This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Narrow [O iii] emission lines as a potential proxy for the evolutionary stage of quasars

Zhi-fu Chen School of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, People’s Republic of China Zhe-Geng Chen Laboratory for Relativistic Astrophysics, Physical Science and Technology College, Guangxi University, Nanning 530004, People’s Republic of China; [email protected] or [email protected] Xing-long Peng School of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, People’s Republic of China Wei-rong Huang School of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, People’s Republic of China
Abstract

Radio spectral shape of quasars can provide insight into the ages of quasars. We have compiled data for 1804 quasars with z1z\lesssim 1 from the Sloan Digital Sky Survey (SDSS). Additionally, these quasars were also mapped by the Low-Frequency Array at 144 MHz and the Very Large Array Sky Survey at 3000 MHz. The radio spectral index, designated as α3000144\alpha^{\rm 144}_{\rm 3000} (with S(ν)ναS(\nu)\propto\nu^{\alpha}), is analyzed between 144 MHz and 3000 MHz as a proxy for the ages of quasars. We measure the [O iii] λ\lambda5007 emission line in the SDSS spectra. A strong correlation was found between the equivalent width of the core component of the [O iii] λ\lambda5007 emission line and α3000144\alpha^{\rm 144}_{\rm 3000}. This relationship suggests that the core component of the [O iii] λ\lambda5007 emission line could potentially serve as a surrogate for the evolutionary stage of a quasar. The quasars at an early stage of evolutions tend to show weaker [O iii] λ\lambda5007 emission, while older quasars exhibit stronger [O iii] λ\lambda5007 emission.

galaxies: general — galaxies: active — quasars: emission lines

1 Introduction

t is a widely accepted fact that supermassive black holes (SMBHs) reside at the center of host galaxies. These SMBHs power active galactic nuclei (AGN) through the accretion of surrounding material. This process releases large amounts of energy that, in the form of feedback, influences the physical conditions and dynamics of gas and dust within the host galaxies. Consequently, it is postulated that SMBHs and their host galaxies co-evolve and mutually regulate each other’s development (e.g. Merritt & Ferrarese, 2001; Marconi & Hunt, 2003; Häring & Rix, 2004; Gu et al., 2009; Kormendy & Ho, 2013; Heckman & Best, 2014; Xue, 2017; Ricarte & Natarajan, 2018; Lin et al., 2022). In order to thoroughly investigate the evolution of SMBHs and/or host galaxies, we must address a fundamental question: how can we characterize the corresponding objects that exist at different stages of evolution?

Unlike galaxies and stars, determining the ages of quasars is a challenging task. Various methods used to estimate quasar ages often yield a large uncertainty spanning millions of years (e.g., Martini, 2004; Kirkman & Tytler, 2008; DiPompeo et al., 2014; Morganti, 2017). The properties of absorption lines serve as one common method used to characterize the evolutionary stages of quasars (e.g., Carswell et al., 1982; Bajtlik et al., 1988; Boroson, 1992; Giallongo et al., 1996; Scott et al., 2000; Cao Orjales et al., 2012; Shen & Ménard, 2012; Zheng et al., 2015; Wang et al., 2016; Khrykin et al., 2019; Chen et al., 2022; He et al., 2022; Peng et al., 2024). Low-ionization associated absorption lines (AALs) typically indicate quasars in early stages of evolution, while quasars without AALs or those with only high-ionization AALs are considered to be in later stages of evolution. The proximity effect, which describes a decrease in the number density of Ly α\alpha or He ii forest absorption lines observed in quasar sightlines (e.g., Carswell et al., 1982; Bajtlik et al., 1988; Khrykin et al., 2019; Zheng et al., 2019), is yet another method employed for aging quasars. According to the proximity effect, a small proximity zone suggests a younger quasar. However, using absorption lines to determine quasar ages leaves some questions unanswered. The detection and properties of AALs in quasars could be affected by viewing angle (e.g., Urry & Padovani, 1995; Hamann et al., 2012). Furthermore, the proximity effect has its limitations. Neither the Ly α\alpha nor the He ii forest absorption lines can be applied to UV-optical spectra of quasars with low redshifts (e.g., z<1.5z<1.5).

The powerful UV radiation from quasars produces ionization zones within or around host galaxies, and is the primary mechanism behind the proximity effect observed in forest absorption lines. Additionally, it can alter the physical conditions within narrow-line regions (NLRs). The cumulative ionizing radiation field promotes the growth of NLRs. Therefore, changes in narrow emission lines (NELs) can provide clues to a quasar’s age. This is corroborated by Zheng (2020), who found that young quasars only host weak NELs, while older ones exhibit strong NELs.

According to the unified schemes of AGNs Urry & Padovani (1995), the NLR is located outside the dust torus and can extend from 100 pc to several kpc (e.g., Harrison & Ramos Almeida, 2024). The broad-line region (BLR) is located inside the dust torus and is often obscured by it. The position of the NLR means its emission lines are less affected by quasar viewing angles compared to broad emission lines (BELs) that originate in BLRs. What’s more, the NLR is compact enough to be illuminated by radiation from the central regions of the quasar. Thus, NELs with high ionizations, such as [O iii] λλ\lambda\lambda4959,5007, are often observed in quasar spectra and can be detected by ground-based telescopes for objects at redshifts z1z\lesssim 1. Consequently, the NLR serves as an excellent location for studying quasar properties. In this paper, we use narrow [O iii]emission lines to investigate the growth of NLRs throughout the life cycle of radio quasars.

Throughout this work, we assume a flat Λ\LambdaCDM cosmology with Ωm\Omega_{m} = 0.3, ΩΛ\Omega_{\Lambda} = 0.7, and h0h_{0} = 0.7.

2 Data samples and spectral analysis

2.1 Data samples

The Sloan Digital Sky Survey (SDSS) provided spectra of 750,414 quasars in their Sixteenth Data Release (DR16Q) (York et al., 2000; Lyke et al., 2020). The spectra were obtained in wavelength ranges of λ38009200\lambda\approx 3800-9200 Å in the SDSS-I/II (Abazajian et al., 2009), or λ360010500\lambda\approx 3600-10500 Å in the SDSS-III/IV (Smee et al., 2013; Dawson et al., 2013). To measure the [O iii] emission lines, we drew from the SDSS DR16Q spectra of quasars with z1.1z\lesssim 1.1, where the zz represents the improved system redshifts (ZsysZ_{\rm sys}) as annotated by Wu & Shen (2022). This results in our parent sample of 114,955 quasars.

The synchrotron radiation stemming from relativistic electrons, which maintain an initial power-law electron energy distribution and continuously move through a magnetic field (e.g., Kardashev, 1962; Kellermann, 1964; Pacholczyk & Roberts, 1971), generates radio spectra of quasars that follow the relation S(ν)ναS(\nu)\propto\nu^{\rm\alpha}. Here, S(ν)S(\nu) represents the observed flux density at frequency ν\nu, and α\alpha is the spectral index. During the quasar’s evolution, the shape of the radio spectrum can change due to the absorption of synchrotron radiation (e.g., Morganti, 2017; Kukreti et al., 2023, and references therein). Young quasars typically have smaller-scale jets and their radio spectrum often peaks in the GHz frequency range. As quasars evolve and their jets grow, the peak of the radio spectrum shifts from high to low frequencies. Thus, the shape of a quasar’s radio spectrum is considered as a reliable tracer of its life cycle (e.g., Komissarov & Gubanov, 1994; Morganti, 2017; Brienza et al., 2020; Morganti et al., 2021; Kukreti et al., 2023).

The Low-Frequency Array (LOFAR) (Shimwell et al., 2017) Two-metre Sky Survey (LoTSS) (van Haarlem et al., 2013) maps the northern sky with a central frequency of 144 MHz and an angular resolution of 6′′6^{\prime\prime}. Its second data release (DR2) includes data for 4,396,228 radio sources (Shimwell et al., 2022). The Very Large Array Sky Survey (VLASS) (Lacy et al., 2020) maps the sky at a central frequency of 3000 MHz (2 — 4 GHz) with an angular resolution of 2.5′′\sim 2.5^{\prime\prime} and includes data for more than 2.6 million radio sources (available at https://cirada.ca/catalogshttps://cirada.ca/catalogs) (Gordon et al., 2021). To trace the radio spectral shape of SDSS quasars, we cross-referenced our parent sample (114,955 quasars) with both VLASS and LoTSS DR2 data within a radius range of 7′′7^{\prime\prime}. As a result, we obtained data for a sample of 2288 quasars from whom we determined the radio spectral index between 144 MHz and 3000 MHz (α3000144\alpha^{\rm 144}_{\rm 3000}). Here the α3000144\alpha^{\rm 144}_{\rm 3000} is computed via

α3000144=LogS(ν)VLASSLogS(ν)LoTSSLogνVLASSLogνLoTSS,\alpha^{\rm 144}_{\rm 3000}=\frac{LogS(\nu)^{\rm VLASS}-LogS(\nu)^{\rm LoTSS}}{Log\nu_{\rm VLASS}-Log\nu_{\rm LoTSS}}, (1)

where the S(ν)VLASSS(\nu)^{\rm VLASS} and S(ν)LoTSSS(\nu)^{\rm LoTSS} are the flux densities at 3000 MHz and 144 MHz, respectively. This index characterizes the spectral shape of the radio spectrum for these quasars.

2.2 Spectral analysis

Our methods for fitting the SDSS spectra to minimize χ2\chi^{2} are modeled after earlier works (e.g., Chen et al., 2018, 2019; Huang et al., 2023). Initially, we correct the quasar spectra for Galactic extinction, employing the reddening maps put forth in Schlafly & Finkbeiner (2011) and using the Milky Way extinction curve from Cardelli et al. (1989). Subsequently, for each spectrum, we fit a local power-law continuum (fλ=Aλαf_{\rm\lambda}=A\lambda^{\rm\alpha}) and the iron template (Vestergaard & Wilkes, 2001; Véron-Cetty et al., 2004) to the data within the [4400,4800] Å and [5100,5550] Å ranges. We then subtract the resulting continuum+iron fits from the spectrum. The residual spectra are subsequently used to fit the Hβ\beta and [O iii] emission lines. We represent the emission lines with multiple Gaussian functions. Broad Hβ\beta is depicted by three Gaussian functions each with FWHM>1200\rm FWHM>1200 kms1\rm km\,s^{-1}, while narrow Hβ\beta is represented by a single Gaussian function. Each line of the [O iii] λλ\lambda\lambda4959,5007 doublet is depicted by two Gaussian functions: one for the core (narrow) component with FWHM<1200\rm FWHM<1200 kms1\rm km\,s^{-1} and another for the blue wing (broad) component with FWHM<2500\rm FWHM<2500 kms1\rm km\,s^{-1}. We force all narrow emission lines to have the same FWHM\rm FWHM and velocity offsets from the quasar systemic redshifts. The FWHM\rm FWHM and velocity offsets of the wing component of the [O iii] are also constrained to the same values, and the [O iii] λλ\lambda\lambda4959,5007 doublet is forced to maintain a flux ratio of F(5007)/F(4959)=3F(5007)/F(4959)=3.

We only include measurements where Wcore[O iii]λ5007>4σwW_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007}>4\sigma_{\rm w}. Here, Wcore[O iii]λ5007W_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007} represents the equivalent width of the core component of [O iii] λ\lambda5007, and σw\sigma_{\rm w} stands for the corresponding uncertainty. Imposing this limit, we end up with a final sample of 1804 quasars, whose redshifts are depicted in Figure 1. We list the measurements and parameters for these quasars in Table 1.

It is noted from Equation (1) that although the radio spectral index (α3000144\alpha^{\rm 144}_{\rm 3000}) is computed in the observed frame, the α3000144\alpha^{\rm 144}_{\rm 3000} shouldn’t be affected by redshifts. Figure 1 also shows the distribution of α3000144\alpha^{\rm 144}_{\rm 3000} as a function of redshifts, which clearly demonstrates that there is not a significant relationship between the α3000144\alpha^{\rm 144}_{\rm 3000} and redshifts.

Refer to caption
Figure 1: (a): The redshift distribution of quasars in our final sample. (b): The relationship between α3000144\alpha^{\rm 144}_{\rm 3000} and redshifts. The Spearman’s correlation coefficient is r=0.008r=-0.008.
Table 1: The properties of the sample
SDSS name PLATE MJD FIBER zemz_{em} LogL5100LogL_{\rm 5100} LogLcore[O iii]λ5007LogL_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007} Wcore[O iii]λ5007W_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007} SpeakLoTSSS_{peak}^{LoTSS} SpeakVLASSS_{peak}^{VLASS} α3000144\alpha^{\rm 144}_{\rm 3000}
ergs1{\rm erg\,s^{-1}} ergs1{\rm erg\,s^{-1}} Å mJy mJy
000057.79+294236.4 7134 56566 394 0.7595 44.383±\pm0.078 42.324±\pm0.017 64.556±\pm0.590 3.281±\pm0.223 57.680±\pm0.387 -0.898
000101.04+240842.5 7666 57339 82 0.9692 44.910±\pm0.136 42.526±\pm0.057 43.053±\pm0.986 17.017±\pm0.209 202.279±\pm1.096 -0.769
000131.63+165413.7 6172 56269 666 0.9359 44.935±\pm0.054 42.865±\pm0.018 65.429±\pm0.438 2.603±\pm0.183 150.350±\pm0.334 -1.290
000132.36+211336.2 7595 56957 190 0.4390 44.442±\pm0.024 41.777±\pm0.020 28.247±\pm0.131 152.235±\pm0.290 643.666±\pm0.962 -0.429
000141.79+304114.9 7749 58073 266 0.9214 44.288±\pm0.221 42.105±\pm0.041 47.832±\pm1.144 4.332±\pm0.214 3.387±\pm0.165 0.127
000316.31+245938.3 7666 57339 58 0.6729 44.417±\pm0.050 41.589±\pm0.084 29.566±\pm0.351 60.591±\pm0.150 82.691±\pm0.402 -0.057
000334.90+200942.9 7595 56957 48 0.1098 42.924±\pm0.043 39.823±\pm0.065 18.086±\pm0.183 1.565±\pm0.167 1.077±\pm0.126 0.169
000422.96+222127.1 7595 56957 941 0.6112 44.493±\pm0.044 41.890±\pm0.027 26.830±\pm0.224 6.596±\pm0.194 19.815±\pm0.087 -0.316
000446.05+222702.6 6879 56539 184 0.7077 43.976±\pm0.108 42.057±\pm0.013 76.992±\pm0.580 9.665±\pm0.189 187.287±\pm0.366 -0.930
000452.27+335501.7 7748 58396 712 0.4598 44.333±\pm0.022 41.707±\pm0.029 38.314±\pm0.169 0.947±\pm0.134 3.941±\pm0.203 -0.424

(This table is available in its entirety in machine-readable form.)

3 Discussions

The sample we used in our study consists only of type-I quasars. The [O iii] emission lines can be excited by radiation from the central regions of the quasar (photoionization) as well as the shock from outflows/winds. This is the primary reason why researchers typically use two Gaussian functions to model each line of the [O iii] doublet - one Gaussian function attempts to represent the photoionization component (core component), while the other represents the outflow component (wing component). The core component has been found to be useful in investigations concerning the physical conditions and kinematics of NLRs or host galaxy (e.g., Greene & Ho, 2005; Komossa et al., 2008; Zhang et al., 2011; Mullaney et al., 2013; Kormendy & Ho, 2013; Woo et al., 2017; Sexton et al., 2019; Zhang, 2022; Le et al., 2023; Jin et al., 2023). Consequently, in this study, we use the core component of [O iii] λ\lambda5007 to trace the development of NLRs.

The spectral shape of the radio spectrum serves as an effective indicator of a quasar’s evolutionary stage. As shown in Figure 2(a), there is a notable correlation between the equivalent width of the [O iii] λ\lambda5007 emission line and the radio spectral shape, with a Spearman’s correlation coefficient of r=0.489r=-0.489 and a probability of P<1015P<10^{-15}. BELs are known to exhibit a strong inverse correlation between their equivalent width and the continuum luminosity, a relationship known as the Baldwin effect (Baldwin, 1977). While this effect is less pronounced for NELs (e.g., Zhang et al., 2011, 2013), it may still significantly influence the relationship between the equivalent width of the [O iii] λ\lambda5007 emission line and α3000144\alpha^{\rm 144}_{\rm 3000}. To assess the influence of the Baldwin effect, we examine in Figure 2(b) the distribution of the continuum luminosity at 5100 Å as a function of α3000144\alpha^{\rm 144}_{\rm 3000}. The data suggests a negligible evolution in the continuum luminosity with respect to the radio spectral shape - an indication that the Baldwin effect likely contributes minimally to the strong correlation between the Wcore[O iii]λ5007W_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007} and α3000144\alpha^{\rm 144}_{\rm 3000}. The observed tight correlation between the Wcore[O iii]λ5007W_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007} and α3000144\alpha^{\rm 144}_{\rm 3000} might be primarily attributed to the growth of NLRs. This correlation is further corroborated by the significant relationship between Lcore[O iii]λ5007L_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007} and α3000144\alpha^{\rm 144}_{\rm 3000}, as shown in Figure 2(c). In essence, younger quasars inherently exhibit weaker [O iii] emission lines, while older ones host more potent [O iii] emission lines. These observations align with a study by Zheng (2020), which reported that narrow emission lines are significantly stronger in older quasars compared to younger ones.

Refer to caption
Refer to caption
Refer to caption
Figure 2: (a): The equivalent width of the core component of the [O iii] λ\lambda5007 evolved with radio spectral shape. The large α3000144\alpha^{\rm 144}_{\rm 3000} indicates the quasar living in the early evolutionary stage, and the small α3000144\alpha^{\rm 144}_{\rm 3000} indicates the evolved quasar. The Spearman’s correlation coefficient is r=0.489r=-0.489. Red squares show the median values in distinct α3000144\alpha^{\rm 144}_{\rm 3000} bins with the error bars representing standard deviations. Red-solid line is the best linear fitting to the red squares: LogWcore[O iii]λ5007(0.244±0.102)×Logα3000144Log~{}W_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007}\propto(-0.244\pm 0.102)\times Log~{}\alpha^{\rm 144}_{\rm 3000}. (b): The relationship between continuum luminosity at 5100 Å and α3000144\alpha^{\rm 144}_{\rm 3000}. The Spearman’s correlation coefficient is r=0.060r=0.060. (c): The relationship between [O iii] λ\lambda5007 luminosity of the core component and α3000144\alpha^{\rm 144}_{\rm 3000}. The Spearman’s correlation coefficient is r=0.309r=-0.309.
Refer to caption
Figure 3: The distribution of the α3000144\alpha^{\rm 144}_{\rm 3000}. The black thin line is for the quasars with detected [O iii] emission lines, and the red thick line is for the quasars without detected [O iii] emission lines. The KS-test yields a probability P<106P<10^{-6}.

Out of our parent sample, 484 quasars exhibit [O iii] emission lines that are too weak or unreliable to be considered (Wcore[O iii]λ5007<4σwW_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007}<4\sigma_{\rm w}), thus excluded from our final sample. Looking at the bigger picture, the α3000144\alpha^{\rm 144}_{\rm 3000} values of these quasars, wherein [O iii] is undetected, are generally larger compared to those of quasars with detected [O iii] (refer to Figure 3). This observation implies that quasars with undetected [O iii] might be in an earlier stage of evolution. Consequently, it is reasonable to expect an increase in the correlation between Wcore[O iii]λ5007W_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007} and α3000144\alpha^{\rm 144}_{\rm 3000} once reliable measurements become available for the core [O iii] λ\lambda5007 of quasars without detected [O iii].

4 Summaries

Using the observations from the SDSS, VLASS, and LoTSS, we compiled a sample of 2288 quasars with z1z\lesssim 1. In term of the observations from the VLASS and LoTSS, we computed the radio spectral index between 144 MHz and 3000 MHz (α3000144\alpha^{\rm 144}_{\rm 3000}), which is served as a reliable proxy for quasar ages. Based on the measurements from the SDSS spectra, 1804 quasars have Wcore[O iii]λ5007>4σwW_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007}>4\sigma_{\rm w}, where the Wcore[O iii]λ5007W_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007} is the equivalent width of the core component of the [O iii] λ\lambda5007 emission line. We find that the Wcore[O iii]λ5007W_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007} is obviously correlated with the α3000144\alpha^{\rm 144}_{\rm 3000}, which is independent of the Baldwin effect.

The strong correlation between the Wcore[O iii]λ5007W_{\rm core}^{\hbox{[O\,{\sc iii}]}\lambda 5007} and α3000144\alpha^{\rm 144}_{\rm 3000} suggests that [O iii] λ\lambda5007 could serve as a suitable indicative proxy of the evolutionary stage of quasars. The intensity of narrow [O iii] emission lines tends to increase as the quasar ages. Meanwhile, [O iii] λ\lambda5007 is the most intense narrow emission line noticeable in the optical spectra of quasars and it can be detected using ground-based telescopes for sources with z1z\lesssim 1. As such, the [O iii] emission line proves to be a valuable addition to the proximity effect of forest absorption lines, a method typically employed in dating high-redshift quasars.

Acknowledgements

We deeply thank the anonymous referees for her/his helpful and careful comments. This work is supported by the Guangxi Natural Science Foundation (2024GXNSFDA010069), the National Natural Science Foundation of China (12073007), and the Scientific Research Project of Guangxi University for Nationalities (2018KJQD01).

References

  • Abazajian et al. (2009) Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543, doi: 10.1088/0067-0049/182/2/543
  • Bajtlik et al. (1988) Bajtlik, S., Duncan, R. C., & Ostriker, J. P. 1988, ApJ, 327, 570, doi: 10.1086/166217
  • Baldwin (1977) Baldwin, J. A. 1977, ApJ, 214, 679, doi: 10.1086/155294
  • Boroson (1992) Boroson, T. A. 1992, The Astrophysical Journal Letters, 399, L15, doi: 10.1086/186595
  • Brienza et al. (2020) Brienza, M., Morganti, R., Harwood, J., et al. 2020, A&A, 638, A29, doi: 10.1051/0004-6361/202037457
  • Cao Orjales et al. (2012) Cao Orjales, J. M., Stevens, J. A., Jarvis, M. J., et al. 2012, MNRAS, 427, 1209, doi: 10.1111/j.1365-2966.2012.22049.x
  • Cardelli et al. (1989) Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245, doi: 10.1086/167900
  • Carswell et al. (1982) Carswell, R. F., Whelan, J. A. J., Smith, M. G., Boksenberg, A., & Tytler, D. 1982, MNRAS, 198, 91, doi: 10.1093/mnras/198.1.91
  • Chen et al. (2022) Chen, Z., He, Z., Ho, L. C., et al. 2022, Nature Astronomy, 6, 339, doi: 10.1038/s41550-021-01561-3
  • Chen et al. (2018) Chen, Z.-F., Pan, D.-S., Pang, T.-T., & Huang, Y. 2018, ApJS, 234, 16, doi: 10.3847/1538-4365/aa9d90
  • Chen et al. (2019) Chen, Z.-F., Yi, S.-X., Pang, T.-T., et al. 2019, The Astrophysical Journal Supplement Series, 244, 36, doi: 10.3847/1538-4365/ab41fe
  • Dawson et al. (2013) Dawson, K. S., Schlegel, D. J., Ahn, C. P., et al. 2013, AJ, 145, 10, doi: 10.1088/0004-6256/145/1/10
  • DiPompeo et al. (2014) DiPompeo, M. A., Myers, A. D., Hickox, R. C., Geach, J. E., & Hainline, K. N. 2014, MNRAS, 442, 3443, doi: 10.1093/mnras/stu1115
  • Giallongo et al. (1996) Giallongo, E., Cristiani, S., D’Odorico, S., Fontana, A., & Savaglio, S. 1996, ApJ, 466, 46, doi: 10.1086/177492
  • Gordon et al. (2021) Gordon, Y. A., Boyce, M. M., O’Dea, C. P., et al. 2021, The Astrophysical Journal Supplement Series, 255, 30, doi: 10.3847/1538-4365/ac05c0
  • Greene & Ho (2005) Greene, J. E., & Ho, L. C. 2005, ApJ, 627, 721, doi: 10.1086/430590
  • Gu et al. (2009) Gu, M., Chen, Z., & Cao, X. 2009, MNRAS, 397, 1705, doi: 10.1111/j.1365-2966.2009.15059.x
  • Hamann et al. (2012) Hamann, F., Simon, L., Rodriguez Hidalgo, P., & Capellupo, D. 2012, in Astronomical Society of the Pacific Conference Series, Vol. 460, AGN Winds in Charleston, ed. G. Chartas, F. Hamann, & K. M. Leighly, 47, doi: 10.48550/arXiv.1204.3791
  • Häring & Rix (2004) Häring, N., & Rix, H.-W. 2004, ApJ, 604, L89, doi: 10.1086/383567
  • Harrison & Ramos Almeida (2024) Harrison, C. M., & Ramos Almeida, C. 2024, Galaxies, 12, 17, doi: 10.3390/galaxies12020017
  • He et al. (2022) He, Z., Liu, G., Wang, T., et al. 2022, Science Advances, 8, eabk3291, doi: 10.1126/sciadv.abk3291
  • Heckman & Best (2014) Heckman, T. M., & Best, P. N. 2014, ARA&A, 52, 589, doi: 10.1146/annurev-astro-081913-035722
  • Huang et al. (2023) Huang, W.-R., Chen, Z.-G., Chen, Z.-F., & Li, X.-F. 2023, ApJS, 264, 52, doi: 10.3847/1538-4365/aca6e2
  • Jin et al. (2023) Jin, S., Wang, J., Kong, M. Z., et al. 2023, ApJ, 950, 16, doi: 10.3847/1538-4357/acce37
  • Kardashev (1962) Kardashev, N. S. 1962, Soviet Astronomy, 6, 317
  • Kellermann (1964) Kellermann, K. I. 1964, ApJ, 140, 969, doi: 10.1086/147998
  • Khrykin et al. (2019) Khrykin, I. S., Hennawi, J. F., & Worseck, G. 2019, MNRAS, 484, 3897, doi: 10.1093/mnras/stz135
  • Kirkman & Tytler (2008) Kirkman, D., & Tytler, D. 2008, MNRAS, 391, 1457, doi: 10.1111/j.1365-2966.2008.13994.x
  • Komissarov & Gubanov (1994) Komissarov, S. S., & Gubanov, A. G. 1994, Astronomy and Astrophysics, 285, 27
  • Komossa et al. (2008) Komossa, S., Xu, D., Zhou, H., Storchi-Bergmann, T., & Binette, L. 2008, ApJ, 680, 926, doi: 10.1086/587932
  • Kormendy & Ho (2013) Kormendy, J., & Ho, L. C. 2013, Annual Review of Astronomy and Astrophysics, 51, 511, doi: 10.1146/annurev-astro-082708-101811
  • Kukreti et al. (2023) Kukreti, P., Morganti, R., Tadhunter, C., & Santoro, F. 2023, Astronomy & Astrophysics, 674, A198, doi: 10.1051/0004-6361/202245691
  • Lacy et al. (2020) Lacy, M., Baum, S. A., Chandler, C. J., et al. 2020, Publications of the Astronomical Society of the Pacific, 132, 035001, doi: 10.1088/1538-3873/ab63eb
  • Le et al. (2023) Le, H. A. N., Xue, Y., Lin, X., & Wang, Y. 2023, ApJ, 945, 59, doi: 10.3847/1538-4357/acb770
  • Lin et al. (2022) Lin, X., Xue, Y., Fang, G., et al. 2022, Research in Astronomy and Astrophysics, 22, 015010, doi: 10.1088/1674-4527/ac3414
  • Lyke et al. (2020) Lyke, B. W., Higley, A. N., McLane, J. N., et al. 2020, ApJS, 250, 8, doi: 10.3847/1538-4365/aba623
  • Marconi & Hunt (2003) Marconi, A., & Hunt, L. K. 2003, ApJ, 589, L21, doi: 10.1086/375804
  • Martini (2004) Martini, P. 2004, in Coevolution of Black Holes and Galaxies, ed. L. C. Ho, 169, doi: 10.48550/arXiv.astro-ph/0304009
  • Merritt & Ferrarese (2001) Merritt, D., & Ferrarese, L. 2001, ApJ, 547, 140, doi: 10.1086/318372
  • Morganti (2017) Morganti, R. 2017, Nature Astronomy, 1, 596, doi: 10.1038/s41550-017-0223-0
  • Morganti et al. (2021) Morganti, R., Jurlin, N., Oosterloo, T., et al. 2021, Galaxies, 9, 88, doi: 10.3390/galaxies9040088
  • Mullaney et al. (2013) Mullaney, J. R., Alexander, D. M., Fine, S., et al. 2013, MNRAS, 433, 622, doi: 10.1093/mnras/stt751
  • Pacholczyk & Roberts (1971) Pacholczyk, A. G., & Roberts, J. A. 1971, Physics Today, 24, 57, doi: 10.1063/1.3022939
  • Peng et al. (2024) Peng, X.-L., Chen, Z.-F., He, Z.-C., Pang, T.-T., & Wang, Z.-W. 2024, The Astrophysical Journal, 963, 3, doi: 10.3847/1538-4357/ad1e5e
  • Ricarte & Natarajan (2018) Ricarte, A., & Natarajan, P. 2018, Monthly Notices of the Royal Astronomical Society, 481, 3278, doi: 10.1093/mnras/sty2448
  • Schlafly & Finkbeiner (2011) Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103, doi: 10.1088/0004-637X/737/2/103
  • Scott et al. (2000) Scott, J., Bechtold, J., Dobrzycki, A., & Kulkarni, V. P. 2000, ApJS, 130, 67, doi: 10.1086/317340
  • Sexton et al. (2019) Sexton, R. O., Canalizo, G., Hiner, K. D., et al. 2019, ApJ, 878, 101, doi: 10.3847/1538-4357/ab21d5
  • Shen & Ménard (2012) Shen, Y., & Ménard, B. 2012, ApJ, 748, 131, doi: 10.1088/0004-637X/748/2/131
  • Shimwell et al. (2017) Shimwell, T. W., Röttgering, H. J. A., Best, P. N., et al. 2017, Astronomy & Astrophysics, 598, A104, doi: 10.1051/0004-6361/201629313
  • Shimwell et al. (2022) Shimwell, T. W., Hardcastle, M. J., Tasse, C., et al. 2022, Astronomy & Astrophysics, 659, A1, doi: 10.1051/0004-6361/202142484
  • Smee et al. (2013) Smee, S. A., Gunn, J. E., Uomoto, A., et al. 2013, AJ, 146, 32, doi: 10.1088/0004-6256/146/2/32
  • Urry & Padovani (1995) Urry, C. M., & Padovani, P. 1995, PASP, 107, 803, doi: 10.1086/133630
  • van Haarlem et al. (2013) van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, Astronomy & Astrophysics, 556, A2, doi: 10.1051/0004-6361/201220873
  • Véron-Cetty et al. (2004) Véron-Cetty, M. P., Joly, M., & Véron, P. 2004, A&A, 417, 515, doi: 10.1051/0004-6361:20035714
  • Vestergaard & Wilkes (2001) Vestergaard, M., & Wilkes, B. J. 2001, ApJS, 134, 1, doi: 10.1086/320357
  • Wang et al. (2016) Wang, T., Ferland, G. J., Yang, C., Wang, H., & Zhang, S. 2016, The Astrophysical Journal, 824, 106, doi: 10.3847/0004-637X/824/2/106
  • Woo et al. (2017) Woo, J.-H., Son, D., & Bae, H.-J. 2017, ApJ, 839, 120, doi: 10.3847/1538-4357/aa6894
  • Wu & Shen (2022) Wu, Q., & Shen, Y. 2022, The Astrophysical Journal Supplement Series, 263, 42, doi: 10.3847/1538-4365/ac9ead
  • Xue (2017) Xue, Y. Q. 2017, New Astronomy Reviews, 79, 59, doi: 10.1016/j.newar.2017.09.002
  • York et al. (2000) York, D. G., Adelman, J., Anderson, John E., J., et al. 2000, AJ, 120, 1579, doi: 10.1086/301513
  • Zhang et al. (2011) Zhang, K., Dong, X.-B., Wang, T.-G., & Gaskell, C. M. 2011, ApJ, 737, 71, doi: 10.1088/0004-637X/737/2/71
  • Zhang et al. (2013) Zhang, K., Wang, T.-G., Gaskell, C. M., & Dong, X.-B. 2013, ApJ, 762, 51, doi: 10.1088/0004-637X/762/1/51
  • Zhang (2022) Zhang, X. 2022, ApJS, 261, 23, doi: 10.3847/1538-4365/ac6bfe
  • Zheng (2020) Zheng, W. 2020, ApJ, 892, 139, doi: 10.3847/1538-4357/ab7b6f
  • Zheng et al. (2019) Zheng, W., Meiksin, A., & Syphers, D. 2019, ApJ, 883, 123, doi: 10.3847/1538-4357/ab3b5c
  • Zheng et al. (2015) Zheng, W., Syphers, D., Meiksin, A., et al. 2015, ApJ, 806, 142, doi: 10.1088/0004-637X/806/1/142