This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Multipartite entangling power by von Neumann entropy

Xinyu Qiu [email protected] LMIB(Beihang University), Ministry of Education, and School of Mathematical Sciences, Beihang University, Beijing 100191, China    Zhiwei Song [email protected] LMIB(Beihang University), Ministry of Education, and School of Mathematical Sciences, Beihang University, Beijing 100191, China    Lin Chen [email protected] (corresponding author) LMIB(Beihang University), Ministry of Education, and School of Mathematical Sciences, Beihang University, Beijing 100191, China
Abstract

Quantifying the entanglement generation of a multipartite unitary operation is a key problem in quantum information processing. We introduce the definition of multipartite entangling, assisted entangling, and disentangling power, which is a natural generalization of the bipartite ones. We show that they are assumed at a specified quantum state. We analytically derive the entangling power of Schmidt-rank-two multi-qubit unitary operations by the minimal convex sum of modulo-one complex numbers. Besides we show the necessary and sufficient condition that the assisted entangling power of Schmidt-rank-two unitary operations reaches the maximum. We further investigate the widely-used multi-qubit gates, for example, the entangling and assisted entangling power of the nn-qubit Toffoli gate is one ebit. The entangling power of the three-qubit Fredkin gate is two ebits, and that of the four-qubit Fredkin gate is in two to log25\log_{2}5 ebits.

I Introduction

Entanglement is a key resource in quantum information processing tasks, such as dense coding bennett1992communication ; qiu2022quantum , distributed computation dis1999cirac and efficient tomography cramer2010Efficient . In practice, entanglement is generated by nonlocal unitary operations. It is of importance to quantify how much entanglement a unitary operation can generate. This is characterized by entangling power, the most fundamental quantity to evaluate the usefulness of the nonlocal unitary operation acting on a composed quantum system. For instance, more entanglement generated by a unitary operation guarantees high fidelity and robustness in quantum communication hu2021long ; qiu2024w1 . Entangling power is firstly defined for the bipartite nonlocal unitary operation ent2000zanardi ; wang2002ep ; hamma2004ep ; mkz13 . By taking the maximum or average over all input states, the entangling power is defined via various entropy of entanglement, such as linear entropy ent2000zanardi and von Neumann entropy Nielsen03 . Analytically, the entangling power of Schmidt-rank-two bipartite unitary and some complex bipartite permutation unitaries are derived lcly20160808 ; ent2016yu ; ent2018shen .

Multipartite entanglement has been paid much attention with the development of its realization cao2023gene ; high2023ever and applications exp2022nad ; expqkd2022nad . Multipartite unitary operations are vital in the construction of such states. Their experimental implementation is paid much attention wang2015improving , for example, the multi-qubit controlled phase gate is implemented by extracting gate fidelity 97.4%\geq 97.4\% with neutral atoms levine2019parallel . In this case, the investigation of entangling power of multipartite operations is necessary. Multipartite entangling power with respect to the mean output entanglement for random pure states sampled according to the unitarily invariant Haar measure is investigated scott2004mul . Recently it has been shown that the minimum entangling power is close to its maximum by choosing the entropy of entanglement or Schmidt rank as entanglement measure mini2019chen . The analytical expression of the entangling power of nn-partite unitary operations is derived concerning linear entropy of entanglement ent2020lin , where the von Neumann entropy is not considered as it is much harder to obtain than the linear entropy. However, the von Neumann entropy is one of the cornerstones of quantum information theory ohya1995entropy ; song2023proof . Roughly speaking, it quantifies the amount of quantum information contained in a state of independently distributed quantum systems, and also fully characterizes single-shot state transitions in unitary quantum mechanics boes2019von . As an application, von Neumann entropy plays an essential role in the coding theorem schu1995coding ; winter1999coding . From a practical perspective, it is of importance to consider the multipartite entangling power by von Neumann entropy. As far as we know, the analytical derivation of that has not been analyzed due to its difficulty.

In this paper, we focus on the property and analytical expression of entangling power of nn-partite unitary operations with respect to von Neumann entropy. To be specific, we show the definition of multipartite entangling, assisted entangling and disentangling entangling power in Definitions 4 and 5. It is the maximal von Neumann entropy over all input states with ancillae and possible bipartite divisions of multipartite systems. Hence the multipartite entangling power is a natural generalization of the bipartite one. Based on that, we show that the multipartite entangling, assisted entangling and disentangling power are assumed at a specified state by some facts in functional analysis. They are presented in Propositions 8 and 9. It implies that the supreme in the definition reaches the maximum exactly, and shows benefits in the derivation of entangling power. As the example, we show the analytical results of entangling power of three and nn-qubit (n4n\geq 4) Schmidt-rank-two unitary operations in Propositions 15 and 17, respectively. They are obtained by the results on the minimal convex sum of some modulo-one complex numbers in Lemma 10. We present the necessary and sufficient condition that the assisted entangling power of three and nn-qubit (n4n\geq 4) Schmidt-rank-two unitary operations reach the maximum in Propositions 16 and 18, respectively. Up to local unitaries, we consider the entangling and assisted entangling power of the widely-used multi-qubit unitary operations including Toffoli and Fredkin gate. We show that the entangling and assisted entangling power of a nn-qubit Toffoli gate is one ebit in Proposition 19. The entangling power of the three-qubit Fredkin gate is two ebits shown in Proposition 20, and that of four-qubit Fredkin gate is in two to log25\log_{2}5 ebits.

The rest of this paper is organized as follows. In Sec. II we introduce the notations, some facts of bipartite entangling power, von Neumann entropy and functional analysis. In Sec. III we show the definition and physical meaning of multipartite entangling power, and show their properties. In Sec. IV we show the entangling and assisted entangling power of multi-qubit Schmidt-rank-two unitary operations. In Sec. V, we show the entangling and assisted entangling power of widely used gates including Toffoli and Fredkin gate. We conclude in Sec. VI.

II Preliminaries and notations

In this section we show the notations and some facts used in this paper. First we present the notations of this paper. Then we show the definition and some properties of entangling power of bipartite unitaries. Finally we introduce some facts about continuous mapping in functional analysis, which will be used later.

Let A{\cal H}_{A} be the Hilbert space of system AA. We denote m,n{\cal M}_{m,n} by the set of m×nm\times n complex matrices, n{\cal M}_{n} by the set of n×nn\times n complex matrices and 𝒰n{\cal U}_{n} by the set of n×nn\times n unitary matrices, Sch(U)\mathop{\rm Sch}(U) by the Schmidt rank of a bipartite unitary. The Schatten pp-norm for arbitrary operator Am,nA\in{\cal M}_{m,n} and p[1,+)p\in[1,+\infty) is defined as Ap=[Tr(AA)p2]1p\lVert A\rVert_{p}=\big{[}\mathop{\rm Tr}(A^{\dagger}A)^{\frac{p}{2}}\big{]}^{\frac{1}{p}}. By setting p=1p=1 and p=2p=2 in the definition of p\lVert\cdot\rVert_{p}, the trace norm and Frobenius norm are obtained, respectively. The distance induced by Schatten pp-norm is given by dp(A,B)=ABpd_{p}(A,B)=\lVert A-B\rVert_{p}. We denote E(ρ)E(\rho) by the von Neumann entropy of the quantum state ρ\rho, KE(U)K_{E}(U) by the entangling power of a U𝒰nU\in{\cal U}_{n}, and KΛ:Λc(U)K_{\Lambda:\Lambda^{c}}(U) by the entangling power of UU under the bipartition Λ:Λc\Lambda:\Lambda^{c}.

Next we present the definition of entangling and assisted entangling power of bipartite unitaries. The entangling power of a bipartite unitary UU acting on the Hilbert space {\cal H} of systems AA,BB is defined as Nielsen03

KE(U)=sup|αARA,|βBRBE(U(|α|β)),\displaystyle K_{E}(U)=\sup_{|\alpha\rangle\in{\cal H}_{AR_{A}},\;|\beta\rangle\in{\cal H}_{BR_{B}}}E(U(|\alpha\rangle|\beta\rangle)), (1)

where |α|\alpha\rangle and |β|\beta\rangle are pure states, RAR_{A} and RBR_{B} are the local auxiliary systems, and E()E(\cdot) denotes the entanglement of the state U(|α|β)U(|\alpha\rangle|\beta\rangle), i.e. the von Neumann entropy S()S(\cdot) of the reduced density matrix on any one system, E(|ψAB):=S(TrA|ψψ|)=S(TrB|ψψ|)E(|\psi_{AB}\rangle):=S(\mathop{\rm Tr}_{A}|\psi\rangle\!\langle\psi|)=S(\mathop{\rm Tr}_{B}|\psi\rangle\!\langle\psi|). No entanglement is required as the initial resource and KE(U)0K_{E}(U)\geq 0 for all bipartite unitaries UU. From a generalized perspective, entanglement may be the initial resource. This derives the assisted entangling power, which is defined as lhl03

KEa(U)=sup|ψARABRB[E(U(|ψ))E(|ψ)],\displaystyle K_{E_{a}}(U)=\sup_{|\psi\rangle\in{\cal H}_{AR_{A}BR_{B}}}[E(U(|\psi\rangle))-E(|\psi\rangle)], (2)

where |ψ|\psi\rangle is a bipartite pure state. Obvious it holds that KE(U)KEa(U)K_{E}(U)\leq K_{Ea}(U). Any bipartite unitary UU acting on =AB{\cal H}={\cal H}_{A}\otimes{\cal H}_{B} has Schmidt rank equal to nn if there is an expansion of the form U=j=1nAjBjU=\sum_{j=1}^{n}A_{j}\otimes B_{j}, where dA×dAd_{A}\times d_{A} matrices A1,A2,,AnA_{1},A_{2},...,A_{n} are linearly independent, and the dB×dBd_{B}\times d_{B} matrices B1,B2,,BnB_{1},B_{2},...,B_{n} are also linearly independent. So Sch(U)min{dA2,dB2}\mathop{\rm Sch}(U)\leq\mathop{\rm min}\{d_{A}^{2},d_{B}^{2}\}. The operator Schmidt decomposition in a standard form, i.e. U=j=1rcjAjBjU=\sum_{j=1}^{r}c_{j}A_{j}\otimes B_{j}, where 1dATr(AjAk)=1dBTr(BjBk)=δjk\frac{1}{d_{A}}\mathop{\rm Tr}(A_{j}^{\dagger}A_{k})=\frac{1}{d_{B}}\mathop{\rm Tr}(B_{j}^{\dagger}B_{k})=\delta_{jk}, and the Schmidt coefficients satisfy cj>0c_{j}>0, j=1rcj2=1\sum_{j=1}^{r}c_{j}^{2}=1. Obviously the Schmidt coefficients are invariant under local unitaries. For any bipartite unitary UU, the following inequality holds

KSch(U)KE(U)log2Sch(U),\displaystyle K_{\mathop{\rm Sch}}(U)\leq K_{E}(U)\leq\log_{2}\mathop{\rm Sch}(U), (3)

where KSch(U)=H({cj2})=jcj2logcj2K_{\mathop{\rm Sch}}(U)=H(\{c_{j}^{2}\})=\sum_{j}-c_{j}^{2}\log c_{j}^{2} and cjc_{j}’s are defined in the standard form of Schmidt decomposition. If a bipartite unitary UU acting on AB{\cal H}_{A}\otimes{\cal H}_{B} is a controlled one, namely U=j=1mPjUjU=\sum_{j=1}^{m}P_{j}\otimes U_{j} with the pairwise orthogonal projectors PjP_{j} on A{\cal H}_{A} and the unitary operators UjU_{j} on B{\cal H}_{B}, then the assisted entangling power of UU satisfies that

KE(U)KEa(U)log2m,\displaystyle K_{E}(U)\leq K_{E_{a}}(U)\leq\log_{2}m, (4)

where the second inequality becomes equality if and only if there is a mixed state σB\sigma\in{\cal H}_{B} such that the equations Tr(σUjUk)=0\mathop{\rm Tr}(\sigma U_{j}^{\dagger}U_{k})=0 hold for any j,kj,k and j>kj>k lcly20160808 . Using the above fact, one can obtain assisted entangling power with the help of entangling power in some cases.

In quantum information processing, functional analysis allows us to consider a specific analytical problem from the comprehensive perspective of pure algebra and topology. We introduce some facts about compact set of a Hilbert space and continuous mapping as follows.

Theorem 1

Let HH be a Hilbert space, and YY is a subset of HH. Then the subset YY is compact if and only if YY is closed and bounded in HH.

Definition 2

Let X=(X,d)X=(X,d) and Y=(Y,d¯)Y=(Y,\bar{d}) be metric spaces. A mapping T:XYT:X\rightarrow Y is said to be continuous at a point x0Xx_{0}\in X if for every ε>0\varepsilon>0 there is a δ>0\delta>0 such that d¯(Tx,Tx0)<ε\bar{d}(Tx,Tx_{0})<\varepsilon for all xx satisfying d(x,x0)<δd(x,x_{0})<\delta. TT is said to be continuous if it is continuous at every point of XX.

Theorem 3

A continuous mapping TT of a compact subset MM of a metric space XX into \mathbb{R} assumes a maximum and minimum at some points of MM.

Using above facts, we will show the essential property of entangling power. This property will show benefits in the analytical derivation of entangling power.

III Definition and properties of multipartite entangling power

In this section we propose the definition, physical meaning and some properties of multipartite entangling and assisted entangling power. In Sec. III.1, we show the definition and physical meaning of entangling and assisted entangling power of multi-qubit unitary operations. In Sec. III.2 we show that the supremum is exactly maximum in their definitions, which will contribute to the calculation of the entangling power.

III.1 Definition and physical meanings

In this paper we focus on the multipartite quantum systems, where the structure of the entangled states is more complex than that of the bipartite case. For instance, an nn-partite pure state |ψ|\psi\rangle in the Hilbert space =A1A2An{\cal H}={\cal H}_{A_{1}}\otimes{\cal H}_{A_{2}}\otimes...\otimes{\cal H}_{A_{n}} is fully separable in any bipartite cut if and only if |ψ=k=1n|ψk|\psi\rangle=\otimes_{k=1}^{n}|\psi_{k}\rangle with |ψkAk|\psi_{k}\rangle\in{\cal H}_{A_{k}}. However the violation of full separation may not lead to a fully entangled state, as a multipartite state may be entangled by the bipartition on some of the subsystems for example, the state |γA1A2An=|αA1|βA2An|\gamma\rangle_{A_{1}A_{2}\cdots A_{n}}=|\alpha\rangle_{A_{1}}\otimes|\beta\rangle_{A_{2}\cdots A_{n}}, where α\alpha is a qubit state and |β|\beta\rangle is a n1n-1 qubit GHZ state.

We study the entangling power of a multipartite unitary with regard to the maximal von Neumann entropy, over all possible divisions of a multipartite system. Its definition is given as follows.

Definition 4

The entangling power of a unitary acting on the Hilbert space of a nn-partite system =A1A2An{\cal H}={\cal H}_{A_{1}}\otimes{\cal H}_{A_{2}}\otimes...\otimes{\cal H}_{A_{n}} is defined as

KE(UA1,A2,,An)\displaystyle K_{E}(U_{A_{1},A_{2},...,A_{n}})
=\displaystyle= sup|ψiAiRimaxΛ{A1R1,,AnRn}\displaystyle\sup_{|\psi_{i}\rangle\in{\cal H}_{A_{i}R_{i}}}\;\;\mathop{\rm max}_{\emptyset\subsetneq\Lambda\subsetneq\{A_{1}R_{1},...,A_{n}R_{n}\}}
×EΛ:Λc(U(|ψ1A1R1|ψnAnRn))\displaystyle\quad\times E_{\Lambda:\Lambda^{c}}(U(|\psi_{1}\rangle_{A_{1}R_{1}}\otimes...\otimes|\psi_{n}\rangle_{A_{n}R_{n}}))
=\displaystyle= maxΛ{A1R1,,AnRn}sup|ψiAiRi\displaystyle\mathop{\rm max}_{\emptyset\subsetneq\Lambda\subsetneq\{A_{1}R_{1},...,A_{n}R_{n}\}}\;\;\sup_{|\psi_{i}\rangle\in{\cal H}_{A_{i}R_{i}}}
×EΛ:Λc(U(|ψ1A1R1|ψnAnRn)),\displaystyle\quad\times E_{\Lambda:\Lambda^{c}}(U(|\psi_{1}\rangle_{A_{1}R_{1}}\otimes...\otimes|\psi_{n}\rangle_{A_{n}R_{n}})),

where Λc\Lambda^{c} is the complement set of Λ\Lambda.

One can see that the multipartite entangling power is a natural generalization of the bipartite one. Practically, if a gate UU is applied in a quantum protocol or circuit without initial entanglement, then the entangled generation of this protocol or circuit will not be larger than the entangling power of UU. As mentioned above, the input states are chosen as fully separable states here. This means that we do not need any entanglement as the initial resource. The entangling power KE(UA1,A2,,An)K_{E}(U_{A_{1},A_{2},...,A_{n}}) shows the maximum entanglement that generated by UA1,A2,,AnU_{A_{1},A_{2},...,A_{n}} over all kinds of bipartite cuts. As in Sec. III.1, it holds that KE(UA1,A2,,An)0K_{E}(U_{A_{1},A_{2},...,A_{n}})\geq 0.

The multipartite assisted entangling power is also a generalization of the bipartite case. It allows the entanglement to be the initial resource and is characterized by the maximal von Neumann entropy over all possible bipartite cuts. The multipartite assisted entangling power is defined by the difference between the entanglement of output and input states.

Definition 5

Let {\cal H} be the Hilbert space of a nn-partite system, that is, =A1A2An{\cal H}={\cal H}_{A_{1}}\otimes{\cal H}_{A_{2}}\otimes...\otimes{\cal H}_{A_{n}}. Then

(i) The assisted entangling power of a unitary acting on {\cal H} is defined as

KEa(UA1,A2,,An)=maxΛ{A1R1,,AnRn}\displaystyle K_{E_{a}}(U_{A_{1},A_{2},...,A_{n}})=\mathop{\rm max}_{\emptyset\subsetneq\Lambda\subsetneq\{A_{1}R_{1},...,A_{n}R_{n}\}}\;\; (5)
×sup|ψ(EΛ:Λc(U|ψ)EΛ:Λc(|ψ)).\displaystyle\quad\times\sup_{|\psi\rangle\in{\cal H}}\Big{(}E_{\Lambda:\Lambda^{c}}(U|\psi\rangle)-E_{\Lambda:\Lambda^{c}}(|\psi\rangle)\Big{)}.

(ii) The disentangling power of a unitary acting on {\cal H} is defined as

KEd(UA1,A2,,An)=maxΛ{A1R1,,AnRn}\displaystyle K_{E_{d}}(U_{A_{1},A_{2},...,A_{n}})=\mathop{\rm max}_{\emptyset\subsetneq\Lambda\subsetneq\{A_{1}R_{1},...,A_{n}R_{n}\}} (6)
×sup|ψ(EΛ:Λc(U|ψ)EΛ:Λc(|ψ)).\displaystyle\quad\times\sup_{|\psi\rangle\in{\cal H}}\Big{(}E_{\Lambda:\Lambda^{c}}(U^{\dagger}|\psi\rangle)-E_{\Lambda:\Lambda^{c}}(|\psi\rangle)\Big{)}.

Here Λc\Lambda^{c} in (5) and (6) is the complement set of Λ\Lambda.

The multipartite assisted entangling power characterizes the power of a unitary operation that can change the entanglement of a quantum state. The input states of entangling power are included in that of assisted entangling power, and hence KE(UA1,A2,,An)KEa(UA1,A2,,An)K_{E}(U_{A_{1},A_{2},...,A_{n}})\leq K_{E_{a}}(U_{A_{1},A_{2},...,A_{n}}). In practice, the multipartite assisted entangling power characterizes the maximal change of entanglement in a quantum protocol.

Note that the auxiliary systems are necessary in Definition 4 and 5. For example, the three-qubit unitary operation U=|000000|+|001100|+|010001|+|011101|+|100010|+|101110|+|110011|+|111111|U=|000\rangle\!\langle 000|+|001\rangle\langle 100|+|010\rangle\langle 001|+|011\rangle\langle 101|+|100\rangle\langle 010|+|101\rangle\langle 110|+|110\rangle\langle 011|+|111\rangle\!\langle 111| satisfies that U|a,b,cABC=|c,a,bABCU|a,b,c\rangle_{ABC}=|c,a,b\rangle_{ABC}. So it can not generate any entanglement from the fully separable states. By adding the auxiliary systems, one can see that the entangling power of the gate UU is 2 ebits by (3).

III.2 Entangling, assisted entangling and disentangling power are assumed at a quantum state

The multipartite entangling, assisted entangling and disentangling power are defined by taking the supreme over all quantum states. One may wonder whether entangling and assisted entangling power can always be assumed at a specified input state, as it will facilitate their derivation. Here we prove that the answer is yes by some facts in functional analysis. This implies that the supreme in Definitions 4 and 5 are exactly maximum. Besides, this fact contributes to the analytical derivation and precise estimation of entangling power. The proof of the facts in this section is shown in Appendix A.

Before showing the main results, we introduce some basic facts about the set consisting of multipartite pure states and pure product states, respectively.

Lemma 6

Suppose 𝒳n{\cal X}_{n} is the set of nn-partite operators given by M=j1=1d12jn=1dn2cj1j2jnMj1(1)Mjn(n)M=\sum_{j_{1}=1}^{d_{1}^{2}}...\sum_{j_{n}=1}^{d_{n}^{2}}c_{j_{1}j_{2}...j_{n}}M_{j_{1}}^{(1)}\otimes...\otimes M_{j_{n}}^{(n)} with cj1j2jnc_{j_{1}j_{2}...j_{n}}\in\mathbb{C} and Mjs(s)dsM_{j_{s}}^{(s)}\in{\cal M}_{d_{s}}, s=1,2,,ns=1,2,...,n. The Schatten-pp norm is denoted by p\lVert\cdot\rVert_{p} with p[1,+]p\in[1,+\infty]. Then

(i)All density operators of (d1d2dn)(d_{1}d_{2}...d_{n})-dimensional nn-partite pure states form a compact subset of the normed space (𝒳n,p)({\cal X}_{n},\lVert\cdot\rVert_{p}).

(ii) All density operators of (d1d2dn)(d_{1}d_{2}...d_{n})-dimensional nn-partite pure product states form a compact subset of the normed space (𝒳n,p)({\cal X}_{n},\lVert\cdot\rVert_{p}).

Remark 7

Lemma 6 also holds for the set of all quantum states, as the limit of a sequence of positive semidefinite matrices is also positive semidefinite.

Now we are ready to show the main result of this section. It implies that the supreme in the definition of assisted entangling and disentangling power is the maximum exactly.

Proposition 8

(i) The supremum of multipartite assisted entangling power of unitary operations is assumed at some pure states. That is, the assisted entangling power of a unitary operation UU acting on the nn-partite system =A1A2An{\cal H}={\cal H}_{A_{1}}\otimes{\cal H}_{A_{2}}\otimes...\otimes{\cal H}_{A_{n}} is exactly KEa(U)=maxΛ{A1R1,,AnRn}max|ψ(EΛ:Λc(U|ψ)EΛ:Λc(|ψ))K_{E_{a}}(U)=\mathop{\rm max}_{\emptyset\subsetneq\Lambda\subsetneq\{A_{1}R_{1},...,A_{n}R_{n}\}}\mathop{\rm max}_{|\psi\rangle\in{\cal H}}\big{(}E_{\Lambda:\Lambda^{c}}(U|\psi\rangle)-E_{\Lambda:\Lambda^{c}}(|\psi\rangle)\big{)}.

(ii) The supremum of multipartite disentangling power of unitary operations is assumed at some pure states. That is, the disentangling power of a unitary operation UU acting on the nn-partite system =A1A2An{\cal H}={\cal H}_{A_{1}}\otimes{\cal H}_{A_{2}}\otimes...\otimes{\cal H}_{A_{n}} is exactly Kd(U)=KEa(U)=maxΛ{A1R1,,AnRn}max|ψ(EΛ:Λc(U|ψ)EΛ:Λc(|ψ))K_{d}(U)=K_{E_{a}}(U^{\dagger})=\mathop{\rm max}_{\emptyset\subsetneq\Lambda\subsetneq\{A_{1}R_{1},...,A_{n}R_{n}\}}\mathop{\rm max}_{|\psi\rangle\in{\cal H}}\big{(}E_{\Lambda:\Lambda^{c}}(U^{\dagger}|\psi\rangle)-E_{\Lambda:\Lambda^{c}}(|\psi\rangle)\big{)}.

Similar to Proposition 8, we obtain the following results concerning entangling power.

Proposition 9

The maximum of multipartite entangling power of unitary operations is assumed at some product states. That is, the entangling power of a unitary operation UU acting on the nn-partite system =A1A2An{\cal H}={\cal H}_{A_{1}}\otimes{\cal H}_{A_{2}}\otimes...\otimes{\cal H}_{A_{n}} is exactly KE(U)=maxΛ{A1R1,,AnRn}max|ψEΛ:Λc(U|ψ)K_{E}(U)=\mathop{\rm max}_{\emptyset\subsetneq\Lambda\subsetneq\{A_{1}R_{1},...,A_{n}R_{n}\}}\mathop{\rm max}_{|\psi\rangle\in{\cal H}}E_{\Lambda:\Lambda^{c}}(U|\psi\rangle).

The preceding facts show that it suffices to consider the maximum for the derivation of the entangling power of unitary operations. Next we show some examples concerning multi-qubit Schmidt-rank-two unitary operations and some widely used multi-qubit unitary operations.

IV Entangling and assisted entangling power of multi-qubit Schmidt-rank-two unitaries

Schmidt-rank-two multi-qubit unitaries are widely used in quantum information processing, for example, the multi-qubit controlled phase gate. In this section we show the entangling power of this kind of unitaries. In Sec. IV.1, we present some useful facts that will be used for the derivation of the entangling power. In Sec. IV.2, we show the entangling and assisted entangling power of multi-qubit Schmidt-rank-two unitary operations.

IV.1 Preliminary lemmas

We consider the minimum convex sum of finite module-one complex numbers. First we show the expression of the minimum convex sum of a set. Based on that, we prove that the minimum convex sum decreases with the cardinality of this set. The proof of the facts in this section is shown in Appendix B.

Lemma 10

The minimum convex sum of the set 𝒞={eiθj}j=1n{\cal C}=\{e^{i\theta_{j}}\}_{j=1}^{n} with θj[0,2π)\theta_{j}\in[0,2\pi) and θjθj+1\theta_{j}\leq\theta_{j+1} is derived by

minc1,c2,,cn0,jcj=1|jeiθjcj|\displaystyle\!\!\!\!\!\!\mathop{\rm min}_{c_{1},c_{2},...,c_{n}\geq 0,\;\sum_{j}c_{j}=1}\bigg{|}\sum_{j}e^{i\theta_{j}}c_{j}\bigg{|} (7)
=\displaystyle= {0,for  0θjθj1π,θnθ1π,j=2,,n,min1jn|cos(θjθj+1modn2)|,otherwise.\displaystyle\!\!\!\!\!\!\begin{cases}0,\;\mbox{for}\;\;0\leq\theta_{j}-\theta_{j-1}\leq\pi,\theta_{n}-\theta_{1}\geq\pi,\;j=2,...,n,\\ \mathop{\rm min}_{1\leq j\leq n}|\cos(\frac{\theta_{j}-\theta_{j+1\mod n}}{2})|,\;\mbox{otherwise}.\end{cases}

From the proof of Lemma 10, one can obtain that the minimum convex sum decreases with the cardinality of a set. This fact will be used to obtain the entangling power of multi-qubit unitary operations.

Lemma 11

Suppose two sets 𝒞1={eiαj}j=1n{\cal C}_{1}=\{e^{i\alpha_{j}}\}_{j=1}^{n} and 𝒞2={eiβk}k=1m{\cal C}_{2}=\{e^{i\beta_{k}}\}_{k=1}^{m} satisfies nmn\leq m and 𝒞1𝒞2{\cal C}_{1}\subset{\cal C}_{2}. Then

(i) The minimum convex sum of the set 𝒞1{\cal C}_{1} is not less than that of 𝒞2{\cal C}_{2}, that is,

minc1,c2,,cn0,jcj=1|jeiαjcj|minc1,c2,,cm0,kck=1|keiβkck|.\displaystyle\mathop{\rm min}_{\begin{subarray}{c}c_{1},c_{2},...,c_{n}\geq 0,\\ \sum_{j}c_{j}=1\end{subarray}}\bigg{|}\sum_{j}e^{i\alpha_{j}}c_{j}\bigg{|}\geq\mathop{\rm min}_{\begin{subarray}{c}c_{1},c_{2},...,c_{m}\geq 0,\\ \sum_{k}c_{k}=1\end{subarray}}\bigg{|}\sum_{k}e^{i\beta_{k}}c_{k}\bigg{|}. (8)

(ii) The maximum convex sum of the set 𝒞1{\cal C}_{1} is not more than that of 𝒞2{\cal C}_{2}, that is,

maxc1,c2,,cn0,jcj=1|jeiαjcj|maxc1,c2,,cm0,kck=1|keiβkck|.\displaystyle\mathop{\rm max}_{\begin{subarray}{c}c_{1},c_{2},...,c_{n}\geq 0,\\ \sum_{j}c_{j}=1\end{subarray}}\bigg{|}\sum_{j}e^{i\alpha_{j}}c_{j}\bigg{|}\leq\mathop{\rm max}_{\begin{subarray}{c}c_{1},c_{2},...,c_{m}\geq 0,\\ \sum_{k}c_{k}=1\end{subarray}}\bigg{|}\sum_{k}e^{i\beta_{k}}c_{k}\bigg{|}. (9)

We show the expression of entangling power of a Schmidt-rank-two bipartite unitary acting on dA×dBd_{A}\times d_{B} states, which will be used later in the analysis of multi-qubit case. From Eq. (18) in lcly20160808 , it has been obtained that the entangling power of the unitary U=P1IdB+P2j=1neiθj|jj|U=P_{1}\otimes I_{d_{B}}+P_{2}\otimes\sum_{j=1}^{n}e^{i\theta_{j}}|j\rangle\!\langle j| with orthogonal projectors P1,P2P_{1},P_{2} and real parameters θj\theta_{j} shows

KE(U)\displaystyle\!\!\!\!\!\!K_{E}(U) (10)
=\displaystyle= maxc1,c2,,cdB0,jcj=1H(1|jeiθjcj|2,1+|jeiθjcj|2).\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{\begin{subarray}{c}c_{1},c_{2},...,c_{d_{B}}\geq 0,\\ \sum_{j}c_{j}=1\end{subarray}}H\bigg{(}\frac{1-|\sum_{j}e^{i\theta_{j}}c_{j}|}{2},\frac{1+|\sum_{j}e^{i\theta_{j}}c_{j}|}{2}\bigg{)}.

From Lemma 10 and (10), the entangling power of Schmidt-rank-two bipartite unitaries can be obtained as follows.

Lemma 12

Suppose U=P1IdB+P2j=1dBeiθj|jj|U=P_{1}\otimes I_{d_{B}}+P_{2}\otimes\sum_{j=1}^{d_{B}}e^{i\theta_{j}}|j\rangle\!\langle j| is a dA×dBd_{A}\times d_{B} controlled unitary with orthogonal projectors P1,P2P_{1},P_{2} and real parameters θj\theta_{j}. Without loss of generality, one can assume that θ1=0\theta_{1}=0 and θjθj+1<2π\theta_{j}\leq\theta_{j+1}<2\pi for 1jdB1\leq j\leq d_{B}. Then UU has the entangling power

KE(U)\displaystyle\!\!\!\!\!\!K_{E}(U)
=\displaystyle= {H(12,12)=1,for  0θjθj1π,θdBπ,j2,max1jdBH(1+cos(α)2,1cos(α)2),otherwise,\displaystyle\!\!\!\!\!\!\begin{cases}H(\frac{1}{2},\frac{1}{2})=1,\;\mbox{for}\;\;0\leq\theta_{j}-\theta_{j-1}\leq\pi,\theta_{d_{B}}\geq\pi,j\geq 2,\\ \mathop{\rm max}_{1\leq j\leq d_{B}}H(\frac{1+\cos(\alpha)}{2},\frac{1-\cos(\alpha)}{2}),\;\mbox{otherwise},\end{cases}

where α=(θjθ(j+1)modn)/2\alpha=(\theta_{j}-\theta_{(j+1)\mod n})/2.

Next we simplify the analysis of entangling power. That is, the critical states for multipartite unitaries with Schmidt rank equal to two can be removed during its calculation.

Lemma 13

Up to local unitary, we assume that a nn-partite unitary UA1,A2,,An=j=1m(Pj)Ai(Uj)AicU_{A_{1},A_{2},...,A_{n}}=\sum_{j=1}^{m}(P_{j})_{A_{i}}\otimes(U_{j})_{A_{i}^{c}} is controlled from AiA_{i} side, where the projectors PjP_{j}’s are pairwise orthogonal to each other and UjU_{j}’s are pairwise orthogonal (n1)(n-1)-partite unitaries. Under the bipartition Ai:AicA_{i}:A_{i}^{c}, the maximal entanglement generation KAi:Aic(U)K_{A_{i}:A_{i}^{c}}(U) can be derived by removing the ancilla RiR_{i}. That is,

KAi:Aic(U)\displaystyle\!\!\!\!\!\!K_{A_{i}:A_{i}^{c}}(U)
=\displaystyle= max|ψkAkRkEAiRi:(AiRi)c(U(|ψ1|ψ2|ψn))\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{|\psi_{k}\rangle\in{\cal H}_{A_{k}R_{k}}}E_{A_{i}R_{i}:(A_{i}R_{i})^{c}}(U(|\psi_{1}\rangle|\psi_{2}\rangle...|\psi_{n}\rangle))
=\displaystyle= max|ψiAi,ki|ψkAkRkEAi:(AiRi)c(U(|ψ1|ψi|ψn))\displaystyle\!\!\!\!\!\!\!\!\!\!\mathop{\rm max}_{\begin{subarray}{c}|\psi_{i}^{\prime}\rangle\in{\cal H}_{A_{i}},k\neq i\\ |\psi_{k}\rangle\in{\cal H}_{A_{k}R_{k}}\end{subarray}}E_{A_{i}:(A_{i}R_{i})^{c}}(U(|\psi_{1}\rangle\cdots|\psi_{i}^{\prime}\rangle\cdots|\psi_{n}\rangle)) (11)
=\displaystyle= maxqj0,j=1mqj=1,|ψkAkRk,kiS(j=1mqjUj(ki|ψkψk|)Uj).\displaystyle\!\!\!\!\!\!\!\!\!\!\mathop{\rm max}_{\begin{subarray}{c}q_{j}\geq 0,\sum_{j=1}^{m}q_{j}=1,\\ |\psi_{k}\rangle\in{\cal H}_{A_{k}R_{k}},k\neq i\end{subarray}}S\bigg{(}\sum_{j=1}^{m}q_{j}U_{j}\big{(}\otimes_{k\neq i}|\psi_{k}\rangle\!\langle\psi_{k}|\big{)}U_{j}^{\dagger}\bigg{)}. (12)

From the proof of Lemma 13, when a NN-partite unitary is controlled from more than one subsystem, their corresponding ancilla systems can also be removed for the calculation of entangling power.

Lemma 14

Let Λ{A1R1,,AnRn}\emptyset\subsetneq\Lambda\subsetneq\{A_{1}R_{1},...,A_{n}R_{n}\} and λ={i|AiRiΛ}\lambda=\{i|A_{i}R_{i}\in\Lambda\}. Up to local unitary, we assume that a nn-partite unitary UA1,A2,,An=j=1m(Pj)Λ(Uj)ΛcU_{A_{1},A_{2},...,A_{n}}=\sum_{j=1}^{m}(P_{j})_{\Lambda}\otimes(U_{j})_{\Lambda^{c}} is controlled from Λ\Lambda side, where the projectors PjP_{j}’s are pairwise orthogonal to each other and UjU_{j}’s are pairwise orthogonal unitaries. Under the bipartition Λ:Λc\Lambda:\Lambda^{c}, the maximal entanglement generation KΛ:Λc(U)K_{\Lambda:\Lambda^{c}}(U) can be derived by removing the ancilla RλR_{\lambda}. That is,

KΛ:Λc(U)\displaystyle K_{\Lambda:\Lambda^{c}}(U)
=\displaystyle= max|ψkAkRkEΛ:Λc(U(|ψ1|ψ2|ψn))\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{|\psi_{k}\rangle\in{\cal H}_{A_{k}R_{k}}}E_{\Lambda:\Lambda^{c}}(U(|\psi_{1}\rangle\otimes|\psi_{2}\rangle\otimes...\otimes|\psi_{n}\rangle))
=\displaystyle= max|ψiAi,|ψkAkRk,iλ,kλcE{Ai}:Λc(U(i|ψik|ψk))\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{\begin{subarray}{c}|\psi_{i}^{\prime}\rangle\in{\cal H}_{A_{i}},|\psi_{k}\rangle\in{\cal H}_{A_{k}R_{k}},\\ i\in\lambda,k\in\lambda^{c}\end{subarray}}E_{\{A_{i}\}:\Lambda^{c}}(U(\otimes_{i}|\psi_{i}^{\prime}\rangle\otimes_{k}|\psi_{k}\rangle))
=\displaystyle= maxqj0,j=1mqj=1,|ψkAkRk,kλcS(j=1mqjUj(kλc|ψkψk|)Uj).\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{\begin{subarray}{c}q_{j}\geq 0,\sum_{j=1}^{m}q_{j}=1,\\ |\psi_{k}\rangle\in{\cal H}_{A_{k}R_{k}},k\in\lambda^{c}\end{subarray}}S\bigg{(}\sum_{j=1}^{m}q_{j}U_{j}\big{(}\otimes_{k\in\lambda^{c}}|\psi_{k}\rangle\!\langle\psi_{k}|\big{)}U_{j}^{\dagger}\bigg{)}.

As we shall see, these facts bring convenience for the derivation of the entangling power of Schmidt-rank-two unitary operations.

IV.2 Entangling and assisted entangling and assisted entangling power of multi-qubit Schmidt-rank-two unitaries

First we consider the entangling power for the three-qubit case, which is a generalization of the two-qubit one. Using Lemmas 10 and 13, we have the following results.

Proposition 15

Up to system permutation, a Schmidt-rank-two three-qubit unitary is a controlled unitary U=(P1)A(U1)BC+(P2)A(U2)BCU=(P_{1})_{A}\otimes(U_{1})_{BC}+(P_{2})_{A}\otimes(U_{2})_{BC} with orthogonal projectors P1,P2P_{1},P_{2} and U1=k=01t=01eiθk,t|k,tk,t|,U2=k=01t=01eiωk,t|k,tk,t|U_{1}=\sum_{k=0}^{1}\sum_{t=0}^{1}e^{i\theta_{k,t}}|k,t\rangle\!\langle k,t|,\;U_{2}=\sum_{k=0}^{1}\sum_{t=0}^{1}e^{i\omega_{k,t}}|k,t\rangle\!\langle k,t| with θk,t,ωk,t[0,2π)\theta_{k,t},\omega_{k,t}\in[0,2\pi). Let

𝒜1={ω00θ00,ω01θ01,ω10θ10,ω11θ11}mod2π,\displaystyle{\cal A}_{1}=\{\omega_{00}-\theta_{00},\omega_{01}-\theta_{01},\omega_{10}-\theta_{10},\omega_{11}-\theta_{11}\}\!\!\!\!\mod 2\pi,
𝒜2={θ10θ00,θ11θ01,ω10ω00,ω11ω01}mod2π,\displaystyle{\cal A}_{2}=\{\theta_{10}-\theta_{00},\theta_{11}-\theta_{01},\omega_{10}-\omega_{00},\omega_{11}-\omega_{01}\}\!\!\!\!\mod 2\pi,
𝒜3={θ01θ00,θ11θ10,ω01ω00,ω11ω10}mod2π,\displaystyle{\cal A}_{3}=\{\theta_{01}-\theta_{00},\theta_{11}-\theta_{10},\omega_{01}-\omega_{00},\omega_{11}-\omega_{10}\}\!\!\!\!\mod 2\pi,

and am(j)a_{m}^{(j)} be the mm-th smallest element in 𝒜j{\cal A}_{j}. Then UU has the entangling power

KE(U)\displaystyle\!\!\!\!\!\!K_{E}(U) (13)
=\displaystyle= {1,js.t. 0am(j)am1(j)π,a4(j)a1(j)π,max1j31m4H(1+cos(β)2,1cos(β)2),otherwise,\displaystyle\!\!\!\!\!\!\begin{cases}1,\;\;\exists j\;s.t.\;0\leq a_{m}^{(j)}-a_{m-1}^{(j)}\leq\pi,\;a_{4}^{(j)}-a_{1}^{(j)}\geq\pi,\\ \mathop{\rm max}_{\begin{subarray}{c}1\leq j\leq 3\\ 1\leq m\leq 4\end{subarray}}H\Big{(}\frac{1+\cos(\beta)}{2},\frac{1-\cos(\beta)}{2}\Big{)},\;\mbox{otherwise},\end{cases}

where m{2,3,4}m\in\{2,3,4\} and β=am(j)a(m+1)mod4(j)\beta=a_{m}^{(j)}-a_{(m+1)\mod 4}^{(j)}.

The proof of Proposition 15 is given in Appendix C.

From Proposition 15, one can obtain the assisted entangling power of some Schmidt-rank-two three-qubit unitary, where the assisted entangling power reaches the maximum.

Proposition 16

By the assumption in Proposition 15, the assisted entangling power of a Schmidt-rank-two three-qubit unitary reaches the maximum, i.e. one ebit if and only if there is a j{1,2,3}j\in\{1,2,3\} such that 0am(j)am1(j)π,a4(j)a1(j)π0\leq a_{m}^{(j)}-a_{m-1}^{(j)}\leq\pi,\;a_{4}^{(j)}-a_{1}^{(j)}\geq\pi, for m=2,3,4m=2,3,4.

Proof.

The proof of Proposition 15 shows that the unitary UU is controlled by two terms under any possible bipartition. We consider the bipartition Λ:Λc\Lambda:\Lambda^{c}, where Λc\Lambda^{c} denotes the controlled system. Suppose the unitaries U1U_{1}, U2U_{2} on system Λc\Lambda^{c} correspond to the set 𝒜j{\cal A}_{j} in Proposition 15. From (4), one has KEa(U)1K_{E_{a}}(U)\leq 1 (ebit), and the entanglement generation by this bipartition KΛ:Λc(U)=1K_{\Lambda:\Lambda^{c}}(U)=1 if and only if there is a mixed state σΛc\sigma\in{\cal H}_{\Lambda^{c}} such that Tr(σU1U2))=0\mathop{\rm Tr}(\sigma U_{1}^{\dagger}U_{2}))=0, where U1,U2U_{1},U_{2} is the controlled unitaries implemented on Λc{\cal H}_{\Lambda^{c}}. Again by the proof of Proposition 15, σΛc\exists\sigma\in{\cal H}_{\Lambda^{c}} s.t. Tr(σU1U2))=0\mathop{\rm Tr}(\sigma U_{1}^{\dagger}U_{2}))=0 if and only if the minimum convex sum of the set AjA_{j} contains the original point, namely 0am(j)am1(j)π,a4(j)a1(j)π,m=2,3,40\leq a_{m}^{(j)}-a_{m-1}^{(j)}\leq\pi,\;a_{4}^{(j)}-a_{1}^{(j)}\geq\pi,\;m=2,3,4. Note that KE(U)K_{E}(U) is the maximal entanglement generation over all divisions. Hence KE(U)=1K_{E}(U)=1 if and only if there is a j{1,2,3}j\in\{1,2,3\} satisfies the condition above.     \sqcap\sqcup

Proposition 16 gives the necessary and sufficient condition that the three-qubit assisted entangling power reaches the maximum. It shows that many widely used three-qubit universal quantum gates have the assisted entangling power equal to one ebit, as we shall see in Sec. V. From the perspective of entanglement, these universal gates generate the maximum entanglement among all Schmidt-rank-two unitaries and hence are economic in quantum protocols.

Next we focus on the entangling and assisted entangling power of nn-qubit (n4n\geq 4) Schmidt-rank-two unitaries. The multipartite unitary gates are called genuine if they are not product unitary operators across any bipartition. In shen2022class , the Schmidt-rank-two genuine multipartite unitary gates are classified, and the parametric Schmidt decomposition is given in TABLE 1.

Table 1: The classification of genuine nn-qubit (n4n\geq 4) unitary gates of Schmidt-rank-two under local equivalence
singular number parametric Schmidt decomposition range of parameters
k=nk=n I2n+(eiϕ1)|00|nI_{2}^{\otimes n}+(e^{i\phi}-1)|0\rangle\!\langle 0|^{\otimes n} ϕ(0,2π)\phi\in(0,2\pi)
k=n1k=n-1 I2n+|00|(n1)diag(eiϕ1,eiθ1)I_{2}^{\otimes n}+|0\rangle\!\langle 0|^{\otimes(n-1)}\otimes\mathop{\rm diag}(e^{i\phi}-1,e^{i\theta}-1) θ,ϕ(0,2π)\theta,\phi\in(0,2\pi) and θϕ\theta\neq\phi
k=2k=2 |00|I2(n1)+|11|diag(1,eiβ2)diag(1,eiβn)|0\rangle\!\langle 0|\otimes I_{2}^{\otimes(n-1)}+|1\rangle\!\langle 1|\otimes\mathop{\rm diag}(1,e^{i\beta_{2}})\otimes\cdots\otimes\mathop{\rm diag}(1,e^{i\beta_{n}}) β2,,βn(0,2π)\beta_{2},\cdots,\beta_{n}\in(0,2\pi)
k=1k=1 diag(cosα,1)I2(n1)+isinα|00|σ3(n1)\mathop{\rm diag}(\cos\alpha,1)\otimes I_{2}^{\otimes(n-1)}+i\sin\alpha|0\rangle\!\langle 0|\otimes\sigma_{3}^{\otimes(n-1)} α(0,π2)(π2,π)\alpha\in(0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi)
k=0k=0 diag(cosα,cosβ)I2(n1)+idiag(sinα,sinβ)σ3(n1)\mathop{\rm diag}(\cos\alpha,\cos\beta)\otimes I_{2}^{\otimes(n-1)}+i\mathop{\rm diag}(\sin\alpha,\sin\beta)\otimes\sigma_{3}^{\otimes(n-1)} α,β(0,π2)(π2,π)\alpha,\beta\in(0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi)

We analyze the entangling power of a nn-qubit Schmidt-rank-two unitary acting on systems A1,A2,,AnA_{1},A_{2},...,A_{n}. It suffices to consider the genuine multipartite unitaries where there are not product unitary operators across any bipartition. In fact, if the subsystems of a unitary are product unitaries then this part will not generate entanglement. When analyzing the entangling power of this unitary, we can always ignore these product unitaries and turn to consider the non-product subsystems of this unitary. For example, from Definition 4, the entangling power of a unitary U=(A1A2+B1B2)A3AnU=(A_{1}\otimes A_{2}+B_{1}\otimes B_{2})\otimes A_{3}\otimes...\otimes A_{n} is equal to that of a smaller unitary U1=A1A2+B1B2U_{1}=A_{1}\otimes A_{2}+B_{1}\otimes B_{2} as no entanglement is generated by the last n2n-2 subsystems.

As is shown in TABLE 1, a genuine nn-qubit (n4n\geq 4) unitary is classified into five categories based on its singular number. It is defined as the number of local singular operators in the unique Schmidt decomposition in shen2022class . We obtain the entangling power of the nn-partite unitary whose singular number kk is equal to n,n1,2,1,0n,n-1,2,1,0, respectively.

Proposition 17

Suppose UkU_{k} is a Schmidt-rank-two nn-qubit (n4n\geq 4) unitary with singular number kk in TABLE 1, for k=n,n1,2,1,0k=n,n-1,2,1,0. Then UkU_{k} has the entangling power as follows.

(i) For k=nk=n or n1n-1, we assume that λj\lambda_{j} is the jj-th smallest elsment in the set {0,θ,ϕ|θ[0,2π),ϕ(0,2π)},θϕ\big{\{}0,\theta,\phi\big{|}\theta\in[0,2\pi),\phi\in(0,2\pi)\big{\}},\theta\neq\phi. Then

KE(Uk)\displaystyle K_{E}(U_{k}) (14)
=\displaystyle= {1,for  0λjλj1π,j=2,3andλ3π,max1j3H(1+cos(β)2,1cos(β)2),otherwise,\displaystyle\begin{cases}1,\;\mbox{for}\;\;0\leq\lambda_{j}-\lambda_{j-1}\leq\pi,\;j=2,3\;\mbox{and}\;\;\lambda_{3}\geq\pi,\\ \mathop{\rm max}_{1\leq j\leq 3}H(\frac{1+\cos(\beta)}{2},\frac{1-\cos(\beta)}{2}),\;\mbox{otherwise},\end{cases}

where β=(λjλj+1mod3)/2\beta=(\lambda_{j}-\lambda_{j+1\mod 3})/2.

(ii) For k=2k=2, we assume that θj\theta_{j} is the jj-th smallest element in the set {l=2nqlβlmod2π|ql=0,1,βl(0,2π)}\big{\{}\sum_{l=2}^{n}q_{l}\beta_{l}\mod 2\pi\big{|}q_{l}=0,1,\;\beta_{l}\in(0,2\pi)\big{\}}. Then

KE(Uk)\displaystyle\!\!\!\!K_{E}(U_{k}) (15)
=\displaystyle= {1,for 0θjθj1π,θ2n1θ1π,j=2,3,,2n1,ort{2,3,,n}s.t.βt=π,max1j2n1t{2,3,,n}{H(1+hjk2,1hjk)2),H(1+gt2,1gt2)},otherwise,\displaystyle\!\!\!\!\begin{cases}1,\;\mbox{for}\;0\leq\theta_{j}-\theta_{j-1}\leq\pi,\;\theta_{2^{n-1}}-\theta_{1}\geq\pi,\\ \quad j=2,3,...,2^{n-1},\mbox{or}\;\exists t\in\{2,3,...,n\}\;\text{s.t.}\;\beta_{t}=\pi,\\ \mathop{\rm max}_{\begin{subarray}{c}1\leq j\leq 2^{n-1}\\ t\in\{2,3,...,n\}\end{subarray}}\Big{\{}H(\frac{1+h_{jk}}{2},\frac{1-h_{jk})}{2}),H(\frac{1+g_{t}}{2},\frac{1-g_{t}}{2})\Big{\}},\\ \hskip 176.407pt\mbox{otherwise},\end{cases}

where hjk=cos(θjθk2)h_{jk}=\cos(\frac{\theta_{j}-\theta_{k}}{2}) with k=j+1mod2n1k=j+1\mod 2^{n-1}, and gt=cos(βt/2)g_{t}=\cos(\beta_{t}/2).

(iii) For k=1k=1 or 0, we assume that λj\lambda_{j} is the jj-th smallest element in the set {(±2α)mod2π,(±β)mod2π|α(0,π2)(π2,π),β[0,π2)(π2,π)}\big{\{}(\pm 2\alpha)\mod 2\pi,(\pm\beta)\mod 2\pi\big{|}\alpha\in(0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi),\beta\in[0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi)\big{\}}. Then

KE(Uk)\displaystyle\!\!\!\!K_{E}(U_{k}) (16)
=\displaystyle= {1,for 0λjλj1π,j=2,3,4,λ4λ1π,max1j4H(1+cos(β)2,1cos(β)2),otherwise,\displaystyle\!\!\!\!\begin{cases}1,\;\mbox{for}\;0\leq\lambda_{j}-\lambda_{j-1}\leq\pi,j=2,3,4,\lambda_{4}-\lambda_{1}\geq\pi,\\ \mathop{\rm max}_{1\leq j\leq 4}H(\frac{1+\cos(\beta)}{2},\frac{1-\cos(\beta)}{2}),\;\mbox{otherwise},\end{cases}

where β=λjλk2\beta=\frac{\lambda_{j}-\lambda_{k}}{2} with k=j+1mod4k=j+1\mod 4.

The proof of Proposition 17 is given in Appendix C.

We show the results of Proposition 17 in FIG. 1 and 2. In detail, we show results (i) and (iii) in FIG. 1, and result (ii) in FIG. 2. From FIG. 1, one can see that the value of KE(Un1)K_{E}(U_{n-1}) reaches the maximum, i.e. one, when both ϕ\phi and θ\theta approach π\pi, and KE(Un1)K_{E}(U_{n-1}) tends to be the minimum, i.e. zero, when ϕ\phi or θ\theta approach 0 or 2π2\pi. When θ0\theta\rightarrow 0 (real line) or θϕ\theta\rightarrow\phi (dashed line), KE(Un1)K_{E}(U_{n-1}) approaches KE(Un)K_{E}(U_{n}), which is merely determined by ϕ\phi. Besides, one can obtain that the value of KE(U0)K_{E}(U_{0}) reaches the maximum, i.e. one, when α(resp. β)(π4,3π4)\alpha(\text{resp. }\beta)\in(\frac{\pi}{4},\frac{3\pi}{4}), β(resp. α)(0,π4)\beta(\text{resp. }\alpha)\in(0,\frac{\pi}{4}) or α(resp. β)(π4,3π4)\alpha(\text{resp. }\beta)\in(\frac{\pi}{4},\frac{3\pi}{4}), β(resp. α)(3π4,π)\beta(\text{resp. }\alpha)\in(\frac{3\pi}{4},\pi). Besides, KE(Un1)K_{E}(U_{n-1}) approaches the minimum, zero, when ϕ\phi or θ\theta approach 0 or π\pi, or both of them approach π\pi. When β0\beta\rightarrow 0 (real line) or βπ\beta\rightarrow\pi (dashed line), the entangling power of U0U_{0} approaches that of U1U_{1}.

From FIG. 2, the value of KE(U2)K_{E}(U_{2}) is shown regarding to the parameters β2,β3,β4\beta_{2},\beta_{3},\beta_{4}. From the proof of Proposition 17, β2,β3,β4\beta_{2},\beta_{3},\beta_{4} have the same effect on KE(U2)K_{E}(U_{2}). Without loss of generality, we set β2=kπ3\beta_{2}=\frac{k\pi}{3} with k=0,1,,6k=0,1,...,6 such that we can observe the value of KE(U2)K_{E}(U_{2}) clearly. First we show the value of KE(U2)K_{E}(U_{2}) regarding β2\beta_{2}. From the first plane on the left, one can see that the minimum of KE(U2)K_{E}(U_{2}) approaches zero for β20\beta_{2}\rightarrow 0. The minimum of KE(U2)K_{E}(U_{2}) increases until b2b_{2} reaches π\pi, where KE(U2)=1K_{E}(U_{2})=1 for any β3,β4\beta_{3},\beta_{4}, shown in the third plane. After that, the minimum of KE(U2)K_{E}(U_{2}) decreases with the increase of β2\beta_{2}, shown by the fifth to seventh planes. Besides, the maximum of KE(U2)K_{E}(U_{2}) remains one for any β2(0,2π)\beta_{2}\in(0,2\pi). Second, we show the value of KE(U2)K_{E}(U_{2}) for a fixed β2\beta_{2} and variable β3,β4\beta_{3},\beta_{4}. The value of KE(U2)K_{E}(U_{2}) reaches the maximum, i.e. one, when both β3\beta_{3} and β4\beta_{4} approach π\pi, and KE(U2)K_{E}(U_{2}) tends to be the minimum, i.e. zero, when β3\beta_{3} or β4\beta_{4} approach 0 or 2π2\pi.

Refer to caption
Refer to caption
Figure 1: The entangling power of the Schmidt-rank-two nn-qubit unitary with singular number n,n1,1,0n,n-1,1,0, i.e. UnU_{n}, Un1U_{n-1} (LHS), and U1U_{1}, U0U_{0} (RHS). (a) The entangling power of UnU_{n} in (33) is shown by the real and dashed line, with regard to the parameter ϕ\phi. The entangling power of Un1U_{n-1} in (36) is shown with respect to the parameters ϕ\phi and θ\theta. (b) The entangling power of U1U_{1} in (33) is shown by the real and dashed line, with regard to the parameter α\alpha. The entangling power of U0U_{0} in (57) is shown with respect to the parameters α\alpha and β\beta.
Refer to caption
Figure 2: The entangling power of the Schmidt-rank-two four-qubit unitary with singular number k=2k=2, that is, U2=|00|I23+|11|diag(1,eiβ2)diag(1,eiβ4)U_{2}=|0\rangle\!\langle 0|\otimes I_{2}^{\otimes 3}+|1\rangle\!\langle 1|\otimes\mathop{\rm diag}(1,e^{i\beta_{2}})\otimes\cdots\otimes\mathop{\rm diag}(1,e^{i\beta_{4}}). The entangling power of U2U_{2} is shown with respect to the parameters β2,β3,β4\beta_{2},\beta_{3},\beta_{4}, where β2=kπ3\beta_{2}=\frac{k\pi}{3} with k=0,1,,6k=0,1,...,6 and β3,β4(0,2π)\beta_{3},\beta_{4}\in(0,2\pi). Here the value of KE(U)K_{E}(U) is shown by the color corresponding to the colorbar.

We show the assisted entangling power of some Schmidt-rank-two multi-qubit unitaries by Propositions 8 and 17. Here the assisted entangling power reaches the maximum.

Proposition 18

Suppose UkU_{k} is a Schmidt-rank-two nn-qubit (n4n\geq 4) unitary with singular number kk in TABLE 1, for k=n,n1,2,1,0k=n,n-1,2,1,0. Then the assisted entangling power of UkU_{k} reaches the maximum, i.e. one ebit if and only if

(i) For k=nk=n or n1n-1, we assume that λj\lambda_{j} is the jj-th smallest element in the set {0,θ,ϕ|θ[0,2π),ϕ(0,2π)},θϕ\big{\{}0,\theta,\phi\big{|}\theta\in[0,2\pi),\phi\in(0,2\pi)\big{\}},\theta\neq\phi. It holds that 0λjλj1π0\leq\lambda_{j}-\lambda_{j-1}\leq\pi, j=2,3j=2,3 and λ3π\lambda_{3}\geq\pi.

(ii) For k=2k=2, we assume that θj\theta_{j} is the jj-th smallest element in the set {l=2nqlβlmod2π|ql=0,1,βl(0,2π)}\big{\{}\sum_{l=2}^{n}q_{l}\beta_{l}\mod 2\pi\big{|}q_{l}=0,1,\;\beta_{l}\in(0,2\pi)\big{\}}. It holds that 0θjθj1π0\leq\theta_{j}-\theta_{j-1}\leq\pi and θ2n1θ1π\theta_{2^{n-1}}-\theta_{1}\geq\pi, for j=2,3,,2n1j=2,3,...,2^{n-1}, or there is a t{2,3,,n}t\in\{2,3,...,n\} such that βt=π\beta_{t}=\pi.

(iii) For k=1k=1 or 0, we assume that λj\lambda_{j} is the jj-th smallest element in the set {(±2α)mod2π,(±β)mod2π|α(0,π2)(π2,π),β[0,π2)(π2,π)}\big{\{}(\pm 2\alpha)\mod 2\pi,(\pm\beta)\mod 2\pi\big{|}\alpha\in(0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi),\beta\in[0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi)\big{\}}. It holds that 0λjλj1π0\leq\lambda_{j}-\lambda_{j-1}\leq\pi, for j=2,3,4j=2,3,4 and λ4λ1π\lambda_{4}-\lambda_{1}\geq\pi.

Proof.

The proof of Proposition 17 shows that the unitaries in case (i)-(iii) are in the form of two-term control by any bipartition. Then the result can be obtained in a similar way as the proof of Proposition 15.     \sqcap\sqcup

Proposition 18 shows the necessary and sufficient condition that the Schmidt-rank-two multi-qubit assisted entangling power reaches the maximum. Many well-known multi-qubit universal quantum gates are included in Proposition 16, such as the nn-qubit Toffoli gate, nn-qubit controlled-controlled z gate, and the generalized CNOT gate proposed in lcly20160808 etc. In general, the multipartite assisted entangling of an arbitrary unitary operation is still an open problem.

V Entangling and assisted entangling power of Widely-used multi-qubit unitaries

In this section we consider the entangling power of two types of multi-qubit unitary gates, namely Toffoli gates and Fredkin gates. We show that the entangling and assisted entangling power of a nn-qubit Fredkin gate is equal to one ebit, regardless of the number of controlling parties. As for the Fredkin gate, we show that the entangling power of three-qubit Fredkin gate is equal to two ebits, and conjecture that the entangling power of four-qubit Fredkin gate may also be equal to two ebits.

The Toffoli gate or controlled-controlled-NOT gate is a three-qubit gate. Its circuit representation is shown in FIG. 3. Toffoli gate is a kind of universal reversible gate. This gate acts as follows: the two control bits are unchanged, i.e. a=aa^{\prime}=a and b=bb^{\prime}=b while the target bit is flipped if and only if the two control bits are set to 1, i.e. c=cabc^{\prime}=c\oplus ab. The expression of the three-qubit Toffoli gate is given by

T3=(I22|1,11,1|)I2+|1,11,1|σx.\displaystyle T_{3}=(I_{2}^{\otimes 2}-|1,1\rangle\!\langle 1,1|)\otimes I_{2}+|1,1\rangle\!\langle 1,1|\otimes\sigma_{x}. (17)

Note that the controlled-controlled z (CCZ) gate, a special case for the controlled-controlled phase (CCP) gate,

CCP=(I22|1,11,1|)I2+|1,11,1|diag(1,eiϕ)\displaystyle CCP=(I_{2}^{\otimes 2}-|1,1\rangle\!\langle 1,1|)\otimes I_{2}+|1,1\rangle\!\langle 1,1|\otimes\mathop{\rm diag}(1,e^{i\phi})

for ϕ(0,2π)\phi\in(0,2\pi) is equivalent to the Toffoli gate up to local unitaries. Their entangling power is obtained as they are Schmidt-rank-two unitaries with singular number equal to nn. From (i) in Proposition 17, the entangling power of a CCP gate is equal to H(1+cos(ϕ/2)2,1cos(ϕ/2)2)H(\frac{1+\cos(\phi/2)}{2},\frac{1-\cos(\phi/2)}{2}) with ϕ(0,2π)\phi\in(0,2\pi). In particular, by choosing ϕ=π\phi=\pi, the CCZ and Toffoli gate is equal to one ebit, which is the maximal of CCPCCP gate.

In general, we may consider the entangling power of a nn-qubit Toffoli gate TnT_{n}, namely

Tn=(I2(n1)|11|n)I2+|11|nσx.\displaystyle T_{n}=(I_{2}^{\otimes(n-1)}-|1\rangle\!\langle 1|^{\otimes n})\otimes I_{2}+|1\rangle\!\langle 1|^{\otimes n}\otimes\sigma_{x}. (18)

By Proposition 17, it can be obtained that the entangling power of TnT_{n} is also one ebit, which will not increase with the number of controlling parties. This derives the following fact.

Proposition 19

The entangling and assisted entangling power of a nn-qubit Toffoli gate TnT_{n} is equal to one ebit.

\Qcircuit@C=0.8em @R=1.5em \lstick—a⟩ &\qw\ctrl2\qw\qw|a|a\rangle |a|a\rangle \qw\ctrl1 \qw\qw |a|a\rangle
\lstick—b⟩ \qw\ctrl1\qw\qw|b|b\rangle |b|b\rangle \qw\qswap\qw\qw |babac|b\oplus ab\oplus ac\rangle
\lstick—c⟩ \qw\targ\qw\qw |cab|c\oplus ab\rangle |c|c\rangle \qw\qswap\qwx\qw\qw |cabac|c\oplus ab\oplus ac\rangle

Figure 3: The circuit representation for the three-qubit Toffoli gate (LHS) and Fredkin gate (RHS). The qubits on LHS are inputs of the circuit and those on RHS are outputs, where a,b,c{0,1}a,b,c\in\{0,1\}.

The Fredkin gate, or controlled-swap gate, is another universal reversible gate, whose circuit representation is shown in FIG. 3. This gate swaps the input bits bb and cc if and only if the control bit aa is set to 1. The expression of the three-qubit Fredkin gate is given by

F3=|00|I22+|11|S2,\displaystyle F_{3}=|0\rangle\!\langle 0|\otimes I_{2}^{\otimes 2}+|1\rangle\!\langle 1|\otimes S_{2}, (19)

where S2S_{2} is the two-qubit swap gate. Next we consider the entangling power of the Fredkin gate F3F_{3} acting on ABC{\cal H}_{A}\otimes{\cal H}_{B}\otimes{\cal H}_{C}, and obtain the following.

Proposition 20

The entangling power of a three qubit Fredkin gate F3F_{3} is equal to two ebits.

Proof.

Since system BB is symmetric with system CC here, it suffices to consider the bipartition A:BCA:BC and C:ABC:AB.

First we consider the entanglement generation KA:BC(F3)K_{A:BC}(F_{3}). Obviously F3F_{3} can be controlled from system AA. From Proposition 9 and Lemma 13, the entanglement generation KA:BC(F3)K_{A:BC}(F_{3}) can be derived by removing the ancilla RAR_{A}, that is,

KA:BC(F3)\displaystyle\!\!\!\!\!\!K_{A:BC}(F_{3}) (20)
=\displaystyle= max|β,|γBRBCRCp[0,1]S(p|ββ|+(1p)S2|γγ|S2).\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{\begin{subarray}{c}|\beta\rangle,|\gamma\rangle\in{\cal H}_{BR_{B}}\otimes{\cal H}_{CR_{C}}\\ p\in[0,1]\end{subarray}}S(p|\beta\rangle\!\langle\beta|+(1-p)S_{2}|\gamma\rangle\!\langle\gamma|S_{2}).

Since F3F_{3} is controlled by two terms from system AA, we have KA:BC(U)log22=1K_{A:BC}(U)\leq\log_{2}2=1 (ebit). By choosing |β=|00BRB|00CRC|\beta\rangle=|00\rangle_{BR_{B}}|00\rangle_{CR_{C}} and |γ=|00BRB|10CRC|\gamma\rangle=|00\rangle_{BR_{B}}|10\rangle_{CR_{C}}, one has KA:BC(U)maxp[0,1]S(p|0000|BC+(1p)|1010|BC)=1K_{A:BC}(U)\geq\mathop{\rm max}_{p\in[0,1]}S(p|00\rangle\!\langle 00|_{BC}+(1-p)|10\rangle\!\langle 10|_{BC})=1 (ebit). Hence KA:BC(F3)=1 ebitK_{A:BC}(F_{3})=1\text{ ebit}.

Next we consider the entanglement generation KAB:C(F3)K_{AB:C}(F_{3}). From the Schmidt decomposition of Fredkin gate under the bipartition AB:CAB:C, one can see that KC:AB(F3)log2Sch(F3)=2K_{C:AB}(F_{3})\leq\log_{2}\mathop{\rm Sch}(F_{3})=2. Next we choose |αARA=|1,0|\alpha\rangle_{AR_{A}}=|1,0\rangle and |βBRB=|γCRC=|00+|112|\beta\rangle_{BR_{B}}=|\gamma\rangle_{CR_{C}}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}. Then KC:AB(F3)EC:AB(F3(|α|β|γ))=log24=2 (ebits)K_{C:AB}(F_{3})\geq E_{C:AB}(F_{3}(|\alpha\rangle\otimes|\beta\rangle\otimes|\gamma\rangle))=\log_{2}4=2\text{ (ebits)}. We have KC:AB(F3)=KB:AC(F3)=2 (ebits)K_{C:AB}(F_{3})=K_{B:AC}(F_{3})=2\text{ (ebits)}. Hence one can obtain that

K(F3)=\displaystyle K(F_{3})= max{KA:BC(F3),KB:AC(F3),KC:AB(F3)}\displaystyle\!\!\!\!\!\!\mathop{\rm max}\{K_{A:BC}(F_{3}),K_{B:AC}(F_{3}),K_{C:AB}(F_{3})\}
=\displaystyle= 2 (ebits).\displaystyle\!\!\!\!\!\!2\text{ (ebits)}.

This completes the proof.     \sqcap\sqcup

Next we consider the entangling power of F4F_{4}, where for the SWAP gate S2S_{2},

F4=\displaystyle F_{4}= (|0000|+|0101|+|1010|)AB(I22)CD\displaystyle\!\!\!\!\!\!(|00\rangle\!\langle 00|+|01\rangle\!\langle 01|+|10\rangle\!\langle 10|)_{AB}\otimes(I_{2}^{\otimes 2})_{CD}
+\displaystyle+ |1111|AB(S2)CD.\displaystyle\!\!\!\!\!\!|11\rangle\!\langle 11|_{AB}\otimes(S_{2})_{CD}.

Due to the symmetry of subsystems, it suffices to consider four cases with respect to the bipartition.

Case 1: We analyze the bipartition A:BCDA:BCD or B:ACDB:ACD, where KA:BCD(F4)=KB:ACD(F4)K_{A:BCD}(F_{4})=K_{B:ACD}(F_{4}). We merely consider the bipartition A:BCDA:BCD. By this bipartition, one can see that Sch(F4)=2\mathop{\rm Sch}(F_{4})=2 and hence KA:BCD(F4)=KB:ACD(F4)1K_{A:BCD}(F_{4})=K_{B:ACD}(F_{4})\leq 1. On the other hand, we have

KA:BCD(F4)=maxp[0,1],|β,|γBRBCRCDRD\displaystyle K_{A:BCD}(F_{4})=\mathop{\rm max}_{p\in[0,1],\;|\beta\rangle,|\gamma\rangle\in{\cal H}_{BR_{B}}\otimes{\cal H}_{CR_{C}}\otimes{\cal H}_{DR_{D}}}
×S(p|ββ|+(1p)(I2S2)|γγ|(I2S2)).\displaystyle\times S(p|\beta\rangle\!\langle\beta|+(1-p)(I_{2}\otimes S_{2})|\gamma\rangle\!\langle\gamma|(I_{2}\otimes S_{2})).

We choose |β=|00BRB|00CRC|00DRD|\beta\rangle=|00\rangle_{BR_{B}}|00\rangle_{CR_{C}}|00\rangle_{DR_{D}} and |γ=|10BRB|00CRC|10DRD|\gamma\rangle=|10\rangle_{BR_{B}}|00\rangle_{CR_{C}}|10\rangle_{DR_{D}}. Then KA:BCD(F4)1K_{A:BCD}(F_{4})\geq 1. To conclude, we have KA:BCD(F4)=KB:ACD(F4)=1K_{A:BCD}(F_{4})=K_{B:ACD}(F_{4})=1 (ebit).

Case 2: We analyze the bipartition C:ABDC:ABD or D:ABCD:ABC, where Sch(F4)=4\mathop{\rm Sch}(F_{4})=4. It can be obtained that KC:ABD(F4)=KD:ABC(F4)2K_{C:ABD}(F_{4})=K_{D:ABC}(F_{4})\leq 2. Next we consider the bipartition D:ABCD:ABC. By choosing the input state as |αARA=|βBRB=|10|\alpha\rangle_{AR_{A}}=|\beta\rangle_{BR_{B}}=|10\rangle, |γCRC=|ηDRD=|00+|112|\gamma\rangle_{CR_{C}}=|\eta\rangle_{DR_{D}}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}. One can obtain that

KD:ABC(F4)\displaystyle K_{D:ABC}(F_{4})\geq ED:ABC(F4(|α|β|γ|η))\displaystyle\!\!\!\!\!\!E_{D:ABC}(F_{4}(|\alpha\rangle\otimes|\beta\rangle\otimes|\gamma\rangle\otimes|\eta\rangle))
=\displaystyle= log24=2 ebits.\displaystyle\!\!\!\!\!\!\log_{2}4=2\text{ ebits}.

Therefore, we obtain that KC:ABD(F4)=KD:ABC(F4)=2K_{C:ABD}(F_{4})=K_{D:ABC}(F_{4})=2 (ebits).

Case 3: We analyze the bipartition AB:CDAB:CD. By this bipartition, F4F_{4} is a controlled unitary and it is controlled with two terms. Here systems ABAB are the controller. From Lemma 13, one has

KAB:CD(F4)=\displaystyle K_{AB:CD}(F_{4})= maxp[0,1],|β,|γCRCDRD\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{p\in[0,1],\;|\beta\rangle,|\gamma\rangle\in{\cal H}_{CR_{C}}\otimes{\cal H}_{DR_{D}}}
×S(p|ββ|+(1p)S2|γγ|S2).\displaystyle\times S(p|\beta\rangle\!\langle\beta|+(1-p)S_{2}|\gamma\rangle\!\langle\gamma|S_{2}).

By choosing the input state |β=|00BRB|00CRC|\beta\rangle=|00\rangle_{BR_{B}}|00\rangle_{CR_{C}} and |γ=|00BRB|10CRC|\gamma\rangle=|00\rangle_{BR_{B}}|10\rangle_{CR_{C}}, one has KA:BC(U)maxp[0,1]S(p|0000|BC+(1p)|1010|BC)=1K_{A:BC}(U)\geq\mathop{\rm max}_{p\in[0,1]}S(p|00\rangle\!\langle 00|_{BC}+(1-p)|10\rangle\!\langle 10|_{BC})=1 (ebit). Obviously it reached the maximum. Hence we have KAB:CD=1K_{AB:CD}=1 (ebit).

We shall emphasize that the analysis in Case 1-3 can be extended to a nn-qubit Fredkin gate. Next we consider the last bipartition.

Case 4: We consider the entanglement generation KAD:BC(F4)K_{AD:BC}(F_{4}) or equivalently, KAC:BD(F4)K_{AC:BD}(F_{4}). The Schmidt decomposition of F4F_{4} with respect to the bipartition AD:BCAD:BC shows that Sch(F4)=5\mathop{\rm Sch}(F_{4})=5 and thus KAD:BC(F4)log25K_{AD:BC}(F_{4})\leq\log_{2}5 (ebits). On the other hand, we can choose an input state |η=|10ARA|10BRB(|00+|112)CRC(|00+|112)DRD|\eta\rangle=|10\rangle_{AR_{A}}\otimes|10\rangle_{BR_{B}}\otimes(\frac{|00\rangle+|11\rangle}{\sqrt{2}})_{CR_{C}}\otimes(\frac{|00\rangle+|11\rangle}{\sqrt{2}})_{DR_{D}} such that EAD:BC(F4|η)=2E_{AD:BC}(F_{4}|\eta\rangle)=2 (ebits). Hence we have KAD:BC(F4)2K_{AD:BC}(F_{4})\geq 2, namely KAD:BC(F4)[2,log25]K_{AD:BC}(F_{4})\in[2,\log_{2}5]. Further we conjecture that KAD:BC(F4)2K_{AD:BC}(F_{4})\leq 2 by numerical results and thus have the following.

Conjecture 21

The entanglement generation KAD:BC(F4)=2K_{AD:BC}(F_{4})=2. Hence the entangling power of a four-qubit Fredkin gate F4F_{4} is equal to two ebits.

In order to prove this conjecture, we may choose the input states as

|α1ARA=[w0,w1,w2,0]T,|α2BRB=[y0,y1,y2,0]T,\displaystyle|\alpha_{1}\rangle_{AR_{A}}=[w_{0},w_{1},w_{2},0]^{T},\;|\alpha_{2}\rangle_{BR_{B}}=[y_{0},y_{1},y_{2},0]^{T},\;
|α3CRC=[z0,z1,z2,0]T,|α4DRD=[0,x1,x2,0]T.\displaystyle|\alpha_{3}\rangle_{CR_{C}}=[z_{0},z_{1},z_{2},0]^{T},\;|\alpha_{4}\rangle_{DR_{D}}=[0,x_{1},x_{2},0]^{T}.

up to local unitaries. The subadditivity of von Neumann entropy may also be used. The entangling power of a nn-qubit Fredkin gate TnT_{n} remains to be an open problem.

VI Conclusion

In summary, we have introduced the definition of the entangling power of multipartite nonlocal unitary operations. We have shown that the entangling, assisted entangling and disentangling power are assumed by an input state by some facts in functional analysis. The entangling power of Schmidt-rank-two multi-qubit unitary operations has been analytically derived. The necessary and sufficient condition that the assisted entangling power of Schmidt-rank-two multi-qubit unitary operations reaches the maximum has been given. Further the entangling and assisted entangling power of the most widely-used multi-qubit unitary gates including Toffoli and Fredkin gates have also been investigated.

Many problems arising from this paper can be further explored. The entangling power of multipartite unitary operation that is controlled with more than two terms may be derived by the investigation between von Neumann entropy and the reduced density matrix of the controlled systems. Besides, the entangling power of multipartite unitary operations with Schmidt rank more than two remains to be analyzed. This may be obtained by the canonical form of such unitary operations. Some interesting problems concerning this problem remain to be analyzed, such as Conjecture 21. As a harder problem, the analytical results of the multipartite assisted entangling power of an arbitrary unitary operation remains to be investigated.

ACKNOWLEDGMENTS

Authors were supported by the NNSF of China (Grant No. 12471427).

Appendix A Proof of properties of entangling, assisted entangling and disentangling power

Here we show the proof of Lemma 6.

Proof.

(i) Let 𝒮{\cal S} denote the set consisting of all density operators of (d1d2dn)(d_{1}d_{2}...d_{n})-dimensional nn-partite pure states. So 𝒮{\cal S} is a subset of the normed space (𝒳n,p)({\cal X}_{n},\lVert\cdot\rVert_{p}). From (1) in Theorem 1, it suffices to prove that 𝒮{\cal S} is bounded and closed. Obviously 𝒮{\cal S} is bounded, as ρ=|ψψ|𝒮\rho=|\psi\rangle\!\langle\psi|\in{\cal S} satisfies ρp=1\lVert\rho\rVert_{p}=1 for p[1,+]p\in[1,+\infty]. In order to show that 𝒮{\cal S} is closed under the distance dp(,)d_{p}(\cdot,\cdot) induced by p\lVert\cdot\rVert_{p}, we need to show that all the accumulation points of 𝒮{\cal S} belong to 𝒮{\cal S}. We consider a sequence of nn-partite pure states {ρk=|ψkψk|}k=1\{\rho_{k}=|\psi_{k}\rangle\!\langle\psi_{k}|\}_{k=1}^{\infty}, where |ψk=[aj(k)]j=1d1dn|\psi_{k}\rangle=[a_{j}^{(k)}]_{j=1}^{d_{1}...d_{n}} satisfies that limkaj(k)=aj\lim_{k\rightarrow\infty}a_{j}^{(k)}=a_{j} exists for all jj. That is, limkdp(ρk,ρ)=0\lim_{k\rightarrow\infty}d_{p}(\rho_{k},\rho)=0, where ρ=aa\rho=\textbf{a}\cdot\textbf{a}^{\dagger} with a=[aj]j=1d1dn\textbf{a}=[a_{j}]_{j=1}^{d_{1}...d_{n}}. From the identity Tr[ρk]=Tr[ρk2]=1\mathop{\rm Tr}[\rho_{k}]=\mathop{\rm Tr}[\rho_{k}^{2}]=1 we obtain that limkTr[ρk]=Tr[ρ]=1\lim_{k\rightarrow\infty}\mathop{\rm Tr}[\rho_{k}]=\mathop{\rm Tr}[\rho]=1 and limkTr[ρk2]=Tr[ρ2]=1\lim_{k\rightarrow\infty}\mathop{\rm Tr}[\rho_{k}^{2}]=\mathop{\rm Tr}[\rho^{2}]=1. It implies that if {ρk}k=1𝒮\{\rho_{k}\}_{k=1}^{\infty}\subset{\cal S} and limkdp(ρk,ρ)=0\lim_{k\rightarrow\infty}d_{p}(\rho_{k},\rho)=0 then ρ𝒮\rho\in{\cal S}. So 𝒮{\cal S} is closed under dp(,)d_{p}(\cdot,\cdot).

(ii) Suppose 𝒫{\cal P} is a subset of this normed space consisting of all density operators of d1d2dnd_{1}d_{2}...d_{n}-dimensional nn-partite product states. In order to obtain that 𝒫{\cal P} is compact, it suffices to show its boundedness and closeness. Any ρ𝒫\rho^{\prime}\in{\cal P} satisfies ρp=1\lVert\rho^{\prime}\rVert_{p}=1 and thus 𝒫{\cal P} is bounded. We show that 𝒫{\cal P} is closed under dp(,)d_{p}(\cdot,\cdot). Consider a sequence of bipartite product states {ρk=|ψkψk|}k=1\{\rho^{\prime}_{k}=|\psi^{\prime}_{k}\rangle\!\langle\psi^{\prime}_{k}|\}_{k=1}^{\infty}, with |ψk=j=1n|αj(k)=j=1n[aj,mj(k)]mj=1dj|\psi^{\prime}_{k}\rangle=\otimes_{j=1}^{n}|\alpha_{j}^{(k)}\rangle=\otimes_{j=1}^{n}[a_{j,m_{j}}^{(k)}]_{m_{j}=1}^{d_{j}} where limkaj,mj(k)=aj,mj\lim_{k\rightarrow\infty}a_{j,m_{j}}^{(k)}=a_{j,m_{j}} exist for all j,mjj,m_{j}. That is, limkdp(ρk,ρ)=0\lim_{k\rightarrow\infty}d_{p}(\rho^{\prime}_{k},\rho^{\prime})=0, where ρ=(a1a2an)(a1a2an):=ρA1ρA2ρAn\rho^{\prime}=(\textbf{a}_{1}\otimes\textbf{a}_{2}\otimes...\otimes\textbf{a}_{n})(\textbf{a}_{1}\otimes\textbf{a}_{2}\otimes...\otimes\textbf{a}_{n})^{\dagger}:=\rho^{\prime}_{A_{1}}\otimes\rho^{\prime}_{A_{2}}...\otimes\rho^{\prime}_{A_{n}} with aj=[aj,mj]mj=1dj\textbf{a}_{j}=[a_{j,m_{j}}]_{m_{j}=1}^{d_{j}} and j=1,2,,nj=1,2,...,n. From the identity TrXt[ρk]=TrXt[(ρk)2]=1\mathop{\rm Tr}_{X_{t}}[\rho^{\prime}_{k}]=\mathop{\rm Tr}_{X_{t}}[(\rho^{\prime}_{k})^{2}]=1 with Xt={A1A2An}/{At}X_{t}=\{A_{1}A_{2}...A_{n}\}/\{A_{t}\} and t=1,2,,nt=1,2,...,n, we obtain that limkTrXt[ρk]=Tr[ρAt]=1\lim_{k\rightarrow\infty}\mathop{\rm Tr}_{X_{t}}[\rho^{\prime}_{k}]=\mathop{\rm Tr}[\rho^{\prime}_{A_{t}}]=1 and limkTrXt[(ρk)2]=Tr[(ρAt)2]=1\lim_{k\rightarrow\infty}\mathop{\rm Tr}_{X_{t}}[(\rho^{\prime}_{k})^{2}]=\mathop{\rm Tr}[(\rho^{\prime}_{A_{t}})^{2}]=1. Hence, ρ𝒫\rho^{\prime}\in{\cal P}, which implies that 𝒫{\cal P} is closed under dp(,)d_{p}(\cdot,\cdot) for p[1,+]p\in[1,+\infty]. Using Theorem 1, 𝒫{\cal P} is a compact subset of the normed space (𝒳2,p)({\cal X}_{2},\lVert\cdot\rVert_{p}).     \sqcap\sqcup

The proof of Proposition 8 is shown below.

Proof.

(i) By the definition of KEa(U)K_{E_{a}}(U), it is derived by taking the maximum over all possible bipartition and the supreme of all pure states. As the bipartite cuts has finite kinds, the maximum can be reached by one of the bipartition, namely A:BA:B. It suffices to show that the supreme can be reached by this bipartition A:BA:B. Without loss of generality, we treat this multipartite unitary UU as a bipartite one, i.e. UABU_{AB}.

We consider the normed space (𝒳2,1)({\cal X}_{2},\lVert\cdot\rVert_{1}), where 𝒳2{\cal X}_{2} is the set of bipartite operators given by M=i,j=1dAdRA|ij|Mi,jM=\sum_{i,j=1}^{d_{A}d_{R_{A}}}|i\rangle\langle j|\otimes M_{i,j} with Mi,jdBdRBM_{i,j}\in{\cal M}_{d_{B}d_{R_{B}}}. Lemma 6 shows that all density operators of dAdRA×dBdRBd_{A}d_{R_{A}}\times d_{B}d_{R_{B}}-dimensional bipartite pure states form a compact subset 𝒮{\cal S} of this normed space. Next we consider the following mapping

KEaU:𝒮,ρS(TrARAUρU)S(TrARAρ),\displaystyle K_{E_{a}}^{U}:{\cal S}\rightarrow\mathbb{R},\quad\rho\mapsto S(\mathop{\rm Tr}_{AR_{A}}U\rho U^{\dagger})-S(\mathop{\rm Tr}_{AR_{A}}\rho), (21)

where ρ𝒮\rho\in{\cal S}, U𝒰dAdBU\in{\cal U}_{d_{A}d_{B}} is a bipartite unitary. From Theorem 3, if KEaUK_{E_{a}}^{U} is a continuous mapping of 𝒮{\cal S} then the assertion is proved. It suffices to show that KEaUK_{E_{a}}^{U} is continuous at every point ρ0𝒮\rho_{0}\in{\cal S}. For every ε>0\varepsilon>0, we show the existence of a δ>0\delta>0 such that |KEaU(ρ)KEaU(ρ0)|<ε|K_{E_{a}}^{U}(\rho)-K_{E_{a}}^{U}(\rho_{0})|<\varepsilon for all ρ𝒮\rho\in{\cal S} satisfying d1(ρ,ρ0)<δd_{1}(\rho,\rho_{0})<\delta. In detail, for above ε>0\varepsilon>0, there are δ1=min{ε4log(dAdRAdBdRB),1e}>0\delta_{1}=\mathop{\rm min}\{\frac{\varepsilon}{4\log(d_{A}d_{R_{A}}d_{B}d_{R_{B}})},\frac{1}{e}\}>0 and some points ρ𝒮\rho\in{\cal S} satisfying d1(ρ,ρ0)=d1(UρU,Uρ0U)<δ1d_{1}(\rho,\rho_{0})=d_{1}(U\rho U^{\dagger},U\rho_{0}U^{\dagger})<\delta_{1}, where the equality follows from the unitary invariance of trace norm. Since the trace norm is non-increasing under the action of partial trace, it holds that max{d1(TrARAρ,TrARAρ0),d1(TrARAUρU,TrARAUρ0U)}<δ1\mathop{\rm max}\big{\{}d_{1}(\mathop{\rm Tr}_{AR_{A}}\rho,\mathop{\rm Tr}_{AR_{A}}\rho_{0}),d_{1}(\mathop{\rm Tr}_{AR_{A}}U\rho U^{\dagger},\mathop{\rm Tr}_{AR_{A}}U\rho_{0}U^{\dagger})\big{\}}<\delta_{1}. Using triangle inequality and Fannes’ inequality of von Neumann entropy nielsen2000quantum , one can obtain that

|KEaU(ρ)KEaU(ρ0)|\displaystyle\!\!\!\!\!\!|K_{E_{a}}^{U}(\rho)-K_{E_{a}}^{U}(\rho_{0})|
\displaystyle\leq |S(TrARAUρU)S(TrARAUρ0U)|\displaystyle\!\!\!\!\!\!|S(\mathop{\rm Tr}_{AR_{A}}U\rho U^{\dagger})-S(\mathop{\rm Tr}_{AR_{A}}U\rho_{0}U^{\dagger})|
+|S(TrARAρ)S(TrARAρ0)|\displaystyle\!\!\!\!\!\!+|S(\mathop{\rm Tr}_{AR_{A}}\rho)-S(\mathop{\rm Tr}_{AR_{A}}\rho_{0})|
\displaystyle\leq 2(δ1log(dAdRAdBdRB)+η(δ1)),\displaystyle\!\!\!\!\!\!2(\delta_{1}\log(d_{A}d_{R_{A}}d_{B}d_{R_{B}})+\eta(\delta_{1})),

where η(x):=xlogx\eta(x):=-x\log x. Since limx0η(x)=0\lim_{x\rightarrow 0}\eta(x)=0, for above ε>0\varepsilon>0, there is a δ2>0\delta_{2}>0 such that 0<η(x)<ε/40<\eta(x)<\varepsilon/4 for all xx satisfying 0<x<δ20<x<\delta_{2}. We can always find a δ=min{δ1,δ2}\delta=\mathop{\rm min}\{\delta_{1},\delta_{2}\} such that

|KEaU(ρ)KEaU(ρ0)|\displaystyle\!\!\!\!\!\!|K_{E_{a}}^{U}(\rho)-K_{E_{a}}^{U}(\rho_{0})| (22)
<\displaystyle< 2(δlog(dAdRAdBdRB)+η(δ))<ε\displaystyle\!\!\!\!\!\!2(\delta\log(d_{A}d_{R_{A}}d_{B}d_{R_{B}})+\eta(\delta))<\varepsilon (23)

for all ρ𝒮\rho\in{\cal S} satisfying d1(ρ,ρ0)<δd_{1}(\rho,\rho_{0})<\delta. Here the first inequality follows from δ<1/e\delta<1/e and Fannes’ inequality. The second inequality comes from δ=min{δ1,δ2}\delta=\mathop{\rm min}\{\delta_{1},\delta_{2}\}, i.e. δδ1ε4log(dAdRAdBdRB)\delta\leq\delta_{1}\leq\frac{\varepsilon}{4\log(d_{A}d_{R_{A}}d_{B}d_{R_{B}})} and δδ2\delta\leq\delta_{2}. Hence, the mapping KEaUK_{E_{a}}^{U} is continuous by Definition 2. From Theorem 3, the continuous mapping KEaUK_{E_{a}}^{U} assumes a maximum at some points of compact subset 𝒮{\cal S}.

(ii) The assertion is obtained by replacing the unitary UU in (i) by UU^{\dagger}. This completes the proof.     \sqcap\sqcup

Below we show the proof of Proposition 9.

Proof.

As the proof of Proposition 8, it suffices to consider the multipartite unitary under the bipartition A:BA:B. In the normed space (𝒳2,1)({\cal X}_{2},\lVert\cdot\rVert_{1}) defined above, we consider a subset 𝒫{\cal P} consisting of all density operators of dAdRA×dBdRBd_{A}d_{R_{A}}\times d_{B}d_{R_{B}}-dimensional bipartite pure product states. In Lemma 6, we have shown that 𝒫{\cal P} is a compact subset of this normed space. On the other hand, similar to the proof of Proposition 8, we can prove that KEUK_{E}^{U} is a continuous mapping of 𝒫{\cal P} for any bipartite unitary U𝒰dAdBU\in{\cal U}_{d_{A}d_{B}}, where for ρ𝒫\rho^{\prime}\in{\cal P},

KEU:𝒫,ρS(TrARAUρU).\displaystyle K_{E}^{U}:{\cal P}\rightarrow\mathbb{R},\quad\rho^{\prime}\mapsto S(\mathop{\rm Tr}_{AR_{A}}U\rho^{\prime}U^{\dagger}). (24)

From Theorem 3, the continuous mapping KEUK_{E}^{U} assumes a maximum at some points of compact subset 𝒫{\cal P}.     \sqcap\sqcup

Appendix B Proof of preliminary lemmas of Schmidt-rank-two bipartite unitary entangling power

The proof of Lemma 10 is shown here.

Proof.

Geometrically, eiθje^{i\theta_{j}} stands for a point on the unit circle in the complex plane. The minimization can be transformed to the minimum distance between the original point and convex hull of 𝒞{\cal C}, denoted by conv(𝒞)\mbox{conv}({\cal C}). In the complex plane, conv(𝒞)\mbox{conv}({\cal C}) is expressed as a nn-polygon and its interior, whose vertices belong to 𝒞={eiθj}j=1n{\cal C}=\{e^{i\theta_{j}}\}_{j=1}^{n}. If the original point Oconv(𝒞)O\in\mbox{conv}({\cal C}), the minimum distance is equal to zero; otherwise the distance is equal to the minimum distance between OO and each side of conv(𝒞)\mbox{conv}({\cal C}), i.e. min1jn|cos(θjθj+1modn2)|\mathop{\rm min}_{1\leq j\leq n}|\cos(\frac{\theta_{j}-\theta_{j+1\mod n}}{2})|. The two cases are shown in FIG 4.

Refer to caption
Figure 4: The polygon and its interior represents conv(𝒞)\mbox{conv}({\cal C}). If Oconv(𝒞)O\in\mbox{conv}({\cal C}) then the minimization is equal to zero (LHS), otherwise it is equal to |OC|=|cos(θ4θ32)||OC|=|\cos(\frac{\theta_{4}-\theta_{3}}{2})| (RHS).

So it suffices to consider when the original point belongs to conv(𝒞)\mbox{conv}({\cal C}). In fact, nn boundary situations should be considered, where one of the edges of this dBd_{B}-polygon becomes the diameter of unit circle. In the boundary situations, the point OO is on one of the edges of this polygon. One can obtain that the boundary situations are depicted by θjθj1=π\theta_{j}-\theta_{j-1}=\pi with j=2,3,,nj=2,3,...,n and θnθ1=π\theta_{n}-\theta_{1}=\pi. They are shown in FIG. 5. One can see that Oconv(𝒞)O\in\mbox{conv}({\cal C}) if and only if all edges of the polygon are not on the same half of unit circle. That is θjθj1π\theta_{j}-\theta_{j-1}\leq\pi and θnθ1π\theta_{n}-\theta_{1}\geq\pi, for j=2,3,,nj=2,3,...,n. This completes the proof.

Refer to caption
Figure 5: For n2n\geq 2, three of nn boundary situations corresponding to θ2θ1=π\theta_{2}-\theta_{1}=\pi, θn1θn=π\theta_{n-1}-\theta_{n}=\pi and θnθ1=π\theta_{n}-\theta_{1}=\pi are shown, respectively.

\sqcap\sqcup

Here we show the proof of Lemma 11.

Proof.

(i) If 𝒞1=𝒞2{\cal C}_{1}={\cal C}_{2} then the equality in (9) holds. Next we assume that 𝒞1{\cal C}_{1} is a proper subset of 𝒞2{\cal C}_{2}. Up to the subscript permutation, we can assume that αj=βj\alpha_{j}=\beta_{j} with j=1,2,,nj=1,2,...,n. As the proof of Lemma 10, we consider the polygon corresponding to conv(𝒞1)\text{conv}({\cal C}_{1}) and conv(𝒞2)\text{conv}({\cal C}_{2}), and denote them by 𝒫1{\cal P}_{1} and 𝒫2{\cal P}_{2}, respectively. Since conv(𝒞1)conv(𝒞2)\text{conv}({\cal C}_{1})\subsetneq\text{conv}({\cal C}_{2}), 𝒫2{\cal P}_{2} is obtained by adding some points βk\beta_{k} with k=n+1,,mk=n+1,...,m to 𝒫1{\cal P}_{1}. Then the minimum distance between OO and 𝒫1{\cal P}_{1} is not less than that between OO and 𝒫2{\cal P}_{2}. As above, the minimization in (9) can be transformed to the minimum distance between the original point OO and 𝒫1{\cal P}_{1} (resp. 𝒫2{\cal P}_{2}). This completes the proof.

(ii) The assertion can be proved in the same way as (i).     \sqcap\sqcup

The proof of Lemma 13 is presented below.

Proof.

We show the case for i=1i=1, others can be proved in a similar way. For convenience of statement, one can further assume that U=i=1dA1(|ii|)A1(U(i))A1cU=\sum_{i=1}^{d_{A_{1}}}(|i\rangle\!\langle i|)_{A_{1}}\otimes(U^{(i)})_{A_{1}^{c}}, where U(i)U^{(i)}’s are diagonal unitaries. Without loss of generality, we assume that the orthogonal projectors Pj=i=M2j1M2j|ii|P_{j}=\sum_{i=M_{2j-1}}^{M_{2j}}|i\rangle\!\langle i|, where M1=1M_{1}=1, M2m=dA1M_{2m}=d_{A_{1}} and M2j2+1=M2j1M2jM_{2j-2}+1=M_{2j-1}\leq M_{2j} for j=1,2,,mj=1,2,...,m. Since U=j=1mPjUjU=\sum_{j=1}^{m}P_{j}\otimes U_{j}, the unitaries satisfy Uj=U(i)U_{j}=U^{(i)} with M2j1iM2jM_{2j-1}\leq i\leq M_{2j}.

We show the derivation of the equality in (11). Suppose |α1,α1,,αNk=1NAkRk|\alpha_{1},\alpha_{1},...,\alpha_{N}\rangle\in\otimes_{k=1}^{N}{\cal H}_{A_{k}R_{k}} is the critical state such that KA1:A1c(U)=EA1R1:(A1R1)c(U(|α1|α2|αN))K_{A_{1}:A_{1}^{c}}(U)=E_{A_{1}R_{1}:(A_{1}R_{1})^{c}}(U(|\alpha_{1}\rangle\otimes|\alpha_{2}\rangle\otimes...\otimes|\alpha_{N}\rangle)), where |α1=k=1dA1pk|k,akA1R1|\alpha_{1}\rangle=\sum_{k=1}^{d_{A_{1}}}\sqrt{p_{k}}|k,a_{k}\rangle_{A_{1}R_{1}}, pk0p_{k}\geq 0 and kpk=1\sum_{k}p_{k}=1. From U=i=1dA1(|ii|)A1(U(i))A1cU=\sum_{i=1}^{d_{A_{1}}}(|i\rangle\!\langle i|)_{A_{1}}\otimes(U^{(i)})_{A_{1}^{c}}, we obtain that

KA1:A1c(U)=EA1R1:(A1R1)c\displaystyle\!\!\!\!\!\!K_{A_{1}:A_{1}^{c}}(U)=E_{A_{1}R_{1}:(A_{1}R_{1})^{c}}
×(i=1dA1|ii|U(i)(k=1dA1pk|k,ak|α2,,αN))\displaystyle\!\!\!\!\!\!\times\bigg{(}\sum_{i=1}^{d_{A_{1}}}|i\rangle\!\langle i|\otimes U^{(i)}\Big{(}\sum_{k=1}^{d_{A_{1}}}\sqrt{p_{k}}|k,a_{k}\rangle\otimes|\alpha_{2},...,\alpha_{N}\rangle\Big{)}\bigg{)}
=\displaystyle= EA1:(A1R1)c(U(i=1dA1pi|i|α2,,αN))\displaystyle\!\!\!\!\!\!E_{A_{1}:(A_{1}R_{1})^{c}}\bigg{(}U\Big{(}\sum_{i=1}^{d_{A_{1}}}\sqrt{p_{i}}|i\rangle\otimes|\alpha_{2},...,\alpha_{N}\rangle\Big{)}\bigg{)}
\displaystyle\leq max|ψ1A1,|ψkAkRk,k2EA1:(A1R1)c(U(|ψ1|ψ2,,ψN))\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{\begin{subarray}{c}|\psi_{1}^{\prime}\rangle\in{\cal H}_{A_{1}},\\ |\psi_{k}\rangle\in{\cal H}_{A_{k}R_{k}},k\geq 2\end{subarray}}E_{A_{1}:(A_{1}R_{1})^{c}}\big{(}U(|\psi_{1}^{\prime}\rangle\otimes|\psi_{2},...,\psi_{N}\rangle)\big{)}
KA1:A1c(U).\displaystyle\!\!\!\!\!\!\leq K_{A_{1}:A_{1}^{c}}(U).

Hence, the ancilla R1R_{1} can be removed.

The equality in (12) is obtained by choosing |ψ1=k=1dA1pk|k|\psi_{1}^{\prime}\rangle=\sum_{k=1}^{d_{A_{1}}}\sqrt{p_{k}}|k\rangle with pk0p_{k}\geq 0 and kpk=1\sum_{k}p_{k}=1. From Uj=U(i)U_{j}=U^{(i)} with M2j1iM2jM_{2j-1}\leq i\leq M_{2j} for j=1,2,,mj=1,2,...,m, we have

KA1:A1c(U)\displaystyle\!\!\!\!\!\!K_{A_{1}:A_{1}^{c}}(U) (26)
=\displaystyle= maxpk0,kpk=1|ψkAkRk,k2EAi:Aic(i=1dA|ii|U(i)\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{\begin{subarray}{c}p_{k}\geq 0,\sum_{k}p_{k}=1\\ |\psi_{k}\rangle\in{\cal H}_{A_{k}R_{k}},k\geq 2\end{subarray}}E_{A_{i}:A_{i}^{c}}\bigg{(}\sum_{i=1}^{d_{A}}|i\rangle\!\langle i|\otimes U^{(i)}
×(k=1dA1pk|k|ψ2,,ψN))\displaystyle\hskip 56.9055pt\times\Big{(}\sum_{k=1}^{d_{A_{1}}}\sqrt{p_{k}}|k\rangle\otimes|\psi_{2},...,\psi_{N}\rangle\Big{)}\bigg{)}
=\displaystyle= maxqj0,j=1mqj=1|ψkAkRk,k2S(j=1mqjUj(k=2n|ψkψk|)Uj),\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{\begin{subarray}{c}q_{j}\geq 0,\sum_{j=1}^{m}q_{j}=1\\ |\psi_{k}\rangle\in{\cal H}_{A_{k}R_{k}},k\geq 2\end{subarray}}S\bigg{(}\sum_{j=1}^{m}q_{j}U_{j}\big{(}\otimes_{k=2}^{n}|\psi_{k}\rangle\!\langle\psi_{k}|\big{)}U_{j}^{\dagger}\bigg{)},

where qj=i=M2j1M2jpiq_{j}=\sum_{i=M_{2j-1}}^{M_{2j}}p_{i} and hence qj0q_{j}\geq 0, j=1mqj=1\sum_{j=1}^{m}q_{j}=1. This complets the proof.     \sqcap\sqcup

Appendix C Analytical derivation of multi-qubit Schmidt rank two unitary operations

We present the proof of Proposition 15 below.

Proof.

From cy13 UU can be controlled from every subsystem. Combined with Definition 4, Proposition 9 and Lemma 13, the entangling power of UU is given by

KE(U)=\displaystyle K_{E}(U)= maxX{A,B,C}(max|αA,|βB,|γC\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{\emptyset\subsetneq X\subsetneq\{A,B,C\}}\Big{(}\mathop{\rm max}_{|\alpha\rangle\in{\cal H}_{A},|\beta\rangle\in{\cal H}_{B},|\gamma\rangle\in{\cal H}_{C}}
EX:Xc(U(|α|β|γ)))\displaystyle\hskip 56.9055ptE_{X:X^{c}}(U(|\alpha\rangle\otimes|\beta\rangle\otimes|\gamma\rangle))\Big{)}
=\displaystyle= max(KA:BC(U),KB:AC(U),KC:AB(U)).\displaystyle\!\!\!\!\!\!\mathop{\rm max}\big{(}K_{A:BC}(U),K_{B:AC}(U),K_{C:AB}(U)\big{)}.

First we consider the the maximal entanglement generation of UU under the bipartition A:BCA:BC. From Lemma 13, we have

KA:BC(U)=maxp[0,1],|βB,|γC\displaystyle\!\!\!\!\!\!K_{A:BC}(U)=\mathop{\rm max}_{p\in[0,1],|\beta\rangle\in{\cal H}_{B},|\gamma\rangle\in{\cal H}_{C}} (28)
×S(p|β,γβ,γ|+(1p)U1U2|β,γβ,γ|U2U1),\displaystyle\times S(p|\beta,\gamma\rangle\!\langle\beta,\gamma|+(1-p)U_{1}^{\dagger}U_{2}|\beta,\gamma\rangle\!\langle\beta,\gamma|U_{2}^{\dagger}U_{1}),

where |β=(b1,b2)T|\beta\rangle=(b_{1},b_{2})^{T}, |γ=(c1,c2)T|\gamma\rangle=(c_{1},c_{2})^{T} and bs,ct0b_{s},c_{t}\geq 0, as we can choose an appropriate local unitary WBWCW_{B}\otimes W_{C} acting on |β,γ|\beta,\gamma\rangle. Besides, there exists a unitary VV acting on BC{\cal H}_{BC} whose first row is the transpose of |β,γ|\beta,\gamma\rangle. For convenience, we denote ω0,0,ω0,1,ω1,0,ω1,1\omega_{0,0},\omega_{0,1},\omega_{1,0},\omega_{1,1} by ω1,ω2,ω3,ω4\omega_{1},\omega_{2},\omega_{3},\omega_{4}, respectively. We obtain that

KA:BC(U)\displaystyle\!\!\!\!\!\!K_{A:BC}(U) (29)
=\displaystyle= maxp[0,1],|β=(b1,b2)T,|γ=(c1,c2)T,bs,ct0S(pV|β,γβ,γ|V\displaystyle\!\!\!\!\!\!\mathop{\rm max}_{\begin{subarray}{c}p\in[0,1],|\beta\rangle=(b_{1},b_{2})^{T},\\ |\gamma\rangle=(c_{1},c_{2})^{T},b_{s},c_{t}\geq 0\end{subarray}}S\big{(}pV|\beta,\gamma\rangle\!\langle\beta,\gamma|V^{\dagger}
+(1p)VU1U2|β,γβ,γ|U2U1V)\displaystyle\hskip 62.59596pt+(1-p)VU_{1}^{\dagger}U_{2}|\beta,\gamma\rangle\!\langle\beta,\gamma|U_{2}^{\dagger}U_{1}V^{\dagger}\big{)}
=\displaystyle= maxp[0,1],|η=(x,1x2)T,x=|k=14fkei(ωkθk)|,fk0,kfk=1S(p|00|+(1p)|ηη|)\displaystyle\mathop{\rm max}_{\begin{subarray}{c}p\in[0,1],\;|\eta\rangle=(x,\sqrt{1-x^{2}})^{T},\\ x=|\sum_{k=1}^{4}f_{k}e^{i(\omega_{k}-\theta_{k})}|,f_{k}\geq 0,\sum_{k}f_{k}=1\end{subarray}}S\big{(}p|0\rangle\!\langle 0|+(1-p)|\eta\rangle\!\langle\eta|\big{)}
=\displaystyle= maxfk0,kfk=1H(1+β2,1β2),\displaystyle\mathop{\rm max}_{f_{k}\geq 0,\;\sum_{k}f_{k}=1}H\bigg{(}\frac{1+\beta}{2},\frac{1-\beta}{2}\bigg{)},

where the second equality follows from {fk}k=14={bs2ct2}\{f_{k}\}_{k=1}^{4}=\{b_{s}^{2}c_{t}^{2}\} for s=1,2s=1,2 and t=1,2t=1,2. Hence fk0f_{k}\geq 0 and k=14fk=1\sum_{k=1}^{4}f_{k}=1. Without loss of generality, one can assume that 0ωjθjωj+1θj+1<2π0\leq\omega_{j}-\theta_{j}\leq\omega_{j+1}-\theta_{j+1}<2\pi for 1j41\leq j\leq 4, and β=|k=14fkei(ωkθk)|\beta=|\sum_{k=1}^{4}f_{k}e^{i(\omega_{k}-\theta_{k})}|. Using Lemma 10, we have

KA:BC(U)\displaystyle K_{A:BC}(U) (30)
=\displaystyle= {1,for  0ωjωj1(θjθj1)π,j=2,3,4,andω4ω1(θ4θ1)π,max1j4H(1+cos(βj,k)2,1cos(βj,k)2),otherwise,\displaystyle\begin{cases}1,\;\mbox{for}\;\;0\leq\omega_{j}-\omega_{j-1}-(\theta_{j}-\theta_{j-1})\leq\pi,\;j=2,3,4,\\ \qquad\qquad\qquad\mbox{and}\;\;\omega_{4}-\omega_{1}-(\theta_{4}-\theta_{1})\geq\pi,\\ \mathop{\rm max}_{1\leq j\leq 4}H(\frac{1+\cos(\beta_{j,k})}{2},\frac{1-\cos(\beta_{j,k})}{2}),\;\mbox{otherwise},\end{cases}

where βj,k=ωjωk(θjθk)2\beta_{j,k}=\frac{\omega_{j}-\omega_{k}-(\theta_{j}-\theta_{k})}{2} with k=j+1mod4k=j+1\mod 4.

Next we consider KB:AC(U)K_{B:AC}(U) and KC:AB(U)K_{C:AB}(U). First we rewrite UU in the form that BB is the control with dBd_{B} terms. By exchanging the system of UABCU_{ABC}, we obtain that

UBAC\displaystyle U_{BAC} (31)
=\displaystyle= k,t=01|kk|B(eiθkt|0,t0,t|AC+eiωkt|1,t1,t|AC),\displaystyle\sum_{k,t=0}^{1}|k\rangle\!\langle k|_{B}\otimes\big{(}e^{i\theta_{kt}}|0,t\rangle\!\langle 0,t|_{AC}+e^{i\omega_{kt}}|1,t\rangle\!\langle 1,t|_{AC}\big{)}, (32)
UCAB\displaystyle U_{CAB}
=\displaystyle= k,t=01|tt|C(eiθkt|0,k0,k|AB+eiωkt|1,k1,k|AB),\displaystyle\sum_{k,t=0}^{1}|t\rangle\!\langle t|_{C}\otimes\big{(}e^{i\theta_{kt}}|0,k\rangle\!\langle 0,k|_{AB}+e^{i\omega_{kt}}|1,k\rangle\!\langle 1,k|_{AB}\big{)},

Then by the same analysis as KA:BC(U)K_{A:BC}(U), we obtain KB:AC(U)K_{B:AC}(U) and KC:AB(U)K_{C:AB}(U). By taking maximization over the three bipartition, we complete the proof.     \sqcap\sqcup

Here we show the Proof of Proposition 17.

Proof.

We analyze the entangling power of UkU_{k} with respect to k=n,n1,2,1,0k=n,n-1,2,1,0, respectively. Here the unitary with k=nk=n or n1n-1 is analyzed in case (i); k=2k=2 is analyzed in case (ii); k=1k=1 or 0 is analyzed in case (iii).

(i) The Schmidt decomposition of a unitary whose singular number k=nk=n is given as

Un=I2n+(eiϕ1)|00|n with ϕ(0,2π).\displaystyle U_{n}=I_{2}^{\otimes n}+(e^{i\phi}-1)|0\rangle\!\langle 0|^{\otimes n}\text{ with }\phi\in(0,2\pi). (33)

In order to analyze the entangling power of UnU_{n}, we should take the maximal entanglement generation across any bipartition by Definition 4 and Proposition 9, that is,

KE(Un)=\displaystyle K_{E}(U_{n})= maxΛ{A1R1,,AnRn}KΛ:Λc(Un)\displaystyle\mathop{\rm max}_{\emptyset\subsetneq\Lambda\subsetneq\{A_{1}R_{1},...,A_{n}R_{n}\}}K_{\Lambda:\Lambda^{c}}(U_{n}) (34)
=\displaystyle= maxΛ{A1R1,,AnRn}(max|ψiAiRi,i=1,2,,n\displaystyle\mathop{\rm max}_{\emptyset\subsetneq\Lambda\subsetneq\{A_{1}R_{1},...,A_{n}R_{n}\}}\Big{(}\mathop{\rm max}_{|\psi_{i}\rangle\in{\cal H}_{A_{i}R_{i}},i=1,2,...,n}
×EΛ:Λc(Un(|ψ1A1R1|ψnAnRn))),\displaystyle\times E_{\Lambda:\Lambda^{c}}(U_{n}(|\psi_{1}\rangle_{A_{1}R_{1}}\otimes...\otimes|\psi_{n}\rangle_{A_{n}R_{n}}))\Big{)},

Across any bipartition Λ:Λc\Lambda:\Lambda^{c}, the unitary can be treated as a bipartite unitary. It has been shown that either party of this unitary can be chosen as control in cy13 . From Lemma 14, the ancilla of each system can be removed. Note that UnU_{n} is symmetric on all systems A1,A2,,AnA_{1},A_{2},...,A_{n}, that is, the expression of UnU_{n} is the same up to the permutation of systems. Due to the symmetry of UnU_{n}, it suffices to consider [n2][\frac{n}{2}] types of bipartition, i.e. Λt=A1At\Lambda_{t}=A_{1}...A_{t} and Λtc=At+1An\Lambda^{c}_{t}=A_{t+1}...A_{n} for t=1,2,,[n2]t=1,2,...,[\frac{n}{2}]. With this bipartition, we write UnU_{n} in the form of two-term control as follows

Un=\displaystyle U_{n}= |00|Λtt(I2(nt)+(eiθ1)|00|(nt))Λtc\displaystyle|0\rangle\!\langle 0|^{\otimes t}_{\Lambda_{t}}\otimes(I_{2}^{\otimes(n-t)}+(e^{i\theta}-1)|0\rangle\!\langle 0|^{\otimes(n-t)})_{\Lambda_{t}^{c}}
+\displaystyle+ (I2t|00|t)Λt(I2(nt))Λtc\displaystyle(I_{2}^{\otimes t}-|0\rangle\!\langle 0|^{\otimes t})_{\Lambda_{t}}\otimes(I_{2}^{\otimes(n-t)})_{\Lambda_{t}^{c}}
:=\displaystyle:= (P1(1))Λt(U1(1))Λtc+(P2(1))Λt(U2(1))Λtc.\displaystyle(P_{1}^{(1)})_{\Lambda_{t}}\otimes(U_{1}^{(1)})_{\Lambda_{t}^{c}}+(P_{2}^{(1)})_{\Lambda_{t}}\otimes(U_{2}^{(1)})_{\Lambda_{t}^{c}}.

If we exchange the systems Λt\Lambda_{t} and Λtc\Lambda^{c}_{t} of this unitary, then the entanglement generation KΛt:Λtc(Un)K_{\Lambda_{t}:\Lambda_{t}^{c}}(U_{n}) remains the same. Therefore, we analyze the entanglement generation of UnU_{n} by choosing either Λt\Lambda_{t} or Λtc\Lambda_{t}^{c} as the control and will obtain the same result. Using Lemma 12, we choose Λt\Lambda_{t} as the control and obtain that for t=1,2,,[n2]t=1,2,...,[\frac{n}{2}],

KΛt:Λtc(Un)=H(1+cos(ϕ/2)2,1cos(ϕ/2)2),\displaystyle K_{\Lambda_{t}:\Lambda_{t}^{c}}(U_{n})=H(\frac{1+\cos(\phi/2)}{2},\frac{1-\cos(\phi/2)}{2}),

for ϕ(0,2π)\phi\in(0,2\pi). Hence, the entangling power of UnU_{n} is give as follows. For ϕ(0,2π)\phi\in(0,2\pi),

KE(Un)=\displaystyle K_{E}(U_{n})= maxt{1,2,,n1}KΛt:Λtc(Un)\displaystyle\mathop{\rm max}_{t\in\{1,2,...,n-1\}}K_{\Lambda_{t}:\Lambda_{t}^{c}}(U_{n}) (35)
=\displaystyle= H(1+cos(ϕ/2)2,1cos(ϕ/2)2).\displaystyle H(\frac{1+\cos(\phi/2)}{2},\frac{1-\cos(\phi/2)}{2}).

When a unitary with the singular number k=n1k=n-1, its Schmidt decomposition is given as

Un1=I2n+|00|(n1)diag(eiθ1,eiϕ1)\displaystyle U_{n-1}=I_{2}^{\otimes n}+|0\rangle\!\langle 0|^{\otimes(n-1)}\otimes\mathop{\rm diag}(e^{i\theta}-1,e^{i\phi}-1) (36)

with θ,ϕ(0,2π)\theta,\phi\in(0,2\pi) and θϕ\theta\neq\phi. The unitary is symmetric except for the last system AnA_{n}. By some observations, it can be obtained that when the system AnA_{n} is not performed as one system of the control under a proper bipartition, the unitary Un1U_{n-1} can always be written in the form of two-term control. Since the systems A1,A2,,An1A_{1},A_{2},...,A_{n-1} are symmetric, it suffices to analyze the entangling power of this unitary under the bipartition Λt=A1At\Lambda_{t}=A_{1}...A_{t} and Λtc=At+1An\Lambda^{c}_{t}=A_{t+1}...A_{n} for t=1,2,,n1t=1,2,...,n-1 and choose Λt\Lambda_{t} as the control. Then Un1U_{n-1} can be given by

Un1=\displaystyle U_{n-1}= |00|Λtt(I2(nt)+(eiθ1)|00|(nt)\displaystyle|0\rangle\!\langle 0|^{\otimes t}_{\Lambda_{t}}\otimes(I_{2}^{\otimes(n-t)}+(e^{i\theta}-1)|0\rangle\!\langle 0|^{\otimes(n-t)}
+(eiϕ1)|00|(nt1)|11|)Λtc\displaystyle+(e^{i\phi}-1)|0\rangle\!\langle 0|^{\otimes(n-t-1)}\otimes|1\rangle\!\langle 1|)_{\Lambda_{t}^{c}}
+\displaystyle+ (I2t|00|t)Λt(I2(nt))Λtc\displaystyle(I_{2}^{\otimes t}-|0\rangle\!\langle 0|^{\otimes t})_{\Lambda_{t}}\otimes(I_{2}^{\otimes(n-t)})_{\Lambda_{t}^{c}}
:=\displaystyle:= (P1(2))Λt(U1(2))Λtc+(P2(2))Λt(U2(2))Λtc.\displaystyle(P_{1}^{(2)})_{\Lambda_{t}}\otimes(U_{1}^{(2)})_{\Lambda_{t}^{c}}+(P_{2}^{(2)})_{\Lambda_{t}}\otimes(U_{2}^{(2)})_{\Lambda_{t}^{c}}.

It is worth mentioning that choosing Λt\Lambda_{t} as the control to analyze the entangling power is without loss of generality, as the entangling generation remains the same when we exchange the two systems, i.e., KΛt:Λtc(UΛtΛtc)=KΛt:Λtc(UΛtcΛt)K_{\Lambda_{t}:\Lambda_{t}^{c}}(U_{\Lambda_{t}\Lambda_{t}^{c}})=K_{\Lambda_{t}:\Lambda_{t}^{c}}(U_{\Lambda_{t}^{c}\Lambda_{t}}). We assume that λ1=0,λ2=min{θ,ϕ}\lambda_{1}=0,\lambda_{2}=\mathop{\rm min}\{\theta,\phi\} and λ3=max{θ,ϕ}\lambda_{3}=\mathop{\rm max}\{\theta,\phi\}. Then we obtain the entangling power of Un1U_{n-1} as follows

KE(Un1)=maxt{1,2,,n1}KΛt:Λtc(Un1)\displaystyle K_{E}(U_{n-1})=\mathop{\rm max}_{t\in\{1,2,...,n-1\}}K_{\Lambda_{t}:\Lambda_{t}^{c}}(U_{n-1})
=\displaystyle= {H(12,12)=1,for 0<λjλj1π,j=2,3,λ3π,max1j3H(1+cos(β)2,1cos(β)2),otherwise,\displaystyle\begin{cases}H(\frac{1}{2},\frac{1}{2})=1,\mbox{for}\;0<\lambda_{j}-\lambda_{j-1}\leq\pi,\;j=2,3,\lambda_{3}\geq\pi,\\ \mathop{\rm max}_{1\leq j\leq 3}H(\frac{1+\cos(\beta)}{2},\frac{1-\cos(\beta)}{2}),\;\mbox{otherwise},\end{cases}

where β=λjλj+1mod32\beta=\frac{\lambda_{j}-\lambda_{j+1\mod 3}}{2}.

(ii) A unitary with the singular number k=2k=2 is given as, for βj(0,2π)\beta_{j}\in(0,2\pi),

U2=|00|I2(n1)+|11|(j=2ndiag(1,eiβj)).\displaystyle U_{2}=|0\rangle\!\langle 0|\otimes I_{2}^{\otimes(n-1)}+|1\rangle\!\langle 1|\otimes\big{(}\otimes_{j=2}^{n}\mathop{\rm diag}(1,e^{i\beta_{j}})\big{)}.

The systems of U2U_{2} are not symmetric. In order to obtain the entangling power of U2U_{2}, all kinds of bipartition of it should be taken into account.

First, we show the expression of U2U_{2} a kind of bipartition, i.e. Λt=A1At\Lambda_{t}=A_{1}...A_{t} and Λtc=At+1An\Lambda^{c}_{t}=A_{t+1}...A_{n} for t=1,2,,n1t=1,2,...,n-1. Without loss of generality, we choose the control as Λt\Lambda_{t}. Then U2U_{2} is controlled with two terms as follows

U2=\displaystyle U_{2}= j2,j3,,jt=01|0,j2,j3,,jt0,j2,j3,,jt|I2(nt)\displaystyle\sum_{j_{2},j_{3},...,j_{t}=0}^{1}|0,j_{2},j_{3},...,j_{t}\rangle\!\langle 0,j_{2},j_{3},...,j_{t}|\otimes I_{2}^{\otimes(n-t)} (38)
+\displaystyle+ j2,j3,,jt=01ei(s=2tβsδ1,js)|1,j2,j3,,jt1,j2,j3,,jt|\displaystyle\sum_{j_{2},j_{3},...,j_{t}=0}^{1}e^{i(\sum_{s=2}^{t}\beta_{s}\delta_{1,j_{s}})}|1,j_{2},j_{3},...,j_{t}\rangle\!\langle 1,j_{2},j_{3},...,j_{t}|
(j=t+1ndiag(1,eiβj)),\displaystyle\hskip 113.81102pt\otimes\big{(}\otimes_{j=t+1}^{n}\mathop{\rm diag}(1,e^{i\beta_{j}})\big{)},

where δx,y=1(resp. 0)\delta_{x,y}=1(\text{resp. 0}) for x=yx=y (resp. xyx\neq y). Performing a local unitary V𝒰A1A2,,AtV\in{\cal U}_{A_{1}A_{2},...,A_{t}} on U2U_{2}, we obtain a unitary

U2=\displaystyle U_{2}^{\prime}= (VI2(nt))U2\displaystyle(V\otimes I_{2}^{\otimes(n-t)})U_{2} (39)
=\displaystyle= j2,j3,,jt=01|0,j2,j3,,jt0,j2,j3,,jt|I2(nt)\displaystyle\sum_{j_{2},j_{3},...,j_{t}=0}^{1}|0,j_{2},j_{3},...,j_{t}\rangle\!\langle 0,j_{2},j_{3},...,j_{t}|\otimes I_{2}^{\otimes(n-t)}
+\displaystyle+ j2,j3,,jt=01|1,j2,j3,,jt1,j2,j3,,jt|\displaystyle\sum_{j_{2},j_{3},...,j_{t}=0}^{1}|1,j_{2},j_{3},...,j_{t}\rangle\!\langle 1,j_{2},j_{3},...,j_{t}|
(l=t+1ndiag(1,eiβl))\displaystyle\hskip 113.81102pt\otimes\big{(}\otimes_{l=t+1}^{n}\mathop{\rm diag}(1,e^{i\beta_{l}})\big{)}
:=\displaystyle:= (P1(3))Λt(U1(3))Λtc+(P2(3))Λt(U2(3))Λtc.\displaystyle(P_{1}^{(3)})_{\Lambda_{t}}\otimes(U_{1}^{(3)})_{\Lambda^{c}_{t}}+(P_{2}^{(3)})_{\Lambda_{t}}\otimes(U_{2}^{(3)})_{\Lambda^{c}_{t}}.

By the locally unitary invariance of von Neumann entropy, KΛt:ΛtC(U2)=KΛt:ΛtC(U2)K_{\Lambda_{t}:\Lambda_{t}^{C}}(U_{2})=K_{\Lambda_{t}:\Lambda_{t}^{C}}(U_{2}^{\prime}). Suppose 𝒜t{\cal A}_{t} with |𝒜t|=2nt|{\cal A}_{t}|=2^{n-t} is the set consisting of the phases of all diagonal elements of the unitary U2(3)=l=t+1ndiag(1,eiβl)U_{2}^{(3)}=\otimes_{l=t+1}^{n}\mathop{\rm diag}(1,e^{i\beta_{l}}). We rearrange the elements of 𝒜t{\cal A}_{t} in the ascending order and denote the jj-th smallest element in this set by θj\theta_{j}, for j=1,2,,2ntj=1,2,...,2^{n-t}. That is,

𝒜t=\displaystyle{\cal A}_{t}= {exp[i(l=t+1nqlβlmod2π)]|ql=0,1}\displaystyle\left\{\exp\bigg{[}i\big{(}\sum_{l=t+1}^{n}q_{l}\beta_{l}\mod 2\pi\big{)}\bigg{]}\bigg{|}q_{l}=0,1\right\} (40)
=\displaystyle= {eiθj|j=1,2,,2nt,θpθq,1p<q2nt}.\displaystyle\{e^{i\theta_{j}}|j=1,2,...,2^{n-t},\theta_{p}\leq\theta_{q},1\leq p<q\leq 2^{n-t}\}.

By the same analysis as in Lemma 12, the entanglement generation of U2U_{2} under this bipartition is

KΛt:Λtc(U2)\displaystyle K_{\Lambda_{t}:\Lambda_{t}^{c}}(U_{2}) (41)
=\displaystyle= {1,for 0θjθj1π,θ2ntθ1π,max1j2ntH(1+cos(β)2,1cos(β)2,otherwise,\displaystyle\begin{cases}1,\;\mbox{for}\;0\leq\theta_{j}-\theta_{j-1}\leq\pi,\theta_{2^{n-t}}-\theta_{1}\geq\pi,\\ \mathop{\rm max}_{1\leq j\leq 2^{n-t}}H(\frac{1+\cos(\beta)}{2},\frac{1-\cos(\beta)}{2},\;\mbox{otherwise},\end{cases}

where j=2,3,,2ntj=2,3,...,2^{n-t}, and β=θjθk2\beta=\frac{\theta_{j}-\theta_{k}}{2} with k=(j+1)mod2ntk=(j+1)\mod 2^{n-t}. Next we compare KΛt:Λtc(Uk=2)K_{\Lambda_{t}:\Lambda_{t}^{c}}(U^{\prime}_{k=2}) over the bipartition Λt:Λtc\Lambda_{t}:\Lambda_{t}^{c} with t=1,2,,[n2]t=1,2,...,[\frac{n}{2}]. We claim that KΛt:Λtc(Uk=2)K_{\Lambda_{t}:\Lambda_{t}^{c}}(U^{\prime}_{k=2}) is non-increasing with respect to tt. In fact, one can obtain that

KΛt:Λtc(Uk=2)KΛt+1:Λt+1c(Uk=2).\displaystyle K_{\Lambda_{t}:\Lambda_{t}^{c}}(U^{\prime}_{k=2})\geq K_{\Lambda_{t+1}:\Lambda_{t+1}^{c}}(U^{\prime}_{k=2}). (42)

From (39), U2(3)=l=t+1ndiag(1,eiβl)U_{2}^{(3)}=\otimes_{l=t+1}^{n}\mathop{\rm diag}(1,e^{i\beta_{l}}) (resp. l=t+2ndiag(1,eiβl)\otimes_{l=t+2}^{n}\mathop{\rm diag}(1,e^{i\beta_{l}})) by the bipartition Λt:Λtc\Lambda_{t}:\Lambda_{t}^{c} (resp. Λt+1:Λt+1c\Lambda_{t+1}:\Lambda_{t+1}^{c}). Hence the set 𝒜t{\cal A}_{t} in (40) satisfies 𝒜t+1𝒜t{\cal A}_{t+1}\subset{\cal A}_{t}. We denote the minimum convex sum of 𝒜t{\cal A}_{t} by minconv(𝒜t)\mathop{\rm min}\text{conv}({\cal A}_{t}). Then we have

KΛt+1:Λt+1c(Uk=2)\displaystyle K_{\Lambda_{t+1}:\Lambda_{t+1}^{c}}(U^{\prime}_{k=2}) (43)
=\displaystyle= H(1minconv(𝒜t+1)2,1+minconv(𝒜t+1)2)\displaystyle H(\frac{1-\mathop{\rm min}\text{conv}({\cal A}_{t+1})}{2},\frac{1+\mathop{\rm min}\text{conv}({\cal A}_{t+1})}{2})
\displaystyle\leq H(1minconv(𝒜t)2,1+minconv(𝒜t)2)\displaystyle H(\frac{1-\mathop{\rm min}\text{conv}({\cal A}_{t})}{2},\frac{1+\mathop{\rm min}\text{conv}({\cal A}_{t})}{2})
=\displaystyle= KΛt:Λtc(Uk=2),\displaystyle K_{\Lambda_{t}:\Lambda_{t}^{c}}(U^{\prime}_{k=2}),

where the first and third equality follows from (10), and the second equality is derived by 𝒜t+1𝒜t{\cal A}_{t+1}\subset{\cal A}_{t} and Lemma 11. By now we have proven (42). From (42), we obtain that

maxt{1,2,,[n2]}KΛt:Λtc(U2)=KA1:A1c(U2).\displaystyle\mathop{\rm max}_{t\in\{1,2,...,[\frac{n}{2}]\}}K_{\Lambda_{t}:\Lambda_{t}^{c}}(U_{2})=K_{A_{1}:A_{1}^{c}}(U_{2}). (44)

Therefore, in order to consider the maximal entanglement generation under the bipartition Λt:Λtc\Lambda_{t}:\Lambda_{t}^{c}, we can only consider the bipartition A1:A1cA_{1}:A_{1}^{c}. Let 𝒜1={(l=2nqlβl)mod2π|ql=0,1}={θj|j=1,2,,2n1andθpθqfor 1p<q2n1}{\cal A}_{1}=\{(\sum_{l=2}^{n}q_{l}\beta_{l})\mod 2\pi|q_{l}=0,1\}=\{\theta_{j}|j=1,2,...,2^{n-1}\;\text{and}\;\theta_{p}\leq\theta_{q}\;\text{for}\;1\leq p<q\leq 2^{n-1}\}. By choosing t=1t=1 in (41), one has the entanglement generation over A1:A1cA_{1}:A_{1}^{c} as

KA1:A1c(U2)\displaystyle K_{A_{1}:A_{1}^{c}}(U_{2}) (45)
=\displaystyle= {1,for  0θjθj1π,,θ2n1π,max1j2n1H(1+cos(β)2,1cos(β)2),otherwise,\displaystyle\begin{cases}1,\;\mbox{for}\;\;0\leq\theta_{j}-\theta_{j-1}\leq\pi,,\theta_{2^{n-1}}\geq\pi,\\ \mathop{\rm max}_{1\leq j\leq 2^{n-1}}H(\frac{1+\cos(\beta)}{2},\frac{1-\cos(\beta)}{2}),\;\mbox{otherwise},\end{cases}

where j=2,3,,2n1j=2,3,...,2^{n-1}, and β=θjθk2\beta=\frac{\theta_{j}-\theta_{k}}{2} with k=j+1mod2n1k=j+1\mod 2^{n-1}.

Next we consider other bipartition Ω:Ωc\Omega:\Omega^{c}, where Ω{A1,A2,,An}\emptyset\subsetneq\Omega\subsetneq\{A_{1},A_{2},...,A_{n}\}. As we have shown in (44), the fewer systems working as the control under the bipartition Λt:Λtc\Lambda_{t}:\Lambda_{t}^{c} there are, the larger the entangling power will be. Hence the maximal entanglement generation is reached when a single system works as the control, across any bipartition Ω:Ωc\Omega:\Omega^{c}. In summary, the entangling power of U2U_{2} in (C) is obtained by taking the maximization over the following nn types of bipartition, that is,

maxΩ{A1,,An}KΩ:Ωc(U2)=maxt{1,2,,n}KAt:Atc(U2).\displaystyle\mathop{\rm max}_{\emptyset\subsetneq\Omega\subsetneq\{A_{1},...,A_{n}\}}K_{\Omega:\Omega^{c}}(U_{2})=\mathop{\rm max}_{t\in\{1,2,...,n\}}K_{A_{t}:A_{t}^{c}}(U_{2}).

We write U2U_{2} in (C) in the form that the system AtA_{t} is the control with t=2,3,,nt=2,3,...,n, i.e.

U2=\displaystyle U_{2}= |00|At(|00|A1(I2(n2))(A1At)c\displaystyle|0\rangle\!\langle 0|_{A_{t}}\otimes\Big{(}|0\rangle\!\langle 0|_{A_{1}}\otimes(I_{2}^{\otimes(n-2)})_{(A_{1}A_{t})^{c}}
+|11|A1(jtdiag(1,eiβj))(A1At)c)\displaystyle+|1\rangle\!\langle 1|_{A_{1}}\otimes(\otimes_{j\neq t}\mathop{\rm diag}(1,e^{i\beta_{j}}))_{(A_{1}A_{t})^{c}}\Big{)}
+\displaystyle+ |11|At(|00|A1(I2(n2))(A1At)c\displaystyle|1\rangle\!\langle 1|_{A_{t}}\otimes\Big{(}|0\rangle\!\langle 0|_{A_{1}}\otimes(I_{2}^{\otimes(n-2)})_{(A_{1}A_{t})^{c}}
+eiβt|11|A1(jtdiag(1,eiβj))(A1At)c),\displaystyle+e^{i\beta_{t}}|1\rangle\!\langle 1|_{A_{1}}\otimes(\otimes_{j\neq t}\mathop{\rm diag}(1,e^{i\beta_{j}}))_{(A_{1}A_{t})^{c}}\Big{)},

which is locally unitarily equivalent to

U2′′=\displaystyle U_{2}^{\prime\prime}= |00|At(I2(n1))Atc\displaystyle|0\rangle\!\langle 0|_{A_{t}}\otimes(I_{2}^{\otimes(n-1)})_{A_{t}^{c}}
+\displaystyle+ |11|At(|00|A1(I2(n2))(A1At)c\displaystyle|1\rangle\!\langle 1|_{A_{t}}\otimes\Big{(}|0\rangle\!\langle 0|_{A_{1}}\otimes(I_{2}^{\otimes(n-2)})_{(A_{1}A_{t})^{c}}
+eiβt|11|A1(I2(n2))(A1At)c)\displaystyle\hskip 28.45274pt+e^{i\beta_{t}}|1\rangle\!\langle 1|_{A_{1}}\otimes(I_{2}^{\otimes(n-2)})_{(A_{1}A_{t})^{c}}\Big{)}

with respect to the bipartition At:AtcA_{t}:A_{t}^{c}. From Lemma 12 and (C), we obtain that for t=2,3,,nt=2,3,...,n,

KAt:Atc(U2)=KAt:Atc(U2′′)\displaystyle K_{A_{t}:A_{t}^{c}}(U_{2})=K_{A_{t}:A_{t}^{c}}(U^{\prime\prime}_{2}) (47)
=\displaystyle= H(1+cos(βt/2)2,1cos(βt/2)2),\displaystyle H(\frac{1+\cos(\beta_{t}/2)}{2},\frac{1-\cos(\beta_{t}/2)}{2}),

for βt(0,2π)\beta_{t}\in(0,2\pi). We have shown the case t=1t=1 by (45) and t>1t>1 by (47). Then we obtain the entangling power of the unitary U2U_{2}. Hence the equality (15) holds for 𝒜1={eiθj|j=1,2,,2ntandθpθqfor 1p<q2nt}{\cal A}_{1}=\{e^{i\theta_{j}}|j=1,2,...,2^{n-t}\;\text{and}\;\theta_{p}\leq\theta_{q}\;\text{for}\;1\leq p<q\leq 2^{n-t}\}.

(iii) A nn-qubit unitary with singular number k=1k=1 is given by

U1=icosα|00|σ3(n1)+diag(sinα,1)I2(n1)\displaystyle U_{1}=i\cos\alpha|0\rangle\!\langle 0|\otimes\sigma_{3}^{\otimes(n-1)}+\mathop{\rm diag}(\sin\alpha,1)\otimes I_{2}^{\otimes(n-1)}

with α(0,π2)(π2,π)\alpha\in(0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi). The unitary is symmetric except for the first system. We can merely analyze the entanglement generation under the bipartition Λt=A1At\Lambda_{t}=A_{1}...A_{t} and Λtc=At+1An\Lambda_{t}^{c}=A_{t+1}...A_{n} for t=1,2,,n1t=1,2,...,n-1. Under this bipartition, the unitary is given as

U1=\displaystyle U_{1}= [j2jn(cosα+(1)s=2nδ1,jsisinα)\displaystyle\!\!\!\!\!\!\bigg{[}\sum_{j_{2}...j_{n}}\Big{(}\cos\alpha+(-1)^{\sum_{s=2}^{n}\delta_{1,j_{s}}}i\sin\alpha\Big{)}
|0,j2,,jt0,j2,,jt|+|1,j2,,jt1,j2,,jt|]A1At\displaystyle|0,j_{2},...,j_{t}\rangle\!\langle 0,j_{2},...,j_{t}|+|1,j_{2},...,j_{t}\rangle\!\langle 1,j_{2},...,j_{t}|\bigg{]}_{A_{1}...A_{t}}
[|jt+1,,jnjt+1,,jn|]At+1An.\displaystyle\!\!\!\!\!\!\otimes\big{[}|j_{t+1},...,j_{n}\rangle\!\langle j_{t+1},...,j_{n}|\big{]}_{A_{t+1}...A_{n}}.

Note that s=2nδ1,js\sum_{s=2}^{n}\delta_{1,j_{s}} is either odd or even. Based on its value, we divide the set of POVMs of systems At+1AnA_{t+1}...A_{n} into two subsets. That is,

P1(4)=gt+1gn|gt+1gngt+1gn|,for odds=t+1nδ1,gs,\displaystyle P_{1}^{(4)}=\sum_{g_{t+1}...g_{n}}|g_{t+1}...g_{n}\rangle\!\langle g_{t+1}...g_{n}|,\;\text{for odd}\sum_{s=t+1}^{n}\delta_{1,g_{s}},
(50)
P2(4)=ht+1hn|ht+1hnht+1hn|,for evens=t+1nδ1,hs.\displaystyle P_{2}^{(4)}=\sum_{h_{t+1}...h_{n}}|h_{t+1}...h_{n}\rangle\!\langle h_{t+1}...h_{n}|,\;\text{for even}\sum_{s=t+1}^{n}\delta_{1,h_{s}}.

Obviously, P1(4)+P2(4)=I2(nt)P_{1}^{(4)}+P_{2}^{(4)}=I_{2}^{\otimes(n-t)} and P1(4)P_{1}^{(4)} is orthogonal to P2(4)P_{2}^{(4)}. From (C)-(C), one can obtain that

U1=(U1(4))Λt(P1(4))Λtc+(U2(4))Λt(P2(4))Λtc,\displaystyle U_{1}=(U_{1}^{(4)})_{\Lambda_{t}}\otimes(P_{1}^{(4)})_{\Lambda_{t}^{c}}+(U_{2}^{(4)})_{\Lambda_{t}}\otimes(P_{2}^{(4)})_{\Lambda_{t}^{c}}, (52)

where the unitaries

U1(4)=\displaystyle U_{1}^{(4)}= j2jt(cosα(1)s=2tδ1,jsisinα)\displaystyle\sum_{j_{2}...j_{t}}\Big{(}\cos\alpha-(-1)^{\sum_{s=2}^{t}\delta_{1,j_{s}}}i\sin\alpha\Big{)}
×|0,j2,,jt0,j2,,jt|+|1,j2,,jt1,j2,,jt|,\displaystyle\times|0,j_{2},...,j_{t}\rangle\!\langle 0,j_{2},...,j_{t}|+|1,j_{2},...,j_{t}\rangle\!\langle 1,j_{2},...,j_{t}|,
U2(4)=\displaystyle U_{2}^{(4)}= j2jt(cosα+(1)s=2tδ1,jsisinα)\displaystyle\sum_{j_{2}...j_{t}}\Big{(}\cos\alpha+(-1)^{\sum_{s=2}^{t}\delta_{1,j_{s}}}i\sin\alpha\Big{)}
×|0,j2,,jt0,j2,,jt|+|1,j2,,jt1,j2,,jt|.\displaystyle\times|0,j_{2},...,j_{t}\rangle\!\langle 0,j_{2},...,j_{t}|+|1,j_{2},...,j_{t}\rangle\!\langle 1,j_{2},...,j_{t}|.

Obviously, U1U_{1} is locally unitarily equivalent to

U1=(I2t)Λt(P1(4))Λtc+((U1(4))U2(4))Λt(P2(4))Λtc.\displaystyle U_{1}^{\prime}=(I_{2}^{\otimes t})_{\Lambda_{t}}\otimes(P_{1}^{(4)})_{\Lambda_{t}^{c}}+((U_{1}^{(4)})^{\dagger}U_{2}^{(4)})_{\Lambda_{t}}\otimes(P_{2}^{(4)})_{\Lambda_{t}^{c}}.

From (C) and (C), the diagonal elements of (U1(4))U2(4)(U_{1}^{(4)})^{\dagger}U_{2}^{(4)} are 1,exp[±2αi]1,\exp[\pm 2\alpha i]. Let the set ={0,±2αmod2π}={λj|j=1,2,3,λ1λ2λ3}{\cal B}=\{0,\pm 2\alpha\mod 2\pi\}=\{\lambda_{j}|j=1,2,3,\;\lambda_{1}\leq\lambda_{2}\leq\lambda_{3}\}. From Lemma 12, we obtain the entangling power of U1U_{1} as follows

KE(U1)=maxt{1,2,,n1}KΛt:Λtc(U1)\displaystyle K_{E}(U_{1})=\mathop{\rm max}_{t\in\{1,2,...,n-1\}}K_{\Lambda_{t}:\Lambda_{t}^{c}}(U_{1})
=\displaystyle= {1,for 0λjλj1π,j=2,3,λ3π,max1j3H(1+cos(β)2,1cos(β)2),otherwise,\displaystyle\begin{cases}1,\;\mbox{for}\;0\leq\lambda_{j}-\lambda_{j-1}\leq\pi,\;j=2,3,\lambda_{3}\geq\pi,\\ \mathop{\rm max}_{1\leq j\leq 3}H(\frac{1+\cos(\beta)}{2},\frac{1-\cos(\beta)}{2}),\;\mbox{otherwise},\end{cases} (56)

where β=(λjλj+1mod3)/2\beta=(\lambda_{j}-\lambda_{j+1\mod 3})/2.

When the singular number k=0k=0, the unitary is written as

U0=\displaystyle U_{0}= λjλj+1mod32idiag(sinα,sinβ)σ3(n1)\displaystyle\frac{\lambda_{j}-\lambda_{j+1\mod 3}}{2}i\mathop{\rm diag}(\sin\alpha,\sin\beta)\otimes\sigma_{3}^{(n-1)} (57)
+\displaystyle+ λjλj+1mod32diag(cosα,cosβ)I2(n1)\displaystyle\frac{\lambda_{j}-\lambda_{j+1\mod 3}}{2}\mathop{\rm diag}(\cos\alpha,\cos\beta)\otimes I_{2}^{\otimes(n-1)}

with α,β(0,π2)(π2,π)\alpha,\beta\in(0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi). By similar analysis as for k=1k=1, the unitary is written in the form of two-term control, across the bipartition Λt=A1At\Lambda_{t}=A_{1}...A_{t} and Λtc=At+1An\Lambda_{t}^{c}=A_{t+1}...A_{n} as follows

U0=(U1(5))Λt(P1(5))Λtc+(U2(5))Λt(P2(5))Λtc,\displaystyle U_{0}=(U_{1}^{(5)})_{\Lambda_{t}}\otimes(P_{1}^{(5)})_{\Lambda_{t}^{c}}+(U_{2}^{(5)})_{\Lambda_{t}}\otimes(P_{2}^{(5)})_{\Lambda_{t}^{c}}, (58)

where Pt(5)=Pt(4)P_{t}^{(5)}=P_{t}^{(4)} in (C) and (C) with t=1,2t=1,2, and

U1(5)=\displaystyle U_{1}^{(5)}= j2jt(cosα(1)s=2tδ1,jsisinα)\displaystyle\sum_{j_{2}...j_{t}}\Big{(}\cos\alpha-(-1)^{\sum_{s=2}^{t}\delta_{1,j_{s}}}i\sin\alpha\Big{)}
×|0,j2,,jt0,j2,,jt|\displaystyle\qquad\times|0,j_{2},...,j_{t}\rangle\!\langle 0,j_{2},...,j_{t}|
+\displaystyle+ (cosβ(1)s=2tδ1,jsisinβ)\displaystyle\Big{(}\cos\beta-(-1)^{\sum_{s=2}^{t}\delta_{1,j_{s}}}i\sin\beta\Big{)}
×|1,j2,,jt1,j2,,jt|,\displaystyle\qquad\times|1,j_{2},...,j_{t}\rangle\!\langle 1,j_{2},...,j_{t}|,
U2(5)=\displaystyle U_{2}^{(5)}= j2jt(cosα+(1)s=2tδ1,jsisinα)\displaystyle\sum_{j_{2}...j_{t}}\Big{(}\cos\alpha+(-1)^{\sum_{s=2}^{t}\delta_{1,j_{s}}}i\sin\alpha\Big{)}
×|0,j2,,jt0,j2,,jt|\displaystyle\qquad\times|0,j_{2},...,j_{t}\rangle\!\langle 0,j_{2},...,j_{t}|
+\displaystyle+ (cosβ+(1)s=2tδ1,jsisinβ)\displaystyle\Big{(}\cos\beta+(-1)^{\sum_{s=2}^{t}\delta_{1,j_{s}}}i\sin\beta\Big{)}
×|1,j2,,jt1,j2,,jt|.\displaystyle\qquad\times|1,j_{2},...,j_{t}\rangle\!\langle 1,j_{2},...,j_{t}|.

The unitary U0U_{0} is locally equivalent to

U0=(I2t)Λt(P1(5))Λtc+((U1(5))U2(5))Λt(P2(5))Λtc.\displaystyle U_{0}=(I_{2}^{\otimes t})_{\Lambda_{t}}\otimes(P_{1}^{(5)})_{\Lambda_{t}^{c}}+((U_{1}^{(5)})^{\dagger}U_{2}^{(5)})_{\Lambda_{t}}\otimes(P_{2}^{(5)})_{\Lambda_{t}^{c}}.

The diagonal elements of (U1(5))U2(5)(U_{1}^{(5)})^{\dagger}U_{2}^{(5)} are exp[±2αi],exp[±2βi]\exp[\pm 2\alpha i],\exp[\pm 2\beta i]. Let 𝒞={(±2α)mod2π,(±2β)mod2π}={λj|j=1,2,3,4,λ1λ2λ3λ4}{\cal C}=\{(\pm 2\alpha)\mod 2\pi,(\pm 2\beta)\mod 2\pi\}=\{\lambda_{j}|j=1,2,3,4,\;\lambda_{1}\leq\lambda_{2}\leq\lambda_{3}\leq\lambda_{4}\}. From Lemma 12, we obtain the entangling power of U0U_{0} shown in (16). This completes the proof.     \sqcap\sqcup

References

  • [1] Bennett and Wiesner. Communication via one- and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett, 69(20):2881–2884, 1992.
  • [2] Xinyu Qiu and Lin Chen. Quantum cost of dense coding and teleportation. Phys. Rev. A, 105:062451, 2022.
  • [3] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello. Distributed quantum computation over noisy channels. Phys. Rev. A, 59:4249–4254, Jun 1999.
  • [4] Marcus Cramer, Martin B Plenio, Steven T Flammia, Rolando Somma, and Yi Kai Liu. Efficient quantum state tomography. Nature Communications, 1(9):149, 2010.
  • [5] Xiao-Min Hu, Cen-Xiao Huang, Yu-Bo Sheng, Lan Zhou, Bi-Heng Liu, Yu Guo, Chao Zhang, Wen-Bo Xing, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Long-distance entanglement purification for quantum communication. Phys. Rev. Lett., 126:010503, Jan 2021.
  • [6] Xinyu Qiu, Lin Chen, and Li-Jun Zhao. Quantum wasserstein distance between unitary operations. Phys. Rev. A, 110:012412, Jul 2024.
  • [7] Paolo Zanardi, Christof Zalka, and Lara Faoro. Entangling power of quantum evolutions. Phys. Rev. A, 62:030301, Aug 2000.
  • [8] Xiaoguang Wang and Paolo Zanardi. Quantum entanglement of unitary operators on bipartite systems. Phys. Rev. A, 66:044303, Oct 2002.
  • [9] Alioscia Hamma and Paolo Zanardi. Quantum entangling power of adiabatically connected hamiltonians. Phys. Rev. A, 69:062319, Jun 2004.
  • [10] Marcin Musz, Marek Kus, and Karol Zyczkowski. Unitary quantum gates, perfect entanglers and unistochastic maps. Phys. Rev. A, 87(2):022111, 2013.
  • [11] Michael A. Nielsen, Christopher M. Dawson, Jennifer L. Dodd, Alexei Gilchrist, Duncan Mortimer, Tobias J. Osborne, Michael J. Bremner, Aram W. Harrow, and Andrew Hines. Quantum dynamics as a physical resource. Phys. Rev. A, 67:052301, May 2003.
  • [12] Lin Chen and Li Yu. Entangling and assisted entangling power of bipartite unitary operations. Phys. Rev. A, 94:022307, Aug 2016.
  • [13] Lin Chen and Li Yu. Entanglement cost and entangling power of bipartite unitary and permutation operators. Phys. Rev. A, 93:042331, Apr 2016.
  • [14] Yi Shen and Lin Chen. Entangling power of two-qubit unitary operations. Journal of Physics A: Mathematical and Theoretical, 51(39):395303, aug 2018.
  • [15] Sirui Cao, Bujiao Wu, Fusheng Chen, Ming Gong, Yulin Wu, Yangsen Ye, Chen Zha, Haoran Qian, Chong Ying, Shaojun Guo, Qingling Zhu, He-Liang Huang, Youwei Zhao, Shaowei Li, Shiyu Wang, Jiale Yu, Daojin Fan, Dachao Wu, Hong Su, Hui Deng, Hao Rong, Yuan Li, Kaili Zhang, Tung-Hsun Chung, Futian Liang, Jin Lin, Yu Xu, Lihua Sun, Cheng Guo, Na Li, Yong-Heng Huo, Cheng-Zhi Peng, Chao-Yang Lu, Xiao Yuan, Xiaobo Zhu, and Jian-Wei Pan. Generation of genuine entanglement up to 51 superconducting qubits. Nature, 619(7971):738–742, 2023.
  • [16] Simon J. Evered, Dolev Bluvstein, Marcin Kalinowski, Sepehr Ebadi, Tom Manovitz, Hengyun Zhou, Sophie H. Li, Alexandra A. Geim, Tout T. Wang, Nishad Maskara, Harry Levine, Giulia Semeghini, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature, 622(7982):268–272, 2023.
  • [17] D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D. Main, R. Srinivas, D. M. Lucas, C. J. Ballance, K. Ivanov, E. Y. Z. Tan, P. Sekatski, R. L. Urbanke, R. Renner, N. Sangouard, and J. D. Bancal. Experimental quantum key distribution certified by bell’s theorem. Nature, 607(7920):682–686, 2022.
  • [18] D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D. Main, R. Srinivas, D. M. Lucas, C. J. Ballance, K. Ivanov, E. Y. Z. Tan, P. Sekatski, R. L. Urbanke, R. Renner, N. Sangouard, and J. D. Bancal. Experimental quantum key distribution certified by bell’s theorem. Nature, 607(7920):682–686, 2022.
  • [19] Xin Wang, Edwin Barnes, and S. Das Sarma. Improving the gate fidelity of capacitively coupled spin qubits. npj Quantum Information, 1(1):15003, 2015.
  • [20] Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tolut T. Wang, Sepehr Ebadi, Hannes Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler, and Mikhail D. Lukin. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett., 123:170503, Oct 2019.
  • [21] A. J. Scott. Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A, 69:052330, May 2004.
  • [22] Jianxin Chen, Zhengfeng Ji, David W Kribs, Bei Zeng, and Fang Zhang. Minimum entangling power is close to its maximum. Journal of Physics A: Mathematical and Theoretical, 52(21):215302, apr 2019.
  • [23] Tomasz Linowski, Grzegorz Rajchel-Mieldzioć, and Karol Życzkowski. Entangling power of multipartite unitary gates. Journal of Physics A: Mathematical and Theoretical, 53(12):125303, 2020.
  • [24] Masanori Ohya and Dénes Petz. Quantum Entropy and Its Use. 01 1995.
  • [25] Zhiwei Song, Lin Chen, Yize Sun, and Mengyao Hu. Proof of a conjectured 0-rényi entropy inequality with applications to multipartite entanglement. IEEE Transactions on Information Theory, 69(4):2385–2399, 2023.
  • [26] Paul Boes, Jens Eisert, Rodrigo Gallego, Markus P. Müller, and Henrik Wilming. Von neumann entropy from unitarity. Phys. Rev. Lett., 122:210402, May 2019.
  • [27] Benjamin Schumacher. Quantum coding. Phys. Rev. A, 51:2738–2747, Apr 1995.
  • [28] A. Winter. Coding theorem and strong converse for quantum channels. IEEE Transactions on Information Theory, 45(7):2481–2485, 1999.
  • [29] M. S. Leifer, L. Henderson, and N. Linden. Optimal entanglement generation from quantum operations. Phys. Rev. A, 67:012306, Jan 2003.
  • [30] Yi Shen, Lin Chen, and Li Yu. Classification of schmidt-rank-two multipartite unitary gates by singular number. Journal of Physics A: Mathematical and Theoretical, 55(46):465302, nov 2022.
  • [31] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000.
  • [32] Scott M. Cohen and Li Yu. All unitaries having operator Schmidt rank 2 are controlled unitaries. Phys. Rev. A, 87:022329, Feb 2013.