This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Multiplication Operators between Lipschitz-Type Spaces on a Tree

Robert F. Allen1, Flavia Colonna2, and Glenn R. Easley3 1Department of Mathematics, University of Wisconsin–La Crosse 2Department of Mathematical Sciences, George Mason University 3System Planning Corporation allen.rob3@uwlax.edu, fcolonna@gmu.edu, geasley@sysplan.com
Abstract.

Let \displaystyle\mathcal{L} be the space of complex-valued functions f\displaystyle f on the set of vertices T\displaystyle T of an rooted infinite tree rooted at o\displaystyle o such that the difference of the values of f\displaystyle f at neighboring vertices remains bounded throughout the tree, and let w\displaystyle\mathcal{L}_{\textbf{w}} be the set of functions f\displaystyle f\in\mathcal{L} such that |f(v)f(v)|=O(|v|1)\displaystyle|f(v)-f(v^{-})|=O(|v|^{-1}), where |v|\displaystyle|v| is the distance between o\displaystyle o and v\displaystyle v and v\displaystyle v^{-} is the neighbor of v\displaystyle v closest to o\displaystyle o. In this article, we characterize the bounded and the compact multiplication operators between \displaystyle\mathcal{L} and w\displaystyle\mathcal{L}_{\textbf{w}}, and provide operator norm and essential norm estimates. Furthermore, we characterize the bounded and compact multiplication operators between w\displaystyle\mathcal{L}_{\textbf{w}} and the space L\displaystyle L^{\infty} of bounded functions on T\displaystyle T and determine their operator norm and their essential norm. We establish that there are no isometries among the multiplication operators between these spaces.

Key words and phrases:
Multiplication operators, Trees, Lipschitz space
2010 Mathematics Subject Classification:
primary: 47B38; secondary: 05C05

1. Introduction

Let 𝒳\displaystyle\mathcal{X} and 𝒴\displaystyle\mathcal{Y} be complex Banach spaces of functions defined on a set Ω\displaystyle\Omega. For a complex-valued function ψ\displaystyle\psi defined on Ω\displaystyle\Omega, the multiplication operator with symbol ψ\displaystyle\psi from 𝒳\displaystyle\mathcal{X} to 𝒴\displaystyle\mathcal{Y} is defined as

Mψf=ψf, for all f𝒳.\displaystyle M_{\psi}f=\psi f,\hbox{ for all }f\in\mathcal{X}.

A fundamental objective in the study of the operators with symbol is to tie the properties of the operator to the function-theoretic properties of the symbol.

When Ω\displaystyle\Omega is taken to be the open unit disk 𝔻\displaystyle\mathbb{D} in the complex plane, an important space of functions to study is the Bloch space, defined as the set \displaystyle\mathcal{B} of the analytic functions f:𝔻\displaystyle f:\mathbb{D}\to\mathbb{C} for which

βf=supz𝔻(1|z|2)|f(z)|<.\displaystyle\beta_{f}=\sup_{z\in\mathbb{D}}(1-\left|z\right|^{2})\left|f^{\prime}(z)\right|<\infty.

The Bloch space can also be described as the set consisting of the Lipschitz functions between metric spaces from 𝔻\displaystyle\mathbb{D} endowed with the Poincaré distance ρ\displaystyle\rho to \displaystyle\mathbb{C} endowed with the Euclidean distance, a fact that was proved by the second author in [4] (see also [8]). In fact, f\displaystyle f\in\mathcal{B} if and only if there exist β>0\displaystyle\beta>0 such that

|f(z)f(w)|βρ(z,w),\displaystyle\left|f(z)-f(w)\right|\leq\beta\rho(z,w),

and

βf=supzw|f(z)f(w)|ρ(z,w).\displaystyle\beta_{f}=\sup_{z\neq w}\frac{\left|f(z)-f(w)\right|}{\rho(z,w)}.

More recently, considerable research has been carried out in the field of operator theory when the set Ω\displaystyle\Omega is taken to be a discrete structure, such as a discrete group or a graph. In this work, we consider the case when Ω\displaystyle\Omega is taken to be an infinite tree.

By a tree T\displaystyle T we mean a locally finite, connected, and simply-connected graph, which, as a set, we identify with the collection of its vertices. Two vertices u\displaystyle u and v\displaystyle v are called neighbors if there is an edge connecting them, and we use the notation uv\displaystyle u\sim v. A vertex is called terminal if it has a unique neighbor. A path is a finite or infinite sequence of vertices [v0,v1,]\displaystyle[v_{0},v_{1},\dots] such that vkvk+1\displaystyle v_{k}\sim v_{k+1} and vk1vk+1\displaystyle v_{k-1}\neq v_{k+1}, for all k\displaystyle k.

Given a tree T\displaystyle T rooted at o\displaystyle o and a vertex uT\displaystyle u\in T, a vertex v\displaystyle v is called a descendant of u\displaystyle u if u\displaystyle u lies in the unique path from o\displaystyle o to v\displaystyle v. The vertex u\displaystyle u is then called an ancestor of v\displaystyle v. Given a vertex vo\displaystyle v\neq o, we denote by v\displaystyle v^{-} the unique neighbor which is an ancestor of v\displaystyle v. For vT\displaystyle v\in T, The set Sv\displaystyle S_{v} consisting of v\displaystyle v and all its descendants is called the sector determined by v\displaystyle v.

Define the length of a finite path [u=u0,u1,,v=un]\displaystyle[u=u_{0},u_{1},\dots,v=u_{n}] (with ukuk+1\displaystyle u_{k}\sim u_{k+1} for k=0,,n\displaystyle k=0,\dots,n) to be the number n\displaystyle n of edges connecting u\displaystyle u to v\displaystyle v. The distance, d(u,v)\displaystyle d(u,v), between vertices u\displaystyle u and v\displaystyle v is the length of the path connecting u\displaystyle u to v\displaystyle v. The tree T\displaystyle T is a metric space under the distance d\displaystyle d. Fixing o\displaystyle o as the root of the tree, we define the length of a vertex v\displaystyle v, by |v|=d(o,v)\displaystyle|v|=d(o,v). By a function on a tree we mean a complex-valued function on the set of its vertices.

In this paper, the tree will be assumed to be rooted at a vertex o\displaystyle o and without terminal vertices (and hence infinite).

Infinite trees are discrete structures which exhibit significant geometric and potential-theoretic characteristics that are present in the Poincaré disk 𝔻\displaystyle\mathbb{D}. For instance, they have a boundary, which is defined as the set of equivalence classes of paths which differ by finitely many vertices. The union of the boundary with the tree yields a compact space. A useful resource for the potential theory on trees illustrating the commonalities with the disk is [2]. In [3] it was shown that, if the tree has the property that all its vertices have the same number of neighbors, then there is a natural embedding of the tree in the unit disk such that the edges of the tree are arcs of geodesics in 𝔻\displaystyle\mathbb{D} with the same hyperbolic length and the set of cluster points of the vertices is the entire unit circle.

In [5], the last two authors defined the Lipschitz space \displaystyle\mathcal{L} on a tree T\displaystyle T as the set consisting of the functions f:T\displaystyle f:T\to\mathbb{C} which are Lipschitz with respect to the distance d\displaystyle d on T\displaystyle T and the Euclidean distance on \displaystyle\mathbb{C}. For this reason, the Lipschitz space \displaystyle\mathcal{L} can be viewed as a discrete analogue of the Bloch space \displaystyle\mathcal{B}. It was also shown that the Lipschitz functions on T\displaystyle T are precisely the functions for which

Df=supvTDf(v)<,\displaystyle\|Df\|_{\infty}=\sup_{v\in T^{*}}Df(v)<\infty,

where Df(v)=|f(v)f(v)|\displaystyle Df(v)=|f(v)-f(v^{-})| and T=T{o}\displaystyle T^{*}=T\setminus\{o\}. Under the norm

f=|f(o)|+Df,\displaystyle\|f\|_{\mathcal{L}}=|f(o)|+\|Df\|_{\infty},

\displaystyle\mathcal{L} is a Banach space containing the space L\displaystyle L^{\infty} of the bounded functions on T\displaystyle T. Furthermore, for fL\displaystyle f\in L^{\infty}, f2f\displaystyle\|f\|_{\mathcal{L}}\leq 2\|f\|_{\infty}.

The little Lipschitz space is defined as

0={f:lim|v|Df(v)=0},\displaystyle\mathcal{L}_{0}=\left\{f\in\mathcal{L}:\lim_{|v|\to\infty}Df(v)=0\right\},

and was proven to be a separable closed subspace of \displaystyle\mathcal{L}. We state the following results that will be useful in the present work.

Lemma 1.1 (Lemma 3.4 of [5]).

  1. (a)

    If f\displaystyle f\in\mathcal{L} and vT\displaystyle v\in T, then

    |f(v)||f(o)|+|v|Df.\displaystyle|f(v)|\leq|f(o)|+|v|\\ \|Df\|_{\infty}.

    In particular, if f1\displaystyle\|f\|_{\mathcal{L}}\leq 1, then |f(v)||v|\displaystyle|f(v)|\leq|v| for each vT\displaystyle v\in T^{*}.

  2. (b)

    If f0\displaystyle f\in\mathcal{L}_{0}, then

    lim|v|f(v)|v|=0.\displaystyle\lim_{|v|\to\infty}\frac{f(v)}{|v|}=0.
Lemma 1.2 (Proposition 2.4 of [5]).

Let {fn}\displaystyle\{f_{n}\} be a sequence of functions in 0\displaystyle\mathcal{L}_{0} converging to 0\displaystyle 0 pointwise in T\displaystyle T and such that {fn}\displaystyle\{\|f_{n}\|_{\mathcal{L}}\} is bounded. Then fn0\displaystyle f_{n}\to 0 weakly in 0\displaystyle\mathcal{L}_{0}.

In [1], we introduced the weighted Lipschitz space on a tree T\displaystyle T as the set w\displaystyle\mathcal{L}_{\textbf{w}} of the functions f:T\displaystyle f:T\to\mathbb{C} such that

supvT|v|Df(v)<.\displaystyle\sup_{v\in T^{*}}|v|Df(v)<\infty.

The interest in this space is due to its connection to the bounded multiplication operators on \displaystyle\mathcal{L}. Specifically, it was shown in [5] that the bounded multiplication operators on \displaystyle\mathcal{L} are precisely those operators Mψ\displaystyle M_{\psi} whose symbol ψ\displaystyle\psi is a bounded function in w\displaystyle\mathcal{L}_{\textbf{w}}. The space w\displaystyle\mathcal{L}_{\textbf{w}} was shown to be a Banach space under the norm

fw=|f(o)|+supvT|v|Df(v).\displaystyle\|f\|_{\textbf{w}}=|f(o)|+\sup_{v\in T^{*}}|v|Df(v).

The little weighted Lipschitz space was defined as

w,0={fw:lim|v||v|Df(v)=0},\displaystyle\mathcal{L}_{\textbf{w},0}=\left\{f\in\mathcal{L}_{\textbf{w}}:\lim_{|v|\to\infty}|v|Df(v)=0\right\},

and was shown to be a closed separable subspace of w\displaystyle\mathcal{L}_{\textbf{w}}.

In this paper, we shall make repeated use of the following results proved in [1].

Lemma 1.3 (Propositions 2.1 and 2.6 of [1]).

  1. (a)

    If fw\displaystyle f\in\mathcal{L}_{\textbf{w}}, and vT\displaystyle v\in T^{*}, then

    |f(v)|(1+log|v|)fw.\displaystyle|f(v)|\leq(1+\log|v|)\|f\|_{\textbf{w}}.
  2. (b)

    If fw,0\displaystyle f\in\mathcal{L}_{{\textbf{w}},0}, then

    lim|v|f(v)log|v|=0.\displaystyle\lim_{|v|\to\infty}\frac{f(v)}{\log|v|}=0.
Lemma 1.4 (Proposition 2.7 of [1]).

Let {fn}\displaystyle\{f_{n}\} be a sequence of functions in w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} converging to 0\displaystyle 0 pointwise in T\displaystyle T and such that {fnw}\displaystyle\{\|f_{n}\|_{\textbf{w}}\} is bounded. Then fn0\displaystyle f_{n}\to 0 weakly in w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}.

In this paper, we consider the multiplication operators between \displaystyle\mathcal{L} and w\displaystyle\mathcal{L}_{\textbf{w}}, as well as between w\displaystyle\mathcal{L}_{\textbf{w}} and L\displaystyle L^{\infty}. The multiplication operators between \displaystyle\mathcal{L} and L\displaystyle L^{\infty} were studied by the last two authors in [6].

1.1. Organization of the paper

In Sections 2 and 3, we study the multiplication operators between w\displaystyle\mathcal{L}_{{\textbf{w}}} and \displaystyle\mathcal{L}. We characterize the bounded and the compact operators, and give estimates on their operator norm and their essential norm. We also prove that no isometric multiplication operators exist between the respective spaces.

In Section 4, we characterize the bounded operators and the compact operators from w\displaystyle\mathcal{L}_{{\textbf{w}}} to L\displaystyle L^{\infty} and determine their operator norm and their essential norm. As was the case in Sections 2 and 3, we show that no isometries exist amongst such operators. In addition, we characterize the multiplication operators that are bounded from below.

Finally, in Section 5, we characterize the bounded and the compact multiplication operators from L\displaystyle L^{\infty} to w\displaystyle\mathcal{L}_{{\textbf{w}}}. We also determine their operator norm and their essential norm. As with all the other cases, we show that there are no isometries amongst such operators.

2. Multiplication operators from w\displaystyle\mathcal{L}_{\textbf{w}} to \displaystyle\mathcal{L}

We begin the section with the study the bounded multiplication operators Mψ:w\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to\mathcal{L} and Mψ:w,00\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w},0}\to\mathcal{L}_{0}.

2.1. Boundedness and Operator Norm Estimates

Let ψ\displaystyle\psi be a function on the tree T\displaystyle T. Define

τψ\displaystyle\tau_{\psi} =supvTDψ(v)log(1+|v|),\displaystyle=\sup_{v\in T^{*}}D\psi(v)\log(1+|v|),
σψ\displaystyle\sigma_{\psi} =supvT|ψ(v)||v|+1.\displaystyle=\sup_{v\in T}\frac{|\psi(v)|}{|v|+1}.

In the following theorem, we give a boundedness criterion in terms of the quantities τψ\displaystyle\tau_{\psi} and σψ\displaystyle\sigma_{\psi}.

Theorem 2.1.

For a function ψ\displaystyle\psi on T\displaystyle T, the following statements are equivalent:

  1. (a)

    Mψ:w\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to\mathcal{L} is bounded.

  2. (b)

    Mψ:w,00\displaystyle M_{\psi}:\mathcal{L}_{{\textbf{w}},0}\to\mathcal{L}_{0} is bounded.

  3. (c)

    τψ\displaystyle\tau_{\psi} and σψ\displaystyle\sigma_{\psi} are finite.

Furthermore, under these conditions, we have

max{τψ,σψ}Mψτψ+σψ.\displaystyle\max\{\tau_{\psi},\sigma_{\psi}\}\leq\|M_{\psi}\|\leq\tau_{\psi}+\sigma_{\psi}.
Proof.

(a)(c)\displaystyle(a)\Longrightarrow(c) Assume Mψ:w\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to\mathcal{L} is bounded. Applying Mψ\displaystyle M_{\psi} to the constant function 1, we have ψ\displaystyle\psi\in\mathcal{L}, so that, by Lemma 1.1, we have σψ<\displaystyle\sigma_{\psi}<\infty. Next, consider the function f\displaystyle f on T\displaystyle T defined by f(v)=log(1+|v|)\displaystyle f(v)=\log(1+|v|). Then f(o)=0\displaystyle f(o)=0; for vo\displaystyle v\neq o, a straightforward calculation shows that

|v|Df(v)=|v|(log(1+|v|)log|v|)1\displaystyle|v|Df(v)=|v|(\log(1+|v|)-\log|v|)\leq 1

and lim|v||v|Df(v)=1\displaystyle\lim\limits_{|v|\to\infty}|v|Df(v)=1. Thus, fw=1\displaystyle\|f\|_{\textbf{w}}=1 and so MψfMψ\displaystyle\|M_{\psi}f\|_{\mathcal{L}}\leq\|M_{\psi}\|. Therefore, for vT\displaystyle v\in T^{*}, noting that

D(ψf)(v)=Dψ(v)f(v)+ψ(v)Df(v),\displaystyle D(\psi f)(v)=D\psi(v)f(v)+\psi(v^{-})Df(v),

we have

Dψ(v)|f(v)|\displaystyle\displaystyle D\psi(v)|f(v)| \displaystyle\displaystyle\leq D(ψf)(v)+|ψ(v)|Df(v)\displaystyle\displaystyle D(\psi f)(v)+|\psi(v^{-})|Df(v)
\displaystyle\displaystyle\leq Mψf+σψ|v|Df(v)Mψ+σψ.\displaystyle\displaystyle\|M_{\psi}f\|_{\mathcal{L}}+\sigma_{\psi}|v|Df(v)\leq\|M_{\psi}\|+\sigma_{\psi}.

Hence τψ<.\displaystyle\tau_{\psi}<\infty.

(c)(a)\displaystyle(c)\Longrightarrow(a) Assume τψ\displaystyle\tau_{\psi} and σψ\displaystyle\sigma_{\psi} are finite. Then, by Lemma 1.3, for fw\displaystyle f\in\mathcal{L}_{\textbf{w}} and vT\displaystyle v\in T^{*}, we have

D(ψf)(v)\displaystyle\displaystyle D(\psi f)(v) \displaystyle\displaystyle\leq Dψ(v)|f(v)|+|ψ(v)|Df(v)\displaystyle\displaystyle D\psi(v)|f(v)|+|\psi(v^{-})|Df(v)
\displaystyle\displaystyle\leq Dψ(v)(1+log|v|)fw+|v|σψDf(v)\displaystyle\displaystyle D\psi(v)(1+\log|v|)\|f\|_{\textbf{w}}+|v|\sigma_{\psi}Df(v)
\displaystyle\displaystyle\leq τψfw+σψ(fw|f(o)|).\displaystyle\displaystyle\tau_{\psi}\|f\|_{\textbf{w}}+\sigma_{\psi}(\|f\|_{\textbf{w}}-|f(o)|).

Thus, since |ψ(o)|σψ\displaystyle|\psi(o)|\leq\sigma_{\psi}, we obtain

Mψf\displaystyle\displaystyle\|M_{\psi}f\|_{\mathcal{L}} \displaystyle\displaystyle\leq |ψ(o)||f(o)|+τψfw+σψ(fw|f(o)|)\displaystyle\displaystyle|\psi(o)||f(o)|+\tau_{\psi}\|f\|_{\textbf{w}}+\sigma_{\psi}(\|f\|_{\textbf{w}}-|f(o)|)
=\displaystyle\displaystyle= (τψ+σψ)fw+(|ψ(o)|σψ)|f(o)|\displaystyle\displaystyle(\tau_{\psi}+\sigma_{\psi})\|f\|_{\textbf{w}}+(|\psi(o)|-\sigma_{\psi})|f(o)|
\displaystyle\displaystyle\leq (τψ+σψ)fw,\displaystyle\displaystyle\left(\tau_{\psi}+\sigma_{\psi}\right)\|f\|_{\textbf{w}},

proving the boundedness of Mψ:w\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to\mathcal{L} and the upper estimate.

(b)(c)\displaystyle(b)\Longrightarrow(c) Suppose Mψ:w,00\displaystyle M_{\psi}:\mathcal{L}_{{\textbf{w}},0}\to\mathcal{L}_{0} is bounded. The finiteness of σψ\displaystyle\sigma_{\psi} follows again from the fact that ψ=Mψ10\displaystyle\psi=M_{\psi}1\in\mathcal{L}_{0} and from Lemma 1.1. To prove that τψ<\displaystyle\tau_{\psi}<\infty, let 0<α<1\displaystyle 0<\alpha<1 and, for vT\displaystyle v\in T, define fα(v)=(log(1+|v|))α\displaystyle f_{\alpha}(v)=(\log(1+|v|))^{\alpha}. Then fα(o)=0\displaystyle f_{\alpha}(o)=0 and |v|Dfa(v)0\displaystyle|v|Df_{a}(v)\to 0 as |v|\displaystyle|v|\to\infty; so fαw,0\displaystyle f_{\alpha}\in\mathcal{L}_{{\textbf{w}},0}. Since for 0<α<1\displaystyle 0<\alpha<1, the function xxxα\displaystyle x\mapsto x-x^{\alpha} is increasing for x1\displaystyle x\geq 1, the function Dfα(v)\displaystyle Df_{\alpha}(v) is increasing in α\displaystyle\alpha and Dfα(v)Df(v)\displaystyle Df_{\alpha}(v)\leq Df(v) for vT\displaystyle v\in T^{*}, where f(v)=log(1+|v|)\displaystyle f(v)=\log(1+|v|), for vT\displaystyle v\in T. Thus, fαwfw=1\displaystyle\|f_{\alpha}\|_{\textbf{w}}\leq\|f\|_{\textbf{w}}=1. Therefore, for vT\displaystyle v\in T^{*}, we have

Dψ(v)|fα(v)|\displaystyle\displaystyle D\psi(v)|f_{\alpha}(v)| \displaystyle\displaystyle\leq D(ψfα)(v)+|ψ(v)|Dfα(v)\displaystyle\displaystyle D(\psi f_{\alpha})(v)+|\psi(v^{-})|Df_{\alpha}(v)
\displaystyle\displaystyle\leq Mψfα+σψ|v|Dfα(v)Mψ+σψ.\displaystyle\displaystyle\|M_{\psi}f_{\alpha}\|+\sigma_{\psi}|v|Df_{\alpha}(v)\leq\|M_{\psi}\|+\sigma_{\psi}.

Letting α1\displaystyle\alpha\to 1, we obtain

Dψ(v)log(1+|v|)Mψ+σψ.\displaystyle D\psi(v)\log(1+|v|)\leq\|M_{\psi}\|+\sigma_{\psi}.

Hence τψ<\displaystyle\tau_{\psi}<\infty.

(c)(b)\displaystyle(c)\Longrightarrow(b) Assume σψ\displaystyle\sigma_{\psi} and τψ\displaystyle\tau_{\psi} are finite, and let fw,0\displaystyle f\in\mathcal{L}_{{\textbf{w}},0}. Then, by Lemma 1.3, for vT\displaystyle v\in T^{*}, we have

D(ψf)(v)\displaystyle\displaystyle D(\psi f)(v) \displaystyle\displaystyle\leq Dψ(v)|f(v)|+|ψ(v)|Df(v)\displaystyle\displaystyle D\psi(v)|f(v)|+|\psi(v^{-})|Df(v)
\displaystyle\displaystyle\leq Dψ(v)log(1+|v|)|f(v)|log(1+|v|)+|ψ(v)||v||v|Df(v)\displaystyle\displaystyle D\psi(v)\log(1+|v|)\frac{|f(v)|}{\log(1+|v|)}+\frac{|\psi(v^{-})|}{|v|}|v|Df(v)
\displaystyle\displaystyle\leq τψ|f(v)|log(1+|v|)+σψ|v|Df(v)0\displaystyle\displaystyle\tau_{\psi}\frac{|f(v)|}{\log(1+|v|)}+\sigma_{\psi}|v|Df(v)\to 0

as |v|\displaystyle|v|\to\infty. Thus, ψf0.\displaystyle\psi f\in\mathcal{L}_{0}. The boundedness of Mψ\displaystyle M_{\psi} and the estimate Mψfτψ+σψ\displaystyle\|M_{\psi}f\|_{\mathcal{L}}\leq\tau_{\psi}+\sigma_{\psi} can be shown as in the proof of (c)(a)\displaystyle(c)\Longrightarrow(a).

Finally we show that, under boundedness assumptions on Mψ\displaystyle M_{\psi}, Mψmax{τψ,σψ}\displaystyle\|M_{\psi}\|\geq\max\{\tau_{\psi},\sigma_{\psi}\}. For vT\displaystyle v\in T^{*}, let fv=1|v|+1χv\displaystyle f_{v}=\frac{1}{|v|+1}\chi_{v}, where χv\displaystyle\chi_{v} denotes the characteristic function of {v}\displaystyle\{v\}. Then fvw=1\displaystyle\|f_{v}\|_{\textbf{w}}=1 and

ψfv=|ψ(v)||v|+1.\displaystyle\|\psi f_{v}\|_{\mathcal{L}}=\frac{|\psi(v)|}{|v|+1}.

Furthermore, letting fo=12χo\displaystyle f_{o}=\frac{1}{2}\chi_{o}, we see that fow=1\displaystyle\|f_{o}\|_{\textbf{w}}=1 and ψfo=|ψ(o)|\displaystyle\|\psi f_{o}\|_{\mathcal{L}}=|\psi(o)|. Therefore, we deduce that Mψσψ.\displaystyle\|M_{\psi}\|\geq\sigma_{\psi}.

Next, fix vT\displaystyle v\in T^{*} and for wT\displaystyle w\in T, define

gv(w)={log(1+|w|) if |w|<|v|,log(1+|v|) if |w||v|.\displaystyle g_{v}(w)=\begin{cases}\log(1+|w|)&\hbox{ if }|w|<|v|,\\ \log(1+|v|)&\hbox{ if }|w|\geq|v|.\end{cases}

Then, gvw\displaystyle g_{v}\in\mathcal{L}_{\textbf{w}} and

lim|v|gvw=lim|v||v|[log(1+|v|)log|v|]=1.\displaystyle\lim_{|v|\to\infty}\|g_{v}\|_{\textbf{w}}=\lim_{|v|\to\infty}|v|\left[\log(1+|v|)-\log|v|\right]=1.

Observe that for wT\displaystyle w\in T^{*}, we have

D(ψgv)(w)={|ψ(w)log(1+|w|)ψ(w)log|w|| if |w|<|v|,Dψ(w)log(1+|v|) if |w||v|.\displaystyle D(\psi g_{v})(w)=\begin{cases}|\psi(w)\log(1+|w|)-\psi(w^{-})\log|w||&\hbox{ if }|w|<|v|,\\ D\psi(w)\log(1+|v|)&\hbox{ if }|w|\geq|v|.\end{cases}

Hence

supwTD(ψgv)(w)sup|w||v|Dψ(w)log(1+|v|)Dψ(v)log(1+|v|).\displaystyle\sup_{w\in T^{*}}D(\psi g_{v})(w)\geq\sup_{|w|\geq|v|}D\psi(w)\log(1+|v|)\geq D\psi(v)\log(1+|v|).

Define fv=gvgvw\displaystyle f_{v}=\frac{g_{v}}{\|g_{v}\|_{\textbf{w}}}. Then fvw=1\displaystyle\|f_{v}\|_{\textbf{w}}=1 and

MψMψfv=D(ψgv)gvwDψ(v)log(1+|v|)gvw.\displaystyle\displaystyle\|M_{\psi}\|\geq\|M_{\psi}f_{v}\|_{\mathcal{L}}=\frac{\|D(\psi g_{v})\|_{\infty}}{\|g_{v}\|_{\textbf{w}}}\geq\frac{D\psi(v)\log(1+|v|)}{\|g_{v}\|_{\textbf{w}}}.

Taking the limit as |v|\displaystyle|v|\to\infty, we obtain Mψτψ.\displaystyle\|M_{\psi}\|\geq\tau_{\psi}. Therefore, Mψmax{τψ,σψ}.\displaystyle\|M_{\psi}\|\geq\max\{\tau_{\psi},\sigma_{\psi}\}.

2.2. Isometries

In this section, we show there are no isometric multiplication operators Mψ\displaystyle M_{\psi} from the spaces w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{\textbf{w},0} to the spaces \displaystyle\mathcal{L} or 0\displaystyle\mathcal{L}_{0}.

Assume Mψ:w\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to\mathcal{L} is an isometry. Then ψ=Mψ1=1.\displaystyle\|\psi\|_{\mathcal{L}}=\|M_{\psi}1\|_{\mathcal{L}}=1. On the other hand, |ψ(o)|=12Mψχo=12χow=1.\displaystyle|\psi(o)|=\frac{1}{2}\left\|M_{\psi}\chi_{o}\right\|_{\mathcal{L}}=\frac{1}{2}\left\|\chi_{o}\right\|_{\textbf{w}}=1. Thus supvTDψ(v)=ψ|ψ(o)|=0\displaystyle\sup\limits_{v\in T^{*}}D\psi(v)=\|\psi\|_{\mathcal{L}}-|\psi(o)|=0, which implies that ψ\displaystyle\psi is a constant of modulus 1. Yet, for vT\displaystyle v\in T^{*}, letting fv=1|v|+1χv\displaystyle f_{v}=\frac{1}{|v|+1}\chi_{v}, we see that

1=fvw=Mψfv=1|v|+1,\displaystyle 1=\|f_{v}\|_{\textbf{w}}=\|M_{\psi}f_{v}\|_{\mathcal{L}}=\frac{1}{|v|+1},

which yields a contradiction. Therefore, we obtain the following result.

Theorem 2.2.

There are no isometries Mψ\displaystyle M_{\psi} from w\displaystyle\mathcal{L}_{\textbf{w}} to \displaystyle\mathcal{L} or w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to 0\displaystyle\mathcal{L}_{0}.

2.3. Compactness and Essential Norm Estimates

In this section, we characterize the compact multiplication operators. As with many classical spaces, the characterization of the compact operators is a “little-oh” condition corresponding the the “big-oh” condition for boundedness. We first collect some useful results about compact operators from w\displaystyle\mathcal{L}_{\textbf{w}} or from w,0\displaystyle\mathcal{L}_{\textbf{w},0} to \displaystyle\mathcal{L}.

Lemma 2.3.

A bounded multiplication operator Mψ\displaystyle M_{\psi} from w\displaystyle\mathcal{L}_{\textbf{w}} to \displaystyle\mathcal{L} is compact if and only if for every bounded sequence {fn}\displaystyle\{f_{n}\} in w\displaystyle\mathcal{L}_{w} converging to 0 pointwise, the sequence {ψfn}0\displaystyle\{\|\psi f_{n}\|_{\mathcal{L}}\}\to 0 as n\displaystyle n\to\infty.

Proof.

Assume Mψ\displaystyle M_{\psi} is compact, and let {fn}\displaystyle\{f_{n}\} be a bounded sequence in w\displaystyle\mathcal{L}_{\textbf{w}} converging to 0 pointwise. Without loss of generality, we may assume fnw1\displaystyle\|f_{n}\|_{\textbf{w}}\leq 1 for all n\displaystyle n\in\mathbb{N}. Then the sequence {Mψfn}={ψfn}\displaystyle\{M_{\psi}f_{n}\}=\{\psi f_{n}\} has a subsequence {ψfnk}\displaystyle\{\psi f_{n_{k}}\} which converges in the \displaystyle\mathcal{L}-norm to some function f\displaystyle f\in\mathcal{L}. Clearly ψ(o)fnk(o)ψ(o)f(o)\displaystyle\psi(o)f_{n_{k}}(o)\to\psi(o)f(o), and by part (a) of Lemma 1.1, for vT\displaystyle v\in T^{*}, we have

|ψ(v)fnk(v)f(v)|\displaystyle|\psi(v)f_{n_{k}}(v)-f(v)| |ψ(o)fnk(o)f(o)|+|v|D(ψfnkf)\displaystyle\leq|\psi(o)f_{n_{k}}(o)-f(o)|+|v|\|D(\psi f_{n_{k}}-f)\|_{\infty}
(1+|v|)ψfnkf.\displaystyle\leq(1+|v|)\|\psi f_{n_{k}}-f\|_{\mathcal{L}}.

Thus, ψfnkf\displaystyle\psi f_{n_{k}}\to f pointwise on T\displaystyle T. Since fn0\displaystyle f_{n}\to 0 pointwise, it follows that f\displaystyle f must be identically 0, which implies that ψfnk0\displaystyle\|\psi f_{n_{k}}\|_{\mathcal{L}}\to 0. With 0 being the only limit point of {ψfn}\displaystyle\{\psi f_{n}\} in \displaystyle\mathcal{L}, it follows that ψfn0\displaystyle\|\psi f_{n}\|_{\mathcal{L}}\to 0 as n\displaystyle n\to\infty.

Conversely, assume every bounded sequence {fn}\displaystyle\{f_{n}\} in w\displaystyle\mathcal{L}_{\textbf{w}} converging to 0 pointwise has the property that ψfn0\displaystyle\|\psi f_{n}\|_{\mathcal{L}}\to 0 as n\displaystyle n\to\infty. Let {gn}\displaystyle\{g_{n}\} be a sequence in w\displaystyle\mathcal{L}_{\textbf{w}} with gnw1\displaystyle\|g_{n}\|_{\textbf{w}}\leq 1 for all n\displaystyle n\in\mathbb{N}. Then |gn(o)|1\displaystyle|g_{n}(o)|\leq 1 for all n\displaystyle n\in\mathbb{N}, and by part (a) of Lemma 1.2, for vT\displaystyle v\in T^{*}, we obtain

|gn(v)|(1+log|v|)gnw1+log|v|.\displaystyle|g_{n}(v)|\leq(1+\log|v|)\|g_{n}\|_{\textbf{w}}\leq 1+\log|v|.

Thus, {gn}\displaystyle\{g_{n}\} is uniformly bounded on finite subsets of T\displaystyle T. So some subsequence {gnk}\displaystyle\{g_{n_{k}}\} converges pointwise to some function g\displaystyle g. Fix vT\displaystyle v\in T^{*} and ε>0\displaystyle\varepsilon>0. Then for k\displaystyle k sufficiently large, we have

|g(v)gnk(v)|<ε2|v|, and |gnk(v)g(v)|<ε2|v|.\displaystyle|g(v)-g_{n_{k}}(v)|<\frac{\varepsilon}{2|v|},\text{ and }|g_{n_{k}}(v^{-})-g(v^{-})|<\frac{\varepsilon}{2|v|}.

We deduce

|v|Dg(v)\displaystyle|v|Dg(v) |v||g(v)gnk(v)+gnk(v)g(v)|+|v|Dgnk(v)\displaystyle\leq|v||g(v)-g_{n_{k}}(v)+g_{n_{k}}(v^{-})-g(v^{-})|+|v|Dg_{n_{k}}(v)
|v||g(v)gnk(v)|+|v||gnk(v)g(v)|+|v|Dgnk(v)\displaystyle\leq|v||g(v)-g_{n_{k}}(v)|+|v||g_{n_{k}}(v^{-})-g(v^{-})|+|v|Dg_{n_{k}}(v)
<ε+|v|Dgnk(v)ε+1,\displaystyle<\varepsilon+|v|Dg_{n_{k}}(v)\leq\varepsilon+1,

for all k\displaystyle k sufficiently large. So gw\displaystyle g\in\mathcal{L}_{\textbf{w}}. The sequence defined by fk=gnkg\displaystyle f_{k}=g_{n_{k}}-g is bounded in w\displaystyle\mathcal{L}_{\textbf{w}} and converges to 0 pointwise. Thus by hypothesis, we obtain ψfk0\displaystyle\|\psi f_{k}\|_{\mathcal{L}}\to 0 as k\displaystyle k\to\infty. It follows that Mψgnk=ψgnkψg\displaystyle M_{\psi}g_{n_{k}}=\psi g_{n_{k}}\to\psi g in the \displaystyle\mathcal{L}-norm, thus proving the compactness of Mψ\displaystyle M_{\psi}. ∎

By an analogous argument, we obtain the corresponding compactness criterion for Mψ\displaystyle M_{\psi} from w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to 0\displaystyle\mathcal{L}_{0}.

Lemma 2.4.

A bounded multiplication operator Mψ\displaystyle M_{\psi} from w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to 0\displaystyle\mathcal{L}_{0} is compact if and only if for every bounded sequence {fn}\displaystyle\{f_{n}\} in w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} converging to 0 pointwise, the sequence {ψfn}0\displaystyle\{\|\psi f_{n}\|_{\mathcal{L}}\}\to 0 as n\displaystyle n\to\infty.

The following result is a variant of Lemma 1.3(a), which will be needed to prove a characterization of the compact multiplication operators from w\displaystyle\mathcal{L}_{\textbf{w}} to \displaystyle\mathcal{L} and from w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to 0\displaystyle\mathcal{L}_{0} (Theorem 2.6).

Lemma 2.5.

For fw\displaystyle f\in\mathcal{L}_{\textbf{w}} and vT\displaystyle v\in T

|f(v)||f(o)|+2log(1+|v|)sw(f),\displaystyle\displaystyle|f(v)|\leq|f(o)|+2\log(1+|v|)s_{\textbf{w}}(f), (2.1)

where sw(f)=supwT|w|Df(w).\displaystyle s_{\textbf{w}}(f)=\sup\limits_{w\in T^{*}}|w|Df(w).

Proof.

Fix vT\displaystyle v\in T and argue by induction on n=|v|.\displaystyle n=|v|. For n=0\displaystyle n=0, the inequality (2.1) is obvious. So assume |v|=n>0\displaystyle|v|=n>0 and |f(u)||f(o)|+2log(1+|u|)sw(f)\displaystyle|f(u)|\leq|f(o)|+2\log(1+|u|)s_{\textbf{w}}(f) for all vertices u\displaystyle u such that |u|<n\displaystyle|u|<n. Then

|f(v)|\displaystyle\displaystyle|f(v)| \displaystyle\displaystyle\leq |f(v)f(v)|+|f(v)|\displaystyle\displaystyle|f(v)-f(v^{-})|+|f(v^{-})| (2.2)
\displaystyle\displaystyle\leq 1|v|sw(f)+|f(o)|+2log|v|sw(f)\displaystyle\displaystyle\frac{1}{|v|}s_{\textbf{w}}(f)+|f(o)|+2\log|v|s_{\textbf{w}}(f)
=\displaystyle\displaystyle= |f(o)|+(1|v|+2log|v|)sw(f).\displaystyle\displaystyle|f(o)|+\left(\frac{1}{|v|}+2\log|v|\right)s_{\textbf{w}}(f).

Next, observe that 1|v|+1log(|v|+1|v|)\displaystyle\frac{1}{|v|+1}\leq\log\left(\frac{|v|+1}{|v|}\right), so

1|v|2|v|+12log(|v|+1|v|).\displaystyle\frac{1}{|v|}\leq\frac{2}{|v|+1}\leq 2\log\left(\frac{|v|+1}{|v|}\right).

Hence

1|v|+2log|v|2log(|v|+1).\displaystyle\displaystyle\frac{1}{|v|}+2\log|v|\leq 2\log(|v|+1). (2.3)

Inequality (2.1) now follows immediately from (2.2) and (2.3). ∎

Theorem 2.6.

Let Mψ\displaystyle M_{\psi} be a bounded multiplication operator from w\displaystyle\mathcal{L}_{\textbf{w}} to \displaystyle\mathcal{L} (or equivalently from w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to 0\displaystyle\mathcal{L}_{0}). Then the following statements are equivalent:

  1. (a)

    Mψ:w\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to\mathcal{L} is compact.

  2. (b)

    Mψ:w,00\displaystyle M_{\psi}:\mathcal{L}_{{\textbf{w}},0}\to\mathcal{L}_{0} is compact.

  3. (c)

    lim|v||ψ(v)||v|+1=0\displaystyle\displaystyle\lim_{|v|\to\infty}\frac{|\psi(v)|}{|v|+1}=0 and lim|v|Dψ(v)log|v|=0\displaystyle\displaystyle\lim_{|v|\to\infty}D\psi(v)\log|v|=0.

Proof.

We first prove (a)(c)\displaystyle(a)\Longrightarrow(c). Assume Mψ:w\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to\mathcal{L} is compact. It suffices to show that for any sequence {vn}\displaystyle\{v_{n}\} in T\displaystyle T such that 2|vn|\displaystyle 2\leq|v_{n}|\to\infty, we have limn|ψ(vn)||vn|+1=0\displaystyle\displaystyle\lim_{n\to\infty}\frac{|\psi(v_{n})|}{|v_{n}|+1}=0 and limnDψ(vn)log|vn|=0\displaystyle\displaystyle\lim_{n\to\infty}D\psi(v_{n})\log|v_{n}|=0. Let {vn}\displaystyle\{v_{n}\} be such a sequence, and for each n\displaystyle n\in\mathbb{N}, define fn=1|vn|+1χvn\displaystyle f_{n}=\frac{1}{|v_{n}|+1}\chi_{v_{n}}. Then fn(o)=0\displaystyle f_{n}(o)=0, fn0\displaystyle f_{n}\to 0 pointwise as n\displaystyle n\to\infty, and fnw=1\displaystyle\|f_{n}\|_{\textbf{w}}=1. By Lemma 2.3, it follows that ψfn0\displaystyle\|\psi f_{n}\|_{\mathcal{L}}\to 0 as n\displaystyle n\to\infty. Furthermore

ψfn=supvT|ψ(v)fn(v)ψ(v)fn(v)|=|ψ(vn)fn(vn)|=|ψ(vn)||vn|+1.\displaystyle\|\psi f_{n}\|_{\mathcal{L}}=\sup_{v\in T^{*}}|\psi(v)f_{n}(v)-\psi(v^{-})f_{n}(v^{-})|=|\psi(v_{n})f_{n}(v_{n})|=\frac{|\psi(v_{n})|}{|v_{n}|+1}.

Thus limn|ψ(vn)||vn|+1=0.\displaystyle\lim\limits_{n\to\infty}\displaystyle\frac{|\psi(v_{n})|}{|v_{n}|+1}=0.

Next, for each n\displaystyle n\in\mathbb{N} and vT\displaystyle v\in T, define

gn(v)={0 if |v|<|vn|,2log|v|log|vn| if |vn||v|<|vn|1,log|vn| if |v||vn|1.\displaystyle g_{n}(v)=\begin{cases}0&\text{ if }|v|<\sqrt{|v_{n}|},\\ 2\log|v|-\log|v_{n}|&\text{ if }\sqrt{|v_{n}|}\leq|v|<|v_{n}|-1,\\ \log|v_{n}|&\text{ if }|v|\geq|v_{n}|-1.\end{cases}

Then Dgn(v)=0\displaystyle Dg_{n}(v)=0\, if |v||vn|\displaystyle|v|\leq\sqrt{|v_{n}|}\, or |v|>|vn|1\displaystyle|v|>|v_{n}|-1. In addition, if |vn|<|v||vn|1\displaystyle\sqrt{|v_{n}|}<|v|\leq|v_{n}|-1, then |v|Dgn(v)<4\displaystyle|v|Dg_{n}(v)<4. Indeed, there are two possibilities. Either |vn||v|1\displaystyle\sqrt{|v_{n}|}\leq|v|-1, in which case

|v|Dgn(v)=2|v||(log|v|log(|v|1))2|v||v|13,\displaystyle|v|Dg_{n}(v)=2|v||(\log|v|-\log(|v|-1))\leq\frac{2|v|}{|v|-1}\leq 3,

or |v|1<|vn|<|v|\displaystyle|v|-1<\sqrt{|v_{n}|}<|v|, in which case

|v|Dgn(v)\displaystyle\displaystyle|v|Dg_{n}(v) =\displaystyle\displaystyle= |v|(2log|v|log|vn|)\displaystyle\displaystyle|v|(2\log|v|-\log|v_{n}|)
\displaystyle\displaystyle\leq (|vn|+1)log(|vn|+1)2|vn|\displaystyle\displaystyle(\sqrt{|v_{n}|}+1)\log\frac{(\sqrt{|v_{n}|}+1)^{2}}{|v_{n}|}
\displaystyle\displaystyle\leq 2(|vn|+1)|vn|2(1+12)<4.\displaystyle\displaystyle\frac{2(\sqrt{|v_{n}|}+1)}{\sqrt{|v_{n}|}}\leq 2\left(1+\frac{1}{\sqrt{2}}\right)<4.

Thus {gnw}\displaystyle\{\|g_{n}\|_{\textbf{w}}\} is bounded and {gn}\displaystyle\{g_{n}\} converges to 0 pointwise. By Lemma 2.3, it follows that ψgn0\displaystyle\|\psi g_{n}\|_{\mathcal{L}}\to 0 as n\displaystyle n\to\infty. Moreover

ψgn|ψ(vn)gn(vn)ψ(vn)gn(vn)|=Dψ(vn)log|vn|.\displaystyle\|\psi g_{n}\|_{\mathcal{L}}\geq|\psi(v_{n})g_{n}(v_{n})-\psi(v_{n}^{-})g_{n}(v_{n}^{-})|=D\psi(v_{n})\log|v_{n}|.

Therefore limnDψ(vn)log|vn|=0.\displaystyle\lim\limits_{n\to\infty}D\psi(v_{n})\log|v_{n}|=0.

To prove the implication (c)(a)\displaystyle(c)\Longrightarrow(a), suppose lim|v||ψ(v)||v|+1=0\displaystyle\displaystyle\lim_{|v|\to\infty}\frac{|\psi(v)|}{|v|+1}=0 and lim|v|Dψ(v)log|v|=0\displaystyle\displaystyle\lim_{|v|\to\infty}D\psi(v)\log|v|=0. Clearly, if ψ\displaystyle\psi is identically 0, then Mψ\displaystyle M_{\psi} is compact. So assume Mψ:w\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to\mathcal{L} is bounded with ψ\displaystyle\psi not identically 0. By Lemma 2.3, it suffices to show that if {fn}\displaystyle\{f_{n}\} is bounded in w\displaystyle\mathcal{L}_{\textbf{w}} converging to 0 pointwise, then ψfn0\displaystyle\|\psi f_{n}\|_{\mathcal{L}}\to 0 as n\displaystyle n\to\infty. Let {fn}\displaystyle\{f_{n}\} be such a sequence, let s=supnfnw\displaystyle s=\displaystyle\sup_{n\in\mathbb{N}}\|f_{n}\|_{\textbf{w}}, and fix ε>0\displaystyle\varepsilon>0. Note that

lim|v|Dψ(v)log(1+|v|)=lim|v|Dψ(v)log|v|log(1+|v|)log|v|=0.\displaystyle\lim_{|v|\to\infty}D\psi(v)\log(1+|v|)=\lim_{|v|\to\infty}D\psi(v)\log|v|\frac{\log(1+|v|)}{\log|v|}=0.

Thus there exists an M\displaystyle M\in\mathbb{N} such that

|fn(o)|<ε3sψ,Dψ(v)log(1+|v|)<ε6s and |ψ(v)||v|+1<ε3s,\displaystyle|f_{n}(o)|<\frac{\varepsilon}{3s\|\psi\|_{\mathcal{L}}},\ D\psi(v)\log(1+|v|)<\frac{\varepsilon}{6s}\text{ and }\frac{|\psi(v)|}{|v|+1}<\frac{\varepsilon}{3s},

for |v|M\displaystyle|v|\geq M. Using Lemma 2.5, for |v|>M\displaystyle|v|>M, we have

D(ψfn)(v)\displaystyle D(\psi f_{n})(v) Dψ(v)|fn(v)|+Dfn(v)|ψ(v)|\displaystyle\leq D\psi(v)|f_{n}(v)|+Df_{n}(v^{-})|\psi(v^{-})|
Dψ(v)(|fn(o)|+2log(|v|+1))fnw+fnw|ψ(v)||v|\displaystyle\leq D\psi(v)\left(|f_{n}(o)|+2\log(|v|+1)\right)\|f_{n}\|_{\textbf{w}}+\|f_{n}\|_{\textbf{w}}\frac{|\psi(v^{-})|}{|v|}
(ψ|fn(o)|+2Dψ(v)log(|v|+1)+|ψ(v)||v|)fnw\displaystyle\leq\left(\|\psi\|_{\mathcal{L}}|f_{n}(o)|+2D\psi(v)\log(|v|+1)+\frac{|\psi(v^{-})|}{|v|}\right)\|f_{n}\|_{\textbf{w}}
<ε.\displaystyle<\varepsilon.

On the other hand, on the set BM={vT:|v|M}\displaystyle B_{M}=\{v\in T:|v|\leq M\}, {fn}\displaystyle\{f_{n}\} converges to 0 uniformly, and thus Dfn\displaystyle Df_{n} does as well. Moreover

D(ψfn)(v)\displaystyle D(\psi f_{n})(v) Dψ(v)|fn(v)|+|ψ(v)|Dfn(v)\displaystyle\leq D\psi(v)|f_{n}(v)|+|\psi(v^{-})|Df_{n}(v)
ψ|fn(v)|+max|w|M|ψ(w)|Dfn(v)0,\displaystyle\leq\|\psi\|_{\mathcal{L}}|f_{n}(v)|+\max_{|w|\leq M}|\psi(w)|Df_{n}(v)\to 0,

uniformly on BM\displaystyle B_{M}. Therefore D(ψfn)0\displaystyle D(\psi f_{n})\to 0 uniformly on T\displaystyle T. Furthermore, the sequence {(ψfn)(o)}\displaystyle\{(\psi f_{n})(o)\} converges to 0 as n\displaystyle n\to\infty. Hence ψfn0\displaystyle\|\psi f_{n}\|_{\mathcal{L}}\to 0 as n\displaystyle n\to\infty, proving that Mψ\displaystyle M_{\psi} is compact.

Finally, note that the functions fn\displaystyle f_{n} and gn\displaystyle g_{n} defined in the proof of (a)(c)\displaystyle(a)\Longrightarrow(c) are in w,0\displaystyle\mathcal{L}_{w,0}. So the equivalence of (b)\displaystyle(b) and (c)\displaystyle(c) is proved analogously. ∎

Recall the essential norm of a bounded operator S\displaystyle S between Banach spaces 𝒳\displaystyle\mathcal{X} and 𝒴\displaystyle\mathcal{Y} is defined as

Se=inf{SK:K is compact from 𝒳 to 𝒴}.\displaystyle\|S\|_{e}=\inf\;\{\|S-K\|:K\text{ is compact from $\displaystyle\mathcal{X}$ to $\displaystyle\mathcal{Y}$}\}.

For ψ\displaystyle\psi a function on T\displaystyle T, define the quantities

A(ψ)\displaystyle A(\psi) =limnsup|v|n|ψ(v)||v|+1,\displaystyle=\lim_{n\to\infty}\sup_{|v|\geq n}\frac{|\psi(v)|}{|v|+1},
B(ψ)\displaystyle B(\psi) =limnsup|v|nDψ(v)log|v|.\displaystyle=\lim_{n\to\infty}\sup_{|v|\geq n}D\psi(v)\log|v|.
Theorem 2.7.

Let Mψ\displaystyle M_{\psi} be a bounded multiplication operator from w\displaystyle\mathcal{L}_{\textbf{w}} to \displaystyle\mathcal{L}. Then

Mψemax{A(ψ),B(ψ)}.\displaystyle\|M_{\psi}\|_{e}\geq\max\left\{A(\psi),B(\psi)\right\}.
Proof.

For each n\displaystyle n\in\mathbb{N}, define fn=1n+1χn\displaystyle f_{n}=\frac{1}{n+1}\chi_{n}, where χn\displaystyle\chi_{n} denotes the characteristic function of the set {vT:|v|=n}\displaystyle\{v\in T:|v|=n\}. Then fnw,0\displaystyle f_{n}\in\mathcal{L}_{{\textbf{w}},0}, fnw=1\displaystyle\|f_{n}\|_{\textbf{w}}=1, and fn0\displaystyle f_{n}\to 0 pointwise. Thus, by Lemma 1.4, {fn}\displaystyle\{f_{n}\} converges to 0 weakly in w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}. Let 𝒦\displaystyle\mathcal{K} be the set of compact operators from from w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to 0\displaystyle\mathcal{L}_{0}, and let K𝒦\displaystyle K\in\mathcal{K}. Then K\displaystyle K is completely continuous [7], and so Kfn0\displaystyle\|Kf_{n}\|_{\mathcal{L}}\to 0 as n\displaystyle n\to\infty. Thus

MψKlim supn(MψK)fnlim supnMψfn.\displaystyle\|M_{\psi}-K\|\geq\limsup_{n\to\infty}\|(M_{\psi}-K)f_{n}\|_{\mathcal{L}}\geq\limsup_{n\to\infty}\|M_{\psi}f_{n}\|_{\mathcal{L}}.

Now note that

Mψfn=sup|v|=n|ψ(v)|n+1.\displaystyle\|M_{\psi}f_{n}\|_{\mathcal{L}}=\sup_{|v|=n}\frac{|\psi(v)|}{n+1}.

Hence

Mψe\displaystyle\|M_{\psi}\|_{e} inf{MψK:K𝒦}\displaystyle\geq\inf\{\|M_{\psi}-K\|:K\in\mathcal{K}\}
lim supnMψfn\displaystyle\geq\limsup_{n\to\infty}\|M_{\psi}f_{n}\|_{\mathcal{L}}
=limnsup|v|n|ψ(v)||v|+1\displaystyle=\lim_{n\to\infty}\sup_{|v|\geq n}\frac{|\psi(v)|}{|v|+1}
=A(ψ).\displaystyle=A(\psi).

We will now show that MψeB(ψ)\displaystyle\|M_{\psi}\|_{e}\geq B(\psi). This estimate is clearly true if B(ψ)=0\displaystyle B(\psi)=0. So assume {vn}\displaystyle\{v_{n}\} is a sequence in T\displaystyle T such that 2|vn|\displaystyle 2\leq|v_{n}|\to\infty as n\displaystyle n\to\infty and

limnDψ(vn)log|vn|=B(ψ).\displaystyle\lim_{n\to\infty}D\psi(v_{n})\log|v_{n}|=B(\psi).

For n\displaystyle n\in\mathbb{N} and vT\displaystyle v\in T, define

hn(v)={[log(|v|+1)]2log|vn| if 0|v|<|vn|,log|vn| if |v||vn|.\displaystyle h_{n}(v)=\begin{cases}\displaystyle\frac{\left[\log(|v|+1)\right]^{2}}{\log|v_{n}|}&\text{ if }0\leq|v|<|v_{n}|,\\ \log|v_{n}|&\text{ if }|v|\geq|v_{n}|.\end{cases}

Then hn(o)=0\displaystyle h_{n}(o)=0, hn(vn)=hn(vn)=log|vn|\displaystyle h_{n}(v_{n})=h_{n}(v_{n}^{-})=\log|v_{n}|, and

|v|Dhn(v)={|v|log|vn|log(|v|+1|v|)log[|v|(|v|+1)] if 1|v|<|vn|, 0 if |v||vn|.\displaystyle|v|Dh_{n}(v)=\begin{cases}\frac{|v|}{\log|v_{n}|}\log\left(\frac{|v|+1}{|v|}\right)\log\left[|v|(|v|+1)\right]&\text{ if }1\leq|v|<|v_{n}|,\\ \ \ \ 0&\text{ if }|v|\geq|v_{n}|.\end{cases}

The supremum of |v|Dhn(v)\displaystyle|v|Dh_{n}(v) is attained at the vertices of length |vn|1\displaystyle|v_{n}|-1 and is given by

sn=supvT|v|Dhn(v)=(|vn|1)log(|vn||vn|1)log[(|vn|1)|vn|]log|vn|.\displaystyle s_{n}=\sup_{v\in T^{*}}|v|Dh_{n}(v)=(|v_{n}|-1)\log\left(\frac{|v_{n}|}{|v_{n}|-1}\right)\frac{\log\left[(|v_{n}|-1)|v_{n}|\right]}{\log|v_{n}|}.

Since (|vn|1)log(|vn||vn|1)1\displaystyle(|v_{n}|-1)\log\left(\frac{|v_{n}|}{|v_{n}|-1}\right)\leq 1, we have

(log2)2log|vn|hnw=snlog[(|vn|1)|vn|]log|vn|<2.\displaystyle\frac{(\log 2)^{2}}{\log|v_{n}|}\leq\|h_{n}\|_{\textbf{w}}=s_{n}\leq\frac{\log\left[(|v_{n}|-1)|v_{n}|\right]}{\log|v_{n}|}<2.

By letting gn=hnhnw\displaystyle g_{n}=\frac{h_{n}}{\|h_{n}\|_{\textbf{w}}}, we have gnw,0\displaystyle g_{n}\in\mathcal{L}_{{\textbf{w}},0}, gnw=1\displaystyle\|g_{n}\|_{\textbf{w}}=1, and gn0\displaystyle g_{n}\to 0 pointwise. By Lemma 1.4, the sequence {gn}\displaystyle\{g_{n}\} converges to 0 weakly in w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}. Thus Kgn0\displaystyle\|Kg_{n}\|_{\mathcal{L}}\to 0 as n\displaystyle n\to\infty. Therefore

MψKlim supn(MψK)gnlim supnψgn.\displaystyle\|M_{\psi}-K\|\geq\limsup_{n\to\infty}\|(M_{\psi}-K)g_{n}\|_{\mathcal{L}}\geq\limsup_{n\to\infty}\|\psi g_{n}\|_{\mathcal{L}}.

For each n\displaystyle n\in\mathbb{N}, we have gn(vn)=gn(vn)=log|vn|sn\displaystyle g_{n}(v_{n})=g_{n}(v_{n}^{-})=\frac{\log|v_{n}|}{s_{n}}. So

D(ψgn)(vn)=1snDψ(vn)log|vn|.\displaystyle D(\psi g_{n})(v_{n})=\frac{1}{s_{n}}D\psi(v_{n})\log|v_{n}|.

Since limnsn=1\displaystyle\displaystyle\lim_{n\to\infty}s_{n}=1, we have

Mψe\displaystyle\|M_{\psi}\|_{e} inf{MψK:K𝒦}\displaystyle\geq\inf\{\|M_{\psi}-K\|:K\in\mathcal{K}\}
lim supnsupvTD(ψgn)(v)\displaystyle\geq\limsup_{n\to\infty}\sup_{v\in T^{*}}D(\psi g_{n})(v)
limn1snDψ(vn)log|vn|\displaystyle\geq\lim_{n\to\infty}\frac{1}{s_{n}}D\psi(v_{n})\log|v_{n}|
=B(ψ).\displaystyle=B(\psi).

Therefore, Mψemax{A(ψ),B(ψ)}\displaystyle\|M_{\psi}\|_{e}\geq\max\left\{A(\psi),B(\psi)\right\}. ∎

Now now derive an upper estimate on the essential norm.

Theorem 2.8.

Let Mψ\displaystyle M_{\psi} be a bounded multiplication operator from w\displaystyle\mathcal{L}_{\textbf{w}} to \displaystyle\mathcal{L}. Then

MψeA(ψ)+B(ψ).\displaystyle\|M_{\psi}\|_{e}\leq A(\psi)+B(\psi).
Proof.

For n\displaystyle n\in\mathbb{N}, define the operator Kn\displaystyle K_{n} on w\displaystyle\mathcal{L}_{\textbf{w}} by

(Knf)(v)={f(v) if |v|n,f(vn) if |v|>n,\displaystyle(K_{n}f)(v)=\begin{cases}f(v)&\text{ if }|v|\leq n,\\ f(v_{n})&\text{ if }|v|>n,\end{cases}

where fw\displaystyle f\in\mathcal{L}_{\textbf{w}} and vn\displaystyle v_{n} is the ancestor of v\displaystyle v of length n\displaystyle n. For fw\displaystyle f\in\mathcal{L}_{\textbf{w}}, (Knf)(o)=f(o)\displaystyle(K_{n}f)(o)=f(o), and Knfw,0\displaystyle K_{n}f\in\mathcal{L}_{{\textbf{w}},0}. Let Bn={vT:|v|n}\displaystyle B_{n}=\{v\in T:|v|\leq n\} and note that Knf\displaystyle K_{n}f attains finitely many values, whose number does not exceed the cardinality of Bn\displaystyle B_{n}. Let {gk}\displaystyle\{g_{k}\} be a sequence in w\displaystyle\mathcal{L}_{\textbf{w}} such that gkw1\displaystyle\|g_{k}\|_{\textbf{w}}\leq 1 for each k\displaystyle k\in\mathbb{N}. Then a=supk|gk(o)|1\displaystyle a=\displaystyle\sup_{k\in\mathbb{N}}|g_{k}(o)|\leq 1 and |Kngk(o)|a\displaystyle|K_{n}g_{k}(o)|\leq a. Furthermore, by part (a) of Lemma 1.3, for each vT\displaystyle v\in T^{*} and for each k\displaystyle k\in\mathbb{N}, we have |Kngk(v)|1+logn\displaystyle|K_{n}g_{k}(v)|\leq 1+\log n. Thus, some subsequence of {Kngk}k\displaystyle\{K_{n}g_{k}\}_{k\in\mathbb{N}} must converge to a function g\displaystyle g on T\displaystyle T attaining constant values on the sectors determined by the vertices of length n\displaystyle n. It follows that this subsequence converges to g\displaystyle g in w\displaystyle\mathcal{L}_{\textbf{w}} as well, proving that Kn\displaystyle K_{n} is a compact operator on w\displaystyle\mathcal{L}_{\textbf{w}}. Since Mψ\displaystyle M_{\psi} is bounded as an operator from w\displaystyle\mathcal{L}_{\textbf{w}} to \displaystyle\mathcal{L}, it follows that MψKn:w\displaystyle M_{\psi}K_{n}:\mathcal{L}_{\textbf{w}}\to\mathcal{L} is compact for all n\displaystyle n\in\mathbb{N}.

Define the operator Jn=IKn\displaystyle J_{n}=I-K_{n}, where I\displaystyle I denotes the identity operator on w\displaystyle\mathcal{L}_{\textbf{w}}. Then Jnf(o)=0\displaystyle J_{n}f(o)=0 and for vT\displaystyle v\in T^{*}, we have

|v|D(Jnf)(v)=|v||(Jnf)(v)(Jnf)(v)||v|Df(v)fw.\displaystyle\displaystyle|v|D(J_{n}f)(v)=|v||(J_{n}f)(v)-(J_{n}f)(v^{-})|\leq|v|Df(v)\leq\|f\|_{\textbf{w}}. (2.4)

By part (a) of Lemma 1.3, we see that

|(Jnf)(v)|(1+log|v|)fw.\displaystyle\displaystyle|(J_{n}f)(v)|\leq(1+\log|v|)\|f\|_{\textbf{w}}. (2.5)

Using (2.4) and (2.5), we obtain

(MψMψKn)f\displaystyle\|(M_{\psi}-M_{\psi}K_{n})f\|_{\mathcal{L}} =ψ(Jnf)\displaystyle=\|\psi(J_{n}f)\|_{\mathcal{L}}
=sup|v|>n|ψ(v)(Jnf)(v)ψ(v)(Jnf)(v)|\displaystyle=\sup_{|v|>n}|\psi(v)(J_{n}f)(v)-\psi(v^{-})(J_{n}f)(v^{-})|
sup|v|>n[|(Jnf)(v)|Dψ(v)+|ψ(v)|D(Jnf)(v)]\displaystyle\leq\sup_{|v|>n}\left[|(J_{n}f)(v)|D\psi(v)+|\psi(v^{-})|D(J_{n}f)(v)\right]
=sup|v|>n[|(Jnf)(v)|Dψ(v)+|ψ(v)||v||v|D(Jnf)(v)]\displaystyle=\sup_{|v|>n}\left[|(J_{n}f)(v)|D\psi(v)+\frac{|\psi(v^{-})|}{|v|}|v|D(J_{n}f)(v)\right]
sup|v|n[(1+log|v|)Dψ(v)+|ψ(v)||v|+1]fw\displaystyle\leq\sup_{|v|\geq n}\left[(1+\log|v|)D\psi(v)+\frac{|\psi(v)|}{|v|+1}\right]\|f\|_{\textbf{w}}
sup|v|n[log|v|Dψ(v)1+log|v|log|v|+|ψ(v)||v|+1]fw\displaystyle\leq\sup_{|v|\geq n}\left[\log|v|D\psi(v)\frac{1+\log|v|}{\log|v|}+\frac{|\psi(v)|}{|v|+1}\right]\|f\|_{\textbf{w}}
[sup|v|nlog|v|Dψ(v)1+lognlogn+sup|v|n|ψ(v)||v|+1]fw.\displaystyle\leq\left[\sup_{|v|\geq n}\log|v|D\psi(v)\frac{1+\log n}{\log n}+\sup_{|v|\geq n}\frac{|\psi(v)|}{|v|+1}\right]\|f\|_{\textbf{w}}.

Since

Mψelim supnMψMψKn=lim supnsupfw=1(MψMψKn)f,\displaystyle\|M_{\psi}\|_{e}\leq\limsup_{n\to\infty}\|M_{\psi}-M_{\psi}K_{n}\|=\limsup_{n\to\infty}\sup_{\|f\|_{\textbf{w}}=1}\|(M_{\psi}-M_{\psi}K_{n})f\|_{\mathcal{L}},

taking the limit as n\displaystyle n\to\infty, we obtain

MψeB(ψ)+A(ψ).\displaystyle\|M_{\psi}\|_{e}\leq B(\psi)+A(\psi).\;\qed

3. Multiplication operators from \displaystyle\mathcal{L} to w\displaystyle\mathcal{L}_{\textbf{w}}

We begin this section with a boundedness criterion for the multiplication operators from Mψ:w\displaystyle M_{\psi}:\mathcal{L}\to\mathcal{L}_{\textbf{w}} and Mψ:0w,0\displaystyle M_{\psi}:\mathcal{L}_{0}\to\mathcal{L}_{\textbf{w},0}.

3.1. Boundedness and Operator Norm Estimates

Let ψ\displaystyle\psi be a function on the tree T\displaystyle T. Define the quantities

θψ\displaystyle\theta_{\psi} =supvT|v|2Dψ(v),\displaystyle=\sup_{v\in T^{*}}|v|^{2}D\psi(v),
ωψ\displaystyle\omega_{\psi} =supvT(|v|+1)|ψ(v)|.\displaystyle=\sup_{v\in T}(|v|+1)|\psi(v)|.
Theorem 3.1.

For a function ψ\displaystyle\psi on T\displaystyle T, the following statements are equivalent:

  1. (a)

    Mψ:w\displaystyle M_{\psi}:\mathcal{L}\to\mathcal{L}_{\textbf{w}} is bounded.

  2. (b)

    Mψ:0w,0\displaystyle M_{\psi}:\mathcal{L}_{0}\to\mathcal{L}_{{\textbf{w}},0} is bounded.

  3. (c)

    θψ\displaystyle\theta_{\psi} and ωψ\displaystyle\omega_{\psi} are finite.

Furthermore, under the above conditions, we have

max{θψ,ωψ}Mψθψ+ωψ.\displaystyle\max\{\theta_{\psi},\omega_{\psi}\}\leq\|M_{\psi}\|\leq\theta_{\psi}+\omega_{\psi}.
Proof.

(a)(c)\displaystyle(a)\Longrightarrow(c) Assume Mψ\displaystyle M_{\psi} is bounded from \displaystyle\mathcal{L} to w\displaystyle\mathcal{L}_{\textbf{w}}. The function fo=12χo\displaystyle f_{o}=\frac{1}{2}\chi_{o}\in\mathcal{L} and fo=1\displaystyle\left\|f_{o}\right\|_{\mathcal{L}}=1. Thus

|ψ(o)|=ψfowMψ.\displaystyle\displaystyle|\psi(o)|=\|\psi f_{o}\|_{\textbf{w}}\leq\|M_{\psi}\|. (3.1)

Next, fix vT\displaystyle v\in T^{*}. Then χv\displaystyle\chi_{v}\in\mathcal{L} and χv=1\displaystyle\|\chi_{v}\|_{\mathcal{L}}=1; so

(|v|+1)|ψ(v)|=ψχvwMψ.\displaystyle\displaystyle(|v|+1)|\psi(v)|=\|\psi\chi_{v}\|_{\textbf{w}}\leq\|M_{\psi}\|. (3.2)

Taking the supremum over all vT\displaystyle v\in T, from (3.1) and (3.2) we see that ωψ\displaystyle\omega_{\psi} is finite and

ωψMψ.\displaystyle\displaystyle\omega_{\psi}\leq\|M_{\psi}\|. (3.3)

With vT\displaystyle v\in T^{*}, we now define

fv(w)={|w| if |w|<|v|,|v| if |w||v|.\displaystyle f_{v}(w)=\begin{cases}|w|&\hbox{ if }|w|<|v|,\\ |v|&\hbox{ if }|w|\geq|v|.\end{cases}

Then fv\displaystyle f_{v}\in\mathcal{L}, fv(o)=0\displaystyle f_{v}(o)=0 and fv=1\displaystyle\|f_{v}\|_{\mathcal{L}}=1. By the boundedness of Mψ\displaystyle M_{\psi} we obtain

Mψ\displaystyle\displaystyle\|M_{\psi}\| \displaystyle\displaystyle\geq Mψfvwsup1|w||v||w||ψ(w)|w|ψ(w)(|w|1)|\displaystyle\displaystyle\|M_{\psi}f_{v}\|_{\textbf{w}}\geq\sup_{1\leq|w|\leq|v|}|w||\psi(w)|w|-\psi(w^{-})(|w|-1)|
\displaystyle\displaystyle\geq sup1|w||v||w|2Dψ(w)sup1|w||v||w||ψ(w)|,\displaystyle\displaystyle\sup_{1\leq|w|\leq|v|}|w|^{2}D\psi(w)-\sup_{1\leq|w|\leq|v|}|w||\psi(w^{-})|,

Therefore

|v|2Dψ(v)sup1|w||v||w|2Dψ(w)Mψ+ωψ.\displaystyle|v|^{2}D\psi(v)\leq\sup_{1\leq|w|\leq|v|}|w|^{2}D\psi(w)\leq\|M_{\psi}\|+\omega_{\psi}.

Taking the supremum over all vT\displaystyle v\in T^{*}, we obtain θψ<.\displaystyle\theta_{\psi}<\infty. From this and (3.3), we deduce the lower estimate

Mψmax{θψ,ωψ}.\displaystyle\|M_{\psi}\|\geq\max\{\theta_{\psi},\omega_{\psi}\}.

(c)(a)\displaystyle(c)\Longrightarrow(a) Assume θψ\displaystyle\theta_{\psi} and ωψ\displaystyle\omega_{\psi} are finite. Then, ψw\displaystyle\psi\in\mathcal{L}_{\textbf{w}} and by Lemma 1.1, for f\displaystyle f\in\mathcal{L} with f=1\displaystyle\|f\|_{\mathcal{L}}=1 and vT\displaystyle v\in T^{*}, we have

|v|D(ψf)(v)\displaystyle\displaystyle|v|D(\psi f)(v) \displaystyle\displaystyle\leq |v|Dψ(v)|f(v)|+|v||ψ(v)|Df(v)\displaystyle\displaystyle|v|D\psi(v)|f(v)|+|v||\psi(v^{-})|Df(v)
\displaystyle\displaystyle\leq |v|Dψ(v)|f(o)|+|v|2Dψ(v)Df+ωψDf\displaystyle\displaystyle|v|D\psi(v)|f(o)|+|v|^{2}D\psi(v)\|Df\|_{\infty}+\omega_{\psi}\|Df\|_{\infty}
\displaystyle\displaystyle\leq |v|Dψ(v)|f(o)|+(θψ+ωψ)Df.\displaystyle\displaystyle|v|D\psi(v)|f(o)|+(\theta_{\psi}+\omega_{\psi})\|Df\|_{\infty}.

Thus, ψfw\displaystyle\psi f\in\mathcal{L}_{\textbf{w}}. Note that |f(o)+Df=1\displaystyle|f(o)+\|Df\|_{\infty}=1 and

ψw=|ψ(o)|+supvT|v|Dψ(v)ωψ+supvT|v|2Dψ(v)=ωψ+θψ.\displaystyle\|\psi\|_{\textbf{w}}=|\psi(o)|+\sup_{v\in T^{*}}|v|D\psi(v)\leq\omega_{\psi}+\sup_{v\in T^{*}}|v|^{2}D\psi(v)=\omega_{\psi}+\theta_{\psi}.

From this, we have

ψfwψw|f(o)|+(θψ+ωψ)Dfθψ+ωψ,\displaystyle\|\psi f\|_{\textbf{w}}\leq\|\psi\|_{\textbf{w}}|f(o)|+(\theta_{\psi}+\omega_{\psi})\|Df\|_{\infty}\leq\theta_{\psi}+\omega_{\psi},

proving the boundedness of Mψ:w\displaystyle M_{\psi}:\mathcal{L}\to\mathcal{L}_{\textbf{w}} and the upper estimate

Mψθψ+ωψ.\displaystyle\|M_{\psi}\|\leq\theta_{\psi}+\omega_{\psi}.

(b)(c)\displaystyle(b)\Longrightarrow(c) The proof is the same as for (a)(c)\displaystyle(a)\Longrightarrow(c), since for vT\displaystyle v\in T^{*}, the functions χv\displaystyle\chi_{v} and fv\displaystyle f_{v} used there belong to 0\displaystyle\mathcal{L}_{0}.

(c)(b)\displaystyle(c)\Longrightarrow(b) Assume θψ\displaystyle\theta_{\psi} and ωψ\displaystyle\omega_{\psi} are finite and let f0\displaystyle f\in\mathcal{L}_{0}. Then, by Lemma 1.1, for vT\displaystyle v\in T^{*}, we have

|v|D(ψf)(v)\displaystyle\displaystyle|v|D(\psi f)(v) \displaystyle\displaystyle\leq |v|Dψ(v)|f(v)|+|v||ψ(v)|Df(v)\displaystyle\displaystyle|v|D\psi(v)|f(v)|+|v||\psi(v^{-})|Df(v)
\displaystyle\displaystyle\leq |v|2Dψ(v)|f(v)||v|+|v||ψ(v)|Df(v)\displaystyle\displaystyle|v|^{2}D\psi(v)\frac{|f(v)|}{|v|}+|v||\psi(v^{-})|Df(v)
\displaystyle\displaystyle\leq θψ|f(v)||v|+ωψDf(v)0\displaystyle\displaystyle\theta_{\psi}\frac{|f(v)|}{|v|}+\omega_{\psi}Df(v)\to 0

as |v|\displaystyle|v|\to\infty. Thus, ψfw,0.\displaystyle\psi f\in\mathcal{L}_{{\textbf{w}},0}. The proof of the boundedness of Mψ\displaystyle M_{\psi} is similar to that in (c)(a)\displaystyle(c)\Longrightarrow(a). ∎

3.2. Isometries

In this section, we show there are no isometric multiplication operators Mψ\displaystyle M_{\psi} from the space \displaystyle\mathcal{L} to w\displaystyle\mathcal{L}_{\textbf{w}} or from 0\displaystyle\mathcal{L}_{0} to w,0\displaystyle\mathcal{L}_{\textbf{w},0}.

Suppose Mψ:w\displaystyle M_{\psi}:\mathcal{L}\to\mathcal{L}_{\textbf{w}} is an isometry. Then ψw=Mψ1w=1.\displaystyle\|\psi\|_{\textbf{w}}=\|M_{\psi}1\|_{\textbf{w}}=1. On the other hand,

|ψ(o)|=12ψχow=12χo=1.\displaystyle|\psi(o)|=\frac{1}{2}\left\|\psi\chi_{o}\right\|_{\textbf{w}}=\frac{1}{2}\left\|\chi_{o}\right\|_{\mathcal{L}}=1.

Thus supvT|v|Dψ(v)=ψw|ψ(o)|=0\displaystyle\sup\limits_{v\in T^{*}}|v|D\psi(v)=\|\psi\|_{\textbf{w}}-|\psi(o)|=0, which implies that ψ\displaystyle\psi is a constant of modulus 1. Now observe that for vT\displaystyle v\in T^{*}, we have

1=χv=Mψχw=(|v|+1)|ψ(v)|=|v|+1,\displaystyle 1=\|\chi_{v}\|_{\mathcal{L}}=\|M_{\psi}\chi\|_{\textbf{w}}=(|v|+1)|\psi(v)|=|v|+1,

which is a contradiction. Since χv0\displaystyle\chi_{v}\in\mathcal{L}_{0} for all vT\displaystyle v\in T, if Mψ:0w,0\displaystyle M_{\psi}:\mathcal{L}_{0}\to\mathcal{L}_{\textbf{w},0} is an isometry, then the above argument yields again a contradiction. Thus, we proved the following result.

Theorem 3.2.

There are no isometries Mψ\displaystyle M_{\psi} from \displaystyle\mathcal{L} to w\displaystyle\mathcal{L}_{\textbf{w}} or from 0\displaystyle\mathcal{L}_{0} to w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}.

3.3. Compactness and Essential Norm

We now characterize the compact multiplication operators, but first we first give a useful compactness criterion for multiplication operators from \displaystyle\mathcal{L} to w\displaystyle\mathcal{L}_{\textbf{w}} or from 0\displaystyle\mathcal{L}_{0} to w,0\displaystyle\mathcal{L}_{\textbf{w},0}.

Lemma 3.3.

A bounded multiplication operator Mψ\displaystyle M_{\psi} from \displaystyle\mathcal{L} to w\displaystyle\mathcal{L}_{\textbf{w}} (or from 0\displaystyle\mathcal{L}_{0} to w,0\displaystyle\mathcal{L}_{\textbf{w},0}) is compact if and only if for every bounded sequence {fn}\displaystyle\{f_{n}\} in \displaystyle\mathcal{L} (respectively, 0\displaystyle\mathcal{L}_{0}) converging to 0 pointwise, the sequence ψfnw\displaystyle\|\psi f_{n}\|_{\textbf{w}} converges to 0 as n\displaystyle n\to\infty.

Proof.

Suppose Mψ\displaystyle M_{\psi} is compact from \displaystyle\mathcal{L} to w\displaystyle\mathcal{L}_{\textbf{w}} and {fn}\displaystyle\{f_{n}\} is a bounded sequence in \displaystyle\mathcal{L} converging to 0 pointwise. Without loss of generality, we may assume fn1\displaystyle\|f_{n}\|_{\mathcal{L}}\leq 1 for all n\displaystyle n\in\mathbb{N}. Since Mψ\displaystyle M_{\psi} is compact, the sequence {ψfn}\displaystyle\{\psi f_{n}\} has a subsequence {ψfnk}\displaystyle\{\psi f_{n_{k}}\} that converges in the w\displaystyle\mathcal{L}_{\textbf{w}}-norm to some function fw\displaystyle f\in\mathcal{L}_{\textbf{w}}.

By Lemma 1.3, for vT\displaystyle v\in T^{*} we have

|(ψ(v)fnk(v)f(v)|(1+log|v|)ψfnkfw.\displaystyle|(\psi(v)f_{n_{k}}(v)-f(v)|\leq(1+\log|v|)\|\psi f_{n_{k}}-f\|_{\textbf{w}}.

Thus, ψfnkf\displaystyle\psi f_{n_{k}}\to f pointwise on T\displaystyle T^{*}. Furthermore, since |(ψ(o)fnk(o)f(o)|ψfnkfw\displaystyle|(\psi(o)f_{n_{k}}(o)-f(o)|\leq\|\psi f_{n_{k}}-f\|_{\textbf{w}}, ψ(0)fnk(0)f(0)\displaystyle\psi(0)f_{n_{k}}(0)\to f(0) as k\displaystyle k\to\infty. Thus ψfnkf\displaystyle\psi f_{n_{k}}\to f pointwise on T\displaystyle T. Since by assumption, fn0\displaystyle f_{n}\to 0 pointwise, it follows that f\displaystyle f is identically 0, and thus ψfnkw0\displaystyle\|\psi f_{n_{k}}\|_{\textbf{w}}\to 0. Since 0 is the only limit point in w\displaystyle\mathcal{L}_{\textbf{w}} of the sequence {ψfn}\displaystyle\{\psi f_{n}\}, we deduce that ψfnw0\displaystyle\|\psi f_{n}\|_{\textbf{w}}\to 0 as n\displaystyle n\to\infty.

Conversely, suppose that every bounded sequence {fn}\displaystyle\{f_{n}\} in \displaystyle\mathcal{L} that converges to 0 pointwise has the property that ψfnw0\displaystyle\|\psi f_{n}\|_{\textbf{w}}\to 0 as n\displaystyle n\to\infty. Let {gn}\displaystyle\{g_{n}\} be a sequence in \displaystyle\mathcal{L} such that gn1\displaystyle\|g_{n}\|_{\mathcal{L}}\leq 1 for all n\displaystyle n\in\mathbb{N}. Then |gn(o)|1\displaystyle|g_{n}(o)|\leq 1, and by part (a) of Lemma 1.1, for vT\displaystyle v\in T^{*} we have |gn(v)||v|\displaystyle|g_{n}(v)|\leq|v|. So {gn}\displaystyle\{g_{n}\} is uniformly bounded on finite subsets of T\displaystyle T. Thus there is a subsequence {gnk}\displaystyle\{g_{n_{k}}\}, which converges pointwise to some function g\displaystyle g.

Fix ε>0\displaystyle\varepsilon>0 and vT\displaystyle v\in T^{*}. Then |gnk(v)g(v)|<ε2\displaystyle|g_{n_{k}}(v)-g(v)|<\frac{\varepsilon}{2} as well as |gnk(v)g(v)|<ε2\displaystyle|g_{n_{k}}(v^{-})-g(v^{-})|<\frac{\varepsilon}{2} for k\displaystyle k sufficiently large. Therefore, for all k\displaystyle k sufficiently large, we have

Dg(v)|g(v)gnk(v)|+|gnk(v)g(v)|+Dgnk(v)<ε+Dgnk(v).\displaystyle Dg(v)\leq|g(v)-g_{n_{k}}(v)|+|g_{n_{k}}(v^{-})-g(v^{-})|+Dg_{n_{k}}(v)<\varepsilon+Dg_{n_{k}}(v).

Thus g\displaystyle g\in\mathcal{L}. The sequence fnk=gnkg\displaystyle f_{n_{k}}=g_{n_{k}}-g is bounded in \displaystyle\mathcal{L} and converges to 0 pointwise. So ψfnkw0\displaystyle\|\psi f_{n_{k}}\|_{\textbf{w}}\to 0 as k\displaystyle k\to\infty. Thus ψgnkψg\displaystyle\psi g_{n_{k}}\to\psi g in the w\displaystyle\mathcal{L}_{\textbf{w}}-norm. Therefore, Mψ\displaystyle M_{\psi} is compact.

The proof for the case of Mψ:0w,0\displaystyle M_{\psi}:\mathcal{L}_{0}\to\mathcal{L}_{\textbf{w},0} is similar. ∎

Theorem 3.4.

Let Mψ\displaystyle M_{\psi} be a bounded multiplication operator from \displaystyle\mathcal{L} to w\displaystyle\mathcal{L}_{\textbf{w}} (or equivalently from 0\displaystyle\mathcal{L}_{0} to w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}). Then the following are equivalent:

  1. (a)

    Mψ:w\displaystyle M_{\psi}:\mathcal{L}\to\mathcal{L}_{\textbf{w}} is compact.

  2. (b)

    Mψ:0w,0\displaystyle M_{\psi}:\mathcal{L}_{0}\to\mathcal{L}_{{\textbf{w}},0} is compact.

  3. (c)

    lim|v||v|2Dψ(v)=0\displaystyle\displaystyle\lim_{|v|\to\infty}|v|^{2}D\psi(v)=0 and lim|v|(|v|+1)|ψ(v)|=0\displaystyle\displaystyle\lim_{|v|\to\infty}(|v|+1)|\psi(v)|=0.

Proof.

(a)(c)\displaystyle(a)\Longrightarrow(c) Suppose Mψ:w\displaystyle M_{\psi}:\mathcal{L}\to\mathcal{L}_{\textbf{w}} is compact. We need to show that if {vn}\displaystyle\{v_{n}\} is a sequence in T\displaystyle T such that 2|vn|\displaystyle 2\leq|v_{n}| increasing unboundedly, then limn|vn|2Dψ(vn)=0\displaystyle\displaystyle\lim_{n\to\infty}|v_{n}|^{2}D\psi(v_{n})=0 and limn(|vn|+1)|ψ(vn)|=0\displaystyle\displaystyle\lim_{n\to\infty}(|v_{n}|+1)|\psi(v_{n})|=0. Let {vn}\displaystyle\{v_{n}\} be such a sequence, and for n\displaystyle n\in\mathbb{N} define fn=|vn|+1|vn|χvn\displaystyle f_{n}=\frac{|v_{n}|+1}{|v_{n}|}\chi_{v_{n}}. Clearly fn0\displaystyle f_{n}\to 0 pointwise, and fn32\displaystyle\|f_{n}\|_{\mathcal{L}}\leq\frac{3}{2}. Using Lemma 3.3, we see that

ψfnw0 as n.\displaystyle\displaystyle\|\psi f_{n}\|_{\textbf{w}}\to 0\ \hbox{ as }n\to\infty. (3.4)

On the other hand, since fn(o)=0\displaystyle f_{n}(o)=0 for all n\displaystyle n\in\mathbb{N}, we have

ψfnw=supvT|v|D(ψfn)(v)|vn|(|vn|+1|vn|)|ψ(vn)|=(|vn|+1)|ψ(vn)|.\displaystyle\|\psi f_{n}\|_{\textbf{w}}=\sup_{v\in T^{*}}|v|D(\psi f_{n})(v)\geq|v_{n}|\left(\frac{|v_{n}|+1}{|v_{n}|}\right)|\psi(v_{n})|=(|v_{n}|+1)|\psi(v_{n})|.

Hence limn(|vn|+1)|ψ(vn)|=0\displaystyle\displaystyle\lim_{n\to\infty}(|v_{n}|+1)|\psi(v_{n})|=0.

Next, for n\displaystyle n\in\mathbb{N}, define

gn(v)={0 if |v|<|vn|2,2|v||vn|+2 if |vn|2|v|<|vn|,|vn| if |v||vn|.\displaystyle g_{n}(v)=\begin{cases}0&\text{ if }|v|<\left\lfloor\frac{|v_{n}|}{2}\right\rfloor,\\ 2|v|-|v_{n}|+2&\text{ if }\left\lfloor\frac{|v_{n}|}{2}\right\rfloor\leq|v|<|v_{n}|,\\ |v_{n}|&\text{ if }|v|\geq|v_{n}|.\end{cases}

Then gn0\displaystyle g_{n}\to 0 pointwise, and gn=2\displaystyle\|g_{n}\|_{\mathcal{L}}=2. Since gn(vn)=gn(vn)=|vn|\displaystyle g_{n}(v_{n})=g_{n}(v_{n}^{-})=|v_{n}|, we have

ψgnw|vn||ψ(vn)gn(vn)ψ(vn)gn(vn)|=|vn|2Dψ(vn).\displaystyle\|\psi g_{n}\|_{w}\geq|v_{n}||\psi(v_{n})g_{n}(v_{n})-\psi(v_{n}^{-})g_{n}(v_{n}^{-})|=|v_{n}|^{2}D\psi(v_{n}).

By Lemma 3.3 we obtain limn|vn|2Dψ(vn)limnψgnw=0\displaystyle\displaystyle\lim_{n\to\infty}|v_{n}|^{2}D\psi(v_{n})\leq\lim_{n\to\infty}\|\psi g_{n}\|_{\text{w}}=0.

(c)(a)\displaystyle(c)\Longrightarrow(a) Suppose lim|v||v|2Dψ(v)=0\displaystyle\displaystyle\lim_{|v|\to\infty}|v|^{2}D\psi(v)=0 and lim|v|(|v|+1)|ψ(v)|=0\displaystyle\displaystyle\lim_{|v|\to\infty}(|v|+1)|\psi(v)|=0. Assume ψ\displaystyle\psi is not identically zero, otherwise Mψ\displaystyle M_{\psi} is trivially compact. By Lemma 3.3, to prove that Mψ\displaystyle M_{\psi} is compact, it suffices to show that if {fn}\displaystyle\{f_{n}\} is a bounded sequence in \displaystyle\mathcal{L} converging to 0 pointwise, then ψfnw0\displaystyle\|\psi f_{n}\|_{\textbf{w}}\to 0 as n\displaystyle n\to\infty. Let {fn}\displaystyle\{f_{n}\} be such a bounded sequence, let s=supvTfn\displaystyle s=\displaystyle\sup_{v\in T}\|f_{n}\|_{\mathcal{L}}, and fix ε>0\displaystyle\varepsilon>0. There exists M\displaystyle M\in\mathbb{N} such that (|v|+1)|ψ(v)|<ε2s\displaystyle(|v|+1)|\psi(v)|<\frac{\varepsilon}{2s} and |v|2Dψ(v)<ε2s\displaystyle|v|^{2}D\psi(v)<\frac{\varepsilon}{2s} for |v|M\displaystyle|v|\geq M. For vT\displaystyle v\in T^{*} and by Lemma 1.1, we have

|v|D(ψfn)(v)\displaystyle|v|D(\psi f_{n})(v) |v||ψ(v)|Dfn(v)+|v|Dψ(v)|fn(v)|\displaystyle\leq|v||\psi(v)|Df_{n}(v)+|v|D\psi(v)|f_{n}(v^{-})|
|v||ψ(v)|Dfn(v)+|v|Dψ(v)(|fn(o)|+|v|Dfn)\displaystyle\leq|v||\psi(v)|Df_{n}(v)+|v|D\psi(v)(|f_{n}(o)|+|v|\|Df_{n}\|_{\infty})
(|v|+1)|ψ(v)|Dfn(v)+|v|2Dψ(v)(|fn(o)|+Dfn)\displaystyle\leq(|v|+1)|\psi(v)|Df_{n}(v)+|v|^{2}D\psi(v)(|f_{n}(o)|+\|Df_{n}\|_{\infty})
=(|v|+1)|ψ(v)|Dfn(v)+|v|2Dψ(v)fn.\displaystyle=(|v|+1)|\psi(v)|Df_{n}(v)+|v|^{2}D\psi(v)\|f_{n}\|_{\mathcal{L}}.

Since fn0\displaystyle f_{n}\to 0 uniformly on {vT:|v|M}\displaystyle\{v\in T:|v|\leq M\} as n\displaystyle n\to\infty, so does Dfn\displaystyle Df_{n}. So, on the set {vT:|v|M}\displaystyle\{v\in T:|v|\leq M\}, |v|D(ψfn)(v)0\displaystyle|v|D(\psi f_{n})(v)\to 0 as n\displaystyle n\to\infty. On the other hand, on {vT:|v|M}\displaystyle\{v\in T:|v|\geq M\}, we have

|v|D(ψfn)(v)(|v|+1)|ψ(v)|Dfn(v)+|v|2Dψ(v)fn<ε.\displaystyle|v|D(\psi f_{n})(v)\leq(|v|+1)|\psi(v)|Df_{n}(v)+|v|^{2}D\psi(v)\|f_{n}\|_{\mathcal{L}}<\varepsilon.

So |v|D(ψfn)(v)0\displaystyle|v|D(\psi f_{n})(v)\to 0 as n\displaystyle n\to\infty. Since fn0\displaystyle f_{n}\to 0 pointwise, ψ(o)fn(o)0\displaystyle\psi(o)f_{n}(o)\to 0 as n\displaystyle n\to\infty. Thus ψfnw0\displaystyle\|\psi f_{n}\|_{\textbf{w}}\to 0 as n\displaystyle n\to\infty. The compactness of Mψ\displaystyle M_{\psi} follows at once from Lemma 3.3.

The proof of the equivalence of (b)\displaystyle(b) and (c)\displaystyle(c) is analogous. ∎

For ψ\displaystyle\psi a function on T\displaystyle T, define

𝒜(ψ)\displaystyle\mathcal{A}(\psi) =limnsup|v|n|v||ψ(v)|,\displaystyle=\lim_{n\to\infty}\sup_{|v|\geq n}|v||\psi(v)|,
(ψ)\displaystyle\mathcal{B}(\psi) =limnsup|v|n|v|2Dψ(v).\displaystyle=\lim_{n\to\infty}\sup_{|v|\geq n}|v|^{2}D\psi(v).
Theorem 3.5.

Let Mψ\displaystyle M_{\psi} be a bounded multiplication operator from \displaystyle\mathcal{L} to w\displaystyle\mathcal{L}_{\textbf{w}}. Then

Mψemax{𝒜(ψ),12(ψ)}.\displaystyle\|M_{\psi}\|_{e}\geq\max\left\{\mathcal{A}(\psi),\frac{1}{2}\mathcal{B}(\psi)\right\}.
Proof.

Fix k\displaystyle k\in\mathbb{N} and for each n\displaystyle n\in\mathbb{N}, consider the sets

En,k\displaystyle\displaystyle E_{n,k} =\displaystyle\displaystyle= {vT:n|v|kn,|v| even},\displaystyle\displaystyle\{v\in T:n\leq|v|\leq kn,|v|\hbox{ even}\},
On,k\displaystyle\displaystyle O_{n,k} =\displaystyle\displaystyle= {vT:n|v|kn,|v| odd}.\displaystyle\displaystyle\{v\in T:n\leq|v|\leq kn,|v|\hbox{ odd}\}.

Define the functions fn,k=χEn,k\displaystyle f_{n,k}=\chi_{E_{n,k}} and gn,k=χOn,k\displaystyle g_{n,k}=\chi_{O_{n,k}}. Then fn,k,gn,k0\displaystyle f_{n,k},g_{n,k}\in\mathcal{L}_{0}, fn,k=gn,k=1\displaystyle\|f_{n,k}\|_{\mathcal{L}}=\|g_{n,k}\|_{\mathcal{L}}=1, and fn\displaystyle f_{n} and gn,k0\displaystyle g_{n,k}\to 0 pointwise as n\displaystyle n\to\infty. By Lemma 1.2, the sequences fn,k\displaystyle f_{n,k} and gn,k\displaystyle g_{n,k} approach 0 weakly in 0\displaystyle\mathcal{L}_{0} as n\displaystyle n\to\infty. Let 𝒦0\displaystyle\mathcal{K}_{0} be the set of compact operators from 0\displaystyle\mathcal{L}_{0} to w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}, and note that every operator in 𝒦0\displaystyle\mathcal{K}_{0} is completely continuous. Thus, if K𝒦0\displaystyle K\in\mathcal{K}_{0}, then Kfn,kw0\displaystyle\|Kf_{n,k}\|_{\textbf{w}}\to 0 and Kgn,kw0\displaystyle\|Kg_{n,k}\|_{\textbf{w}}\to 0, as n\displaystyle n\to\infty.

Therefore, if K𝒦0\displaystyle K\in\mathcal{K}_{0}, then

MψK\displaystyle\displaystyle\|M_{\psi}-K\| \displaystyle\displaystyle\geq lim supn(MψK)fn,kw\displaystyle\displaystyle\limsup_{n\to\infty}\|(M_{\psi}-K)f_{n,k}\|_{\textbf{w}} (3.5)
\displaystyle\displaystyle\geq lim supnMψfn,kw\displaystyle\displaystyle\limsup_{n\to\infty}\|M_{\psi}f_{n,k}\|_{\textbf{w}}
\displaystyle\displaystyle\geq lim supnsupvEn,k(|v|+1)|ψ(v)|.\displaystyle\displaystyle\limsup_{n\to\infty}\sup_{v\in E_{n,k}}(|v|+1)|\psi(v)|.

Similarly,

MψKlim supnsupvOn,k(|v|+1)|ψ(v)|.\displaystyle\displaystyle\|M_{\psi}-K\|\geq\limsup_{n\to\infty}\sup_{v\in O_{n,k}}(|v|+1)|\psi(v)|. (3.6)

Therefore, combining (3.5) and (3.6), we obtain

Mψe\displaystyle\|M_{\psi}\|_{e} =inf{MψK:K𝒦0}\displaystyle=\inf\{\|M_{\psi}-K\|:K\in\mathcal{K}_{0}\}
lim supnsupkn|v|n(|v|+1)|ψ(v)|\displaystyle\geq\limsup_{n\to\infty}\sup_{kn\geq|v|\geq n}(|v|+1)|\psi(v)|
lim supnsupkn|v|n|v||ψ(v)|.\displaystyle\geq\limsup_{n\to\infty}\sup_{kn\geq|v|\geq n}|v||\psi(v)|.

Letting k\displaystyle k\to\infty, we obtain Mψe𝒜(ψ).\displaystyle\|M_{\psi}\|_{e}\geq\mathcal{A}(\psi).

Next, we wish to show that Mψe12(ψ)\displaystyle\|M_{\psi}\|_{e}\geq\frac{1}{2}\mathcal{B}(\psi). The result is clearly true if (ψ)=0\displaystyle\mathcal{B}(\psi)=0. So assume there exists a sequence {vn}\displaystyle\{v_{n}\} in T\displaystyle T such that 2<|vn|\displaystyle 2<|v_{n}|\to\infty as n\displaystyle n\to\infty and

limn|vn|2Dψ(vn)=(ψ).\displaystyle\lim_{n\to\infty}|v_{n}|^{2}D\psi(v_{n})=\mathcal{B}(\psi).

For n\displaystyle n\in\mathbb{N}, define

hn(v)={0 if v=o,(|v|+1)2|vn| if 1|v|<|vn|,|vn| if |v||vn|.\displaystyle h_{n}(v)=\begin{cases}0&\text{ if }v=o,\\ \frac{(|v|+1)^{2}}{|v_{n}|}&\text{ if }1\leq|v|<|v_{n}|,\\ |v_{n}|&\text{ if }|v|\geq|v_{n}|.\end{cases}

Clearly, hn(o)=0,hn(vn)=hn(vn)=|vn|\displaystyle h_{n}(o)=0,h_{n}(v_{n})=h_{n}(v_{n}^{-})=|v_{n}|, and

Dhn(v)={4|vn| if |v|=1,2|v|+1|vn| if 1<|v|<|vn|,0 if |v||vn|.\displaystyle Dh_{n}(v)=\begin{cases}\frac{4}{|v_{n}|}&\text{ if }|v|=1,\\ \frac{2|v|+1}{|v_{n}|}&\text{ if }1<|v|<|v_{n}|,\\ 0&\text{ if }|v|\geq|v_{n}|.\end{cases}

The supremum of Dhn(v)\displaystyle Dh_{n}(v) is attained on the set {vT:|v|=|vn|1}\displaystyle\{v\in T:|v|=|v_{n}|-1\}. Thus hn=2|vn|1|vn|<2\displaystyle\|h_{n}\|_{\mathcal{L}}=\frac{2|v_{n}|-1}{|v_{n}|}<2. Define gn=hnhn\displaystyle g_{n}=\frac{h_{n}}{\|h_{n}\|_{\mathcal{L}}}, and observe that gn0\displaystyle g_{n}\in\mathcal{L}_{0}, gn=1\displaystyle\|g_{n}\|_{\mathcal{L}}=1, and gn0\displaystyle g_{n}\to 0 pointwise on T\displaystyle T. By Lemma 1.2, gn0\displaystyle g_{n}\to 0 weakly in 0\displaystyle\mathcal{L}_{0}. Thus Kgnw0\displaystyle\|Kg_{n}\|_{\textbf{w}}\to 0 as n\displaystyle n\to\infty for any K𝒦0\displaystyle K\in\mathcal{K}_{0}.

For each n\displaystyle n\in\mathbb{N}, gn(vn)=gn(vn)=|vn|22|vn|1\displaystyle g_{n}(v_{n})=g_{n}(v_{n}^{-})=\frac{|v_{n}|^{2}}{2|v_{n}|-1}. Thus

|vn|D(ψgn)(vn)\displaystyle|v_{n}|D(\psi g_{n})(v_{n}) =|vn||ψ(vn)gn(vn)ψ(vn)gn(vn)|\displaystyle=|v_{n}||\psi(v_{n})g_{n}(v_{n})-\psi(v_{n}^{-})g_{n}(v_{n}^{-})|
=|vn|2|vn|1|vn|2Dψ(vn).\displaystyle=\frac{|v_{n}|}{2|v_{n}|-1}|v_{n}|^{2}D\psi(v_{n}).

We deduce that

Mψe\displaystyle\|M_{\psi}\|_{e} =inf{MψK:K𝒦0}\displaystyle=\inf\{\|M_{\psi}-K\|:K\in\mathcal{K}_{0}\}
lim supn(MψK)gnw\displaystyle\geq\limsup_{n\to\infty}\|(M_{\psi}-K)g_{n}\|_{\textbf{w}}
lim supnMψgnw\displaystyle\geq\limsup_{n\to\infty}\|M_{\psi}g_{n}\|_{\textbf{w}}
limnsupvT|v|D(ψgn)(v)\displaystyle\geq\lim_{n\to\infty}\sup_{v\in T^{*}}|v|D(\psi g_{n})(v)
limn|vn|D(ψgn)(vn)\displaystyle\geq\lim_{n\to\infty}|v_{n}|D(\psi g_{n})(v_{n})
=limn|vn|2|vn|1|vn|2Dψ(vn)\displaystyle=\lim_{n\to\infty}\frac{|v_{n}|}{2|v_{n}|-1}|v_{n}|^{2}D\psi(v_{n})
12(ψ).\displaystyle\geq\frac{1}{2}\mathcal{B}(\psi).

Therefore,

Mψemax{𝒜(ψ),12(ψ)}.\displaystyle\|M_{\psi}\|_{e}\geq\max\left\{\mathcal{A}(\psi),\frac{1}{2}\mathcal{B}(\psi)\right\}.\;\qed

We next derive an upper estimate on the essential norm.

Theorem 3.6.

Let Mψ\displaystyle M_{\psi} be a bounded multiplication operator from \displaystyle\mathcal{L} to w\displaystyle\mathcal{L}_{\textbf{w}}. Then

Mψe𝒜(ψ)+(ψ).\displaystyle\|M_{\psi}\|_{e}\leq\mathcal{A}(\psi)+\mathcal{B}(\psi).
Proof.

For each n\displaystyle n\in\mathbb{N}, consider the operator Kn\displaystyle K_{n} defined by

(Knf)(v)={f(v) if |v|n,f(vn) if |v|>n,\displaystyle(K_{n}f)(v)=\begin{cases}f(v)&\text{ if }|v|\leq n,\\ f(v_{n})&\text{ if }|v|>n,\end{cases}

for f\displaystyle f\in\mathcal{L}, where vn\displaystyle v_{n} is the ancestor of v\displaystyle v of length n\displaystyle n. Then (Knf)(o)=f(o)\displaystyle(K_{n}f)(o)=f(o), and Knfw,0\displaystyle K_{n}f\in\mathcal{L}_{\textbf{w},0}. Arguing as in the proof of Theorem 2.8, by the boundedness of Mψ\displaystyle M_{\psi}, it follows that MψKn\displaystyle M_{\psi}K_{n} is a compact operator from \displaystyle\mathcal{L} to w\displaystyle\mathcal{L}_{\textbf{w}}.

Define the operator Jn=IKn\displaystyle J_{n}=I-K_{n}, where I\displaystyle I is the identity operator I\displaystyle I on \displaystyle\mathcal{L}. Then,

D(Jnf)(v)Df(v)f.\displaystyle D(J_{n}f)(v)\leq Df(v)\leq\|f\|_{\mathcal{L}}.

Since (Jnf)(v)=0\displaystyle(J_{n}f)(v)=0 for |v|n\displaystyle|v|\leq n, by Lemma 1.1, we obtain

|(Jnf)(v)||v|f.\displaystyle|(J_{n}f)(v)|\leq|v|\|f\|_{\mathcal{L}}.

From these two estimates, we arrive at

MψJnfw\displaystyle\displaystyle\|M_{\psi}J_{n}f\|_{\textbf{w}} =\displaystyle\displaystyle= sup|v|>n|v||ψ(v)(Jnf)(v)ψ(v)(Jnf)(v)|\displaystyle\displaystyle\sup_{|v|>n}|v|\left|\psi(v)(J_{n}f)(v)-\psi(v^{-})(J_{n}f)(v^{-})\right| (3.7)
\displaystyle\displaystyle\leq sup|v|>n[|v|Dψ(v)|(Jnf)(v)|+|v||ψ(v)|D(Jnf)(v)]\displaystyle\displaystyle\sup_{|v|>n}\left[|v|D\psi(v)|(J_{n}f)(v)|+|v||\psi(v^{-})|D(J_{n}f)(v)\right]
\displaystyle\displaystyle\leq sup|v|>n|v|2Dψ(v)|(Jnf)(v)||v|+sup|v|>n|v||ψ(v)|D(Jnf)(v)|\displaystyle\displaystyle\sup_{|v|>n}|v|^{2}D\psi(v)\frac{|(J_{n}f)(v)|}{|v|}+\sup_{|v|>n}|v||\psi(v^{-})|D(J_{n}f)(v)|
\displaystyle\displaystyle\leq sup|v|>n|v|2Dψ(v)f+sup|v|>n|v||ψ(v)|f.\displaystyle\displaystyle\sup_{|v|>n}|v|^{2}D\psi(v)\|f\|_{\mathcal{L}}+\sup_{|v|>n}|v||\psi(v^{-})|\|f\|_{\mathcal{L}}.

Since

Mψe\displaystyle\|M_{\psi}\|_{e} lim supnMψMψKn\displaystyle\leq\limsup_{n\to\infty}\|M_{\psi}-M_{\psi}K_{n}\|
=lim supnsupf=1(MψMψKn)fw\displaystyle=\limsup_{n\to\infty}\sup_{\|f\|_{\mathcal{L}}=1}\|(M_{\psi}-M_{\psi}K_{n})f\|_{\textbf{w}}
=lim supnsupf=1MψJnfw,\displaystyle=\limsup_{n\to\infty}\sup_{\|f\|_{\mathcal{L}}=1}\|M_{\psi}J_{n}f\|_{\textbf{w}},

from (3.7), taking the limit as n\displaystyle n\to\infty, we obtain

Mψe(ψ)+𝒜(ψ).\displaystyle\|M_{\psi}\|_{e}\leq\mathcal{B}(\psi)+\mathcal{A}(\psi).\;\qed

4. Multiplication operators from w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to L\displaystyle L^{\infty}

In this section, we study the multiplication operators Mψ\displaystyle M_{\psi} from the weighted Lipschitz space or the little weighted Lipschitz space into L\displaystyle L^{\infty}. We begin by characterizing the bounded operators and determining their operator norm. In addition, we characterize the bounded operators that are bounded from below and show that there are no isometries among them. Finally, we characterize the compact multiplication operators and determine the essential norm.

4.1. Boundedness and Operator Norm

For a function ψ\displaystyle\psi on T\displaystyle T, define

γψ=max{|ψ(o)|,supvT(1+log|v|)|ψ(v)|}.\displaystyle\gamma_{\psi}=\max\left\{|\psi(o)|,\sup_{v\in T^{*}}(1+\log|v|)|\psi(v)|\right\}.
Theorem 4.1.

For a function ψ\displaystyle\psi on T\displaystyle T, the following statements are equivalent:

  1. (a)

    Mψ:wL\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to L^{\infty} is bounded.

  2. (b)

    Mψ:w,0L\displaystyle M_{\psi}:\mathcal{L}_{{\textbf{w}},0}\to L^{\infty} is bounded.

  3. (c)

    supvolog|v||ψ(v)|\displaystyle\sup_{v\neq o}\log|v||\psi(v)| is finite.

Furthermore, under the above conditions, we have Mψ=γψ.\displaystyle\|M_{\psi}\|=\gamma_{\psi}.

Proof.

The implication (a)(b)\displaystyle(a)\Longrightarrow(b) is obvious.

(b)(a)\displaystyle(b)\Longrightarrow(a): We begin by showing that for each fw\displaystyle f\in\mathcal{L}_{\textbf{w}}, the function ψf\displaystyle\psi f is bounded. Since Mψ\displaystyle M_{\psi} is bounded on w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}, ψ=Mψ1L\displaystyle\psi=M_{\psi}1\in L^{\infty}. Thus, if f\displaystyle f is constant, then ψfL\displaystyle\psi f\in L^{\infty}. Fix fw\displaystyle f\in\mathcal{L}_{\textbf{w}}, f\displaystyle f nonconstant, vT\displaystyle v\in T, and set n=|v|\displaystyle n=|v|. For wT\displaystyle w\in T, define

fn(w)={f(w) if |w|nf(wn) if |w|>n\displaystyle f_{n}(w)=\begin{cases}f(w)&\quad\hbox{ if }|w|\leq n\\ f(w_{n})&\quad\hbox{ if }|w|>n\end{cases}

where wn\displaystyle w_{n} is the ancestor of w\displaystyle w of length n\displaystyle n. Then fnw,0\displaystyle f_{n}\in\mathcal{L}_{{\textbf{w}},0} and fnwfw\displaystyle\|f_{n}\|_{\textbf{w}}\leq\|f\|_{\textbf{w}}. Thus, ψfnL\displaystyle\psi f_{n}\in L^{\infty} and

ψfnMψfw.\displaystyle\|\psi f_{n}\|_{\infty}\leq\|M_{\psi}\|\,\|f\|_{\textbf{w}}.

So |ψ(v)f(v)|=|ψ(v)fn(v)|Mψfw.\displaystyle|\psi(v)f(v)|=|\psi(v)f_{n}(v)|\leq\|M_{\psi}\|\,\|f\|_{\textbf{w}}. Therefore ψfL\displaystyle\psi f\in L^{\infty} and

ψfMψfw,\displaystyle\|\psi f\|_{\infty}\leq\|M_{\psi}\|\,\|f\|_{\textbf{w}},

proving the boundedness of Mψ\displaystyle M_{\psi} as an operator from w\displaystyle\mathcal{L}_{\textbf{w}} to L\displaystyle L^{\infty}.

(a)(c)\displaystyle(a)\Longrightarrow(c): Assume Mψ:wL\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to L^{\infty} is bounded. Then ψ=Mψ1L\displaystyle\psi=M_{\psi}1\in L^{\infty} and

Mψψ|ψ(o)|.\displaystyle\displaystyle\|M_{\psi}\|\geq\|\psi\|_{\infty}\geq|\psi(o)|. (4.1)

For vT\displaystyle v\in T, define f(v)=log(1+|v|)\displaystyle f(v)=\log(1+|v|). Then f(o)=0\displaystyle f(o)=0 and since for x1\displaystyle x\geq 1 the function xxlog(x+1x)\displaystyle x\mapsto x\log\left(\frac{x+1}{x}\right) is increasing and has limit 1 as x\displaystyle x\to\infty, fw\displaystyle f\in\mathcal{L}_{\textbf{w}} and fw=1.\displaystyle\|f\|_{\textbf{w}}=1. Thus

Mψψf=supvTlog(1+|v|)|ψ(v)|,\displaystyle\displaystyle\|M_{\psi}\|\geq\|\psi f\|_{\infty}=\sup_{v\in T^{*}}\log(1+|v|)|\psi(v)|, (4.2)

proving (c). Furthermore, from (4.1) and (4.2), we obtain

Mψγψ.\displaystyle\displaystyle\|M_{\psi}\|\geq\gamma_{\psi}. (4.3)

(c)(a)\displaystyle(c)\Longrightarrow(a): Assume supvolog|v||ψ(v)|<.\displaystyle\displaystyle\sup_{v\neq o}\log|v||\psi(v)|<\infty. Let fw\displaystyle f\in\mathcal{L}_{\textbf{w}} such that fw=1\displaystyle\|f\|_{\textbf{w}}=1. Then |ψ(o)f(o)||ψ(o)|\displaystyle|\psi(o)f(o)|\leq|\psi(o)| and by Lemma 1.3, for vT\displaystyle v\in T^{*}, we have

|ψ(v)f(v)|(1+log|v|)|ψ(v)|γψ.\displaystyle|\psi(v)f(v)|\leq(1+\log|v|)|\psi(v)|\leq\gamma_{\psi}.

Thus, ψfL\displaystyle\psi f\in L^{\infty} and

ψfγψ,\displaystyle\displaystyle\|\psi f\|_{\infty}\leq\gamma_{\psi}, (4.4)

proving the boundedness of Mψ\displaystyle M_{\psi} as an operator from w\displaystyle\mathcal{L}_{\textbf{w}} to L\displaystyle L^{\infty}. Taking the supremum over all functions fw\displaystyle f\in\mathcal{L}_{\textbf{w}} such that fw=1\displaystyle\|f\|_{\textbf{w}}=1, from (4.4) we obtain Mψγψ.\displaystyle\|M_{\psi}\|\leq\gamma_{\psi}. Therefore, from (4.3) we conclude that Mψ=γψ.\displaystyle\|M_{\psi}\|=\gamma_{\psi}.

4.2. Boundedness From Below

Recall that an operator S\displaystyle S from a Banach space 𝒳\displaystyle\mathcal{X} to a Banach space 𝒴\displaystyle\mathcal{Y} is bounded below if there exists a constant C>0\displaystyle C>0 such that for all xX\displaystyle x\in X

SxCx.\displaystyle\|Sx\|\geq C\|x\|.
Theorem 4.2.

A bounded multiplication operator Mψ\displaystyle M_{\psi} from w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to L\displaystyle L^{\infty} is bounded below if and only if

infvT|ψ(v)||v|+1>0.\displaystyle\inf_{v\in T}\frac{|\psi(v)|}{|v|+1}>0.
Proof.

Assume Mψ\displaystyle M_{\psi} is bounded below and, arguing by contradiction, assume there exists vT\displaystyle v\in T such that ψ(v)=0\displaystyle\psi(v)=0. Then Mψχv\displaystyle M_{\psi}\chi_{v} is identically 0. Since operators that are bounded below are necessarily injective [7], it follows that Mψ\displaystyle M_{\psi} is not bounded below. Therefore, if Mψ\displaystyle M_{\psi} is bounded below, then ψ\displaystyle\psi is nonvanishing.

Next assume ψ\displaystyle\psi is nonvanishing and infvT|ψ(v)||v|+1=0.\displaystyle\inf\limits_{v\in T}\frac{|\psi(v)|}{|v|+1}=0. Then, there exists a sequence {vn}\displaystyle\{v_{n}\} in T\displaystyle T with 1|vn|\displaystyle 1\leq|v_{n}|\to\infty, such that |ψ(vn)||vn|+10\displaystyle\frac{|\psi(v_{n})|}{|v_{n}|+1}\to 0 as n\displaystyle n\to\infty. For n\displaystyle n\in\mathbb{N}, define fn=1|vn|+1χvn\displaystyle f_{n}=\frac{1}{|v_{n}|+1}\chi_{v_{n}}. Then fnw=1\displaystyle\|f_{n}\|_{\textbf{w}}=1, but

ψfn=|ψ(vn)||vn|+10.\displaystyle\|\psi f_{n}\|_{\infty}=\frac{|\psi(v_{n})|}{|v_{n}|+1}\to 0.

Thus, Mψ\displaystyle M_{\psi} is not bounded below.

Conversely, assume infvT|ψ(v)||v|+1=c>0\displaystyle\inf\limits_{v\in T}\frac{|\psi(v)|}{|v|+1}=c>0 and that Mψ\displaystyle M_{\psi} is not bounded below. Then, for each n\displaystyle n\in\mathbb{N}, there exists fn\displaystyle f_{n}\in\;w\displaystyle\mathcal{L}_{\textbf{w}} such that fnw=1\displaystyle\|f_{n}\|_{\textbf{w}}=1 and ψfn<1n\displaystyle\|\psi f_{n}\|_{\infty}<\frac{1}{n}. Then, for each vT\displaystyle v\in T, we have

c(|v|+1)|fn(v)||ψ(v)fn(v)|<1n,\displaystyle c(|v|+1)|f_{n}(v)|\leq|\psi(v)f_{n}(v)|<\frac{1}{n},

so that the sequence {gn}\displaystyle\{g_{n}\} defined by gn(v)=(|v|+1)fn(v)\displaystyle g_{n}(v)=(|v|+1)f_{n}(v) converges to 0 uniformly.

On the other hand, for vT\displaystyle v\in T^{*}, we have

|v|Dfn(v)\displaystyle\displaystyle|v|Df_{n}(v) =\displaystyle\displaystyle= ||v||v|+1gn(v)gn(v)|\displaystyle\displaystyle\left|\frac{|v|}{|v|+1}g_{n}(v)-g_{n}(v^{-})\right|
\displaystyle\displaystyle\leq |gn(v)|+|gn(v)|0\displaystyle\displaystyle|g_{n}(v)|+|g_{n}(v^{-})|\to 0

uniformly as n\displaystyle n\to\infty. Since |ψ(o)fn(o)|<1/n\displaystyle|\psi(o)f_{n}(o)|<1/n, yet fnw=1\displaystyle\|f_{n}\|_{\textbf{w}}=1, this yields a contradiction. ∎

4.3. Isometries

In this section, we show there are no isometries among the multiplication operators from the spaces w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{\textbf{w},0} into L\displaystyle L^{\infty}.

Suppose Mψ\displaystyle M_{\psi} is an isometry from w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to L\displaystyle L^{\infty}. Then, for vT\displaystyle v\in T the function fv=1|v|+1χv\displaystyle f_{v}=\frac{1}{|v|+1}\chi_{v} is in w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}, fvw=1\displaystyle\|f_{v}\|_{\textbf{w}}=1, and

1|v|+1|ψ(v)|=Mψfv=fvw=1.\displaystyle\frac{1}{|v|+1}|\psi(v)|=\|M_{\psi}f_{v}\|_{\infty}=\|f_{v}\|_{\textbf{w}}=1.

Thus, |ψ(v)|=|v|+1\displaystyle|\psi(v)|=|v|+1. On the other hand, since Mψ\displaystyle M_{\psi} is bounded, by Theorem 4.1, we have lim|v||v|log|v||ψ(v)=0\displaystyle\lim\limits_{|v|\to\infty}|v|\log|v||\psi(v)=0; so ψ(v)0\displaystyle\psi(v)\to 0 as |v|\displaystyle|v|\to\infty, which yields a contradiction. Thus, we proved the following result.

Theorem 4.3.

The are no isometric multiplication operators Mψ\displaystyle M_{\psi} from w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to L\displaystyle L^{\infty}.

4.4. Compactness and Essential Norm

We begin by giving a useful compactness criterion for the bounded operators from w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{\textbf{w},0} into L\displaystyle L^{\infty}.

Lemma 4.4.

A bounded multiplication operator Mψ\displaystyle M_{\psi} from w\displaystyle\mathcal{L}_{\textbf{w}} to L\displaystyle L^{\infty} is compact if and only if for every bounded sequence {fn}\displaystyle\{f_{n}\} in w\displaystyle\mathcal{L}_{\textbf{w}} converging to 0 pointwise, the sequence ψfn\displaystyle\|\psi f_{n}\|_{\infty} approaches 0 as n\displaystyle n\to\infty.

Proof.

Assume Mψ\displaystyle M_{\psi} is compact on w\displaystyle\mathcal{L}_{\textbf{w}} and let {fn}\displaystyle\{f_{n}\} be a bounded sequence in w\displaystyle\mathcal{L}_{\textbf{w}} converging to 0 pointwise. By rescaling the sequence, if necessary, we may assume fnw1\displaystyle\|f_{n}\|_{\textbf{w}}\leq 1 for all n\displaystyle n\in\mathbb{N}. By the compactness of Mψ\displaystyle M_{\psi}, {fn}\displaystyle\{f_{n}\} has a subsequence {fnk}\displaystyle\{f_{n_{k}}\} such that {ψfnk}\displaystyle\{\psi f_{n_{k}}\} converges in the supremum-norm to some function fL\displaystyle f\in L^{\infty}. In particular, ψfnkf\displaystyle\psi f_{n_{k}}\to f pointwise. Since by assumption, fn0\displaystyle f_{n}\to 0 pointwise, it follows that f\displaystyle f must be identically 0. Thus, the only limit point of the sequence {ψfn}\displaystyle\{\psi f_{n}\} in L\displaystyle L^{\infty} is 0. Hence ψfn0\displaystyle\|\psi f_{n}\|_{\infty}\to 0.

Conversely, assume that for every bounded sequence {fn}\displaystyle\{f_{n}\} in w\displaystyle\mathcal{L}_{\textbf{w}} converging to 0 pointwise, the sequence ψfn\displaystyle\|\psi f_{n}\|_{\infty} approaches 0 as n\displaystyle n\to\infty. Let {gn}\displaystyle\{g_{n}\} be a sequence in w\displaystyle\mathcal{L}_{\textbf{w}} with gnw1\displaystyle\|g_{n}\|_{\textbf{w}}\leq 1. Fix wT\displaystyle w\in T and, by replacing gn\displaystyle g_{n} with gngn(w)\displaystyle g_{n}-g_{n}(w), assume gn(w)=0\displaystyle g_{n}(w)=0 for all n\displaystyle n\in\mathbb{N}. Then, for each vT\displaystyle v\in T, |gn(v)|=|gn(v)gn(w)|d(v,w)\displaystyle|g_{n}(v)|=|g_{n}(v)-g_{n}(w)|\leq d(v,w). Therefore, gn\displaystyle g_{n} is uniformly bounded on finite subsets of T\displaystyle T, and so some subsequence {gnk}k\displaystyle\{g_{n_{k}}\}_{k\in\mathbb{N}} converges pointwise to some function g\displaystyle g on T\displaystyle T. Fix ε>0\displaystyle\varepsilon>0 and vT\displaystyle v\in T^{*}. Then, |g(o)gnk(o)|<ε2\displaystyle|g(o)-g_{n_{k}}(o)|<\displaystyle\frac{\varepsilon}{2}, |gnk(v)g(v)|<ε2|v|\displaystyle|g_{n_{k}}(v)-g(v)|<\displaystyle{\varepsilon}{2|v|} and |gnk(v)g(v)|<ε2|v|\displaystyle|g_{n_{k}}(v^{-})-g(v^{-})|<\frac{\varepsilon}{2|v|} for all k\displaystyle k sufficiently large. Thus,

|v|Dg(v)\displaystyle\displaystyle|v|Dg(v) \displaystyle\displaystyle\leq |v||g(v)g(v)(gnk(v)gnk(v))|+|v|Dgnk(v)\displaystyle\displaystyle|v||g(v)-g(v^{-})-(g_{n_{k}}(v)-g_{n_{k}}(v^{-}))|+|v|Dg_{n_{k}}(v)
<\displaystyle\displaystyle< ε+|v|Dgnk(v),\displaystyle\displaystyle\varepsilon+|v|Dg_{n_{k}}(v),

for k\displaystyle k sufficiently large. Consequently, gw\displaystyle g\in\mathcal{L}_{\textbf{w}} we have

gw\displaystyle\displaystyle\|g\|_{\textbf{w}} =\displaystyle\displaystyle= |g(o)|+supvT|v|Dg(v)\displaystyle\displaystyle|g(o)|+\sup_{v\in T^{*}}|v|Dg(v)
\displaystyle\displaystyle\leq |g(o)gnk(o)|+|gnk(o)|+ε+supvTDgnk(v)\displaystyle\displaystyle|g(o)-g_{n_{k}}(o)|+|g_{n_{k}}(o)|+\varepsilon+\sup_{v\in T^{*}}Dg_{n_{k}}(v)
<\displaystyle\displaystyle< 2ε+gnkw2ε+1.\displaystyle\displaystyle 2\varepsilon+\|g_{n_{k}}\|_{\textbf{w}}\leq 2\varepsilon+1.

Since ε\displaystyle\varepsilon was arbitrary, it follows that gw1\displaystyle\|g\|_{\textbf{w}}\leq 1. Therefore, the sequence {fk}\displaystyle\{f_{k}\} defined by fk=gnkg\displaystyle f_{k}=g_{n_{k}}-g is bounded in w\displaystyle\mathcal{L}_{\textbf{w}} and converges to 0 pointwise, hence, by the hypothesis, ψfk0\displaystyle\|\psi f_{k}\|_{\infty}\to 0 as n\displaystyle n\to\infty. We conclude that ψgnkψg\displaystyle\psi g_{n_{k}}\to\psi g in L\displaystyle L^{\infty}, proving the compactness of Mψ\displaystyle M_{\psi}. ∎

By an analogous argument, we obtain the corresponding compactness criterion for Mψ:w,0L\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w},0}\to L^{\infty}.

Lemma 4.5.

A bounded multiplication operator Mψ\displaystyle M_{\psi} from w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to L\displaystyle L^{\infty} is compact if and only if for every bounded sequence {fn}\displaystyle\{f_{n}\} in w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} converging to 0 pointwise, the sequence ψfn\displaystyle\|\psi f_{n}\|_{\infty} approaches 0 as n\displaystyle n\to\infty.

Theorem 4.6.

For a bounded operator Mψ\displaystyle M_{\psi} from w\displaystyle\mathcal{L}_{\textbf{w}} to L\displaystyle L^{\infty} (or equivalently from w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to L\displaystyle L^{\infty}) the following statements are equivalent:

  1. (a)

    Mψ:wL\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to L^{\infty} is compact.

  2. (b)

    Mψ:w,0L\displaystyle M_{\psi}:\mathcal{L}_{{\textbf{w}},0}\to L^{\infty} is compact.

  3. (c)

    lim|v|log|v||ψ(v)|=0.\displaystyle\lim\limits_{|v|\to\infty}\log|v||\psi(v)|=0.

Proof.

(a)\displaystyle\Longrightarrow(b) is trivial.

(b)\displaystyle\Longrightarrow(c): Let {vn}\displaystyle\{v_{n}\} be a sequence of vertices such that 1|vn|\displaystyle 1\leq|v_{n}|\to\infty. We need to show that

limnlog|vn||ψ(vn)|=0.\displaystyle\lim\limits_{n\to\infty}\log|v_{n}||\psi(v_{n})|=0.

For n\displaystyle n\in\mathbb{N} define

fn(v)={ 0 if v=0,(log|v|)2log|vn| if 1|v|<|vn|,log|vn| if |v||vn|.\displaystyle f_{n}(v)=\begin{cases}\ \ 0&\hbox{ if }v=0,\\ \frac{(\log|v|)^{2}}{\log|v_{n}|}&\hbox{ if }1\leq|v|<|v_{n}|,\\ \log|v_{n}|&\hbox{ if }|v|\geq|v_{n}|.\end{cases}

Then {fn}\displaystyle\{f_{n}\} converges to 0 pointwise. Using the fact that |v|(log|v|log(|v|1))1\displaystyle|v|(\log|v|-\log(|v|-1))\leq 1 for any choice of v\displaystyle v in T\displaystyle T^{*}, we have

|v|Dfn(v)=|v|[(log|v|)2(log(|v|1))2]log|vn|log|v|+log(|v|1)log|vn|2,\displaystyle|v|Df_{n}(v)=\frac{|v|\left[(\log|v|)^{2}-(\log(|v|-1))^{2}\right]}{\log|v_{n}|}\leq\frac{\log|v|+\log(|v|-1)}{\log|v_{n}|}\leq 2,

for 1|v||vn|\displaystyle 1\leq|v|\leq|v_{n}|. Moreover, |v|Dfn(v)=0\displaystyle|v|Df_{n}(v)=0 for |v|>|vn|\displaystyle|v|>|v_{n}|. Thus, fnw,0\displaystyle f_{n}\in\mathcal{L}_{{\textbf{w}},0} and {fnw}\displaystyle\{\|f_{n}\|_{\textbf{w}}\} is bounded. By the compactness of Mψ\displaystyle M_{\psi} as an operator acting on w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} and by Lemma 4.5, we deduce

log|vn||ψ(vn)|ψfn0\displaystyle\log|v_{n}||\psi(v_{n})|\leq\|\psi f_{n}\|_{\infty}\to 0

as n\displaystyle n\to\infty.

(c)\displaystyle\Longrightarrow(a): Assume {fn}\displaystyle\{f_{n}\} is a sequence in w\displaystyle\mathcal{L}_{\textbf{w}} converging to 0 pointwise and such that a=supnfnw<\displaystyle a=\sup\limits_{n\in\mathbb{N}}\|f_{n}\|_{\textbf{w}}<\infty. By Lemma 1.3, for all vT\displaystyle v\in T^{*} and all n\displaystyle n\in\mathbb{N}, we have

|ψ(v)fn(v)|a(1+log|v|)|ψ(v)|.\displaystyle|\psi(v)f_{n}(v)|\leq a(1+\log|v|)|\psi(v)|.

Fix ε>0\displaystyle\varepsilon>0. There exists N\displaystyle N\in\mathbb{N} such that N3\displaystyle N\geq 3 and for |v|N\displaystyle|v|\geq N, log|v||ψ(v)|<ε2a.\displaystyle\log|v||\psi(v)|<\displaystyle\frac{\varepsilon}{2a}. Thus, for |v|N\displaystyle|v|\geq N and for all n\displaystyle n\in\mathbb{N}, |ψ(v)fn(v)|2alog|v||ψ(v)|<ε.\displaystyle|\psi(v)f_{n}(v)|\leq 2a\log|v||\psi(v)|<\varepsilon. On the other hand, since fn0\displaystyle f_{n}\to 0 pointwise, for each vertex v\displaystyle v such that |v|<N\displaystyle|v|<N and ψ(v)0\displaystyle\psi(v)\neq 0, we obtain |fn(v)|<ε|ψ(v)|\displaystyle|f_{n}(v)|<\displaystyle\frac{\varepsilon}{|\psi(v)|} for all n\displaystyle n sufficiently large. Hence |ψ(v)fn(v)|<ε\displaystyle|\psi(v)f_{n}(v)|<\varepsilon for all vT\displaystyle v\in T and all n\displaystyle n sufficiently large. Therefore, Mψfn0\displaystyle\|M_{\psi}f_{n}\|_{\infty}\to 0 as n\displaystyle n\to\infty, which, by Lemma 4.4, proves the compactness of Mψ\displaystyle M_{\psi}. ∎

Next, we determine the essential norm of the bounded multiplication operators Mψ\displaystyle M_{\psi} from w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to L\displaystyle L^{\infty}.

Theorem 4.7.

Let Mψ\displaystyle M_{\psi} be a bounded multiplication operator from w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} to L\displaystyle L^{\infty}. Then

Mψe=limnsup|v|nlog|v||ψ(v)|.\displaystyle\|M_{\psi}\|_{e}=\lim_{n\to\infty}\sup_{|v|\geq n}\log|v||\psi(v)|.
Proof.

Define A(ψ)=limnsup|v|nlog|v||ψ(v)|.\displaystyle A(\psi)=\lim\limits_{n\to\infty}\sup\limits_{|v|\geq n}\log|v||\psi(v)|. If A(ψ)=0\displaystyle A(\psi)=0, then by Theorem 4.6, Mψ\displaystyle M_{\psi} is compact, hence its essential norm is 0. So assume A(ψ)>0\displaystyle A(\psi)>0. We first show that MψeA(ψ)\displaystyle\|M_{\psi}\|_{e}\geq A(\psi). Let {vn}\displaystyle\{v_{n}\} be a sequence in T\displaystyle T such that 1|vn|\displaystyle 1\leq|v_{n}|\to\infty and

A(ψ)=limnlog|vn||ψ(vn)|.\displaystyle A(\psi)=\lim_{n\to\infty}\log|v_{n}||\psi(v_{n})|.

Fix p(0,1)\displaystyle p\in(0,1) and for each n\displaystyle n\in\mathbb{N}, define

fn,p(v)={ 0 if v=0,(log|v|)p+1(log|vn|)p if 1|v|<|vn|,log|vn| if |v||vn|.\displaystyle f_{n,p}(v)=\begin{cases}\ \ 0&\quad\hbox{ if }v=0,\\ \frac{\ (\log|v|)^{p+1}}{(\log|v_{n}|)^{p}}&\quad\hbox{ if }1\leq|v|<|v_{n}|,\\ \ \log|v_{n}|&\quad\hbox{ if }|v|\geq|v_{n}|.\end{cases}

Then {fn,p}\displaystyle\{f_{n,p}\} converges to 0 pointwise, fn,pw,0\displaystyle f_{n,p}\in\mathcal{L}_{{\textbf{w}},0}, fn,p(vn)=log|vn|\displaystyle f_{n,p}(v_{n})=\log|v_{n}|, and

fn,pw\displaystyle\displaystyle\|f_{n,p}\|_{\textbf{w}} =\displaystyle\displaystyle= sup2|v||vn||v|(log|vn|)p[(log|v|)p+1(log(|v|1))p+1]\displaystyle\displaystyle\sup_{2\leq|v|\leq|v_{n}|}\frac{|v|}{(\log|v_{n}|)^{p}}\left[\left(\log|v|\right)^{p+1}-\left(\log(|v|-1)\right)^{p+1}\right]
=\displaystyle\displaystyle= |vn|(log|vn|)p[(log|vn|)p+1(log(|vn|1))p+1]p+1.\displaystyle\displaystyle\frac{|v_{n}|}{(\log|v_{n}|)^{p}}\left[(\log|v_{n}|)^{p+1}-(\log(|v_{n}|-1))^{p+1}\right]\leq p+1.

By Lemma 1.4, {fn,p}\displaystyle\{f_{n,p}\} converges to 0\displaystyle 0 weakly in w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}. Let K\displaystyle K be a compact operator from w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} (or equivalently, from w\displaystyle\mathcal{L}_{\textbf{w}}) to L\displaystyle L^{\infty}. Since compact operators are completely continuous, it follows that Kfn,p0\displaystyle\|Kf_{n,p}\|_{\infty}\to 0 as n\displaystyle n\to\infty. Thus,

MψK\displaystyle\displaystyle\|M_{\psi}-K\| \displaystyle\displaystyle\geq lim supn(MψK)fn,pfn,pw\displaystyle\displaystyle\limsup_{n\to\infty}\frac{\|(M_{\psi}-K)f_{n,p}\|_{\infty}}{\|f_{n,p}\|_{\textbf{w}}}
\displaystyle\displaystyle\geq 1p+1lim supnMψfn,p\displaystyle\displaystyle\frac{1}{p+1}\limsup_{n\to\infty}\|M_{\psi}f_{n,p}\|_{\infty}
\displaystyle\displaystyle\geq 1p+1lim supnlog|vn||ψ(vn)|.\displaystyle\displaystyle\frac{1}{p+1}\limsup_{n\to\infty}\log|v_{n}||\psi(v_{n})|.

Taking the infimum over all such compact operators K\displaystyle K and passing to the limit as p\displaystyle p approaches 0, we obtain

Mψelimnlog|vn||ψ(vn)|=A(ψ).\displaystyle\|M_{\psi}\|_{e}\geq\lim_{n\to\infty}\log|v_{n}||\psi(v_{n})|=A(\psi).

To prove the estimate MψeA(ψ)\displaystyle\|M_{\psi}\|_{e}\leq A(\psi), for each n\displaystyle n\in\mathbb{N} and for fw\displaystyle f\in\mathcal{L}_{\textbf{w}}, define

Knf(v)={f(v) if |v|n,f(vn) if |v|>n,\displaystyle K_{n}f(v)=\begin{cases}f(v)&\quad\hbox{ if }|v|\leq n,\\ f(v_{n})&\quad\hbox{ if }|v|>n,\end{cases}

where vn\displaystyle v_{n} is the ancestor of v\displaystyle v of length n\displaystyle n. In the proof of Theorem 2.8, it is was shown that Kn\displaystyle K_{n} is a compact operator on w\displaystyle\mathcal{L}_{\textbf{w}}. Since Mψ:wL\displaystyle M_{\psi}:\mathcal{L}_{\textbf{w}}\to L^{\infty} is bounded, it follows that MψKn\displaystyle M_{\psi}K_{n} is also compact as an operator from w\displaystyle\mathcal{L}_{\textbf{w}} to L\displaystyle L^{\infty}.

Let vT\displaystyle v\in T, and let w\displaystyle w be a vertex in the path from o\displaystyle o to v\displaystyle v of length k1\displaystyle k\geq 1. Label the vertices from w\displaystyle w to v\displaystyle v by vj\displaystyle v_{j}, j=k,,|v|\displaystyle j=k,\dots,|v|. Then for fw\displaystyle f\in\mathcal{L}_{\textbf{w}} with fw=1\displaystyle\|f\|_{\textbf{w}}=1, we have

|f(v)f(w)|j=k+1|v||f(vj)f(vj1)|j=k+1|v|1jlog|v|.\displaystyle|f(v)-f(w)|\leq\sum_{j=k+1}^{|v|}|f(v_{j})-f(v_{j-1})|\leq\sum_{j=k+1}^{|v|}\frac{1}{j}\leq\log|v|.

Thus

(MψMψKn)f=sup|v|>n|ψ(v)||f(v)f(vn)|sup|v|>nlog|v||ψ(v)|.\displaystyle\|(M_{\psi}-M_{\psi}K_{n})f\|_{\infty}=\sup_{|v|>n}|\psi(v)||f(v)-f(v_{n})|\leq\sup_{|v|>n}\log|v||\psi(v)|.

We deduce

Mψesupfw=1(MψMψKn)fsup|v|>nlog|v||ψ(v)|.\displaystyle\|M_{\psi}\|_{e}\leq\sup_{\|f\|_{\textbf{w}}=1}\|(M_{\psi}-M_{\psi}K_{n})f\|_{\infty}\leq\sup_{|v|>n}\log|v||\psi(v)|.

Taking the limit as n\displaystyle n\to\infty, we obtain MψeA(ψ)\displaystyle\|M_{\psi}\|_{e}\leq A(\psi). ∎

5. Multiplication operators from L\displaystyle L^{\infty} to w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}

In this last section, we study the multiplication operators Mψ\displaystyle M_{\psi} from L\displaystyle L^{\infty} into the weighted Lipschitz space or the little weighted Lipschitz space. We first characterize the bounded operators and determine the operator norm. We also show there are no isometries among such operators. Finally, we characterize the compact multiplication operators and determine the essential norm.

5.1. Boundedness and Operator Norm

For a function ψ\displaystyle\psi on T\displaystyle T, define

ηψ=|ψ(o)|+supvT|v|[|ψ(v)|+|ψ(v)|].\displaystyle\eta_{\psi}=|\psi(o)|+\sup_{v\in T^{*}}|v|\left[|\psi(v)|+|\psi(v^{-})|\right].
Theorem 5.1.

For a function ψ\displaystyle\psi on T\displaystyle T, the following statements are equivalent:

  1. (a)

    Mψ:Lw\displaystyle M_{\psi}:L^{\infty}\to\mathcal{L}_{\textbf{w}} is bounded.

  2. (b)

    supvT|v||ψ(v)|<\displaystyle\sup\limits_{v\in T}|v||\psi(v)|<\infty.

Furthermore, under these conditions, we have

Mψ=ηψ.\displaystyle\|M_{\psi}\|=\eta_{\psi}.
Proof.

(a)(b)\displaystyle(a)\Longrightarrow(b): Assume Mψ:Lw\displaystyle M_{\psi}:L^{\infty}\to\mathcal{L}_{\textbf{w}} is bounded. Fix vT\displaystyle v\in T^{*}. Since χvL\displaystyle\chi_{v}\in L^{\infty} and χv=1\displaystyle\|\chi_{v}\|_{\infty}=1, the function ψχvw\displaystyle\psi\chi_{v}\in\mathcal{L}_{\textbf{w}}, so

|v||ψ(v)|<(|v|+1)|ψ(v)|=supwT|w|D(ψχv)(w)Mψ.\displaystyle|v||\psi(v)|<(|v|+1)|\psi(v)|=\sup_{w\in T^{*}}|w|D(\psi\chi_{v})(w)\leq\|M_{\psi}\|.

Thus, supvT|v||ψ(v)|\displaystyle\displaystyle\sup_{v\in T}|v||\psi(v)| is finite.

(b)(a)\displaystyle(b)\Longrightarrow(a): Suppose supvT|v||ψ(v)|<\displaystyle\displaystyle\sup_{v\in T}|v||\psi(v)|<\infty. Let fL\displaystyle f\in L^{\infty} such that f=1\displaystyle\|f\|_{\infty}=1. Then

Mψfw|ψ(o)|+supvT|v|[|ψ(v)|+|ψ(v)|]<.\displaystyle\|M_{\psi}f\|_{\textbf{w}}\leq|\psi(o)|+\sup_{v\in T^{*}}|v|\left[|\psi(v)|+|\psi(v^{-})|\right]<\infty.

Thus, Mψ\displaystyle M_{\psi} is bounded and Mψηψ\displaystyle\|M_{\psi}\|\leq\eta_{\psi}.

We next show that Mψηψ\displaystyle\|M_{\psi}\|\geq\eta_{\psi}. The inequality is obvious is ψ\displaystyle\psi is identically 0. For ψ\displaystyle\psi not identically 0 and for vT\displaystyle v\in T, define

f(v)={ 0 if ψ(v)=0,ψ(v)¯/|ψ(v)| if ψ(v)0,|v| even,ψ(v)¯/|ψ(v)| if ψ(v)0,|v| odd.\displaystyle f(v)=\begin{cases}\ \ \ \ 0&\quad\hbox{ if }\psi(v)=0,\\ \ \ \overline{\psi(v)}/|\psi(v)|&\quad\hbox{ if }\psi(v)\neq 0,|v|\hbox{ even},\\ -\overline{\psi(v)}/|\psi(v)|&\quad\hbox{ if }\psi(v)\neq 0,|v|\hbox{ odd}.\end{cases}

Then f=1\displaystyle\|f\|_{\infty}=1 and for vT\displaystyle v\in T^{*}, D(ψf)(v)=|ψ(v)|+|ψ(v)|\displaystyle D(\psi f)(v)=|\psi(v)|+|\psi(v^{-})|, so that

Mψfw=|ψ(o)|+supvT|v|[|ψ(v)|+|ψ(v)|].\displaystyle\|M_{\psi}f\|_{\textbf{w}}=|\psi(o)|+\sup_{v\in T^{*}}|v|\left[|\psi(v)|+|\psi(v^{-})|\right].

Thus, Mψηψ,\displaystyle\|M_{\psi}\|\geq\eta_{\psi}, completing the proof. ∎

In the next result, we characterize the bounded multiplication operators from L\displaystyle L^{\infty} to w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}.

Theorem 5.2.

For a function ψ\displaystyle\psi on T\displaystyle T, the following statements are equivalent:

  1. (a)

    Mψ:Lw,0\displaystyle M_{\psi}:L^{\infty}\to\mathcal{L}_{{\textbf{w}},0} is bounded.

  2. (b)

    lim|v||v||ψ(v)|=0\displaystyle\lim\limits_{|v|\to\infty}|v||\psi(v)|=0.

Furthermore, under these conditions, we have,

Mψ=ηψ.\displaystyle\|M_{\psi}\|=\eta_{\psi}.
Proof.

(a)(b)\displaystyle(a)\Longrightarrow(b): Assume Mψ:Lw,0\displaystyle M_{\psi}:L^{\infty}\to\mathcal{L}_{{\textbf{w}},0} is bounded. Applying Mψ\displaystyle M_{\psi} to the constant function 1, we obtain ψ=Mψ1w,0\displaystyle\psi=M_{\psi}1\in\mathcal{L}_{{\textbf{w}},0}. On the other hand, if 𝒪={vT:|v| is odd}\displaystyle\mathcal{O}=\{v\in T:|v|\text{ is odd}\}, then ψχ𝒪w,0\displaystyle\psi\chi_{\mathcal{O}}\in\mathcal{L}_{{\textbf{w}},0}, so for vT\displaystyle v\in T^{*}, we have

|v||ψ(v)|\displaystyle\displaystyle|v||\psi(v)| =\displaystyle\displaystyle= |v||ψ(v)|Dχ𝒪(v)|v|D(ψχ𝒪)(v)+|v|Dψ(v)|χ𝒪(v)|\displaystyle\displaystyle|v||\psi(v)|D\chi_{\mathcal{O}}(v)\leq|v|D(\psi\chi_{\mathcal{O}})(v)+|v|D\psi(v)|\chi_{\mathcal{O}}(v^{-})|
\displaystyle\displaystyle\leq |v|D(ψχ𝒪)(v)+|v|Dψ(v)0,\displaystyle\displaystyle|v|D(\psi\chi_{\mathcal{O}})(v)+|v|D\psi(v)\to 0,

as |v|\displaystyle|v|\to\infty, proving (b).

(b)(a)\displaystyle(b)\Longrightarrow(a): Suppose |v||ψ(v)|0\displaystyle|v||\psi(v)|\to 0 as |v|\displaystyle|v|\to\infty. First observe that

|v|Dψ(v)\displaystyle\displaystyle|v|D\psi(v) \displaystyle\displaystyle\leq |v||ψ(v)|+|v||v|1(|v|1)|ψ(v)|\displaystyle\displaystyle|v||\psi(v)|+\frac{|v|}{|v|-1}(|v|-1)|\psi(v^{-})|
\displaystyle\displaystyle\leq |v||ψ(v)|+2(|v|1)|ψ(v)|0\displaystyle\displaystyle|v||\psi(v)|+2(|v|-1)|\psi(v^{-})|\to 0

as |v|\displaystyle|v|\to\infty. Then for fL\displaystyle f\in L^{\infty} and vT\displaystyle v\in T^{*}, we have

|v|D(ψf)(v)\displaystyle\displaystyle|v|D(\psi f)(v) \displaystyle\displaystyle\leq |v||ψ(v)|Df(v)+|v|Dψ(v)|f(v)|\displaystyle\displaystyle|v||\psi(v)|Df(v)+|v|D\psi(v)|f(v^{-})|
\displaystyle\displaystyle\leq (2|v||ψ(v)|+|v|Dψ(v))f0,\displaystyle\displaystyle(2|v||\psi(v)|+|v|D\psi(v))\|f\|_{\infty}\to 0,

as |v|\displaystyle|v|\to\infty. Thus, ψfw,0\displaystyle\psi f\in\mathcal{L}_{{\textbf{w}},0}. The proof of the boundedness of Mψ\displaystyle M_{\psi} and of the formula Mψ=ηψ\displaystyle\|M_{\psi}\|=\eta_{\psi} is similar to the case when Mψ:Lw\displaystyle M_{\psi}:L^{\infty}\to\mathcal{L}_{\textbf{w}}. ∎

5.2. Isometries

As for all other multiplication operators in this article, there are no isometries among the multiplication operators from L\displaystyle L^{\infty} into w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{\textbf{w},0}.

Assume Mψ\displaystyle M_{\psi} is an isometry from L\displaystyle L^{\infty} to w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}. Then, for vT\displaystyle v\in T the function fv=1|v|+1χv\displaystyle f_{v}=\frac{1}{|v|+1}\chi_{v} is in w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} with Mψχvw=χv=1\displaystyle\|M_{\psi}\chi_{v}\|_{\textbf{w}}=\|\chi_{v}\|_{\infty}=1. In particular, it follows that |ψ(o)|=12\displaystyle|\psi(o)|=\frac{1}{2} and for vT\displaystyle v\in T^{*},

(|v|+1)|ψ(v)|=1.\displaystyle(|v|+1)|\psi(v)|=1.

Thus, |ψ(v)|=1|v|+1\displaystyle|\psi(v)|=\frac{1}{|v|+1}. On the other hand, taking as a test function f\displaystyle f the characteristic function of the set {vT:|v|1}\displaystyle\{v\in T:|v|\leq 1\}, we obtain

1=f=Mψfw=|ψ(o)|+max{sup|v|=1|ψ(v)ψ(o)|,sup|v|=12|ψ(v)|}32,\displaystyle 1=\|f\|_{\infty}=\|M_{\psi}f\|_{\textbf{w}}=|\psi(o)|+\max\left\{\sup_{|v|=1}|\psi(v)-\psi(o)|,\sup_{|v|=1}2|\psi(v)|\right\}\geq\frac{3}{2},

which yields a contradiction. Therefore, we obtain the following result.

Theorem 5.3.

The are no isometric multiplication operators Mψ\displaystyle M_{\psi} from L\displaystyle L^{\infty} to w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}.

5.3. Compactness and Essential Norm

The following two results are compactness criteria for multiplication operators from L\displaystyle L^{\infty} into w\displaystyle\mathcal{L}_{\textbf{w}} or w,0\displaystyle\mathcal{L}_{\textbf{w},0} similar to those given in the previous sections.

Lemma 5.4.

A bounded multiplication operator Mψ\displaystyle M_{\psi} from L\displaystyle L^{\infty} to w\displaystyle\mathcal{L}_{\textbf{w}} is compact if and only if for every bounded sequence {fn}\displaystyle\{f_{n}\} in L\displaystyle L^{\infty} converging to 0 pointwise, the sequence ψfnw\displaystyle\|\psi f_{n}\|_{\textbf{w}} approaches 0 as n\displaystyle n\to\infty.

Proof.

Assume Mψ\displaystyle M_{\psi} is compact and let {fn}\displaystyle\{f_{n}\} be a bounded sequence in L\displaystyle L^{\infty} converging to 0 pointwise. By rescaling the sequence, if necessary, we may assume fn1\displaystyle\|f_{n}\|_{\infty}\leq 1 for all n\displaystyle n\in\mathbb{N}. By the compactness of Mψ\displaystyle M_{\psi}, {fn}\displaystyle\{f_{n}\} has a subsequence {fnk}\displaystyle\{f_{n_{k}}\} such that {ψfnk}\displaystyle\{\psi f_{n_{k}}\} converges in the w\displaystyle\mathcal{L}_{\textbf{w}}-norm to some function fw\displaystyle f\in\mathcal{L}_{\textbf{w}}. Since by Lemma 1.3, for vT\displaystyle v\in T^{*},

|ψ(v)fnk(v)f(v)|(1+log|v|)ψfnkfw,\displaystyle|\psi(v)f_{n_{k}}(v)-f(v)|\leq(1+\log|v|)\|\psi f_{n_{k}}-f\|_{\textbf{w}},

and |ψ(o)fnk(o)f(o)|ψfnkfw,\displaystyle|\psi(o)f_{n_{k}}(o)-f(o)|\leq\|\psi f_{n_{k}}-f\|_{\textbf{w}}, it follows that ψfnkf\displaystyle\psi f_{n_{k}}\to f pointwise. Since by assumption, fn0\displaystyle f_{n}\to 0 pointwise, the function f\displaystyle f must be identically 0. Thus, the only limit point of the sequence {ψfn}\displaystyle\{\psi f_{n}\} in w\displaystyle\mathcal{L}_{\textbf{w}} is 0. Hence ψfnw0\displaystyle\|\psi f_{n}\|_{\textbf{w}}\to 0 as n\displaystyle n\to\infty.

Conversely, suppose ψfnw\displaystyle\|\psi f_{n}\|_{\textbf{w}} approaches 0 as n\displaystyle n\to\infty for every bounded sequence {fn}\displaystyle\{f_{n}\} in L\displaystyle L^{\infty} converging to 0 pointwise. Let {gn}\displaystyle\{g_{n}\} be a sequence in L\displaystyle L^{\infty} with gn1\displaystyle\|g_{n}\|_{\infty}\leq 1. Then some subsequence {gnk}\displaystyle\{g_{n_{k}}\} converges to a bounded function g\displaystyle g. Thus, the sequence fnk=gnkg\displaystyle f_{n_{k}}=g_{n_{k}}-g converges to 0 uniformly and fn\displaystyle\|f_{n}\|_{\infty} is bounded. By the hypothesis, it follows that ψfnkw0\displaystyle\|\psi f_{n_{k}}\|_{\textbf{w}}\to 0 as k\displaystyle k\to\infty. Thus, ψgnkψg\displaystyle\psi g_{n_{k}}\to\psi g in w\displaystyle\mathcal{L}_{\textbf{w}}. Therefore, Mψ\displaystyle M_{\psi} is compact. ∎

By an analogous argument, we obtain the corresponding result for Mψ:Lw,0\displaystyle M_{\psi}:L^{\infty}\to\mathcal{L}_{{\textbf{w},0}}.

Lemma 5.5.

A bounded multiplication operator Mψ\displaystyle M_{\psi} from L\displaystyle L^{\infty} to w,0\displaystyle\mathcal{L}_{{\textbf{w}},0} is compact if and only if for every bounded sequence {fn}\displaystyle\{f_{n}\} in L\displaystyle L^{\infty} converging to 0 pointwise, the sequence ψfnw\displaystyle\|\psi f_{n}\|_{\textbf{w}} approaches 0 as n\displaystyle n\to\infty.

Theorem 5.6.

For a bounded operator Mψ\displaystyle M_{\psi} from L\displaystyle L^{\infty} to w\displaystyle\mathcal{L}_{\textbf{w}}, the following statements are equivalent:

  1. (a)

    Mψ\displaystyle M_{\psi} is compact.

  2. (b)

    lim|v||v||ψ(v)|=0\displaystyle\lim\limits_{|v|\to\infty}|v||\psi(v)|=0.

Proof.

(a)(b)\displaystyle(a)\Longrightarrow(b): Assume Mψ\displaystyle M_{\psi} is compact. Let {vn}\displaystyle\{v_{n}\} be a sequence in T\displaystyle T such that |vn|\displaystyle|v_{n}|\to\infty as n\displaystyle n\to\infty. For n\displaystyle n\in\mathbb{N}, let fn\displaystyle f_{n} denote the characteristic function of the set {wT:|w||vn|}\displaystyle\{w\in T:|w|\geq|v_{n}|\}. Then fn=1\displaystyle\|f_{n}\|_{\infty}=1 and fn0\displaystyle f_{n}\to 0 pointwise. By Lemma 5.4 and the compactness of Mψ\displaystyle M_{\psi}, it follows that

|vn||ψ(vn)|=|vn|D(ψfn)(vn)Mψfnw0\displaystyle|v_{n}||\psi(v_{n})|=|v_{n}|D(\psi f_{n})(v_{n})\leq\|M_{\psi}f_{n}\|_{\textbf{w}}\to 0

as n\displaystyle n\to\infty.

(b)(a)\displaystyle(b)\Longrightarrow(a): Assume lim|v||v||ψ(v)|=0\displaystyle\lim\limits_{|v|\to\infty}|v||\psi(v)|=0 and that ψ\displaystyle\psi is not identically 0. In particular, ψ\displaystyle\psi is bounded. Let {fn}\displaystyle\{f_{n}\} be a sequence in L\displaystyle L^{\infty} converging pointwise to 0 and such that fn\displaystyle\|f_{n}\|_{\infty} is bounded above by some positive constant C\displaystyle C. Then corresponding to ε>0\displaystyle\varepsilon>0, there exists N\displaystyle N\in\mathbb{N} such that |v||ψ(v)|<ε4C\displaystyle|v||\psi(v)|<\displaystyle\frac{\varepsilon}{4C} for all vertices v\displaystyle v such that |v|N\displaystyle|v|\geq N. Therefore, for |v|>N\displaystyle|v|>N and n\displaystyle n\in\mathbb{N}, we have

|v|D(ψfn)(v)|v||ψ(v)|Dfn(v)+|v|Dψ(v)|fn(v)|<ε.\displaystyle|v|D(\psi f_{n})(v)\leq|v||\psi(v)|Df_{n}(v)+|v|D\psi(v)|f_{n}(v^{-})|<\varepsilon.

Furthermore, the sequence {fn}\displaystyle\{f_{n}\} converges to 0 uniformly on the set {vT:|v|N}\displaystyle\{v\in T:|v|\leq N\} so that |fn(v)|<ε4Nψ\displaystyle|f_{n}(v)|<\frac{\varepsilon}{4N\|\psi\|_{\infty}} for all n\displaystyle n sufficiently large. Hence |v|D(ψfn)(v)<ε\displaystyle|v|D(\psi f_{n})(v)<\varepsilon for all vT\displaystyle v\in T^{*} and all n\displaystyle n sufficiently large. Consequently, ψfnw0\displaystyle\|\psi f_{n}\|_{\textbf{w}}\to 0 as n\displaystyle n\to\infty. Using Lemma 5.4, we deduce that Mψ\displaystyle M_{\psi} is compact. ∎

Since the above proof is also valid when Mψ\displaystyle M_{\psi} is a bounded operator from L\displaystyle L^{\infty} to w,0\displaystyle\mathcal{L}_{{\textbf{w}},0}, through the application of Lemma 5.5, from Theorems 5.2 and 5.6 we obtain the following result.

Corollary 5.7.

For a function ψ\displaystyle\psi on T\displaystyle T, the following statements are equivalent:

  1. (a)

    Mψ:Lw\displaystyle M_{\psi}:L^{\infty}\to\mathcal{L}_{{\textbf{w}}} is compact.

  2. (b)

    Mψ:Lw,0\displaystyle M_{\psi}:L^{\infty}\to\mathcal{L}_{{\textbf{w}},0} is bounded.

  3. (c)

    Mψ:Lw,0\displaystyle M_{\psi}:L^{\infty}\to\mathcal{L}_{{\textbf{w}},0} is compact.

  4. (d)

    lim|v||v||ψ(v)|=0\displaystyle\lim\limits_{|v|\to\infty}|v||\psi(v)|=0.

We now determine the essential norm of the bounded multiplication operators from L\displaystyle L^{\infty} to w\displaystyle\mathcal{L}_{\textbf{w}}.

Theorem 5.8.

Let Mψ:Lw\displaystyle M_{\psi}:L^{\infty}\to\mathcal{L}_{\textbf{w}} be bounded. Then

Mψe=limnsup|v|n|v|[|ψ(v)|+|ψ(v)|].\displaystyle\|M_{\psi}\|_{e}=\lim_{n\to\infty}\sup_{|v|\geq n}|v|\left[|\psi(v)|+|\psi(v^{-})|\right].
Proof.

Set B(ψ)=limnsup|v|n|v|[|ψ(v)|+|ψ(v)|].\displaystyle B(\psi)=\lim\limits_{n\to\infty}\sup\limits_{|v|\geq n}|v|\left[|\psi(v)|+|\psi(v^{-})|\right]. In the case B(ψ)=0\displaystyle B(\psi)=0, then lim|v||v|ψ(v)=0\displaystyle\lim\limits_{|v|\to\infty}|v|\psi(v)=0, so by Theorem 5.6, Mψ\displaystyle M_{\psi} is compact and thus Mψe=0\displaystyle\|M_{\psi}\|_{e}=0. So assume B(ψ)>0\displaystyle B(\psi)>0. Then there exists a sequence {vn}\displaystyle\{v_{n}\} in T\displaystyle T such that 1|vn|\displaystyle 1\leq|v_{n}|\to\infty and

B(ψ)=limn|vn|[|ψ(vn)|+|ψ(vn)|].\displaystyle B(\psi)=\lim_{n\to\infty}|v_{n}|\left[|\psi(v_{n})|+|\psi(v_{n}^{-})|\right].

For each n\displaystyle n\in\mathbb{N} let fn\displaystyle f_{n} be the function on T\displaystyle T defined by

fn(v)={ 0 if |v|<|vn| or ψ(v)=0,ψ(v)¯/|ψ(v)| if |v||vn|,|v| is even, and ψ(v)0,ψ(v)¯/|ψ(v)| otherwise.\displaystyle f_{n}(v)=\begin{cases}\ \ \ \ 0&\quad\hbox{ if }|v|<|v_{n}|\hbox{ or }\psi(v)=0,\\ \ \ \overline{\psi(v)}/|\psi(v)|&\quad\hbox{ if }|v|\geq|v_{n}|,|v|\hbox{ is even, and }\psi(v)\neq 0,\\ -\overline{\psi(v)}/|\psi(v)|&\quad\hbox{ otherwise.}\end{cases}

Then fn=1\displaystyle\|f_{n}\|_{\infty}=1 and {fn}\displaystyle\{f_{n}\} converges to 0 pointwise. Thus, for any compact operator K:Lw\displaystyle K:L^{\infty}\to\mathcal{L}_{\textbf{w}}, there exists a subsequence {fnk}\displaystyle\{f_{n_{k}}\} such that Kfnkw0\displaystyle\|Kf_{n_{k}}\|_{\textbf{w}}\to 0 as k\displaystyle k\to\infty. Thus

MψK\displaystyle\displaystyle\|M_{\psi}-K\| \displaystyle\displaystyle\geq lim supk(MψK)fnkwlim supkψfnkw\displaystyle\displaystyle\limsup_{k\to\infty}\|(M_{\psi}-K)f_{n_{k}}\|_{\textbf{w}}\geq\limsup_{k\to\infty}\|\psi f_{n_{k}}\|_{\textbf{w}}
=\displaystyle\displaystyle= lim supksup|v||vnk||v|[|ψ(v)|+|ψ(v)|]=B(ψ).\displaystyle\displaystyle\limsup_{k\to\infty}\sup_{|v|\geq|v_{n_{k}}|}|v|\left[|\psi(v)|+|\psi(v^{-})|\right]=B(\psi).

Therefore, MψeB(ψ).\displaystyle\|M_{\psi}\|_{e}\geq B(\psi).

We now show that MψeB(ψ)\displaystyle\|M_{\psi}\|_{e}\leq B(\psi). For each n\displaystyle n\in\mathbb{N}, define the operator Kn\displaystyle K_{n} on L\displaystyle L^{\infty} by

Knf(v)={f(v) if |v|n0 if |v|>n.\displaystyle K_{n}f(v)=\begin{cases}f(v)&\quad\hbox{ if }|v|\leq n\\ 0&\quad\hbox{ if }|v|>n.\end{cases}

Then, for vT\displaystyle v\in T^{*}, we have

|v|D(Knf)(v)={|v|Df(v) for 1|v|n,(n+1)|f(v)| for |v|=n+1,0 for |v|>n+1.\displaystyle|v|D(K_{n}f)(v)=\begin{cases}|v|Df(v)&\quad\hbox{ for }1\leq|v|\leq n,\\ (n+1)|f(v^{-})|&\quad\hbox{ for }|v|=n+1,\\ 0&\quad\hbox{ for }|v|>n+1.\end{cases}

Thus, Knfw\displaystyle K_{n}f\in\mathcal{L}_{\textbf{w}} with Knfw|f(o)|+2nf.\displaystyle\|K_{n}f\|_{\textbf{w}}\leq|f(o)|+2n\|f\|_{\infty}.

Assume {fk}\displaystyle\{f_{k}\} is a sequence in L\displaystyle L^{\infty} with fk1\displaystyle\|f_{k}\|_{\infty}\leq 1. Then there exists a subsequence {fkj}\displaystyle\{f_{k_{j}}\} converging pointwise to some function fL\displaystyle f\in L^{\infty}. Thus,

KnfkjKnfw\displaystyle\displaystyle\|K_{n}f_{k_{j}}-K_{n}f\|_{\textbf{w}} =\displaystyle\displaystyle= |fkj(o)f(o)|\displaystyle\displaystyle|f_{k_{j}}(o)-f(o)|
+\displaystyle\displaystyle+ max{sup1|v|n|v|D(fkjf)(v),sup|v|=n+1|v||fkj(v)f(v)|}\displaystyle\displaystyle\max\left\{\sup_{1\leq|v|\leq n}|v|D(f_{k_{j}}-f)(v),\sup_{|v|=n+1}|v||f_{k_{j}}(v^{-})-f(v^{-})|\right\}
\displaystyle\displaystyle\leq |fkj(o)f(o)|\displaystyle\displaystyle|f_{k_{j}}(o)-f(o)|
+\displaystyle\displaystyle+ 2nmax{sup1|v|nD(fkjf)(v),sup|v|=n+1|fkj(v)f(v)|}.\displaystyle\displaystyle 2n\max\left\{\sup_{1\leq|v|\leq n}D(f_{k_{j}}-f)(v),\sup_{|v|=n+1}|f_{k_{j}}(v^{-})-f(v^{-})|\right\}.

So KnfkjKnf0\displaystyle\|K_{n}f_{k_{j}}-K_{n}f\|\to 0 as j\displaystyle j\to\infty. Therefore, Kn\displaystyle K_{n} is compact, and thus, since Mψ\displaystyle M_{\psi} is bounded, MψKn\displaystyle M_{\psi}K_{n} is also compact.

For fL\displaystyle f\in L^{\infty}, we have

(MψMψKn)fw\displaystyle\displaystyle\|(M_{\psi}-M_{\psi}K_{n})f\|_{\textbf{w}} =\displaystyle\displaystyle= sup|v|>n|v||ψ(v)f(v)ψ(v)f(v)+ψ(v)Knf(v)|\displaystyle\displaystyle\sup_{|v|>n}|v||\psi(v)f(v)-\psi(v^{-})f(v^{-})+\psi(v^{-})K_{n}f(v^{-})|
=\displaystyle\displaystyle= max{sup|v|=n+1|v||ψ(v)||f(v)|,sup|v|>n+1|v||ψ(v)f(v)ψ(v)f(v)|}\displaystyle\displaystyle\max\left\{\sup_{|v|=n+1}|v||\psi(v)||f(v)|,\sup_{|v|>n+1}|v||\psi(v)f(v)-\psi(v^{-})f(v^{-})|\right\}
\displaystyle\displaystyle\leq sup|v|>n|v|[|ψ(v)|+|ψ(v)|]f.\displaystyle\displaystyle\sup_{|v|>n}|v|\left[|\psi(v)|+|\psi(v^{-})|\right]\|f\|_{\infty}.

Therefore, we obtain

Mψe\displaystyle\displaystyle\|M_{\psi}\|_{e} \displaystyle\displaystyle\leq lim supnMψMψKn\displaystyle\displaystyle\limsup_{n\to\infty}\|M_{\psi}-M_{\psi}K_{n}\|
=\displaystyle\displaystyle= lim supnsupf=1(MψMψKn)fw\displaystyle\displaystyle\limsup_{n\to\infty}\sup_{\|f\|_{\infty}=1}\|(M_{\psi}-M_{\psi}K_{n})f\|_{\textbf{w}}
\displaystyle\displaystyle\leq B(ψ),\displaystyle\displaystyle B(\psi),

thus completing the proof. ∎

References

  • [1] Robert F. Allen, Flavia Colonna, and Glenn R. Easley, Multiplication operators on the weighted Lipschitz space of a tree, J. Operator Theory 69 (2013), no. 1, 209–231. MR 3029495
  • [2] Pierre Cartier, Fonctions harmoniques sur un arbre, Symposia Mathematica, Vol. IX (Convegno di Calcolo delle Probabilità, INDAM, Rome, 1971), 1972, pp. 203–270. MR 0353467
  • [3] Joel M. Cohen and Flavia Colonna, Embeddings of trees in the hyperbolic disk, Complex Variables Theory Appl. 24 (1994), no. 3-4, 311–335. MR 1270321
  • [4] Flavia Colonna, Bloch and normal functions and their relation, Rend. Circ. Mat. Palermo (2) 38 (1989), no. 2, 161–180. MR 1029707
  • [5] Flavia Colonna and Glenn R. Easley, Multiplication operators on the Lipschitz space of a tree, Integral Equations Operator Theory 68 (2010), no. 3, 391–411. MR 2735443
  • [6] by same author, Multiplication operators between the Lipschitz space and the space of bounded functions on a tree, Mediterr. J. Math. 9 (2012), no. 3, 423–438. MR 2954500
  • [7] John B. Conway, A course in functional analysis, second ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713
  • [8] Kehe Zhu, Operator theory in function spaces, second ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536