This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nambu-Jona-Lasinio model correlation functions from QCD

Marco Frasca111Speaker, Corresponding author. [email protected] Via Erasmo Gattamelata, 3, 00176 Rome (Italy) Anish Ghoshal INFN, Rome, Italy and Warsaw University, Poland Stefan Groote University of Tartu, Estonia
Abstract

We treat quantum chromodynamics (QCD) using a set of Dyson-Schwinger equations derived, in differential form, with the Bender-Milton-Savage technique. In this way, we are able to derive the low energy limit that assumes the form of a non-local Nambu-Jona-Lasinio model with all the parameters properly fixed by the QCD Lagrangian and the determination of the mass gap of the gluon sector.

keywords:

1 Introduction

Adding quarks to the Yang-Mills Lagrangian makes the theory not exactly treatable. Notwithstanding such a difficulty, full QCD can be handled with Dyson-Schwinger equations even if some approximations are needed to get the low-energy limit. Such approximations entail both the strong coupling limit and ’t Hooft limit N,Ng2=constant1N\rightarrow\infty,\ \ Ng^{2}=constant\gg 1. In this way, we will recover, in the low-energy limit, the equations for the correlation functions of a non-local NJL model.

Yang-Mills set of Dyson-Schwinger equations can be solved through a class of exact solutions of the 1-point function, similarly to the ϕ4\phi^{4} theory [1]. The spectrum can be obtained as well and appears in agreement with lattice data [2]. Adding quarks to the theory makes it unsolvable but, also in this case, our approach could be proven meaningful to derive the proper low energy limit of QCD.

Our idea is to provide a method to derive the full hierarchy of Dyson-Schwinger equations also for QCD, retaining their full differential form. This is possible provided we use a technique devised by Bender, Milton and Savage [3].

Some approximations are needed to get the low-energy limit. Such approximations entail both the strong coupling limit and ’t Hooft limit NN\rightarrow\infty and Ng2=constant1Ng^{2}=constant\gg 1 [4, 5]. In this way, we will recover, in the low-energy limit, the equations for the correlation functions of a non-local Nambu-Jona-Lasinio model.

This is an interesting result in view of the fact that it permits to recover from an error present in Ref. [6] granting anyway the conclusions. This has been recently applied to the g2g-2 problem [7] to evaluate the hadronic vacuum polarization for the ππ\pi\pi contribution.

2 Bender-Milton-Savage technique

This technique can be better explained referring to a scalar field. We consider the following partition function

Z[j]=[Dϕ]eiS(ϕ)+id4xj(x)ϕ(x).Z[j]=\int[D\phi]e^{iS(\phi)+i\int d^{4}xj(x)\phi(x)}. (1)

To derive 1P-function, one has

δSδϕ(x)=j(x),\left\langle\frac{\delta S}{\delta\phi(x)}\right\rangle=j(x), (2)

assuming

=[Dϕ]eiS(ϕ)+id4xj(x)ϕ(x)[Dϕ]eiS(ϕ)+id4xj(x)ϕ(x)\left\langle\ldots\right\rangle=\frac{\int[D\phi]\ldots e^{iS(\phi)+i\int d^{4}xj(x)\phi(x)}}{\int[D\phi]e^{iS(\phi)+i\int d^{4}xj(x)\phi(x)}} (3)

By setting j=0j=0 one obtains the equation for th 1P-function. Next, we derive this equation again with respect to jj to get the equation for the 2P-function. We are taking for the nP-functions the following definition

ϕ(x1)ϕ(x2)ϕ(xn)=δnln(Z[j])δj(x1)δj(x2)δj(xn).\langle\phi(x_{1})\phi(x_{2})\ldots\phi(x_{n})\rangle=\frac{\delta^{n}\ln(Z[j])}{\delta j(x_{1})\delta j(x_{2})\ldots\delta j(x_{n})}. (4)

This implies

δGk()δj(x)=Gk+1(,x).\frac{\delta G_{k}(\ldots)}{\delta j(x)}=G_{k+1}(\ldots,x). (5)

Such a procedure can be iterated to whatever order giving, in principle, all the hierarchy of the Dyson-Schwinger equations in PDE form. Going to higher orders could imply complicated computations but this approach shows itself to be very useful when some known solutions are given for 1P- and 2P-functions as in our case.

3 1P and 2P functions for QCD

We work in the Landau gauge as can make some computations simpler as seen in [1].

The Bender-Milton-Savage method yields for the 1P-functions

2G1νa(x)+gfabc(μG2μνbc(0)+\displaystyle\partial^{2}G_{1\nu}^{a}(x)+gf^{abc}(\partial^{\mu}G_{2\mu\nu}^{bc}(0)+
μG1μb(x)G1νc(x)νG2μνbc(0)\displaystyle\partial^{\mu}G_{1\mu}^{b}(x)G_{1\nu}^{c}(x)-\partial_{\nu}G_{2\mu}^{\nu bc}(0)
νG1μb(x)G1μc(x))\displaystyle-\partial_{\nu}G_{1\mu}^{b}(x)G_{1}^{\mu c}(x))
+gfabcμG2μνbc(0)+gfabcμ(G1μb(x)G1νc(x))\displaystyle+gf^{abc}\partial^{\mu}G_{2\mu\nu}^{bc}(0)+gf^{abc}\partial^{\mu}(G_{1\mu}^{b}(x)G_{1\nu}^{c}(x))
+g2fabcfcde(G3μνμbde(0,0)+G2μνbd(0)G1μe(x)\displaystyle+g^{2}f^{abc}f^{cde}(G_{3\mu\nu}^{\mu bde}(0,0)+G_{2\mu\nu}^{bd}(0)G_{1}^{\mu e}(x)
+G2νρeb(0)G1ρd(x)+G2μνde(0)G1μb(x)+\displaystyle+G_{2\nu\rho}^{eb}(0)G_{1}^{\rho d}(x)+G_{2\mu\nu}^{de}(0)G_{1}^{\mu b}(x)+
G1μb(x)G1μd(x)G1νe(x))\displaystyle G_{1}^{\mu b}(x)G_{1\mu}^{d}(x)G_{1\nu}^{e}(x))
=gq,iγνTaSqii(0)+gq,iq¯1i(x)γνTaq1i(x),\displaystyle=g\sum_{q,i}\gamma_{\nu}T^{a}S_{q}^{ii}(0)+g\sum_{q,i}{\bar{q}}_{1}^{i}(x)\gamma_{\nu}T^{a}q_{1}^{i}(x), (6)

and for the quarks

(i∂̸mq)q1i(x)+g𝑻1(x)q1i(x)+g𝑻qi(x,x)=0.(i\not{\partial}-m_{q})q_{1}^{i}(x)+g{\bm{T}}\cdot\not{\bm{G}}_{1}(x)q_{1}^{i}(x)+g{\bm{T}}\cdot\not{\bm{W}}^{i}_{q}(x,x)=0. (7)

Here and in the following Greek indexes (μ,ν,\mu,\nu,\ldots) are for the space-time and Latin index (a,b,a,b,\ldots) for the gauge group. A usual for the Dyson-Schwinger set, the equations for the lower order nP-functions depend on the higher order correlation functions. We will see how to treat this aspect in the following.

At this stage, we apply the re-mapping idea to such equations as done in [1]. So, we assume

G1νa(x)ηνaϕ(x)G_{1\nu}^{a}(x)\rightarrow\eta_{\nu}^{a}\phi(x) (8)

being ϕ(x)\phi(x) a scalar field. Let us introduce the η\eta-symbols as follows

ημaηaμ\displaystyle\eta_{\mu}^{a}\eta^{a\mu} =\displaystyle= N21.\displaystyle N^{2}-1.
ημaηbμ\displaystyle\eta_{\mu}^{a}\eta^{b\mu} =\displaystyle= δab,\displaystyle\delta_{ab},
ημaηνa\displaystyle\eta_{\mu}^{a}\eta_{\nu}^{a} =\displaystyle= (gμνδμν)/2.\displaystyle\left(g_{\mu\nu}-\delta_{\mu\nu}\right)/2. (9)

All this permits to get the reduced equations

2ϕ(x)+2Ng2Δ(0)ϕ(x)+Ng2ϕ3(x)\displaystyle\partial^{2}\phi(x)+2Ng^{2}\Delta(0)\phi(x)+Ng^{2}\phi^{3}(x)
=1N21[gq,iηaνγνTaSqii(0)\displaystyle=\frac{1}{N^{2}-1}\left[g\sum_{q,i}\eta^{a\nu}\gamma_{\nu}T^{a}S_{q}^{ii}(0)\right.
+gq,iq¯1i(x)ηaνγνTaq1i(x)]\displaystyle\left.+g\sum_{q,i}{\bar{q}}_{1}^{i}(x)\eta^{a\nu}\gamma_{\nu}T^{a}q_{1}^{i}(x)\right]
(i∂̸mqi)q1i(x)+g𝑻η̸ϕ(x)q1i(x)=0.\displaystyle(i\not{\partial}-m_{q}^{i})q_{1}^{i}(x)+g{\bm{T}}\cdot\not{\eta}\phi(x)q_{1}^{i}(x)=0. (10)

We do the same for the 2P-functions. In the Landau gauge, the gluon 2P-function takes the form

G2μνab(xy)=(ημνμν2)Δϕ(xy)G_{2\mu\nu}^{ab}(x-y)=\left(\eta_{\mu\nu}-\frac{\partial_{\mu}\partial_{\nu}}{\partial^{2}}\right)\Delta_{\phi}(x-y) (11)

being ημν\eta_{\mu\nu} the Minkowski metric, and Δϕ(xy)\Delta_{\phi}(x-y) is the propagator of the ϕ\phi given the map between the scalar and the Yang-Mills fields. Finally, we can write

2Δϕ(xy)+2Ng2Δϕ(0)Δϕ(xy)+3Ng2ϕ2(x)Δϕ(xy)\displaystyle\partial^{2}\Delta_{\phi}(x-y)+2Ng^{2}\Delta_{\phi}(0)\Delta_{\phi}(x-y)+3Ng^{2}\phi^{2}(x)\Delta_{\phi}(x-y)
=gq,iQ¯νia(xy)γνTaq1i(x)\displaystyle=g\sum_{q,i}{\bar{Q}}^{ia}_{\nu}(x-y)\gamma^{\nu}T^{a}q_{1}^{i}(x)
+gq,iq¯1i(x)γνTaQνia(xy)+δ4(xy)\displaystyle+g\sum_{q,i}{\bar{q}}_{1}^{i}(x)\gamma^{\nu}T^{a}Q^{ia}_{\nu}(x-y)+\delta^{4}(x-y)
2P2ad(xy)=δadδ4(xy)\displaystyle\partial^{2}P^{ad}_{2}(x-y)=\delta_{ad}\delta^{4}(x-y)
(i∂̸mqi)Sqij(xy)\displaystyle(i\not{\partial}-m_{q}^{i})S^{ij}_{q}(x-y)
+g𝑻η̸ϕ(x)Sqij(xy)=δijδ4(xy)\displaystyle+g{\bm{T}}\cdot\not{\eta}\phi(x)S^{ij}_{q}(x-y)=\delta_{ij}\delta^{4}(x-y)
2Wqνai(xy)+2Ng2Δϕ(0)Wqνai(xy)+3Ng2ϕ2(x)Wqνai\displaystyle\partial^{2}W_{q\nu}^{ai}(x-y)+2Ng^{2}\Delta_{\phi}(0)W_{q\nu}^{ai}(x-y)+3Ng^{2}\phi^{2}(x)W_{q\nu}^{ai}
=gjq¯1j(x)γνTaSqji(xy)\displaystyle=g\sum_{j}{\bar{q}}_{1}^{j}(x)\gamma_{\nu}T^{a}S^{ji}_{q}(x-y)
(i∂̸mqi)Qμia(xy)+g𝑻η̸ϕ(x)Qμia(xy)\displaystyle(i\not{\partial}-m_{q}^{i})Q^{ia}_{\mu}(x-y)+g{\bm{T}}\cdot\not{\eta}\phi(x)Q^{ia}_{\mu}(x-y)
+gTaγμΔϕ(xy)q1i(x)=0.\displaystyle+gT^{a}\gamma_{\mu}\Delta_{\phi}(x-y)q_{1}^{i}(x)=0. (12)

4 ’t Hooft limit

’t Hooft limit means to solve the theory assuming [4, 5]

N,Ng2=constant,Ng21.N\rightarrow\infty,\qquad Ng^{2}=constant,\qquad Ng^{2}\gg 1. (13)

In our case, the gauge group is SU(N) being NN is the number of colors. To evaluate our equations in such a limit, we need a perturbation series for a very large coupling. We proposed such a technique in Ref.[8]. We do a rescaling, xNg2xx\rightarrow\sqrt{Ng^{2}}x, and write the equation for the gluon field as follows

2ϕ(x)+2Δϕ(0)ϕ(x)+3ϕ3(x)\displaystyle\partial^{2}\phi(x^{\prime})+2\Delta_{\phi}(0)\phi(x^{\prime})+3\phi^{3}(x^{\prime}) =\displaystyle= (14)
1Ng2N(N21)[q,iηγTSqii(0)+\displaystyle\frac{1}{\sqrt{Ng^{2}}\sqrt{N}(N^{2}-1)}\left[\sum_{q,i}\eta\cdot\gamma\cdot TS_{q}^{ii}(0)+\right.
q,iq¯1i(x)ηγTq1i(x)].\displaystyle\left.\sum_{q,i}{\bar{q}}_{1}^{i}(x^{\prime})\eta\cdot\gamma\cdot Tq_{1}^{i}(x^{\prime})\right].

In the ’t Hooft limit, we get at the leading order for the 1P-functions

2ϕ0(x)+2Ng2Δϕ(0)ϕ0(x)+3Ng2ϕ03(x)=0,\displaystyle\partial^{2}\phi_{0}(x)+2Ng^{2}\Delta_{\phi}(0)\phi_{0}(x)+3Ng^{2}\phi_{0}^{3}(x)=0,
(i∂̸mqi)q^1i(x)+g𝑻η̸ϕ(x)q1i(x)=0.\displaystyle(i\not{\partial}-m_{q}^{i}){\hat{q}}_{1}^{i}(x)+g{\bm{T}}\cdot\not{\eta}\phi(x)q_{1}^{i}(x)=0. (15)

At the leading order the only effect is seen on masses. For the quark field, this will be clearer below. We can solve the equation for the gluon field taking

ϕ0(x)=2μ4m2+m4+2Ng2μ4×\displaystyle\phi_{0}(x)=\sqrt{\frac{2\mu^{4}}{m^{2}+\sqrt{m^{4}+2Ng^{2}\mu^{4}}}}\times
sn(px+χ,κ),\displaystyle{\rm sn}\left(p\cdot x+\chi,\kappa\right), (16)

being sn a Jacobi elliptical function, μ\mu and χ\chi arbitrary integration constants and m2=2Ng2Δϕ(0)m^{2}=2Ng^{2}\Delta_{\phi}(0). We have

κ=m2+m4+2Ng2μ4m2m4+2Ng2μ4.\kappa=\frac{-m^{2}+\sqrt{m^{4}+2Ng^{2}\mu^{4}}}{-m^{2}-\sqrt{m^{4}+2Ng^{2}\mu^{4}}}. (17)

This is true provided that the following dispersion relation holds

p2=m2+Ng2μ4m2+m4+2Ng2μ4.p^{2}=m^{2}+\frac{Ng^{2}\mu^{4}}{m^{2}+\sqrt{m^{4}+2Ng^{2}\mu^{4}}}. (18)

For the equations of the 2P-functions one has

2Δϕ(x,y)+2Ng2Δϕ(0)Δ(xy)+3Ng2ϕ02(x)Δϕ(xy)\displaystyle\partial^{2}\Delta_{\phi}(x,y)+2Ng^{2}\Delta_{\phi}(0)\Delta(x-y)+3Ng^{2}\phi_{0}^{2}(x)\Delta_{\phi}(x-y)
=gq,iQ¯νia(x,y)γνTaq^1i(x)\displaystyle=g\sum_{q,i}{\bar{Q}}^{ia}_{\nu}(x,y)\gamma^{\nu}T^{a}{\hat{q}}_{1}^{i}(x)
+gq,iq^¯1i(x)γνTaQνia(x,y)+δ4(xy)\displaystyle+g\sum_{q,i}{\bar{\hat{q}}}_{1}^{i}(x)\gamma^{\nu}T^{a}Q^{ia}_{\nu}(x,y)+\delta^{4}(x-y)
2P2ad(xy)=δadδ4(xy)\displaystyle\partial^{2}P^{ad}_{2}(x-y)=\delta_{ad}\delta^{4}(x-y)
(i∂̸mqi)S^qij(xy)+g𝑻η̸ϕ(x)Sqij(xy)=δijδ4(xy)\displaystyle(i\not{\partial}-m_{q}^{i}){\hat{S}}^{ij}_{q}(x-y)+g{\bm{T}}\cdot\not{\eta}\phi(x)S^{ij}_{q}(x-y)=\delta_{ij}\delta^{4}(x-y)
2Wqνai(x,y)+2Ng2Δϕ(0)Wqνai(x,y)+3Ng2ϕ02(x)Wqνai(x,y)\displaystyle\partial^{2}W_{q\nu}^{ai}(x,y)+2Ng^{2}\Delta_{\phi}(0)W_{q\nu}^{ai}(x,y)+3Ng^{2}\phi_{0}^{2}(x)W_{q\nu}^{ai}(x,y)
=gjq^¯1j(x)γνTaS^ji(xy)\displaystyle=g\sum_{j}{\bar{\hat{q}}}_{1}^{j}(x)\gamma_{\nu}T^{a}{\hat{S}}^{ji}(x-y)
(i∂̸M^qi)Q^μia(x,y)+gTaγμΔϕ(xy)q^1i(x)=0.\displaystyle(i\not{\partial}-{\hat{M}}_{q}^{i}){\hat{Q}}^{ia}_{\mu}(x,y)+gT^{a}\gamma_{\mu}\Delta_{\phi}(x-y){\hat{q}}_{1}^{i}(x)=0. (19)

To solve these equations, let us consider

2Δ0(xy)+[m2+3Ng2ϕ02(x)]Δ0(xy)\displaystyle\partial^{2}\Delta_{0}(x-y)+[m^{2}+3Ng^{2}\phi_{0}^{2}(x)]\Delta_{0}(x-y) =\displaystyle=
δ4(xy).\displaystyle\delta^{4}(x-y). (20)

In momenta space, the solution of this equation is given by [1, 8]

Δ0(p)=MZ^(μ,m,Ng2)2π3K3(κ)×\displaystyle\Delta_{0}(p)=M{\hat{Z}}(\mu,m,Ng^{2})\frac{2\pi^{3}}{K^{3}(\kappa)}\times
n=0(1)ne(n+12)πK(κ)K(κ)1e(2n+1)K(κ)K(κ)π×\displaystyle\sum_{n=0}^{\infty}(-1)^{n}\frac{e^{-(n+\frac{1}{2})\pi\frac{K^{\prime}(\kappa)}{K(\kappa)}}}{1-e^{-(2n+1)\frac{K^{\prime}(\kappa)}{K(\kappa)}\pi}}\times
(2n+1)21p2mn2+iϵ\displaystyle(2n+1)^{2}\frac{1}{p^{2}-m_{n}^{2}+i\epsilon} (21)

being

M=m2+Ng2μ4m2+m4+2Ng2μ4,M=\sqrt{m^{2}+\frac{Ng^{2}\mu^{4}}{m^{2}+\sqrt{m^{4}+2Ng^{2}\mu^{4}}}}, (22)

and Z^(μ,m,Ng2){\hat{Z}}(\mu,m,Ng^{2}) a given constant. The spectrum is given by mnm_{n} and a proper gap equation [2].

5 QCD in the low energy limit

Using the technique devised in [8], the next-to-leading order term is given by

ϕ1(x)=g1N21d4xΔ0(xx)[q,iηγTSqii(0)\displaystyle\phi_{1}(x)=g\frac{1}{N^{2}-1}\int d^{4}x^{\prime}\Delta_{0}(x-x^{\prime})\left[\sum_{q,i}\eta\cdot\gamma\cdot TS_{q}^{ii}(0)\right.
+q,iq¯1i(x)ηγTq1i(x)].\displaystyle\left.+\sum_{q,i}{\bar{q}}_{1}^{i}(x^{\prime})\eta\cdot\gamma\cdot Tq_{1}^{i}(x^{\prime})\right]. (23)

Given equation for the quark 1P-function

(i∂̸mq)q1i(x)+g𝑻η̸ϕ(x)q1i(x)=0,(i\not{\partial}-m_{q})q_{1}^{i}(x)+g{\bm{T}}\cdot\not{\eta}\phi(x)q_{1}^{i}(x)=0, (24)

one has

(i∂̸mq)q1i(x)+g𝑻η̸ϕ0(x)q1i(x)\displaystyle(i\not{\partial}-m_{q})q_{1}^{i}(x)+g{\bm{T}}\cdot\not{\eta}\phi_{0}(x)q_{1}^{i}(x)
+g21N21d4xΔ0(xx)q,kq¯1k(x)𝑻η̸q1k(x)×\displaystyle+g^{2}\frac{1}{N^{2}-1}\int d^{4}x^{\prime}\Delta_{0}(x-x^{\prime})\sum_{q,k}{\bar{q}}_{1}^{k}(x^{\prime}){\bm{T}}\cdot\not{\eta}q_{1}^{k}(x^{\prime})\times
𝑻η̸q1i(x)=0.\displaystyle{\bm{T}}\cdot\not{\eta}q_{1}^{i}(x)=0. (25)

’t Hooft limit implies that the ϕ0\phi_{0} term can be neglected with respect to the second one and we get

(i∂̸mq)q1i(x)\displaystyle(i\not{\partial}-m_{q})q_{1}^{i}(x)
+g21N21d4xΔ0(xx)q,kq¯1k(x)𝑻η̸q1k(x)×\displaystyle+g^{2}\frac{1}{N^{2}-1}\int d^{4}x^{\prime}\Delta_{0}(x-x^{\prime})\sum_{q,k}{\bar{q}}_{1}^{k}(x^{\prime}){\bm{T}}\cdot\not{\eta}q_{1}^{k}(x^{\prime})\times
𝑻η̸q1i(x)=0.\displaystyle{\bm{T}}\cdot\not{\eta}q_{1}^{i}(x)=0. (26)

For the quark propagator one has instead

(i∂̸mq)Sqij(xy)+g𝑻η̸ϕ(x)Sqij(xy)=δijδ4(xy)(i\not{\partial}-m_{q})S^{ij}_{q}(x-y)+g{\bm{T}}\cdot\not{\eta}\phi(x)S^{ij}_{q}(x-y)=\delta_{ij}\delta^{4}(x-y) (27)

therefore

(i∂̸mq)Sqij(xy)\displaystyle(i\not{\partial}-m_{q})S^{ij}_{q}(x-y)
+g𝑻η̸ϕ0(x)Sqij(xy)\displaystyle+g{\bm{T}}\cdot\not{\eta}\phi_{0}(x)S^{ij}_{q}(x-y)
+g21N21d4xΔ0(xx)q,kq¯1k(x)𝑻η̸q1k(x)×\displaystyle+g^{2}\frac{1}{N^{2}-1}\int d^{4}x^{\prime}\Delta_{0}(x-x^{\prime})\sum_{q,k}{\bar{q}}_{1}^{k}(x^{\prime}){\bm{T}}\cdot\not{\eta}q_{1}^{k}(x^{\prime})\times
𝑻η̸Sqij(xy)=δijδ4(xy).\displaystyle{\bm{T}}\cdot\not{\eta}S^{ij}_{q}(x-y)=\delta_{ij}\delta^{4}(x-y). (28)

Again, by the ’t Hooft limit we can neglect the ϕ0\phi_{0} term with respect to the second one and we get

(i∂̸mq)Sqij(xy)\displaystyle(i\not{\partial}-m_{q})S^{ij}_{q}(x-y)
+g21N21d4xΔ0(xx)q,kq¯1k(x)𝑻η̸q1k(x)×\displaystyle+g^{2}\frac{1}{N^{2}-1}\int d^{4}x^{\prime}\Delta_{0}(x-x^{\prime})\sum_{q,k}{\bar{q}}_{1}^{k}(x^{\prime}){\bm{T}}\cdot\not{\eta}q_{1}^{k}(x^{\prime})\times
𝑻η̸Sqij(xy)\displaystyle{\bm{T}}\cdot\not{\eta}S^{ij}_{q}(x-y)
=δijδ4(xy).\displaystyle=\delta_{ij}\delta^{4}(x-y). (29)

We can recognize here the equations for the 1P- and 2P-functions of a non-local Nambu-Jona-Lasinio model. These are not generally treatable. They should be solved straightforwardly being already quantum averaged. In order to obtain a gap equation, we need to recover the Nambu-Jona-Lasinio-model from which they can be obtained doing some kind of backtracking. Only in this way a gap equation is derived. Indeed, such a model has the Lagrangian

LNJL=i,q[q¯i(x)(i∂̸mq)qi(x)+\displaystyle L_{NJL}=\sum_{i,q}\left[{\bar{q}}_{i}(x)(i\not{\partial}-m_{q})q_{i}(x)+\right.
g2N21q¯i(x)d4xΔ0(xx)k,qq¯k(x)𝑻η̸qk(x)𝑻η̸qi(x)].\displaystyle\left.\frac{g^{2}}{N^{2}-1}{\bar{q}}_{i}(x)\int d^{4}x^{\prime}\Delta_{0}(x-x^{\prime})\sum_{k,q^{\prime}}{\bar{q}^{\prime}}_{k}(x^{\prime}){\bm{T}}\cdot\not{\eta}q^{\prime}_{k}(x^{\prime}){\bm{T}}\cdot\not{\eta}q_{i}(x)\right]. (30)

From this, one can get a quark gap equation that is identical to the one given in [6] as proven in [7].

6 Conclusions

We derived the set of Dyson-Schwinger equations, till to 2P-functions, for QCD with the Bender-Milton-Savage technique. We treated them in the ’t Hooft limit. The low-energy limit is a nonlocal-Nambu-Jona-Lasinio model. This was shown obtaining the corresponding 1P- and 2P-equations for its correlation functions. The Lagrangian of the model is also given.

Work is ongoing to get the gap equation and to analyze its properties in view of recent g-2 Fermilab measurement [7].

Acknowledgements

The research was supported in part by the European Regional Development Fund under Grant No. TK133.

References

  • [1] M. Frasca, Eur. Phys. J. Plus 132, no.1, 38 (2017) [erratum: Eur. Phys. J. Plus 132, no.5, 242 (2017)] doi:10.1140/epjp/i2017-11321-4 [arXiv:1509.05292 [math-ph]].
  • [2] M. Frasca, Nucl. Part. Phys. Proc. 294-296, 124-128 (2018) doi:10.1016/j.nuclphysbps.2018.02.005 [arXiv:1708.06184 [hep-ph]].
  • [3] C. M. Bender, K. A. Milton and V. Savage, Phys. Rev. D 62, 085001 (2000) doi:10.1103/PhysRevD.62.085001 [arXiv:hep-th/9907045 [hep-th]].
  • [4] G. ’t Hooft, Nucl. Phys. B 72, 461 (1974) doi:10.1016/0550-3213(74)90154-0
  • [5] G. ’t Hooft, Nucl. Phys. B 75, 461-470 (1974) doi:10.1016/0550-3213(74)90088-1
  • [6] M. Frasca, Eur. Phys. J. C 80, no.8, 707 (2020) doi:10.1140/epjc/s10052-020-8261-7 [arXiv:1901.08124 [hep-ph]].
  • [7] M. Frasca, A. Ghoshal and S. Groote, [arXiv:2109.05041 [hep-ph]].
  • [8] M. Frasca, Eur. Phys. J. C 74, 2929 (2014) doi:10.1140/epjc/s10052-014-2929-9 [arXiv:1306.6530 [hep-ph]].