(x)|^{q-p}}{R^{q-p}}\mathop{}\!\mathrm{d}x (3.59)
=1Rqp3|f(x)|qdx\displaystyle=\frac{1}{R^{q-p}}\int_{\mathbb{R}^{3}}|f(x)|^{q}\mathop{}\!\mathrm{d}x (3.60)
=1RqpfLqq,\displaystyle=\frac{1}{R^{q-p}}\|f\|_{L^{q}}^{q}, (3.61)

and this completes the proof. ∎

Theorem 3.6.

Suppose uC([0,Tmax);Hdf1)u\in C\left(\left[0,T_{max}\right);H^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation with Tmax<+T_{max}<+\infty. Suppose hL1([0,Tmax);+)h\in L^{1}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right), with

limtTmaxh(t)=+\lim_{t\to T_{max}}h(t)=+\infty (3.62)

Let

f(x,t)={λ2+(x,t),if λ2+(x,t)>h(t)0,if λ2+(x,t)h(t).f(x,t)=\begin{cases}\lambda_{2}^{+}(x,t),&\text{if }\lambda_{2}^{+}(x,t)>h(t)\\ 0,&\text{if }\lambda_{2}^{+}(x,t)\leq h(t)\end{cases}. (3.63)

If

lim suptTmaxf(,t)L32<+,\limsup_{t\to T_{max}}\|f(\cdot,t)\|_{L^{\frac{3}{2}}}<+\infty, (3.64)

then for all 1q<32,1\leq q<\frac{3}{2},

limtTmaxf(,t)Lq=0,\lim_{t\to T_{max}}\|f(\cdot,t)\|_{L^{q}}=0, (3.65)

and f(,t)0f(\cdot,t)\rightharpoonup 0 weakly in L32L^{\frac{3}{2}} as tTmax.t\to T_{max}.

Proof.

We know by hypothesis that

lim suptTmaxf(,t)L32<+,\limsup_{t\to T_{max}}\|f(\cdot,t)\|_{L^{\frac{3}{2}}}<+\infty, (3.66)

so let

M\displaystyle M =sup0tTmaxf(,t)L32\displaystyle=\sup_{0\leq t\leq T_{max}}\|f(\cdot,t)\|_{L^{\frac{3}{2}}} (3.67)
<+\displaystyle<+\infty (3.68)

Applying Proposition 3.5, we can immediately see that for all 1q<32,1\leq q<\frac{3}{2},

f(,t)Lqq\displaystyle\|f(\cdot,t)\|_{L^{q}}^{q} 1h(t)32qf(,t)L3232\displaystyle\leq\frac{1}{h(t)^{\frac{3}{2}-q}}\|f(\cdot,t)\|_{L^{\frac{3}{2}}}^{\frac{3}{2}} (3.69)
M32h(t)32q,\displaystyle\leq\frac{M^{\frac{3}{2}}}{h(t)^{\frac{3}{2}-q}}, (3.70)

and therefore

f(,t)LqM32qh(t)32q1\|f(\cdot,t)\|_{L^{q}}\leq\frac{M^{\frac{3}{2q}}}{h(t)^{\frac{3}{2q}-1}} (3.71)

We also know that

limtTmaxh(t)=+,\lim_{t\to T_{max}}h(t)=+\infty, (3.72)

so we can compute that for all 1q<321\leq q<\frac{3}{2}

limtTmaxf(,t)Lq=0,\lim_{t\to T_{max}}\|f(\cdot,t)\|_{L^{q}}=0, (3.73)

and this concludes the first part of the proof.

We will now use this fact to show that f(,t)0f(\cdot,t)\rightharpoonup 0 weakly in L32L^{\frac{3}{2}} as tTmax.t\to T_{max}. L32L^{\frac{3}{2}} is the dual space of L3,L^{3}, so we will show that for all gL3,g\in L^{3},

limtTmaxf(,t),g=0.\lim_{t\to T_{max}}\left<f(\cdot,t),g\right>=0. (3.74)

Fix gL3.g\in L^{3}. L4L^{4} is dense in L3L^{3} so for all ϵ>0,\epsilon>0, there exists wL4w\in L^{4} such that

gwL3ϵM.\|g-w\|_{L^{3}}\leq\frac{\epsilon}{M}. (3.75)

Applying Hölder’s inequality we find that

|f(,t),g|\displaystyle\left|\left<f(\cdot,t),g\right>\right| |f(,t),w|+|f(,t),gw|\displaystyle\leq\left|\left<f(\cdot,t),w\right>\right|+\left|\left<f(\cdot,t),g-w\right>\right| (3.76)
f(,t)L43wL4+f(,t)L32gwL3\displaystyle\leq\|f(\cdot,t)\|_{L^{\frac{4}{3}}}\|w\|_{L^{4}}+\|f(\cdot,t)\|_{L^{\frac{3}{2}}}\|g-w\|_{L^{3}} (3.77)
f(,t)L43wL4+ϵ.\displaystyle\leq\|f(\cdot,t)\|_{L^{\frac{4}{3}}}\|w\|_{L^{4}}+\epsilon. (3.78)

However, we have already shown that

limtTmaxf(,t)L43=0,\lim_{t\to T_{max}}\|f(\cdot,t)\|_{L^{\frac{4}{3}}}=0, (3.79)

so we can conclude that

lim suptTmax|f(,t),g|<ϵ.\limsup_{t\to T_{max}}\left|\left<f(\cdot,t),g\right>\right|<\epsilon. (3.80)

ϵ>0\epsilon>0 was arbitrary, so taking the limit ϵ0,\epsilon\to 0, we find that

limtTmaxf(,t),g=0.\lim_{t\to T_{max}}\left<f(\cdot,t),g\right>=0. (3.81)

Therefore, for all gL3,g\in L^{3},

limtTmaxf(,t),g=0,\lim_{t\to T_{max}}\left<f(\cdot,t),g\right>=0, (3.82)

and we can conclude that f(,t)0f(\cdot,t)\rightharpoonup 0 weakly in L32L^{\frac{3}{2}} as tTmax.t\to T_{max}. This completes the proof. ∎

When Escauriaza, Seregin, and Šverák [ESS] proved that if Tmax<+,T_{max}<+\infty, then

lim suptTmaxu(,t)L3=+,\limsup_{t\to T_{max}}\|u(\cdot,t)\|_{L^{3}}=+\infty, (3.83)

their proof relied on showing that if Tmax<+,T_{max}<+\infty, and

lim suptTmaxu(,t)L3<+,\limsup_{t\to T_{max}}\|u(\cdot,t)\|_{L^{3}}<+\infty, (3.84)

then u(,t)0u(\cdot,t)\rightharpoonup 0 weakly in L3L^{3} as tTmax,t\to T_{max}, and using a backward uniqueness result to derive a contradiction. There is no comparable backward uniqueness result for λ2+,\lambda_{2}^{+}, and certainly not for ff—which is λ2+\lambda_{2}^{+} restricted to points in its domain where it takes large values—so Theorem 3.6 does not imply the endpoint regularity criterion with λ2+LTLx32\lambda_{2}^{+}\in L^{\infty}_{T}L^{\frac{3}{2}}_{x}, but it does suggest a possible direction towards establishing the endpoint case and showing that Conjecture 1.12 holds.

4 Mixed Lebesgue Sum Spaces

In this section, we will discuss the structure of mixed Lebesgue sum spaces in some scaling class, proving the inclusion in Theorem 1.4. We will begin by introducing the distribution function, which describes how the range of a function ff is distributed by considering the Lebesgue measure of the set of {x3:|f(x)|>α}\left\{x\in\mathbb{R}^{3}:|f(x)|>\alpha\right\}.

Definition 4.1.

Let f:33,f:\mathbb{R}^{3}\to\mathbb{R}^{3}, be a Lebesgue measurable function. Then for all α0,\alpha\geq 0, let

λf(α)=|{x3:|f(x)|>α}|.\lambda_{f}(\alpha)=\left|\left\{x\in\mathbb{R}^{3}:|f(x)|>\alpha\right\}\right|. (4.1)

We will note that two functions with the same distribution function will have the same LpL^{p} norm for all 1p+,1\leq p\leq+\infty, and for 1p<+,1\leq p<+\infty, we have the following explicit formula.

Proposition 4.2.

For all 1p<+1\leq p<+\infty, and for all fLp(3)f\in L^{p}\left(\mathbb{R}^{3}\right)

fLpp\displaystyle\|f\|_{L^{p}}^{p} =3|f(x)|pdx\displaystyle=\int_{\mathbb{R}^{3}}|f(x)|^{p}\mathop{}\!\mathrm{d}x (4.2)
=p0αp1λf(α)dα.\displaystyle=p\int_{0}^{\infty}\alpha^{p-1}\lambda_{f}(\alpha)\mathop{}\!\mathrm{d}\alpha. (4.3)

For a proof of this result, and a good overview of the related literature, see Chapter 6.4 in [Folland]. We will also use the distribution function to define the endpoint Lorentz space Lq,L^{q,\infty}, also known as weak LqL^{q}.

Definition 4.3.

For all 1q<,1\leq q<\infty, and for all Lebesgue measurable functions f:33,f:\mathbb{R}^{3}\to\mathbb{R}^{3},,

fLq,=(supα>0αqλf(α))1q.\|f\|_{L^{q,\infty}}=\left(\sup_{\alpha>0}\alpha^{q}\lambda_{f}(\alpha)\right)^{\frac{1}{q}}. (4.4)

Furthermore define Lq,(3)L^{q,\infty}\left(\mathbb{R}^{3}\right) by

Lq,(3)={f:33,Lebesgue measurable:fLq,<+}L^{q,\infty}\left(\mathbb{R}^{3}\right)=\left\{f:\mathbb{R}^{3}\to\mathbb{R}^{3},\text{Lebesgue measurable}:\|f\|_{L^{q,\infty}}<+\infty\right\} (4.5)

Note that Lq,\|\cdot\|_{L^{q,\infty}} is a norm for 1<q<+1<q<+\infty, but is only a quasi-norm for q=1,q=1, as the triangle inequality fails to hold.

Definition 4.4.

For all 1p,q<+,1\leq p,q<+\infty, we will define

LTpLxq,=Lp([0,T);Lq,(3)),L^{p}_{T}L^{q,\infty}_{x}=L^{p}\left([0,T);L^{q,\infty}\left(\mathbb{R}^{3}\right)\right), (4.6)

and for all fLTpLxq,f\in L^{p}_{T}L^{q,\infty}_{x},

fLTpLxq,=(0Tf(,t)Lq,pdt)1p.\|f\|_{L^{p}_{T}L^{q,\infty}_{x}}=\left(\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t\right)^{\frac{1}{p}}. (4.7)

We will note again that this is a norm for 1<q<+,1<q<+\infty, and a quasi-norm for q=1.q=1.

We will now prove a proposition that will be essential in the decomposition necessary to prove our sum space result.

Proposition 4.5.

Suppose fLq,(3),1<q<+f\in L^{q,\infty}\left(\mathbb{R}^{3}\right),1<q<+\infty and there exists R>0,R>0, such that for all x3,x\in\mathbb{R}^{3}, f(x)=0f(x)=0 or |f(x)|>R.|f(x)|>R. Then for all p<q,p<q,

fLppqqp1RqpfLq,q.\|f\|_{L^{p}}^{p}\leq\frac{q}{q-p}\frac{1}{R^{q-p}}\|f\|_{L^{q,\infty}}^{q}. (4.8)
Proof.

First we will recall that

fLq,q=supα>0αqλf(α),\|f\|_{L^{q,\infty}}^{q}=\sup_{\alpha>0}\alpha^{q}\lambda_{f}(\alpha), (4.9)

and so therefore, for all α>0,\alpha>0,

λf(α)fLq,qαq\lambda_{f}(\alpha)\leq\|f\|_{L^{q,\infty}}^{q}\alpha^{-q} (4.10)

Recalling that by hypothesis if |f(x)|>0,|f(x)|>0, then |f(x)|>R,|f(x)|>R, we may conclude that for all 0αR,0\leq\alpha\leq R,

{x3:|f(x)|>α}={x3:|f(x)|>R}.\left\{x\in\mathbb{R}^{3}:|f(x)|>\alpha\right\}=\left\{x\in\mathbb{R}^{3}:|f(x)|>R\right\}. (4.11)

This implies that for all 0αR,0\leq\alpha\leq R,

λf(α)=λf(R).\lambda_{f}(\alpha)=\lambda_{f}(R). (4.12)

We will now use Proposition 4.2 to estimate the LpL^{p} norm, breaking up the integral into the intervals [0,R][0,R] and (R,+)(R,+\infty):

fLpp\displaystyle\|f\|_{L^{p}}^{p} =p0αp1λf(α)dα\displaystyle=p\int_{0}^{\infty}\alpha^{p-1}\lambda_{f}(\alpha)\mathop{}\!\mathrm{d}\alpha (4.13)
=p0Rαp1λf(α)dα+pRαp1λf(α)dα\displaystyle=p\int_{0}^{R}\alpha^{p-1}\lambda_{f}(\alpha)\mathop{}\!\mathrm{d}\alpha+p\int_{R}^{\infty}\alpha^{p-1}\lambda_{f}(\alpha)\mathop{}\!\mathrm{d}\alpha (4.14)
=λf(R)0Rpαp1dα+pRαp1λf(α)dα\displaystyle=\lambda_{f}(R)\int_{0}^{R}p\alpha^{p-1}\mathop{}\!\mathrm{d}\alpha+p\int_{R}^{\infty}\alpha^{p-1}\lambda_{f}(\alpha)\mathop{}\!\mathrm{d}\alpha (4.15)
=λf(R)Rp+pRαp1λf(α)dα.\displaystyle=\lambda_{f}(R)R^{p}+p\int_{R}^{\infty}\alpha^{p-1}\lambda_{f}(\alpha)\mathop{}\!\mathrm{d}\alpha. (4.16)

Applying the estimate (4.10), we can compute that

fLpp\displaystyle\|f\|_{L^{p}}^{p} fLq,qRpq+pfLq,qRαpq1dα\displaystyle\leq\|f\|_{L^{q,\infty}}^{q}R^{p-q}+p\|f\|_{L^{q,\infty}}^{q}\int_{R}^{\infty}\alpha^{p-q-1}\mathop{}\!\mathrm{d}\alpha (4.17)
=fLq,qRpq+ppqfLq,qαpq|α=R\displaystyle=\|f\|_{L^{q,\infty}}^{q}R^{p-q}+\frac{p}{p-q}\|f\|_{L^{q,\infty}}^{q}\alpha^{p-q}\bigg{|}_{\alpha=R}^{\infty} (4.18)
=fLq,qRpq+pqpfLq,qRpq\displaystyle=\|f\|_{L^{q,\infty}}^{q}R^{p-q}+\frac{p}{q-p}\|f\|_{L^{q,\infty}}^{q}R^{p-q} (4.19)
=(1+pqp)RpqfLq,q\displaystyle=\left(1+\frac{p}{q-p}\right)R^{p-q}\|f\|_{L^{q,\infty}}^{q} (4.20)
=qqp1RqpfLq,q.\displaystyle=\frac{q}{q-p}\frac{1}{R^{q-p}}\|f\|_{L^{q,\infty}}^{q}. (4.21)

This completes the proof. ∎

We will now prove that the continuous embedding Lq,(3)Lp(3)+L(3)L^{q,\infty}\left(\mathbb{R}^{3}\right)\hookrightarrow L^{p}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right) holds, along the associated inequality. While this is a relatively standard result, we include the proof for the sake of completeness and clarity, because the proof of Theorem 1.4 is an adaptation of the proof of this embedding.

Theorem 4.6.

Suppose 1p<q<+,1\leq p<q<+\infty, then

Lq,(3)Lp(3)+L(3),L^{q,\infty}\left(\mathbb{R}^{3}\right)\hookrightarrow L^{p}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right), (4.22)

and in particular for all fLq,(3)f\in L^{q,\infty}\left(\mathbb{R}^{3}\right)

fLp+LCp,qfLq,,\|f\|_{L^{p}+L^{\infty}}\leq C_{p,q}\|f\|_{L^{q,\infty}}, (4.23)

where

Cp,q=infk>0(k+(qqp)1pk1qp).C_{p,q}=\inf_{k>0}\left(k+\left(\frac{q}{q-p}\right)^{\frac{1}{p}}k^{1-\frac{q}{p}}\right). (4.24)
Proof.

For all R>0,R>0, let

gR(x,t)={f(x,t),if |f(x,t)|>R0,if |f(x,t)|Rg_{R}(x,t)=\begin{cases}f(x,t),&\text{if }|f(x,t)|>R\\ 0,&\text{if }|f(x,t)|\leq R\end{cases} (4.25)

and

hR(x,t)={f(x,t),if |f(x,t)|R0,if |f(x,t)|>R.h_{R}(x,t)=\begin{cases}f(x,t),&\text{if }|f(x,t)|\leq R\\ 0,&\text{if }|f(x,t)|>R\end{cases}. (4.26)

We can clearly see that

hRLR,\|h_{R}\|_{L^{\infty}}\leq R, (4.27)

and applying Proposition 4.5, we can conclude that

gRLp=(qqp)1pR1qpfLq,qp\|g_{R}\|_{L^{p}}=\left(\frac{q}{q-p}\right)^{\frac{1}{p}}R^{1-\frac{q}{p}}\|f\|_{L^{q,\infty}}^{\frac{q}{p}} (4.28)

Observing that f=gR+hR,f=g_{R}+h_{R}, we can conclude that for all R>0R>0

fLp+L\displaystyle\|f\|_{L^{p}+L^{\infty}} gRLp+hRL\displaystyle\leq\|g_{R}\|_{L^{p}}+\|h_{R}\|_{L^{\infty}} (4.29)
R+(qqp)1pR1qpfLq,qp.\displaystyle\leq R+\left(\frac{q}{q-p}\right)^{\frac{1}{p}}R^{1-\frac{q}{p}}\|f\|_{L^{q,\infty}}^{\frac{q}{p}}. (4.30)

Now we will let R=kfLq,,R=k\|f\|_{L^{q,\infty}}, and observe that for all k>0,k>0,

fLp+L(k+(qqp)1pk1qp)fLq,.\|f\|_{L^{p}+L^{\infty}}\leq\left(k+\left(\frac{q}{q-p}\right)^{\frac{1}{p}}k^{1-\frac{q}{p}}\right)\|f\|_{L^{q,\infty}}. (4.31)

Therefore we may conclude that

fLp+Linfk>0(k+(qqp)1pk1qp)fLq,,\|f\|_{L^{p}+L^{\infty}}\leq\inf_{k>0}\left(k+\left(\frac{q}{q-p}\right)^{\frac{1}{p}}k^{1-\frac{q}{p}}\right)\|f\|_{L^{q,\infty}}, (4.32)

and this completes the proof. ∎

We will now prove Theorem 1.4, which is restated here for the reader’s convenience.

Theorem 4.7.

Suppose 1k<+,1m<+,1\leq k<+\infty,1\leq m<+\infty, and suppose

kp+mq=1,\frac{k}{p}+\frac{m}{q}=1, (4.33)

and

kp+mq=1,\frac{k}{p^{\prime}}+\frac{m}{q^{\prime}}=1, (4.34)

with m<q<q<+.m<q^{\prime}<q<+\infty. Then

LTpLxq,LTpLxq+LTkLx.L_{T}^{p}L_{x}^{q,\infty}\subset L_{T}^{p^{\prime}}L_{x}^{q^{\prime}}+L_{T}^{k}L_{x}^{\infty}. (4.35)

In particular, for all fLTpLxq,f\in L_{T}^{p}L_{x}^{q,\infty}, we have the explicit decomposition, f=g+hf=g+h with gLTpLxq,hLTkLx,g\in L_{T}^{p^{\prime}}L_{x}^{q^{\prime}},h\in L_{T}^{k}L_{x}^{\infty}, where

g(x,t)={f(x,t),if |f(x,t)|>f(,t)Lq,pk0,if |f(x,t)|f(,t)Lq,pk,g(x,t)=\begin{cases}f(x,t),&\text{if }|f(x,t)|>\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}\\ 0,&\text{if }|f(x,t)|\leq\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}\end{cases}, (4.36)

and

h(x,t)={f(x,t),if |f(x,t)|f(,t)Lq,pk0,if |f(x,t)|>f(,t)Lq,pk,h(x,t)=\begin{cases}f(x,t),&\text{if }|f(x,t)|\leq\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}\\ 0,&\text{if }|f(x,t)|>\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}\end{cases}, (4.37)

and we have the bounds

0Tg(,t)Lqpdt(qqq)pq0Tf(,t)Lq,pdt,\int_{0}^{T}\|g(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\mathop{}\!\mathrm{d}t\leq\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t, (4.38)

and

0Th(,t)Lkdt0Tf(,t)Lq,pdt.\int_{0}^{T}\|h(\cdot,t)\|_{L^{\infty}}^{k}\mathop{}\!\mathrm{d}t\leq\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t. (4.39)
Proof.

It is immediately clear that for all fLTpLxq,,f=g+h,f\in L_{T}^{p}L_{x}^{q,\infty},f=g+h, so it suffices to prove the bounds (4.38) and (4.39), which in turn establish that gLTpLxqg\in L_{T}^{p^{\prime}}L_{x}^{q^{\prime}} and hLTkLxh\in L_{T}^{k}L_{x}^{\infty}. First we will prove the bound (4.39). It is clear from the definition of h,h, that for all 0t<T,0\leq t<T,

h(,t)Lf(,t)Lq,pk,\|h(\cdot,t)\|_{L^{\infty}}\leq\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}, (4.40)

and therefore we may conclude that

0Th(,t)Lkdt0Tf(,t)Lq,pdt.\int_{0}^{T}\|h(\cdot,t)\|_{L^{\infty}}^{k}\mathop{}\!\mathrm{d}t\leq\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t. (4.41)

Now we will prove the bound (4.38). Letting R=f(,t)Lq,pk,R=\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}, we can apply Proposition 4.5 and compute that for all 0t<T,0\leq t<T,

g(,t)Lqq\displaystyle\|g(\cdot,t)\|_{L^{q^{\prime}}}^{q^{\prime}} qqqRqqg(,t)Lq,q\displaystyle\leq\frac{q}{q-q^{\prime}}R^{q^{\prime}-q}\|g(\cdot,t)\|_{L^{q,\infty}}^{q} (4.42)
qqqRqqf(,t)Lq,q\displaystyle\leq\frac{q}{q-q^{\prime}}R^{q^{\prime}-q}\|f(\cdot,t)\|_{L^{q,\infty}}^{q} (4.43)
=qqqf(,t)Lq,q+pk(qq).\displaystyle=\frac{q}{q-q^{\prime}}\|f(\cdot,t)\|_{L^{q,\infty}}^{q+\frac{p}{k}(q^{\prime}-q)}. (4.44)

Taking both sides to the power of pq,\frac{p^{\prime}}{q^{\prime}}, we find that

g(,t)Lqp\displaystyle\|g(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}} (qqq)pqf(,t)Lq,p(qq+pk(1qq))\displaystyle\leq\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}\|f(\cdot,t)\|_{L^{q,\infty}}^{p^{\prime}\left(\frac{q}{q^{\prime}}+\frac{p}{k}\left(1-\frac{q}{q^{\prime}}\right)\right)} (4.45)
(qqq)pqf(,t)Lq,ppp(qq+pk(1qq)).\displaystyle\leq\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}\|f(\cdot,t)\|_{L^{q,\infty}}^{p\frac{p^{\prime}}{p}\left(\frac{q}{q^{\prime}}+\frac{p}{k}\left(1-\frac{q}{q^{\prime}}\right)\right)}. (4.46)

It remains to show that

pp(qq+pk(1qq))=1,\frac{p^{\prime}}{p}\left(\frac{q}{q^{\prime}}+\frac{p}{k}\left(1-\frac{q}{q^{\prime}}\right)\right)=1, (4.47)

which we will do now. First we will note that

qq\displaystyle\frac{q}{q^{\prime}} =m/qm/q\displaystyle=\frac{m/q^{\prime}}{m/q} (4.48)
=1kp1kp.\displaystyle=\frac{1-\frac{k}{p^{\prime}}}{1-\frac{k}{p}}. (4.49)

Therefore we can see that

1qq\displaystyle 1-\frac{q}{q^{\prime}} =11kp1kp\displaystyle=1-\frac{1-\frac{k}{p^{\prime}}}{1-\frac{k}{p}} (4.50)
=(1kp)(1kp)1kp\displaystyle=\frac{\left(1-\frac{k}{p}\right)-\left(1-\frac{k}{p^{\prime}}\right)}{1-\frac{k}{p}} (4.51)
=kpkp1kp\displaystyle=\frac{\frac{k}{p^{\prime}}-\frac{k}{p}}{1-\frac{k}{p}} (4.52)

Next we can compute that

pk(1qq)=pp11kp\frac{p}{k}\left(1-\frac{q}{q^{\prime}}\right)=\frac{\frac{p}{p^{\prime}}-1}{1-\frac{k}{p}} (4.53)

And therefore we may conclude that

qq+pk(1qq)\displaystyle\frac{q}{q^{\prime}}+\frac{p}{k}\left(1-\frac{q}{q^{\prime}}\right) =1kp1kp+pp11kp\displaystyle=\frac{1-\frac{k}{p^{\prime}}}{1-\frac{k}{p}}+\frac{\frac{p}{p^{\prime}}-1}{1-\frac{k}{p}} (4.54)
=ppkp1kp.\displaystyle=\frac{\frac{p}{p^{\prime}}-\frac{k}{p^{\prime}}}{1-\frac{k}{p}}. (4.55)

Finally multiplying by pp\frac{p^{\prime}}{p} we find that

pp(qq+pk(1qq))\displaystyle\frac{p^{\prime}}{p}\left(\frac{q}{q^{\prime}}+\frac{p}{k}\left(1-\frac{q}{q^{\prime}}\right)\right) =pkpk\displaystyle=\frac{p-k}{p-k} (4.56)
=1.\displaystyle=1. (4.57)

Plugging this back into (4.46), we find that for all 0t<T,0\leq t<T,

g(,t)Lqp(qqq)pqf(,t)Lq,p,\|g(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\leq\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}, (4.58)

and therefore that

0Tg(,t)Lqpdt(qqq)pq0Tf(,t)Lq,pdt.\int_{0}^{T}\|g(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\mathop{}\!\mathrm{d}t\leq\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t. (4.59)

This completes the proof. ∎

Remark 4.8.

We will note that the proof of Theorem 4.7 is an adaptation of the proof of Theorem 4.6, with the correct choice of R(t)R(t) for each time. When decomposing f(,t)f(\cdot,t) into functions in LxqL^{q^{\prime}}_{x} and Lx,L^{\infty}_{x}, it is clear that we will control the small values of f(,t)f(\cdot,t) in LxL^{\infty}_{x} and the large values of f(,t)f(\cdot,t) in LxqL^{q^{\prime}}_{x}. The only question is the value of the cutoff function R(t).R(t). In the proof of Theorem 4.7, we took R(t)=f(,t)Lq,pkR(t)=\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}. While this is not the only choice of R(t)R(t) available, it is clear that for any choice of R(t)R(t) we will have R(t)f(,t)Lq,pkR(t)\sim\|f(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{k}}, as the exponent is determined by scaling so any alternate choice will differ at most like a scalar multiple.

We can see that the proof requires that f(,t)Lq,Lp([0,T))\|f(\cdot,t)\|_{L^{q,\infty}}\in L^{p}\left([0,T)\right), so it does not appear this condition can be weakened to weak LpL^{p} in time, the condition f(,t)Lq,Lp,([0,T))\|f(\cdot,t)\|_{L^{q,\infty}}\in L^{p,\infty}\left([0,T)\right). This is fairly compelling evidence that Conjecture 1.8 holds and

LTp,Lxq,LTpLxq+LTkLx.L_{T}^{p,\infty}L_{x}^{q,\infty}\not\subset L_{T}^{p^{\prime}}L_{x}^{q^{\prime}}+L_{T}^{k}L_{x}^{\infty}. (4.60)
Corollary 4.9.

Suppose 1k<+,1m<+,1\leq k<+\infty,1\leq m<+\infty, and suppose

kp+mq=1,\frac{k}{p}+\frac{m}{q}=1, (4.61)

and

kp+mq=1,\frac{k}{p^{\prime}}+\frac{m}{q^{\prime}}=1, (4.62)

with m<q<q<+.m<q^{\prime}<q<+\infty. Then

LTpLxq,+LTkLxLTpLxq+LTkLx.L_{T}^{p}L_{x}^{q,\infty}+L^{k}_{T}L^{\infty}_{x}\subset L_{T}^{p^{\prime}}L_{x}^{q^{\prime}}+L_{T}^{k}L_{x}^{\infty}. (4.63)
Proof.

Suppose fLTpLxq,+LTkLxf\in L_{T}^{p}L_{x}^{q,\infty}+L^{k}_{T}L^{\infty}_{x}. Let f=g+h,gLTpLxq,,hLTkLxf=g+h,g\in L_{T}^{p}L_{x}^{q,\infty},h\in L^{k}_{T}L^{\infty}_{x}. Applying Theorem 4.7, we can see that gLTpLxq+LTkLxg\in L^{p^{\prime}}_{T}L^{q^{\prime}}_{x}+L^{k}_{T}L^{\infty}_{x}, and so g=ϕ+ψ,ϕLTpLxq,ψLTkLxg=\phi+\psi,\phi\in L^{p^{\prime}}_{T}L^{q^{\prime}}_{x},\psi\in L^{k}_{T}L^{\infty}_{x}. From this we may conclude that

f=ϕ+ψ+h,f=\phi+\psi+h, (4.64)

with ϕLTpLxq,ψ+hLTkLx\phi\in L^{p^{\prime}}_{T}L^{q^{\prime}}_{x},\psi+h\in L^{k}_{T}L^{\infty}_{x}. Therefore we may conclude that for all fLTpLxq,+LTkLx,f\in L_{T}^{p}L_{x}^{q,\infty}+L^{k}_{T}L^{\infty}_{x}, we have fLTpLxq+LTkLxf\in L_{T}^{p^{\prime}}L_{x}^{q^{\prime}}+L_{T}^{k}L_{x}^{\infty}, and this completes the proof. ∎

Remark 4.10.

While the results in this section, particularly Theorem 4.7, were proven in terms of the Lebesgue measure on 3,\mathbb{R}^{3}, we did not use any of the specific properties of the Lebesgue measure on 3\mathbb{R}^{3} in the proof, and these results will in fact hold for any Borel measure on a measure space.

Before moving on to regularity criteria in sum spaces in terms of the velocity, we will use Theorem 4.7 and Corollary 4.9 to strengthen the regularity criterion on λ2+\lambda_{2}^{+} from the space LTpLxq+LT1LxL^{p}_{T}L^{q}_{x}+L^{1}_{T}L^{\infty}_{x} to the slightly larger space LTpLxq,+LT1LxL^{p}_{T}L^{q,\infty}_{x}+L^{1}_{T}L^{\infty}_{x}, proving Corollary 1.15, which is restated here for the reader’s convenience.

Corollary 4.11.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let 32<q<+,2p+3q=2,\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2, and let λ2+=f+g.\lambda_{2}^{+}=f+g. Then for all 0<T<Tmax0<T<T_{max}

S(,T)L22S0L22exp(C~p0Tf(,t)Lq,pdt+20Tg(,t)Ldt),\|S(\cdot,T)\|_{L^{2}}^{2}\leq\left\|S^{0}\right\|_{L^{2}}^{2}\exp\left(\tilde{C}_{p}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T}\|g(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right), (4.65)

where

C~p=Cpνp1(qqq)pq+2,\tilde{C}_{p}=\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}+2, (4.66)

with CpC_{p^{\prime}} taken as in Theorem 3.2, and 32<q<q,2p+3q=2.\frac{3}{2}<q^{\prime}<q,\frac{2}{p^{\prime}}+\frac{3}{q^{\prime}}=2. In particular if Tmax<+,T_{max}<+\infty, then

C~p0Tf(,t)Lq,pdt+20Tg(,t)Ldt=+.\tilde{C}_{p}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T}\|g(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t=+\infty. (4.67)
Proof.

We know that if Tmax<+,T_{max}<+\infty, then

limTTmaxS(,T)L22=+,\lim_{T\to T_{max}}\|S(\cdot,T)\|_{L^{2}}^{2}=+\infty, (4.68)

so it suffices to prove the bound (4.65).

We will begin by fixing 32<q<q\frac{3}{2}<q^{\prime}<q and setting

h(x,t)={f(x,t),if |f(x,t)|>f(,t)Lq,p0,if |f(x,t)|f(,t)Lq,p,h(x,t)=\begin{cases}f(x,t),&\text{if }|f(x,t)|>\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\\ 0,&\text{if }|f(x,t)|\leq\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\end{cases}, (4.69)

and

ψ(x,t)={f(x,t),if |f(x,t)|f(,t)Lq,p0,if |f(x,t)|>f(,t)Lq,p.\psi(x,t)=\begin{cases}f(x,t),&\text{if }|f(x,t)|\leq\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\\ 0,&\text{if }|f(x,t)|>\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\end{cases}. (4.70)

It is clear that f=h+ψf=h+\psi, and applying Theorem 4.7, we have the bounds

0Th(,t)Lqpdt(qqq)pq0Tf(,t)Lq,pdt,\int_{0}^{T}\|h(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\mathop{}\!\mathrm{d}t\leq\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t, (4.71)

and

0Tψ(,t)Ldt0Tf(,t)Lq,pdt.\int_{0}^{T}\|\psi(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\leq\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t. (4.72)

Recalling that λ2+=h+ψ+g,\lambda_{2}^{+}=h+\psi+g, and applying (4.71), (4.72), and Theorem 3.2, we can conclude that for all 32<q<q,\frac{3}{2}<q^{\prime}<q, and for all 0<T<Tmax0<T<T_{max}

S(,T)L22\displaystyle\|S(\cdot,T)\|_{L^{2}}^{2} S0L22exp(Cpνp10Th(,t)Lqpdt+20Tψ(,t)+g(,t)Ldt)\displaystyle\leq\left\|S^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\int_{0}^{T}\|h(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\mathop{}\!\mathrm{d}t+2\int_{0}^{T}\|\psi(\cdot,t)+g(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right) (4.73)
S0L22exp((Cpνp1(qqq)pq+2)0Tf(,t)Lq,pdt+20Tg(,t)Ldt).\displaystyle\leq\left\|S^{0}\right\|_{L^{2}}^{2}\exp\left(\left(\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}+2\right)\int_{0}^{T}\|f(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+2\int_{0}^{T}\|g(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right). (4.74)

This completes the proof.

5 Velocity regularity criterion

In this section, we will consider regularity criteria for the Navier–Stokes equation in sum spaces in terms of the velocity. We will begin by proving Theorem 1.1, which is restated here for the reader’s convenience.

Theorem 5.1.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let 3<q<+,2p+3q=1,3<q<+\infty,\frac{2}{p}+\frac{3}{q}=1, and let u=v+σ.u=v+\sigma. Then for all 0<T<Tmax0<T<T_{max}

u(,T)L22u0L22exp(Cpνp10Tv(,t)Lqpdt+1ν0Tσ(,t)L2dt),\|\nabla u(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\frac{1}{\nu}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t\right), (5.1)

where CpC_{p} depends only on p.p. In particular if Tmax<+,T_{max}<+\infty, then

Cpνp10Tmaxv(,t)Lqpdt+1ν0Tmaxσ(,t)L2dt=+.\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T_{max}}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\frac{1}{\nu}\int_{0}^{T_{max}}\|\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t=+\infty. (5.2)
Proof.

We will begin by observing that if Tmax<+,T_{max}<+\infty, then

limTTmaxu(,T)L22=+,\lim_{T\to T_{max}}\|\nabla u(\cdot,T)\|_{L^{2}}^{2}=+\infty, (5.3)

so it suffices to prove the bound (5.1). To prove this bound we will make use of our bound for enstrophy growth in terms of the velocity, computing that

tu(,t)L22\displaystyle\partial_{t}\|\nabla u(\cdot,t)\|_{L^{2}}^{2} =2νΔuL222(u)u,Δu\displaystyle=-2\nu\|-\Delta u\|_{L^{2}}^{2}-2\left<(u\cdot\nabla)u,-\Delta u\right> (5.4)
=2νΔuL222(v)u,Δu2(σ)u,Δu\displaystyle=-2\nu\|-\Delta u\|_{L^{2}}^{2}-2\left<(v\cdot\nabla)u,-\Delta u\right>-2\left<(\sigma\cdot\nabla)u,-\Delta u\right> (5.5)
2νΔuL22+2vLquLrΔuL2+2σLuL2ΔuL2,\displaystyle\leq-2\nu\|-\Delta u\|_{L^{2}}^{2}+2\|v\|_{L^{q}}\|\nabla u\|_{L^{r}}\|-\Delta u\|_{L^{2}}+2\|\sigma\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\|-\Delta u\|_{L^{2}}, (5.6)

where 1q+1r=12,\frac{1}{q}+\frac{1}{r}=\frac{1}{2}, and we have applied Hölder’s inequality. Applying Young’s inequality we find that

2σLuL2ΔuL21νσL2uL22+νΔuL22.2\|\sigma\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\|-\Delta u\|_{L^{2}}\leq\frac{1}{\nu}\|\sigma\|_{L^{\infty}}^{2}\|\nabla u\|_{L^{2}}^{2}+\nu\|-\Delta u\|_{L^{2}}^{2}. (5.7)

Now we need to bound the term 2vLquLrΔuL2.2\|v\|_{L^{q}}\|\nabla u\|_{L^{r}}\|-\Delta u\|_{L^{2}}. Observe that 1r=121q,\frac{1}{r}=\frac{1}{2}-\frac{1}{q}, with 3<q<+,3<q<+\infty, so we can conclude that 2<r<6.2<r<6. Let ρ=3q\rho=\frac{3}{q}. Observe that 0<ρ<10<\rho<1 and

(1ρ)12+ρ16\displaystyle(1-\rho)\frac{1}{2}+\rho\frac{1}{6} =12(13q)+163q\displaystyle=\frac{1}{2}\left(1-\frac{3}{q}\right)+\frac{1}{6}\frac{3}{q} (5.8)
=121q\displaystyle=\frac{1}{2}-\frac{1}{q} (5.9)
=1r.\displaystyle=\frac{1}{r}. (5.10)

Therefore, interpolating between L2L^{2} and L6L^{6} we can see that

uLr\displaystyle\|\nabla u\|_{L^{r}} uL213quL63q\displaystyle\leq\|\nabla u\|_{L^{2}}^{1-\frac{3}{q}}\|\nabla u\|_{L^{6}}^{\frac{3}{q}} (5.11)
=uL22puL612p,\displaystyle=\|\nabla u\|_{L^{2}}^{\frac{2}{p}}\|\nabla u\|_{L^{6}}^{1-\frac{2}{p}}, (5.12)

recalling that by hypothesis 2p+3q=1.\frac{2}{p}+\frac{3}{q}=1. We can apply the Sobolev inequality to conclude that

uL6CΔuL2,\|\nabla u\|_{L^{6}}\leq C\|-\Delta u\|_{L^{2}}, (5.13)

and putting this together with the interpolation inequality we find that

2vLquLrΔuL2CvLquL22pΔuL222p.2\|v\|_{L^{q}}\|\nabla u\|_{L^{r}}\|-\Delta u\|_{L^{2}}\leq C\|v\|_{L^{q}}\|\nabla u\|_{L^{2}}^{\frac{2}{p}}\|-\Delta u\|_{L^{2}}^{2-\frac{2}{p}}. (5.14)

Recalling that 2<p<+2<p<+\infty, take 1<b<2,1<b<2, such that 1p+1b=1.\frac{1}{p}+\frac{1}{b}=1. We can then rewrite the bound in terms of bb and apply Young’s inequality with exponents p,bp,b to find that

2vLquLrΔuL2\displaystyle 2\|v\|_{L^{q}}\|\nabla u\|_{L^{r}}\|-\Delta u\|_{L^{2}} CvLquL22pΔuL22b\displaystyle\leq C\|v\|_{L^{q}}\|\nabla u\|_{L^{2}}^{\frac{2}{p}}\|-\Delta u\|_{L^{2}}^{\frac{2}{b}} (5.15)
=1ν1bvLquL22pν1bΔuL22b\displaystyle=\frac{1}{\nu^{\frac{1}{b}}}\|v\|_{L^{q}}\|\nabla u\|_{L^{2}}^{\frac{2}{p}}\nu^{\frac{1}{b}}\|-\Delta u\|_{L^{2}}^{\frac{2}{b}} (5.16)
CpνpbvLqpuL22+νΔuL22\displaystyle\leq\frac{C_{p}}{\nu^{\frac{p}{b}}}\|v\|_{L^{q}}^{p}\|\nabla u\|_{L^{2}}^{2}+\nu\|-\Delta u\|_{L^{2}}^{2} (5.17)
=Cpνp1vLqpuL22+νΔuL22.\displaystyle=\frac{C_{p}}{\nu^{p-1}}\|v\|_{L^{q}}^{p}\|\nabla u\|_{L^{2}}^{2}+\nu\|-\Delta u\|_{L^{2}}^{2}. (5.18)

Putting together (5.6),(5.7), and (5.18), we find that for all 0<t<Tmax,0<t<T_{max,}

tu(,t)L22(Cpνp1vLqp+1νσL2)uL22.\partial_{t}\|\nabla u(\cdot,t)\|_{L^{2}}^{2}\leq\left(\frac{C_{p}}{\nu^{p-1}}\|v\|_{L^{q}}^{p}+\frac{1}{\nu}\|\sigma\|_{L^{\infty}}^{2}\right)\|\nabla u\|_{L^{2}}^{2}. (5.19)

Applying Grönwall’s inequality, we can conclude that for all 0<T<Tmax,0<T<T_{max},

u(,T)L22u0L22exp(Cpνp10Tv(,t)Lqpdt+1ν0Tσ(,t)L2dt),\|\nabla u(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\frac{1}{\nu}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t\right), (5.20)

and this completes the proof. ∎

We will now prove a corollary that requires the concentration of the LTpLxqL^{p}_{T}L^{q}_{x} norm of uu at large values in the range for all 3<q<+,2p+3q=13<q<+\infty,\frac{2}{p}+\frac{3}{q}=1, as tTmaxt\to T_{max}, when Tmax<+.T_{max}<+\infty.

Corollary 5.2.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation, and suppose hL2([0,Tmax);+)h\in L^{2}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right). Let 3<q<+,2p+3q=1,3<q<+\infty,\frac{2}{p}+\frac{3}{q}=1, and let

v(x,t)={u(x,t),if |u(x,t)|>h(t)0,if |u(x,t)|h(t).v(x,t)=\begin{cases}u(x,t),&\text{if }|u(x,t)|>h(t)\\ 0,&\text{if }|u(x,t)|\leq h(t)\end{cases}. (5.21)

Then for all 0<T<Tmax0<T<T_{max}

u(,T)L22u0L22exp(Cpνp10Tv(,t)Lqpdt+1ν0Th(t)2dt),\|\nabla u(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\frac{1}{\nu}\int_{0}^{T}h(t)^{2}\mathop{}\!\mathrm{d}t\right), (5.22)

where CpC_{p} depends only on p.p. In particular if Tmax<+,T_{max}<+\infty, then

0Tmaxv(,t)Lqpdt=+.\int_{0}^{T_{max}}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t=+\infty. (5.23)
Proof.

We will begin by defining

σ(x,t)={u(x,t),if |u(x,t)|h(t)0,if |u(x,t)|>h(t).\sigma(x,t)=\begin{cases}u(x,t),&\text{if }|u(x,t)|\leq h(t)\\ 0,&\text{if }|u(x,t)|>h(t)\end{cases}. (5.24)

We can see immediately that for all 0<t<Tmax,0<t<T_{max},

σ(,t)Lh(t),\|\sigma(\cdot,t)\|_{L^{\infty}}\leq h(t), (5.25)

and that

u=v+σ.u=v+\sigma. (5.26)

Therefore we can apply Theorem 5.1 and find that

u(,T)L22\displaystyle\|\nabla u(\cdot,T)\|_{L^{2}}^{2} u0L22exp(Cpνp10Tv(,t)Lqpdt+1ν0Tσ(,t)L2dt)\displaystyle\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\frac{1}{\nu}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t\right) (5.27)
u0L22exp(Cpνp10Tv(,t)Lqpdt+1ν0Th(t)2dt).\displaystyle\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\frac{1}{\nu}\int_{0}^{T}h(t)^{2}\mathop{}\!\mathrm{d}t\right). (5.28)

Next we will note, as in Theorem 5.1, that if Tmax<+,T_{max}<+\infty, then

limTTmaxu(,T)L22=+.\lim_{T\to T_{max}}\|\nabla u(\cdot,T)\|_{L^{2}}^{2}=+\infty. (5.29)

Therefore we can conclude that if Tmax<+,T_{max}<+\infty, then

Cpνp10Tmaxv(,t)Lqpdt+1ν0Th(t)2dt=+.\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T_{max}}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\frac{1}{\nu}\int_{0}^{T}h(t)^{2}\mathop{}\!\mathrm{d}t=+\infty. (5.30)

However, we know by hypothesis that

0Tmaxh(t)2dt<+,\int_{0}^{T_{max}}h(t)^{2}\mathop{}\!\mathrm{d}t<+\infty, (5.31)

so we may conclude that

0Tmaxv(,t)Lqpdt=+.\int_{0}^{T_{max}}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t=+\infty. (5.32)

This completes the proof. ∎

Using Theorem 5.1 and Theorem 4.7, we will now extend our regularity criterion for the velocity from the space LTpLxq+LT2LxL^{p}_{T}L^{q}_{x}+L^{2}_{T}L^{\infty}_{x} to the slightly larger space LTpLxq,+LT2LxL^{p}_{T}L^{q,\infty}_{x}+L^{2}_{T}L^{\infty}_{x}, proving Corollary 1.14, which is restated here for the reader’s convenience.

Corollary 5.3.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let 3<q<+,2p+3q=1,3<q<+\infty,\frac{2}{p}+\frac{3}{q}=1, and let u=v+σ.u=v+\sigma. Then for all 0<T<Tmax0<T<T_{max}

u(,T)L22u0L22exp(C~p0Tv(,t)Lq,pdt+2ν0Tσ(,t)L2dt),\|\nabla u(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\tilde{C}_{p}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+\frac{2}{\nu}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t\right), (5.33)

where

C~p=Cpνp1(qqq)pq+2ν,\tilde{C}_{p}=\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}+\frac{2}{\nu}, (5.34)

with CpC_{p^{\prime}} taken as in Theorem 5.1, and 3<q<q,2p+3q=1.3<q^{\prime}<q,\frac{2}{p^{\prime}}+\frac{3}{q^{\prime}}=1. In particular if Tmax<+,T_{max}<+\infty, then

C~p0Tv(,t)Lq,pdt+2ν0Tσ(,t)L2dt=+.\tilde{C}_{p}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+\frac{2}{\nu}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t=+\infty. (5.35)
Proof.

We know that if Tmax<+,T_{max}<+\infty, then

limTTmaxu(,T)L22=+,\lim_{T\to T_{max}}\|\nabla u(\cdot,T)\|_{L^{2}}^{2}=+\infty, (5.36)

so it suffices to prove the bound (5.33).

We will begin by fixing 3<q<q3<q^{\prime}<q and setting

ϕ(x,t)={v(x,t),if |v(x,t)|>v(,t)Lq,p20,if |v(x,t)|v(,t)Lq,p2,\phi(x,t)=\begin{cases}v(x,t),&\text{if }|v(x,t)|>\|v(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{2}}\\ 0,&\text{if }|v(x,t)|\leq\|v(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{2}}\end{cases}, (5.37)

and

ψ(x,t)={v(x,t),if |v(x,t)|v(,t)Lq,p20,if |v(x,t)|>v(,t)Lq,p2.\psi(x,t)=\begin{cases}v(x,t),&\text{if }|v(x,t)|\leq\|v(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{2}}\\ 0,&\text{if }|v(x,t)|>\|v(\cdot,t)\|_{L^{q,\infty}}^{\frac{p}{2}}\end{cases}. (5.38)

It is clear that v=ϕ+ψv=\phi+\psi, and applying Theorem 4.7, we have the bounds

0Tϕ(,t)Lqpdt(qqq)pq0Tv(,t)Lq,pdt,\int_{0}^{T}\|\phi(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\mathop{}\!\mathrm{d}t\leq\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t, (5.39)

and

0Tψ(,t)L2dt0Tv(,t)Lq,pdt.\int_{0}^{T}\|\psi(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t\leq\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t. (5.40)

Recalling that ω=ϕ+ψ+σ,\omega=\phi+\psi+\sigma, and applying (5.39), (5.40), and Theorem 5.1, we can conclude that for all 3<q<q,2p+3q=13<q^{\prime}<q,\frac{2}{p^{\prime}}+\frac{3}{q^{\prime}}=1, and for all 0<T<Tmax0<T<T_{max},

u(,T)L22\displaystyle\|\nabla u(\cdot,T)\|_{L^{2}}^{2} u0L22exp(Cpνp10Tϕ(,t)Lqpdt+1ν0Tψ(,t)+σ(,t)L2dt)\displaystyle\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\int_{0}^{T}\|\phi(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\mathop{}\!\mathrm{d}t+\frac{1}{\nu}\int_{0}^{T}\|\psi(\cdot,t)+\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t\right) (5.41)
u0L22exp(Cpνp10Tϕ(,t)Lqpdt+1ν0T(ψ(,t)L+σ(,t)L)2dt)\displaystyle\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\int_{0}^{T}\|\phi(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\mathop{}\!\mathrm{d}t+\frac{1}{\nu}\int_{0}^{T}\left(\|\psi(\cdot,t)\|_{L^{\infty}}+\|\sigma(\cdot,t)\|_{L^{\infty}}\right)^{2}\mathop{}\!\mathrm{d}t\right) (5.42)
u0L22exp(Cpνp10Tϕ(,t)Lqpdt+2ν0Tψ(,t)L2+σ(,t)L2dt)\displaystyle\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\int_{0}^{T}\|\phi(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\mathop{}\!\mathrm{d}t+\frac{2}{\nu}\int_{0}^{T}\|\psi(\cdot,t)\|_{L^{\infty}}^{2}+\|\sigma(\cdot,t)\|_{L^{\infty}}^{2}\mathop{}\!\mathrm{d}t\right) (5.43)
u0L22exp((Cpνp1(qqq)pq+2ν)0Tv(,t)Lq,pdt+2ν0Tσ(,t)Ldt).\displaystyle\leq\left\|\nabla u^{0}\right\|_{L^{2}}^{2}\exp\left(\left(\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}+\frac{2}{\nu}\right)\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+\frac{2}{\nu}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right). (5.44)

This completes the proof. ∎

We will finish this section by proving the endpoint regularity criterion Theorem 1.10, which is restated here for the reader’s convenience.

Theorem 5.4.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation, and suppose hL2([0,Tmax);+)h\in L^{2}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right). Let

v(x,t)={u(x,t),if |u(x,t)|>h(t)0,if |u(x,t)|h(t).v(x,t)=\begin{cases}u(x,t),&\text{if }|u(x,t)|>h(t)\\ 0,&\text{if }|u(x,t)|\leq h(t)\end{cases}. (5.45)

If Tmax<+,T_{max}<+\infty, then

lim suptTmaxv(,t)L33(π2)23ν.\limsup_{t\to T_{max}}\left\|v(\cdot,t)\right\|_{L^{3}}\geq\sqrt{3}\left(\frac{\pi}{2}\right)^{\frac{2}{3}}\nu. (5.46)
Proof.

Suppose towards contradiction that Tmax<+T_{max}<+\infty and

lim suptTmaxv(,t)L3<3(π2)23ν.\limsup_{t\to T_{max}}\left\|v(\cdot,t)\right\|_{L^{3}}<\sqrt{3}\left(\frac{\pi}{2}\right)^{\frac{2}{3}}\nu. (5.47)

Then there exists ϵ,δ>0,\epsilon,\delta>0, such that for all Tmaxδ<t<Tmax,T_{max}-\delta<t<T_{max},

v(,t)L3<3(π2)23ν3(π2)23ϵ.\left\|v(\cdot,t)\right\|_{L^{3}}<\sqrt{3}\left(\frac{\pi}{2}\right)^{\frac{2}{3}}\nu-\sqrt{3}\left(\frac{\pi}{2}\right)^{\frac{2}{3}}\epsilon. (5.48)

We will again define

σ(x,t)={u(x,t),if |u(x,t)|h(t)0,if |u(x,t)|>h(t).\sigma(x,t)=\begin{cases}u(x,t),&\text{if }|u(x,t)|\leq h(t)\\ 0,&\text{if }|u(x,t)|>h(t)\end{cases}. (5.49)

We can see immediately that for all 0<t<Tmax,0<t<T_{max},

σ(,t)Lh(t),\|\sigma(\cdot,t)\|_{L^{\infty}}\leq h(t), (5.50)

and that

u=v+σ.u=v+\sigma. (5.51)

Now we can use our identity for enstrophy growth in terms of velocity, Hölder’s inequality, and the Sobolev inequality to compute that for all Tmaxδ<t<TmaxT_{max}-\delta<t<T_{max}

t12u(,t)L22\displaystyle\partial_{t}\frac{1}{2}\|\nabla u(\cdot,t)\|_{L^{2}}^{2} =νΔuL22(u)u,Δu\displaystyle=-\nu\|-\Delta u\|_{L^{2}}^{2}-\left<(u\cdot\nabla)u,-\Delta u\right> (5.52)
=νΔuL22(v)u,Δu(σ)u,Δu\displaystyle=-\nu\|-\Delta u\|_{L^{2}}^{2}-\left<(v\cdot\nabla)u,-\Delta u\right>-\left<(\sigma\cdot\nabla)u,-\Delta u\right> (5.53)
νΔuL22+vL3uL6ΔuL2+σLuL2ΔuL2\displaystyle\leq-\nu\|-\Delta u\|_{L^{2}}^{2}+\|v\|_{L^{3}}\|\nabla u\|_{L^{6}}\|-\Delta u\|_{L^{2}}+\|\sigma\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\|-\Delta u\|_{L^{2}} (5.54)
νΔuL22+13(2π)23vL3ΔuL22+huL2ΔuL2.\displaystyle\leq-\nu\|-\Delta u\|_{L^{2}}^{2}+\frac{1}{\sqrt{3}}\left(\frac{2}{\pi}\right)^{\frac{2}{3}}\|v\|_{L^{3}}\|-\Delta u\|_{L^{2}}^{2}+h\|\nabla u\|_{L^{2}}\|-\Delta u\|_{L^{2}}. (5.55)

We know from our hypothesis (5.48) that

13(2π)23vL3ΔuL22<(νϵ)ΔuL22,\frac{1}{\sqrt{3}}\left(\frac{2}{\pi}\right)^{\frac{2}{3}}\|v\|_{L^{3}}\|-\Delta u\|_{L^{2}}^{2}<(\nu-\epsilon)\|-\Delta u\|_{L^{2}}^{2}, (5.56)

so we can apply Young’s inequality and conclude that

t12u(,t)L22\displaystyle\partial_{t}\frac{1}{2}\|\nabla u(\cdot,t)\|_{L^{2}}^{2} ϵΔuL22+huL2ΔuL2\displaystyle\leq-\epsilon\|-\Delta u\|_{L^{2}}^{2}+h\|\nabla u\|_{L^{2}}\|-\Delta u\|_{L^{2}} (5.57)
14ϵh2uL22.\displaystyle\leq\frac{1}{4\epsilon}h^{2}\|\nabla u\|_{L^{2}}^{2}. (5.58)

Multiplying both sides by 2,2, we find that

tu(,t)L2212ϵh2uL22.\partial_{t}\|\nabla u(\cdot,t)\|_{L^{2}}^{2}\leq\frac{1}{2\epsilon}h^{2}\|\nabla u\|_{L^{2}}^{2}. (5.59)

Applying Grönwall’s inequality we find that for all Tmaxδ<T<Tmax,T_{max}-\delta<T<T_{max},

u(,T)L22u(,Tmaxδ)L22exp(12ϵTmaxδTh(t)2dt).\|\nabla u(\cdot,T)\|_{L^{2}}^{2}\leq\|\nabla u(\cdot,T_{max}-\delta)\|_{L^{2}}^{2}\exp\left(\frac{1}{2\epsilon}\int_{T_{max}-\delta}^{T}h(t)^{2}\mathop{}\!\mathrm{d}t\right). (5.60)

Using the assumption that hL2([0,Tmax);+),h\in L^{2}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right), we can conclude that

lim supTTmaxu(,T)L22\displaystyle\limsup_{T\to T_{max}}\|\nabla u(\cdot,T)\|_{L^{2}}^{2} u(,Tmaxδ)L22exp(12ϵTmaxδTmaxh(t)2dt)\displaystyle\leq\left\|\nabla u(\cdot,T_{max}-\delta)\right\|_{L^{2}}^{2}\exp\left(\frac{1}{2\epsilon}\int_{T_{max}-\delta}^{T_{max}}h(t)^{2}\mathop{}\!\mathrm{d}t\right) (5.61)
<+.\displaystyle<+\infty. (5.62)

This contradicts our assumption that Tmax<+,T_{max}<+\infty, so this completes the proof. ∎

6 Vorticity regularity criterion

In this section, we will consider regularity criteria for the Navier–Stokes equation in sum spaces in terms of the vorticity. We will begin by proving Theorem 1.3, which is restated here for the reader’s convenience.

Theorem 6.1.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let 32<q<+,2p+3q=2,\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2, and let ω=v+σ.\omega=v+\sigma. Then for all 0<T<Tmax0<T<T_{max},

ω(,T)L22ω0L22exp(Cpνp10Tv(,t)Lqpdt+20Tσ(,t)Ldt),\|\omega(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\omega^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right), (6.1)

where CpC_{p} depends only on p.p. In particular if Tmax<+,T_{max}<+\infty, then

Cpνp10Tmaxv(,t)Lqpdt+20Tmaxσ(,t)Ldt=+.\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T_{max}}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T_{max}}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t=+\infty. (6.2)
Proof.

We will first observe that if Tmax<+,T_{max}<+\infty, then

limTTmaxω(,T)L2=+,\lim_{T\to T_{max}}\|\omega(\cdot,T)\|_{L^{2}}=+\infty, (6.3)

and therefore it suffices to prove the bound (6.1). Applying our standard identity for enstrophy growth we can see that for all 0<t<Tmax0<t<T_{max}

t12ω(,t)L22\displaystyle\partial_{t}\frac{1}{2}\|\omega(\cdot,t)\|_{L^{2}}^{2} =νωH˙12+S;ωω\displaystyle=-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\left<S;\omega\otimes\omega\right> (6.4)
=νωH˙12+Sω;ω\displaystyle=-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\left<S\omega;\omega\right> (6.5)
=νωH˙12+Sω;v+Sω;σ.\displaystyle=-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\left<S\omega;v\right>+\left<S\omega;\sigma\right>. (6.6)

Applying Hölder’s inequality with exponents q,rq,r and 1,1,\infty we find.

t12ω(,t)L22\displaystyle\partial_{t}\frac{1}{2}\|\omega(\cdot,t)\|_{L^{2}}^{2} νωH˙12+SωLrvLq+SωL1σL\displaystyle\leq-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\|S\omega\|_{L^{r}}\|v\|_{L^{q}}+\|S\omega\|_{L^{1}}\|\sigma\|_{L^{\infty}} (6.7)
νωH˙12+SL2rωL2rvLq+SL2ωL2σL.\displaystyle\leq-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\|S\|_{L^{2r}}\|\omega\|_{L^{2r}}\|v\|_{L^{q}}+\|S\|_{L^{2}}\|\omega\|_{L^{2}}\|\sigma\|_{L^{\infty}}. (6.8)

Next we observe that 32<q<,\frac{3}{2}<q<\infty, and so 1<r<3,1<r<3, and consequently 2<2r<6.2<2r<6. Let ρ=32q.\rho=\frac{3}{2q}. We can see that 0<ρ<1,0<\rho<1, and

(1ρ)12+ρ16\displaystyle(1-\rho)\frac{1}{2}+\rho\frac{1}{6} =12ρ3\displaystyle=\frac{1}{2}-\frac{\rho}{3} (6.9)
=1212q\displaystyle=\frac{1}{2}-\frac{1}{2q} (6.10)
=1212(11r)\displaystyle=\frac{1}{2}-\frac{1}{2}\left(1-\frac{1}{r}\right) (6.11)
=12r.\displaystyle=\frac{1}{2r}. (6.12)

Therefore, we can interpolate between L2L^{2} and L6L^{6} and find that

SL2rSL2132qSL632q\|S\|_{L^{2r}}\leq\|S\|_{L^{2}}^{1-\frac{3}{2q}}\|S\|_{L^{6}}^{\frac{3}{2q}} (6.13)

and

ωL2rωL2132qωL632q\|\omega\|_{L^{2r}}\leq\|\omega\|_{L^{2}}^{1-\frac{3}{2q}}\|\omega\|_{L^{6}}^{\frac{3}{2q}} (6.14)

Applying these interpolation inequalities, the Sobolev inequality, and the isometry in Proposition 2.11, we find that

t12ω(,t)L22\displaystyle\partial_{t}\frac{1}{2}\|\omega(\cdot,t)\|_{L^{2}}^{2} νωH˙12+SL2132qSL632qωL2132qωL632qvLq+SL2ωL2σL\displaystyle\leq-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\|S\|_{L^{2}}^{1-\frac{3}{2q}}\|S\|_{L^{6}}^{\frac{3}{2q}}\|\omega\|_{L^{2}}^{1-\frac{3}{2q}}\|\omega\|_{L^{6}}^{\frac{3}{2q}}\|v\|_{L^{q}}+\|S\|_{L^{2}}\|\omega\|_{L^{2}}\|\sigma\|_{L^{\infty}} (6.15)
νωH˙12+CSL2132qSH˙132qωL2132qωH˙132qvLq+SL2ωL2σL\displaystyle\leq-\nu\|\omega\|_{\dot{H}^{1}}^{2}+C\|S\|_{L^{2}}^{1-\frac{3}{2q}}\|S\|_{\dot{H}^{1}}^{\frac{3}{2q}}\|\omega\|_{L^{2}}^{1-\frac{3}{2q}}\|\omega\|_{\dot{H}^{1}}^{\frac{3}{2q}}\|v\|_{L^{q}}+\|S\|_{L^{2}}\|\omega\|_{L^{2}}\|\sigma\|_{L^{\infty}} (6.16)
νωH˙12+CωL223qωH˙13qvLq+12ωL22σL.\displaystyle\leq-\nu\|\omega\|_{\dot{H}^{1}}^{2}+C\|\omega\|_{L^{2}}^{2-\frac{3}{q}}\|\omega\|_{\dot{H}^{1}}^{\frac{3}{q}}\|v\|_{L^{q}}+\frac{1}{\sqrt{2}}\|\omega\|_{L^{2}}^{2}\|\sigma\|_{L^{\infty}}. (6.17)

Multiplying both sides by 22 and substituting 23q=2p2-\frac{3}{q}=\frac{2}{p} we find that

tω(,t)L22=2νωH˙12+CωL22pωH˙13qvLq+2ωL22σL.\partial_{t}\|\omega(\cdot,t)\|_{L^{2}}^{2}=-2\nu\|\omega\|_{\dot{H}^{1}}^{2}+C\|\omega\|_{L^{2}}^{\frac{2}{p}}\|\omega\|_{\dot{H}^{1}}^{\frac{3}{q}}\|v\|_{L^{q}}+\sqrt{2}\|\omega\|_{L^{2}}^{2}\|\sigma\|_{L^{\infty}}. (6.18)

Let b=2q3.b=\frac{2q}{3}. Clearly 1<b<+,1<b<+\infty, and recalling that 2p+3q=2,\frac{2}{p}+\frac{3}{q}=2, we can see that

1p+1b\displaystyle\frac{1}{p}+\frac{1}{b} =1p+32q\displaystyle=\frac{1}{p}+\frac{3}{2q} (6.19)
=1.\displaystyle=1. (6.20)

Applying Young’s inequality with exponents p,bp,b we find

CνvLqωL22pωH˙13qCpνpvLqpωL22+2ωH˙12.\frac{C}{\nu}\|v\|_{L^{q}}\|\omega\|_{L^{2}}^{\frac{2}{p}}\|\omega\|_{\dot{H}^{1}}^{\frac{3}{q}}\leq\frac{C_{p}}{\nu^{p}}\|v\|_{L^{q}}^{p}\|\omega\|_{L^{2}}^{2}+2\|\omega\|_{\dot{H}^{1}}^{2}. (6.21)

This immediately implies that

2νωH˙12+CvLqωL22pωH˙13qCpνp1vLqpωL22.-2\nu\|\omega\|_{\dot{H}^{1}}^{2}+C\|v\|_{L^{q}}\|\omega\|_{L^{2}}^{\frac{2}{p}}\|\omega\|_{\dot{H}^{1}}^{\frac{3}{q}}\leq\frac{C_{p}}{\nu^{p-1}}\|v\|_{L^{q}}^{p}\|\omega\|_{L^{2}}^{2}. (6.22)

Therefore we may conclude that for all 0<t<Tmax0<t<T_{max}

tω(,t)L22(Cpνp1vLqp+2σL)ωL22.\partial_{t}\|\omega(\cdot,t)\|_{L^{2}}^{2}\leq\left(\frac{C_{p}}{\nu^{p-1}}\|v\|_{L^{q}}^{p}+\sqrt{2}\|\sigma\|_{L^{\infty}}\right)\|\omega\|_{L^{2}}^{2}. (6.23)

Applying Grönwall’s inequality, we find that for all 0<T<Tmax,0<T<T_{max},

ω(,T)L22ω0L22exp(Cpνp10Tv(,t)Lqpdt+20Tσ(,t)Ldt).\|\omega(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\omega^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right). (6.24)

This completes the proof. ∎

We will now prove a corollary that requires the concentration of the LTpLxqL^{p}_{T}L^{q}_{x} norm of ω\omega at large values in the range for all 32<q<+,2p+3q=2\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2, as tTmaxt\to T_{max}, when Tmax<+.T_{max}<+\infty.

Corollary 6.2.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation, and suppose hL1([0,Tmax);+)h\in L^{1}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right). Let 32<q<+,2p+3q=2,\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2, and let

v(x,t)={ω(x,t),if |ω(x,t)|>h(t)0,if |ω(x,t)|h(t).v(x,t)=\begin{cases}\omega(x,t),&\text{if }|\omega(x,t)|>h(t)\\ 0,&\text{if }|\omega(x,t)|\leq h(t)\end{cases}. (6.25)

Then for all 0<T<Tmax0<T<T_{max}

ω(,T)L22ω0L22exp(Cpνp10Tv(,t)Lqpdt+20Th(t)dt),\|\omega(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\omega^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}h(t)\mathop{}\!\mathrm{d}t\right), (6.26)

where CpC_{p} depends only on p.p. In particular if Tmax<+,T_{max}<+\infty, then

0Tmaxv(,t)Lqpdt=+.\int_{0}^{T_{max}}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t=+\infty. (6.27)
Proof.

We will begin by letting

σ(x,t)={ω(x,t),if |ω(x,t)|h(t)0,if |ω(x,t)|>h(t).\sigma(x,t)=\begin{cases}\omega(x,t),&\text{if }|\omega(x,t)|\leq h(t)\\ 0,&\text{if }|\omega(x,t)|>h(t)\end{cases}. (6.28)

We can see immediately that for all 0<t<Tmax,0<t<T_{max},

σ(,t)Lh(t),\|\sigma(\cdot,t)\|_{L^{\infty}}\leq h(t), (6.29)

and that

ω=v+σ.\omega=v+\sigma. (6.30)

Therefore we can apply Theorem 6.1 and find that

ω(,T)L22\displaystyle\|\omega(\cdot,T)\|_{L^{2}}^{2} ω0L22exp(Cpνp10Tv(,t)Lqpdt+20Tσ(,t)Ldt)\displaystyle\leq\left\|\omega^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right) (6.31)
ω0L22exp(Cpνp10Tv(,t)Lqpdt+20Th(t)dt).\displaystyle\leq\left\|\omega^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}h(t)\mathop{}\!\mathrm{d}t\right). (6.32)

Next we will note, as in Theorem 6.1, that if Tmax<+,T_{max}<+\infty, then

limTTmaxω(,T)L22=+.\lim_{T\to T_{max}}\|\omega(\cdot,T)\|_{L^{2}}^{2}=+\infty. (6.33)

Therefore we can conclude that if Tmax<+,T_{max}<+\infty, then

Cpνp10Tmaxv(,t)Lqpdt+20Tmaxh(t)dt=+.\frac{C_{p}}{\nu^{p-1}}\int_{0}^{T_{max}}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T_{max}}h(t)\mathop{}\!\mathrm{d}t=+\infty. (6.34)

However, we know by hypothesis that

0Tmaxh(t)dt<+,\int_{0}^{T_{max}}h(t)\mathop{}\!\mathrm{d}t<+\infty, (6.35)

so we may conclude that

0Tmaxv(,t)Lqpdt=+.\int_{0}^{T_{max}}\|v(\cdot,t)\|_{L^{q}}^{p}\mathop{}\!\mathrm{d}t=+\infty. (6.36)

This completes the proof. ∎

Using Theorem 6.1 and Theorem 4.7, we will now extend our regularity criterion for the vorticity from the space LTpLxq+LT1LxL^{p}_{T}L^{q}_{x}+L^{1}_{T}L^{\infty}_{x} to the slightly larger space LTpLxq,+LT1LxL^{p}_{T}L^{q,\infty}_{x}+L^{1}_{T}L^{\infty}_{x}, proving Corollary 1.16, which is restated here for the reader’s convenience.

Corollary 6.3.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation. Let 32<q<+,2p+3q=2,\frac{3}{2}<q<+\infty,\frac{2}{p}+\frac{3}{q}=2, and let ω=v+σ\omega=v+\sigma. Then for all 0<T<Tmax,0<T<T_{max},

ω(,T)L22ω0L22exp(Cp~0Tv(,t)Lq,pdt+20Tσ(,t)Ldt),\|\omega(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\omega^{0}\right\|_{L^{2}}^{2}\exp\left(\tilde{C_{p}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right), (6.37)

where

C~p=Cpνp1(qqq)pq+2,\tilde{C}_{p}=\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}+\sqrt{2}, (6.38)

with CpC_{p^{\prime}} taken as in Theorem 6.1, and 32<q<q,2p+3q=2.\frac{3}{2}<q^{\prime}<q,\frac{2}{p^{\prime}}+\frac{3}{q^{\prime}}=2. In particular if Tmax<+,T_{max}<+\infty, then

Cp~0Tv(,t)Lq,pdt+20Tσ(,t)Ldt=+.\tilde{C_{p}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t=+\infty. (6.39)
Proof.

We know that if Tmax<+,T_{max}<+\infty, then

limTTmaxω(,T)L22=+,\lim_{T\to T_{max}}\|\omega(\cdot,T)\|_{L^{2}}^{2}=+\infty, (6.40)

so it suffices to prove the bound (6.37).

We will begin fixing 32<q<q\frac{3}{2}<q^{\prime}<q and by setting

ϕ(x,t)={v(x,t),if |v(x,t)|>v(,t)Lq,p0,if |v(x,t)|v(,t)Lq,p,\phi(x,t)=\begin{cases}v(x,t),&\text{if }|v(x,t)|>\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\\ 0,&\text{if }|v(x,t)|\leq\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\end{cases}, (6.41)

and

ψ(x,t)={v(x,t),if |v(x,t)|v(,t)Lq,p0,if |v(x,t)|>v(,t)Lq,p.\psi(x,t)=\begin{cases}v(x,t),&\text{if }|v(x,t)|\leq\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\\ 0,&\text{if }|v(x,t)|>\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\end{cases}. (6.42)

It is clear that v=ϕ+ψv=\phi+\psi, and applying Theorem 4.7, we have the bounds

0Tϕ(,t)Lqpdt(qqq)pq0Tv(,t)Lq,pdt,\int_{0}^{T}\|\phi(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\mathop{}\!\mathrm{d}t\leq\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t, (6.43)

and

0Tψ(,t)Ldt0Tv(,t)Lq,pdt.\int_{0}^{T}\|\psi(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\leq\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t. (6.44)

Recalling that ω=ϕ+ψ+σ,\omega=\phi+\psi+\sigma, and applying (6.43), (6.44), and Theorem 6.1, we can conclude that for all 32<q<q,\frac{3}{2}<q^{\prime}<q, and for all 0<T<Tmax0<T<T_{max}

ω(,T)L22\displaystyle\|\omega(\cdot,T)\|_{L^{2}}^{2} ω0L22exp(Cpνp10Tϕ(,t)Lqpdt+20Tψ(,t)+σ(,t)Ldt)\displaystyle\leq\left\|\omega^{0}\right\|_{L^{2}}^{2}\exp\left(\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\int_{0}^{T}\|\phi(\cdot,t)\|_{L^{q^{\prime}}}^{p^{\prime}}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}\|\psi(\cdot,t)+\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right) (6.45)
ω0L22exp((Cpνp1(qqq)pq+2)0Tv(,t)Lq,pdt+20Tσ(,t)Ldt).\displaystyle\leq\left\|\omega^{0}\right\|_{L^{2}}^{2}\exp\left(\left(\frac{C_{p^{\prime}}}{\nu^{p^{\prime}-1}}\left(\frac{q}{q-q^{\prime}}\right)^{\frac{p^{\prime}}{q^{\prime}}}+\sqrt{2}\right)\int_{0}^{T}\|v(\cdot,t)\|_{L^{q,\infty}}^{p}\mathop{}\!\mathrm{d}t+\sqrt{2}\int_{0}^{T}\|\sigma(\cdot,t)\|_{L^{\infty}}\mathop{}\!\mathrm{d}t\right). (6.46)

This completes the proof. ∎

Finally, we will prove the endpoint regularity criterion, Theorem 1.11, which is restated here for the reader’s convenience.

Theorem 6.4.

Suppose uC([0,Tmax);H˙df1)u\in C\left(\left[0,T_{max}\right);\dot{H}^{1}_{df}\right) is a smooth solution of the Navier–Stokes equation, and suppose hL1([0,Tmax);+)h\in L^{1}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right). Let

v(x,t)={ω(x,t),if |ω(x,t)|>h(t)0,if |ω(x,t)|h(t).v(x,t)=\begin{cases}\omega(x,t),&\text{if }|\omega(x,t)|>h(t)\\ 0,&\text{if }|\omega(x,t)|\leq h(t)\end{cases}. (6.47)

If Tmax<+,T_{max}<+\infty, then

lim suptTmaxv(,t)L323π43256ν.\limsup_{t\to T_{max}}\left\|v(\cdot,t)\right\|_{L^{\frac{3}{2}}}\geq\frac{3\pi^{\frac{4}{3}}}{2^{\frac{5}{6}}}\nu. (6.48)
Proof.

Suppose towards contradiction that Tmax<+T_{max}<+\infty and

lim suptTmaxv(,t)L32<3π43256ν.\limsup_{t\to T_{max}}\left\|v(\cdot,t)\right\|_{L^{\frac{3}{2}}}<\frac{3\pi^{\frac{4}{3}}}{2^{\frac{5}{6}}}\nu. (6.49)

This means that there exists ϵ>0,\epsilon>0, such that for all Tmaxϵ<t<Tmax,T_{max}-\epsilon<t<T_{max},

v(,t)L32<3π43256ν.\left\|v(\cdot,t)\right\|_{L^{\frac{3}{2}}}<\frac{3\pi^{\frac{4}{3}}}{2^{\frac{5}{6}}}\nu. (6.50)

We will again let

σ(x,t)={ω(x,t),if |ω(x,t)|h(t)0,if |ω(x,t)|>h(t).\sigma(x,t)=\begin{cases}\omega(x,t),&\text{if }|\omega(x,t)|\leq h(t)\\ 0,&\text{if }|\omega(x,t)|>h(t)\end{cases}. (6.51)

We can see immediately that for all 0<t<Tmax,0<t<T_{max},

σ(,t)Lh(t),\|\sigma(\cdot,t)\|_{L^{\infty}}\leq h(t), (6.52)

and that

ω=v+σ.\omega=v+\sigma. (6.53)

Applying our standard identity for enstrophy growth we can see that

t12ω(,t)L22\displaystyle\partial_{t}\frac{1}{2}\|\omega(\cdot,t)\|_{L^{2}}^{2} =νωH˙12+S;ωω\displaystyle=-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\left<S;\omega\otimes\omega\right> (6.54)
=νωH˙12+Sω;v+Sω;σ.\displaystyle=-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\left<S\omega;v\right>+\left<S\omega;\sigma\right>. (6.55)

Applying Hölder’s inequality with exponents 32,3\frac{3}{2},3 and 1,,1,\infty, the Sobolev inequality, and the isometry in Proposition 2.11.

t12ω(,t)L22\displaystyle\partial_{t}\frac{1}{2}\|\omega(\cdot,t)\|_{L^{2}}^{2} νωH˙12+SωL3vL32+SωL1σL\displaystyle\leq-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\|S\omega\|_{L^{3}}\|v\|_{L^{\frac{3}{2}}}+\|S\omega\|_{L^{1}}\|\sigma\|_{L^{\infty}} (6.56)
νωH˙12+SL6ωL6vL32+hSL2ωL2\displaystyle\leq-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\|S\|_{L^{6}}\|\omega\|_{L^{6}}\|v\|_{L^{\frac{3}{2}}}+h\|S\|_{L^{2}}\|\omega\|_{L^{2}} (6.57)
νωH˙12+2433π43SH˙1ωH˙1vL32+hSL2ωL2\displaystyle\leq-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\frac{2^{\frac{4}{3}}}{3\pi^{\frac{4}{3}}}\|S\|_{\dot{H}^{1}}\|\omega\|_{\dot{H}^{1}}\|v\|_{L^{\frac{3}{2}}}+h\|S\|_{L^{2}}\|\omega\|_{L^{2}} (6.58)
=νωH˙12+2563π43ωH˙12vL32+12hωL2\displaystyle=-\nu\|\omega\|_{\dot{H}^{1}}^{2}+\frac{2^{\frac{5}{6}}}{3\pi^{\frac{4}{3}}}\|\omega\|_{\dot{H}^{1}}^{2}\|v\|_{L^{\frac{3}{2}}}+\frac{1}{\sqrt{2}}h\|\omega\|_{L^{2}} (6.59)
=νωH˙12(12563π43νvL32)+12hωL2\displaystyle=-\nu\|\omega\|_{\dot{H}^{1}}^{2}\left(1-\frac{2^{\frac{5}{6}}}{3\pi^{\frac{4}{3}}\nu}\|v\|_{L^{\frac{3}{2}}}\right)+\frac{1}{\sqrt{2}}h\|\omega\|_{L^{2}} (6.60)

Recall that by hypothesis for all Tmaxϵ<t<Tmax,T_{max}-\epsilon<t<T_{max},

2563π43νvL32<1,\frac{2^{\frac{5}{6}}}{3\pi^{\frac{4}{3}}\nu}\|v\|_{L^{\frac{3}{2}}}<1, (6.61)

Therefore we can conclude that for all Tmaxϵ<t<Tmax,T_{max}-\epsilon<t<T_{max},

tωL222hωL22.\partial_{t}\|\omega\|_{L^{2}}^{2}\leq\sqrt{2}h\|\omega\|_{L^{2}}^{2}. (6.62)

Applying Grönwall’s inequality, this implies that for all Tmaxϵ<T<Tmax,T_{max}-\epsilon<T<T_{max},

ω(,T)L22ω(,Tmaxϵ)L22exp(2TmaxϵTh(t)dt).\|\omega(\cdot,T)\|_{L^{2}}^{2}\leq\left\|\omega(\cdot,T_{max}-\epsilon)\right\|_{L^{2}}^{2}\exp\left(\sqrt{2}\int_{T_{max}-\epsilon}^{T}h(t)\mathop{}\!\mathrm{d}t\right). (6.63)

Using the assumption that hL1([0,Tmax);+),h\in L^{1}\left(\left[0,T_{max}\right);\mathbb{R}^{+}\right), we can conclude that

lim supTTmaxω(,T)L22\displaystyle\limsup_{T\to T_{max}}\|\omega(\cdot,T)\|_{L^{2}}^{2} ω(,Tmaxϵ)L22exp(2TmaxϵTmaxh(t)dt)\displaystyle\leq\left\|\omega(\cdot,T_{max}-\epsilon)\right\|_{L^{2}}^{2}\exp\left(\sqrt{2}\int_{T_{max}-\epsilon}^{T_{max}}h(t)\mathop{}\!\mathrm{d}t\right) (6.64)
<+.\displaystyle<+\infty. (6.65)

This contradicts our assumption that Tmax<+,T_{max}<+\infty, so this completes the proof. ∎

References