This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Multiplier ideals of meromorphic functions in dimension two

Maria Alberich-Carramiñana Departament de Matemàtiques and Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech)
Universitat Politècnica de Catalunya
Av. Diagonal 647, Barcelona 08028; and Institut de Robòtica i Informàtica Industrial
CSIC-UPC
Llorens i Artigues 4-6, Barcelona 08028, Spain.
[email protected]
Josep Àlvarez Montaner Departament de Matemàtiques and Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech)
Universitat Politècnica de Catalunya
Av. Diagonal 647, Barcelona 08028; and Centre de Recerca Matemàtica (CRM), Bellaterra, Barcelona 08193.
[email protected]
 and  Roger Gómez-López Departament de Matemàtiques
Universitat Politècnica de Catalunya
Av. Diagonal 647, Barcelona 08028
[email protected]
Abstract.

We provide an effective method to compute multiplier ideals of meromorphic functions in dimension two. We also prove that meromorphic functions only have integer jumping numbers after reaching some threshold.

Key words and phrases:
Multiplier ideals, jumping numbers, meromorphic functions.
2000 Mathematics Subject Classification:
Primary 13D45, 13N10
All three authors are partially supported by grant PID2019-103849GB-I00 funded by MICIU/AEI/ 10.13039/501100011033 and AGAUR grant 2021 SGR 00603. JAM is also supported by Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&\&D (project CEX2020-001084-M). RGL gratefully acknowledges Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya and Fons Social Europeu Plus for the financial support of his FI Joan Oró predoctoral grant.

1. Introduction

Let XX be a nn-dimensional complex smooth algebraic variety and 𝒪X,O{\mathcal{O}}_{X,O} the local ring of a point OXO\in X. Let f,g:(X,0)(,0)f,g:(X,0)\longrightarrow(\mathbb{C},0) be two germs of holomorphic functions and consider the germ of meromorphic function f/g:(X,0)(,0).f/g:(X,0)\longrightarrow(\mathbb{C},0). Taking local coordinates we assume f,g𝒪X,O={x1,,xn}f,g\in{\mathcal{O}}_{X,O}=\mathbb{C}\{x_{1},\dots,x_{n}\}. Notice also that f/gf/g and f/gf^{\prime}/g^{\prime} define the same germ if fg=fgfg^{\prime}=f^{\prime}g.

In order to study the singularities of the meromorphic germ f/gf/g, the authors in [AGLN21] introduced a theory of multiplier ideals mimicking the classical one for holomorphic functions (see also [Tak23]). However this variant for meromorphic functions has several features that do not behave quite as in the classical way.

The aim of this note is to provide an effective method to compute multiplier ideals of meromorphic functions in dimension two. In Section 3 we present an algorithm to compute sequentially the set of jumping numbers and the corresponding multiplier ideals. This algorithm is a mild modification of the one given by the first two authors together with Dachs-Cadefau in [AAD16] combined with the methods developed in [AAB19, AAB21]. For completeness we will describe the differences between both cases.

In Section 4 we pay attention to the version of Skoda’s theorem for meromorphic functions considered in [AGLN21] which provides some interesting phenomena. For instance, we prove in Theorem 4.4 that after reaching some threshold the only jumping numbers of f/gf/g are integer numbers.

In Section 5 we present some examples that illustrate the effectiveness of our methods and the properties proved in Theorem 4.4. In particular, the examples show how the jumping numbers of f/gf/g depend on the contact between the two plane curves ff and gg.

2. Multiplier ideals of meromorphic functions

Let XX be a nn-dimensional complex smooth algebraic variety and let UU be a neighbourhood of OXO\in X. Let π:YU\pi:Y\longrightarrow U be a log resolution of a meromorphic germ f/g:(X,0)(,0).f/g:(X,0)\longrightarrow(\mathbb{C},0). Namely, π\pi is a proper birational map such that:

  • π\pi is a log resolution of the hypersurface H={f|U=0}{g|U=0}H=\{f_{|_{U}}=0\}\cup\{g_{|_{U}}=0\}, i.e., π\pi is an isomorphism outside a proper analytic subspace in UU;

  • there is a normal crossing divisor FF on YY such that π1(H)=𝒪Y(F)\pi^{-1}(H)=\mathcal{O}_{Y}(-F);

  • the lifting f~/g~=(f/g)π=fπgπ\tilde{f}/\tilde{g}=(f/g)\circ\pi=\frac{f\circ\pi}{g\circ\pi} defines a holomorphic map f~/g~:Y1\tilde{f}/\tilde{g}:Y\to\mathbb{P}^{1}.

Let {Ei}iI\{E_{i}\}_{i\in I} be the irreducible components of FF. Some of the ingredients that we will use in the sequel are the relative canonical divisor, defined by the Jacobian determinant of π\pi, that we denote

Kπ=kiEi,K_{\pi}=\sum k_{i}E_{i},

and the total transforms of ff and gg that we denote by

f~=πf=Nf,iEi,g~=πg=Ng,iEi.\tilde{f}=\pi^{*}f=\sum N_{f,i}E_{i},\quad\quad\tilde{g}=\pi^{*}g=\sum N_{g,i}E_{i}.

We point out that these divisors can be decomposed into their exceptional and affine parts, depending on whether the divisor EiE_{i} has exceptional support or it corresponds to the components of the strict transform, which is the closure of π1(C{O})\pi^{-1}(C-\{O\}) with CC being the hypersurface defined by f=0f=0 or g=0g=0 respectively. We call vi(f):=Nf,iv_{i}(f):=N_{f,i} the value of ff at EiE_{i}.

Associated to the meromorphic germ f/gf/g we consider the divisor

F~=iINiEi,\tilde{F}=\sum_{i\in I}N_{i}E_{i},

with Ni:=Nf,iNg,i.N_{i}:=N_{f,i}-N_{g,i}. We define

F~0=Ni>0NiEi,F~=Ni<0NiEi.\tilde{F}_{0}=\sum_{N_{i}>0}N_{i}E_{i},\quad\tilde{F}_{\infty}=\sum_{N_{i}<0}N_{i}E_{i}.
Definition 2.1.

Let π:YU\pi:Y\longrightarrow U be a log resolution of a non-constant meromorphic germ f/g:(X,0)(,0).f/g:(X,0)\longrightarrow(\mathbb{C},0). We define the 0-multiplier ideal of f/gf/g at λ\lambda as the stalk at the origin of

𝒥((fg)λ)=π𝒪Y(KπλF~0),{\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\lambda}\right)=\pi_{*}\mathcal{O}_{Y}(\lceil K_{\pi}-\lambda\cdot\tilde{F}_{0}\rceil),

where \lceil\cdot\rceil denotes the upper integer part of a real number or \mathbb{R}-divisor. If no confusion arises we denote the stalk at the origin in the same way and thus 𝒥((fg)λ)𝒪X,O.{\mathcal{J}}((\frac{f}{g})^{\lambda})\subseteq{\mathcal{O}}_{X,O}.

A useful remark mentioned in [AGLN21] shows that we can describe the meromorphic multiplier ideal from the theory of mixed multiplier ideals 𝒥(fλ1gλ2){\mathcal{J}}(f^{\lambda_{1}}g^{\lambda_{2}}) associated to the pair of functions. Namely, pick tt\in\mathbb{N} such that tλt\geq\lambda. Then,

𝒥((fg)λ)=𝒥(fλgtλ):gt={h𝒪X,O|hgt𝒥(fλgtλ)}.{\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\lambda}\right)={\mathcal{J}}\left(f^{\lambda}g^{t-\lambda}\right):g^{t}=\left\{h\in{\mathcal{O}}_{X,O}\;|\;hg^{t}\in{\mathcal{J}}\left(f^{\lambda}g^{t-\lambda}\right)\right\}.
Remark 2.2.

Analogously, we define the \infty-multiplier ideal of f/gf/g at λ\lambda as the stalk at the origin of

𝒥((fg)λ)=π𝒪Y(Kπ+λF~)=𝒥((gf)λ).{\mathcal{J}}^{\infty}\left(\left(\frac{f}{g}\right)^{\lambda}\right)=\pi_{*}\mathcal{O}_{Y}(\lceil K_{\pi}+\lambda\cdot\tilde{F}_{\infty}\rceil)={\mathcal{J}}\left(\left(\frac{g}{f}\right)^{\lambda}\right).

Many of the properties of the classical multiplier ideals are still satisfied in the meromorphic case. For instance, the definition is independent of the chosen log resolution π\pi and there exists a discrete strictly increasing sequence of rational numbers λ1<λ2<\lambda_{1}<\lambda_{2}<\cdots such that

𝒥((fg)λi+1)𝒥((fg)c)=𝒥((fg)λi){\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\lambda_{i+1}}\right)\subsetneq{\mathcal{J}}\left(\left(\frac{f}{g}\right)^{c}\right)={\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\lambda_{i}}\right)

for c[λi,λi+1)c\in[\lambda_{i},\lambda_{i+1}), and all ii. These rational numbers are called the 0-jumping numbers of the meromorphic function f/gf/g. If no confusion may arise, we shall refer to them and to their corresponding 0-multiplier ideals simply as jumping numbers and multiplier ideals.

3. Explicit computation in dimension two

The classical case of multiplier ideals of holomorphic functions has been extensively studied when the complex smooth algebraic variety XX has dimension two. For simple complete ideals or irreducible plane curves, Järviletho [Jär11] and Naie [Nai09] provided a closed formula for the set of jumping numbers. For the case of any ideal or any plane curve we must refer to the work of Tucker [Tuc10] or the papers by the first two authors with Dachs-Cadefau and Alonso-González [AAD16, AADG17]. Hyry and Järviletho [HJ11, HJ18] also worked on this general setting in dimension two.

The method presented in [AAD16] is an algorithm that computes sequentially at each step a jumping number and its associated multiplier ideal and thus it provides the ordered sequence of multiplier ideals in any desired range of the real line. Combined with the effective methods developed by the first two authors with Blanco [AAB19, AAB21] one may start the algorithm with the equation of a plane curve or generators of any ideal and get a set of generators of each multiplier ideal as an output (see also [BD18]). In this section we will adjust these methods to the case of meromorphic functions. We present first the algorithm and then we will explain each step with some detail highlighting the main differences with the classical case.

Algorithm 3.1 (Jumping Numbers and Multiplier Ideals).

Input: A pair of holomorphic functions f,g𝒪X,Of,g\in\mathcal{O}_{X,O}.

Output: List of Jumping Numbers λ1<λ2<\lambda_{1}<\lambda_{2}<\dots of f/gf/g and a set of generators of their corresponding multiplier ideals.

  • (Step 1)

    Compute the minimal log resolution of f/gf/g and set F~0=Ni>0NiEi\tilde{F}_{0}=\sum_{N_{i}>0}N_{i}E_{i}.

  • (Step 2)

    Set λ0=0\lambda_{0}=0, eiλ0=0e_{i}^{\lambda_{0}}=0. From j=1j=1, incrementing by 11

    1. (Step 2.jj)
      1. \cdot

        Jumping number: Compute

        λj=minNi>0{ki+1+eiλj1Ni}.\lambda_{j}=\min_{N_{i}>0}\left\{\frac{k_{i}+1+e_{i}^{\lambda_{j-1}}}{N_{i}}\right\}.
      2. \cdot

        Multiplier ideal: Compute the antinef closure Dλj=eiλjEiD_{\lambda_{j}}=\sum e_{i}^{\lambda_{j}}E_{i} of λjF~0Kπ\lfloor\lambda_{j}\tilde{F}_{0}-K_{\pi}\rfloor using the unloading procedure. 𝒥((fg)λj)=π𝒪Y(Dλj){\mathcal{J}}((\frac{f}{g})^{\lambda_{j}})=\pi_{*}\mathcal{O}_{Y}(-D_{\lambda_{j}}).

      3. \cdot

        Generators: Give a system of generators of the complete ideal associated to DλjD_{\lambda_{j}}.

3.1. Computing the minimal log resolution of meromorphic functions

Computing the log resolution of reduced plane curves is an already well-known procedure see, for instance [CA00]. To obtain a log resolution of f/gf/g, one can begin with a log resolution of the curve defined by fgf\cdot g and then perform additional blow-ups to ensure a log resolution of the generic fibers of f/gf/g, which is achieved by blowing up the base points of the ideal (f,g)(f,g). These latter blow-ups also guarantee that each dicritical component EE of f/gf/g has appeared, i.e. an exceptional divisor EE for which the restricted map (f~/g~)|E:Y1(\tilde{f}/\tilde{g})_{|_{E}}:Y\to\mathbb{P}^{1} is surjective (non-constant). Notice that if EiE_{i} is a dicritical component then Ni=0N_{i}=0.

In [AC04], an algorithmic procedure was described to compute the base points of (f,g)(f,g); see also [AAB19]. To compute the log resolution of f/gf/g, we may adapt Algorithm 4.6 from [AAB19], which is more convenient since it begins with the log resolution of fgf\cdot g, by omitting the last part (steps v to viii). The finiteness and correctness of this procedure are proved there.

Algorithm 3.2 (Minimal log resolution of f/gf/g).

Input: A pair of holomorphic functions f,g{x,y}f,g\in\mathbb{C}\{x,y\}.

Output: Divisor F=iIEiF=\sum_{i\in I}E_{i} of the minimal log resolution of f/gf/g described by means of the proximity matrix, and the values (Nf,i,Ng,i)iI(N_{f,i},N_{g,i})_{i\in I} of ff and gg.

  1. (1)

    Find b=gcd(f,g)b=\gcd(f,g) and set f=ba1f=ba_{1}, g=ba2g=ba_{2}. Compute h=ba1a2h=ba_{1}a_{2}.

  2. (2)

    Find the exceptional divisor F=iIEiF^{\prime}=\sum_{i\in I^{\prime}}E_{i} of the minimal log resolution of the reduced germ ξred\xi_{\textrm{red}}, where ξ:h=0\xi:h=0, and the values vi(ak)v_{i}(a_{k}) and vi(b)v_{i}(b) at each EiE_{i}.
    Compute vi=mini{vi(a1),vi(a2)}v_{i}=\min_{i}\{v_{i}(a_{1}),v_{i}(a_{2})\} for iIi\in I^{\prime}.

  3. (3)

    Define F′′=iI′′EiFF^{\prime\prime}=\sum_{i\in I^{\prime\prime}}E_{i}\geq F^{\prime} by adding, if necessary, exceptional components of blow-ups of free points using the following criterion and set, for each new EiE_{i}, vi=min{vi(a1),vi(a2)}v_{i}=\min\{v_{i}(a_{1}),v_{i}(a_{2})\}.

    Repeat for k{1,2}k\in\{1,2\}:

    1. \cdot

      Blow-up the free point qEiq\in E_{i} on the strict transform of aka_{k},

    while vi(ak)=viv_{i}(a_{k})=v_{i}.

  4. (4)

    Define F=iIEiF′′F=\sum_{i\in I}E_{i}\geq F^{\prime\prime} by adding, if necessary, exceptional components of blow-ups of satellite points using the following criterion and set, for each new EiE_{i}, vi=min{vi(a1),vi(a2)}v_{i}=\min\{v_{i}(a_{1}),v_{i}(a_{2})\}.

    Repeat:

    1. \cdot

      Blow-up the satellite point qEiEjq\in E_{i}\cap E_{j},

    while vi(a1)>viv_{i}(a_{1})>v_{i} and vj(a2)>vjv_{j}(a_{2})>v_{j}.

  5. (5)

    Return FF and (Nf,i=vi(b)+vi(a1),Ng,i=vi(b)+vi(a2))iI\left(N_{f,i}=v_{i}(b)+v_{i}(a_{1}),N_{g,i}=v_{i}(b)+v_{i}(a_{2})\right)_{i\in I}.

Observe that the strategy of performing further blow-ups from the log resolution of fgf\cdot g until the irreducible components of the strict transform in ff and gg are separated by a dicritical component is rather vague. In contrast, Algorithm 3.2 determines precisely the minimal blow-ups needed to achieve that.

3.2. Computing the integral closure of an ideal

Let π:YX\pi:Y\longrightarrow X be a proper birational morphism obtained after a sequence of point blowings-up. An effective divisor with integral coefficients DDiv(Y)D\in{\rm Div}(Y) is called antinef if DEi0-D\cdot E_{i}\geqslant 0, for every exceptional prime divisor EiE_{i}. Lipman [Lip69] established a one to one correspondence between antinef divisors in Div(Y){\rm Div}(Y) and complete ideals in 𝒪X,O\mathcal{O}_{X,O}. Namely, given an effective divisor D=diEiDiv(Y)D=\sum d_{i}E_{i}\in\textrm{Div}_{\mathbb{Q}}(Y), we may consider its associated sheaf ideal π𝒪X(D)\pi_{*}\mathcal{O}_{X^{\prime}}(-D) whose stalk at OO is

HD={h𝒪X,O|vi(h)difor allEiD},H_{D}=\{h\in\mathcal{O}_{X,O}\ |\ v_{i}(h)\geqslant\lceil d_{i}\rceil\ \textrm{for all}\ E_{i}\leqslant D\},

where vi(h)v_{i}(h) is the value of hh at EiE_{i}. These ideals are complete, see [Zar38], and 𝔪\mathfrak{m}-primary whenever DD has exceptional support.

The divisors λjF~0Kπ\lfloor\lambda_{j}\tilde{F}_{0}-K_{\pi}\rfloor used in the definition of multiplier ideals are not antinef. Given a non-antinef divisor DD, one can compute an antinef divisor defining the same ideal, called the antinef closure, via the so called unloading procedure (see [AAD16, §2.2] or [CA00, §4.6]). The unloading procedure incrementally expands the exceptional part DexcD_{\rm exc} of DD to obtain the minimal antinef divisor DD^{\prime} containing DD. This is one of the key ingredients of the algorithm in [AAD16]. The finiteness and correctness of the unloading procedure it is proved there.

Algorithm 3.3 (Unloading procedure).

Input: A divisor DD.

Output: The divisor DD^{\prime} that is the antinef closure of DD.

Repeat

  1. \cdot

    Define Θ:={EiDexc|ρi=DEi<0}.\Theta:=\{E_{i}\leqslant D_{\rm exc}\hskip 5.69054pt|\hskip 5.69054pt\rho_{i}=-\lceil D\rceil\cdot E_{i}<0\}.

  2. \cdot

    Let ni=ρiEi2n_{i}=\left\lceil\frac{\rho_{i}}{E_{i}^{2}}\right\rceil for iΘi\in\Theta. Notice that (D+niEi)Ei0(\lceil D\rceil+n_{i}E_{i})\cdot E_{i}\leqslant 0.

  3. \cdot

    Define a new divisor as D=D+EiΘniEiD^{\prime}=\lceil D\rceil+\sum_{E_{i}\in\Theta}n_{i}E_{i}.

Until the resulting divisor DD^{\prime} is antinef.

3.3. Computing the generators of an ideal associated to an antinef divisor

Once we have the antinef divisor that describes the corresponding multiplier ideal of the meromorphic function we may use the algorithm developed in [AAB21] to compute a set of generators of the multiplier ideal. This step of our method does not require any adjustment for the case of meromorphic functions and we briefly recall it here.

First, start with a divisor DD, which we assume to be antinef. The divisor DD is decomposed into simple divisors D1,,DrD_{1},\dots,D_{r} by using Zariski’s decomposition theorem [Zar38, CA00]. This decomposition is precisely

D=ρiDi,whereρi=DEi0,D=\sum\rho_{i}D_{i},\quad\textrm{where}\quad\rho_{i}=-D\cdot E_{i}\geqslant 0,

and HDiH_{D_{i}} is a simple ideal appearing in the factorization of HDH_{D} with multiplicity ρi\rho_{i}.

Now, for each simple divisor DiD_{i}, compute DiD^{\prime}_{i} an antinef divisor defining an adjacent ideal HDiHDiH_{D^{\prime}_{i}}\subset H_{D_{i}}, such that DiD^{\prime}_{i} is the antinef closure of Di+EOD_{i}+E_{O} (EOE_{O} is the exceptional divisor obtained blowing-up the origin OO). Next, find an element f𝒪X,Of\in\mathcal{O}_{X,O} belonging to HDiH_{D_{i}} but not to HDiH_{D^{\prime}_{i}}. Now, DiD^{\prime}_{i} is no longer simple but has smaller support than DiD_{i}. This part is repeated with D:=DiD:=D^{\prime}_{i} until HDH_{D} is the maximal ideal 𝔪𝒪X,O\mathfrak{m}\subseteq\mathcal{O}_{X,O}.

This first part of the algorithm generates a tree where each vertex is an antinef divisor and where the leafs of the tree are all 𝔪\mathfrak{m}. The second part traverses the tree bottom-up computing in each node the ideal associated to the divisor. Using the notations from the above paragraph, given any node in the tree with divisor DD, the ideal HDH_{D} is computed multiplying the ideals in child nodes HD1HDrH_{D^{\prime}_{1}}\cdots H_{D^{\prime}_{r}} and adding the element ff to the resulting generators.

4. Skoda’s theorem version for meromorphic functions

Let f𝒪X,O={x1,,xn}f\in{\mathcal{O}}_{X,O}=\mathbb{C}\{x_{1},\dots,x_{n}\} be an holomorphic function and consider the classical multiplier ideals 𝒥(fλ){\mathcal{J}}(f^{\lambda}). A version of Skoda’s theorem for hypersurfaces [Laz04, §9] states that

𝒥(fλ+)=f𝒥(fλ){\mathcal{J}}\left({f}^{\lambda+\ell}\right)={f^{\ell}}{\mathcal{J}}\left(f^{\lambda}\right)

for every .\ell\in\mathbb{N}. This implies a peridiocity of the set of jumping numbers, indeed any jumping number is of the form λ+\lambda+\ell with λ\lambda being a jumping number in the interval [0,1][0,1] and .\ell\in\mathbb{N}.

For the case of meromorphic functions we only have a weaker version of Skoda’s theorem.

Proposition 4.1.

[AGLN21, Proposition 6.5] Let f,g𝒪X,Of,g\in{\mathcal{O}}_{X,O} be a nonzero elements and λ0\lambda\in\mathbb{R}_{\geq 0}. Then,

𝒥((fg)λ+)=(fg𝒥((fg)λ))𝒪X,O=f(𝒥((fg)λ):g){\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\lambda+\ell}\right)=\left(\frac{f^{\ell}}{g^{\ell}}\;{\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\lambda}\right)\right)\cap{\mathcal{O}}_{X,O}=f^{\ell}\left({\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\lambda}\right):g^{\ell}\right)

for every .\ell\in\mathbb{N}. In particular, if λ+1\lambda+1 is a jumping number, then λ\lambda is a jumping number.

We also have the following property.

Lemma 4.2.

[AGLN21, Lemma 7.5] For any λ>0\lambda\in\mathbb{R}_{>0} we have 𝒥(fλ)𝒥((fg)λ){\mathcal{J}}(f^{\lambda})\subseteq{\mathcal{J}}((\frac{f}{g})^{\lambda}). In addition, if ff and gg have no common factors, it holds 𝒥((fg)n)=(fn){\mathcal{J}}((\frac{f}{g})^{n})=(f^{n}) for any n>0n\in\mathbb{Z}_{>0}.

Additionally,

Lemma 4.3.

Let f,g{x,y}f,g\in\mathbb{C}\{x,y\}. If ff vanishes at the origin and has no common factor with gg, then >0\mathbb{Z}_{>0} are jumping numbers of the meromorphic function f/gf/g.

Proof.

Let EiE_{i} be an affine component of ff. Then Ni>0N_{i}>0, ki=0k_{i}=0, so λjNiki=λjNi=eiλj\lfloor\lambda_{j}N_{i}-k_{i}\rfloor=\lfloor\lambda_{j}\rfloor N_{i}=e_{i}^{\lambda_{j}}, where the last equality is due to the unloading procedure not modifying the multiplicity of affine components. Following Algorithm 3.1, if λj<n>0\lambda_{j}<n\in\mathbb{Z}_{>0} then eiλj=λjNinNi=einDλjDne_{i}^{\lambda_{j}}=\lfloor\lambda_{j}\rfloor N_{i}\neq nN_{i}=e_{i}^{n}\implies D_{\lambda_{j}}\neq D_{n}. Therefore, nn is a jumping number. ∎

These results lead to some behaviours of the set of jumping numbers that contrast with the classical case. For the rest of this section we will only consider the case of dimension two, that is 𝒪X,O={x,y}{\mathcal{O}}_{X,O}=\mathbb{C}\{x,y\}, and we will use Algorithm 3.1 to compute consecutive jumping numbers. In the sequel, we fix the following notation:

Let π:YU\pi:Y\longrightarrow U be a log resolution of the meromorphic function f/gf/g and consider the total transforms of ff and gg.

f~=πf=Nf,iEi,g~=πg=Ng,iEi.\tilde{f}=\pi^{*}f=\sum N_{f,i}E_{i},\quad\quad\tilde{g}=\pi^{*}g=\sum N_{g,i}E_{i}.

Consider also the relative canonical divisor Kπ=kiEiK_{\pi}=\sum k_{i}E_{i}.

Theorem 4.4.

Let f,g{x,y}f,g\in\mathbb{C}\{x,y\} be reduced holomorphic functions vanishing at the origin with no common factor. Then, there exist n>0n\in\mathbb{Z}_{>0} such that the only jumping numbers of the meromorphic function f/gf/g larger than nn are the integer numbers.

Proof.

Since ff is reduced, for any affine component EiE_{i} of ff we have Nf,i=1N_{f,i}=1. Moreover, since ff and gg do not have common factor, for these affine components we have Ng,i=0N_{g,i}=0 and thus Ni=Nf,iNg,i=1N_{i}=N_{f,i}-N_{g,i}=1. The relative canonical divisor only has exceptional support so we also have ki=0k_{i}=0 on affine components.

Now consider an integer jumping number λj1=n>0\lambda_{j-1}=n\in\mathbb{Z}_{>0} and recall that, by Lemma 4.2,

𝒥((fg)n)=(fn)=π𝒪Y(nf~),{\mathcal{J}}\left(\left(\frac{f}{g}\right)^{n}\right)=\left(f^{n}\right)=\pi_{*}\mathcal{O}_{Y}(-n\tilde{f}),

where nf~=nNf,iEin\tilde{f}=\sum nN_{f,i}\,E_{i} is an antinef divisor. Then, following Algorithm 3.1, the next jumping number is

λj=minNi>0{ki+1+nNf,iNi}.\lambda_{j}=\min_{N_{i}>0}\left\{\frac{k_{i}+1+nN_{f,i}}{N_{i}}\right\}.

We have that this next jumping number is n+1n+1 if and only if for all ii such that Ni>0N_{i}>0 we have:

n+1ki+1+nNf,iNi\displaystyle n+1\leqslant\frac{k_{i}+1+nN_{f,i}}{N_{i}} (n+1)(Nf,iNg,i)ki+1+nNf,i\displaystyle\iff(n+1)(N_{f,i}-N_{g,i})\leqslant k_{i}+1+nN_{f,i}
Nf,i(n+1)Ng,i+ki+1.\displaystyle\iff N_{f,i}\leqslant(n+1)N_{g,i}+k_{i}+1.

For the affine components of ff we have Nf,i=1N_{f,i}=1 (and Ng,i=0N_{g,i}=0, ki=0k_{i}=0) so the inequality is satisfied. We don’t consider the affine components of gg since Ni<0N_{i}<0. Since gg vanishes at the origin, for all exceptional components we have Ng,i1N_{g,i}\geqslant 1. Therefore, if nn is large enough, the inequality holds for all ii such that Ni>0N_{i}>0, and thus λj=λj1+1=n+1\lambda_{j}=\lambda_{j-1}+1=n+1.

Notice that, given a large enough integer jumping number λj1=n>0\lambda_{j-1}=n\in\mathbb{Z}_{>0} (which exists by Lemma 4.3), all the consecutive jumping numbers satisfy λi=λi1+1>0\lambda_{i}=\lambda_{i-1}+1\in\mathbb{Z}_{>0} for all iji\geqslant j. ∎

Using the notations we fixed in this section we also obtain the following:

Corollary 4.5.

Let f,g{x,y}f,g\in\mathbb{C}\{x,y\} be reduced holomorphic functions vanishing at the origin, with no common factor. Then, the jumping numbers of f/gf/g are precisely the set of integers >0\mathbb{Z}_{>0} if and only if Nf,iNg,i+ki+1N_{f,i}\leqslant N_{g,i}+k_{i}+1 for all ii.

5. Examples

In this section we provide examples where we compute the sequence of multiplier ideals of meromorphic functions using the algorithm developed in Section 2. In particular, we will illustrate the phenomenon described in Section 4. The algorithm has been implemented with the mathematical software Magma [BCP97] and is available at:

https://github.com/rogolop

Example 5.1.

Consider the holomorphic functions:

f=(y2x3)4+x8y5,\displaystyle f=(y^{2}-x^{3})^{4}+x^{8}y^{5},
g=y2x3.\displaystyle g=y^{2}-x^{3}.

The values of ff and gg are collected in the following vectors:

Nf=(8,12,24,28,31,31,60,92,124,125,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31),\displaystyle N_{f}=(8,12,24,28,31,31,60,92,124,125,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31),
Ng=(2,3,6,7,8,9,15,23,31,31,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31).\displaystyle N_{g}=(2,3,6,7,8,9,15,23,31,31,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31).

Therefore, we get the divisor F~0\tilde{F}_{0} given by the values

N=(6,9,18,21,23,22,45,69,93,94,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0).N=(6,9,18,21,23,22,45,69,93,94,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0).

The jumping numbers of the meromorphic function f/gf/g and the generators of the corresponding multiplier ideals are:

𝝀𝒋𝓙((𝒇/𝒈)𝝀𝒋)5/18x,y35/93x2,y13/31x2,xy,y243/93x3,xy,y247/93g,x2y,x317/31g,x4,xy2,x2y55/93g,x4,x3y𝟏𝟏/𝟏𝟖xg,x4,x3y,yg59/93x2y2,x5,xg,x3y,yg21/31x5,x4y,xg,yg𝟐𝟐/𝟑𝟏x2y2,x2g,x4y,yg,xy367/93x3y2,x2g,x4y,x6,yg𝟕𝟎/𝟗𝟑x2g,x3y2,x6,y2g,xyg,x4y71/93x2g,x5y,x6,y2g,xyg𝟕𝟒/𝟗𝟑x3y2,x2y3,x3g,y2g,xyg,x5y25/31x7,x3g,y2g,xyg,x5y,x4y2𝟐𝟔/𝟑𝟏g2,x7,x2yg,x3g,x5y,x4y279/93g2,x7,x2yg,x3g,x6y𝟖𝟐/𝟗𝟑g2,xy2g,x4g,x2yg,x3y3,x6y,x4y283/93g2,xy2g,x8,x4g,x2yg,x5y2,x6y𝟖𝟔/𝟗𝟑g2,x6y,x5y2,x8,x3yg,x4g29/31g2,x7y,x3yg,x8,x4g𝟏𝟕/𝟏𝟖x7y,xg2,x8,yg2,x3yg,x4g𝟑𝟎/𝟑𝟏x7y,x5y2,xg2,x5g,yg2,x3yg,x4y3,x2y2g91/93x7y,x9,xg2,x5g,yg2,x3yg,x6y2,x2y2g1f𝝀𝒋𝓙((𝒇/𝒈)𝝀𝒋)𝟐𝟗/𝟏𝟖f(x,y)𝟓𝟑/𝟑𝟏f(y,x2)𝟏𝟔𝟑/𝟗𝟑f(x2,xy,y2)𝟏𝟔𝟕/𝟗𝟑f(x3,xy,y2)𝟓𝟕/𝟑𝟏f(g,x2y,x3)𝟏𝟕𝟓/𝟗𝟑f(g,x4,xy2,x2y)𝟏𝟕𝟗/𝟗𝟑f(g,x4,x3y)𝟑𝟓/𝟏𝟖f(xg,x4,x3y,yg)𝟔𝟏/𝟑𝟏f(x2y2,x5,xg,x3y,yg)2f2𝟓𝟑/𝟏𝟖f2(x,y)3f34f45f56f67f78f89f9\begin{array}[]{c c c}\begin{array}[t]{|l|l|}\hline\cr\bm{\lambda_{j}}&\bm{{\mathcal{J}}((f/g)^{\lambda_{j}})}\\[0.0pt] \hline\cr\hline\cr 5/18&x,y\\ \hline\cr 35/93&x^{2},y\\ \hline\cr 13/31&x^{2},xy,y^{2}\\ \hline\cr 43/93&x^{3},xy,y^{2}\\ \hline\cr 47/93&g,x^{2}y,x^{3}\\ \hline\cr 17/31&g,x^{4},xy^{2},x^{2}y\\ \hline\cr 55/93&g,x^{4},x^{3}y\\ \hline\cr\bm{11/18}&xg,x^{4},x^{3}y,yg\\ \hline\cr 59/93&x^{2}y^{2},x^{5},xg,x^{3}y,yg\\ \hline\cr 21/31&x^{5},x^{4}y,xg,yg\\ \hline\cr\bm{22/31}&x^{2}y^{2},x^{2}g,x^{4}y,yg,xy^{3}\\ \hline\cr 67/93&x^{3}y^{2},x^{2}g,x^{4}y,x^{6},yg\\ \hline\cr\bm{70/93}&x^{2}g,x^{3}y^{2},x^{6},y^{2}g,xyg,x^{4}y\\ \hline\cr 71/93&x^{2}g,x^{5}y,x^{6},y^{2}g,xyg\\ \hline\cr\bm{74/93}&x^{3}y^{2},x^{2}y^{3},x^{3}g,y^{2}g,xyg,x^{5}y\\ \hline\cr 25/31&x^{7},x^{3}g,y^{2}g,xyg,x^{5}y,x^{4}y^{2}\\ \hline\cr\bm{26/31}&g^{2},x^{7},x^{2}yg,x^{3}g,x^{5}y,x^{4}y^{2}\\ \hline\cr 79/93&g^{2},x^{7},x^{2}yg,x^{3}g,x^{6}y\\ \hline\cr\bm{82/93}&g^{2},xy^{2}g,x^{4}g,x^{2}yg,x^{3}y^{3},x^{6}y,x^{4}y^{2}\\ \hline\cr 83/93&g^{2},xy^{2}g,x^{8},x^{4}g,x^{2}yg,x^{5}y^{2},x^{6}y\\ \hline\cr\bm{86/93}&g^{2},x^{6}y,x^{5}y^{2},x^{8},x^{3}yg,x^{4}g\\ \hline\cr 29/31&g^{2},x^{7}y,x^{3}yg,x^{8},x^{4}g\\ \hline\cr\bm{17/18}&x^{7}y,xg^{2},x^{8},yg^{2},x^{3}yg,x^{4}g\\ \hline\cr\bm{30/31}&x^{7}y,x^{5}y^{2},xg^{2},x^{5}g,yg^{2},x^{3}yg,x^{4}y^{3},x^{2}y^{2}g\\ \hline\cr 91/93&x^{7}y,x^{9},xg^{2},x^{5}g,yg^{2},x^{3}yg,x^{6}y^{2},x^{2}y^{2}g\\ \hline\cr 1&f\\ \hline\cr\end{array}&\quad\begin{array}[t]{|l|l|}\hline\cr\bm{\lambda_{j}}&\bm{{\mathcal{J}}((f/g)^{\lambda_{j}})}\\[0.0pt] \hline\cr\hline\cr\bm{29/18}&f\cdot(x,y)\\ \hline\cr\bm{53/31}&f\cdot(y,x^{2})\\ \hline\cr\bm{163/93}&f\cdot(x^{2},xy,y^{2})\\ \hline\cr\bm{167/93}&f\cdot(x^{3},xy,y^{2})\\ \hline\cr\bm{57/31}&f\cdot(g,x^{2}y,x^{3})\\ \hline\cr\bm{175/93}&f\cdot(g,x^{4},xy^{2},x^{2}y)\\ \hline\cr\bm{179/93}&f\cdot(g,x^{4},x^{3}y)\\ \hline\cr\bm{35/18}&f\cdot(xg,x^{4},x^{3}y,yg)\\ \hline\cr\bm{61/31}&f\cdot(x^{2}y^{2},x^{5},xg,x^{3}y,yg)\\ \hline\cr 2&f^{2}\\ \hline\cr\bm{53/18}&f^{2}\cdot(x,y)\\ \hline\cr 3&f^{3}\\ \hline\cr 4&f^{4}\\ \hline\cr 5&f^{5}\\ \hline\cr 6&f^{6}\\ \hline\cr 7&f^{7}\\ \hline\cr 8&f^{8}\\ \hline\cr 9&f^{9}\\ \hline\cr\lx@intercol\hfil\vdots\hfil\lx@intercol\end{array}\end{array}

Notice that the jumping numbers larger than 33 are only integer numbers which illustrates Theorem 4.4. We also point out that the version of Skoda’s theorem 4.1 gives us

𝒥((fg)2918)=𝒥((fg)1118+1)=f(𝒥((fg)1118):g)=f𝒥((fg)518).{\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\frac{29}{18}}\right)={\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\frac{11}{18}+1}\right)=f\cdot\left({\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\frac{11}{18}}\right):g\right)=f\cdot{\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\frac{5}{18}}\right).

In this case 𝒥((fg)1118){\mathcal{J}}\left(\left(\frac{f}{g}\right)^{\frac{11}{18}}\right) is the first ideal that does not contain gg. A similar phenomenon happens for the jumping numbers stated in bold at the table.

Example 5.2.

Consider the holomorphic funcions:

f=(y2x3)4+x8y5,\displaystyle f=(y^{2}-x^{3})^{4}+x^{8}y^{5},
g=y2+x3.\displaystyle g^{\prime}=y^{2}+x^{3}.

The values of ff and gg are collected in the following vectors:

Nf=(8,12,24,28,31,60,92,124,125,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24),\displaystyle N_{f}=(8,12,24,28,31,60,92,124,125,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24),
Ng=(2,3,6,6,6,12,18,24,24,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24).\displaystyle N_{g^{\prime}}=(2,3,6,6,6,12,18,24,24,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24).

Therefore, we get the divisor F~0\tilde{F}_{0} given by the values

N=(6,9,18,22,25,48,74,100,101,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0).N=(6,9,18,22,25,48,74,100,101,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0).

Comparing the jumping numbers of f/gf/g^{\prime} with the previous example (in which g=y2x3g=y^{2}-x^{3} and thus the log resolution of f/gf/g and f/gf/g^{\prime} differ):

𝒈=𝒚𝟐+𝒙𝟑\bm{g^{\prime}=y^{2}+x^{3}} 𝒈=𝒚𝟐𝒙𝟑\bm{g=y^{2}-x^{3}}
27100\frac{27}{100}, 720\frac{7}{20}, 39100\frac{39}{100}, 43100\frac{43}{100}, 47100\frac{47}{100}, 51100\frac{51}{100}, 1120\frac{11}{20}, 2950\frac{29}{50}, 59100\frac{59}{100}, 63100\frac{63}{100}, 3350\frac{33}{50}, 67100\frac{67}{100}, 710\frac{7}{10}, 71100\frac{71}{100}, 3750\frac{37}{50}, 34\frac{3}{4}, 3950\frac{39}{50}, 79100\frac{79}{100}, 4150\frac{41}{50}, 83100\frac{83}{100}, 4350\frac{43}{50}, 87100\frac{87}{100}, 89100\frac{89}{100}, 910\frac{9}{10}, 91100\frac{91}{100}, 4750\frac{47}{50}, 1920\frac{19}{20}, 97100\frac{97}{100}, 4950\frac{49}{50}, 99100\frac{99}{100} 518\frac{5}{18}, 3593\frac{35}{93}, 1331\frac{13}{31}, 4393\frac{43}{93}, 4793\frac{47}{93}, 1731\frac{17}{31}, 5593\frac{55}{93}, 1118\frac{11}{18}, 5993\frac{59}{93}, 2131\frac{21}{31}, 2231\frac{22}{31}, 6793\frac{67}{93}, 7093\frac{70}{93}, 7193\frac{71}{93}, 7493\frac{74}{93}, 2531\frac{25}{31}, 2631\frac{26}{31}, 7993\frac{79}{93}, 8293\frac{82}{93}, 8393\frac{83}{93}, 8693\frac{86}{93}, 2931\frac{29}{31}, 1718\frac{17}{18}, 3031\frac{30}{31}, 9193\frac{91}{93}
11, 151100\frac{151}{100}, 159100\frac{159}{100}, 163100\frac{163}{100}, 167100\frac{167}{100}, 171100\frac{171}{100}, 74\frac{7}{4}, 179100\frac{179}{100}, 9150\frac{91}{50}, 183100\frac{183}{100}, 187100\frac{187}{100}, 1910\frac{19}{10}, 191100\frac{191}{100}, 9750\frac{97}{50}, 3920\frac{39}{20}, 9950\frac{99}{50}, 199100\frac{199}{100} 11, 2918\frac{29}{18}, 5331\frac{53}{31}, 16393\frac{163}{93}, 16793\frac{167}{93}, 5731\frac{57}{31}, 17593\frac{175}{93}, 17993\frac{179}{93}, 3518\frac{35}{18}, 6131\frac{61}{31}
22, 114\frac{11}{4}, 283100\frac{283}{100}, 287100\frac{287}{100}, 291100\frac{291}{100}, 5920\frac{59}{20}, 299100\frac{299}{100} 22, 5318\frac{53}{18}
33, 399100\frac{399}{100} 33
44 44

The curves g=y2x3g=y^{2}-x^{3} and g=y2+x3g^{\prime}=y^{2}+x^{3} are analytically isomorphic. The difference in the jumping numbers is due to the different contact with the curve defined by ff. The higher contact results in less jumping numbers.

Example 5.3.

Consider the holomorphic functions

f=(y2x3)5+x18,\displaystyle f=(y^{2}-x^{3})^{5}+x^{18},
gk=(y2x3)k,\displaystyle g_{k}=(y^{2}-x^{3})^{k},

with k0k\in\mathbb{Z}_{\geqslant 0}. The contact of gkg_{k} with ff increases with the exponent kk, thus we get less jumping numbers.

𝒌=𝟎\bm{k=0} 𝒌=𝟏\bm{k=1} 𝒌=𝟐\bm{k=2} 𝒌=𝟑\bm{k=3} 𝒌=𝟒\bm{k=4} 𝒌𝟓\bm{k\geqslant 5}
16\frac{1}{6}, 41180\frac{41}{180}, 2390\frac{23}{90}, 1760\frac{17}{60}, 1445\frac{14}{45}, 61180\frac{61}{180}, 1130\frac{11}{30}, 71180\frac{71}{180}, 1945\frac{19}{45}, 77180\frac{77}{180}, 920\frac{9}{20}, 4190\frac{41}{90}, 4390\frac{43}{90}, 2960\frac{29}{60}, 91180\frac{91}{180}, 2345\frac{23}{45}, 815\frac{8}{15}, 97180\frac{97}{180}, 101180\frac{101}{180}, 1730\frac{17}{30}, 5390\frac{53}{90}, 107180\frac{107}{180}, 3760\frac{37}{60}, 2845\frac{28}{45}, 113180\frac{113}{180}, 2945\frac{29}{45}, 1320\frac{13}{20}, 5990\frac{59}{90}, 121180\frac{121}{180}, 6190\frac{61}{90}, 4160\frac{41}{60}, 710\frac{7}{10}, 127180\frac{127}{180}, 3245\frac{32}{45}, 131180\frac{131}{180}, 1115\frac{11}{15}, 133180\frac{133}{180}, 3445\frac{34}{45}, 137180\frac{137}{180}, 2330\frac{23}{30}, 4760\frac{47}{60}, 7190\frac{71}{90}, 143180\frac{143}{180}, 7390\frac{73}{90}, 4960\frac{49}{60}, 3745\frac{37}{45}, 149180\frac{149}{180}, 151180\frac{151}{180}, 3845\frac{38}{45}, 1720\frac{17}{20}, 7790\frac{77}{90}, 1315\frac{13}{15}, 157180\frac{157}{180}, 7990\frac{79}{90}, 5360\frac{53}{60}, 161180\frac{161}{180}, 910\frac{9}{10}, 163180\frac{163}{180}, 4145\frac{41}{45}, 8390\frac{83}{90}, 167180\frac{167}{180}, 1415\frac{14}{15}, 169180\frac{169}{180}, 1920\frac{19}{20}, 4345\frac{43}{45}, 173180\frac{173}{180}, 2930\frac{29}{30}, 4445\frac{44}{45}, 5960\frac{59}{60}, 8990\frac{89}{90}, 179180\frac{179}{180} 524\frac{5}{24}, 41144\frac{41}{144}, 2372\frac{23}{72}, 1748\frac{17}{48}, 718\frac{7}{18}, 61144\frac{61}{144}, 1124\frac{11}{24}, 71144\frac{71}{144}, 1936\frac{19}{36}, 77144\frac{77}{144}, 916\frac{9}{16}, 4172\frac{41}{72}, 4372\frac{43}{72}, 2948\frac{29}{48}, 91144\frac{91}{144}, 2336\frac{23}{36}, 23\frac{2}{3}, 97144\frac{97}{144}, 101144\frac{101}{144}, 1724\frac{17}{24}, 5372\frac{53}{72}, 107144\frac{107}{144}, 3748\frac{37}{48}, 79\frac{7}{9}, 113144\frac{113}{144}, 2936\frac{29}{36}, 1316\frac{13}{16}, 5972\frac{59}{72}, 121144\frac{121}{144}, 6172\frac{61}{72}, 4148\frac{41}{48}, 78\frac{7}{8}, 127144\frac{127}{144}, 89\frac{8}{9}, 131144\frac{131}{144}, 1112\frac{11}{12}, 133144\frac{133}{144}, 1718\frac{17}{18}, 137144\frac{137}{144}, 2324\frac{23}{24}, 4748\frac{47}{48}, 7172\frac{71}{72}, 143144\frac{143}{144} 518\frac{5}{18}, 41108\frac{41}{108}, 2354\frac{23}{54}, 1736\frac{17}{36}, 1427\frac{14}{27}, 61108\frac{61}{108}, 1118\frac{11}{18}, 71108\frac{71}{108}, 1927\frac{19}{27}, 77108\frac{77}{108}, 34\frac{3}{4}, 4154\frac{41}{54}, 4354\frac{43}{54}, 2936\frac{29}{36}, 91108\frac{91}{108}, 2327\frac{23}{27}, 89\frac{8}{9}, 97108\frac{97}{108}, 101108\frac{101}{108}, 1718\frac{17}{18}, 5354\frac{53}{54}, 107108\frac{107}{108} 512\frac{5}{12}, 4172\frac{41}{72}, 2336\frac{23}{36}, 1724\frac{17}{24}, 79\frac{7}{9}, 6172\frac{61}{72}, 1112\frac{11}{12}, 7172\frac{71}{72} 56\frac{5}{6}
1+(1+(jumping numbers
between 0 and 1)1)
11, 3524\frac{35}{24}, 221144\frac{221}{144}, 11372\frac{113}{72}, 7748\frac{77}{48}, 5936\frac{59}{36}, 241144\frac{241}{144}, 4124\frac{41}{24}, 251144\frac{251}{144}, 169\frac{16}{9}, 257144\frac{257}{144}, 2916\frac{29}{16}, 13172\frac{131}{72}, 13372\frac{133}{72}, 8948\frac{89}{48}, 271144\frac{271}{144}, 179\frac{17}{9}, 2312\frac{23}{12}, 277144\frac{277}{144}, 281144\frac{281}{144}, 4724\frac{47}{24}, 14372\frac{143}{72}, 287144\frac{287}{144} 11, 3518\frac{35}{18} 11 11 11
2+(2+(jumping numbers
between 0 and 1)1)
22, 6524\frac{65}{24}, 401144\frac{401}{144}, 20372\frac{203}{72}, 13748\frac{137}{48}, 269\frac{26}{9}, 421144\frac{421}{144}, 7124\frac{71}{24}, 431144\frac{431}{144} 22 22 22 22
3+(3+(jumping numbers
between 0 and 1)1)
33, 9524\frac{95}{24} 33 33 33 33
4+(4+(jumping numbers
between 0 and 1)1)
44 44 44 44 44

References

  • [AC04] Maria Alberich-Carramiñana, An algorithm for computing the singularity of the generic germ of a pencil of plane curves, Comm. Algebra 32 (2004), no. 4, 1637–1646. MR 2100381
  • [AAB19] Maria Alberich-Carramiñana, Josep Àlvarez Montaner, and Guillem Blanco, Effective computation of base points of ideals in two-dimensional local rings, J. Symbolic Comput. 92 (2019), 93–109. MR 3907349
  • [AAB21] by same author, Monomial generators of complete planar ideals, J. Algebra Appl. 20 (2021), no. 3, Paper No. 2150032, 24. MR 4242204
  • [AAD16] Maria Alberich-Carramiñana, Josep Àlvarez Montaner, and Ferran Dachs-Cadefau, Multiplier ideals in two-dimensional local rings with rational singularities, Michigan Math. J. 65 (2016), no. 2, 287–320. MR 3510908
  • [AADG17] Maria Alberich-Carramiñana, Josep Àlvarez Montaner, Ferran Dachs-Cadefau, and Víctor González-Alonso, Poincaré series of multiplier ideals in two-dimensional local rings with rational singularities, Adv. Math. 304 (2017), 769–792. MR 3558221
  • [AGLN21] Josep Àlvarez Montaner, Manuel González-Villa, Edwin León-Cardenal, and Luis Núñez Betancourt, Bernstein-Sato polynomial and related invariants for meromorphic functions, arXiv:2112.08492 (2021).
  • [BD18] Guillem Blanco and Ferran Dachs Cadefau, Computing multiplier ideals in smooth surfaces, Extended abstracts February 2016—positivity and valuations, Trends Math. Res. Perspect. CRM Barc., vol. 9, Birkhäuser/Springer, Cham, 2018, pp. 57–63. MR 3946254
  • [BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computational algebra and number theory (London, 1993). MR MR1484478
  • [CA00] Eduardo Casas-Alvero, Singularities of plane curves, London Mathematical Society Lecture Note Series, vol. 276, Cambridge University Press, Cambridge, 2000. MR 1782072
  • [HJ11] Eero Hyry and Tarmo Järvilehto, Jumping numbers and ordered tree structures on the dual graph, Manuscripta Math. 136 (2011), no. 3-4, 411–437. MR 2844818
  • [HJ18] by same author, A formula for jumping numbers in a two-dimensional regular local ring, J. Algebra 516 (2018), 437–470. MR 3863487
  • [Jär11] Tarmo Järvilehto, Jumping numbers of a simple complete ideal in a two-dimensional regular local ring, Mem. Amer. Math. Soc. 214 (2011), no. 1009, viii+78. MR 2856648
  • [Laz04] Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 49, Springer-Verlag, Berlin, 2004.
  • [Lip69] Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 195–279. MR 276239
  • [Nai09] Daniel Naie, Jumping numbers of a unibranch curve on a smooth surface, Manuscripta Math. 128 (2009), no. 1, 33–49. MR 2470185
  • [Tak23] Kiyoshi Takeuchi, On a Bernstein-Sato polynomial of a meromorphic function, Nagoya Math. J. 251 (2023), 715–733. MR 4637148
  • [Tuc10] Kevin Tucker, Jumping numbers on algebraic surfaces with rational singularities, Trans. Amer. Math. Soc. 362 (2010), no. 6, 3223–3241. MR 2592954
  • [Zar38] Oscar Zariski, Polynomial ideals defined by infinitely near base points, Amer. J. Math. 60 (1938), no. 1, 151–204.