This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Multiscale finite element method for Stokes-Darcy model

Yachen Hong Department of Mathematics,East China Normal University, Shanghai.  Wenhan Zhang Department of Mathematics,East China Normal University, Shanghai.  Lina Zhao Haibiao Zheng Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong SAR.Department of Mathematics, Key Laboratory of MEA(Ministry of Education) and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai.
Abstract

This paper explores the application of the multiscale finite element method (MsFEM) to address steady-state Stokes-Darcy problems with BJS interface conditions in highly heterogeneous porous media. We assume the existence of multiscale features in the Darcy region and propose an algorithm for the multiscale Stokes-Darcy model. During the offline phase, we employ MsFEM to construct permeability-dependent offline bases for efficient coarse-grid simulation, with this process conducted in parallel to enhance its efficiency. In the online phase, we use the Robin-Robin algorithm to derive the model’s solution. Subsequently, we conduct error analysis based on L2L^{2} and H1H^{1} norms, assuming certain periodic coefficients in the Darcy region. To validate our approach, we present extensive numerical tests on highly heterogeneous media, illustrating the results of the error analysis.

Keywords: MsFEM; multiscale; steady Stokes-Darcy flow; highly heterogeneous; Robin-Robin algorithm.

1 Introduction

In this paper, we design and analyze an efficient numerical method based on the multiscale finite element method (MsFEM) framework for Stokes-Darcy system. The Stokes-Darcy problem has gained significant attention over the last decade, particularly following the influential works by Discacciati et al.[9] and Layton et al [18]. Such models can be used to describe pysiological phenomena like hydrological systems in which surface water percolates through rocks and sand, and various industrial processes involving filtration, reservoir simulation, nuclear water storage and underground water contamination. In these fields, it is often encountered with situations involving multiple scales; for example complex rock matrices when modelling sub-surface flows or random placements of buildings, people and trees in the context of urban canopy flows. Hence, it is necessary to take into consideration the presence of multiple scales in the Stokes-Darcy model.

These multiscale Stokes-Darcy problems can arise from either the presence of highly oscillatory coefficients within the system or the heterogeneity of the domain; These problems can be very challenging due to the necessary resolution for achieving meaningful results. Constrained by computational cost and prohibitive size, numerous practical problems remain beyond reach through direct simulations. On the other hand, there is currently no effective algorithm for the multiscale problem of Stokes-Darcy with BJS (Beavers-Joseph-Saffman) interface conditions. Thus, it is desirable to develop an effcient computational algorithm to solve multiscale problems without being confined to solving fine scale solutions and establish the corresponding error analysis.

Prior to presenting our multiscale Stokes-Darcy multiscale techniques and their application to the Stokes-Darcy problem. In addition to some traditional upscaling techniques, nowadays, various multiscale methods can be employed to solve multi-scale problems. One type of multiscale method involves generating new basis functions, where the aim is to solve the problem on a coarse grid using carefully designed multiscale basis functions. Notable multiscale methods such as multiscale finite method (MsFEM) by Hou and Wu [14, 7]. MsFEM’s applicability broadens to situations where analytical representations of microscopic elements are unavailable, given that the multiscale basis is calculated rather than modeled. Within the last decades, several methods sprung from similar purpose namely, the generalized multiscale finite element method (GMsFEM) [11, 8], the multiscale finite volume method (MsFVM) [13, 17, 10], the heterogeneous multiscale method (HMM) [20], the variational multiscale method (VMS) [16], the multiscale mortar mixed finite element method (MMMFEM) [4], the localized orthogonal method (LOD) [19], the multiscale hybrid-mixed method (MHM) [3]. Multiscale methods have demonstrated their ability to handle the complexity associated with industry-standard grid representation and flow physics.

Several theoretical and numerical studies have been done in the couple years to solve Stokes-Darcy problem. Jun Yao et al. [24] presented a multiscale mixed finite element method (MsMFEM) for fluid flow in fractured vuggy media. ABDULLE et al. [1] introduced Darcy-Stokes finite element heterogeneous multiscale method (DS-FE-HMM) in porous media. Girault et al. [12] investigated mortar multiscale numerical methods for coupled Stokes and Darcy flows with the Beavers-Joseph-Saffman(BJS) interface condition. Ilona Ambartsumyan et al.[2] introduced stochastic multiscale flux basis for Stokes-Darcy flows. To date, although there are many multiscale methods available for addressing the Stokes-Darcy problem, MsFEM has not been applied to the Stokes-Darcy problem with BJS interface conditions and conducted theoretical error analysis.

In this paper we propose an Msfem method to solve steady Stokes-Darcy problem with BJS interface condition and derive a fully a priori error analysis. Our objective is to propose effective methods that minimize computational efforts when dealing with multiscale phenomena in the Darcy region. While the basis functions of MsFEM have seen widespread use, their application in the context of steady-state Stokes-Darcy problems with BJS interface conditions is notably lacking, let alone the presence of comprehensive error analysis. We use multiscale finite methods in the Darcy region, assuming the presence of multiscale phenomena, and apply standard finite element methods in the Stokes region, with the coupling between the two regions established through an interface. The multiscale finite element basis functions are inspired by Hou’s work [14, 7] and generated using parallel methods. In the Stokes region, we employ standard MINI elements for the basis functions. Additionally, we utilize the Robin-Robin algorithm to obtain the final solution. Then, we conducted error analysis in terms of L2L^{2} and H1H^{1}, assuming the Darcy region possesses certain periodic coefficients. Finally, numerical examples will validate the effectiveness of our algorithm and error analysis.

The rest of the paper is organized as follows. In section 2, we introduce the Stokes-Darcy model. Next, we introduced the finite element space and the multiscale basis function space. Meanwhile, we also introduced some homogenization principles and certain model results. The Multiscale finite Stokes-Darcy algorithm are presented in Section 3. It is mainly divided into two parts: offline and online phase. The corresponding H1H^{1} and L2L^{2} error estimates is shown in Section 4. Numerical experiments are presented in Section 5.

2 Preliminaries.

2.1 Stokes-Darcy model with BJS interface condtion

Let us consider the following mixed model for coupling a fluid flow and a porous media flow in a bounded domain Ω𝐑d,d=2,3\Omega\subset\mathbf{R}^{d},d=2,3. Here Ω=ΩfΓΩp\Omega=\Omega_{f}\cup\Gamma\cup\Omega_{p}, where Ωf\Omega_{f} and Ωp\Omega_{p} are two disjoint, connected and bounded domains occupied by fluid flow and porous media flow and Γ=Ω¯fΩ¯p\Gamma=\bar{\Omega}_{f}\cap\bar{\Omega}_{p} is the interface. For simplicity, we assume Ωp\partial\Omega_{p} and Ωf\partial\Omega_{f} are smooth enough in the rest of this paper. We denote Γf=ΩfΩ,Γp=ΩpΩ\Gamma_{f}=\partial\Omega_{f}\cap\partial\Omega,\Gamma_{p}=\partial\Omega_{p}\cap\partial\Omega and we also denote by 𝐧p\mathbf{n}_{p} and 𝐧f\mathbf{n}_{f} the unit outward normal vectors on Ωp\partial\Omega_{p} and Ωf\partial\Omega_{f}, respectively. See Fig. 1 for a sketch.

Refer to caption
Figure 1:

A global domain Ω\Omega consisting of a fluid flow region Ωf\Omega_{f}
and a porous media flow region Ωp\Omega_{p} separated by an interface Γ\Gamma.

The fluid motion in the fluid region Ωf\Omega_{f} is governed by the Stokes equations

{(𝕋(𝐮f,pf))=𝐠f, in Ωf,𝐮f=0, in Ωf,\begin{cases}-\nabla\cdot\left(\mathbb{T}\left(\mathbf{u}_{f},p_{f}\right)\right)=\mathbf{g}_{f},&\text{ in }\Omega_{f},\\ \nabla\cdot\mathbf{u}_{f}=0,&\text{ in }\Omega_{f},\end{cases} (2.1)

where

𝕋(𝐮f,pf)=pf𝕀+2v𝔻(𝐮f),𝔻(𝐮f)=12(𝐮f+T𝐮f),\mathbb{T}\left(\mathbf{u}_{f},p_{f}\right)=-p_{f}\mathbb{I}+2v\mathbb{D}\left(\mathbf{u}_{f}\right),\quad\mathbb{D}\left(\mathbf{u}_{f}\right)=\frac{1}{2}\left(\nabla\mathbf{u}_{f}+\nabla^{T}\mathbf{u}_{f}\right),

are the stress tensor and the deformation rate tensor, v>0v>0 is the kinetic viscosity and 𝐠f\mathbf{g}_{f} is the external force.

We assume that the porous region possesses multiple scales. The fluid motion in the porous medium region Ωp\Omega_{p} is governed by

{𝐮d=gp, in Ωp,𝐮d=𝕂ϵϕp, in Ωp,\begin{cases}\nabla\cdot\mathbf{u}_{d}=g_{p},&\text{ in }\Omega_{p},\\ \mathbf{u}_{d}=-\mathbb{K}_{\epsilon}\nabla\phi_{p},&\text{ in }\Omega_{p},\end{cases} (2.2)

where 𝕂ϵ\mathbb{K}_{\epsilon} denotes the hydraulic conductivity in Ωp\Omega_{p}, which is a positive symmetric tensor and includs multiscale information where ϵ\epsilon is a small parameter and gpg_{p} is a source term. The first equation is the saturated flow model and the second equation is the Darcy’s law. Here ϕp=z+ppρg\phi_{p}=z+\frac{p_{p}}{\rho g} is the piezometric (hydraulic) head, where ppp_{p} represents the dynamic pressure, zz the height from a reference level, ρ\rho the density and gg the gravitational constant, and 𝐮d\mathbf{u}_{d} is the flow velocity in the porous medium which is proportional to the gradient of ϕp\phi_{p}, namely, the Darcy’s law.

Combining the two equations in (2.2), we get the equation for the piezometric head, which we will refer to simply as the Darcy equation:

(𝕂ϵϕp)=gp, in Ωp.-\nabla\cdot\left(\mathbb{K}_{\epsilon}\nabla\phi_{p}\right)=g_{p},\quad\text{ in }\Omega_{p}. (2.3)

Eqs. (2.1) and (2.3) are completed and coupled together by the following boundary conditions:

𝐮f=0 on Γf,ϕp=0 on Γp,\mathbf{u}_{f}=0\quad\text{ on }\Gamma_{f},\quad\phi_{p}=0\quad\text{ on }\Gamma_{p},

and the interface conditions on Γ\Gamma :

𝐮f𝐧f=𝐮p𝐧p=𝕂ϵϕp𝐧p,\displaystyle\mathbf{u}_{f}\cdot\mathbf{n}_{f}=\mathbf{u}_{p}\cdot\mathbf{n}_{p}=-\mathbb{K}_{\epsilon}\nabla\phi_{p}\cdot\mathbf{n}_{p}, (2.4)
𝐧𝐓(𝐮f,pf)𝐧=g(ϕpz),\displaystyle-\mathbf{n}\cdot\mathbf{T}(\mathbf{u}_{f},p_{f})\cdot\mathbf{n}=g(\phi_{p}-z), (2.5)
𝝉i𝐓(𝐮f,pf)𝐧f=ανdtrace(Π)𝐮f𝝉𝐢.\displaystyle-\bm{\tau}_{i}\cdot\mathbf{T}(\mathbf{u}_{f},p_{f})\cdot\mathbf{n}_{f}=\frac{\alpha\nu\sqrt{d}}{\sqrt{\text{trace}(\Pi)}}\mathbf{u}_{f}\cdot\mathbf{\bm{\tau}_{i}}. (2.6)

where 𝝉i,i=1,,d1\bm{\tau}_{i},i=1,\cdots,d-1 is an orthonormal basis of the tangential space on Γ\Gamma and gg the gravitational acceleration and we assumed that g=1g=1 in the following. α\alpha is an experimentally determined parameter and Π\Pi represents the permeability, which has the following relation with the hydraulic conductivity, 𝕂ϵ=Πgv\mathbb{K}_{\epsilon}=\frac{\Pi g}{v}. The first interface condition (2.4) describes the mass conservation and the second equation (2.5) represents the balance of momentum. The third interface condtion (2.6) is called Beavers-Joseph-Saffman condition, which means the tangential components of the normal stress force is proportional to the tangential components of the fluid velocity[5].

Furthermore, we assume 𝕂ϵ\mathbb{K}_{\epsilon} is symmetric, perodic, and uniformly elliptic. There exist two constants λmax>0,λmin>0\lambda_{\max}>0,\lambda_{\min}>0 such that

0<λmin|𝐱|2𝕂ϵ𝐱𝐱λmax|𝐱|2,𝐱Ωp0<\lambda_{\min}|\mathbf{x}|^{2}\leq\mathbb{K}_{\epsilon}\mathbf{x}\cdot\mathbf{x}\leq\lambda_{\max}|\mathbf{x}|^{2},\quad\forall\mathbf{x}\in\Omega_{p}

Also, we assume

𝐠f𝐋2(Ωf),gpL2(Ωp),𝕂ϵL(Ωp)d×d.\mathbf{g}_{f}\in\mathbf{L}^{2}\left(\Omega_{f}\right),\quad g_{p}\in L^{2}\left(\Omega_{p}\right),\quad\mathbb{K}_{\epsilon}\in L^{\infty}\left(\Omega_{p}\right)^{d\times d}.

For simplicity, we consider 2D problems through the full text. We reserve Ω\Omega for a domain (bounded and open set) with Lipschitz boundary and dd for spacial dimension (d=2)(d=2). The Einstein summation convention is adopted, means summing repeated indexes from 1 to dd. The Sobolev spaces Wk,pW^{k,p} and HkH^{k} are defined as usual (see e.g., [6]) and we abbreviate the norm Sobolev space Hk(D)H^{k}(D) as k,D\|\cdot\|_{k,D}.

Later on we need to introduce some Hilbert spaces

𝐕f={𝐯f𝐇1(Ωf):𝐯f|Γf,D=0},Xp={ψH1(Ωp):ψ|Γp,D=0},Qf=L02(Ωf)={qfL2(Ωf):Ωfqf=0}.\begin{array}[]{l}\mathbf{V}_{f}=\left\{\mathbf{v}_{f}\in\mathbf{H}^{1}(\Omega_{f}):\mathbf{v}_{f}|_{\Gamma_{f,D}}=0\right\},\\ X_{p}=\left\{\psi\in H^{1}(\Omega_{p}):\psi|_{\Gamma_{p,D}}=0\right\},\\ Q_{f}=L_{0}^{2}(\Omega_{f})=\left\{q_{f}\in L^{2}(\Omega_{f}):\int_{\Omega_{f}}q_{f}=0\right\}.\\ \end{array} (2.7)

The space L2(D)L^{2}(D), where D=ΩfD=\Omega_{\mathrm{f}} or Ωp\Omega_{\mathrm{p}}, is equipped with the usual L2L^{2}-scalar product (,)(\cdot,\cdot) and L2L^{2}-norm L2(D)\|\cdot\|_{L^{2}(D)}. The spaces HfH_{\mathrm{f}} and HpH_{\mathrm{p}} are equipped with the following norms:

uL2(Ωf)=(u,u)Ωfu𝐕f,ϕL2(Ωp)=(ϕ,ϕ)ΩpϕXp.\begin{gathered}\|\nabla u\|_{L^{2}\left(\Omega_{\mathrm{f}}\right)}=\sqrt{(\nabla u,\nabla u)_{\Omega_{\mathrm{f}}}}\quad\forall u\in\mathbf{V}_{f},\\ \|\nabla\phi\|_{L^{2}\left(\Omega_{\mathrm{p}}\right)}=\sqrt{(\nabla\phi,\nabla\phi)_{\Omega_{\mathrm{p}}}}\quad\forall\phi\in X_{p}.\end{gathered}

Let us denote

U=𝐕f×Xp.\displaystyle U=\mathbf{V}_{f}\times X_{p}.

Hence, we use the notational convention that 𝐮¯=(𝐮f,ϕp)\underline{\mathbf{u}}=(\mathbf{u}_{f},\phi_{p}) and 𝐯¯=(𝐯f,ψp)\underline{\mathbf{v}}=(\mathbf{v}_{f},\psi_{p}). They all belong to 𝐔\mathbf{U}: for 𝐠𝐟𝐋2(Ωf)\mathbf{g_{f}}\in\mathbf{L}^{2}(\Omega_{f}) and gpL2(Ωp)g_{p}\in L^{2}(\Omega_{p}), find (𝐮¯,pf)𝐔×Qf(\underline{\mathbf{u}},p_{f})\in\mathbf{U}\times Q_{f} such that (𝐯¯,qf)𝐔×Qf\forall(\underline{\mathbf{v}},q_{f})\in\mathbf{U}\times Q_{f} and 𝐔\mathbf{U}^{\prime} is the dual space of 𝐔,Pτ()\mathbf{U},P_{\tau}(\cdot) is the projection onto the local tangential plane that can be explicitly expressed as Pτ(𝐯f)=𝐯f(𝐯f𝐧f)𝐧fP_{\tau}\left(\mathbf{v}_{f}\right)=\mathbf{v}_{f}-\left(\mathbf{v}_{f}\cdot\mathbf{n}_{f}\right)\mathbf{n}_{f}

a(𝐮¯,𝐯¯)(pf,𝐯𝐟)Ωf+(qf,𝐮𝐟)Ωf=(𝐅,𝐯¯)𝐔,a(\underline{\mathbf{u}},\underline{\mathbf{v}})-(p_{f},\nabla\cdot\mathbf{v_{f}})_{\Omega_{f}}+(q_{f},\nabla\cdot\mathbf{u_{f}})_{\Omega_{f}}=\left(\mathbf{F},\underline{\mathbf{v}}\right)_{\mathbf{U}^{\prime}}, (2.8)

where

a(𝐮¯,𝐯¯)=2ν(𝔻(𝐮f),𝔻(𝐯f))Ωf+g(ϕp,𝐯f𝐧f)Γ\displaystyle a(\underline{\mathbf{u}},\underline{\mathbf{v}})=2\nu\left(\mathbb{D}\left(\mathbf{u}_{f}\right),\mathbb{D}\left(\mathbf{v}_{f}\right)\right)_{\Omega_{f}}+g\left(\phi_{p},\mathbf{v}_{f}\cdot\mathbf{n}_{f}\right)_{\Gamma} (2.9)
+(αvdtrace(𝚷)P𝝉(𝐮f),𝐯f)Γ\displaystyle\quad+\left(\frac{\alpha v\sqrt{d}}{\sqrt{\operatorname{trace}(\bm{\Pi})}}P_{\bm{\tau}}\left(\mathbf{u}_{f}\right),\mathbf{v}_{f}\right)_{\Gamma}
+g(𝕂ϵϕp,ψp)Ωpg(ψp,𝐮f𝐧f)Γ,\displaystyle\quad+g\left(\mathbb{K}_{\epsilon}\nabla\phi_{p},\nabla\psi_{p}\right)_{\Omega_{p}}-g\left(\psi_{p},\mathbf{u}_{f}\cdot\mathbf{n}_{f}\right)_{\Gamma},
(𝐅,𝐯¯)𝐔=(𝐠f,𝐯f)Ωf+g(gp,ψp)Ωp+g(z,𝐯f𝐧f)Γ.\displaystyle\left(\mathbf{F},\underline{\mathbf{v}}\right)_{\mathbf{U}^{\prime}}=\left(\mathbf{g}_{f},\mathbf{v}_{f}\right)_{\Omega_{f}}+g\left(g_{p},\psi_{p}\right)_{\Omega_{p}}+g\left(z,\mathbf{v}_{f}\cdot\mathbf{n}_{f}\right)_{\Gamma}.

We know that there exists a positive constant β>0\beta>0 such that the following Ladyzhenskaya-Babuš kaBrezzi (LBB) condition holds:

infqfQfsup𝐯f𝐗f(qf,𝐯f)ΩfqfQf𝐯f𝐱fβ.\inf_{q_{f}\in Q_{f}}\sup_{\mathbf{v}_{f}\in\mathbf{X}_{f}}\frac{\left(q_{f},\nabla\cdot\mathbf{v}_{f}\right)_{\Omega_{f}}}{\left\|q_{f}\right\|_{Q_{f}}\left\|\mathbf{v}_{f}\right\|_{\mathbf{x}_{f}}}\geq\beta.
Theorem 2.1 (Proofs in [21] ).

The weak formulation (2.8) of Stokes-Dacry problem is well-posed.

Remark 2.1.

For the purpose of later analysis, we recall some inequalities: vH1(D)\forall v\in H^{1}(D)

vL2(D)c0vL2(D)12vH1(D)12,\displaystyle\|v\|_{L^{2}(\partial D)}\leq c_{0}\|v\|_{L^{2}(D)}^{\frac{1}{2}}\|v\|_{H^{1}(D)}^{\frac{1}{2}},
vL2(D)c1vH1(D),\displaystyle\|v\|_{L^{2}(\partial D)}\leq c_{1}\|v\|_{H^{1}(D)},
vL2(D)c2D(v)L2(D).\displaystyle\|\nabla v\|_{L^{2}(D)}\leq c_{2}\|\mathrm{D}(v)\|_{L^{2}(D)}.

2.2 Finite element approximation

We give the finite element approximation of this model. For any given small parameter h>0h>0, we construct the regular triangulations 𝒯h,𝒯fh\mathcal{T}_{h},\mathcal{T}_{fh} and 𝒯ph\mathcal{T}_{ph} of Ω,Ωf\Omega,\Omega_{f} and Ωp\Omega_{p}.

Let VfhVf\textbf{V}_{fh}\subset\textbf{V}_{f} ,XphXpX_{ph}\subset X_{p},and QfhQfQ_{fh}\subset Q_{f} be finite element spaces such that the space pair (Vfh,Qfh)(\textbf{V}_{fh},Q_{fh}) satisfies the discrete LBB condition : there exists a constant β>0\beta>0,independent of mesh ,such that

inf0qhQfhsup0vhXfh(qh,vh)Ωfvh1qh0>β.\displaystyle\underset{0\neq q_{h}\in Q_{fh}}{inf}\underset{0\neq\textbf{v}_{h}\in\textbf{X}_{fh}}{sup}\frac{(q_{h},\nabla\cdot\textbf{v}_{h})_{\Omega_{f}}}{\|\textbf{v}_{h}\|_{1}\|q_{h}\|_{0}}>\beta. (2.10)

Here we choose MINI finite element pair for (Vfh,Qfh)(\textbf{V}_{fh},Q_{fh}) and multiscale finite element for VphV_{ph}. Define

Uh=Vfh×Xph.U_{h}=\textbf{V}_{fh}\times X_{ph}.

We define Lagrange element space 𝒫:={uC(Ω¯),T𝒯h,u|T𝒫1(T)}\mathcal{P}:=\left\{u\in C(\bar{\Omega}),\forall T\in\mathcal{T}_{h},\left.u\right|_{T}\in\mathcal{P}_{1}(T)\right\} and consider a triangulation 𝒯ph\mathcal{T}_{ph} and base functions (ψi)1iNbvertex 𝒫\left(\psi^{i}\right)_{1\leq i\leq Nb_{\text{vertex }}}\in\mathcal{P} which consists of the globally continuous on 𝒯ph\mathcal{T}_{ph} and affine on each triangle K𝒯phK\subset\mathcal{T}_{ph} functions which satisfy: ψi(xj)=δij\psi^{i}\left(x_{j}\right)=\delta_{ij},where (xj)1jNbvertex \left(x_{j}\right)_{1\leq j\leq Nb_{\text{vertex }}} are the vertices of the coarse mesh (Nbvertex Nb_{\text{vertex }} the set of interior vertices of the coarse mesh) and δij\delta_{ij} is the Kronecker symbol. The multiscale finite element basis functions (ηiMsFEM)1iNbvertex \left(\eta_{i}^{MsFEM}\right)_{1\leq i\leq Nb_{\text{vertex }}} which take into account the multiscale of the coefficients. More precisely we compute ηi,KMsFEM\eta_{i,K}^{MsFEM} , such that for any triangle K𝒯phK\subset\mathcal{T}_{ph},

{div(𝕂ϵ(xε)ηi,KMsFEM)=0 in K,ηi,KMsFEM=ψi on K.\left\{\begin{array}[]{l}-\operatorname{div}\left(\mathbb{K}_{\epsilon}\left(\frac{x}{\varepsilon}\right)\nabla\eta_{i,K}^{MsFEM}\right)=0\text{ in }K,\\ \eta_{i,K}^{MsFEM}=\psi^{i}\text{ on }\partial K.\end{array}\right.

In practice, we do not have access to ηi,KMsFEM\eta_{i,K}^{MsFEM}. We build ηi,KMsFEM,hfiner\eta_{i,K}^{MsFEM,h_{finer}}, an approximation of ηi,KMsFEM\eta_{i,K}^{MsFEM} on a finer embedded grid of mesh size hfinerh_{finer}, with 𝒫1\mathcal{P}_{1} FE. See Fig.2.

Therefore, we can get the multiscale finite element basis function {ηiMsFEM=K𝒦hηi,KMsFEM}\{\eta_{i}^{MsFEM}=\cup_{K\in\mathcal{K}^{h}}\eta_{i,K}^{MsFEM}\} and a simple observation tells that ηiMsFEM\eta_{i}^{MsFEM} is locally support.

Refer to caption
Figure 2: Sketch of MsFEM basis function design in 2D (a), Example of MsFEM basis function (b) and P1 piecewise function (c)

Then we can introduce

Xph=span{ηiMsFEM:i=1,,Nbvertex ;K𝒦h}.X_{ph}=\operatorname{span}\left\{\eta_{i}^{MsFEM}:i=1,\cdots,Nb_{\text{vertex }};K\in\mathcal{K}^{h}\right\}.

Therefore, the coupled finite element Galerkin approximation of reads:

Coupled Finite Element Scheme: find 𝐮¯h=(𝐮fh,ϕph)𝐔h,pfhQfh\underline{\mathbf{u}}_{h}=\left(\mathbf{u}_{fh},\phi_{ph}\right)\in\mathbf{U}_{h},p_{fh}\in Q_{fh} such that for any 𝐯¯h=(𝐯fh,ϕph)𝐔h\underline{\mathbf{v}}_{h}=\left(\mathbf{v}_{fh},\phi_{ph}\right)\in\mathbf{U}_{h} and qfhQfhq_{fh}\in Q_{fh}

a(𝐮¯h,𝐯¯h)(pfh,𝐯fh)Ωf+(qfh,𝐮fh)Ωf=𝐅,𝐯¯h𝐔.a\left(\underline{\mathbf{u}}_{h},\underline{\mathbf{v}}_{h}\right)-\left(p_{fh},\nabla\cdot\mathbf{v}_{fh}\right)_{\Omega_{f}}+\left(q_{fh},\nabla\cdot\mathbf{u}_{fh}\right)_{\Omega_{f}}=\left\langle\mathbf{F},\underline{\mathbf{v}}_{h}\right\rangle_{\mathbf{U}^{\prime}}. (2.11)
Theorem 2.2 (Proofs in [21] ).

The weak formulation (2.11) of Stokes-Dacry problem is well-posed.

2.3 Homogenization theory and estimation results for the Darcy region

The Darcy region exhibits multiscale characteristics. In order to better elucidate our model, we introduce the model from [22]

{div(𝕂ϵϕp)=f in Ωϕp=0 on ΓD𝒏𝕂ϵϕp=g on ΓN.\left\{\begin{array}[]{rl}-\operatorname{div}\left(\mathbb{K}_{\epsilon}\nabla\phi_{p}\right)=f&\text{ in }\Omega\\ \phi_{p}=0&\text{ on }\Gamma_{D}\\ \bm{n}\cdot\mathbb{K}_{\epsilon}\nabla\phi_{p}=g&\text{ on }\Gamma_{N}\end{array}.\right. (2.12)

For simplicity, we assume the source term ff belongs to L2(Ω)L^{2}(\Omega), and the boundary term gL2(ΓN)g\in L^{2}\left(\Gamma_{N}\right).

Then, we introduce the multiscale expansion technique in deriving homogenized equations. We look for ϕϵ(x)\phi_{\epsilon}(x) in the form of asymptotic expansion

ϕϵ(x)=ϕ0(x,x/ϵ)+ϵϕ1(x,x/ϵ)+ϵ2ϕ2(x,x/ϵ)+,\phi_{\epsilon}(x)=\phi_{0}(x,x/\epsilon)+\epsilon\phi_{1}(x,x/\epsilon)+\epsilon^{2}\phi_{2}(x,x/\epsilon)+\cdots, (2.13)

where the functions ϕj(x,y)\phi_{j}(x,y) are periodic in yy with period 1 .

Here, we referenced some definitions and theorems from [22].

Definition 2.1.

A (vector/matrix value) function ff is called periodic, if f(𝐱+𝐳)=f(𝐱)𝐱df(\bm{x}+\bm{z})=f(\bm{x})\quad\forall\bm{x}\in\mathbb{R}^{d} and 𝐳d\forall\bm{z}\in\mathbb{Z}^{d}.

We need an interpolation operator. If the triangulation 𝒯h\mathcal{T}_{h} is regular, then there exist an interpolation operator :H1(Ω)𝒫\mathcal{I}:H^{1}(\Omega)\mapsto\mathcal{P} , ϕϵ,Xph\phi_{\epsilon,\mathcal{I}}\in X_{ph}.

Theorem 2.3.

[Proofs in [22]] Under some assumptions and 𝕂ϵ\mathbb{K}_{\epsilon} is periodic , for (2.12) we have:

|ϕpϕϵ,|1,ΩC{ϵ1/2+h+ϵh}ϕ02,Ω.\left|\phi_{p}-\phi_{\epsilon,\mathcal{I}}\right|_{1,\Omega}\leq C\left\{\epsilon^{1/2}+h+\sqrt{\frac{\epsilon}{h}}\right\}\left\|\phi_{0}\right\|_{2,\Omega}.

3 Multiscale finite Stokes-Darcy algorithm

In this section, we introduce the algorithm for the multiscale Stoke-Darcy equation. The algorithm is divided into two parts, namely the offline part and the online part. The offline part is used to compute the multiscale basis functions for the Darcy region. The online part utilizes the previously calculated multiscale basis functions and employs the Robin-Robin algorithm to obtain the solution of the equation.

3.1 Offline phase

In the offline phase, we solve the multiscale basis functions in parallel. This approach is adopted to enhance the efficiency of basis function generation.

  • The grid is partitioned to obtain the required coarse mesh K𝒯hK\in\mathcal{T}_{h}.

  • For every K𝒯hK\in\mathcal{T}_{h}, we build 𝒯hfinerK\mathcal{T}h_{finer}^{K} and parallelly solve (𝕂ϵ(x/ϵ))ηi=0-\nabla\cdot\left(\mathbb{K}^{\epsilon}(x/\epsilon)\right)\nabla\eta_{i}=0 in K,ηi=φiK,\eta_{i}=\varphi_{i} on K\partial K with φi\varphi_{i} the standard P1\mathrm{P}1 basis function and store ηi\eta_{i}. See Fig.4.

    Refer to caption
    Figure 3: 𝒯hfinerK\mathcal{T}_{h_{finer}}^{K}
  • Compute and store Ai,jloc =K(𝕂ϵηi)(ηj)A_{i,j}^{\text{loc }}=\int_{K}\left(\mathbb{K}^{\epsilon}\nabla\eta_{i}\right)\left(\nabla\eta_{j}\right) and Bi=Bi+Kηi×fpB_{i}=B_{i}+\int_{K}\eta_{i}\times f_{p} with AlocA^{loc} stifness matrix and BB the generic RHS.

  • Output: Assemble and store AA the stiffness matrix associted with the new basis ηH.\eta_{H}.

Refer to caption
Figure 4: Parallel Efficient Generation of Base Functions

3.2 Online phase

In the online phase, we employ the Robin-Robin Stokes-Darcy algorithm. In this process, we utilize the multiscale basis functions generated in the offline stage. This algorithm is a decoupled algorithm, and here are the main steps:

  • Given the initial condtion 𝐮f0,pf0,φp0\mathbf{u}_{f}^{0},p_{f}^{0},\varphi_{p}^{0}, ϵiter\epsilon_{iter},ϵerror\epsilon_{error},γf,γp\gamma_{f},\gamma_{p}.

  • For k=1,2,k=1,2,\ldots, independently solve the Stokes and Darcy systems with Robin boundary conditions. More precisely, find (𝐮fhk+1,pfhk+1)(\mathbf{u}_{fh}^{k+1},p_{fh}^{k+1}) such that for all 𝐯fh𝐕fh\mathbf{v}_{fh}\in\mathbf{V}_{fh} and qfhQfhq_{fh}\in Q_{fh} it is

    af(𝐮fhk,𝐯fh)+bf(𝐯fh,pfhk)+γf(𝐮fhk𝐧f,𝐯fh𝐧f)+α(Pτ𝐮fhk,Pτ𝐯fh)=(ηfk,𝐯fh𝐧f)+(𝐠f,𝐯fh),a_{f}\left(\mathbf{u}_{fh}^{k},\mathbf{v}_{fh}\right)+b_{f}\left(\mathbf{v}_{fh},p_{fh}^{k}\right)+\gamma_{f}\left(\mathbf{u}_{fh}^{k}\cdot\mathbf{n}_{f},\mathbf{v}_{fh}\cdot\mathbf{n}_{f}\right)+\alpha\left(P_{\tau}\mathbf{u}_{fh}^{k},P_{\tau}\mathbf{v}_{fh}\right)=\left(\eta_{f}^{k},\mathbf{v}_{fh}\cdot\mathbf{n}_{f}\right)+\left(\mathbf{g}_{f},\mathbf{v}_{fh}\right),
    bf(𝐮fhk,qfh)=0.b_{f}\left(\mathbf{u}_{fh}^{k},q_{fh}\right)=0.
  • Find φphk+1\varphi_{ph}^{k+1} such that for all ψphQph\psi_{ph}\in Q_{ph} it is

    γpap(ϕphk,ψph)+(gϕphk,ψph)=(ηpk,ψph)+(gp,ψph).\gamma_{p}a_{p}\left(\phi_{ph}^{k},\psi_{ph}\right)+\left(g\phi_{ph}^{k},\psi_{ph}\right)=\left(\eta_{p}^{k},\psi_{ph}\right)+\left(g_{p},\psi_{ph}\right).
  • Update ηpk+1\eta_{p}^{k+1} and ηfk+1\eta_{f}^{k+1}

    ηfk+1=aηpk+bgϕphk,wherea=γfγp,b=1a\eta_{f}^{k+1}=a\eta_{p}^{k}+bg\phi_{ph}^{k},\text{where}\quad a=\frac{\gamma_{f}}{\gamma_{p}},b=-1-a
    ηpk+1=cηfk+d𝐮fhk𝐧f,wherec=1,d=γf+γp\eta_{p}^{k+1}=c\eta_{f}^{k}+d\mathbf{u}_{fh}^{k}\cdot\mathbf{n}_{f},\text{where}\quad c=-1,d=\gamma_{f}+\gamma_{p}
  • Compute ϵiter=𝐮fhk+1𝐮fhk2+pfhk+1pfhk2+φphk+1φphk2\epsilon_{iter}=\|\mathbf{u}_{fh}^{k+1}-\mathbf{u}_{fh}^{k}\|^{2}+\|p_{fh}^{k+1}-p_{fh}^{k}\|^{2}+\|\varphi_{ph}^{k+1}-\varphi_{ph}^{k}\|^{2}

  • If ϵiter>ϵerror\epsilon_{iter}>\epsilon_{error}, then k:=k+1k:=k+1.

  • Output: get the soultion 𝐮fhN,pfhN,φphN\mathbf{u}_{fh}^{N},p_{fh}^{N},\varphi_{ph}^{N}.

The offline phase involves a parallel method for generating multiscale basis functions. In the online phase, a Robin-Robin online Stokes-Darcy method is employed to obtain the solution. The algorithm offers advantages such as parallel construction of basis functions, which enhances reusability, and ensures high computational accuracy and efficiency. Additionally, the method is easily implementable for generalization and maintenance.

4 Error estimates

In this section, we analyze the error estimate of the above coupled multiscale finite element scheme (2.11). For later analysis, We define the following orthogonal projection PfhP_{fh} from 𝐗f\mathbf{X}_{f} onto 𝐗fh\mathbf{X}_{fh} and ρfh\rho_{fh} from QfQ_{f} onto QfhQ_{fh} as: for any given 𝐯f𝐗f\mathbf{v}_{f}\in\mathbf{X}_{f} and pfQfp_{f}\in Q_{f}, find Pfh𝐯f𝐗fhP_{fh}\mathbf{v}_{f}\in\mathbf{X}_{fh} and ρfhpfQfh\rho_{fh}p_{f}\in Q_{fh} such that

2v(𝔻(𝐯fPfh𝐯f),𝔻(𝐯fh))Ωf\displaystyle 2v\left(\mathbb{D}\left(\mathbf{v}_{f}-P_{fh}\mathbf{v}_{f}\right),\mathbb{D}\left(\mathbf{v}_{fh}\right)\right)_{\Omega_{f}} (4.1)
+(αvdtrace(𝚷)Pτ(𝐯fPfh𝐯f),𝐯fh)Γ+(pfρfhpf,𝐯fh)Ωf=0𝐯fh𝐗fh,\displaystyle\quad+\left(\frac{\alpha v\sqrt{d}}{\sqrt{\operatorname{trace}(\bm{\Pi})}}P_{\tau}\left(\mathbf{v}_{f}-P_{fh}\mathbf{v}_{f}\right),\mathbf{v}_{fh}\right)_{\Gamma}+\left(p_{f}-\rho_{fh}p_{f},\nabla\cdot\mathbf{v}_{fh}\right)_{\Omega_{f}}=0\quad\forall\mathbf{v}_{fh}\in\mathbf{X}_{fh},
((𝐮fPfh𝐮f),qfh)=0qfh𝐐fh.\displaystyle\left(\nabla\cdot(\mathbf{u}_{f}-P_{fh}\mathbf{u}_{f}),q_{fh}\right)=0\quad\forall q_{fh}\in\mathbf{Q}_{fh}.

For this projection ρfh\rho_{fh} and the projection PfhP_{fh} from 𝐗f\mathbf{X}_{f} onto 𝐗fh\mathbf{X}_{fh} in the previous section, we make the following assumption: for any given 𝐯f𝐇2(Ωf)𝐗f\mathbf{v}_{f}\in\mathbf{H}^{2}\left(\Omega_{f}\right)\cap\mathbf{X}_{f} and qfH1(Ωf)q_{f}\in H^{1}\left(\Omega_{f}\right), there holds

𝔻(𝐯fPfh𝐯f)Ωf+qfρfhqfΩfch(𝐯f2,Ωf+qf1,Ωf).\left\|\mathbb{D}\left(\mathbf{v}_{f}-P_{fh}\mathbf{v}_{f}\right)\right\|_{\Omega_{f}}+\left\|q_{f}-\rho_{fh}q_{f}\right\|_{\Omega_{f}}\leq ch\left(\|\mathbf{v}_{f}\|_{2,\Omega_{f}}+\|q_{f}\|_{1,\Omega_{f}}\right). (4.2)

Suppose the weak solution (𝐮¯,pf)\left(\underline{\mathbf{u}},p_{f}\right) of the mixed Stokes/Darcy problem is local H2H^{2}-regular, that is 𝐮f𝐇2(Ωf)𝐕f,pfH1(Ωf),ϕpH2(Ωp)Xp\mathbf{u}_{f}\in\mathbf{H}^{2}\left(\Omega_{f}\right)\cap\mathbf{V}_{f},\quad p_{f}\in H^{1}\left(\Omega_{f}\right),\quad\phi_{p}\in H^{2}\left(\Omega_{p}\right)\cap X_{p} and ϕ0H2(Ωp)Xp\phi_{0}\in H^{2}\left(\Omega_{p}\right)\cap X_{p}

Theorem 4.1 (H1H^{1} norm).

Assume that 𝕂ϵ\mathbb{K}_{\epsilon} is periodic, uniformly elliptic and symmtric. Let Ω\Omega be a bounded Lipschitz domain in 2\mathbb{R}^{2}, and let (𝐮f,ϕp)(\mathbf{u}_{f},\phi_{p}) and (𝐮fh,ϕph)(\mathbf{u}_{fh},\phi_{ph}) be the solutions of Problems (2.8) and (2.11), respectively.

ν𝔻(𝐮f𝐮fh)Ωf+g2𝕂ϵ12(ϕpϕph)Ωp\displaystyle\sqrt{\nu}\left\|\mathbb{D}\left(\mathbf{u}_{f}-\mathbf{u}_{fh}\right)\right\|_{\Omega_{f}}+\frac{\sqrt{g}}{2}\left\|\mathbb{K}_{\epsilon}^{\frac{1}{2}}\nabla(\phi_{p}-\phi_{ph})\right\|_{\Omega_{p}} C^1{ϵ1/2+h+ϵh}ϕ02,Ωp\displaystyle\leq\hat{C}_{1}\left\{\epsilon^{1/2}+h+\sqrt{\frac{\epsilon}{h}}\right\}\left\|\phi_{0}\right\|_{2,\Omega_{p}} (4.3)
+C^2h(𝐮f2,Ωf+pf1,Ωf),\displaystyle+\hat{C}_{2}h\left(\|\mathbf{u}_{f}\|_{2,\Omega_{f}}+\|p_{f}\|_{1,\Omega_{f}}\right),

where C1^,C2^\hat{C_{1}},\hat{C_{2}} depends on λmax,λmin,g,ν\lambda_{\mathop{\mathrm{max}}},\lambda_{\mathop{\mathrm{min}}},g,\nu.

If we denote

𝐮f𝐮fh=(𝐮fPfh𝐮f)+(Pfh𝐮f𝐮fh)=𝐞^f+𝐞fh,\displaystyle\mathbf{u}_{f}-\mathbf{u}_{fh}=\left(\mathbf{u}_{f}-P_{fh}\mathbf{u}_{f}\right)+\left(P_{fh}\mathbf{u}_{f}-\mathbf{u}_{fh}\right)=\hat{\mathbf{e}}_{f}+\mathbf{e}_{fh},
ϕpϕph=(ϕpϕϵ,)+(ϕϵ,ϕph)=e^p+eph,\displaystyle\phi_{p}-\phi_{ph}=\left(\phi_{p}-\phi_{\epsilon,\mathcal{I}}\right)+(\phi_{\epsilon,\mathcal{I}}-\phi_{ph})=\hat{e}_{p}+e_{ph},
pfpfh=(pfρfhpf)+(ρfhpfpfh)=e^θ+eθ.\displaystyle p_{f}-p_{fh}=(p_{f}-\rho_{fh}p_{f})+(\rho_{fh}p_{f}-p_{fh})=\hat{e}_{\theta}+e_{\theta}.
Proof.

Recall the weak formulation and its finite element scheme

{a(𝐮¯,𝐯¯)(pf,𝐯f)Ωf=F,𝐯¯,(𝐯¯,qf)𝐔×Qf,(qf,𝐮f)Ωf=0,qfQf.\displaystyle\left\{\begin{array}[]{l}a(\underline{\mathbf{u}},\underline{\mathbf{v}})-\left(p_{f},\nabla\cdot\mathbf{v}_{f}\right)_{\Omega_{f}}=\langle F,\underline{\mathbf{v}}\rangle,\quad\forall\left(\underline{\mathbf{v}},q_{f}\right)\in\mathbf{U}\times Q_{f},\\ \left(q_{f},\nabla\cdot\mathbf{u}_{f}\right)_{\Omega_{f}}=0,\quad\forall q_{f}\in Q_{f}.\end{array}\right. (4.4)
{a(𝐮¯h,𝐯h)(pfh,𝐯fh)Ωf+(qfh,𝐮fh)Ωf=F,𝐯h¯(𝐯h¯,qfh)𝐔h×Qfh,(qfh,𝐮fh)Ωf=0,qfhQfh.\displaystyle\left\{\begin{array}[]{l}a\left(\underline{\mathbf{u}}_{h},\mathbf{v}_{h}\right)-\left(p_{fh},\nabla\cdot\mathbf{v}_{fh}\right)_{\Omega_{f}}+\left(q_{fh},\nabla\cdot\mathbf{u}_{fh}\right)_{\Omega_{f}}=\left\langle F,\underline{\mathbf{v}_{h}}\right\rangle\quad\forall\left(\underline{\mathbf{v}_{h}},q_{fh}\right)\in\mathbf{U}_{h}\times Q_{fh},\\ \left(q_{fh},\nabla\cdot\mathbf{u}_{fh}\right)_{\Omega_{f}}=0,\quad\forall q_{fh}\in Q_{fh}.\end{array}\right.

where

a(𝐮¯,𝐯¯)=2ν(𝔻(𝐮f),𝔻(𝐯f))Ωf+g(ϕp,𝐯f𝐧f)Γ\displaystyle a(\underline{\mathbf{u}},\underline{\mathbf{v}})=2\nu\left(\mathbb{D}\left(\mathbf{u}_{f}\right),\mathbb{D}\left(\mathbf{v}_{f}\right)\right)_{\Omega_{f}}+g\left(\phi_{p},\mathbf{v}_{f}\cdot\mathbf{n}_{f}\right)_{\Gamma} (4.5)
+(αvdtrace(𝚷)P𝝉(𝐮f),𝐯f)Γ\displaystyle\quad+\left(\frac{\alpha v\sqrt{d}}{\sqrt{\operatorname{trace}(\bm{\Pi})}}P_{\bm{\tau}}\left(\mathbf{u}_{f}\right),\mathbf{v}_{f}\right)_{\Gamma}
+g(𝕂ϕp,ψp)Ωpg(ψp,𝐮f𝐧f)Γ\displaystyle\quad+g\left(\mathbb{K}\nabla\phi_{p},\nabla\psi_{p}\right)_{\Omega_{p}}-g\left(\psi_{p},\mathbf{u}_{f}\cdot\mathbf{n}_{f}\right)_{\Gamma}

Then,

2ν(𝔻(𝐮f𝐮fh),𝔻(𝐯fh))Ωf+g(ϕpϕph,𝐯fh𝐧f)Γ\displaystyle 2\nu\left(\mathbb{D}\left(\mathbf{u}_{f}-\mathbf{u}_{fh}\right),\mathbb{D}\left(\mathbf{v}_{fh}\right)\right)_{\Omega_{f}}+g\left(\phi_{p}-\phi_{ph},\mathbf{v}_{fh}\cdot\mathbf{n}_{f}\right)_{\Gamma} (4.6)
+(αvdtrace(𝚷)P𝝉(𝐮f𝐮fh),𝐯fh)Γ\displaystyle\quad+\left(\frac{\alpha v\sqrt{d}}{\sqrt{\operatorname{trace}(\bm{\Pi})}}P_{\bm{\tau}}\left(\mathbf{u}_{f}-\mathbf{u}_{fh}\right),\mathbf{v}_{fh}\right)_{\Gamma}
+g(𝕂(ϕpϕph),ψph)Ωpg(ψph,𝐮f𝐧f𝐮fh𝐧fh)Γ\displaystyle\quad+g\left(\mathbb{K}\nabla(\phi_{p}-\phi_{ph}),\nabla\psi_{ph}\right)_{\Omega_{p}}-g\left(\psi_{ph},\mathbf{u}_{f}\cdot\mathbf{n}_{f}-\mathbf{u}_{fh}\cdot\mathbf{n}_{fh}\right)_{\Gamma}
(pfpfh,𝐯fh)Ωf+(qfh,(𝐮f𝐮fh))Ωf=0.\displaystyle-\left(p_{f}-p_{fh},\nabla\cdot\mathbf{v}_{fh}\right)_{\Omega_{f}}+(q_{fh},\nabla\cdot(\mathbf{u}_{f}-\mathbf{u}_{fh}))_{\Omega_{f}}=0.

Using (4.1) and (4.4), it deduces:

2ν(𝔻(𝐞fh),𝔻(𝐯fh))Ωf+g(e^p+eph,𝐯fh𝐧f)Γ\displaystyle 2\nu\left(\mathbb{D}\left(\mathbf{e}_{fh}\right),\mathbb{D}\left(\mathbf{v}_{fh}\right)\right)_{\Omega_{f}}+g\left(\hat{e}_{p}+e_{ph},\mathbf{v}_{fh}\cdot\mathbf{n}_{f}\right)_{\Gamma} (4.7)
+(αvdtrace(𝚷)P𝝉(𝐞fh),𝐯fh)Γ\displaystyle\quad+\left(\frac{\alpha v\sqrt{d}}{\sqrt{\operatorname{trace}(\bm{\Pi})}}P_{\bm{\tau}}\left(\mathbf{e}_{fh}\right),\mathbf{v}_{fh}\right)_{\Gamma}
+g(𝕂(e^p+eph),ψph)Ωpg(ψph,(𝐞^f+𝐞fh)𝐧f)Γ=0.\displaystyle\quad+g\left(\mathbb{K}\nabla(\hat{e}_{p}+e_{ph}),\nabla\psi_{ph}\right)_{\Omega_{p}}-g\left(\psi_{ph},(\hat{\mathbf{e}}_{f}+\mathbf{e}_{fh})\cdot\mathbf{n}_{f}\right)_{\Gamma}=0.

Taking 𝐯fh=𝐞fh,ψph=eph\mathbf{v}_{fh}=\mathbf{e}_{fh},\psi_{ph}=e_{ph} into (4.7), we can get

2ν(𝔻(𝐞fh),𝔻(𝐞fh))Ωf+g(e^p+eph,𝐞fh𝐧f)Γ\displaystyle 2\nu\left(\mathbb{D}\left(\mathbf{e}_{fh}\right),\mathbb{D}\left(\mathbf{e}_{fh}\right)\right)_{\Omega_{f}}+g\left(\hat{e}_{p}+e_{ph},\mathbf{e}_{fh}\cdot\mathbf{n}_{f}\right)_{\Gamma} (4.8)
+(αvdtrace(𝚷)P𝝉(𝐞fh),𝐞fh)Γ\displaystyle\quad+\left(\frac{\alpha v\sqrt{d}}{\sqrt{\operatorname{trace}(\bm{\Pi})}}P_{\bm{\tau}}\left(\mathbf{e}_{fh}\right),\mathbf{e}_{fh}\right)_{\Gamma}
+g(𝕂(e^p+eph),eph)Ωpg(eph,(𝐞^f+𝐞fh)𝐧f)Γ=0.\displaystyle\quad+g\left(\mathbb{K}\nabla(\hat{e}_{p}+e_{ph}),\nabla e_{ph}\right)_{\Omega_{p}}-g\left(e_{ph},(\hat{\mathbf{e}}_{f}+\mathbf{e}_{fh})\cdot\mathbf{n}_{f}\right)_{\Gamma}=0.

Then

2ν(𝔻(𝐞fh),𝔻(𝐞fh))Ωf+g(eph,𝐞fh𝐧f)Γ\displaystyle 2\nu\left(\mathbb{D}\left(\mathbf{e}_{fh}\right),\mathbb{D}\left(\mathbf{e}_{fh}\right)\right)_{\Omega_{f}}+g\left(e_{ph},\mathbf{e}_{fh}\cdot\mathbf{n}_{f}\right)_{\Gamma} (4.9)
+(αvdtrace(𝚷)P𝝉(𝐞fh),𝐞fh)Γ\displaystyle\quad+\left(\frac{\alpha v\sqrt{d}}{\sqrt{\operatorname{trace}(\bm{\Pi})}}P_{\bm{\tau}}\left(\mathbf{e}_{fh}\right),\mathbf{e}_{fh}\right)_{\Gamma}
+g(𝕂(eph),eph)Ωpg(eph,(𝐞fh)𝐧f)Γ\displaystyle\quad+g\left(\mathbb{K}\nabla(e_{ph}),\nabla e_{ph}\right)_{\Omega_{p}}-g\left(e_{ph},(\mathbf{e}_{fh})\cdot\mathbf{n}_{f}\right)_{\Gamma}
=g(e^p,𝐞fh𝐧f)Γg(𝕂(e^p),eph)Ωp+g(eph,𝐞^f𝐧f)Γ.\displaystyle=-g\left(\hat{e}_{p},\mathbf{e}_{fh}\cdot\mathbf{n}_{f}\right)_{\Gamma}-g\left(\mathbb{K}\nabla(\hat{e}_{p}),\nabla e_{ph}\right)_{\Omega_{p}}+g\left(e_{ph},\hat{\mathbf{e}}_{f}\cdot\mathbf{n}_{f}\right)_{\Gamma}.

and we can get

2v𝔻(𝐞fh)Ωf2+g2𝕂12ephΩp2+(αvdtrace(𝚷)P𝝉(𝐞fh),𝐞fh)Γ\displaystyle 2v\left\|\mathbb{D}\left(\mathbf{e}_{fh}\right)\right\|_{\Omega_{f}}^{2}+\frac{g}{2}\left\|\mathbb{K}^{\frac{1}{2}}\nabla e_{ph}\right\|_{\Omega_{p}}^{2}+\underbrace{\left(\frac{\alpha v\sqrt{d}}{\sqrt{\operatorname{trace}(\bm{\Pi})}}P_{\bm{\tau}}\left(\mathbf{e}_{fh}\right),\mathbf{e}_{fh}\right)_{\Gamma}}_{\text{\char 192}} (4.10)
|g(e^p,𝐞fh𝐧f)Γ|+|g(𝕂(e^p),eph)Ωp|+|g(eph,𝐞^f𝐧f)Γ|\displaystyle\leq\underbrace{\lvert g\left(\hat{e}_{p},\mathbf{e}_{fh}\cdot\mathbf{n}_{f}\right)_{\Gamma}\rvert}_{\text{\char 193}}+\underbrace{\lvert g\left(\mathbb{K}\nabla(\hat{e}_{p}),\nabla e_{ph}\right)_{\Omega_{p}}\rvert}_{\text{\char 194}}+\underbrace{\lvert g\left(e_{ph},\hat{\mathbf{e}}_{f}\cdot\mathbf{n}_{f}\right)_{\Gamma}\rvert}_{\text{\char 195}}

For ➀ :

(αvdtrace(𝚷)P𝝉(𝐞fh),𝐞fh)Γ\displaystyle\left(\frac{\alpha v\sqrt{d}}{\sqrt{\operatorname{trace}(\bm{\Pi})}}P_{\bm{\tau}}\left(\mathbf{e}_{fh}\right),\mathbf{e}_{fh}\right)_{\Gamma} =(αvdtrace(𝚷)(𝐞fhτ),𝐞fhτ)Γ\displaystyle=\left(\frac{\alpha v\sqrt{d}}{\sqrt{\operatorname{trace}(\bm{\Pi})}}\left(\mathbf{e}_{fh}\cdot\tau\right),\mathbf{e}_{fh}\cdot\tau\right)_{\Gamma} (4.11)
=αvdtrace(𝚷)𝐞fhτΓ20.\displaystyle=\frac{\alpha v\sqrt{d}}{\sqrt{\operatorname{trace}(\bm{\Pi})}}\|\mathbf{e}_{fh}\cdot\tau\|^{2}_{\Gamma}\geq 0.

Then, we estimate the three terms on the right hand side of the above inequality.

For ➁ :

g|(e^p,𝐞fh𝐧f)Γ|\displaystyle g\left|\left(\hat{e}_{p},\mathbf{e}_{fh}\cdot\mathbf{n}_{f}\right)_{\Gamma}\right| ge^pL2(Γ)𝐞fh𝐋2(Γ)Cge^pΩp𝔻(𝐞fh)Ωf\displaystyle\leq g\left\|\hat{e}_{p}\right\|_{L^{2}(\Gamma)}\left\|\mathbf{e}_{fh}\right\|_{\mathbf{L}^{2}(\Gamma)}\leq{Cg}\left\|\nabla\hat{e}_{p}\right\|_{\Omega_{p}}\left\|\mathbb{D}\left(\mathbf{e}_{fh}\right)\right\|_{\Omega_{f}} (4.12)
C2g24νe^pΩp2+ν𝔻(𝐞fh)Ωf2.\displaystyle\leq\frac{C^{2}g^{2}}{4\nu}\left\|\nabla\hat{e}_{p}\right\|_{\Omega_{p}}^{2}+\nu\left\|\mathbb{D}\left(\mathbf{e}_{fh}\right)\right\|_{\Omega_{f}}^{2}.

For ➂ :

|g(𝕂(e^p),eph)Ωp|\displaystyle\lvert g\left(\mathbb{K}\nabla(\hat{e}_{p}),\nabla e_{ph}\right)_{\Omega_{p}}\rvert gλmax12e^pΩp𝕂12ephΩp\displaystyle\leq g\lambda_{\mathop{\mathrm{max}}}^{\frac{1}{2}}\left\|\nabla\hat{e}_{p}\right\|_{\Omega_{p}}\left\|\mathbb{K}^{\frac{1}{2}}\nabla e_{ph}\right\|_{\Omega_{p}} (4.13)
gλmax12e^pΩp𝕂12ephΩp\displaystyle\leq g{\lambda_{\mathop{\mathrm{max}}}^{\frac{1}{2}}}\left\|\nabla\hat{e}_{p}\right\|_{\Omega_{p}}\left\|\mathbb{K}^{\frac{1}{2}}\nabla e_{ph}\right\|_{\Omega_{p}}
2gλmaxe^pΩp2+g8𝕂12ephΩp2.\displaystyle\leq 2g{\lambda_{\mathop{\mathrm{max}}}}\left\|\nabla\hat{e}_{p}\right\|^{2}_{\Omega_{p}}+\frac{g}{8}\left\|\mathbb{K}^{\frac{1}{2}}\nabla e_{ph}\right\|^{2}_{\Omega_{p}}.

For ➃ :

|g(eph,𝐞^f𝐧f)Γ|\displaystyle\lvert g\left(e_{ph},\hat{\mathbf{e}}_{f}\cdot\mathbf{n}_{f}\right)_{\Gamma}\rvert gephΓ𝐞^f𝐧fΓ\displaystyle\leq g\|e_{ph}\|_{\Gamma}\|\hat{\mathbf{e}}_{f}\cdot\mathbf{n}_{f}\|_{\Gamma} (4.14)
gCλmin12𝕂12ephΩp𝐞^f1,Ωf\displaystyle\leq\frac{gC}{\lambda_{\mathop{\mathrm{min}}}^{\frac{1}{2}}}\|\mathbb{K}^{\frac{1}{2}}\nabla e_{ph}\|_{\Omega_{p}}\|\hat{\mathbf{e}}_{f}\|_{1,\Omega_{f}}
g8𝕂12ephΩp2+2gC2λmin𝐞^f1,Ωf2.\displaystyle\leq\frac{g}{8}\|\mathbb{K}^{\frac{1}{2}}\nabla e_{ph}\|_{\Omega_{p}}^{2}+\frac{2gC^{2}}{\lambda_{\mathop{\mathrm{min}}}}\|\hat{\mathbf{e}}_{f}\|_{1,\Omega_{f}}^{2}.

Combining the above bounds and using (4.2) and Theorem 2.3, it yields

ν𝔻(𝐮f𝐮fh)Ωf2+g4𝕂ϵ12(ϕpϕph)Ωp2\displaystyle\ \nu\left\|\mathbb{D}\left(\mathbf{u}_{f}-\mathbf{u}_{fh}\right)\right\|_{\Omega_{f}}^{2}+\frac{g}{4}\left\|\mathbb{K}_{\epsilon}^{\frac{1}{2}}\nabla(\phi_{p}-\phi_{ph})\right\|_{\Omega_{p}}^{2} (C2g24ν+2gλmax){ϵ1/2+h+ϵh}2ϕ02,Ωp2\displaystyle\leq\left(\frac{C^{2}g^{2}}{4\nu}+2g{\lambda_{\mathop{\mathrm{max}}}}\right)\left\{\epsilon^{1/2}+h+\sqrt{\frac{\epsilon}{h}}\right\}^{2}\left\|\phi_{0}\right\|_{2,\Omega_{p}}^{2} (4.15)
+2gλminCh2(𝐮f2,Ωf+pf1,Ωf)2.\displaystyle+\frac{2g}{\lambda_{\mathop{\mathrm{min}}}}Ch^{2}\left(\|\mathbf{u}_{f}\|_{2,\Omega_{f}}+\|p_{f}\|_{1,\Omega_{f}}\right)^{2}.

Then, it is easily get the final result (4.3).

Remark 4.1.

Given that 𝐮f2,Ωf\|\mathbf{u}_{f}\|_{2,\Omega_{f}}, pf1,Ωf\|p_{f}\|_{1,\Omega_{f}} and ϕ02,Ωp\left\|\phi_{0}\right\|_{2,\Omega_{p}} are bounded, the H1H^{1} norm can be controlled by ϵ1/2+h+ϵh\epsilon^{1/2}+h+\sqrt{\frac{\epsilon}{h}}.

Let us introduce the formal adjoint problem ([15]): find 𝐰¯=(𝐰f,ξp)𝐕\underline{\mathbf{w}}=\left(\mathbf{w}_{f},\xi_{p}\right)\in\mathbf{V} such that

a(𝐯¯,𝐰¯)=(f,𝐯¯)𝐯¯=(𝐯f,ψp)𝐕,a(\underline{\mathbf{v}},\underline{\mathbf{w}})=(f,\underline{\mathbf{v}})\quad\forall\underline{\mathbf{v}}=\left(\mathbf{v}_{f},\psi_{p}\right)\in\mathbf{V}, (4.16)

where f:=(𝐮f𝐮fh,ϕpϕph)f:=(\mathbf{u}_{f}-\mathbf{u}_{fh},\phi_{p}-\phi_{ph}).

a(𝐯¯,𝐰¯)=(𝐮f𝐮fh,𝐯f)Ωf+g(ϕpϕph,ψp)Ωp𝐯¯=(𝐯f,ψp)𝐕.a(\underline{\mathbf{v}},\underline{\mathbf{w}})=\left(\mathbf{u}_{f}-\mathbf{u}_{fh},\mathbf{v}_{f}\right)_{\Omega_{f}}+g\left(\phi_{p}-\phi_{ph},\psi_{p}\right)_{\Omega_{p}}\quad\forall\underline{\mathbf{v}}=\left(\mathbf{v}_{f},\psi_{p}\right)\in\mathbf{V}. (4.17)

We assume that 𝐰¯\underline{\mathbf{w}} has the regularity estimate:

𝐰¯H2CRfL2,\|\underline{\mathbf{w}}\|_{H^{2}}\leq C_{R}\|f\|_{L^{2}}, (4.18)

and

𝐰¯0H2CRfL2,\|\underline{\mathbf{w}}_{0}\|_{H^{2}}\leq C_{R}\|f\|_{L^{2}}, (4.19)

where 𝐰¯0=(𝐰f,ξp,0)\underline{\mathbf{w}}_{0}=\left(\mathbf{w}_{f},\xi_{p,0}\right) and ξp,0\xi_{p,0} is the O(ϵ0)O(\epsilon^{0}) asymptotic expansion of ξp\xi_{p}.

Theorem 4.2 (L2 norm).

Assume that 𝕂ϵ\mathbb{K}^{\epsilon} is periodic, uniformly ellpitic and symmtric. Let Ω\Omega be a bounded Lipschitz domain in 2\mathbb{R}^{2}, and let (𝐮f,ϕp)(\mathbf{u}_{f},\phi_{p}) and (𝐮fh,ϕph)(\mathbf{u}_{fh},\phi_{ph}) be the solutions of Problems (2.8) and (2.11), respectively.

(𝐮f𝐮fh)Ωf+g(ϕpϕph)Ωp\displaystyle\left\|\left(\mathbf{u}_{f}-\mathbf{u}_{fh}\right)\right\|_{\Omega_{f}}+{g}\left\|(\phi_{p}-\phi_{ph})\right\|_{\Omega_{p}} C1~{ϵ+h2+ϵh}ϕ02,Ω\displaystyle\leq\tilde{C_{1}}\left\{\epsilon+h^{2}+\frac{\epsilon}{h}\right\}\left\|\phi_{0}\right\|_{2,\Omega} (4.20)
+C2~(h2+ϵh)(𝐮f2,Ωf+pf1,Ωf),\displaystyle+\tilde{C_{2}}\left(h^{2}+\sqrt{\epsilon h}\right)\left(\|\mathbf{u}_{f}\|_{2,\Omega_{f}}+\|p_{f}\|_{1,\Omega_{f}}\right),

where C1~,C2~\tilde{C_{1}},\tilde{C_{2}} depends on λmax,λmin,g,ν\lambda_{\mathop{\mathrm{max}}},\lambda_{\mathop{\mathrm{min}}},g,\nu.

Proof.
𝐮¯𝐮¯hΩ2\displaystyle\left\|\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h}\right\|_{\Omega}^{2} =(𝐮𝐮h,𝐮𝐮h)Ωf+g(ϕpϕph,ϕpϕph)Ωp\displaystyle=\left({\mathbf{u}}-{\mathbf{u}}_{h},{\mathbf{u}}-{\mathbf{u}}_{h}\right)_{\Omega_{f}}+g\left(\phi_{p}-\phi_{ph},\phi_{p}-\phi_{ph}\right)_{\Omega_{p}} (4.21)
=a(𝐮¯𝐮¯h,𝐰¯)\displaystyle=a\left(\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h},\underline{\mathbf{w}}\right)
=a(𝐮¯𝐮¯h,𝐰¯h𝐰¯)\displaystyle=a\left(\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h},\underline{\mathbf{w}}-\mathcal{I}^{h}\underline{\mathbf{w}}\right)
C𝐮¯𝐮¯h1,Ωw¯hw¯H1(Ω)\displaystyle\leq C\left\|\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h}\right\|_{1,\Omega}\|\underline{w}-\mathcal{I}^{h}\underline{w}\|_{{H^{1}}(\Omega)}
C𝐮¯𝐮¯h1,Ω(((wfhwf),(wfhwf))+g(𝕂(ξphξp),(ξphξp))\displaystyle\leqslant C\left\|\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h}\right\|_{1,\Omega}\|\sqrt{\left(\left(\nabla\left(w_{f}-\mathcal{I}^{h}w_{f}\right),\nabla\left(w_{f}-\mathcal{I}^{h}w_{f}\right)\right)+g\left(\mathbb{K}\nabla\left(\xi_{p}-\mathcal{I}^{h}\xi_{p}\right),\nabla\left(\xi_{p}-\mathcal{I}^{h}\xi_{p}\right)\right)\right.}
C1𝐮¯𝐮¯h1,Ω[wfhwf1,Ωf+gλλmax12ξphξp1,Ωp]\displaystyle\leqslant C_{1}\left\|\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h}\right\|_{1,\Omega}\left[\left\|w_{f}-\mathcal{I}^{h}w_{f}\right\|_{1,\Omega_{f}}+\sqrt{g}\lambda_{\lambda_{{\mathop{\mathrm{max}}}}}^{\frac{1}{2}}\left\|\xi_{p}-\mathcal{I}^{h}\xi_{p}\right\|_{1,\Omega_{p}}\right]
C2𝐮¯𝐮¯h1,Ω[hwf2,Ωf+gλmax 12(ε12+h+εh)ξp,02,Ωp]\displaystyle\leqslant C_{2}\left\|\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h}\right\|_{1,\Omega}\left[h\left\|w_{f}\right\|_{2,\Omega_{f}}+\sqrt{g}\lambda_{\text{max }}^{\frac{1}{2}}\left(\varepsilon^{\frac{1}{2}}+h+\sqrt{\frac{\varepsilon}{h}}\right)\left\|\xi_{p,0}\right\|_{2,\Omega_{p}}\right]
C3𝐮¯𝐮¯h1,Ω(ε12+h+εh)(wf2,Ωf+ξp,02,Ωp)\displaystyle\leqslant C_{3}\left\|\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h}\right\|_{1,\Omega}\left(\varepsilon^{\frac{1}{2}}+h+\sqrt{\frac{\varepsilon}{h}}\right)\left(\left\|w_{f}\right\|_{2,\Omega_{f}}+\left\|\xi_{p,0}\right\|_{2,\Omega_{p}}\right)
C3𝐮¯𝐮¯h1,Ω(ε12+h+εh)𝐮¯𝐮¯hΩ.\displaystyle\leqslant C_{3}\left\|\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h}\right\|_{1,\Omega}\left(\varepsilon^{\frac{1}{2}}+h+\sqrt{\frac{\varepsilon}{h}}\right)\left\|\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h}\right\|_{\Omega}.

Therefore,

𝐮¯𝐮¯hΩC3𝐮¯𝐮¯h1,Ω(ε12+h+εh).\left\|\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h}\right\|_{\Omega}\leqslant C_{3}\left\|\underline{\mathbf{u}}-\underline{\mathbf{u}}_{h}\right\|_{1,\Omega}\left(\varepsilon^{\frac{1}{2}}+h+\sqrt{\frac{\varepsilon}{h}}\right). (4.22)

Using Theorem 4.1, it yields the final result (4.20) ∎

Remark 4.2.

Given that 𝐮f2,Ωf\|\mathbf{u}_{f}\|_{2,\Omega_{f}}, pf1,Ωf\|p_{f}\|_{1,\Omega_{f}} and ϕ02,Ωp\left\|\phi_{0}\right\|_{2,\Omega_{p}} are bounded, the L2L^{2} norm can be controlled by ϵ+h2+ϵh\epsilon+h^{2}+\frac{\epsilon}{h}.

5 Numerical experiments

In this section, we study the accuracy of the multiscale method through numerical computations. The model problem is solved using the multiscale method with base functions defined by linear condition (Msfem). Since it is very diffcult to construct a test problem with exact solution and suffcient generality, we use resolved numerical solutions in place of exact solutions. The numerical results are compared with the theoretical analysis. Additionally, we present a numerical example illustrating the method’s application to more complex problems involving separable scales, nonseparable scales and high-contrast case.

5.1 Implementation

We outline the implementation here and define some notation to be frequently used below. For convenience, we assume that the multiscale Darcy region is situated on the unit square. Let NN be the number of elements in the xx and yy directions. The size of mesh is thus h=1/Nh=1/N. To compute the base functions, each element is discretized into M×MM\times M subcell elements with size hfiner=h/Mh_{finer}=h/M. Triangular elements are used in all numerical tests.

In the offline phase, we utilize P1 elements to compute basis functions within each element. During this process, the Message Passing Interface(MPI) is employed to enhance efficiency, and the stiffness matrix and right-hand side are stored for subsequent online computations.

Because it is very difficult to construct a genuine 2D2\mathrm{D} steady Stokes-Darcy model with an exact solution, reference solutions are used as the exact solutions for the test problems. In all numerical examples below, the resolved solutions are obtained using standard FEM. We use the numerical computation libraries MUMPS and PETSc within FreeFEM++ to calculate the reference solution. Due to the multiscale nature of the permeability in our Darcy region, we employ a finer mesh within the Darcy region when computing the reference solution. We have computed a reference solution of this numerical example using Talor-Hood finite element and P2 element with a mesh of size HD=1/2048H_{D}=1/2048 (in Darcy region), HS=1/512H_{S}=1/512 (in Stokes region). The purpose of computing the reference solution is to obtain the error. To enhance computational speed, we utilize a domain decomposition parallel approach for computing the reference solution. We define the reference solution 𝐮¯reference=(𝐮freference,ϕpreference)\underline{\mathbf{u}}^{\text{reference}}=(\mathbf{u}_{f}^{\text{reference}},\phi_{p}^{\text{reference}}).

To facilitate the comparison among different schemes, we use the following shorthands: FEM-FEM stands for MINI elements in the Stokes region and P1 elements in the Darcy region and FEM-MsFEM stands for MINI elements in the Stokes region and multiscale basis function in the Darcy region. We define the numerical solution 𝐮¯numerical =(𝐮fnumerical ,ϕpnumerical )\underline{\mathbf{u}}^{\text{numerical }}=(\mathbf{u}_{f}^{\text{numerical }},\phi_{p}^{\text{numerical }}).

5.2 Numerical result

We define some norms to demonstrate the error.

e𝐮fL2=𝐮freference𝐮fnumericalL2(Ωf),e𝐮fH1=𝐮freference𝐮fnumericalH1(Ωf)\left\|e_{\mathbf{u}_{f}}\right\|_{L^{2}}=\left\|\mathbf{u}_{f}^{\text{reference}}-\mathbf{u}_{f}^{\text{numerical}}\right\|_{L^{2}(\Omega_{f})},\left\|e_{\mathbf{u}_{f}}\right\|_{H^{1}}=\left\|\mathbf{u}_{f}^{\text{reference}}-\mathbf{u}_{f}^{\text{numerical}}\right\|_{H^{1}(\Omega_{f})}
eϕpL2=ϕpreferenceϕpnumericalH1(Ωp),eϕpL2=ϕpreferenceϕpnumericalH1(Ωp)\left\|e_{\phi_{p}}\right\|_{L^{2}}=\left\|\phi_{p}^{\text{reference}}-\phi_{p}^{\text{numerical}}\right\|_{H^{1}(\Omega_{p})},\left\|e_{\phi_{p}}\right\|_{L^{2}}=\left\|\phi_{p}^{\text{reference}}-\phi_{p}^{\text{numerical}}\right\|_{H^{1}(\Omega_{p})}

5.2.1 Example 1

In this example, we we consider nonseparable scales and solve (2.3) with

𝕂ϵ=1(2+Psin(2πx/ϵ))(2+Psin(2πy/ϵ)),\mathbb{K}_{\epsilon}=\frac{1}{(2+P\sin(2\pi x/\epsilon))(2+P\sin(2\pi y/\epsilon))},

where PP is a parameter controlling the magnitude of the oscillation. We take P=1.8P=1.8 in this example. The right hand side function 𝐠f(x,y),gp(x,y)\mathbf{g}_{f}(x,y),g_{p}(x,y) is zero On Ωp\partial\Omega_{p}, we impose ϕ=0\phi=0 and on the Ωf\partial\Omega_{f}, uf=[sin(πx),0], on (0,1)×{2}u_{f}=[\sin(\pi x),0],\text{ on }(0,1)\times\{2\}, uf=[0,0], on {0}×(1,2){1}×(1,2)u_{f}=[0,0],\text{ on }\{0\}\times(1,2)\cup\{1\}\times(1,2). We set all physical parameters ν,α,g\nu,\alpha,g equal to 1. The Robin-Robin coefficients are set to γf=0.1,γp=1\gamma_{f}=0.1,\gamma_{p}=1.

Refer to caption
Figure 5: 𝕂ϵ\mathbb{K}_{\epsilon} in Example 1

The result of FEM-MsFEM error with varying hh but fixed ϵ=0.008\epsilon=0.008 and hfiner=1/2048h_{finer}=1/2048 are shown in Table 1. When observing the errors in the Darcy part, we first fix the small parameter ε\varepsilon and gradually refine the grid. As hh decreases and hεh\gg\varepsilon, we can observe that the convergence order of the L2L^{2} error for eϕpe_{\phi_{p}} degrades from around +2+2 to around 1-1. This effectively validates the term O(h2h^{2}) to O(ε/h\varepsilon/h) in the L2L^{2} error analysis. Additionally, the convergence order of the H1H^{1} error degrades from +1+1 to 0.5-0.5, providing a good validation of the term O(hh) to O(ε/h\sqrt{\varepsilon/h}) in the L2L^{2} error analysis. Furthermore, when observing the errors e𝐮fe_{\mathbf{u}_{f}} in the Stokes part, we use standard MINI elements in the Stokes region. However, it can be seen that the L2L^{2} error in Stokes does not initially reach the optimal order of 2, and with the gradual decrease in grid size hh, the convergence order of the Stokes L2L^{2} error also shows a decreasing trend. The reason for this decrease is influenced by the Darcy region, as the Darcy region also experiences a reduction in order at this point in time. Next, when observing the order of the velocity H1H^{1}, it can be noted that the H1H^{1} order does not initially reach the optimal order, but with a decrease in hh, the H1H^{1} error order remains almost constant.

The result of FEM-FEM error with varying hh but fixed ϵ=0.008\epsilon=0.008 are shown in Table 2. When observing errors in the Darcy part, we first fix the small parameter ε\varepsilon. As hh decreases and hεh\gg\varepsilon, we can observe that the convergence orders of the L2L^{2} error and H1H^{1} error for pressure become unstable. Comparing with Table 1, it is noticeable that for hεh\gg\varepsilon, the error accuracy of FEM-MsFEM is higher than that of FEM-FEM. For instance, when h=1/16h=1/16, the accuracy of eϕpe_{\phi_{p}} in the FEM-MsFEM algorithm can reach 10510^{-5}, whereas FEM-FEM can only achieve 10410^{-4}. When observing errors in the Stokes part, it can be noted that FEM-FEM does not reach the optimal order, and with the decrease in grid size hh, the convergence order of the Stokes L2L^{2} error also shows a decreasing trend. The order of H1H^{1} does not initially reach the optimal order, but with a decrease in hh, the H1H^{1} error order remains almost constant. This result is consistent with the situation in FEM-MsFEM and is influenced by the Darcy region.

FEM-MsFEM error at ϵh=0.32\frac{\epsilon}{h}=0.32, N=32N=32. are shown in Table 3. Our main goal is to observe errors in FEM-MsFEM when fixing ε/h\varepsilon/h, where hfiner=h/Nh_{finer}=h/N. In the Darcy part, as hh gradually decreases, it can be observed that the L2L^{2} and H1H^{1} errors remain almost constant. This validates the importance of O(ε/h\varepsilon/h) in the L2L^{2} error and O(ε/h\sqrt{\varepsilon/h}) in the H1H^{1} error. In the Stokes region, the convergence orders of L2L^{2} and H1H^{1} errors fail to reach the optimal order, and there is no significant change in the orders.

Table 1: FEM-MsFEM error with varying hh but fixed ϵ=0.008\epsilon=0.008 and hfiner=1/2048h_{finer}=1/2048.
hh e𝐮fL2\left\|e_{\mathbf{u}_{f}}\right\|_{L^{2}} Order eufH1\left\|e_{u_{f}}\right\|_{H^{1}} Order eϕpL2\left\|e_{\phi_{p}}\right\|_{L^{2}} Order eϕpH1\left\|e_{\phi_{p}}\right\|_{H^{1}} Order
1/4 6.07E-02 1.67E+00 8.99E-04 1.67E-02
1/8 1.80E-02 1.76 9.44E-01 0.82 1.97E-04 2.19 7.56E-03 1.14
1/16 4.79E-03 1.91 5.07E-01 0.90 8.43E-05 1.23 4.82E-03 0.65
1/32 1.27E-03 1.92 2.69E-01 0.92 1.75E-04 -1.05 5.05E-03 -0.07
1/64 3.43E-04 1.89 1.41E-01 0.93 3.25E-04 -0.89 6.82E-03 -0.44
1/128 1.22E-04 1.49 7.41E-02 0.93 5.56E-04 -0.78 9.47E-03 -0.47
1/256 5.79E-05 1.07 3.85E-02 0.95 3.79E-04 0.55 7.85E-03 0.27
Table 2: FEM-FEM error with varying hh but fixed ϵ=0.008\epsilon=0.008.
hh e𝐮fL2\left\|e_{\mathbf{u}_{f}}\right\|_{L^{2}} Order eufH1\left\|e_{u_{f}}\right\|_{H^{1}} Order eϕpL2\left\|e_{\phi_{p}}\right\|_{L^{2}} Order eϕpH1\left\|e_{\phi_{p}}\right\|_{H^{1}} Order
1/4 6.07E-02 1.67E+00 5.31E-04 1.44E-02
1/8 1.80E-02 1.76 9.44E-01 0.82 9.33E-04 -0.81 1.34E-02 0.10
1/16 4.81E-03 1.90 5.07E-01 0.90 8.61E-04 0.12 1.26E-02 0.09
1/32 1.28E-03 1.91 2.69E-01 0.92 9.03E-04 -0.07 1.27E-02 -0.01
1/64 3.62E-04 1.83 1.41E-01 0.93 7.89E-04 0.19 1.19E-02 0.09
1/128 1.55E-04 1.22 7.41E-02 0.93 8.76E-04 -0.15 1.23E-02 -0.04
1/256 7.20E-05 1.11 3.85E-02 0.95 4.81E-04 0.86 8.73E-03 0.49
Table 3: FEM-MsFEM error at ϵh=0.32\frac{\epsilon}{h}=0.32, N=32N=32.
hh ϵ\epsilon eupL2\left\|e_{u_{p}}\right\|_{L^{2}} Order eufH1\left\|e_{u_{f}}\right\|_{H^{1}} Order eϕpL2\left\|e_{\phi_{p}}\right\|_{L^{2}} Order eϕpH1\left\|e_{\phi_{p}}\right\|_{H^{1}} Order
1/16 0.02 4.80E-03 5.07E-01 3.05E-04 6.89E-03
1/32 0.01 1.27E-03 1.92 2.69E-01 0.92 2.88E-04 0.08 5.99E-03 0.20
1/64 0.005 3.38E-04 1.91 1.41E-01 0.93 2.80E-04 0.04 5.76E-03 0.06
1/128 0.0025 9.71E-05 1.80 7.41E-02 0.93 2.71E-04 0.05 5.63E-03 0.03

5.2.2 Example 2

In this example, we consider nonseparable scales and solve (2.3) with

𝕂ϵ=14+P(sin(2πx/ϵ)+sin(2πy/ϵ)),\mathbb{K}_{\epsilon}=\frac{1}{4+P(\sin(2\pi x/\epsilon)+\sin(2\pi y/\epsilon))},
Refer to caption
Figure 6: 𝕂ϵ\mathbb{K}_{\epsilon} in Example 2

where PP is a parameter controlling the magnitude of the oscillation. We take P=1.5P=1.5 in this example. The right hand side function 𝐠f(x,y),gp(x,y)\mathbf{g}_{f}(x,y),g_{p}(x,y) is zero

On Ωp\partial\Omega_{p}, we impose ϕ=0\phi=0 and on the Ωf\partial\Omega_{f}, uf=[sin(πx),0], on (0,1)×{2}u_{f}=[\sin(\pi x),0],\text{ on }(0,1)\times\{2\}, uf=[0,0], on {0}×(1,2){1}×(1,2)u_{f}=[0,0],\text{ on }\{0\}\times(1,2)\cup\{1\}\times(1,2). We set all physical parameters ν,α,g\nu,\alpha,g equal to 1. The Robin-Robin coefficients are set to γf=0.1,γp=1\gamma_{f}=0.1,\gamma_{p}=1.

The result of FEM-MsFEM error with varying hh but fixed ϵ=0.008\epsilon=0.008 and hfiner=1/2048h_{finer}=1/2048 are shown in Table 4. When examining errors in the Darcy part, we initially set a fixed small parameter and progressively refine the grid. As hh decreases, with hεh\gg\varepsilon, we observe a degradation in the convergence order of the L2L^{2} error for eϕpe_{\phi_{p}} from around +2+2 to approximately 1-1. This observation effectively confirms the presence of terms O(h2h^{2}) to O(ε/h\varepsilon/h) in the L2L^{2} error analysis. Additionally, the convergence order of the H1H^{1} error decreases from +1+1 to 0.5-0.5, providing robust validation for terms O(hh) to O(ε/h\sqrt{\varepsilon/h}) in the L2L^{2} error analysis. Moreover, when evaluating errors e𝐮fe_{\mathbf{u}_{f}} in the Stokes part, standard MINI elements are employed in the Stokes region. However, it is evident that the L2L^{2} error in Stokes does not initially attain the optimal order of 2. As the grid size hh gradually decreases, the convergence order of the Stokes L2L^{2} error exhibits a declining trend. This decline is attributed to the influence of the Darcy region. Subsequently, when inspecting the order of the velocity H1H^{1}, it is observed that the H1H^{1} order does not initially reach the optimal level, yet with a decrease in hh, the H1H^{1} error order remains relatively constant.

The result of FEM-FEM error with varying hh but fixed ϵ=0.008\epsilon=0.008 in Table 5. When observing errors in the Darcy part, we first fix the small parameter ε\varepsilon. As hh decreases and hεh\gg\varepsilon, we can observe that the convergence orders of the L2L^{2} error and H1H^{1} error for pressure become unstable. Comparing with Table 4, it is noticeable that for hεh\gg\varepsilon, the error accuracy of FEM-MsFEM is higher than that of FEM-FEM. For instance, when h=1/16h=1/16, the accuracy of eϕpe_{\phi_{p}} in the FEM-MsFEM algorithm can reach 10510^{-5}, whereas FEM-FEM can only achieve 10410^{-4}. When observing errors in the Stokes part, it can be noted that FEM-FEM does not reach the optimal order, and with the decrease in grid size hh, the convergence order of the Stokes L2L^{2} error also shows a decreasing trend. The order of H1H^{1} does not initially reach the optimal order, but with a decrease in hh, the H1H^{1} error order remains almost constant. This result is consistent with the situation in FEM-MsFEM and is influenced by the Darcy region.

FEM-MsFEM error at ϵh=0.32\frac{\epsilon}{h}=0.32, N=32N=32. are shown in Table 6. Our main goal is to observe errors in FEM-MsFEM when fixing ε/h\varepsilon/h, where hfiner=h/Nh_{finer}=h/N. In the Darcy part, as hh gradually decreases, it can be observed that the L2L^{2} and H1H^{1} errors remain almost constant. This validates the importance of O(ε/h\varepsilon/h) in the L2L^{2} error and O(ε/h\sqrt{\varepsilon/h}) in the H1H^{1} error. In the Stokes region, the convergence orders of L2L^{2} and H1H^{1} errors fail to reach the optimal order, and there is no significant change in the orders.

Table 4: FEM-MsFEM error with varying hh but fixed ϵ=0.008\epsilon=0.008 and hfiner=1/2048h_{finer}=1/2048.
hh e𝐮fL2\left\|e_{\mathbf{u}_{f}}\right\|_{L^{2}} Order eufH1\left\|e_{u_{f}}\right\|_{H^{1}} Order eϕpL2\left\|e_{\phi_{p}}\right\|_{L^{2}} Order eϕpH1\left\|e_{\phi_{p}}\right\|_{H^{1}} Order
1/4 6.07E-02 1.67E+00 2.00E-03 3.12E-02
1/8 1.80E-02 1.76 9.44E-01 0.82 5.06E-04 1.98 1.36E-02 1.20
1/16 4.79E-03 1.91 5.07E-01 0.90 8.65E-05 2.55 6.93E-03 0.97
1/32 1.26E-03 1.92 2.69E-01 0.92 6.31E-05 0.45 5.08E-03 0.45
1/64 3.34E-04 1.92 1.41E-01 0.93 1.23E-04 -0.96 5.89E-03 -0.21
1/128 9.44E-05 1.82 7.41E-02 0.93 2.28E-04 -0.90 7.94E-03 -0.43
1/256 3.28E-05 1.53 3.85E-02 0.95 1.70E-04 0.43 6.75E-03 0.23
Table 5: FEM-FEM error with varying hh but fixed ϵ=0.008\epsilon=0.008.
hh e𝐮fL2\left\|e_{\mathbf{u}_{f}}\right\|_{L^{2}} Order eufH1\left\|e_{u_{f}}\right\|_{H^{1}} Order eϕpL2\left\|e_{\phi_{p}}\right\|_{L^{2}} Order eϕpH1\left\|e_{\phi_{p}}\right\|_{H^{1}} Order
1/4 6.07E-02 1.67E+00 1.68E-03 2.91E-02
1/8 1.80E-02 1.76 9.44E-01 0.82 4.96E-04 1.76 1.53E-02 0.93
1/16 4.80E-03 1.91 5.07E-01 0.90 3.30E-04 0.59 1.17E-02 0.39
1/32 1.27E-03 1.92 2.69E-01 0.92 4.21E-04 -0.35 1.07E-02 0.13
1/64 3.37E-04 1.92 1.41E-01 0.93 2.68E-04 0.65 9.88E-03 0.11
1/128 1.03E-04 1.70 7.41E-02 0.93 3.69E-04 -0.46 1.00E-02 -0.02
1/256 3.73E-05 1.47 3.85E-02 0.95 2.11E-04 0.81 7.47E-03 0.42
Table 6: FEM-MsFEM error at ϵh=0.32\frac{\epsilon}{h}=0.32, N=32N=32.
hh ϵ\epsilon eupL2\left\|e_{u_{p}}\right\|_{L^{2}} Order eufH1\left\|e_{u_{f}}\right\|_{H^{1}} Order eϕpL2\left\|e_{\phi_{p}}\right\|_{L^{2}} Order eϕpH1\left\|e_{\phi_{p}}\right\|_{H^{1}} Order
1/16 0.02 4.79E-03 5.07E-01 1.16E-04 8.05E-03
1/32 0.01 1.27E-03 1.92 2.69E-01 0.92 9.57E-05 0.28 5.76E-03 0.48
1/64 0.005 3.33E-04 1.92 1.41E-01 0.93 9.42E-05 0.02 5.13E-03 0.17
1/128 0.0025 8.87E-05 1.91 7.41E-02 0.93 9.07E-05 0.06 4.90E-03 0.07

References

  • [1] Assyr Abdulle and Ondrej Budác. An adaptive finite element heterogeneous multiscale method for stokes flow in porous media. Multiscale Modeling & Simulation, 13(1):256–290, 2015.
  • [2] Ilona Ambartsumyan, Eldar Khattatov, ChangQing Wang, and Ivan Yotov. Stochastic multiscale flux basis for stokes-darcy flows. Journal of Computational Physics, 401:109011, 2020.
  • [3] Rodolfo Araya, Christopher Harder, Diego Paredes, and Frédéric Valentin. Multiscale hybrid-mixed method. SIAM Journal on Numerical Analysis, 51(6):3505–3531, 2013.
  • [4] Todd Arbogast, Gergina Pencheva, Mary F. Wheeler, and Ivan Yotov. A multiscale mortar mixed finite element method. Multiscale Modeling & Simulation, 6(1):319–346 (electronic), 2007.
  • [5] Gordon S Beavers and Daniel D Joseph. Boundary conditions at a naturally permeable wall. Journal of fluid mechanics, 30(1):197–207, 1967.
  • [6] Susanne C Brenner. The mathematical theory of finite element methods. Springer, 2008.
  • [7] Zhiming Chen and Thomas Y. Hou. A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Mathematics of Computation, 72(242):541–576, 2003.
  • [8] Eric T. Chung, Yalchin Efendiev, and Chak Shing Lee. Mixed generalized multiscale finite element methods and applications. Multiscale Modeling & Simulation, 13(1):338–366, 2015.
  • [9] Marco Discacciati, Edie Miglio, and Alfio Quarteroni. Mathematical and numerical models for coupling surface and groundwater flows. Applied Numerical Mathematics, 43(1-2):57–74, 2002.
  • [10] Y. Efendiev, V. Ginting, T. Hou, and R. Ewing. Accurate multiscale finite element methods for two-phase flow simulations. Journal of Computational Physics, 220(1):155–174, 2006.
  • [11] Yalchin Efendiev, Juan Galvis, and Thomas Y. Hou. Generalized multiscale finite element methods (GMsFEM). Journal of Computational Physics, 251:116–135, 2013.
  • [12] Vivette Girault, Danail Vassilev, and Ivan Yotov. Mortar multiscale finite element methods for stokes–darcy flows. Numerische Mathematik, 127(1):93–165, 2014.
  • [13] Hadi Hajibeygi and Patrick Jenny. Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media. Journal of Computational Physics, 228(14):5129–5147, 2009.
  • [14] Thomas Y. Hou and Xiao-Hui Wu. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of computational physics, 134(1):169–189, 1997.
  • [15] Yanren Hou and Yi Qin. On the solution of coupled stokes/darcy model with beavers–joseph interface condition. Computers & Mathematics with Applications, 77(1):50–65, 2019.
  • [16] T. Hughes, G. Feijoo, L. Mazzei, and J. Quincy. The variational multiscale method - a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166:3–24, 1998.
  • [17] Patrick Jenny, SH Lee, and Hamdi A Tchelepi. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. Journal of computational physics, 187(1):47–67, 2003.
  • [18] William J Layton, Friedhelm Schieweck, and Ivan Yotov. Coupling fluid flow with porous media flow. SIAM Journal on Numerical Analysis, 40(6):2195–2218, 2002.
  • [19] Axel Målqvist and Daniel Peterseim. Localization of elliptic multiscale problems. Mathematics of Computation, 83(290):2583–2603, 2014.
  • [20] E Weinan, Bjorn Engquist, Xiantao Li, Weiqing Ren, and Eric Vanden-Eijnden. Heterogeneous multiscale method: A review. Communications in Computational Physics, 2:367–450, 2007.
  • [21] Ulrich Wilbrandt. Stokes–Darcy Equations: Analytic and Numerical Analysis. Springer, 2019.
  • [22] Changqing Ye, Hao Dong, and Junzhi Cui. Convergence rate of multiscale finite element method for various boundary problems. Journal of Computational and Applied Mathematics, 374:112754, 2020.
  • [23] Na Zhang, Jun Yao, Zhaoqin Huang, and Yueying Wang. Accurate multiscale finite element method for numerical simulation of two-phase flow in fractured media using discrete-fracture model. Journal of Computational Physics, 242:420–438, 2013.
  • [24] Na Zhang, Jun Yao, Shifeng Xue, and Zhaoqin Huang. Multiscale mixed finite element, discrete fracture–vug model for fluid flow in fractured vuggy porous media. International Journal of Heat and Mass Transfer, 96:396–405, 2016.