This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Corresponding author: ][email protected]

Present address: ]Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan Corresponding author: ][email protected]

Mutually synchronized macroscopic Josephson oscillations demonstrated by polarization analysis of superconducting terahertz emitters

M. Tsujimoto1,2 [    S. Fujita3    G. Kuwano2    K. Maeda3    A. Elarabi3 [    J. Hawecker4    J. Tignon4    J. Mangeney4    S. S. Dhillon4    I. Kakeya3 [ 1Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan 2Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan 3Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan 4Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
Abstract

We demonstrate mutual synchronization of Josephson oscillations in multiple stacks of intrinsic Josephson junctions of the cuprate superconductor Bi2Sr2CaCu2O8+δ. Detailed analysis of the full polarization parameters allows the determination of a phase correlation between the stacks: a simultaneous emission state is described by a linear combination of individual emission states with a phase retardation. This proves that the stacks are coupled via a Josephson plasma in a superconducting substrate and the coupling matrices can be extracted from polarization analyses. Our findings suggest a route towards the realization of high-power terahertz sources based on the synchronization of a large number of intrinsic Josephson junctions.

The observation of electromagnetic (EM) radiation in the terahertz frequency range emitted from a stack (mesa) of intrinsic Josephson junctions (IJJs) Kleiner et al. (1992) in Bi2Sr2CaCu2O8+δ (Bi-2212) highlights the potential of such materials in monolithically fabricated solid-state terahertz sources Ozyuzer et al. (2007); Welp et al. (2013); Kakeya and Wang (2016); Kashiwagi et al. (2017). The mutual synchronization of IJJ mesas has been demonstrated to produce output powers of up to 0.6 mW Benseman et al. (2013a), where the maximum output power exceeds the sum of the individual emission powers. Although numerical study suggests a possible coupling between the mesas through the Bi-2212 substrate Lin and Koshelev (2013), there is no direct experimental evidence showing the mutual synchronization. So far, to investigate these phenomena with multi-degree-of-freedom, the frequency and intensity of the emitted EM wave have been considered good measures. Besides these characteristics, the polarization includes rich information for characterizing the Josephson plasma wave (JPW) polarized along the cc-axis inside a mesa Elarabi et al. (2017, 2018). Since a JPW is converted to a polarized photon according to the mesa geometry Koyama et al. (2009); Hu and Lin (2009); Savel’ev et al. (2010); Klemm and Kadowaki (2010), perfect polarization is the hallmark of coherent excitation of the JPW.

In this study, we demonstrate synchronization of macroscopic Josephson oscillations in two simultaneously biased mesas coupled via a superconducting base crystal by measuring complete Stokes parameters. Our focus is on the polarization of photons emitted from individual mesas and arrays of mesas. Most importantly, we observed a drastic change in the axial ratio for the simultaneous emission. This suggests the possibility of active control of the synchronization in mesa arrays, which is the most promising way to increase the integrated output power.

Mesas 100×\times400 µm2 in size with two silver strip electrodes were milled from a Bi-2212 crystal by photolithography and argon milling methods. Figure 1(a) shows an optical microscopy image of the Bi-2212 mesa array. We refer to the two mesas as A1 and A2. Profile measurements using atomic force microscopy (Keyence Corp., Model VN-8000) demonstrate that the mesas vary marginally in size. Widths of A1 and A2 were measured as 94 µm and 91 µm, respectively, with thicknesses of 1.4 µm corresponding to 910 IJJs.

The current-voltage characteristics (IVCs) for A1 and A2 show the large hysteresis typical of underdamped Josephson junctions SM . Simultaneous emission occurs when A1 and A2 are biased in parallel. Hereinafter, we refer to the parallel connection as A1\parallelA2. The maximum intensity is obtained at 16.8 mA, which is higher than the sum of the bias currents for the maximum emission powers of A1 and A2 individually. Also, the maximum intensity for A1\parallelA2 was almost half of that for A2. This can be explained by considering the local temperature increase Wang et al. (2009, 2010); Gross et al. (2012); Benseman et al. (2013b); Minami et al. (2014); Tsujimoto et al. (2014); Benseman et al. (2015). Benseman et al. demonstrated that the self-heating effect limits the power output and in fact may prevent synchronization among multiple mesas Benseman et al. (2013a). A variety of studies on the cavity resonance effect have demonstrated that spontaneous synchronization among stacked IJJs is accompanied by the formation of standing EM waves inside the Bi-2212 mesa Ozyuzer et al. (2007); Tsujimoto et al. (2010); Kashiwagi et al. (2011); Tsujimoto et al. (2016); Kashiwagi et al. (2018); Zhang et al. (2019). For a thin rectangular mesa of width ww and length \ell, the cavity frequency for a transverse magnetic (mp)(mp) mode is given by fmpr=(c0/2n)(m/w)2+(p/)2f_{mp}^{r}=(c_{0}/2n)\sqrt{(m/w)^{2}+(p/\ell)^{2}}, where the two indices mm and pp correspond to the numbers of electric field nodes in the width and length directions, respectively, and n=4.2n=4.2 is the experimentally obtained refractive index Tsujimoto et al. (2016); Kadowaki et al. (2010). Here, the radiation frequencies measured using Fourier transform interferometry ranged continuously from 0.56 to 0.66 THz depending on the bias point SM . These values are in good agreement with the calculated f1prf_{1p}^{r} with 0<p<60<p<6. If we assume m2m\geq 2, the calculated fmprf_{mp}^{r} values fail to coincide with the observed values for any pp. Hence, only one EM node is present along the mesa width, and a non-zero pp value is expected to produce an elliptical polarization.

Here, we present the measurements of the Stokes parameters, which allow for the quantitative analysis of polarized photons emitted from individual mesas and from synchronized arrays SM . Figure 1(b) shows a schematic view of the synchronized array. Measurement was performed by allowing the polarized radiation to propagate sequentially through two polarizing elements, a quarter-wave plate (QWP), and a linear wire grid polarizer (WGP). The QWP consists of a stack of parallel metal-plate waveguides Nagai et al. (2015). We used terahertz time-domain spectroscopy Madeo et al. (2010); Maussang et al. (2016) to verify that the QWP works correctly in the emission frequency range around 0.6 THz SM . Figure 1(c) shows the measurement configuration. The QWP can be rotated through an angle θ\theta and is followed by a fixed WGP whose transmission axis is fixed in the width direction (θ=0\theta=0 deg).

Figures 2(a) and 2(b) show polar plots of the bolometer output for A1 and A1\parallelA2, respectively, as a function of θ\theta at the bias conditions that result in the maximum output powers. The error bars in the radial direction correspond to fluctuations in the bolometer output signal, mostly owing to background noise. The four independent Stokes parameters, S0S_{0}, S1S_{1}, S2S_{2}, and S3S_{3}, which are summarized in Table SI SM , are obtained from this data. The solid lines shown in Figs. 2(a) and 2(b) represent the calculated results using the four Stokes parameters. The experimental data are slightly asymmetric with respect to both the major and minor axes. This is due to the imperfect alignment of the parallel metal-plate waveguides in the QWP. Nevertheless, the calculation results fit the experimental data within the error bars.

The E-field vector at the detection plane is given by 𝑩(t)=E0xei(ωt+δx)𝒊+E0yei(ωt+δy)𝒋\bm{B}(t)=E_{0x}e^{i(\omega t+\delta_{x})}\bm{i}+E_{0y}e^{i(\omega t+\delta_{y})}\bm{j}, where the xx- and yy-axes are parallel to the mesa width and length, respectively, tt represents time, E0xE_{0x} and E0yE_{0y} are the respective amplitudes, and δx\delta_{x} and δy\delta_{y} are the respective phase constants. Figures 2(c) and 2(d) are the corresponding polarization ellipses for A1 (red), A2 (blue), and A1\parallelA2 (green). The fourth Stokes parameter S3S_{3} determines the helicity of the photons: a positive (negative) S3S_{3} indicates left (right)-handed helicity with respect to the direction of propagation. Note that the EE-field rotates forward (counter-)clockwise for left (right)-handed helicity from the viewpoint of the detector. The arrows on the ellipses indicate the direction of the EE-field rotation. For both mesas, the major axis of the polarization ellipse is oriented along the xx axis, i.e., π/4<ψ<π/4-\pi/4<\psi<\pi/4, which is consistent with excitation of (1p)(1p) cavity modes.

In the pioneering study of EM-wave emission from an IJJ mesa, it is demonstrated that the emission from rectangular mesas is linearly polarized along the mesa width Ozyuzer et al. (2007). The present results suggest, however, that the emitted waves are elliptically polarized with a finite axial ratio at an arbitrary orientation angle. We stress that these polarization parameters contain information essential for understanding the electromagnetism inside the emitting mesa. For example, the orientation angle ψ\psi is derived from the phase difference δxy=δxδy\delta_{xy}=\delta_{x}-\delta_{y}, namely, δyx=±π/2\delta_{yx}=\pm\pi/2 gives ψ=0\psi=0 and δyx=0\delta_{yx}=0 gives ψ=30\psi=30 deg for E0x2/E0y23E_{0x}^{2}/E_{0y}^{2}\sim 3. We also found that the actual polarization parameters are, in fact, dependent on the bias condition and TbT_{b}. Nevertheless, the observed E0xE_{0x} was greater than E0yE_{0y} in all cases, directly suggesting the predominance of the (1p)(1p) cavity mode for elongated rectangular mesas.

When two mesas are biased to emit simultaneously, the far-field waves should be described in terms of the superposition of the EE-fields generated from each mesa. Thus, the total EE-field depends on the phase difference between the macroscopic Josephson oscillations. The observed pattern for A1\parallelA2 shown in Fig. 2(b) exhibits four-fold symmetry with respect to θ\theta, suggesting that the two mesas generate photons synchronously. It is likely that ψ\psi and the helicity for A1\parallelA2 are dominated by the photon from A2, which emits more intensively than A1 (Fig. 2(c)). Most importantly, we found that the axial ratio increases significantly from 2 for the individual emissions to 24 for the simultaneous emission. We propose that this pronounced effect on the axial ratio is an indication of the phase synchronization between the two mesas as a result of EM coupling.

We observed the same behavior from other mesas shown in Fig. 1(a) and another supplemental sample, where each mesa showed slightly different polarization depending on the geometrical configuration SM . The amplitude ratio E0x/E0yE_{0x}\textfractionsolidus E_{0y} explains the predominance of cavity resonances in the width direction over those in the length direction. Since we injected the DC bias current into A1 and A2 using a left strip electrode as shown in Fig. 1(a), the resonance in the width direction may be degraded by a non-uniform current distribution in the mesa Kakeya et al. (2012); Tsujimoto et al. (2014). This explanation is supported by the observation E0x/E0y=1.4E_{0x}/E_{0y}=1.4 for A1 and, in contrast, 2.0 for supplemental mesas with a symmetrical electrode configuration SM . This technique allows for dynamic control of polarization by adjusting the current distribution in the mesa.

In Fig. 3(a), we plot the polarization ellipses obtained by calculating the locus of 𝑬(t)\bm{E}(t). According to antenna theory for a transverse magnetic cavity, E0xE_{0x} (or E0yE_{0y}) is proportional to the magnitude of the magnetic currents parallel to the yy-axis (or xx-axis). Hence, in order to calculate 𝑬(t)\bm{E}(t), we assume that the anisotropy is equal to the inverse mesa aspect, i.e., E0x/E0y=/wE_{0x}/E_{0y}=\ell/w. This geometrical effect coincides with the numerical simulation for a locally heated square IJJ mesa Asai and Kawabata (2017). By comparing Fig. 3(a) with Fig. 2(c), we can estimate δyx\delta_{yx} to be 3π/43\pi/4 (135 deg) for A1 and π/4-\pi/4 (45-45 deg) for A2.

Let us describe our results in terms of quantum mechanics. The quantum-superposition state of the photon emitted from the parallel-biased mesa array of A1\parallelA2 is described as

|ωA1A2,𝑺A1A2=α|ωA1,𝑺A1+β|ωA2,𝑺A2,\ket{\omega_{\textrm{A1}\parallel\textrm{A2}},\bm{S}_{\textrm{A1}\parallel\textrm{A2}}}=\alpha\ket{\omega_{\textrm{A1}},\bm{S}_{\textrm{A1}}}+\beta\ket{\omega_{\textrm{A2}},\bm{S}_{\textrm{A2}}},

where 𝑺i\bm{S}_{i} (i=A1, A2, or A1A2i=\textrm{A1, A2, or A1$\parallel$A2}) represents the Stokes vector as a quantum number. Two complex numbers α\alpha and β\beta represent the probability amplitudes (i.e., |α|2+|β|2=1|\alpha|^{2}+|\beta|^{2}=1) and phases of the unperturbed states |ωA1,𝑺A1\ket{\omega_{\textrm{A1}},\bm{S}_{\textrm{A1}}} and |ωA2,𝑺A2\ket{\omega_{\textrm{A2}},\bm{S}_{\textrm{A2}}}, respectively. According to the dispesrsion relation of the transverse JPW Kadowaki et al. (1997), angular frequencies ωA1\omega_{\textrm{A1}} and ωA2\omega_{\textrm{A2}} are determined by the wavenumbers 𝒌A1\bm{k}_{\textrm{A1}} and 𝒌A2\bm{k}_{\textrm{A2}} of the Josephson plasmons (quantized JPW) independently of the polarization. Our concern is finding the 4×\times4 perturbation matrix VmV_{m} that satisfies (|ωA1,𝒌A1|ωA2,𝒌A2)=Vm(|ωA1,𝒌A1|ωA2,𝒌A2).\begin{pmatrix}\ket{\omega_{\textrm{A1}}^{\prime},\bm{k}_{\textrm{A1}^{\prime}}}\\ \ket{\omega_{\textrm{A2}}^{\prime},\bm{k}_{\textrm{A2}^{\prime}}}\end{pmatrix}=V_{m}\begin{pmatrix}\ket{\omega_{\textrm{A1}},\bm{k}_{\textrm{A1}}}\\ \ket{\omega_{\textrm{A2}},\bm{k}_{\textrm{A2}}}\end{pmatrix}. Here, inter-mesa coupling VmV_{m} causes perturbation and may include non-diagonal elements, which involve a general question in non-linear physics regarding the symmetry of the matrix.

Figure 3(b) shows polarization 𝑺A1A2\bm{S}_{\textrm{A1$\parallel$A2}} calculated by taking the superposition into consideration. We used the actual intensity ratio obtained by measurement. The orientation angle in the range of 0<ψ<π/20<\psi<\pi/2 is in good agreement with Fig. 2(d). It is noteworthy that the modulus |β/α||\beta/\alpha| represents the degree of interaction between the two mesas and |β/α|=0.9|\beta/\alpha|=0.9 coincides with our results. Meanwhile, the argument of β/α\beta/\alpha corresponds to the phase difference between A1 and A2.

Figure 4 shows the variation of axial ratio as a function of arg(β/α)\arg(\beta/\alpha). As indicated by arrows, two singular states exhibiting perfect polarization are emitted when |β/α|<0.9|\beta/\alpha|<0.9. For example, two singular states with very large axial ratio can be observed at arg(β/α)=45\arg(\beta/\alpha)=45 deg and at 135 deg when |β/α|=0.7|\beta/\alpha|=0.7. We suggest that such perfect polarization is attributed to coherent excitation of the Josephson plasmon. See Supplemental Material for |β/α||\beta/\alpha|-dependence of 𝑺A1A2\bm{S}_{\textrm{A1$\parallel$A2}} SM .

The origin of inter-mesa coupling VmV_{m} arises from the propagation of JPWs through the Bi-2212 base crystal. The inset of Fig. 4 shows a schematic cross-sectional view of the mesa array. The dashed line in Fig. 4 represents the phase delay 2πD/λ2\pi D/\lambda^{\prime} due to the finite propagation time, where D=58D=58 µm is the interspace between the two mesas and λ=λ/n\lambda^{\prime}=\lambda/n is the effective wavelength. We assume that JPWs can propagate from one mesa to another mesa through the base crystal and diffract at the mesa edge. This situation strongly supports the view that the base crystal can mediate the EM interaction Benseman et al. (2013a); Lin and Koshelev (2013), the mechanism of which has been unclear in previous works. Furthermore, we found that the total intensity of simultaneous emission S0S_{0} reaches a maximal value as 2πD/λ2\pi D/\lambda^{\prime} coincides with a multiple of arg(β/α)\arg(\beta/\alpha) SM .

In conclusion, we demonstrated the synchronization of macroscopic Josephson oscillations in two simultaneously biased Bi-2212 IJJ mesas coupled via a base crystal by measuring the complete Stokes parameters. We used an achromatic QWP and a linear WGP to analyze the orthogonal components of the emitted EE-fields. We proved that the coherent radiation is elliptically polarized with the major axis oriented in the width direction. Most importantly, we observed a significant increase in the axial ratio for simultaneous emission, suggesting that Josephson plasma in the Bi-2212 base crystal can mediate an interaction between two individual mesas. This finding represents a possible means of manipulating the synchronization of IJJ arrays, and is the most promising way to increase the integrated radiation power.

Acknowledgment

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. 26286006, No. 15KK0204, and No. 19H02540), JSPS-Centre national de la recherche scientifique (CNRS) Bilateral Program (Grant No. 120192908), and the Program to Disseminate the Tenure Tracking System at the University of Tsukuba. The Bi-2221 single crystal was provided by Y. Nakagawa at Kyoto University. The authors thank H. Asai, S. Kawabata, M. Machida, and T. Koyama for their valuable discussions.

References

  • Kleiner et al. (1992) R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals, Physical Review Letters 68, 2394 (1992).
  • Ozyuzer et al. (2007) L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W.-K. Kwok, and U. Welp, Emission of Coherent THz Radiation from Superconductors, Science 318, 1291 (2007).
  • Welp et al. (2013) U. Welp, K. Kadowaki, and R. Kleiner, Superconducting emitters of THz radiation, Nature Photonics 7, 702 (2013).
  • Kakeya and Wang (2016) I. Kakeya and H. Wang, Terahertz-wave emission from Bi2212 intrinsic Josephson junctions: a review on recent progress, Superconductor Science and Technology 29, 073001 (2016).
  • Kashiwagi et al. (2017) T. Kashiwagi, H. Kubo, K. Sakamoto, T. Yuasa, Y. Tanabe, C. Watanabe, T. Tanaka, Y. Komori, R. Ota, G. Kuwano, K. Nakamura, T. Katsuragawa, M. Tsujimoto, T. Yamamoto, R. Yoshizaki, H. Minami, K. Kadowaki, and R. A. Klemm, The present status of high-Tc superconducting terahertz emitters, Superconductor Science and Technology 30, 074008 (2017).
  • Benseman et al. (2013a) T. M. Benseman, K. E. Gray, A. E. Koshelev, W.-K. Kwok, U. Welp, H. Minami, K. Kadowaki, and T. Yamamoto, Powerful terahertz emission from Bi2Sr2CaCu2O8+δ\delta mesa arrays, Applied Physics Letters 103, 022602 (2013a).
  • Lin and Koshelev (2013) S. Z. Lin and A. E. Koshelev, Synchronization of Josephson oscillations in a mesa array of Bi2Sr2CaCu2O8+δ\delta through the Josephson plasma waves in the base crystal, Physica C: Superconductivity and its Applications 491, 24 (2013).
  • Elarabi et al. (2017) A. Elarabi, Y. Yoshioka, M. Tsujimoto, and I. Kakeya, Monolithic Superconducting Emitter of Tunable Circularly Polarized Terahertz Radiation, Physical Review Applied 8, 064034 (2017).
  • Elarabi et al. (2018) A. Elarabi, Y. Yoshioka, M. Tsujimoto, and I. Kakeya, Circularly polarized terahertz radiation monolithically generated by cylindrical mesas of intrinsic Josephson junctions, Applied Physics Letters 113, 052601 (2018).
  • Koyama et al. (2009) T. Koyama, H. Matsumoto, M. Machida, and K. Kadowaki, In-phase electrodynamics and terahertz wave emission in extended intrinsic Josephson junctions, Physical Review B 79, 104522 (2009).
  • Hu and Lin (2009) X. Hu and S. Lin, Cavity phenomena in mesas of cuprate high-Tc superconductors under voltage bias, Physical Review B 80, 064516 (2009).
  • Savel’ev et al. (2010) S. Savel’ev, V. A. Yampol’skii, A. L. Rakhmanov, and F. Nori, Terahertz Josephson plasma waves in layered superconductors: spectrum, generation, nonlinear and quantum phenomena, Reports on Progress in Physics 73, 026501 (2010).
  • Klemm and Kadowaki (2010) R. A. Klemm and K. Kadowaki, Output from a Josephson stimulated terahertz amplified radiation emitter, Journal of Physics: Condensed Matter 22, 375701 (2010).
  • (14) See Supplemental Material.,  .
  • Wang et al. (2009) H. Wang, S. Guénon, J. Yuan, A. Iishi, S. Arisawa, T. Hatano, T. Yamashita, D. Koelle, and R. Kleiner, Hot Spots and Waves in Bi2Sr2CaCu2O8 Intrinsic Josephson Junction Stacks: A Study by Low Temperature Scanning Laser Microscopy, Physical Review Letters 102, 017006 (2009).
  • Wang et al. (2010) H. B. Wang, S. Guénon, B. Gross, J. Yuan, Z. G. Jiang, Y. Y. Zhong, M. Grünzweig, A. Iishi, P. H. Wu, T. Hatano, D. Koelle, and R. Kleiner, Coherent Terahertz Emission of Intrinsic Josephson Junction Stacks in the Hot Spot Regime, Physical Review Letters 105, 057002 (2010).
  • Gross et al. (2012) B. Gross, S. Guénon, J. Yuan, M. Y. Li, J. Li, A. Ishii, R. G. Mints, T. Hatano, P. H. Wu, D. Koelle, H. B. Wang, and R. Kleiner, Hot-spot formation in stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8, Physical Review B 86, 094524 (2012).
  • Benseman et al. (2013b) T. M. Benseman, A. E. Koshelev, W.-K. Kwok, U. Welp, V. K. Vlasko-Vlasov, K. Kadowaki, H. Minami, and C. Watanabe, Direct imaging of hot spots in Bi2Sr2CaCu2O8+δ\delta mesa terahertz sources, Journal of Applied Physics 113, 133902 (2013b).
  • Minami et al. (2014) H. Minami, C. Watanabe, K. Sato, S. Sekimoto, T. Yamamoto, T. Kashiwagi, R. A. Klemm, and K. Kadowaki, Local SiC photoluminescence evidence of hot spot formation and sub-THz coherent emission from a rectangular Bi2Sr2CaCu2O8+δ\delta mesa, Physical Review B 89, 054503 (2014).
  • Tsujimoto et al. (2014) M. Tsujimoto, H. Kambara, Y. Maeda, Y. Yoshioka, Y. Nakagawa, and I. Kakeya, Dynamic control of temperature distributions in stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8+δ\delta for intense terahertz radiation, Physical Review Applied 2, 044016 (2014).
  • Benseman et al. (2015) T. M. Benseman, A. E. Koshelev, V. Vlasko-Vlasov, Y. Hao, W.-K. Kwok, U. Welp, C. Keiser, B. Gross, M. Lange, D. Kölle, R. Kleiner, H. Minami, C. Watanabe, and K. Kadowaki, Current Filamentation in Large Bi2Sr2CaCu2O8+δ\delta Mesa Devices Observed via Luminescent and Scanning Laser Thermal Microscopy, Physical Review Applied 3, 044017 (2015).
  • Tsujimoto et al. (2010) M. Tsujimoto, K. Yamaki, K. Deguchi, T. Yamamoto, T. Kashiwagi, H. Minami, M. Tachiki, K. Kadowaki, and R. A. Klemm, Geometrical Resonance Conditions for THz Radiation from the Intrinsic Josephson Junctions in Bi2Sr2CaCu2O8+δ\deltaPhysical Review Letters 105, 037005 (2010).
  • Kashiwagi et al. (2011) T. Kashiwagi, K. Yamaki, M. Tsujimoto, K. Deguchi, N. Orita, T. Koike, R. Nakayama, H. Minami, T. Yamamoto, R. A. Klemm, M. Tachiki, and K. Kadowaki, Geometrical Full-Wavelength Resonance Mode Generating Terahertz Waves from a Single-Crystalline Bi2Sr2CaCu2O8+δ\delta Rectangular Mesa, Journal of the Physical Society of Japan 80, 094709 (2011).
  • Tsujimoto et al. (2016) M. Tsujimoto, I. Kakeya, T. Kashiwagi, H. Minami, and K. Kadowaki, Cavity mode identification for coherent terahertz emission from high-Tc superconductors, Optics Express 24, 4591 (2016).
  • Kashiwagi et al. (2018) T. Kashiwagi, T. Yuasa, Y. Tanabe, T. Imai, G. Kuwano, R. Ota, K. Nakamura, Y. Ono, Y. Kaneko, M. Tsujimoto, H. Minami, T. Yamamoto, R. A. Klemm, and K. Kadowaki, Improved excitation mode selectivity of high-Tc superconducting terahertz emitters, Journal of Applied Physics 124, 033901 (2018).
  • Zhang et al. (2019) H. Zhang, R. Wieland, W. Chen, O. Kizilaslan, S. Ishida, C. Han, W. Tian, Z. Xu, Z. Qi, T. Qing, Y. Lv, X. Zhou, N. Kinev, A. B. Ermakov, E. Dorsch, M. Ziegele, D. Koelle, H. Eisaki, Y. Yoshida, V. P. Koshelets, R. Kleiner, H. Wang, and P. Wu, Resonant Cavity Modes in Bi2Sr2CaCu2O8+x Intrinsic Josephson Junction Stacks, Physical Review Applied 11, 044004 (2019).
  • Kadowaki et al. (2010) K. Kadowaki, M. Tsujimoto, K. Yamaki, T. Yamamoto, T. Kashiwagi, H. Minami, M. Tachiki, and R. A. Klemm, Evidence for a Dual-Source Mechanism of Terahertz Radiation from Rectangular Mesas of Single Crystalline Bi 2 Sr 2 CaCu 2 O 8+δ\delta Intrinsic Josephson Junctions, Journal of the Physical Society of Japan 79, 023703 (2010).
  • Nagai et al. (2015) M. Nagai, N. Mukai, Y. Minowa, M. Ashida, T. Suzuki, J. Takayanagi, and H. Ohtake, Achromatic wave plate in THz frequency region based on parallel metal plate waveguides with a pillar array, Optics Express 23, 4641 (2015).
  • Madeo et al. (2010) J. Madeo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. Dhillon, Frequency tunable terahertz interdigitated photoconductive antennas, Electronics Letters 46, 611 (2010).
  • Maussang et al. (2016) K. Maussang, A. Brewer, J. Palomo, J.-M. Manceau, R. Colombelli, I. Sagnes, J. Mangeney, J. Tignon, and S. S. Dhillon, Echo-Less Photoconductive Antenna Sources for High-Resolution Terahertz Time-Domain Spectroscopy, IEEE Transactions on Terahertz Science and Technology 6, 20 (2016).
  • Kakeya et al. (2012) I. Kakeya, Y. Omukai, T. Yamamoto, K. Kadowaki, and M. Suzuki, Effect of thermal inhomogeneity for terahertz radiation from intrinsic Josephson junction stacks of Bi2Sr2CaCu2O8+δ\deltaApplied Physics Letters 100, 242603 (2012).
  • Asai and Kawabata (2017) H. Asai and S. Kawabata, Control of circularly polarized THz wave from intrinsic Josephson junctions by local heating, Applied Physics Letters 110, 132601 (2017).
  • Kadowaki et al. (1997) K. Kadowaki, I. Kakeya, M. B. Gaifullin, T. Mochiku, S. Takahashi, T. Koyama, and M. Tachiki, Longitudinal Josephson-plasma excitation in Bi2Sr2CaCu2O8+δ\delta: Direct observation of the Nambu-Goldstone mode in a superconductor, Physical Review B 56, 5617 (1997).
Refer to caption
Figure 1: (a) Optical microscopy image of the Bi-2212 mesa array. (b) Schematic view of the synchronized array. (c) Schematic of the optical configuration for Stokes parameter measurement.
Refer to caption
Figure 2: Polar plots of the maximum bolometer output as a function of QWP angle θ\theta for (a) A1 and A2, and (b) A1\parallelA2. The solid lines represent results calculated using the Stokes parameters. Polarization ellipses for (c) A1 (red) and A2 (blue), and (d) A1\parallelA2.
Refer to caption
Figure 3: Calculation of the polarization ellipse for (a) a single mesa and (b) two arrayed mesas.
Refer to caption
Figure 4: Calculation of the axial ratio as a function of arg(β/α)\arg(\beta/\alpha). Inset: schematic side view of the Bi-2212 mesa array.