This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Multilevel decompositions and norms for negative order Sobolev spaces

Thomas Führer Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile [email protected]
Abstract.

We consider multilevel decompositions of piecewise constants on simplicial meshes that are stable in HsH^{-s} for s(0,1)s\in(0,1). Proofs are given in the case of uniformly and locally refined meshes. Our findings can be applied to define local multilevel diagonal preconditioners that lead to bounded condition numbers (independent of the mesh-sizes and levels) and have optimal computational complexity. Furthermore, we discuss multilevel norms based on local (quasi-)projection operators that allow the efficient evaluation of negative order Sobolev norms. Numerical examples and a discussion on several extensions and applications conclude this article.

Key words and phrases:
additive Schwarz, multilevel norms, subspace decomposition, preconditioner
2010 Mathematics Subject Classification:
65F08, 65F35, 65N30, 65N38
Acknowledgment. This work was supported by ANID through FONDECYT projects 11170050 and 1210391.

1. Introduction

This work deals with the analysis of multilevel decompositions and multilevel norms of piecewise constant functions for the Sobolev spaces Hs(Ω)H^{-s}(\Omega) resp. H~s(Ω)\widetilde{H}^{-s}(\Omega) with s(0,1)s\in(0,1).

Stability results for subspace decompositions are needed in the analysis of, e.g., additive and multiplicative Schwarz preconditioners, see [31, 43] for an overview. An important use case is the definition of additive Schwarz preconditioners for weakly-singular integral equations [44, 26, 25]. The two dimensional case (1 dimensional boundary) follows from corresponding results in Sobolev spaces of opposite (and therefore positive) order whereas the higher dimensional case needs different techniques. Another application is given in fictitious domain methods [5]. In our recent work [19] we have defined a multilevel diagonal preconditioner for the weakly-singular integral operator which is optimal on locally refined meshes and closed boundaries for three-dimensional problems. The proofs are based on the abstract framework from [33]. Although verified numerically, optimality for open boundaries is not shown in [19]. Moreover, it is not clear if the techniques given in [19] extend to the general case with s(0,1)s\in(0,1). In the recent work [3], additive multigrid methods are analyzed for problems involving the fractional Laplacian leading to level dependent condition number estimates.

A different approach is the framework of operator preconditioning, see [27] for an overview. One advantage is that the history of meshes is usually not needed. One drawback is the use of dual meshes and discretized operators of opposite order which often is computationally expensive. The latter issues have been tackled in a series of recent articles [40, 41, 42].

Multilevel norms for negative order Sobolev spaces and piecewise constant functions have been analyzed in [32] but do not lead to level independent estimates for s1/2s\geq 1/2. Multilevel norms for piecewise affine and globally continuous functions are found in, e.g., [6, 8, 32], see also the recent article [17]. Multigrid methods are analyzed in, e.g., [46, 29, 14, 12]. Other works that use a matrix-based approach to treat the evaluation of fractional Sobolev norms include [9, 2] but rely on the evaluation of fractional powers of non-trivial matrices or the use of wavelet bases. Wavelet techniques are used for boundary element methods, see, e.g., [35, 24, 15]. More details on the theory of (pre-)wavelet methods are found in, e.g., [37, 38, 10].

1.1. Some known results on multilevel norms

We recall some results on multilevel norms from [32] adopted to the notation used in the present work. Let (𝒯)0(\mathcal{T}_{\ell})_{\ell\in\mathbb{N}_{0}} denote a sequence of uniformly refined simplicial meshes with mesh sizes (h)0(h_{\ell})_{\ell\in\mathbb{N}_{0}}. For the range s(0,1/2)s\in(0,1/2) one gets from [32, Eq.(3)] that

(1) ϕs2ϕs,2=0h2s(Π0Π10)ϕ2,\displaystyle\|\phi\|_{-s}^{2}\simeq\|\phi\|_{-s,\sim}^{2}\simeq\sum_{\ell=0}^{\infty}h_{\ell}^{2s}\|(\Pi^{0}_{\ell}-\Pi^{0}_{\ell-1})\phi\|^{2},

where Π0\Pi^{0}_{\ell} denotes the L2(Ω)L^{2}(\Omega) orthogonal projection on the space of piecewise constants 𝒫0(𝒯)\mathcal{P}^{0}(\mathcal{T}_{\ell}). The multilevel norm can be efficiently evaluated if ϕ𝒫0(𝒯L)\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}).

However, the latter equivalence does not include one of the arguably most important cases, s=1/2s=1/2. It is shown ([32, Theorem 2]) that

ϕ1/22=0Lh(Π0Π10)ϕ2(L+1)2ϕ1/22for all ϕ𝒫0(𝒯L)\displaystyle\|\phi\|_{-1/2}^{2}\lesssim\sum_{\ell=0}^{L}h_{\ell}\|(\Pi^{0}_{\ell}-\Pi^{0}_{\ell-1})\phi\|^{2}\lesssim(L+1)^{2}\|\phi\|_{-1/2}^{2}\quad\text{for all }\phi\in\mathcal{P}^{0}(\mathcal{T}_{L})

and the factor (L+1)2(L+1)^{2} can not be improved in general, thus, yielding suboptimal results.

1.2. Novel contributions

Rather than using duality arguments to transfer results for positive order Sobolev spaces to negative order spaces (see e.g. [32, Section 2]), we exploit the deep connection between interpolation and approximation spaces where we view Hs(Ω)H^{-s}(\Omega) as an intermediate space between H1(Ω)H^{-1}(\Omega) and L2(Ω)L^{2}(\Omega). At first glance this seems to further complicate the problem due to the necessity of handling the H1(Ω)H^{-1}(\Omega) norm. However, some ideas resp. results from our recent work [20] and the work at hand show how to define local decompositions in the H1(Ω)H^{-1}(\Omega) norm by using Haar-type functions that can be written as the divergence of Raviart–Thomas functions. Furthermore, we introduce and analyze locally defined projection operators in H1(Ω)H^{-1}(\Omega) onto the space of piecewise constant functions. We note that for problems of positive order the Sobolev space Hs(Ω)H^{s}(\Omega) is an intermediate space between L2(Ω)L^{2}(\Omega) and Ht(Ω)H^{t}(\Omega) for some t(1,3/2)t\in(1,3/2). Together with stability of the canonical basis of piecewise affine and globally continuous functions in L2(Ω)L^{2}(\Omega) this yields optimality of the BPX preconditioner, see, e.g., [7, 6] and references therein for a detailed analysis.

Let us summarize two of our main results that can be found in Section 3 and are valid for uniform as well as adaptive meshes: Let (𝒯)0(\mathcal{T}_{\ell})_{\ell\in\mathbb{N}_{0}} denote a sequence of meshes with mesh-size functions (h)0(h_{\ell})_{\ell\in\mathbb{N}_{0}} and facets ()0(\mathcal{E}_{\ell})_{\ell\in\mathbb{N}_{0}}. For 0\ell\in\mathbb{N}_{0}, EE\in\mathcal{E}_{\ell} we define spaces 𝒳,E=span{ψ,E}𝒫0(𝒯)\mathcal{X}_{\ell,E}=\operatorname{span}\{\psi_{\ell,E}\}\in\mathcal{P}^{0}(\mathcal{T}_{\ell}) where ψ,E\psi_{\ell,E} is supported on at most two elements of 𝒯\mathcal{T}_{\ell} (which share the facet EE) and Ωψ,Edx=0\int_{\Omega}\psi_{\ell,E}\,\mathrm{d}x=0 if EΩE\not\subset\partial\Omega (a precise definition is found in Section 2.3) and use subsets ~\widetilde{}\mathcal{E}_{\ell}\subset\mathcal{E}_{\ell} that satisfy #~=𝒪(#𝒯𝒯1)\#\widetilde{}\mathcal{E}_{\ell}=\mathcal{O}(\#\mathcal{T}_{\ell}\setminus\mathcal{T}_{\ell-1}).

  • Multilevel decomposition (Theorem 17):

    ϕs2inf{=0LE~ϕ,Es2:ϕ,E𝒳,E such that ϕ==0LE~ϕ,E}\displaystyle\|\phi\|_{-s}^{2}\simeq\inf\big{\{}\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\|\phi_{\ell,E}\|_{-s}^{2}\,:\,\phi_{\ell,E}\in\mathcal{X}_{\ell,E}\text{ such that }\phi=\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\phi_{\ell,E}\big{\}}

    for all ϕ𝒫0(𝒯L)\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}).

  • Multilevel norms (Theorem 19): There exist locally defined operators PP_{\ell}^{\prime} such that

    ϕs2=0Lhs(PP1)ϕ2for all ϕ𝒫0(𝒯L).\displaystyle\|\phi\|_{-s}^{2}\simeq\sum_{\ell=0}^{L}\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|^{2}\quad\text{for all }\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}).

In particular, the constants are independent of the levels or the mesh-sizes. We note that the decomposition into one-dimensional subspaces implies that the associated preconditioner is of a multilevel diagonal scaling type.

1.3. Outline

In Section 2 we introduce notation and some basic results. In particular, Section 2.4 and Section 2.5 deal with the definition and analysis of local projection operators in negative order Sobolev spaces. In Section 3 we present our main results and their proofs are given in Section 4. Numerical experiments are presented in Section 5. The final Section 6 concludes this article with a discussion on applications and extensions including the case of higher-order polynomial spaces.

1.4. Notation

Throughout this work we write aba\lesssim b resp. aba\gtrsim b if there exists a constant C>0C>0 such that aCba\leq Cb resp. aCba\geq Cb. If both directions hold we write aba\simeq b. In the main results dependencies on constants will be specified.

2. Preliminaries

2.1. Sobolev spaces

For a bounded Lipschitz domain ωd\omega\subset\mathbb{R}^{d} (d2d\geq 2) let

H1(ω)={vL2(ω):uL2(ω)}\displaystyle H^{1}(\omega)=\big{\{}v\in L^{2}(\omega)\,:\,\nabla u\in L^{2}(\omega)\big{\}}

with norm H1(ω)=(ω2+()ω2)1/2\|\cdot\|_{H^{1}(\omega)}=\big{(}\|\cdot\|_{\omega}^{2}+\|\nabla(\cdot)\|_{\omega}^{2}\big{)}^{1/2}. Here, ω\|\cdot\|_{\omega} denotes the L2(ω)L^{2}(\omega) or L2(ω)dL^{2}(\omega)^{d} norm which is induced by the scalar product (,)ω(\cdot\hskip 1.42262pt,\cdot)_{\omega}. Let H01(ω)H_{0}^{1}(\omega) denote the closed subspace of H1(ω)H^{1}(\omega) with vanishing traces and recall that ()ω\|\nabla(\cdot)\|_{\omega} defines an equivalent norm on H01(ω)H_{0}^{1}(\omega). The dual space H1(ω):=(H01(ω))H^{-1}(\omega):=(H_{0}^{1}(\omega))^{\prime} is equipped with the dual norm

ϕ1,ω:=sup0vH01(ω)ϕ,vωvω,\displaystyle\|\phi\|_{-1,\omega}:=\sup_{0\neq v\in H_{0}^{1}(\omega)}\frac{\langle\phi\hskip 1.42262pt,v\rangle_{\omega}}{\|\nabla v\|_{\omega}},

where the duality ,ω\langle\cdot\hskip 1.42262pt,\cdot\rangle_{\omega} is understood with respect to the extended L2(ω)L^{2}(\omega) inner product. Analogously, H~1(ω):=(H1(ω))\widetilde{H}^{-1}(\omega):=(H^{1}(\omega))^{\prime} with norm

ϕ1,,ω:=sup0vH1(ω)ϕ,vω(vω2+vω2)1/2.\displaystyle\|\phi\|_{-1,\sim,\omega}:=\sup_{0\neq v\in H^{1}(\omega)}\frac{\langle\phi\hskip 1.42262pt,v\rangle_{\omega}}{\big{(}\|\nabla v\|_{\omega}^{2}+\|v\|_{\omega}^{2}\big{)}^{1/2}}.

Throughout this work we consider a connected Lipschitz domain Ωd\emptyset\neq\Omega\subset\mathbb{R}^{d} with boundary Γ:=Ω\Gamma:=\partial\Omega and skip indices in the notation of norms, e.g., we write \|\cdot\| instead of Ω\|\cdot\|_{\Omega}, 1\|\cdot\|_{-1} instead of 1,Ω\|\cdot\|_{-1,\Omega}.

For s(0,1)s\in(0,1) we define the intermediate spaces Hs(Ω)H^{s}(\Omega) resp. H~s(Ω)\widetilde{H}^{s}(\Omega) by real interpolation (KK-method, see, e.g. [11, Section 4]), i.e.,

Hs(Ω)\displaystyle H^{s}(\Omega) :=[L2(Ω),H1(Ω)]s,2resp.\displaystyle:=[L^{2}(\Omega),H^{1}(\Omega)]_{s,2}\quad\text{resp.}
H~s(Ω)\displaystyle\widetilde{H}^{s}(\Omega) :=[L2(Ω),H01(Ω)]s,2.\displaystyle:=[L^{2}(\Omega),H_{0}^{1}(\Omega)]_{s,2}.

We recall that the dual spaces H~s(Ω):=(Hs(Ω))\widetilde{H}^{-s}(\Omega):=(H^{s}(\Omega))^{\prime} resp. Hs(Ω):=(H~s(Ω))H^{-s}(\Omega):=(\widetilde{H}^{s}(\Omega))^{\prime} can be written as interpolation spaces as well, i.e.,

H~(1θ)(Ω)\displaystyle\widetilde{H}^{-(1-\theta)}(\Omega) =[H~1(Ω),L2(Ω)]θ,2,\displaystyle=[\widetilde{H}^{-1}(\Omega),L^{2}(\Omega)]_{\theta,2},
H(1θ)(Ω)\displaystyle H^{-(1-\theta)}(\Omega) =[H1(Ω),L2(Ω)]θ,2\displaystyle=[H^{-1}(\Omega),L^{2}(\Omega)]_{\theta,2}

for all θ(0,1)\theta\in(0,1), see, e.g., [30, Chapter 1, Theorem 6.2]. An extensive overview on interpolation between Hilbert spaces and, in particular, Sobolev spaces is found in [11].

The space of L2(ω)dL^{2}(\omega)^{d} fields with divergence in L2(ω)L^{2}(\omega) is denoted by 𝑯(div;ω)\boldsymbol{H}({\rm div\,};\omega). Also note that div:L2(Ω)dH1(Ω){\rm div\,}\colon L^{2}(\Omega)^{d}\to H^{-1}(\Omega) is a bounded operator.

2.2. Meshes and refinement

Let 𝒯\mathcal{T} denote a regular mesh of Ω\Omega consisting of open simplices, i.e., Ω¯=T𝒯T¯\overline{\Omega}=\bigcup_{T\in\mathcal{T}}\overline{T}. With hT:=diam(T)h_{T}:=\mathrm{diam}(T) we define the mesh-size function h𝒯h_{\mathcal{T}} by h𝒯|T:=hTh_{\mathcal{T}}|_{T}:=h_{T}. The set of all d1d-1 facets of an element T𝒯T\in\mathcal{T} is denoted by (T)\mathcal{E}(T). For our studies we also use the sets

𝒯:=T𝒯(T),𝒯Γ:={E𝒯:EΓ},𝒯Ω:=𝒯𝒯Γ.\displaystyle\mathcal{E}_{\mathcal{T}}:=\bigcup_{T\in\mathcal{T}}\mathcal{E}(T),\quad\mathcal{E}_{\mathcal{T}}^{\Gamma}:=\big{\{}E\in\mathcal{E}_{\mathcal{T}}\,:\,E\subset\Gamma\big{\}},\quad\mathcal{E}_{\mathcal{T}}^{\Omega}:=\mathcal{E}_{\mathcal{T}}\setminus\mathcal{E}_{\mathcal{T}}^{\Gamma}.

The set of vertices of an element T𝒯T\in\mathcal{T} is denoted with 𝒩(T)\mathcal{N}(T), and

𝒩𝒯:=T𝒯𝒩(T),𝒩𝒯Γ:={z𝒩𝒯:zΓ},𝒩𝒯Ω:=𝒩𝒯𝒩𝒯Γ.\displaystyle\mathcal{N}_{\mathcal{T}}:=\bigcup_{T\in\mathcal{T}}\mathcal{N}(T),\quad\mathcal{N}_{\mathcal{T}}^{\Gamma}:=\big{\{}z\in\mathcal{N}_{\mathcal{T}}\,:\,z\in\Gamma\big{\}},\quad\mathcal{N}_{\mathcal{T}}^{\Omega}:=\mathcal{N}_{\mathcal{T}}\setminus\mathcal{N}_{\mathcal{T}}^{\Gamma}.

In this work we consider sequences of meshes (𝒯)0(\mathcal{T}_{\ell})_{\ell\in\mathbb{N}_{0}} where we assume that 𝒯+1\mathcal{T}_{\ell+1} is generated from 𝒯\mathcal{T}_{\ell} by refining certain (or all) elements. A common type of mesh refinement is, e.g., newest vertex bisection, see, e.g., [39] and references therein. The generation gen(T)\operatorname{gen}(T) of an element T0𝒯T\in\bigcup_{\ell\in\mathbb{N}_{0}}\mathcal{T}_{\ell} denotes the number of iterated refinements (bisections) to obtain T𝒯T\in\mathcal{T}_{\ell} from a father element T𝒯0T^{\prime}\in\mathcal{T}_{0}. We assume, given a suitable initial mesh 𝒯0\mathcal{T}_{0}, that the sequence 𝒯0,𝒯1,\mathcal{T}_{0},\mathcal{T}_{1},\dots generated by the mesh refinement strategy satisfies:

  1. (A1)

    Shape regularity: There exists a constant Creg>0C_{\mathrm{reg}}>0 such that

    sup0supT𝒯diam(T)d|T|Creg.\displaystyle\sup_{\ell\in\mathbb{N}_{0}}\sup_{T\in\mathcal{T}_{\ell}}\frac{\mathrm{diam}(T)^{d}}{|T|}\leq C_{\mathrm{reg}}.
  2. (A2)

    There exists qref(0,1)q_{\mathrm{ref}}\in(0,1) and Cref>0C_{\mathrm{ref}}>0 such that

    Cref1hTqrefgen(T)CrefhTfor all T0𝒯.\displaystyle C_{\mathrm{ref}}^{-1}h_{T}\leq q_{\mathrm{ref}}^{\operatorname{gen}(T)}\leq C_{\mathrm{ref}}h_{T}\quad\text{for all }T\in\bigcup_{\ell\in\mathbb{N}_{0}}\mathcal{T}_{\ell}.
  3. (A3)

    There exists a constant krefk_{\mathrm{ref}}\in\mathbb{N} such that for all 0\ell\in\mathbb{N}_{0} and all T𝒯+1𝒯T\in\mathcal{T}_{\ell+1}\setminus\mathcal{T}_{\ell} with unique father element TF𝒯T_{F}\in\mathcal{T}_{\ell},

    1|gen(T)gen(TF)|kref.\displaystyle 1\leq|\operatorname{gen}(T)-\operatorname{gen}(T_{F})|\leq k_{\mathrm{ref}}.

These assumptions are satisfied for, e.g., the newest vertex bisection, see [39] and [22].

We say that (𝒯m)m0(\mathcal{T}_{m})_{m\in\mathbb{N}_{0}} is a sequence of uniform meshes if (besides the assumptions from above)

  • 𝒯m+1𝒯m=𝒯m+1\mathcal{T}_{m+1}\setminus\mathcal{T}_{m}=\mathcal{T}_{m+1} and gen(T)=gen(T)\operatorname{gen}(T)=\operatorname{gen}(T^{\prime}) for all T,T𝒯mT,T^{\prime}\in\mathcal{T}_{m} and m0m\in\mathbb{N}_{0}.

Moreover, we assume that for a sequence of meshes (𝒯)0(\mathcal{T}_{\ell})_{\ell\in\mathbb{N}_{0}} there exists a sequence of uniform meshes (^𝒯m)m0(\widehat{}\mathcal{T}_{m})_{m\in\mathbb{N}_{0}} with ^𝒯0=𝒯0\widehat{}\mathcal{T}_{0}=\mathcal{T}_{0} satisfying (A1)(A3) with the same constants.

From the assumptions given in this section we can interpret the mesh-size functions of uniform meshes as constants.

Lemma 1.

Let (𝒯)0(\mathcal{T}_{\ell})_{\ell\in\mathbb{N}_{0}} denote a sequence of uniform meshes, then

gen(T)andhTqreffor all T𝒯,0.\displaystyle\operatorname{gen}(T)\simeq\ell\quad\text{and}\quad h_{T}\simeq q_{\mathrm{ref}}^{\ell}\quad\text{for all }T\in\mathcal{T}_{\ell},\,\ell\in\mathbb{N}_{0}.

The constants involved only depend on the constants CrefC_{\mathrm{ref}}, krefk_{\mathrm{ref}} from  (A2)(A3).

Proof.

Follows from Assumption (A3) and Assumption (A2). ∎

Let 𝒯\mathcal{T} be a regular mesh. Element patches are given by

ω𝒯(S)\displaystyle\omega_{\mathcal{T}}(S) :={T𝒯:T¯S¯}for some SΩ¯,\displaystyle:=\big{\{}T\in\mathcal{T}\,:\,\overline{T}\cap\overline{S}\neq\emptyset\big{\}}\quad\text{for some }S\subseteq\overline{\Omega},
ω𝒯(z)\displaystyle\omega_{\mathcal{T}}(z) :=ω𝒯({z})for some zΩ¯.\displaystyle:=\omega_{\mathcal{T}}(\{z\})\quad\text{for some }z\in\overline{\Omega}.

The corresponding domains are denoted with Ω𝒯(S)\Omega_{\mathcal{T}}(S) and Ω𝒯(z)\Omega_{\mathcal{T}}(z). Higher-order patches are denoted with an additional superscript, e.g., ω𝒯(2)(S)=ω𝒯(Ω𝒯(S))\omega_{\mathcal{T}}^{(2)}(S)=\omega_{\mathcal{T}}(\Omega_{\mathcal{T}}(S)).

2.3. Discrete spaces and projections

For T𝒯T\in\mathcal{T} we denote with 𝒫p(T)\mathcal{P}^{p}(T) the space of polynomials of degree p0\leq p\in\mathbb{N}_{0} and set

𝒫p(𝒯):={vL2(Ω):v|T𝒫p(T) for all T𝒯}.\displaystyle\mathcal{P}^{p}(\mathcal{T}):=\big{\{}v\in L^{2}(\Omega)\,:\,v|_{T}\in\mathcal{P}^{p}(T)\text{ for all }T\in\mathcal{T}\big{\}}.

Furthermore,

𝒮1(𝒯):=𝒫1(𝒯)H1(Ω)and𝒮01(𝒯):=𝒫1(𝒯)H01(Ω).\displaystyle\mathcal{S}^{1}(\mathcal{T}):=\mathcal{P}^{1}(\mathcal{T})\cap H^{1}(\Omega)\quad\text{and}\quad\mathcal{S}_{0}^{1}(\mathcal{T}):=\mathcal{P}^{1}(\mathcal{T})\cap H_{0}^{1}(\Omega).

The space 𝒮1(𝒯)\mathcal{S}^{1}(\mathcal{T}) is equipped with the common basis {η𝒯,z:z𝒩𝒯}\big{\{}\eta_{\mathcal{T},z}\,:\,z\in\mathcal{N}_{\mathcal{T}}\big{\}} where η𝒯,z(z)=δz,z\eta_{\mathcal{T},z}(z^{\prime})=\delta_{z,z^{\prime}} for all z,z𝒩𝒯z,z^{\prime}\in\mathcal{N}_{\mathcal{T}}. Here, δz,z\delta_{z,z^{\prime}} denotes the Kronecker-δ\delta symbol.

We make use of the L2(Ω)L^{2}(\Omega) orthogonal projection Π𝒯p:L2(Ω)𝒫p(𝒯)\Pi^{p}_{\mathcal{T}}\colon L^{2}(\Omega)\to\mathcal{P}^{p}(\mathcal{T}) and the H1(Ω)H^{-1}(\Omega) orthogonal projection Π𝒯(1):H1(Ω)𝒫0(𝒯)\Pi^{(-1)}_{\mathcal{T}}\colon H^{-1}(\Omega)\to\mathcal{P}^{0}(\mathcal{T}) resp. the H~1(Ω)\widetilde{H}^{-1}(\Omega) orthogonal projection Π𝒯(1),:H~1(Ω)𝒫0(𝒯)\Pi^{(-1),\sim}_{\mathcal{T}}\colon\widetilde{H}^{-1}(\Omega)\to\mathcal{P}^{0}(\mathcal{T}). It is well-known that these operators satisfy the approximation properties

(1Π𝒯p)ϕ1+(1Π𝒯p)ϕ1,+(1Π𝒯(1))ϕ1+(1Π𝒯(1),)ϕ1,\displaystyle\|(1-\Pi^{p}_{\mathcal{T}})\phi\|_{-1}+\|(1-\Pi^{p}_{\mathcal{T}})\phi\|_{-1,\sim}+\|(1-\Pi^{(-1)}_{\mathcal{T}})\phi\|_{-1}+\|(1-\Pi^{(-1),\sim}_{\mathcal{T}})\phi\|_{-1,\sim} h𝒯ϕ\displaystyle\lesssim\|h_{\mathcal{T}}\phi\|

for all ϕL2(Ω)\phi\in L^{2}(\Omega), which follow from duality and Poincaré inequalities.

Recall the inverse estimates

(2) h𝒯sϕ\displaystyle\|h_{\mathcal{T}}^{s}\phi\| ϕsϕs,\displaystyle\lesssim\|\phi\|_{-s}\lesssim\|\phi\|_{-s,\sim}

for all ϕ𝒫p(𝒯)\phi\in\mathcal{P}^{p}(\mathcal{T}) and s[0,1]s\in[0,1], see, e.g., [23, Theorem 3.6], as well as the local variant

hTϕT\displaystyle h_{T}\|\phi\|_{T} ϕ1,Tfor all ϕ𝒫p(T) and T𝒯,\displaystyle\lesssim\|\phi\|_{-1,T}\quad\text{for all }\phi\in\mathcal{P}^{p}(T)\text{ and }T\in\mathcal{T},

which follows from a scaling argument. For a uniform mesh (recall that h𝒯h_{\mathcal{T}} is constant) the interpolation inequality [30, Chapter 1, Proposition 2.8] and the inverse estimate (2) show

ϕsϕ1sϕ1sh𝒯1+sϕ1andϕs,ϕ1,sϕ1sh𝒯1+sϕ1,\displaystyle\|\phi\|_{-s}\lesssim\|\phi\|_{-1}^{s}\|\phi\|^{1-s}\lesssim h_{\mathcal{T}}^{-1+s}\|\phi\|_{-1}\quad\text{and}\quad\|\phi\|_{-s,\sim}\lesssim\|\phi\|_{-1,\sim}^{s}\|\phi\|^{1-s}\lesssim h_{\mathcal{T}}^{-1+s}\|\phi\|_{-1,\sim}

for all ϕ𝒫p(𝒯)\phi\in\mathcal{P}^{p}(\mathcal{T}).

For the decompositions we use Haar-type functions which can be written as the divergence of Raviart–Thomas functions. Let 𝒯p(𝒯)\mathcal{RT}^{p}(\mathcal{T}) denote the space of Raviart–Thomas functions of order p0p\in\mathbb{N}_{0}. For each E𝒯ΩE\in\mathcal{E}_{\mathcal{T}}^{\Omega} there exist unique elements TE±𝒯T_{E}^{\pm}\in\mathcal{T} with E=int(T¯E+T¯E)E={\rm int}(\overline{T}_{E}^{+}\cap\overline{T}_{E}^{-}). For each E𝒯ΓE\in\mathcal{E}_{\mathcal{T}}^{\Gamma} there exists a unique element TE+𝒯T_{E}^{+}\in\mathcal{T} with E=int(T¯E+Γ)E={\rm int}(\overline{T}_{E}^{+}\cap\Gamma) and we set TE:=T_{E}^{-}:=\emptyset. Let χT\chi_{T} denote the characteristic function of an element T𝒯T\in\mathcal{T} and let {𝝍𝒯,E:E𝒯}\big{\{}{\boldsymbol{\psi}}_{\mathcal{T},E}\,:\,E\in\mathcal{T}\big{\}} be the canonical local basis of 𝒯0(𝒯)\mathcal{RT}^{0}(\mathcal{T}) with supp𝝍𝒯,ET¯+T¯\operatorname{supp}{\boldsymbol{\psi}}_{\mathcal{T},E}\subseteq\overline{T}^{+}\cup\overline{T}^{-}, vanishing normal trace on {E}\mathcal{E}\setminus\{E\} and

ψ𝒯,E:=div𝝍𝒯,E=|E||TE+|χTE+|E||TE|χTE.\displaystyle\psi_{\mathcal{T},E}:={\rm div\,}{\boldsymbol{\psi}}_{\mathcal{T},E}=\frac{|E|}{|T_{E}^{+}|}\chi_{T_{E}^{+}}-\frac{|E|}{|T_{E}^{-}|}\chi_{T_{E}^{-}}.

Here, |E||E| denotes the surface measure of the facet E𝒯E\in\mathcal{E}_{\mathcal{T}} and we set 1/|TE|=01/|T_{E}^{-}|=0 for E𝒯ΓE\in\mathcal{E}_{\mathcal{T}}^{\Gamma}. From [20, Lemma 1] we recall some scaling properties, where hE:=diam(E)h_{E}:=\mathrm{diam}(E).

Lemma 2.

The equivalences

ψ𝒯,E1\displaystyle\|\psi_{\mathcal{T},E}\|_{-1} 𝝍𝒯,EhEψ𝒯,Eψ𝒯,E1\displaystyle\leq\|{\boldsymbol{\psi}}_{\mathcal{T},E}\|\simeq h_{E}\|\psi_{\mathcal{T},E}\|\lesssim\|\psi_{\mathcal{T},E}\|_{-1} for all E𝒯,\displaystyle\text{for all }E\in\mathcal{E}_{\mathcal{T}},
ψ𝒯,E1,\displaystyle\|\psi_{\mathcal{T},E}\|_{-1,\sim} 𝝍𝒯,EhEψ𝒯,Eψ𝒯,E1,\displaystyle\leq\|{\boldsymbol{\psi}}_{\mathcal{T},E}\|\simeq h_{E}\|\psi_{\mathcal{T},E}\|\lesssim\|\psi_{\mathcal{T},E}\|_{-1,\sim} for all E𝒯Ω\displaystyle\text{for all }E\in\mathcal{E}_{\mathcal{T}}^{\Omega}

hold and the involved constants only depend on the shape regularity of 𝒯\mathcal{T} and the dimension dd.

Let s(0,1)s\in(0,1). Lemma 2 together with interpolation and inverse estimates from above show that

ψ𝒯,Es\displaystyle\|\psi_{\mathcal{T},E}\|_{-s} hEsψ𝒯,E\displaystyle\simeq h_{E}^{s}\|\psi_{\mathcal{T},E}\| for all E𝒯,\displaystyle\text{for all }E\in\mathcal{E}_{\mathcal{T}},
ψ𝒯,Es,\displaystyle\|\psi_{\mathcal{T},E}\|_{-s,\sim} hEsψ𝒯,E\displaystyle\simeq h_{E}^{s}\|\psi_{\mathcal{T},E}\| for all E𝒯Ω.\displaystyle\text{for all }E\in\mathcal{E}_{\mathcal{T}}^{\Omega}.

In the recent work [16] a local projection operator onto the Raviart–Thomas space has been defined that does not rely on regularity assumptions (the canonical Raviart–Thomas projection requires that 𝝈Ht(Ω)d𝑯(div;Ω){\boldsymbol{\sigma}}\in H^{t}(\Omega)^{d}\cap\boldsymbol{H}({\rm div\,};\Omega) with some t>1/2t>1/2 so that the normal trace 𝝈𝒏|E{\boldsymbol{\sigma}}\cdot{\boldsymbol{n}}|_{E} is well-defined in L2(E)L^{2}(E)).

Lemma 3 ([16, Theorem 3.2]).

Let ω~𝒯\emptyset\neq\widetilde{\omega}\subseteq\mathcal{T} with Ω~=int(Tω~T¯)\widetilde{\Omega}={\rm int}(\bigcup_{T\in\widetilde{\omega}}\overline{T}) a connected domain be given and set

𝑯0(div;Ω~):={𝝉𝑯(div;Ω~):𝝉𝒏=0 on Ω~Γ}.\displaystyle\boldsymbol{H}_{0}({\rm div\,};\widetilde{\Omega}):=\big{\{}{\boldsymbol{\tau}}\in\boldsymbol{H}({\rm div\,};\widetilde{\Omega})\,:\,{\boldsymbol{\tau}}\cdot{\boldsymbol{n}}=0\text{ on }\partial\widetilde{\Omega}\setminus\Gamma\big{\}}.

There exists an operator 𝐏ω~p:𝐇0(div;Ω~)𝒯p(ω~)𝐇0(div;Ω~)\boldsymbol{P}^{p}_{\widetilde{\omega}}\colon\boldsymbol{H}_{0}({\rm div\,};\widetilde{\Omega})\to\mathcal{RT}^{p}(\widetilde{\omega})\cap\boldsymbol{H}_{0}({\rm div\,};\widetilde{\Omega}) which satisfies

(3) 𝑷ω~p𝝈\displaystyle\boldsymbol{P}^{p}_{\widetilde{\omega}}{\boldsymbol{\sigma}} =𝝈\displaystyle={\boldsymbol{\sigma}} for all 𝝈𝑯0(div;Ω~)𝒯p(ω~),\displaystyle\text{for all }{\boldsymbol{\sigma}}\in\boldsymbol{H}_{0}({\rm div\,};\widetilde{\Omega})\cap\mathcal{RT}^{p}(\widetilde{\omega}),
(4) div𝑷ω~p𝝈\displaystyle{\rm div\,}\boldsymbol{P}^{p}_{\widetilde{\omega}}{\boldsymbol{\sigma}} =Πω~0div𝝈\displaystyle=\Pi^{0}_{\widetilde{\omega}}{\rm div\,}{\boldsymbol{\sigma}} for all 𝝈𝑯0(div;Ω~).\displaystyle\text{for all }{\boldsymbol{\sigma}}\in\boldsymbol{H}_{0}({\rm div\,};\widetilde{\Omega}).

Moreover,

(5) 𝑷ω~p𝝈T2\displaystyle\|\boldsymbol{P}^{p}_{\widetilde{\omega}}{\boldsymbol{\sigma}}\|_{T}^{2} 𝝈Ωω~(T)2+h𝒯(1Πω~p)div𝝈Ωω~(T)2\displaystyle\lesssim\|{\boldsymbol{\sigma}}\|_{\Omega_{\widetilde{\omega}}(T)}^{2}+\|h_{\mathcal{T}}(1-\Pi^{p}_{\widetilde{\omega}}){\rm div\,}{\boldsymbol{\sigma}}\|_{\Omega_{\widetilde{\omega}}(T)}^{2}

for all Tω~T\in\widetilde{\omega} and 𝛔𝐇0(div;Ω~){\boldsymbol{\sigma}}\in\boldsymbol{H}_{0}({\rm div\,};\widetilde{\Omega}). The involved constant only depends on the space dimension dd, p0p\in\mathbb{N}_{0} and the shape regularity of 𝒯\mathcal{T}.

Finally, for a sequence (𝒯)0(\mathcal{T}_{\ell})_{\ell\in\mathbb{N}_{0}} we use the indices \ell instead of 𝒯\mathcal{T}_{\ell} in the notation of the corresponding operators, patches etc., e.g., Π0\Pi^{0}_{\ell} instead of Π𝒯0\Pi^{0}_{\mathcal{T}_{\ell}} and ω(z)\omega_{\ell}(z) instead of ω𝒯(z)\omega_{\mathcal{T}_{\ell}}(z). Furthermore, we define operators with negative indices to be trivial, e.g., Πk0:=0\Pi^{0}_{k}:=0 for k<0k<0.

2.4. A local projection operator in H1(Ω)H^{-1}(\Omega)

In this section we define a local projection operator Q𝒯:H1(Ω)𝒫0(𝒯)Q_{\mathcal{T}}\colon H^{-1}(\Omega)\to\mathcal{P}^{0}(\mathcal{T}) which plays a crucial role in the stability analysis that follows. We give a brief overview of the basic idea: First, we consider a Fortin operator based on the quasi-interpolation operator [36]. Then, we study its adjoint operator and, finally, we use the canonical L2(Ω)L^{2}(\Omega) projection (on piecewise constants) to define Q𝒯Q_{\mathcal{T}}.

We consider the following variant: For each z𝒩𝒯z\in\mathcal{N}_{\mathcal{T}} let γzω𝒯(z)\emptyset\neq\gamma_{z}\subseteq\omega_{\mathcal{T}}(z) and set

J𝒯v=z𝒩𝒯Ωα𝒯,zη𝒯,z:=z𝒩𝒯ΩTγz|T|(v,ψT,z)TTγz|T|η𝒯,z,\displaystyle J_{\mathcal{T}}v=\sum_{z\in\mathcal{N}_{\mathcal{T}}^{\Omega}}\alpha_{\mathcal{T},z}\eta_{\mathcal{T},z}:=\sum_{z\in\mathcal{N}_{\mathcal{T}}^{\Omega}}\sum_{T\in\gamma_{z}}\frac{|T|(v\hskip 1.42262pt,\psi_{T,z})_{T}}{\sum_{T^{\prime}\in\gamma_{z}}|T^{\prime}|}\eta_{\mathcal{T},z},

where ψT,z𝒫1(T)\psi_{T,z}\in\mathcal{P}^{1}(T) is the unique element with (ψT,z,η𝒯,z)T=δz,z(\psi_{T,z}\hskip 1.42262pt,\eta_{\mathcal{T},z^{\prime}})_{T}=\delta_{z,z^{\prime}} for all z,z𝒩(T)z,z^{\prime}\in\mathcal{N}(T). Some comments are in order:

Remark 4.

It is common to define the quasi-interpolation operator J𝒯J_{\mathcal{T}} with γz\gamma_{z} containing exactly one element. The case γz=ω𝒯(z)\gamma_{z}=\omega_{\mathcal{T}}(z) has been used in various works, cf. [29, 42, 47]. We note that the authors of [47] define the operator with coefficients

α𝒯,z=Tω𝒯(z)|T|ΠT1v(z)Tω𝒯(z)|T|,\displaystyle\alpha_{\mathcal{T},z}=\sum_{T\in\omega_{\mathcal{T}}(z)}\frac{|T|\Pi_{T}^{1}v(z)}{\sum_{T^{\prime}\in\omega_{\mathcal{T}}(z)}|T^{\prime}|},

where ΠT1\Pi_{T}^{1} denotes the L2(T)L^{2}(T) orthogonal projection on 𝒫1(T)\mathcal{P}^{1}(T). This definition is identical to the operator above with γz=ω𝒯(z)\gamma_{z}=\omega_{\mathcal{T}}(z) which can be seen from the identity

(v,ψT,z)T=(v,ΠT1ψT,z)T=(ΠT1v,ψT,z)T=(ΠT1v)(z).\displaystyle(v\hskip 1.42262pt,\psi_{T,z})_{T}=(v\hskip 1.42262pt,\Pi_{T}^{1}\psi_{T,z})_{T}=(\Pi_{T}^{1}v\hskip 1.42262pt,\psi_{T,z})_{T}=(\Pi_{T}^{1}v)(z).

Explicit representations of the coefficients are obtained by straightforward computations and symmetry arguments (see [42, Remark 3.3] or [29] for the case d=3d=3). Extending the functions φT,z\varphi_{T,z} by 0 one can show that (denoting with Γz\Gamma_{z} the domain associated to γz\gamma_{z})

Tγz|T|Tγz|T|ψT,z|Γz=1|Γz|(αη𝒯,z+β)|Γz𝒫1(γz)\displaystyle\sum_{T\in\gamma_{z}}\frac{|T|}{\sum_{T^{\prime}\in\gamma_{z}}|T^{\prime}|}\psi_{T,z}|_{\Gamma_{z}}=\frac{1}{|\Gamma_{z}|}(\alpha\eta_{\mathcal{T},z}+\beta)|_{\Gamma_{z}}\in\mathcal{P}^{1}(\gamma_{z})

The constants α\alpha,β\beta only depend on the space dimension d1d\geq 1 but are independent of zz and γz\gamma_{z}.

For the remainder of this work we use γz=ω𝒯(z)\gamma_{z}=\omega_{\mathcal{T}}(z) in the definition of J𝒯J_{\mathcal{T}}. The next lemma collects some well-known results on J𝒯J_{\mathcal{T}} (see [47, Lemma 3.2–3.6]):

Lemma 5.

The operator J𝒯:L2(Ω)𝒮01(𝒯)J_{\mathcal{T}}\colon L^{2}(\Omega)\to\mathcal{S}_{0}^{1}(\mathcal{T}) satisfies:

  1. (a)

    Projection: J𝒯2=J𝒯J_{\mathcal{T}}^{2}=J_{\mathcal{T}}.

  2. (b)

    Local boundedness: J𝒯vTvΩ𝒯(T)\|J_{\mathcal{T}}v\|_{T}\lesssim\|v\|_{\Omega_{\mathcal{T}}(T)} resp. J𝒯vTvΩ𝒯(T)\|\nabla J_{\mathcal{T}}v\|_{T}\lesssim\|\nabla v\|_{\Omega_{\mathcal{T}}(T)}
    for all vL2(Ω)v\in L^{2}(\Omega) resp. vH01(Ω)v\in H_{0}^{1}(\Omega) and T𝒯T\in\mathcal{T}.

  3. (c)

    Local approximation: vJ𝒯vThTvΩ𝒯(T)\|v-J_{\mathcal{T}}v\|_{T}\lesssim h_{T}\|\nabla v\|_{\Omega_{\mathcal{T}}(T)} for all vH01(Ω),T𝒯v\in H_{0}^{1}(\Omega),T\in\mathcal{T}.

The involved constants only depend on dd and shape regularity of 𝒯\mathcal{T}.

Let 𝒮b(𝒯)H01(Ω)\mathcal{S}^{b}(\mathcal{T})\subset H_{0}^{1}(\Omega) denote the space of bubble functions with basis functions ηb,T=z𝒩(T)η𝒯,z\eta_{b,T}=\prod_{z\in\mathcal{N}(T)}\eta_{\mathcal{T},z} for T𝒯T\in\mathcal{T} and set 𝒮01,b=𝒮01(𝒯)𝒮b(𝒯)\mathcal{S}_{0}^{1,b}=\mathcal{S}_{0}^{1}(\mathcal{T})\oplus\mathcal{S}^{b}(\mathcal{T}). The operator defined in the next result is a Fortin-type operator (below this is called orthogonality property).

Lemma 6.

The operator P𝒯:L2(Ω)𝒮01,b(𝒯)P_{\mathcal{T}}\colon L^{2}(\Omega)\to\mathcal{S}_{0}^{1,b}(\mathcal{T}) defined by

P𝒯v:=J𝒯v+B𝒯(1J𝒯)v:=J𝒯v+T𝒯(vJ𝒯v,1)T(ηb,T,1)Tηb,T\displaystyle P_{\mathcal{T}}v:=J_{\mathcal{T}}v+B_{\mathcal{T}}(1-J_{\mathcal{T}})v:=J_{\mathcal{T}}v+\sum_{T\in\mathcal{T}}\frac{(v-J_{\mathcal{T}}v\hskip 1.42262pt,1)_{T}}{(\eta_{b,T}\hskip 1.42262pt,1)_{T}}\eta_{b,T}

has the following properties:

  1. (a)

    Quasi-projection: P𝒯v=vfor all v𝒮01(𝒯)P_{\mathcal{T}}v=v\quad\text{for all }v\in\mathcal{S}_{0}^{1}(\mathcal{T}).

  2. (b)

    Orthogonality: ((1P𝒯)v,1)T=0((1-P_{\mathcal{T}})v\hskip 1.42262pt,1)_{T}=0 for all T𝒯T\in\mathcal{T} and vL2(Ω)v\in L^{2}(\Omega).

  3. (c)

    Local approximation property:

    (1P𝒯)vThTvΩ𝒯(T)for all T𝒯 and vH01(Ω).\displaystyle\|(1-P_{\mathcal{T}})v\|_{T}\lesssim h_{T}\|\nabla v\|_{\Omega_{\mathcal{T}}(T)}\quad\text{for all }T\in\mathcal{T}\text{ and }v\in H_{0}^{1}(\Omega).
  4. (d)

    Locally bounded:

    P𝒯vT\displaystyle\|P_{\mathcal{T}}v\|_{T} vΩ𝒯(T)\displaystyle\lesssim\|v\|_{\Omega_{\mathcal{T}}(T)} for all T𝒯 and vL2(Ω),\displaystyle\text{for all }T\in\mathcal{T}\text{ and }v\in L^{2}(\Omega),
    P𝒯vT\displaystyle\|\nabla P_{\mathcal{T}}v\|_{T} vΩ𝒯(T)\displaystyle\lesssim\|\nabla v\|_{\Omega_{\mathcal{T}}(T)} for all T𝒯 and vH01(Ω).\displaystyle\text{for all }T\in\mathcal{T}\text{ and }v\in H_{0}^{1}(\Omega).

The involved constants only depend on dd and shape regularity of 𝒯\mathcal{T}.

Proof.

Proof of (a). Using the projection property, i.e., J𝒯v=vJ_{\mathcal{T}}v=v for v𝒮01(𝒯)v\in\mathcal{S}_{0}^{1}(\mathcal{T}), we infer that

P𝒯v=J𝒯v+B𝒯(1J𝒯)v=J𝒯v=vfor all v𝒮01(𝒯).\displaystyle P_{\mathcal{T}}v=J_{\mathcal{T}}v+B_{\mathcal{T}}(1-J_{\mathcal{T}})v=J_{\mathcal{T}}v=v\quad\text{for all }v\in\mathcal{S}_{0}^{1}(\mathcal{T}).

Proof of (b). This follows from the construction of the operator, i.e.,

(P𝒯v,1)T=(J𝒯v,1)T+(vJ𝒯v,1)T(ηb,T,1)T(ηb,T,1)T=(v,1)Tfor all vL2(Ω).\displaystyle(P_{\mathcal{T}}v\hskip 1.42262pt,1)_{T}=(J_{\mathcal{T}}v\hskip 1.42262pt,1)_{T}+\frac{(v-J_{\mathcal{T}}v\hskip 1.42262pt,1)_{T}}{(\eta_{b,T}\hskip 1.42262pt,1)_{T}}(\eta_{b,T}\hskip 1.42262pt,1)_{T}=(v\hskip 1.42262pt,1)_{T}\quad\text{for all }v\in L^{2}(\Omega).

Proof of (c). With the local approximation property vJ𝒯vThTvΩ𝒯(T)\|v-J_{\mathcal{T}}v\|_{T}\lesssim h_{T}\|\nabla v\|_{\Omega_{\mathcal{T}}(T)} (Lemma 5) and ηb,TT|T|1/2|T|1/2(ηb,T,1)T\|\eta_{b,T}\|_{T}\simeq|T|^{1/2}\simeq|T|^{-1/2}(\eta_{b,T}\hskip 1.42262pt,1)_{T} we infer that

vP𝒯vTvJ𝒯vT+vJ𝒯vT|T|1/2(ηb,T,1)Tηb,TTvJ𝒯vThTvΩ𝒯(T).\displaystyle\|v-P_{\mathcal{T}}v\|_{T}\leq\|v-J_{\mathcal{T}}v\|_{T}+\|v-J_{\mathcal{T}}v\|_{T}\frac{|T|^{1/2}}{(\eta_{b,T}\hskip 1.42262pt,1)_{T}}\|\eta_{b,T}\|_{T}\simeq\|v-J_{\mathcal{T}}v\|_{T}\lesssim h_{T}\|\nabla v\|_{\Omega_{\mathcal{T}}(T)}.

Proof of (d). The local L2L^{2} bound for the operator J𝒯J_{\mathcal{T}} (Lemma 5) together with the scaling arguments that we have used before implies

P𝒯vTJ𝒯vT+(1J𝒯)vTvΩ𝒯(T).\displaystyle\|P_{\mathcal{T}}v\|_{T}\lesssim\|J_{\mathcal{T}}v\|_{T}+\|(1-J_{\mathcal{T}})v\|_{T}\lesssim\|v\|_{\Omega_{\mathcal{T}}(T)}.

Finally, the local H1H^{1} bound follows from a corresponding bound for J𝒯J_{\mathcal{T}}, scaling arguments, and the local approximation property, i.e.

P𝒯vT\displaystyle\|\nabla P_{\mathcal{T}}v\|_{T} J𝒯vT+(1J𝒯)vT|T|1/2(ηb,T,1)Tηb,TT\displaystyle\leq\|\nabla J_{\mathcal{T}}v\|_{T}+\|(1-J_{\mathcal{T}})v\|_{T}\frac{|T|^{1/2}}{(\eta_{b,T}\hskip 1.42262pt,1)_{T}}\|\nabla\eta_{b,T}\|_{T}
J𝒯vT+hT1(1J𝒯)vTvΩ𝒯(T),\displaystyle\simeq\|\nabla J_{\mathcal{T}}v\|_{T}+h_{T}^{-1}\|(1-J_{\mathcal{T}})v\|_{T}\lesssim\|\nabla v\|_{\Omega_{\mathcal{T}}(T)},

which concludes the proof. ∎

With P𝒯:L2(Ω)L2(Ω)P_{\mathcal{T}}^{\prime}\colon L^{2}(\Omega)\to L^{2}(\Omega) we denote the adjoint of P𝒯P_{\mathcal{T}}. Writing P𝒯=J𝒯+B𝒯(1P𝒯)P_{\mathcal{T}}=J_{\mathcal{T}}+B_{\mathcal{T}}(1-P_{\mathcal{T}}) we see

P𝒯=J𝒯+(1J𝒯)B𝒯,\displaystyle P_{\mathcal{T}}^{\prime}=J_{\mathcal{T}}^{\prime}+(1-J_{\mathcal{T}}^{\prime})B_{\mathcal{T}}^{\prime},

where

J𝒯v\displaystyle J_{\mathcal{T}}^{\prime}v =z𝒩𝒯(v,η𝒯,z)φ𝒯,zandB𝒯v=T𝒯(v,ηb,T)T(ηb,T,1)TχT.\displaystyle=\sum_{z\in\mathcal{N}_{\mathcal{T}}}(v\hskip 1.42262pt,\eta_{\mathcal{T},z})\varphi_{\mathcal{T},z}\quad\text{and}\quad B_{\mathcal{T}}^{\prime}v=\sum_{T\in\mathcal{T}}\frac{(v\hskip 1.42262pt,\eta_{b,T})_{T}}{(\eta_{b,T}\hskip 1.42262pt,1)_{T}}\chi_{T}.

Note that by Remark 4 we have that φ𝒯,z=1/|Ω𝒯(z)|(αη𝒯,z+β)\varphi_{\mathcal{T},z}=1/|\Omega_{\mathcal{T}}(z)|(\alpha\eta_{\mathcal{T},z}+\beta) on Ω𝒯(z)\Omega_{\mathcal{T}}(z) and 0 otherwise. From this explicit representation it is thus straightforward to see that P𝒯ϕ𝒫1(𝒯)P_{\mathcal{T}}^{\prime}\phi\in\mathcal{P}^{1}(\mathcal{T}) for all ϕL2(Ω)\phi\in L^{2}(\Omega). We will use this fact in order to apply (local) inverse estimates, e.g. h𝒯P𝒯ϕP𝒯ϕ1\|h_{\mathcal{T}}P_{\mathcal{T}}^{\prime}\phi\|\lesssim\|P_{\mathcal{T}}^{\prime}\phi\|_{-1}. Moreover, note that P𝒯P_{\mathcal{T}} is bounded in H01(Ω)H_{0}^{1}(\Omega) so that P𝒯:H1(Ω)𝒫1(𝒯)P_{\mathcal{T}}^{\prime}\colon H^{-1}(\Omega)\to\mathcal{P}^{1}(\mathcal{T}) is well-defined.

The next result follows more or less immediately from the properties described in Lemma 6.

Lemma 7.

The operator P𝒯P_{\mathcal{T}}^{\prime} satisfies the following properties:

  1. (a)

    Quasi-projection: P𝒯ϕ=ϕP_{\mathcal{T}}^{\prime}\phi=\phi for all ϕ𝒫0(𝒯)\phi\in\mathcal{P}^{0}(\mathcal{T}).

  2. (b)

    Approximation: (1P𝒯)ϕ1h𝒯ϕ\|(1-P_{\mathcal{T}}^{\prime})\phi\|_{-1}\lesssim\|h_{\mathcal{T}}\phi\| for all ϕL2(Ω)\phi\in L^{2}(\Omega).

  3. (c)

    Local boundedness for L2(Ω)L^{2}(\Omega) functions:

    P𝒯ϕTϕΩ𝒯(T)andP𝒯ϕ1,Tϕ1,Ω𝒯(T)for all T𝒯 and ϕL2(Ω).\displaystyle\|P_{\mathcal{T}}^{\prime}\phi\|_{T}\lesssim\|\phi\|_{\Omega_{\mathcal{T}}(T)}\quad\text{and}\quad\|P_{\mathcal{T}}^{\prime}\phi\|_{-1,T}\lesssim\|\phi\|_{-1,\Omega_{\mathcal{T}}(T)}\quad\text{for all }T\in\mathcal{T}\text{ and }\phi\in L^{2}(\Omega).
  4. (d)

    Global boundedness: P𝒯ϕ1ϕ1\|P_{\mathcal{T}}^{\prime}\phi\|_{-1}\lesssim\|\phi\|_{-1} for all ϕH1(Ω)\phi\in H^{-1}(\Omega).

The involved constants only depend on dd and shape regularity of 𝒯\mathcal{T}.

Proof.

Proof of (a). The quasi-projection property can be seen from the orthogonality property ((1P𝒯)v,1)T=0((1-P_{\mathcal{T}})v\hskip 1.42262pt,1)_{T}=0 yielding the identity

(P𝒯ϕ,v)=(ϕ,P𝒯v)=(ϕ,v)for all ϕ𝒫0(𝒯),vH01(Ω).\displaystyle(P_{\mathcal{T}}^{\prime}\phi\hskip 1.42262pt,v)=(\phi\hskip 1.42262pt,P_{\mathcal{T}}v)=(\phi\hskip 1.42262pt,v)\quad\text{for all }\phi\in\mathcal{P}^{0}(\mathcal{T}),\,v\in H_{0}^{1}(\Omega).

Proof of (b). Let ϕL2(Ω)\phi\in L^{2}(\Omega) and T𝒯T\in\mathcal{T}_{\ell}. Using the approximation property of P𝒯P_{\mathcal{T}} we get that

((1P𝒯)ϕ,v)=(ϕ,(1P𝒯)v)h𝒯ϕv.\displaystyle((1-P_{\mathcal{T}}^{\prime})\phi\hskip 1.42262pt,v)=(\phi\hskip 1.42262pt,(1-P_{\mathcal{T}})v)\lesssim\|h_{\mathcal{T}}\phi\|\|\nabla v\|.

Dividing by v\|\nabla v\| and taking the supremum over all 0vH01(Ω)0\neq v\in H_{0}^{1}(\Omega) shows the assertion.

Proof of (c). Local boundedness in L2L^{2} can be derived from the local definition of the operator.

To see local boundedness in H1H^{-1} we extend any vH01(T)v\in H_{0}^{1}(T) by 0 on ΩT\Omega\setminus T. Then, using duality, continuity of P𝒯P_{\mathcal{T}} and suppP𝒯vΩ¯𝒯(T)\operatorname{supp}P_{\mathcal{T}}v\subseteq\overline{\Omega}_{\mathcal{T}}(T) we conclude that

(P𝒯ϕ,v)T\displaystyle(P_{\mathcal{T}}^{\prime}\phi\hskip 1.42262pt,v)_{T} =(ϕ,P𝒯v)Ω𝒯(T)ϕ1,Ω𝒯(T)P𝒯vΩ𝒯(T)ϕ1,Ω𝒯(T)vT.\displaystyle=(\phi\hskip 1.42262pt,P_{\mathcal{T}}v)_{\Omega_{\mathcal{T}}(T)}\lesssim\|\phi\|_{-1,\Omega_{\mathcal{T}}(T)}\|\nabla P_{\mathcal{T}}v\|_{\Omega_{\mathcal{T}}(T)}\lesssim\|\phi\|_{-1,\Omega_{\mathcal{T}}(T)}\|\nabla v\|_{T}.

Proof of (d). This follows directly from duality and global boundedness of P𝒯P_{\mathcal{T}} in H01(Ω)H_{0}^{1}(\Omega). ∎

Recall that the range of P𝒯P_{\mathcal{T}}^{\prime} is a subspace of 𝒫1(𝒯)\mathcal{P}^{1}(\mathcal{T}). In order to obtain a projection onto piecewise constants we apply the L2(Ω)L^{2}(\Omega) orthogonal projection.

Theorem 8.

The operator Q𝒯:=Π𝒯0P𝒯Q_{\mathcal{T}}:=\Pi^{0}_{\mathcal{T}}P_{\mathcal{T}}^{\prime} has the following properties:

  1. (a)

    Projection: Q𝒯2=Q𝒯Q_{\mathcal{T}}^{2}=Q_{\mathcal{T}}.

  2. (b)

    Approximation: (1Q𝒯)ϕ1h𝒯ϕ\|(1-Q_{\mathcal{T}})\phi\|_{-1}\lesssim\|h_{\mathcal{T}}\phi\| for all ϕL2(Ω)\phi\in L^{2}(\Omega).

  3. (c)

    Local boundedness for L2(Ω)L^{2}(\Omega) functions:

    Q𝒯ϕTϕΩ𝒯(T)andQ𝒯ϕ1,Tϕ1,Ω𝒯(T)for all T𝒯 and ϕL2(Ω).\displaystyle\|Q_{\mathcal{T}}\phi\|_{T}\lesssim\|\phi\|_{\Omega_{\mathcal{T}}(T)}\quad\text{and}\quad\|Q_{\mathcal{T}}\phi\|_{-1,T}\lesssim\|\phi\|_{-1,\Omega_{\mathcal{T}}(T)}\quad\text{for all }T\in\mathcal{T}\text{ and }\phi\in L^{2}(\Omega).
  4. (d)

    Global boundedness: Q𝒯ϕ1ϕ1\|Q_{\mathcal{T}}\phi\|_{-1}\lesssim\|\phi\|_{-1} for all ϕH1(Ω)\phi\in H^{-1}(\Omega).

The involved constants only depend on dd and shape regularity of 𝒯\mathcal{T}.

Proof.

Proof of (a). The projection property follows from P𝒯ϕ=ϕP_{\mathcal{T}}^{\prime}\phi=\phi for ϕ𝒫0(𝒯)\phi\in\mathcal{P}^{0}(\mathcal{T}) (Lemma 7), which yields

Q𝒯2=Π𝒯0P𝒯(Π𝒯0P𝒯)=Π𝒯0(Π𝒯0P𝒯)=Π𝒯0P𝒯=Q𝒯.\displaystyle Q_{\mathcal{T}}^{2}=\Pi^{0}_{\mathcal{T}}P_{\mathcal{T}}^{\prime}(\Pi^{0}_{\mathcal{T}}P_{\mathcal{T}}^{\prime})=\Pi^{0}_{\mathcal{T}}(\Pi^{0}_{\mathcal{T}}P_{\mathcal{T}}^{\prime})=\Pi^{0}_{\mathcal{T}}P_{\mathcal{T}}^{\prime}=Q_{\mathcal{T}}.

Proof of (b). For the approximation property we note that

(6) (1Q𝒯)ϕ1(1Π𝒯0)P𝒯ϕ1+(1P𝒯)ϕ1.\displaystyle\|(1-Q_{\mathcal{T}})\phi\|_{-1}\leq\|(1-\Pi^{0}_{\mathcal{T}})P_{\mathcal{T}}^{\prime}\phi\|_{-1}+\|(1-P_{\mathcal{T}}^{\prime})\phi\|_{-1}.

The first term is estimated with the approximation property of Π𝒯0\Pi^{0}_{\mathcal{T}} and the local L2L^{2} boundedness of P𝒯P_{\mathcal{T}}^{\prime} (Lemma 7), i.e.,

(1Π𝒯0)P𝒯ϕ1h𝒯P𝒯ϕh𝒯ϕ.\displaystyle\|(1-\Pi^{0}_{\mathcal{T}})P_{\mathcal{T}}^{\prime}\phi\|_{-1}\lesssim\|h_{\mathcal{T}}P_{\mathcal{T}}^{\prime}\phi\|\lesssim\|h_{\mathcal{T}}\phi\|.

The second term in (6) is estimated using the approximation property of P𝒯P_{\mathcal{T}}^{\prime}, see Lemma 7.

Proof of (c). Note that Π𝒯0\Pi^{0}_{\mathcal{T}} is locally bounded. Together with the local boundedness of P𝒯P_{\mathcal{T}}^{\prime} (Lemma 7) we get that

Π𝒯0P𝒯ϕTP𝒯ϕTϕΩ𝒯(T).\displaystyle\|\Pi^{0}_{\mathcal{T}}P_{\mathcal{T}}^{\prime}\phi\|_{T}\leq\|P_{\mathcal{T}}^{\prime}\phi\|_{T}\lesssim\|\phi\|_{\Omega_{\mathcal{T}}(T)}.

For the local bound in H1(T)H^{-1}(T) we stress that Π𝒯0P𝒯ϕ1,TP𝒯ϕ1,T\|\Pi^{0}_{\mathcal{T}}P_{\mathcal{T}}^{\prime}\phi\|_{-1,T}\lesssim\|P_{\mathcal{T}}^{\prime}\phi\|_{-1,T} which can be seen from vThTvT\|v\|_{T}\lesssim h_{T}\|\nabla v\|_{T} for vH01(T)v\in H_{0}^{1}(T) yielding

(Π𝒯0P𝒯ϕ,v)T=(P𝒯ϕ,Π𝒯0v)TP𝒯ϕTvThTP𝒯ϕTvT.\displaystyle(\Pi^{0}_{\mathcal{T}}P_{\mathcal{T}}^{\prime}\phi\hskip 1.42262pt,v)_{T}=(P_{\mathcal{T}}^{\prime}\phi\hskip 1.42262pt,\Pi^{0}_{\mathcal{T}}v)_{T}\lesssim\|P_{\mathcal{T}}^{\prime}\phi\|_{T}\|v\|_{T}\lesssim h_{T}\|P_{\mathcal{T}}^{\prime}\phi\|_{T}\|\nabla v\|_{T}.

The assertion then follows from the inverse inequality (2) and local boundedness of P𝒯P_{\mathcal{T}}^{\prime} (Lemma 7).

Proof of (d). Boundedness in H1(Ω)H^{-1}(\Omega) is not directly clear due to Π𝒯0\Pi^{0}_{\mathcal{T}}. However, using the approximation property of Π𝒯0\Pi^{0}_{\mathcal{T}} we get that Π𝒯0ψ1ψ1+h𝒯ψ\|\Pi^{0}_{\mathcal{T}}\psi\|_{-1}\lesssim\|\psi\|_{-1}+\|h_{\mathcal{T}}\psi\| and by applying the inverse inequality (2) we further conclude that

Π𝒯0ψ1ψ1for all ψ𝒫1(𝒯).\displaystyle\|\Pi^{0}_{\mathcal{T}}\psi\|_{-1}\lesssim\|\psi\|_{-1}\quad\text{for all }\psi\in\mathcal{P}^{1}(\mathcal{T}).

That is, Π𝒯0\Pi^{0}_{\mathcal{T}} is bounded in H1(Ω)H^{-1}(\Omega) when restricted to 𝒫1(𝒯)\mathcal{P}^{1}(\mathcal{T}). Using the latter estimate with ψ=P𝒯ϕ\psi=P_{\mathcal{T}}^{\prime}\phi and the boundedness of P𝒯P_{\mathcal{T}}^{\prime} (Lemma 7) implies that

Q𝒯ϕ1=Π𝒯0P𝒯ϕ1ϕ1,\displaystyle\|Q_{\mathcal{T}}\phi\|_{-1}=\|\Pi^{0}_{\mathcal{T}}P_{\mathcal{T}}^{\prime}\phi\|_{-1}\lesssim\|\phi\|_{-1},

which concludes the proof. ∎

2.5. A local projection operator in H~1(Ω)\widetilde{H}^{-1}(\Omega)

We follow the same ideas as in Section 2.4 but only point out the differences in the definition. The results below follow the same argumentations as in Section 2.4 and are therefore omitted. For each z𝒩𝒯z\in\mathcal{N}_{\mathcal{T}} let γzω𝒯(z)\emptyset\neq\gamma_{z}\subseteq\omega_{\mathcal{T}}(z) and set

J¯𝒯v=z𝒩𝒯α𝒯,zη𝒯,z:=z𝒩𝒯Tγz|T|(v,ψT,z)TTγz|T|η𝒯,z.\displaystyle\overline{J}_{\mathcal{T}}v=\sum_{z\in\mathcal{N}_{\mathcal{T}}}\alpha_{\mathcal{T},z}\eta_{\mathcal{T},z}:=\sum_{z\in\mathcal{N}_{\mathcal{T}}}\sum_{T\in\gamma_{z}}\frac{|T|(v\hskip 1.42262pt,\psi_{T,z})_{T}}{\sum_{T^{\prime}\in\gamma_{z}}|T^{\prime}|}\eta_{\mathcal{T},z}.

Throughout, we consider γz=ω𝒯(z)\gamma_{z}=\omega_{\mathcal{T}}(z), see Remark 4. We define P¯𝒯:=J¯𝒯+B𝒯(1J¯𝒯)\overline{P}_{\mathcal{T}}:=\overline{J}_{\mathcal{T}}+B_{\mathcal{T}}(1-\overline{J}_{\mathcal{T}}).

Before we state the results let us note that the local boundedness property Lemma 7(c) does not hold for the 1,T,\|\cdot\|_{-1,T,\sim} norms due to different scaling properties. Nevertheless, we use an auxiliary norm defined with HΓ,c1(ω)={vH1(ω):v|ωΓ=0}H_{\Gamma,c}^{1}(\omega)=\big{\{}v\in H^{1}(\omega)\,:\,v|_{\partial\omega\setminus\Gamma}=0\big{\}} as

ϕ1,ω,Γ:={ϕ1,if |ω|=|Ω|,sup0vHΓ,c1(Ω)ϕ,vωvωelse.\displaystyle\|\phi\|_{-1,\omega,\Gamma}:=\begin{cases}\|\phi\|_{-1,\sim}&\text{if }|\omega|=|\Omega|,\\ \sup_{0\neq v\in H_{\Gamma,c}^{1}(\Omega)}\frac{\langle\phi\hskip 1.42262pt,v\rangle_{\omega}}{\|\nabla v\|_{\omega}}&\text{else}.\end{cases}

Note that if |ωΓ|=0|\partial\omega\cap\Gamma|=0 then HΓ,c1(ω)=H01(ω)H_{\Gamma,c}^{1}(\omega)=H_{0}^{1}(\omega), thus, ϕ1,ω,Γ=ϕ1,ω\|\phi\|_{-1,\omega,\Gamma}=\|\phi\|_{-1,\omega}. In particular, we stress that local scaling arguments prove the inverse estimate

hTϕTϕ1,T,Γfor all T𝒯 and ϕ𝒫p(𝒯).\displaystyle h_{T}\|\phi\|_{T}\lesssim\|\phi\|_{-1,T,\Gamma}\quad\text{for all }T\in\mathcal{T}\text{ and }\phi\in\mathcal{P}^{p}(\mathcal{T}).
Lemma 9.

The operator P¯𝒯\overline{P}_{\mathcal{T}}^{\prime} satisfies the following properties:

  1. (a)

    Quasi-projection: P¯𝒯ϕ=ϕ\overline{P}_{\mathcal{T}}^{\prime}\phi=\phi for all ϕ𝒫0(𝒯)\phi\in\mathcal{P}^{0}(\mathcal{T}).

  2. (b)

    Approximation: (1P¯𝒯)ϕ1,h𝒯ϕ\|(1-\overline{P}_{\mathcal{T}}^{\prime})\phi\|_{-1,\sim}\lesssim\|h_{\mathcal{T}}\phi\| for all ϕL2(Ω)\phi\in L^{2}(\Omega).

  3. (c)

    Local boundedness for L2(Ω)L^{2}(\Omega) functions:

    P¯𝒯ϕTϕΩ𝒯(T)andP¯𝒯ϕ1,T,Γϕ1,Ω𝒯(T),Γfor all T𝒯 and ϕL2(Ω).\displaystyle\|\overline{P}_{\mathcal{T}}^{\prime}\phi\|_{T}\lesssim\|\phi\|_{\Omega_{\mathcal{T}}(T)}\quad\text{and}\quad\|\overline{P}_{\mathcal{T}}^{\prime}\phi\|_{-1,T,\Gamma}\lesssim\|\phi\|_{-1,\Omega_{\mathcal{T}}(T),\Gamma}\quad\text{for all }T\in\mathcal{T}\text{ and }\phi\in L^{2}(\Omega).
  4. (d)

    Global boundedness: P¯𝒯ϕ1,ϕ1,\|\overline{P}_{\mathcal{T}}^{\prime}\phi\|_{-1,\sim}\lesssim\|\phi\|_{-1,\sim} for all ϕH~1(Ω)\phi\in\widetilde{H}^{-1}(\Omega).

The involved constants only depend on dd and shape regularity of 𝒯\mathcal{T}.

Theorem 10.

The operator Q~𝒯:=Π𝒯0P¯𝒯\widetilde{Q}_{\mathcal{T}}:=\Pi^{0}_{\mathcal{T}}\overline{P}_{\mathcal{T}}^{\prime} has the following properties:

  1. (a)

    Projection: Q~𝒯2=Q~𝒯\widetilde{Q}_{\mathcal{T}}^{2}=\widetilde{Q}_{\mathcal{T}}.

  2. (b)

    Approximation: (1Q~𝒯)ϕ1,h𝒯ϕ\|(1-\widetilde{Q}_{\mathcal{T}})\phi\|_{-1,\sim}\lesssim\|h_{\mathcal{T}}\phi\| for all ϕL2(Ω)\phi\in L^{2}(\Omega).

  3. (c)

    Local boundedness for L2(Ω)L^{2}(\Omega) functions:

    Q~𝒯ϕTϕΩ𝒯(T)andQ~𝒯ϕ1,T,Γϕ1,Ω𝒯(T),Γfor all T𝒯 and ϕL2(Ω).\displaystyle\|\widetilde{Q}_{\mathcal{T}}\phi\|_{T}\lesssim\|\phi\|_{\Omega_{\mathcal{T}}(T)}\quad\text{and}\quad\|\widetilde{Q}_{\mathcal{T}}\phi\|_{-1,T,\Gamma}\lesssim\|\phi\|_{-1,\Omega_{\mathcal{T}}(T),\Gamma}\quad\text{for all }T\in\mathcal{T}\text{ and }\phi\in L^{2}(\Omega).
  4. (d)

    Global boundedness: Q~𝒯ϕ1,ϕ1,\|\widetilde{Q}_{\mathcal{T}}\phi\|_{-1,\sim}\lesssim\|\phi\|_{-1,\sim} for all ϕH~1(Ω)\phi\in\widetilde{H}^{-1}(\Omega).

The involved constants only depend on dd and shape regularity of 𝒯\mathcal{T}.

2.6. Equivalent norms in interpolation spaces

In this section we collect some results on the relation between interpolation and approximation spaces. Recall the definition of a sequence of uniform meshes from Section 2.2.

Lemma 11.

Let s(0,1)s\in(0,1), p0p\in\mathbb{N}_{0} and let (𝒯)=0L(\mathcal{T}_{\ell})_{\ell=0}^{L} denote a sequence of uniform meshes with mesh sizes (h)=0L(h_{\ell})_{\ell=0}^{L}. Let ϕ==0Lϕ\phi=\sum_{\ell=0}^{L}\phi_{\ell} with ϕ𝒫p(𝒯)\phi_{\ell}\in\mathcal{P}^{p}(\mathcal{T}_{\ell}). Then,

ϕs2=0Lh2+2sϕ12andϕs,2=0Lh2+2sϕ1,2.\displaystyle\|\phi\|_{-s}^{2}\lesssim\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\|\phi_{\ell}\|_{-1}^{2}\quad\text{and}\quad\|\phi\|_{-s,\sim}^{2}\lesssim\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\|\phi_{\ell}\|_{-1,\sim}^{2}.

The involved constants only depend on ss, Ω\Omega, dd, pp and the constants from (A1)(A3).

Proof.

Fix some δ>0\delta>0 with 1<sδ<s+δ<0-1<-s-\delta<-s+\delta<0. The Hs(Ω)H^{-s}(\Omega) scalar product is denoted with (,)s(\cdot\hskip 1.42262pt,\cdot)_{-s}. Then, the reiteration theorem ([11, Theorem 2.2]), interpolation estimates in Hilbert spaces and inverse inequalities show that

ϕs2==0Lk=0L(ϕ,ϕk)s=0Lk=L|(ϕ,ϕk)s|\displaystyle\|\phi\|_{-s}^{2}=\sum_{\ell=0}^{L}\sum_{k=0}^{L}(\phi_{\ell}\hskip 1.42262pt,\phi_{k})_{-s}\lesssim\sum_{\ell=0}^{L}\sum_{k=\ell}^{L}|(\phi_{\ell}\hskip 1.42262pt,\phi_{k})_{-s}| =0Lk=Lϕs+δϕksδ\displaystyle\leq\sum_{\ell=0}^{L}\sum_{k=\ell}^{L}\|\phi_{\ell}\|_{-s+\delta}\|\phi_{k}\|_{-s-\delta}
=0Lk=Lh1+sδϕ1hk1+s+δϕk1\displaystyle\lesssim\sum_{\ell=0}^{L}\sum_{k=\ell}^{L}h_{\ell}^{-1+s-\delta}\|\phi_{\ell}\|_{-1}h_{k}^{-1+s+\delta}\|\phi_{k}\|_{-1}
A2=0Lh2(1+s)ϕ12,\displaystyle\leq\|A\|_{2}\sum_{\ell=0}^{L}h_{\ell}^{2(-1+s)}\|\phi_{\ell}\|_{-1}^{2},

where the matrix A(L+1)×(L+1)A\in\mathbb{R}^{(L+1)\times(L+1)} is defined by Ak:=hδhkδA_{\ell k}:=h_{\ell}^{-\delta}h_{k}^{\delta} for kk\geq\ell and Ak:=0A_{\ell k}:=0 for k<k<\ell. From Lemma 1 we get that hqrefh_{\ell}\simeq q_{\mathrm{ref}}^{\ell}, thus, we conclude that A21\|A\|_{2}\lesssim 1. The second assertion is proved following the same lines of argumentation. ∎

The next result presented will be a key ingredient in the stability analysis of multilevel decompositions. It shows the deep connection between approximation spaces and interpolation spaces. Such results are known and in fact the reason for the optimality of the BPX preconditioner. We refer to [7] for an overview and a short discussion as well as further references. A proof is included for the convenience of the reader where we follow the same argumentation as in [7, Theorem 1]. We note that the main argumentation is the use of the inverse inequality and the approximation property. One also uses the discrete version of the KK and JJ method, see e.g. [34]. Moreover, note that for a sequence of uniform meshes 0𝒫0(𝒯)\bigcup_{\ell\in\mathbb{N}_{0}}\mathcal{P}^{0}(\mathcal{T}_{\ell}) is dense in Hs(Ω)H^{-s}(\Omega) and H~s(Ω)\widetilde{H}^{-s}(\Omega).

Theorem 12.

Let (𝒯)0(\mathcal{T}_{\ell})_{\ell\in\mathbb{N}_{0}} denote a sequence of uniform meshes with mesh-sizes (h)0(h_{\ell})_{\ell\in\mathbb{N}_{0}}. Let s(0,1)s\in(0,1). The norm equivalences

(7) ϕs2ϕ12+=0h2+2sϕΠ(1)ϕ12for all ϕHs(Ω)\displaystyle\|\phi\|_{-s}^{2}\simeq\|\phi\|_{-1}^{2}+\sum_{\ell=0}^{\infty}h_{\ell}^{-2+2s}\|\phi-\Pi^{(-1)}_{\ell}\phi\|_{-1}^{2}\quad\text{for all }\phi\in H^{-s}(\Omega)

and

(8) ϕs,2ϕ1,2+=0h2+2sϕΠ(1),ϕ1,2for all ϕH~s(Ω)\displaystyle\|\phi\|_{-s,\sim}^{2}\simeq\|\phi\|_{-1,\sim}^{2}+\sum_{\ell=0}^{\infty}h_{\ell}^{-2+2s}\|\phi-\Pi^{(-1),\sim}_{\ell}\phi\|_{-1,\sim}^{2}\quad\text{for all }\phi\in\widetilde{H}^{-s}(\Omega)

hold true and the involved constants only depend on ss, Ω\Omega, dd and the constants from (A1)(A3).

Proof.

Let 0<s<10<s<1. We consider the discrete KK and JJ version of interpolation, see, e.g. [45, Section 1.7], where K(t,ϕ)=infvL2(Ω)(ϕv1+tv)K(t,\phi)=\inf_{v\in L^{2}(\Omega)}(\|\phi-v\|_{-1}+t\|v\|) resp. J(t,ϕk):=max{ϕk1,tϕk}J(t,\phi_{k}):=\max\{\|\phi_{k}\|_{-1},t\|\phi_{k}\|\} denote the KK resp. JJ functional. By the equivalence of interpolation norms ([4, Theorem 3.3.1]) and the equivalence of discrete interpolation norms ([45, Section 1.7]) we conclude that

ϕs2k(qrefk(1+s)K(qrefk,ϕ))2inf{k(qrefk(1+s)J(qrefk,ϕk))2:ϕ=kϕk,ϕkL2(Ω)},\displaystyle\|\phi\|_{-s}^{2}\simeq\sum_{k\in\mathbb{Z}}\big{(}q_{\mathrm{ref}}^{k(-1+s)}K(q_{\mathrm{ref}}^{k},\phi)\big{)}^{2}\simeq\inf\big{\{}\sum_{k\in\mathbb{Z}}\big{(}q_{\mathrm{ref}}^{k(-1+s)}J(q_{\mathrm{ref}}^{k},\phi_{k})\big{)}^{2}\,:\,\phi=\sum_{k\in\mathbb{Z}}\phi_{k},\,\phi_{k}\in L^{2}(\Omega)\big{\}},

where the infimum is taken over all possible decompositions. We note that the equivalence results in [45, Section 1.7] are given for qref=1/2q_{\mathrm{ref}}=1/2 but hold true for 0<qref<10<q_{\mathrm{ref}}<1 following the same proofs.

Note that ϕ==0(Π(1)Π1(1))ϕ=:=0ϕ\phi=\sum_{\ell=0}^{\infty}(\Pi^{(-1)}_{\ell}-\Pi^{(-1)}_{\ell-1})\phi=:\sum_{\ell=0}^{\infty}\phi_{\ell}. The inverse estimate, the equivalence hqrefh_{\ell}\simeq q_{\mathrm{ref}}^{\ell} (Lemma 1) and boundedness of the projection operators imply that

J(qref,ϕ)ϕ1=(Π(1)Π1(1))ϕ1(1Π1(1))ϕ1.\displaystyle J(q_{\mathrm{ref}}^{\ell},\phi_{\ell})\lesssim\|\phi_{\ell}\|_{-1}=\|(\Pi^{(-1)}_{\ell}-\Pi^{(-1)}_{\ell-1})\phi\|_{-1}\leq\|(1-\Pi^{(-1)}_{\ell-1})\phi\|_{-1}.

Therefore,

ϕs2=0(qref(1+s)J(qref,ϕ))2ϕ12+=0h2+2s(1Π(1))ϕ12.\displaystyle\|\phi\|_{-s}^{2}\lesssim\sum_{\ell=0}^{\infty}\big{(}q_{\mathrm{ref}}^{\ell(-1+s)}J(q_{\mathrm{ref}}^{\ell},\phi_{\ell})\big{)}^{2}\lesssim\|\phi\|_{-1}^{2}+\sum_{\ell=0}^{\infty}h_{\ell}^{-2+2s}\|(1-\Pi^{(-1)}_{\ell})\phi\|_{-1}^{2}.

To see the other direction we use the approximation property and hqrefh_{\ell}\simeq q_{\mathrm{ref}}^{\ell} to get that

ϕΠ(1)ϕ1\displaystyle\|\phi-\Pi^{(-1)}_{\ell}\phi\|_{-1} =infvL2(Ω)ϕΠ(1)v1infvL2(Ω)(ϕv1+vΠ(1)v1)\displaystyle=\inf_{v\in L^{2}(\Omega)}\|\phi-\Pi^{(-1)}_{\ell}v\|_{-1}\leq\inf_{v\in L^{2}(\Omega)}\big{(}\|\phi-v\|_{-1}+\|v-\Pi^{(-1)}_{\ell}v\|_{-1}\big{)}
infvL2(Ω)(ϕv1+hv)infvL2(Ω)(ϕv1+qrefv)=K(qref,ϕ).\displaystyle\lesssim\inf_{v\in L^{2}(\Omega)}\big{(}\|\phi-v\|_{-1}+h_{\ell}\|v\|\big{)}\simeq\inf_{v\in L^{2}(\Omega)}\big{(}\|\phi-v\|_{-1}+q_{\mathrm{ref}}^{\ell}\|v\|\big{)}=K(q_{\mathrm{ref}}^{\ell},\phi).

Then,

=0h2+2s(1Π(1))ϕ12=0(qref(1+s)K(qref,ϕ))2ϕs2\displaystyle\sum_{\ell=0}^{\infty}h_{\ell}^{-2+2s}\|(1-\Pi^{(-1)}_{\ell})\phi\|_{-1}^{2}\lesssim\sum_{\ell=0}^{\infty}\big{(}q_{\mathrm{ref}}^{\ell(-1+s)}K(q_{\mathrm{ref}}^{\ell},\phi)\big{)}^{2}\lesssim\|\phi\|_{-s}^{2}

together with ϕ1ϕs\|\phi\|_{-1}\lesssim\|\phi\|_{-s} finishes the proof of the first equivalence.

The second equivalence follows the same argumentation with obvious modifications. ∎

As a consequence of the latter result we obtain a multilevel norm on Hs(Ω)H^{-s}(\Omega) resp. H~s(Ω)\widetilde{H}^{-s}(\Omega):

Corollary 13.

Let (𝒯)=0L(\mathcal{T}_{\ell})_{\ell=0}^{L} denote a sequence of uniform refined meshes with mesh-size functions (h)=0L(h_{\ell})_{\ell=0}^{L}. Let s(0,1)s\in(0,1), then,

ϕs2\displaystyle\|\phi\|_{-s}^{2} =0Lh2+2s(Π(1)Π1(1))ϕ12,ϕs,2=0Lh2+2s(Π(1),Π1(1),)ϕ1,2\displaystyle\simeq\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\|(\Pi^{(-1)}_{\ell}-\Pi^{(-1)}_{\ell-1})\phi\|_{-1}^{2},\quad\|\phi\|_{-s,\sim}^{2}\simeq\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\|(\Pi^{(-1),\sim}_{\ell}-\Pi^{(-1),\sim}_{\ell-1})\phi\|_{-1,\sim}^{2}

for all ϕ𝒫0(𝒯L)\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}). The constants only depend on ss, Ω\Omega, dd and the constants from (A1)(A3).

Proof.

From the properties of the projection operators and applying Theorem 12 we get that

=0Lh2+2s(Π(1)Π1(1))ϕ12=0Lh2+2s(1Π1(1))ϕ12ϕs2.\displaystyle\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\|(\Pi^{(-1)}_{\ell}-\Pi^{(-1)}_{\ell-1})\phi\|_{-1}^{2}\leq\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\|(1-\Pi^{(-1)}_{\ell-1})\phi\|_{-1}^{2}\lesssim\|\phi\|_{-s}^{2}.

To see the other direction we apply Lemma 11 with ϕ=(Π(1)Π1(1))ϕ\phi_{\ell}=(\Pi^{(-1)}_{\ell}-\Pi^{(-1)}_{\ell-1})\phi and note that =0Lϕ=ΠL(1)ϕ=ϕ\sum_{\ell=0}^{L}\phi_{\ell}=\Pi^{(-1)}_{L}\phi=\phi. The second equivalence follows the same lines of proof and is therefore omitted. ∎

2.7. Additive Schwarz norms

Let \mathcal{H} denote a Hilbert space with norm \|\cdot\|_{\mathcal{H}} and let h\mathcal{H}_{h}\subset\mathcal{H} denote a finite-dimensional subspace. Let 𝒳ih\mathcal{X}_{i}\subset\mathcal{H}_{h}, ii\in\mathcal{I} with #<\#\mathcal{I}<\infty and set

𝒳={𝒳i:i}.\displaystyle\mathcal{X}=\big{\{}\mathcal{X}_{i}\,:\,i\in\mathcal{I}\big{\}}.

We say 𝒳\mathcal{X} is a decomposition of h\mathcal{H}_{h} if

h=i𝒳i.\displaystyle\mathcal{H}_{h}=\sum_{i\in\mathcal{I}}\mathcal{X}_{i}.

To the decomposition 𝒳\mathcal{X} we associate the additive Schwarz norm ||||||,𝒳|||\cdot|||_{\mathcal{H},\mathcal{X}} given by

|x|,𝒳2:=inf{ixi2:xi𝒳i such that x=ixi}.\displaystyle|||x|||_{\mathcal{H},\mathcal{X}}^{2}:=\inf\big{\{}\sum_{i\in\mathcal{I}}\|x_{i}\|_{\mathcal{H}}^{2}\,:\,x_{i}\in\mathcal{X}_{i}\text{ such that }x=\sum_{i\in\mathcal{I}}x_{i}\big{\}}.

A key ingredient in most works on additive Schwarz methods is to establish norm equivalence of the form

(9) C1|x|,𝒳xC2|x|,𝒳for all xh.\displaystyle C_{1}|||x|||_{\mathcal{H},\mathcal{X}}\leq\|x\|_{\mathcal{H}}\leq C_{2}|||x|||_{\mathcal{H},\mathcal{X}}\quad\text{for all }x\in\mathcal{H}_{h}.

This equivalence implies that the associated additive Schwarz preconditioner yields preconditioned systems with condition numbers depending only on C1,C2C_{1},C_{2}. This is well-known in the context of additive Schwarz preconditioners and we refer the interested reader to [31, 43].

Note that (9) is equivalent to the following two estimates:

  • The lower bound in (9) is equivalent to: For every xhx\in\mathcal{H}_{h} there exist xi𝒳ix_{i}\in\mathcal{X}_{i}, ii\in\mathcal{I} such that x=i𝒳ix=\sum_{i\in\mathcal{I}}\mathcal{X}_{i} and

    (10) ixi2C12x2.\displaystyle\sum_{i\in\mathcal{I}}\|x_{i}\|_{\mathcal{H}}^{2}\leq C_{1}^{-2}\|x\|_{\mathcal{H}}^{2}.
  • The upper bound in (9) is equivalent to: For all xi𝒳ix_{i}\in\mathcal{X}_{i}, x=ixihx=\sum_{i\in\mathcal{I}}x_{i}\in\mathcal{H}_{h},

    (11) C22x2ixi2.\displaystyle C_{2}^{-2}\|x\|_{\mathcal{H}}^{2}\leq\sum_{i\in\mathcal{I}}\|x_{i}\|_{\mathcal{H}}^{2}.

In both estimates the constants C1C_{1}, C2C_{2} are independent of xx, xix_{i}.

The lower bound in (9) is called stability of the decomposition, see, e.g. [43, Assumption 2.2]. The upper bound in (9) is often proved by showing strengthened Cauchy–Schwarz inequalities, see, e.g. [43, Assumption 2.3]. Another closely related method is the multiplicative Schwarz method, see, e.g. [43, Section 2.2]. Convergence results of the latter method usually involve the same analytical tools, namely, the stability of subspace decompositions and strengthened Cauchy–Schwarz inequalities, see, e.g. [43, Theorem 2.9].

2.8. Stable splittings in H1(Ω)H^{-1}(\Omega) and H~1(Ω)\widetilde{H}^{-1}(\Omega)

In this section we recall some results of our work [20] on stable one-level decompositions which will be key ingredients in the proof of our main theorems for uniform meshes.

For a mesh 𝒯\mathcal{T} we consider the decomposition 𝒳={𝒳E:E}\mathcal{X}=\big{\{}\mathcal{X}_{E}\,:\,E\in\mathcal{E}\big{\}} of 𝒫0(𝒯)\mathcal{P}^{0}(\mathcal{T}), i.e.,

𝒫0(𝒯)=E𝒳E,\displaystyle\mathcal{P}^{0}(\mathcal{T})=\sum_{E\in\mathcal{E}}\mathcal{X}_{E},

where 𝒳E=span{ψE}\mathcal{X}_{E}=\operatorname{span}\{\psi_{E}\}. We use the notation ||||||1=||||||H1(Ω),𝒳|||\cdot|||_{-1}=|||\cdot|||_{H^{-1}(\Omega),\mathcal{X}} and recall the result [20, Theorem 3]:

Theorem 14.

For ϕ𝒫0(𝒯)\phi\in\mathcal{P}^{0}(\mathcal{T}),

|ϕ|1ϕ1|ϕ|1,\displaystyle|||\phi|||_{-1}\lesssim\|\phi\|_{-1}\lesssim|||\phi|||_{-1},

and the involved constants depend only on Ω\Omega, dd and shape regularity of 𝒯\mathcal{T}.

A similar result is valid for the space H~1(Ω)\widetilde{H}^{-1}(\Omega) with the decomposition 𝒳~={𝒳Ω}{𝒳E:EΩ}\widetilde{\mathcal{X}}=\{\mathcal{X}_{\Omega}\}\cup\big{\{}\mathcal{X}_{E}\,:\,E\in\mathcal{E}^{\Omega}\big{\}} of 𝒫0(𝒯)\mathcal{P}^{0}(\mathcal{T}), i.e.,

𝒫0(𝒯)=𝒳Ω+EΩ𝒳E,\displaystyle\mathcal{P}^{0}(\mathcal{T})=\mathcal{X}_{\Omega}+\sum_{E\in\mathcal{E}^{\Omega}}\mathcal{X}_{E},

where 𝒳Ω=span{1}\mathcal{X}_{\Omega}=\operatorname{span}\{1\}. Let us note that the latter splitting already implies the unique decomposition ϕ=ϕ0+ϕ=:ΠΩ0ϕ+ϕ\phi=\phi_{0}+\phi_{*}=:\Pi^{0}_{\Omega}\phi+\phi_{*} for ϕ𝒫0(𝒯)\phi\in\mathcal{P}^{0}(\mathcal{T}), where ΠΩ0\Pi^{0}_{\Omega} denotes the L2(Ω)L^{2}(\Omega) projection to 𝒳Ω=𝒫0(Ω)\mathcal{X}_{\Omega}=\mathcal{P}^{0}(\Omega). Note that ϕ𝒫0(𝒯):={ψ𝒫0:ΠΩ0ψ=0}\phi_{*}\in\mathcal{P}_{*}^{0}(\mathcal{T}):=\big{\{}\psi\in\mathcal{P}^{0}\,:\,\Pi^{0}_{\Omega}\psi=0\big{\}}. Moreover, we stress that

ϕ1,2ϕ01,2+ϕ1,2.\displaystyle\|\phi\|_{-1,\sim}^{2}\simeq\|\phi_{0}\|_{-1,\sim}^{2}+\|\phi_{*}\|_{-1,\sim}^{2}.

We use the notation ||||||1,=||||||H~1(Ω),𝒳~|||\cdot|||_{-1,\sim}=|||\cdot|||_{\widetilde{H}^{-1}(\Omega),\widetilde{\mathcal{X}}} and recall [20, Theorem 4]:

Theorem 15.

For ϕ𝒫0(𝒯)\phi\in\mathcal{P}^{0}(\mathcal{T}),

|ϕ|1,ϕ1,|ϕ|1,,\displaystyle|||\phi|||_{-1,\sim}\lesssim\|\phi\|_{-1,\sim}\lesssim|||\phi|||_{-1,\sim},

and the involved constants depend only on Ω\Omega, dd and shape regularity of 𝒯\mathcal{T}.

Remark 16.

We note that the proof of the lower bound in Theorem 14 resp. Theorem 15 depends on regularity results of the Poisson equation (Dirichlet problem resp. Neumann problem) in Ω\Omega. Regularity enters when estimating the L2(Ω)L^{2}(\Omega) norm of the Raviart–Thomas projection operator. One can get rid of the dependence on regularity results by switching to a different projection operator that is L2(Ω)L^{2}(\Omega) stable up to oscillation terms, e.g., the operator from [16, Theorem 3.2], see also Lemma 3.

3. Main results

Throughout this section let (𝒯)=0L(\mathcal{T}_{\ell})_{\ell=0}^{L} denote a sequence of meshes. For 1\ell\geq 1 define

~0\displaystyle\widetilde{}\mathcal{E}_{0} :=0,\displaystyle:=\mathcal{E}_{0}, ~\displaystyle\quad\widetilde{}\mathcal{E}_{\ell} :=1{E1:supp(ψ,E)supp(ψ1,E)},\displaystyle:=\mathcal{E}_{\ell}\setminus\mathcal{E}_{\ell-1}\cup\big{\{}E\in\mathcal{E}_{\ell}\cap\mathcal{E}_{\ell-1}\,:\,\operatorname{supp}(\psi_{\ell,E})\subsetneq\operatorname{supp}(\psi_{\ell-1,E})\big{\}},
~0Ω\displaystyle\widetilde{}\mathcal{E}_{0}^{\Omega} :=0Ω,\displaystyle:=\mathcal{E}_{0}^{\Omega}, ~Ω\displaystyle\quad\widetilde{}\mathcal{E}_{\ell}^{\Omega} :=Ω1Ω{EΩ1Ω:supp(ψ,E)supp(ψ1,E)}.\displaystyle:=\mathcal{E}_{\ell}^{\Omega}\setminus\mathcal{E}_{\ell-1}^{\Omega}\cup\big{\{}E\in\mathcal{E}_{\ell}^{\Omega}\cap\mathcal{E}_{\ell-1}^{\Omega}\,:\,\operatorname{supp}(\psi_{\ell,E})\subsetneq\operatorname{supp}(\psi_{\ell-1,E})\big{\}}.

Note that if (𝒯)=0L(\mathcal{T}_{\ell})_{\ell=0}^{L} is a sequence of uniform meshes, then =~\mathcal{E}_{\ell}=\widetilde{}\mathcal{E}_{\ell} resp., Ω=~Ω\mathcal{E}_{\ell}^{\Omega}=\widetilde{}\mathcal{E}_{\ell}^{\Omega}.

3.1. Multilevel decomposition for Hs(Ω)H^{-s}(\Omega)

We consider the collection

𝒳L={𝒳,E:E~,=0,,L},where 𝒳,E=span{ψ,E},\displaystyle\mathcal{X}_{L}=\big{\{}\mathcal{X}_{\ell,E}\,:\,E\in\widetilde{}\mathcal{E}_{\ell},\,\ell=0,\dots,L\big{\}},\quad\text{where }\mathcal{X}_{\ell,E}=\operatorname{span}\{\psi_{\ell,E}\},

and use the notation ||||||s=||||||Hs(Ω),𝒳L|||\cdot|||_{-s}=|||\cdot|||_{H^{-s}(\Omega),\mathcal{X}_{L}}. Then, our first main result reads as follows:

Theorem 17.

The set 𝒳L\mathcal{X}_{L} provides a decomposition of 𝒫0(𝒯L)\mathcal{P}^{0}(\mathcal{T}_{L}), i.e.,

𝒫0(𝒯)==0LE~𝒳,E.\displaystyle\mathcal{P}^{0}(\mathcal{T})=\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\mathcal{X}_{\ell,E}.

Let s(0,1)s\in(0,1). Then,

(12) |ϕ|sϕs|ϕ|sfor all ϕ𝒫0(𝒯L),\displaystyle|||\phi|||_{-s}\lesssim\|\phi\|_{-s}\lesssim|||\phi|||_{-s}\quad\text{for all }\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}),

and the involved constants only depend on Ω\Omega, ss, dd, the constants from (A1)(A3), and 𝒯0\mathcal{T}_{0}.

That 𝒳L\mathcal{X}_{L} is a decomposition of 𝒫0(𝒯L)\mathcal{P}^{0}(\mathcal{T}_{L}) follows from the proof of the lower bound given in Section 4.1 (uniform meshes) resp. Section 4.5 (adaptive meshes). The upper bound is shown in Section 4.2 (uniform meshes) resp. Section 4.6 (adaptive meshes). The proofs in the case of adaptive meshes rely on several localization arguments which are not needed in the case of uniform meshes and are therefore presented in a separate section.

3.2. Multilevel decomposition for H~s(Ω)\widetilde{H}^{-s}(\Omega)

We consider the collection

𝒳~L={𝒳Ω}{𝒳,E:E~Ω,=0,,L},\displaystyle\widetilde{\mathcal{X}}_{L}=\{\mathcal{X}_{\Omega}\}\cup\big{\{}\mathcal{X}_{\ell,E}\,:\,E\in\widetilde{}\mathcal{E}_{\ell}^{\Omega},\,\ell=0,\dots,L\big{\}},

where 𝒳Ω=span{1}\mathcal{X}_{\Omega}=\operatorname{span}\{1\} and set ||||||s,=||||||H~s(Ω),𝒳~L|||\cdot|||_{-s,\sim}=|||\cdot|||_{\widetilde{H}^{-s}(\Omega),\widetilde{\mathcal{X}}_{L}}. Our second main result is

Theorem 18.

The set 𝒳~L\widetilde{\mathcal{X}}_{L} provides a decomposition of 𝒫0(𝒯L)\mathcal{P}^{0}(\mathcal{T}_{L}), i.e.,

𝒫0(𝒯L)=𝒳Ω+=0LE~Ω𝒳,E.\displaystyle\mathcal{P}^{0}(\mathcal{T}_{L})=\mathcal{X}_{\Omega}+\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}^{\Omega}}\mathcal{X}_{\ell,E}.

Let s(0,1)s\in(0,1). Then,

(13) |ϕ|s,ϕs,|ϕ|s,for all ϕ𝒫0(𝒯L),\displaystyle|||\phi|||_{-s,\sim}\lesssim\|\phi\|_{-s,\sim}\lesssim|||\phi|||_{-s,\sim}\quad\text{for all }\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}),

and the involved constants only depend on Ω\Omega, ss, dd, the constants from (A1)(A3), and 𝒯0\mathcal{T}_{0}.

The proof in the case of uniform meshes is given in Section 4.3 and Section 4.4. The proof in the case of adaptive meshes is sketched in Section 4.7 since it essentially follows similar steps as in the case of Theorem 17.

3.3. Multilevel norms for Hs(Ω)H^{-s}(\Omega) and H~s(Ω)\widetilde{H}^{-s}(\Omega)

In this section we present our last two main results dealing with multilevel norms.

Theorem 19.

Let s(0,1)s\in(0,1), then,

(14) ϕs2=0Lhs(PP1)ϕ2for all ϕ𝒫0(𝒯L).\displaystyle\|\phi\|_{-s}^{2}\simeq\sum_{\ell=0}^{L}\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|^{2}\quad\text{for all }\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}).

The involved constants only depend on Ω\Omega, ss, dd, the constants from (A1)(A3), and 𝒯0\mathcal{T}_{0}.

A similar result is valid for the space H~1(Ω)\widetilde{H}^{-1}(\Omega):

Theorem 20.

Let s(0,1)s\in(0,1), then,

(15) ϕs,2=0Lhs(P¯P¯1)ϕ2for all ϕ𝒫0(𝒯L).\displaystyle\|\phi\|_{-s,\sim}^{2}\simeq\sum_{\ell=0}^{L}\|h_{\ell}^{s}(\overline{P}_{\ell}^{\prime}-\overline{P}_{\ell-1}^{\prime})\phi\|^{2}\quad\text{for all }\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}).

The involved constants only depend on Ω\Omega, ss, dd, the constants from (A1)(A3), and 𝒯0\mathcal{T}_{0}.

A sketch of the proofs for both Theorem 19 and Theorem 20 is given in Section 4.8.

Remark 21.

Some of our results may be extended to s(1/2,1)s\in(-1/2,1) since Hs(Ω)H^{-s}(\Omega) can be defined by interpolating H1(Ω)H^{-1}(\Omega) and H1/2ε(Ω)H^{1/2-\varepsilon}(\Omega) with some ε>0\varepsilon>0, see [11] for an overview on interpolation scales. In particular, the results from Section 2.6 can be extended to s(1/2,1)s\in(-1/2,1) as well as our main results from Section 3 for uniform meshes. Major changes only involve a more general approximation property resp. inverse estimate. For a simpler presentation we consider only s(0,1)s\in(0,1).

4. Proof of main results

4.1. Proof of lower bound in Theorem 17 (uniform meshes)

Let ϕ𝒫0(𝒯L)\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}) be given. For =0,,L\ell=0,\dots,L we define

ϕ:=(Π(1)Π1(1))ϕ𝒫0(𝒯)with Π1(1):=0.\displaystyle\phi_{\ell}:=(\Pi^{(-1)}_{\ell}-\Pi^{(-1)}_{\ell-1})\phi\in\mathcal{P}^{0}(\mathcal{T}_{\ell})\quad\text{with }\Pi^{(-1)}_{-1}:=0.

We have that =0Lϕ=ΠL(1)ϕ=ϕ\sum_{\ell=0}^{L}\phi_{\ell}=\Pi^{(-1)}_{L}\phi=\phi. Also recall that =~\mathcal{E}_{\ell}=\widetilde{}\mathcal{E}_{\ell} for the sequence of uniform meshes. By Theorem 14 and (10) there exists a stable splitting of ϕ\phi_{\ell} into local contributions ϕ,E𝒳,E\phi_{\ell,E}\in\mathcal{X}_{\ell,E}, i.e.,

ϕ=Eϕ,EandEϕ,E12ϕ12.\displaystyle\phi_{\ell}=\sum_{E\in\mathcal{E}_{\ell}}\phi_{\ell,E}\quad\text{and}\quad\sum_{E\in\mathcal{E}_{\ell}}\|\phi_{\ell,E}\|_{-1}^{2}\lesssim\|\phi_{\ell}\|_{-1}^{2}.

Together with the inverse estimate ϕ,Esh1+sϕ,E1\|\phi_{\ell,E}\|_{-s}\lesssim h_{\ell}^{-1+s}\|\phi_{\ell,E}\|_{-1} we get that

=0LEϕ,Es2=0Lh2+2sEϕ,E12=0Lh2+2sϕ12.\displaystyle\sum_{\ell=0}^{L}\sum_{E\in\mathcal{E}_{\ell}}\|\phi_{\ell,E}\|_{-s}^{2}\lesssim\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\sum_{E\in\mathcal{E}_{\ell}}\|\phi_{\ell,E}\|_{-1}^{2}\lesssim\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\|\phi_{\ell}\|_{-1}^{2}.

Corollary 13 states that the right-hand side is equivalent to ϕs2\|\phi\|_{-s}^{2} which finishes the proof. ∎

4.2. Proof of upper bound in Theorem 17 (uniform meshes)

Let ϕ,E𝒳,E\phi_{\ell,E}\in\mathcal{X}_{\ell,E} be given and

ϕ:==0Lϕ:==0LEϕ,E.\displaystyle\phi:=\sum_{\ell=0}^{L}\phi_{\ell}:=\sum_{\ell=0}^{L}\sum_{E\in\mathcal{E}_{\ell}}\phi_{\ell,E}.

From the upper bound in Theorem 14 and (11) we infer that

ϕ12Eϕ,E12.\displaystyle\|\phi_{\ell}\|_{-1}^{2}\lesssim\sum_{E\in\mathcal{E}_{\ell}}\|\phi_{\ell,E}\|_{-1}^{2}.

Moreover, Lemma 11 together with the scaling ϕ,E1h1sϕ,Es\|\phi_{\ell,E}\|_{-1}\simeq h_{\ell}^{1-s}\|\phi_{\ell,E}\|_{-s} shows that

ϕs2=0Lh2+2sϕ12=0LEh2+2sϕ,E12=0LEϕ,Es2.\displaystyle\|\phi\|_{-s}^{2}\lesssim\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\|\phi_{\ell}\|_{-1}^{2}\lesssim\sum_{\ell=0}^{L}\sum_{E\in\mathcal{E}_{\ell}}h_{\ell}^{-2+2s}\|\phi_{\ell,E}\|_{-1}^{2}\simeq\sum_{\ell=0}^{L}\sum_{E\in\mathcal{E}_{\ell}}\|\phi_{\ell,E}\|_{-s}^{2}.

This concludes the proof of the upper bound in Theorem 17. ∎

4.3. Proof of lower bound in Theorem 18 (uniform meshes)

Let ϕ𝒫0(𝒯L)\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}) be given. For =0,,L\ell=0,\dots,L we define

ϕ:=(Π(1),Π1(1),)ϕ𝒫0(𝒯)with Π1(1),:=0.\displaystyle\phi_{\ell}:=(\Pi^{(-1),\sim}_{\ell}-\Pi^{(-1),\sim}_{\ell-1})\phi\in\mathcal{P}^{0}(\mathcal{T}_{\ell})\quad\text{with }\Pi^{(-1),\sim}_{-1}:=0.

Recall that Ω=~Ω\mathcal{E}_{\ell}^{\Omega}=\widetilde{}\mathcal{E}_{\ell}^{\Omega} for uniform meshes. We have that =0Lϕ=ΠL(1),ϕ=ϕ\sum_{\ell=0}^{L}\phi_{\ell}=\Pi^{(-1),\sim}_{L}\phi=\phi. According to Theorem 15 and (10) we can split each ϕ\phi_{\ell} into

ϕ=ϕ,0+EΩϕ,Ewithϕ,01,2+EΩϕ,E1,2ϕ1,2.\displaystyle\phi_{\ell}=\phi_{\ell,0}+\sum_{E\in\mathcal{E}_{\ell}^{\Omega}}\phi_{\ell,E}\quad\text{with}\quad\|\phi_{\ell,0}\|_{-1,\sim}^{2}+\sum_{E\in\mathcal{E}_{\ell}^{\Omega}}\|\phi_{\ell,E}\|_{-1,\sim}^{2}\lesssim\|\phi_{\ell}\|_{-1,\sim}^{2}.

We stress that ϕ,0=ΠΩ0ϕ\phi_{\ell,0}=\Pi^{0}_{\Omega}\phi_{\ell} and define ϕ0==0Lϕ,0=ΠΩ0ϕ\phi_{0}=\sum_{\ell=0}^{L}\phi_{\ell,0}=\Pi^{0}_{\Omega}\phi. Moreover, note that ΠΩ0ϕs,ϕs,\|\Pi^{0}_{\Omega}\phi\|_{-s,\sim}\lesssim\|\phi\|_{-s,\sim}. Putting all estimates together and using an inverse inequality we conclude that

ϕ0s,2+=0LEΩϕ,Es,2\displaystyle\|\phi_{0}\|_{-s,\sim}^{2}+\sum_{\ell=0}^{L}\sum_{E\in\mathcal{E}_{\ell}^{\Omega}}\|\phi_{\ell,E}\|_{-s,\sim}^{2} ϕs,2+=0Lh2+2sEΩϕ,E1,2\displaystyle\lesssim\|\phi\|_{-s,\sim}^{2}+\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\sum_{E\in\mathcal{E}_{\ell}^{\Omega}}\|\phi_{\ell,E}\|_{-1,\sim}^{2}
ϕs,2+=0Lh2+2sϕ1,2.\displaystyle\lesssim\|\phi\|_{-s,\sim}^{2}+\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\|\phi_{\ell}\|_{-1,\sim}^{2}.

Applying Corollary 13 finishes the proof. ∎

4.4. Proof of upper bound in Theorem 18 (uniform meshes)

Let ϕ0𝒳Ω\phi_{0}\in\mathcal{X}_{\Omega}, ϕ,E𝒳,E\phi_{\ell,E}\in\mathcal{X}_{\ell,E}, EΩE\in\mathcal{E}_{\ell}^{\Omega}, =0,,L\ell=0,\dots,L be given and define

ϕ:=ϕ0+=0Lϕ:=ϕ0+=0LEΩϕ,E.\displaystyle\phi:=\phi_{0}+\sum_{\ell=0}^{L}\phi_{\ell}:=\phi_{0}+\sum_{\ell=0}^{L}\sum_{E\in\mathcal{E}_{\ell}^{\Omega}}\phi_{\ell,E}.

According to Theorem 15 and (11) we have that

ϕ1,2EΩϕ,E1,2.\displaystyle\|\phi_{\ell}\|_{-1,\sim}^{2}\lesssim\sum_{E\in\mathcal{E}_{\ell}^{\Omega}}\|\phi_{\ell,E}\|_{-1,\sim}^{2}.

Moreover, Lemma 11 together with the scaling ϕ,E1,h1sϕ,Es,\|\phi_{\ell,E}\|_{-1,\sim}\simeq h_{\ell}^{1-s}\|\phi_{\ell,E}\|_{-s,\sim} shows that

ϕs,2ϕ0s,2+=0Lh2+2sϕ1,2\displaystyle\|\phi\|_{-s,\sim}^{2}\lesssim\|\phi_{0}\|_{-s,\sim}^{2}+\sum_{\ell=0}^{L}h_{\ell}^{-2+2s}\|\phi_{\ell}\|_{-1,\sim}^{2} ϕ0s,2+=0LEΩh2+2sϕ,E1,2\displaystyle\lesssim\|\phi_{0}\|_{-s,\sim}^{2}+\sum_{\ell=0}^{L}\sum_{E\in\mathcal{E}_{\ell}^{\Omega}}h_{\ell}^{-2+2s}\|\phi_{\ell,E}\|_{-1,\sim}^{2}
ϕ0s,2+=0LEΩϕ,Es,2.\displaystyle\lesssim\|\phi_{0}\|_{-s,\sim}^{2}+\sum_{\ell=0}^{L}\sum_{E\in\mathcal{E}_{\ell}^{\Omega}}\|\phi_{\ell,E}\|_{-s,\sim}^{2}.

This concludes the proof of the upper bound in Theorem 18. ∎

4.5. Proof of lower bound in Theorem 17 (adaptive meshes)

Let ϕ𝒫0(𝒯L)\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}) and consider the splitting

(16) =0Lϕ:==0L(QQ1)ϕ=QLϕ=ϕ.\displaystyle\sum_{\ell=0}^{L}\phi_{\ell}:=\sum_{\ell=0}^{L}(Q_{\ell}-Q_{\ell-1})\phi=Q_{L}\phi=\phi.

Throughout we make the convention that operators with negative indices are trivial, i.e., Πk0:=0\Pi^{0}_{k}:=0, Pk:=0P_{k}^{\prime}:=0, Qk:=0Q_{k}:=0 for all k<0k<0.

The next result provides a decomposition of ϕ==0Lϕ\phi=\sum_{\ell=0}^{L}\phi_{\ell} and a stability result:

Lemma 22.

There exists a decomposition ϕ==0LE~ϕ,E\phi=\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\phi_{\ell,E} with ϕ,E𝒳,E\phi_{\ell,E}\in\mathcal{X}_{\ell,E}, E~E\in\widetilde{}\mathcal{E}_{\ell}, 0\ell\in\mathbb{N}_{0} such that

=0LE~ϕ,Es2Q0ϕ12+=1L(hs(Π0Π10)Pϕ2+hs(PP1)ϕ2).\displaystyle\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\|\phi_{\ell,E}\|_{-s}^{2}\lesssim\|Q_{0}\phi\|_{-1}^{2}+\sum_{\ell=1}^{L}\Big{(}\|h_{\ell}^{s}(\Pi^{0}_{\ell}-\Pi^{0}_{\ell-1})P_{\ell}^{\prime}\phi\|^{2}+\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|^{2}\Big{)}.

The involved constant only depends on Ω\Omega, ss, dd, the constants from (A1)(A2), and 𝒯0\mathcal{T}_{0}.

Proof.

Step 1. According to Theorem 14 there exist functions ϕ0,E𝒳0,E\phi_{0,E}\in\mathcal{X}_{0,E}, E0=~0E\in\mathcal{E}_{0}=\widetilde{}\mathcal{E}_{0} such that

ϕ0=Q0ϕ=E~0ϕ0,EandE~0ϕ0,E12ϕ012=Q0ϕ12.\displaystyle\phi_{0}=Q_{0}\phi=\sum_{E\in\widetilde{}\mathcal{E}_{0}}\phi_{0,E}\quad\text{and}\quad\sum_{E\in\widetilde{}\mathcal{E}_{0}}\|\phi_{0,E}\|_{-1}^{2}\lesssim\|\phi_{0}\|_{-1}^{2}=\|Q_{0}\phi\|_{-1}^{2}.

Using the inverse estimate and hEh01h_{E}\simeq h_{0}\simeq 1 for all E~0E\in\widetilde{}\mathcal{E}_{0} we get that

E~0ϕ0,Es2E~0hE2+2sϕ0,E12Q0ϕ12.\displaystyle\sum_{E\in\widetilde{}\mathcal{E}_{0}}\|\phi_{0,E}\|_{-s}^{2}\lesssim\sum_{E\in\widetilde{}\mathcal{E}_{0}}h_{E}^{-2+2s}\|\phi_{0,E}\|_{-1}^{2}\lesssim\|Q_{0}\phi\|_{-1}^{2}.

Let 1\ell\geq 1. We split ϕ\phi_{\ell} into two contributions ϕ,1\phi_{\ell,1} and ϕ,2\phi_{\ell,2},

(17) ϕ=ϕ,1+ϕ,2:=(Π0PΠ10P)ϕ+(Π10PΠ10P1)ϕ.\displaystyle\phi_{\ell}=\phi_{\ell,1}+\phi_{\ell,2}:=\left(\Pi^{0}_{\ell}P_{\ell}^{\prime}-\Pi^{0}_{\ell-1}P_{\ell}^{\prime}\right)\phi+\left(\Pi^{0}_{\ell-1}P_{\ell}^{\prime}-\Pi^{0}_{\ell-1}P_{\ell-1}^{\prime}\right)\phi.

The first term can be localized on each T𝒯1𝒯T\in\mathcal{T}_{\ell-1}\setminus\mathcal{T}_{\ell} whereas the second term can be localized using the partition of unity provided by the nodal functions {η1,z:z𝒩1}\big{\{}\eta_{\ell-1,z}\,:\,z\in\mathcal{N}_{\ell-1}\big{\}}.

Step 2. First, we provide a decomposition for ϕ,1\phi_{\ell,1}. To that end let T𝒯1𝒯T\in\mathcal{T}_{\ell-1}\setminus\mathcal{T}_{\ell} and consider the local Neumann problem

(18a) ΔuT\displaystyle\Delta u_{T} =ϕ,1\displaystyle=\phi_{\ell,1} in T,\displaystyle\text{in }T,
(18b) 𝒏uT\displaystyle\partial_{{\boldsymbol{n}}}u_{T} =0\displaystyle=0 on T.\displaystyle\text{on }\partial T.

This problem admits a unique solution uTH1(T)={vH1(T):(v,1)T=0}u_{T}\in H_{*}^{1}(T)=\big{\{}v\in H^{1}(T)\,:\,(v\hskip 1.42262pt,1)_{T}=0\big{\}} since

(ϕ,1,1)T\displaystyle(\phi_{\ell,1}\hskip 1.42262pt,1)_{T} =((Π0PΠ10P)ϕ,1)T=(Pϕ,(Π0Π10)1)T=0.\displaystyle=((\Pi^{0}_{\ell}P_{\ell}^{\prime}-\Pi^{0}_{\ell-1}P_{\ell}^{\prime})\phi\hskip 1.42262pt,1)_{T}=(P_{\ell}^{\prime}\phi\hskip 1.42262pt,(\Pi^{0}_{\ell}-\Pi^{0}_{\ell-1})1)_{T}=0.

From the weak formulation and a Poincaré inequality (vThTvT\|v\|_{T}\lesssim h_{T}\|\nabla v\|_{T} for vH1(T)v\in H_{*}^{1}(T)) we deduce the stability estimate

(19) uTThTϕ,1T.\displaystyle\|\nabla u_{T}\|_{T}\lesssim h_{T}\|\phi_{\ell,1}\|_{T}.

In a further step we use the operator from Lemma 3 and define

𝝈T:={𝑷𝒯(T)0uTon T,0on ΩT.\displaystyle{\boldsymbol{\sigma}}_{T}:=\begin{cases}\boldsymbol{P}_{\mathcal{T}_{\ell}(T)}^{0}\nabla u_{T}&\text{on }T,\\ 0&\text{on }\Omega\setminus T.\end{cases}

Here, 𝒯(T)={T𝒯:TT}\mathcal{T}_{\ell}(T)=\big{\{}T^{\prime}\in\mathcal{T}_{\ell}\,:\,T^{\prime}\subset T\big{\}}. Note that by definition of the operator the normal trace of 𝝈T{\boldsymbol{\sigma}}_{T} is zero on T\partial T and thus 𝝈T𝑯(div;Ω){\boldsymbol{\sigma}}_{T}\in\boldsymbol{H}({\rm div\,};\Omega). Furthermore,

𝝈Tspan{𝝍,E:E~,suppψ,ET}\displaystyle{\boldsymbol{\sigma}}_{T}\in\operatorname{span}\big{\{}{\boldsymbol{\psi}}_{\ell,E}\,:\,E\in\widetilde{}\mathcal{E}_{\ell},\,\operatorname{supp}{\psi_{\ell,E}}\subset T\big{\}}

and the commutativity property gives

div𝝈T|T=div𝑷𝒯(T)0uT=Π𝒯(T)0ϕ,1=ϕ,1|T.\displaystyle{\rm div\,}{\boldsymbol{\sigma}}_{T}|_{T}={\rm div\,}\boldsymbol{P}_{\mathcal{T}_{\ell}(T)}^{0}\nabla u_{T}=\Pi^{0}_{\mathcal{T}_{\ell}(T)}\phi_{\ell,1}=\phi_{\ell,1}|_{T}.

Setting 𝝈,1:=T𝒯1𝒯𝝈T{\boldsymbol{\sigma}}_{\ell,1}:=\sum_{T\in\mathcal{T}_{\ell-1}\setminus\mathcal{T}_{\ell}}{\boldsymbol{\sigma}}_{T} we conclude with the aforementioned properties that there exist coefficients α,E,1\alpha_{\ell,E,1} such that

𝝈,1=E~α,E,1𝝍,E\displaystyle{\boldsymbol{\sigma}}_{\ell,1}=\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\alpha_{\ell,E,1}{\boldsymbol{\psi}}_{\ell,E}

and

E~ϕ,E,1:=E~α,E,1div𝝍,E=div𝝈,1=ϕ,1.\displaystyle\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\phi_{\ell,E,1}:=\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\alpha_{\ell,E,1}{\rm div\,}{\boldsymbol{\psi}}_{\ell,E}={\rm div\,}{\boldsymbol{\sigma}}_{\ell,1}=\phi_{\ell,1}.

Moreover, Lemma 3 and (19) also imply that

Π𝒯(T)0𝝈TT𝝈TThTϕ,1T.\displaystyle\|\Pi^{0}_{\mathcal{T}_{\ell}(T)}{\boldsymbol{\sigma}}_{T}\|_{T}\lesssim\|{\boldsymbol{\sigma}}_{T}\|_{T}\lesssim h_{T}\|\phi_{\ell,1}\|_{T}.

The scaling properties ϕ,E,1shE1+sϕ,E,11hE1+sα,E,1𝝍,E\|\phi_{\ell,E,1}\|_{-s}\simeq h_{E}^{-1+s}\|\phi_{\ell,E,1}\|_{-1}\simeq h_{E}^{-1+s}\|\alpha_{\ell,E,1}{\boldsymbol{\psi}}_{\ell,E}\| (Lemma 2), the L2L^{2} stability of the Raviart–Thomas basis ([20, Proposition 2]) show that

E~ϕ,E,1s2\displaystyle\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\|\phi_{\ell,E,1}\|_{-s}^{2} E~hE2+2sα,E,1𝝍,E2h1+s𝝈,12hsϕ,12.\displaystyle\simeq\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}h_{E}^{-2+2s}\|\alpha_{\ell,E,1}{\boldsymbol{\psi}}_{\ell,E}\|^{2}\simeq\|h_{\ell}^{-1+s}{\boldsymbol{\sigma}}_{\ell,1}\|^{2}\lesssim\|h_{\ell}^{s}\phi_{\ell,1}\|^{2}.

Step 3. We define local problems for the second contribution ϕ,2\phi_{\ell,2} in (17): To that end we use the partition of unity 1=z𝒩1η1,z1=\sum_{z\in\mathcal{N}_{\ell-1}}\eta_{\ell-1,z} and consider for z𝒩1z\in\mathcal{N}_{\ell-1} the problem

(20a) Δuz\displaystyle\Delta u_{z} =Π10η1,z(PP1)ϕ\displaystyle=\Pi^{0}_{\ell-1}\eta_{\ell-1,z}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi in Ω1(z),\displaystyle\text{in }\Omega_{\ell-1}(z),
(20b) 𝒏uz\displaystyle\partial_{{\boldsymbol{n}}}u_{z} =0\displaystyle=0 on Ω1(z)Γ,\displaystyle\text{on }\partial\Omega_{\ell-1}(z)\setminus\Gamma,
(20c) uz\displaystyle u_{z} =0\displaystyle=0 on Ω1(z)Γ if zΓ.\displaystyle\text{on }\partial\Omega_{\ell-1}(z)\cap\Gamma\text{ if }z\in\Gamma.

For an interior node z𝒩1Ωz\in\mathcal{N}_{\ell-1}^{\Omega} we have by Lemma 6 that (PP1)η1,z=0(P_{\ell}-P_{\ell-1})\eta_{\ell-1,z}=0 and therefore

(Π10ηz(PP1)ϕ,1)Ω1(z)\displaystyle(\Pi^{0}_{\ell-1}\eta_{z}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\hskip 1.42262pt,1)_{\Omega_{\ell-1}(z)} =((PP1)ϕ,η1,z)Ω1(z)\displaystyle=((P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\hskip 1.42262pt,\eta_{\ell-1,z})_{\Omega_{\ell-1}(z)}
=((PP1)ϕ,η1,z)\displaystyle=((P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\hskip 1.42262pt,\eta_{\ell-1,z})
=(ϕ,(PP1)η1,z)=0.\displaystyle=(\phi\hskip 1.42262pt,(P_{\ell}-P_{\ell-1})\eta_{\ell-1,z})=0.

Thus, there exists a unique solution uzH1(Ω1(z))u_{z}\in H_{*}^{1}(\Omega_{\ell-1}(z)) for all z𝒩1Ωz\in\mathcal{N}_{\ell-1}^{\Omega}. For z𝒩1Γz\in\mathcal{N}_{\ell-1}^{\Gamma} the surface measure |Ω1(z)Γ||\partial\Omega_{\ell-1}(z)\cap\Gamma| is positive (at least one boundary facet is contained in that set). Thus, there exists a unique solution uzHΓ1(Ω1(z)):={vH1(Ω1(z)):v|Γ=0}u_{z}\in H_{\Gamma}^{1}(\Omega_{\ell-1}(z)):=\big{\{}v\in H^{1}(\Omega_{\ell-1}(z))\,:\,v|_{\Gamma}=0\big{\}} if z𝒩1Γz\in\mathcal{N}_{\ell-1}^{\Gamma}. The weak formulation of (20) and Poincaré–Friedrichs’ inequalities lead to

vΩ1(z)diam(Ω1(z))vΩ1(z)for all vHΓ1(Ω1(z)) with z𝒩1Γ.\displaystyle\|v\|_{\Omega_{\ell-1}(z)}\lesssim\mathrm{diam}(\Omega_{\ell-1}(z))\|\nabla v\|_{\Omega_{\ell-1}(z)}\quad\text{for all }v\in H_{\Gamma}^{1}(\Omega_{\ell-1}(z))\text{ with }z\in\mathcal{N}_{\ell-1}^{\Gamma}.

Consequently, the weak formulation of (20), the latter estimate, local boundedness of Π10\Pi^{0}_{\ell-1} and η1,z1\|\eta_{\ell-1,z}\|_{\infty}\leq 1 show that

uzΩ1(z)\displaystyle\|\nabla u_{z}\|_{\Omega_{\ell-1}(z)} diam(Ω1(z))Π10η1,z(PP1)ϕΩ1(z)\displaystyle\lesssim\mathrm{diam}(\Omega_{\ell-1}(z))\|\Pi^{0}_{\ell-1}\eta_{\ell-1,z}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|_{\Omega_{\ell-1}(z)}
diam(Ω1(z))(PP1)ϕΩ1(z)\displaystyle\leq\mathrm{diam}(\Omega_{\ell-1}(z))\|(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|_{\Omega_{\ell-1}(z)}

for all z𝒩1z\in\mathcal{N}_{\ell-1}. As before we use the operator from Lemma 3 and define

𝝈z:={𝑷ω1(z)0uzon Ω1(z),0on ΩΩ1(z).\displaystyle{\boldsymbol{\sigma}}_{z}:=\begin{cases}\boldsymbol{P}_{\omega_{\ell-1}(z)}^{0}\nabla u_{z}&\text{on }\Omega_{\ell-1}(z),\\ 0&\text{on }\Omega\setminus\Omega_{\ell-1}(z).\end{cases}

Note that by definition of the operator the normal trace of 𝝈z{\boldsymbol{\sigma}}_{z} is zero on all facets EE\in\mathcal{E}_{\ell} with EΩ1(z)ΓE\subset\partial\Omega_{\ell-1}(z)\setminus\Gamma and thus 𝝈z𝑯(div;Ω){\boldsymbol{\sigma}}_{z}\in\boldsymbol{H}({\rm div\,};\Omega). Furthermore,

𝝈zspan{𝝍,E:E,suppψ,EΩ1(z)}.\displaystyle{\boldsymbol{\sigma}}_{z}\in\operatorname{span}\big{\{}{\boldsymbol{\psi}}_{\ell,E}\,:\,E\in\mathcal{E}_{\ell},\,\operatorname{supp}{\psi_{\ell,E}}\subset\Omega_{\ell-1}(z)\big{\}}.

Set 𝒩1:={z𝒩1:𝝈z|Ω1(z)=0}\mathcal{N}_{\ell-1}^{\prime}:=\big{\{}z\in\mathcal{N}_{\ell-1}\,:\,{\boldsymbol{\sigma}}_{z}|_{\Omega_{\ell-1}(z)}=0\big{\}}, ¯𝒩1:=𝒩1𝒩1\overline{}\mathcal{N}_{\ell-1}:=\mathcal{N}_{\ell-1}\setminus\mathcal{N}_{\ell-1}^{\prime} and

¯:={E:supp(ψ,E)Ω1(z) for some z¯𝒩1}.\displaystyle\overline{}\mathcal{E}_{\ell}:=\big{\{}E\in\mathcal{E}_{\ell}\,:\,\operatorname{supp}(\psi_{\ell,E})\subset\Omega_{\ell-1}(z)\text{ for some }z\in\overline{}\mathcal{N}_{\ell-1}\big{\}}.

Define 𝝈,2:=z¯𝒩1𝝈z=:E¯β,E𝝍,E{\boldsymbol{\sigma}}_{\ell,2}:=\sum_{z\in\overline{}\mathcal{N}_{\ell-1}}{\boldsymbol{\sigma}}_{z}=:\sum_{E\in\overline{}\mathcal{E}_{\ell}}\beta_{\ell,E}{\boldsymbol{\psi}}_{\ell,E}. The same arguments as in Step 2 then show that div𝝈,2=ϕ,2{\rm div\,}{\boldsymbol{\sigma}}_{\ell,2}=\phi_{\ell,2} and

E¯β,Eψ,Es2hs(PP1)ϕ2.\displaystyle\sum_{E\in\overline{}\mathcal{E}_{\ell}}\|\beta_{\ell,E}\psi_{\ell,E}\|_{-s}^{2}\lesssim\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|^{2}.

Note that in general ~¯\widetilde{}\mathcal{E}_{\ell}\neq\overline{}\mathcal{E}_{\ell}. To tackle this issue we stress that there exist α,2,E\alpha_{\ell,2,E} such that

=0LE~ϕ,2,E:==0LE~α,2,Eψ,E==1LE¯β,Eψ,E.\displaystyle\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\phi_{\ell,2,E}:=\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\alpha_{\ell,2,E}\psi_{\ell,E}=\sum_{\ell=1}^{L}\sum_{E\in\overline{}\mathcal{E}_{\ell}}\beta_{\ell,E}\psi_{\ell,E}.

To see this note that if E¯~E\in\overline{}\mathcal{E}_{\ell}\setminus\widetilde{}\mathcal{E}_{\ell} then there exists k1k\leq\ell-1, E~kE\in\widetilde{}\mathcal{E}_{k} and ψ,E=ψk,E\psi_{\ell,E}=\psi_{k,E}. Furthermore, given E~E\in\widetilde{}\mathcal{E}_{\ell} we have that #{k0:E¯k~k}1\#\big{\{}k\in\mathbb{N}_{0}\,:\,E\in\overline{}\mathcal{E}_{k}\setminus\widetilde{}\mathcal{E}_{k}\big{\}}\lesssim 1. This means that the number of coefficients βk,E\beta_{k,E} that contribute to α,2,E\alpha_{\ell,2,E} is uniformly bounded. Thus, we have shown that there exist ϕ,2,E𝒳,E\phi_{\ell,2,E}\in\mathcal{X}_{\ell,E} with

=0LE~ϕ,2,Es2=1LE¯β,Eψ,Es2=1Lhs(PP1)ϕ2.\displaystyle\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\|\phi_{\ell,2,E}\|_{-s}^{2}\lesssim\sum_{\ell=1}^{L}\sum_{E\in\overline{}\mathcal{E}_{\ell}}\|\beta_{\ell,E}\psi_{\ell,E}\|_{-s}^{2}\lesssim\sum_{\ell=1}^{L}\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|^{2}.

Step 4. Combining the results from Step 1–3 above we conclude that there exist ϕ,E𝒳,E\phi_{\ell,E}\in\mathcal{X}_{\ell,E} for all E~E\in\widetilde{}\mathcal{E}_{\ell} and =0,,L\ell=0,\dots,L such that

ϕ==0LE~ϕ,E,\displaystyle\phi=\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\phi_{\ell,E},

and

=0LE~ϕ,Es2ϕ012+=1L(hsϕ,12+hs(PP1)ϕ2),\displaystyle\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\|\phi_{\ell,E}\|_{-s}^{2}\lesssim\|\phi_{0}\|_{-1}^{2}+\sum_{\ell=1}^{L}\Big{(}\|h_{\ell}^{s}\phi_{\ell,1}\|^{2}+\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|^{2}\Big{)},

which finishes the proof. ∎

For the remainder of the proof we group the contributions ϕ,E\phi_{\ell,E} that have the same scale (i.e., the supports are comparable). This allows us to establish a connection to a sequence of uniform refined meshes and, consequently, we can apply Theorem 12. The technique of relating uniform and adaptive meshes is quite common and used in, e.g., [12, 14, 13, 29, 18]. To that end we need some further notation: The collection of elements in the sequence (𝒯)=0L(\mathcal{T}_{\ell})_{\ell=0}^{L} is denoted by

𝒯tot=𝒯0=1L𝒯𝒯1.\displaystyle\mathcal{T}_{\mathrm{tot}}=\mathcal{T}_{0}\cup\bigcup_{\ell=1}^{L}\mathcal{T}_{\ell}\setminus\mathcal{T}_{\ell-1}.

Let (^𝒯m)m0(\widehat{}\mathcal{T}_{m})_{m\in\mathbb{N}_{0}} denote a sequence of uniform refined meshes with ^𝒯0=𝒯0\widehat{}\mathcal{T}_{0}=\mathcal{T}_{0}. All quantities related to ^𝒯m\widehat{}\mathcal{T}_{m} will be denoted with h^m\widehat{h}_{m}, ω^m\widehat{\omega}_{m}, Π^m(1)\widehat{\Pi}^{(-1)}_{m}, etc. We set

^𝒯tot=m0^𝒯m.\displaystyle\widehat{}\mathcal{T}_{\mathrm{tot}}=\bigcup_{m\in\mathbb{N}_{0}}\widehat{}\mathcal{T}_{m}.

The next result follows from our assumptions on the mesh refinement given in Section 2.2.

Lemma 23.

There exists m~:𝒯tot0\widetilde{m}\colon\mathcal{T}_{\mathrm{tot}}\to\mathbb{N}_{0}, t~:𝒯tot^𝒯tot\widetilde{t}\colon\mathcal{T}_{\mathrm{tot}}\to\widehat{}\mathcal{T}_{\mathrm{tot}} and kk\in\mathbb{N} such that

  1. (a)

    hTh^m~(T)h_{T}\simeq\widehat{h}_{\widetilde{m}(T)} for all T𝒯totT\in\mathcal{T}_{\mathrm{tot}},

  2. (b)

    Ω1(2)(T)Ω^m~(T)(k)(t~(T))\Omega_{\ell-1}^{(2)}(T)\subset\widehat{\Omega}_{\widetilde{m}(T)}^{(k)}(\widetilde{t}(T)) for all T𝒯𝒯1T\in\mathcal{T}_{\ell}\setminus\mathcal{T}_{\ell-1} and 1\ell\geq 1,

  3. (c)

    ψ𝒫0(ω^m~(T)(k)(t~(T)))\psi\in\mathcal{P}^{0}(\widehat{\omega}_{\widetilde{m}(T)}^{(k)}(\widetilde{t}(T))) implies that ψ|Ω1(2)(T)𝒫0(ω1(2)(T))\psi|_{\Omega_{\ell-1}^{(2)}(T)}\in\mathcal{P}^{0}(\omega_{\ell-1}^{(2)}(T)) for all T𝒯𝒯1T\in\mathcal{T}_{\ell}\setminus\mathcal{T}_{\ell-1} and 1\ell\geq 1,

  4. (d)

    #{T𝒯tot:m~(T)=m and t~(T)=T^}1\#\big{\{}T\in\mathcal{T}_{\mathrm{tot}}\,:\,\widetilde{m}(T)=m\text{ and }\widetilde{t}(T)=\widehat{T}\big{\}}\lesssim 1 for all T^^𝒯m\widehat{T}\in\widehat{}\mathcal{T}_{m} and all m0m\in\mathbb{N}_{0}.

The involved constant only depends on the constants from (A1)(A3).

We recall the following summation property, see, e.g. [1, Theorem 4.1].

Lemma 24.

For two non-empty disjoint ω1,ω2Ω\omega_{1},\omega_{2}\subset\Omega with ω=int(ω¯1ω¯2)\omega={\rm int}(\overline{\omega}_{1}\cup\overline{\omega}_{2}) and ψL2(ω)\psi\in L^{2}(\omega),

ψ|ω11,ω12+ψ|ω21,ω22ψ1,ω2.\displaystyle\|\psi|_{\omega_{1}}\|_{-1,\omega_{1}}^{2}+\|\psi|_{\omega_{2}}\|_{-1,\omega_{2}}^{2}\leq\|\psi\|_{-1,\omega}^{2}.

To complete the proof of the lower bound in Theorem 17 it remains to show that

=1L(hs(Π0Π10)Pϕ2+hs(PP1)ϕ2)ϕs2.\displaystyle\sum_{\ell=1}^{L}\Big{(}\|h_{\ell}^{s}(\Pi_{\ell}^{0}-\Pi_{\ell-1}^{0})P_{\ell}^{\prime}\phi\|^{2}+\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|^{2}\Big{)}\lesssim\|\phi\|_{-s}^{2}.

Let T𝒯𝒯1T\in\mathcal{T}_{\ell}\setminus\mathcal{T}_{\ell-1}. Recall the definitions of m~\widetilde{m}, t~\widetilde{t} and kk from Lemma 23. Note that Ω1(T)\Omega_{\ell-1}(T) contains the father element of TT. Furthermore, PP_{\ell}^{\prime} is a local quasi-projection which satisfies that Pψ|Ω1(T)=ψ|Ω1(T)P_{\ell}^{\prime}\psi|_{\Omega_{\ell-1}(T)}=\psi|_{\Omega_{\ell-1}(T)} for ψ|Ω1(2)(T)𝒫0(ω1(2)(T))\psi|_{\Omega^{(2)}_{\ell-1}(T)}\in\mathcal{P}^{0}(\omega_{\ell-1}^{(2)}(T)). Combining these arguments together with an inverse estimate, local boundedness of PP_{\ell}^{\prime} (Lemma 7), Lemma 23 and Lemma 24, proves that

hTs(Π0Π10)PϕT\displaystyle h_{T}^{s}\|(\Pi_{\ell}^{0}-\Pi_{\ell-1}^{0})P_{\ell}^{\prime}\phi\|_{T} =hTs(Π0Π10)P(ϕΠ^m~(T)(1)ϕ)T\displaystyle=h_{T}^{s}\|(\Pi_{\ell}^{0}-\Pi_{\ell-1}^{0})P_{\ell}^{\prime}(\phi-\widehat{\Pi}^{(-1)}_{\widetilde{m}(T)}\phi)\|_{T}
hTs(Π0Π10)P(ϕΠ^m~(T)(1)ϕ)Ω1(T)hTsP(ϕΠ^m~(T)(1)ϕ)Ω1(T)\displaystyle\leq h_{T}^{s}\|(\Pi_{\ell}^{0}-\Pi_{\ell-1}^{0})P_{\ell}^{\prime}(\phi-\widehat{\Pi}^{(-1)}_{\widetilde{m}(T)}\phi)\|_{\Omega_{\ell-1}(T)}\lesssim h_{T}^{s}\|P_{\ell}^{\prime}(\phi-\widehat{\Pi}^{(-1)}_{\widetilde{m}(T)}\phi)\|_{\Omega_{\ell-1}(T)}
hT1+s(T𝒯,TΩ1(T)P(ϕΠ^m~(T)(1)ϕ)1,T2)1/2\displaystyle\lesssim h_{T}^{-1+s}\Big{(}\sum_{T^{\prime}\in\mathcal{T}_{\ell},T^{\prime}\subset\Omega_{\ell-1}(T)}\|P_{\ell}^{\prime}(\phi-\widehat{\Pi}^{(-1)}_{\widetilde{m}(T)}\phi)\|_{-1,T^{\prime}}^{2}\Big{)}^{1/2}
hT1+s(T𝒯,TΩ1(T)ϕΠ^m~(T)(1)ϕ1,Ω(T)2)1/2\displaystyle\lesssim h_{T}^{-1+s}\Big{(}\sum_{T^{\prime}\in\mathcal{T}_{\ell},T^{\prime}\subset\Omega_{\ell-1}(T)}\|\phi-\widehat{\Pi}^{(-1)}_{\widetilde{m}(T)}\phi\|_{-1,\Omega_{\ell}(T^{\prime})}^{2}\Big{)}^{1/2}
hT1+sϕΠ^m~(T)(1)ϕ1,Ω1(2)(T)h^m~(T)1+sϕΠ^m~(T)(1)ϕ1,Ω^m~(T)(k)(t~(T)).\displaystyle\lesssim h_{T}^{-1+s}\|\phi-\widehat{\Pi}^{(-1)}_{\widetilde{m}(T)}\phi\|_{-1,\Omega_{\ell-1}^{(2)}(T)}\lesssim\widehat{h}_{\widetilde{m}(T)}^{-1+s}\|\phi-\widehat{\Pi}^{(-1)}_{\widetilde{m}(T)}\phi\|_{-1,\widehat{\Omega}_{\widetilde{m}(T)}^{(k)}(\widetilde{t}(T))}.

Therefore, the latter estimate and Lemma 23 (d) yield

=1LT𝒯𝒯1hs(Π0Π10)PϕT2\displaystyle\sum_{\ell=1}^{L}\sum_{T\in\mathcal{T}_{\ell}\setminus\mathcal{T}_{\ell-1}}\|h_{\ell}^{s}(\Pi_{\ell}^{0}-\Pi_{\ell-1}^{0})P_{\ell}^{\prime}\phi\|_{T}^{2} T𝒯toth^m~(T)2+2sϕΠ^m~(T)(1)ϕ1,Ω^m~(T)(k)(t~(T))2\displaystyle\lesssim\sum_{T\in\mathcal{T}_{\mathrm{tot}}}\widehat{h}_{\widetilde{m}(T)}^{-2+2s}\|\phi-\widehat{\Pi}^{(-1)}_{\widetilde{m}(T)}\phi\|_{-1,\widehat{\Omega}_{\widetilde{m}(T)}^{(k)}(\widetilde{t}(T))}^{2}
=m=0T^^𝒯mT𝒯totm~(T)=m,t~(T)=T^h^m~(T)2+2sϕΠ^m~(T)(1)ϕ1,Ω^m~(T)(k)(t~(T))2\displaystyle=\sum_{m=0}^{\infty}\sum_{\widehat{T}\in\widehat{}\mathcal{T}_{m}}\sum_{\begin{subarray}{c}T\in\mathcal{T}_{\mathrm{tot}}\\ \widetilde{m}(T)=m,\,\widetilde{t}(T)=\widehat{T}\end{subarray}}\widehat{h}_{\widetilde{m}(T)}^{-2+2s}\|\phi-\widehat{\Pi}^{(-1)}_{\widetilde{m}(T)}\phi\|_{-1,\widehat{\Omega}_{\widetilde{m}(T)}^{(k)}(\widetilde{t}(T))}^{2}
m=0T^^𝒯mh^m2+2sϕΠ^m(1)ϕ1,Ω^m(k)(T^)2.\displaystyle\lesssim\sum_{m=0}^{\infty}\sum_{\widehat{T}\in\widehat{}\mathcal{T}_{m}}\widehat{h}_{m}^{-2+2s}\|\phi-\widehat{\Pi}^{(-1)}_{m}\phi\|_{-1,\widehat{\Omega}_{m}^{(k)}(\widehat{T})}^{2}.

A standard coloring argument and Lemma 24 show that

T^^𝒯mh^m2+2sϕΠ^m(1)ϕ1,Ω^m(k)(T^)2h^m2+2sϕΠ^m(1)ϕ12.\displaystyle\sum_{\widehat{T}\in\widehat{}\mathcal{T}_{m}}\widehat{h}_{m}^{-2+2s}\|\phi-\widehat{\Pi}^{(-1)}_{m}\phi\|_{-1,\widehat{\Omega}_{m}^{(k)}(\widehat{T})}^{2}\lesssim\widehat{h}_{m}^{-2+2s}\|\phi-\widehat{\Pi}^{(-1)}_{m}\phi\|_{-1}^{2}.

Then, with the norm equivalence from Theorem 12 we conclude that

=1Lhs(Π0Π10)Pϕ2m=0h^m2+2sϕΠ^m(1)ϕ12ϕs2.\displaystyle\sum_{\ell=1}^{L}\|h_{\ell}^{s}(\Pi_{\ell}^{0}-\Pi_{\ell-1}^{0})P_{\ell}^{\prime}\phi\|^{2}\lesssim\sum_{m=0}^{\infty}\widehat{h}_{m}^{-2+2s}\|\phi-\widehat{\Pi}^{(-1)}_{m}\phi\|_{-1}^{2}\lesssim\|\phi\|_{-s}^{2}.

It remains to prove that

=1Lhs(PP1)ϕ2ϕs2.\displaystyle\sum_{\ell=1}^{L}\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|^{2}\lesssim\|\phi\|_{-s}^{2}.

This estimate follows with similar arguments as given above since supp(PP1)ϕ\operatorname{supp}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi is contained in a patch of fixed order around 𝒯𝒯1\mathcal{T}_{\ell}\setminus\mathcal{T}_{\ell-1} and PP_{\ell}^{\prime} resp. P1P_{\ell-1}^{\prime} restricted to piecewise constants are local projections. Thus, for the decomposition from Lemma 22 we have proven that

ϕ==0LE~ϕ,Eand=0LE~ϕ,Es2ϕ012+ϕs2ϕs2,\displaystyle\phi=\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\phi_{\ell,E}\quad\text{and}\quad\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\|\phi_{\ell,E}\|_{-s}^{2}\lesssim\|\phi_{0}\|_{-1}^{2}+\|\phi\|_{-s}^{2}\lesssim\|\phi\|_{-s}^{2},

where in the last estimate we used ϕ01ϕ1ϕs\|\phi_{0}\|_{-1}\lesssim\|\phi\|_{-1}\lesssim\|\phi\|_{-s}. This together with (10) finishes the proof of the lower bound in Theorem 17 for the case of adaptive meshes. ∎

4.6. Proof of upper bound in Theorem 17 (adaptive meshes)

Let ϕ,E𝒳,E\phi_{\ell,E}\in\mathcal{X}_{\ell,E}, E~E\in\widetilde{}\mathcal{E}_{\ell}, =0,,L\ell=0,\dots,L be given and set

ϕ:==0LE~ϕ,E.\displaystyle\phi:=\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\phi_{\ell,E}.

Recall that by (11) the proof of the upper bound is equivalent to show that

ϕs2=0LE~ϕ,Es2.\displaystyle\|\phi\|_{-s}^{2}\lesssim\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\|\phi_{\ell,E}\|_{-s}^{2}.

The basic idea is to reorder the sum into contributions of the same scale, similar as in Section 4.5. Let (^𝒯m)m0(\widehat{}\mathcal{T}_{m})_{m\in\mathbb{N}_{0}} denote the sequence of uniform meshes with ^𝒯0=𝒯0\widehat{}\mathcal{T}_{0}=\mathcal{T}_{0}. The next result follows from properties of the mesh refinement given in Section 2.2.

Lemma 25.

Consider :={(,E):E~,=0,,L}\mathcal{I}:=\big{\{}(\ell,E)\,:\,E\in\widetilde{}\mathcal{E}_{\ell},\,\ell=0,\dots,L\big{\}}. There exists m¯:0\overline{m}\colon\mathcal{I}\to\mathbb{N}_{0} such that

  1. (a)

    hEh^m¯(,E)h_{E}\simeq\widehat{h}_{\overline{m}(\ell,E)} for all (,E)(\ell,E)\in\mathcal{I},

  2. (b)

    𝝍,E𝒯0(^𝒯m¯(,E)){\boldsymbol{\psi}}_{\ell,E}\in\mathcal{RT}^{0}(\widehat{}\mathcal{T}_{\overline{m}(\ell,E)}) and ϕ,E𝒫0(^𝒯m¯(,E))\phi_{\ell,E}\in\mathcal{P}^{0}(\widehat{}\mathcal{T}_{\overline{m}(\ell,E)}) for all (,E)(\ell,E)\in\mathcal{I}.

  3. (c)

    #{(,E):m¯(,E)=m and supp(ϕ,E)T}1\#\big{\{}(\ell,E)\in\mathcal{I}\,:\,\overline{m}(\ell,E)=m\text{ and }\operatorname{supp}(\phi_{\ell,E})\cap T\neq\emptyset\big{\}}\lesssim 1 for all TT^mT\in\widehat{T}_{m} and m0m\in\mathbb{N}_{0}.

The involved constants depend only on the constants from (A1)(A3).

We rewrite ϕ\phi as

ϕ==0LE~ϕ,E=m=0=0LE~m¯(,E)=mϕ,E=:m=0ϕ^m.\displaystyle\phi=\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\phi_{\ell,E}=\sum_{m=0}^{\infty}\sum_{\ell=0}^{L}\sum_{\begin{subarray}{c}E\in\widetilde{}\mathcal{E}_{\ell}\\ \overline{m}(\ell,E)=m\end{subarray}}\phi_{\ell,E}=:\sum_{m=0}^{\infty}\widehat{\phi}_{m}.

Note that there exists MM\in\mathbb{N} with ϕ^m=0\widehat{\phi}_{m}=0 for all m>Mm>M. Since ϕ^m𝒫0(^𝒯m)\widehat{\phi}_{m}\in\mathcal{P}^{0}(\widehat{}\mathcal{T}_{m}) we use Lemma 11 to see that

ϕs2m=0Mh^m2+2sϕ^m12.\displaystyle\|\phi\|_{-s}^{2}\lesssim\sum_{m=0}^{M}\widehat{h}_{m}^{-2+2s}\|\widehat{\phi}_{m}\|_{-1}^{2}.

Then, observe that

ϕ^m==0LE~m¯(,E)=mϕ,E=:=0LE~m¯(,E)=mdiv(α,E𝝍,E)=div(=0LE~m¯(,E)=mα,E𝝍,E)=:div𝝍m.\displaystyle\widehat{\phi}_{m}=\sum_{\ell=0}^{L}\sum_{\begin{subarray}{c}E\in\widetilde{}\mathcal{E}_{\ell}\\ \overline{m}(\ell,E)=m\end{subarray}}\phi_{\ell,E}=:\sum_{\ell=0}^{L}\sum_{\begin{subarray}{c}E\in\widetilde{}\mathcal{E}_{\ell}\\ \overline{m}(\ell,E)=m\end{subarray}}{\rm div\,}(\alpha_{\ell,E}{\boldsymbol{\psi}}_{\ell,E})={\rm div\,}\Big{(}\sum_{\ell=0}^{L}\sum_{\begin{subarray}{c}E\in\widetilde{}\mathcal{E}_{\ell}\\ \overline{m}(\ell,E)=m\end{subarray}}\alpha_{\ell,E}{\boldsymbol{\psi}}_{\ell,E}\Big{)}=:{\rm div\,}{\boldsymbol{\psi}}_{m}.

Using that div:L2(Ω)dH1(Ω){\rm div\,}\colon L^{2}(\Omega)^{d}\to H^{-1}(\Omega) is a bounded operator we infer that

h^m2+2sϕ^m12h^m2+2s𝝍m2=T^𝒯mh^m2+2s𝝍mT2\displaystyle\widehat{h}_{m}^{-2+2s}\|\widehat{\phi}_{m}\|_{-1}^{2}\leq\widehat{h}_{m}^{-2+2s}\|{\boldsymbol{\psi}}_{m}\|^{2}=\sum_{T\in\widehat{}\mathcal{T}_{m}}\widehat{h}_{m}^{-2+2s}\|{\boldsymbol{\psi}}_{m}\|_{T}^{2}

From Lemma 25 we obtain that h^mhThE\widehat{h}_{m}\simeq h_{T}\simeq h_{E} for all (,E)(\ell,E) with m¯(,E)=m\overline{m}(\ell,E)=m and suppϕ,ET\operatorname{supp}\phi_{\ell,E}\cap T\neq\emptyset as well as that the number of functions ϕ,E\phi_{\ell,E} with m¯(,E)=m\overline{m}(\ell,E)=m that do not vanish on T^𝒯mT\in\widehat{}\mathcal{T}_{m} is uniformly bounded by a constant leading to

T^𝒯mh^m2+2s𝝍mT2T^𝒯m=0LE~m¯(,E)=mhE2+2sα,E𝝍,ET2==0LE~m¯(,E)=mhE2+2sα,E𝝍,E2.\displaystyle\sum_{T\in\widehat{}\mathcal{T}_{m}}\widehat{h}_{m}^{-2+2s}\|{\boldsymbol{\psi}}_{m}\|_{T}^{2}\lesssim\sum_{T\in\widehat{}\mathcal{T}_{m}}\sum_{\ell=0}^{L}\sum_{\begin{subarray}{c}E\in\widetilde{}\mathcal{E}_{\ell}\\ \overline{m}(\ell,E)=m\end{subarray}}h_{E}^{-2+2s}\|\alpha_{\ell,E}{\boldsymbol{\psi}}_{\ell,E}\|_{T}^{2}=\sum_{\ell=0}^{L}\sum_{\begin{subarray}{c}E\in\widetilde{}\mathcal{E}_{\ell}\\ \overline{m}(\ell,E)=m\end{subarray}}h_{E}^{-2+2s}\|\alpha_{\ell,E}{\boldsymbol{\psi}}_{\ell,E}\|^{2}.

Recall the scaling hE1+sα,E𝝍,Eϕ,Esh_{E}^{-1+s}\|\alpha_{\ell,E}{\boldsymbol{\psi}}_{\ell,E}\|\simeq\|\phi_{\ell,E}\|_{-s}. Combining all estimates above we conclude that

ϕs2\displaystyle\|\phi\|_{-s}^{2} m=0Mh^m2+2sϕ^m12m=0M=0LE~m¯(,E)=mhE2+2sα,E𝝍,E2\displaystyle\lesssim\sum_{m=0}^{M}\widehat{h}_{m}^{-2+2s}\|\widehat{\phi}_{m}\|_{-1}^{2}\lesssim\sum_{m=0}^{M}\sum_{\ell=0}^{L}\sum_{\begin{subarray}{c}E\in\widetilde{}\mathcal{E}_{\ell}\\ \overline{m}(\ell,E)=m\end{subarray}}h_{E}^{-2+2s}\|\alpha_{\ell,E}{\boldsymbol{\psi}}_{\ell,E}\|^{2}
m=0M=0LE~m¯(,E)=mϕ,Es2==0LE~ϕ,Es2,\displaystyle\simeq\sum_{m=0}^{M}\sum_{\ell=0}^{L}\sum_{\begin{subarray}{c}E\in\widetilde{}\mathcal{E}_{\ell}\\ \overline{m}(\ell,E)=m\end{subarray}}\|\phi_{\ell,E}\|_{-s}^{2}=\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}}\|\phi_{\ell,E}\|_{-s}^{2},

which finishes the proof. ∎

4.7. Proof of Theorem 18 (adaptive meshes)

We only give a sketch of the proof since most arguments are the same as in Section 4.5 and Section 4.6.

For the proof of the upper bound let ϕ0𝒳Ω\phi_{0}\in\mathcal{X}_{\Omega}, ϕ,E𝒳,E\phi_{\ell,E}\in\mathcal{X}_{\ell,E}, E~ΩE\in\widetilde{}\mathcal{E}_{\ell}^{\Omega}, =0,,L\ell=0,\dots,L be given and

ϕ:=ϕ0+ϕ:=ϕ0+=0LE~Ωϕ,E.\displaystyle\phi:=\phi_{0}+\phi_{*}:=\phi_{0}+\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}^{\Omega}}\phi_{\ell,E}.

Therefore, ϕs,2ϕ0s,2+ϕs,2\|\phi\|_{-s,\sim}^{2}\lesssim\|\phi_{0}\|_{-s,\sim}^{2}+\|\phi_{*}\|_{-s,\sim}^{2}. The same arguments as in Section 4.6 show that

ϕs,2=0LE~Ωϕ,Es,2.\displaystyle\|\phi_{*}\|_{-s,\sim}^{2}\lesssim\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}^{\Omega}}\|\phi_{\ell,E}\|_{-s,\sim}^{2}.

Putting all estimates together this proves the upper bound in Theorem 18.

To see the lower bound let ϕ𝒫0(𝒯L)\phi\in\mathcal{P}^{0}(\mathcal{T}_{L}) be given and set ϕ0:=ΠΩ0ϕ𝒳0\phi_{0}:=\Pi^{0}_{\Omega}\phi\in\mathcal{X}_{0}, ϕ:=ϕϕ0\phi_{*}:=\phi-\phi_{0}. Then,

ϕ0s,2+ϕs,2ϕs,2.\displaystyle\|\phi_{0}\|_{-s,\sim}^{2}+\|\phi_{*}\|_{-s,\sim}^{2}\lesssim\|\phi\|_{-s,\sim}^{2}.

Following the arguments from Lemma 22 we deduce that there exist ϕ,E𝒳,E\phi_{\ell,E}\in\mathcal{X}_{\ell,E} with

ϕ==0LE~Ωϕ,E\displaystyle\phi_{*}=\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}^{\Omega}}\phi_{\ell,E}

and that

(21) =0LE~Ωϕ,Es,2ϕs,2+=1L(hs(Π0Π10)P¯ϕ2+hs(P¯P¯1)ϕ2).\displaystyle\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}^{\Omega}}\|\phi_{\ell,E}\|_{-s,\sim}^{2}\lesssim\|\phi_{*}\|_{-s,\sim}^{2}+\sum_{\ell=1}^{L}\Big{(}\|h_{\ell}^{s}(\Pi^{0}_{\ell}-\Pi^{0}_{\ell-1})\overline{P}_{\ell}^{\prime}\phi_{*}\|^{2}+\|h_{\ell}^{s}(\overline{P}_{\ell}^{\prime}-\overline{P}_{\ell-1}^{\prime})\phi_{*}\|^{2}\Big{)}.

The major differences are that instead of PP_{\ell}^{\prime}, QQ_{\ell} we use P¯\overline{P}_{\ell}^{\prime}, Q~\widetilde{Q}_{\ell} and instead of the local problem (20) we consider

Δuz\displaystyle\Delta u_{z} =Π10η1,z(P¯P¯1)ϕ\displaystyle=\Pi^{0}_{\ell-1}\eta_{\ell-1,z}(\overline{P}_{\ell}^{\prime}-\overline{P}_{\ell-1}^{\prime})\phi in Ω1(z),\displaystyle\text{in }\Omega_{\ell-1}(z),
𝒏uz\displaystyle\partial_{{\boldsymbol{n}}}u_{z} =0\displaystyle=0 on Ω1(z),\displaystyle\text{on }\partial\Omega_{\ell-1}(z),

i.e., pure Neumann boundary conditions. Moreover, we replace the definition of 𝑯0(div;Ω~)\boldsymbol{H}_{0}({\rm div\,};\widetilde{\Omega}) in Lemma 3 with

𝑯0(div;Ω~):={𝝉𝑯(div;Ω~):𝝉𝒏=0 on Ω~}.\displaystyle\boldsymbol{H}_{0}({\rm div\,};\widetilde{\Omega}):=\big{\{}{\boldsymbol{\tau}}\in\boldsymbol{H}({\rm div\,};\widetilde{\Omega})\,:\,{\boldsymbol{\tau}}\cdot{\boldsymbol{n}}=0\text{ on }\partial\widetilde{\Omega}\big{\}}.

It remains to show that

=0LE~Ωϕ,Es,2ϕs,2.\displaystyle\sum_{\ell=0}^{L}\sum_{E\in\widetilde{}\mathcal{E}_{\ell}^{\Omega}}\|\phi_{\ell,E}\|_{-s,\sim}^{2}\lesssim\|\phi_{*}\|_{-s,\sim}^{2}.

Again, following the arguments in Section 4.5 we obtain the estimate

(22) =1Lhs(Π0Π10)P¯ϕ2m=0h^m2+2s(1Π^(1),)ϕ1,2.\displaystyle\sum_{\ell=1}^{L}\|h_{\ell}^{s}(\Pi^{0}_{\ell}-\Pi^{0}_{\ell-1})\overline{P}_{\ell}^{\prime}\phi_{*}\|^{2}\lesssim\sum_{m=0}^{\infty}\widehat{h}_{m}^{-2+2s}\|(1-\widehat{\Pi}^{(-1),\sim}_{\ell})\phi_{*}\|_{-1,\sim}^{2}.

At this point it is important to note that to get the latter bound we use the following result instead of Lemma 24 combined with the local boundedness of P¯\overline{P}_{\ell}^{\prime} with respect to 1,T,Γ\|\cdot\|_{-1,T,\Gamma} (see Lemma 9).

Lemma 26.

Let ω1,,ωNΩ\omega_{1},\dots,\omega_{N}\subsetneq\Omega denote pairwise disjoint simply connected Lipschitz domains with positive measure and |ωjΓ|>0|\partial\omega_{j}\setminus\Gamma|>0. Then,

j=1Nψ|ωj1,ωj,Γ2ψ1,2for all ψL2(Ω),\displaystyle\sum_{j=1}^{N}\|\psi|_{\omega_{j}}\|_{-1,\omega_{j},\Gamma}^{2}\lesssim\|\psi\|_{-1,\sim}^{2}\quad\text{for all }\psi\in L^{2}(\Omega),

where the involved constant only depends on Ω\Omega.

Proof.

Let vjHΓ,c1(ωj)v_{j}\in H_{\Gamma,c}^{1}(\omega_{j}) such that ψ|ωj1,ωj,Γ2=(ψ,vj)ωj=vjωj2\|\psi|_{\omega_{j}}\|_{-1,\omega_{j},\Gamma}^{2}=(\psi\hskip 1.42262pt,v_{j})_{\omega_{j}}=\|\nabla v_{j}\|_{\omega_{j}}^{2}. Extend vjv_{j} on Ωωj\Omega\setminus\omega_{j} by 0 and note that vjH1(Ω)v_{j}\in H^{1}(\Omega) and vjH1(ωj)2=vjωj2+vjωj2vj2+diam(ωj)2vj2vj2+diam(Ω)2vj2vj2\|v_{j}\|_{H^{1}(\omega_{j})}^{2}=\|\nabla v_{j}\|_{\omega_{j}}^{2}+\|v_{j}\|_{\omega_{j}}^{2}\leq\|\nabla v_{j}\|^{2}+\mathrm{diam}(\omega_{j})^{2}\|\nabla v_{j}\|^{2}\leq\|\nabla v_{j}\|^{2}+\mathrm{diam}(\Omega)^{2}\|\nabla v_{j}\|^{2}\simeq\|\nabla v_{j}\|^{2}. Set v=j=1Nvjv=\sum_{j=1}^{N}v_{j} and observe that

j=1Nψ|ωj1,ωj,Γ2=(ψ,v)ψ1,vH1(Ω).\displaystyle\sum_{j=1}^{N}\|\psi|_{\omega_{j}}\|_{-1,\omega_{j},\Gamma}^{2}=(\psi\hskip 1.42262pt,v)\leq\|\psi\|_{-1,\sim}\|v\|_{H^{1}(\Omega)}.

We have that vH1(Ω)2=j=1NvjH1(ωj)2j=1Nvjωj2=j=1Nψ|ωj1,ωj,Γ2\|v\|_{H^{1}(\Omega)}^{2}=\sum_{j=1}^{N}\|v_{j}\|_{H^{1}(\omega_{j})}^{2}\lesssim\sum_{j=1}^{N}\|\nabla v_{j}\|_{\omega_{j}}^{2}=\sum_{j=1}^{N}\|\psi|_{\omega_{j}}\|_{-1,\omega_{j},\Gamma}^{2} which concludes the proof. ∎

We continue to estimate (22) by applying Theorem 12 which leads us to

=1Lhs(Π0Π10)P¯ϕ2m=0h^m2+2s(1Π^m(1),)ϕ1,2ϕ1,2.\displaystyle\sum_{\ell=1}^{L}\|h_{\ell}^{s}(\Pi^{0}_{\ell}-\Pi^{0}_{\ell-1})\overline{P}_{\ell}^{\prime}\phi_{*}\|^{2}\lesssim\sum_{m=0}^{\infty}\widehat{h}_{m}^{-2+2s}\|(1-\widehat{\Pi}^{(-1),\sim}_{m})\phi_{*}\|_{-1,\sim}^{2}\lesssim\|\phi_{*}\|_{-1,\sim}^{2}.

Similar arguments are used to estimate the last term in (21) which concludes the proof. ∎

4.8. Proof of Theorem 19 and Theorem 20

We only give the sketch of the proof of Theorem 19 as most arguments have already been given in Section 4.5 and Section 4.6. Moreover, the proof of Theorem 20 follows a similar argumentation and is thus omitted. Note that in Section 4.5 we have shown that

=1Lhs(PP1)ϕ2ϕs2.\displaystyle\sum_{\ell=1}^{L}\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|^{2}\lesssim\|\phi\|_{-s}^{2}.

Also note that h0sP0ϕP0ϕsϕs\|h_{0}^{s}P_{0}^{\prime}\phi\|\lesssim\|P_{0}^{\prime}\phi\|_{-s}\lesssim\|\phi\|_{-s} which proves =0Lhs(PP1)ϕ2ϕs2\sum_{\ell=0}^{L}\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|^{2}\lesssim\|\phi\|_{-s}^{2}.

To see the other direction we consider

(23) ϕ=PLϕ==0L(PP1)ϕ=P0ϕ+=1L(PP1)ϕ=:ϕ0+ϕ1.\displaystyle\phi=P_{L}^{\prime}\phi=\sum_{\ell=0}^{L}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi=P_{0}^{\prime}\phi+\sum_{\ell=1}^{L}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi=:\phi_{0}+\phi_{1}.

Clearly, ϕs2ϕ0s2+ϕ1s2\|\phi\|_{-s}^{2}\lesssim\|\phi_{0}\|_{-s}^{2}+\|\phi_{1}\|_{-s}^{2} and ϕ0sϕ0h0sϕ0\|\phi_{0}\|_{-s}\lesssim\|\phi_{0}\|\simeq\|h_{0}^{s}\phi_{0}\|. As in Section 4.5 and Section 4.6 we use the sequence of uniform meshes (^𝒯m)m0(\widehat{}\mathcal{T}_{m})_{m\in\mathbb{N}_{0}} with ^𝒯0=𝒯0\widehat{}\mathcal{T}_{0}=\mathcal{T}_{0} and note that there exists a function mm^{\prime} with m(1,z)=mm^{\prime}(\ell-1,z)=m such that diam(Ω1(z))h^m\mathrm{diam}(\Omega_{\ell-1}(z))\simeq\widehat{h}_{m} and η1,z(PP1)ϕ𝒫2(^𝒯m)\eta_{\ell-1,z}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\in\mathcal{P}^{2}(\widehat{}\mathcal{T}_{m}).With the partition of unity, 1=z𝒩1η1,z1=\sum_{z\in\mathcal{N}_{\ell-1}}\eta_{\ell-1,z}, we consider

ϕ1==1L(PP1)ϕ\displaystyle\phi_{1}=\sum_{\ell=1}^{L}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi ==1Lz𝒩1η1,z(PP1)ϕ\displaystyle=\sum_{\ell=1}^{L}\sum_{z\in\mathcal{N}_{\ell-1}}\eta_{\ell-1,z}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi
=m=0M=1Lz𝒩1m(1,z)=mη1,z(PP1)ϕ=:m=0Mϕ^m\displaystyle=\sum_{m=0}^{M}\sum_{\ell=1}^{L}\sum_{\begin{subarray}{c}z\in\mathcal{N}_{\ell-1}\\ m^{\prime}(\ell-1,z)=m\end{subarray}}\eta_{\ell-1,z}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi=:\sum_{m=0}^{M}\widehat{\phi}_{m}

and note that ϕ^m𝒫2(^𝒯m)\widehat{\phi}_{m}\in\mathcal{P}^{2}(\widehat{}\mathcal{T}_{m}). Thus, we can apply Lemma 11 which yields that

(24) ϕ1s2m=0Mh^m2+2sϕ^m12.\displaystyle\|\phi_{1}\|_{-s}^{2}\lesssim\sum_{m=0}^{M}\widehat{h}_{m}^{-2+2s}\|\widehat{\phi}_{m}\|_{-1}^{2}.

We use the same observations as in Step 3 of the proof of Lemma 22: For an interior node z𝒩1Ωz\in\mathcal{N}_{\ell-1}^{\Omega} we have (η1,z(PP1)ϕ,1)=0(\eta_{\ell-1,z}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\hskip 1.42262pt,1)=0 and if z𝒩1Γz\in\mathcal{N}_{\ell-1}^{\Gamma} then vH01(Ω)v\in H_{0}^{1}(\Omega) implies that vΩ1(z)diam(Ω1(z))vΩ1(z)\|v\|_{\Omega_{\ell-1}(z)}\lesssim\mathrm{diam}(\Omega_{\ell-1}(z))\|\nabla v\|_{\Omega_{\ell-1}(z)} since at least one facet of an element from ω1(z)\omega_{\ell-1}(z) is a boundary facet.

Let vH01(Ω)v\in H_{0}^{1}(\Omega). Using the latter observations and similar arguments as in Sections 4.54.7 we conclude that

(ϕ^m,v)\displaystyle(\widehat{\phi}_{m}\hskip 1.42262pt,v) ==1Lz𝒩1m(1,z)=m(η1,z(PP1)ϕ,v)Ω1(z)\displaystyle=\sum_{\ell=1}^{L}\sum_{\begin{subarray}{c}z\in\mathcal{N}_{\ell-1}\\ m^{\prime}(\ell-1,z)=m\end{subarray}}(\eta_{\ell-1,z}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\hskip 1.42262pt,v)_{\Omega_{\ell-1}(z)}
=1Lz𝒩1,η1,z(PP1)ϕ0m(1,z)=mdiam(Ω1(z))(PP1)ϕΩ1(z)vΩ1(z)\displaystyle\lesssim\sum_{\ell=1}^{L}\sum_{\begin{subarray}{c}z\in\mathcal{N}_{\ell-1},\eta_{\ell-1,z}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\neq 0\\ m^{\prime}(\ell-1,z)=m\end{subarray}}\mathrm{diam}(\Omega_{\ell-1}(z))\|(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|_{\Omega_{\ell-1}(z)}\|\nabla v\|_{\Omega_{\ell-1}(z)}
(=1Lz𝒩1m(1,z)=mh^m2(PP1)ϕΩ1(z)2)1/2v.\displaystyle\lesssim\Big{(}\sum_{\ell=1}^{L}\sum_{\begin{subarray}{c}z\in\mathcal{N}_{\ell-1}\\ m^{\prime}(\ell-1,z)=m\end{subarray}}\widehat{h}_{m}^{2}\|(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|_{\Omega_{\ell-1}(z)}^{2}\Big{)}^{1/2}\|\nabla v\|.

Dividing by v\|\nabla v\|, taking the supremum over 0vH01(Ω)0\neq v\in H_{0}^{1}(\Omega) together with (24) gives

ϕ1s2m=0M=1Lz𝒩1m(1,z)=mh^m2s(PP1)ϕΩ1(z)2=1Lhs(PP1)ϕ2\displaystyle\|\phi_{1}\|_{-s}^{2}\lesssim\sum_{m=0}^{M}\sum_{\ell=1}^{L}\sum_{\begin{subarray}{c}z\in\mathcal{N}_{\ell-1}\\ m^{\prime}(\ell-1,z)=m\end{subarray}}\widehat{h}_{m}^{2s}\|(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|_{\Omega_{\ell-1}(z)}^{2}\lesssim\sum_{\ell=1}^{L}\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi\|^{2}

which finishes the proof. ∎

5. Numerical experiments

In this section we present some numerical examples to support the results from Theorem 17 and 19. All experiments have been realized using Matlab version 2017b on a Linux machine with an Intel i5-2520M processor and 88 GB RAM.

Let conv(,,)\mathrm{conv}(\cdot,\cdot,\cdot) denote the convex hull. We consider the initial mesh

𝒯0:={conv(z1,z2,z5),conv(z2,z3,z5),conv(z3,z4,z5),conv(z4,z1,z5)},\displaystyle\mathcal{T}_{0}:=\left\{\mathrm{conv}\big{(}z_{1},z_{2},z_{5}\big{)},\,\mathrm{conv}\big{(}z_{2},z_{3},z_{5}\big{)},\,\mathrm{conv}\big{(}z_{3},z_{4},z_{5}\big{)},\,\mathrm{conv}\big{(}z_{4},z_{1},z_{5}\big{)}\right\},

where z1,,z4z_{1},\dots,z_{4} denote the corners of the domain Ω=(0,1)2\Omega=(0,1)^{2} and z5=(12,12)z_{5}=(\tfrac{1}{2},\tfrac{1}{2}). We consider two sequences of meshes, namely, uniform meshes (𝒯)=0L=(𝒯unif)=0L(\mathcal{T}_{\ell})_{\ell=0}^{L}=(\mathcal{T}_{\ell}^{\mathrm{unif}})_{\ell=0}^{L} and locally refined meshes (𝒯)=0L=(𝒯adap)=0L(\mathcal{T}_{\ell})_{\ell=0}^{L}=(\mathcal{T}_{\ell}^{\mathrm{adap}})_{\ell=0}^{L}. The uniform mesh 𝒯+1unif\mathcal{T}_{\ell+1}^{\mathrm{unif}} is created by dividing each element of 𝒯unif\mathcal{T}_{\ell}^{\mathrm{unif}} into four son elements with equal area by applying (iteratively) the newest-vertex bisection rule. The adaptive mesh 𝒯+1adap\mathcal{T}_{\ell+1}^{\mathrm{adap}} is created by marking all elements in the mesh 𝒯adap\mathcal{T}_{\ell}^{\mathrm{adap}} which share the vertex z5z_{5} for refinement and then applying the routine given in [21, Listing 5.2] (which also employs newest-vertex bisection).

In Section 5.1 we present results for the preconditioner induced by the decomposition from Theorem 17 and in Section 5.2 we show results corresponding to Theorem 19. In both cases we use a discrete Hs(Ω)H^{-s}(\Omega) norm which is defined by following the ideas from [2]: First, let 𝑯0\boldsymbol{H}_{0} denote the L2(Ω)L^{2}(\Omega) Riesz matrix with respect to the canonical basis χT1,,χT#𝒯L\chi_{T_{1}},\dots,\chi_{T_{\#\mathcal{T}_{L}}} of 𝒫0(𝒯L)\mathcal{P}^{0}(\mathcal{T}_{L}). Second, let 𝑯1\boldsymbol{H}_{-1} denote the Riesz matrix of the discrete H1(Ω)H^{-1}(\Omega) inner product from [20, Section 7.1], given by

𝑯1=𝑴𝑯11𝑴+β𝑯~0.\displaystyle\boldsymbol{H}_{-1}=\boldsymbol{M}^{\top}\boldsymbol{H}_{1}^{-1}\boldsymbol{M}+\beta\widetilde{\boldsymbol{H}}_{0}.

Here, the entries of the above matrices are given by

𝑴[j,]:=(χT,ηL,zj),𝑯1[j,k]:=(ηL,zj,ηL,zk),𝑯~0[m,]:=(h~L2χT,χTm)\displaystyle\boldsymbol{M}[j,\ell]:=(\chi_{T_{\ell}}\hskip 1.42262pt,\eta_{L,z_{j}}),\quad\boldsymbol{H}_{1}[j,k]:=(\nabla\eta_{L,z_{j}}\hskip 1.42262pt,\nabla\eta_{L,z_{k}}),\quad\widetilde{\boldsymbol{H}}_{0}[m,\ell]:=(\widetilde{h}_{L}^{2}\chi_{T_{\ell}}\hskip 1.42262pt,\chi_{T_{m}})

for j,k=1,,dim(𝒮01(𝒯L))j,k=1,\dots,\dim(\mathcal{S}_{0}^{1}(\mathcal{T}_{L})), ,m=1,,#𝒯L\ell,m=1,\dots,\#\mathcal{T}_{L} and ηL,zj\eta_{L,z_{j}} denotes the nodal basis of 𝒮01(𝒯L)\mathcal{S}_{0}^{1}(\mathcal{T}_{L}). Moreover, h~L|T:=|T|1/2\widetilde{h}_{L}|_{T}:=|T|^{1/2} is an equivalent mesh-size function and β1\beta\simeq 1 can be freely chosen. For the following experiments we choose β=15\beta=\tfrac{1}{5}. Then, by [2, Proposition 3.2] the matrix

𝑯s:=𝑸𝑹1s𝑸\displaystyle\boldsymbol{H}_{-s}:=\boldsymbol{Q}^{\top}\boldsymbol{R}^{1-s}\boldsymbol{Q}

defines a discrete Hs(Ω)H^{-s}(\Omega) inner product which is equivalent to s\|\cdot\|_{-s}, i.e.,

ϕs,h2:=𝒙𝑯s𝒙ϕs2for all ϕ𝒫0(𝒯L) with coefficient vector 𝒙.\displaystyle\|\phi\|_{-s,h}^{2}:=\boldsymbol{x}^{\top}\boldsymbol{H}_{-s}\boldsymbol{x}\simeq\|\phi\|_{-s}^{2}\quad\text{for all }\phi\in\mathcal{P}^{0}(\mathcal{T}_{L})\text{ with coefficient vector }\boldsymbol{x}.

Here, 𝑹\boldsymbol{R} is a diagonal matrix with positive entries and 𝑸\boldsymbol{Q} is invertible with 𝑯11𝑯0=𝑸1𝑹𝑸\boldsymbol{H}_{-1}^{-1}\boldsymbol{H}_{0}=\boldsymbol{Q}^{-1}\boldsymbol{R}\boldsymbol{Q}, see [2, Section 3.1] for a detailed description. We note that the latter equivalence result requires the existence of a projection operator onto 𝒫0(𝒯L)\mathcal{P}^{0}(\mathcal{T}_{L}) which is bounded in H1(Ω)H^{-1}(\Omega) and L2(Ω)L^{2}(\Omega), see [2, Lemma 2.3]. In our situation such an operator is given by QLQ_{L} (Theorem 8).

5.1. Multilevel preconditioner in Hs(Ω)H^{-s}(\Omega)

Refer to caption
Refer to caption
Figure 1. Condition numbers in the case of uniform meshes for s=0,14s=0,\tfrac{1}{4} (left) and s=12,34s=\tfrac{1}{2},\tfrac{3}{4} (right).
Refer to caption
Refer to caption
Figure 2. Condition numbers in the case of adaptive meshes for s=0,14s=0,\tfrac{1}{4} (left) and s=12,34s=\tfrac{1}{2},\tfrac{3}{4} (right).

We start with a description of the matrix representation of the preconditioner associated to the multilevel decomposition from Theorem 17. We use similar notations and definitions as in [19, Section 3.1]. Let 𝑰#𝒯L×#𝒯\boldsymbol{I}_{\ell}\in\mathbb{R}^{\#\mathcal{T}_{L}\times\#\mathcal{T}_{\ell}} denote the matrix representation of the embedding 𝒫0(𝒯)𝒫0(𝒯L)\mathcal{P}^{0}(\mathcal{T}_{\ell})\hookrightarrow\mathcal{P}^{0}(\mathcal{T}_{L}) and let 𝑻#𝒯×#\boldsymbol{T}_{\ell}\in\mathbb{R}^{\#\mathcal{T}_{\ell}\times\#\mathcal{E}_{\ell}} denote the representation of the Haar-type functions ψ,E\psi_{\ell,E}, i.e.,

ψ,Ej=i=1#𝒯𝑻[i,j]χ,Tifor all Ej.\displaystyle\psi_{\ell,E_{j}}=\sum_{i=1}^{\#\mathcal{T}_{\ell}}\boldsymbol{T}_{\ell}[i,j]\chi_{\ell,T_{i}}\quad\text{for all }E_{j}\in\mathcal{E}_{\ell}.

Note that 𝑻\boldsymbol{T}_{\ell} is sparse since ψ,Ej\psi_{\ell,E_{j}} is supported on at most two elements. Furthermore, let 𝑫,s#×#\boldsymbol{D}_{\ell,s}\in\mathbb{R}^{\#\mathcal{E}_{\ell}\times\#\mathcal{E}_{\ell}} denote the diagonal matrix with entries

𝑫,s[j,k]={ψ,Ejs,h2if j=k and Ej~,0else.\displaystyle\boldsymbol{D}_{\ell,s}[j,k]=\begin{cases}\|\psi_{\ell,E_{j}}\|_{-s,h}^{-2}&\text{if }j=k\text{ and }E_{j}\in\widetilde{}\mathcal{E}_{\ell},\\ 0&\text{else}.\end{cases}

Recall that s,h\|\cdot\|_{-s,h} is the discrete Hs(Ω)H^{-s}(\Omega) norm induced by the matrix 𝑯s\boldsymbol{H}_{-s}. The matrix representation of the multilevel preconditioner then reads

𝑷s1==0L𝑰𝑻𝑫,s𝑻𝑰.\displaystyle\boldsymbol{P}_{s}^{-1}=\sum_{\ell=0}^{L}\boldsymbol{I}_{\ell}\boldsymbol{T}_{\ell}\boldsymbol{D}_{\ell,s}\boldsymbol{T}_{\ell}^{\top}\boldsymbol{I}_{\ell}^{\top}.

It follows from Theorem 17 and the additive Schwarz theory, see Section 2.7, that the spectral condition number of the preconditioned matrix 𝑷s1𝑯s\boldsymbol{P}_{s}^{-1}\boldsymbol{H}_{-s} is uniformly bounded, i.e,

κ(𝑷s1𝑯s)1.\displaystyle\kappa(\boldsymbol{P}_{s}^{-1}\boldsymbol{H}_{-s})\lesssim 1.

In the experiments we also consider the diagonal preconditioner 𝑪s1:=diag(𝑯s)1\boldsymbol{C}_{s}^{-1}:=\mathrm{diag}(\boldsymbol{H}_{-s})^{-1}. Figure 1 and Figure 2 show the results for different values of ss for uniform and adaptive meshes, respectively. Note that the case s=0s=0 is not covered in Theorem 17, cf. Remark 21. Although the condition numbers of 𝑷s1𝑯s\boldsymbol{P}_{s}^{-1}\boldsymbol{H}_{-s} for s=0s=0, s=1/4s=1/4 are higher than in the case of the diagonally preconditioned matrices it seems that they reach an asymptotic uniform bound supporting the result from Theorem 17. We stress that in the case of the diagonal preconditioner the condition numbers are of order 𝒪((#𝒯L)s)\mathcal{O}((\#\mathcal{T}_{L})^{s}), see [1] for details on diagonally preconditioned systems for problems in fractional order Sobolev spaces. For s=12s=\tfrac{1}{2} and s=34s=\tfrac{3}{4} we observe that our proposed preconditioner outperforms the simple diagonal scaling and yields uniformly bounded condition numbers on uniform as well as locally refined meshes.

5.2. Multilevel norm in Hs(Ω)H^{-s}(\Omega)

Refer to caption
Refer to caption
Figure 3. Squared norm equivalence constants in the case of adaptive meshes for s=12,34s=\tfrac{1}{2},\tfrac{3}{4} for the multilevel norms from Section 5.2.

Define the matrices 𝑩s,Π0,𝑩s,P#𝒯L×#𝒯L\boldsymbol{B}_{s,\Pi^{0}},\boldsymbol{B}_{s,P^{\prime}}\in\mathbb{R}^{\#\mathcal{T}_{L}\times\#\mathcal{T}_{L}} by

𝑩s,Π0[j,k]\displaystyle\boldsymbol{B}_{s,\Pi^{0}}[j,k] :==0L(h~2s(Π0Π10)χTk,(Π0Π10)χTj),\displaystyle:=\sum_{\ell=0}^{L}(\widetilde{h}_{\ell}^{2s}(\Pi^{0}_{\ell}-\Pi^{0}_{\ell-1})\chi_{T_{k}}\hskip 1.42262pt,(\Pi^{0}_{\ell}-\Pi^{0}_{\ell-1})\chi_{T_{j}}),
𝑩s,P[j,k]\displaystyle\boldsymbol{B}_{s,P^{\prime}}[j,k] :==0L(h~2s(PP1)χTk,(PP1)χTj)\displaystyle:=\sum_{\ell=0}^{L}(\widetilde{h}_{\ell}^{2s}(P^{\prime}_{\ell}-P^{\prime}_{\ell-1})\chi_{T_{k}}\hskip 1.42262pt,(P^{\prime}_{\ell}-P^{\prime}_{\ell-1})\chi_{T_{j}})

for all j,k=1,,#𝒯Lj,k=1,\dots,\#\mathcal{T}_{L}. Note that 𝑩s,Π0\boldsymbol{B}_{s,\Pi^{0}} corresponds to the multilevel norm from (1) and 𝑩s,P\boldsymbol{B}_{s,P^{\prime}} to the one from Theorem 19. (The only difference is the use of the equivalent mesh-size function h~\widetilde{h}_{\ell}.) The main idea of the numerical experiments in this section is to compute the optimal constants λmin,\lambda_{\mathrm{min},\star}, λmax,\lambda_{\mathrm{max},\star} for {Π0,P}\star\in\{\Pi^{0},P^{\prime}\} that satisfy

λmin,𝒙𝑩s,𝒙𝒙𝑯s𝒙λmax,𝒙𝑩s,𝒙for all 𝒙#𝒯L.\displaystyle\lambda_{\mathrm{min},\star}\boldsymbol{x}^{\top}\boldsymbol{B}_{s,\star}\boldsymbol{x}\leq\boldsymbol{x}^{\top}\boldsymbol{H}_{-s}\boldsymbol{x}\leq\lambda_{\mathrm{max},\star}\boldsymbol{x}^{\top}\boldsymbol{B}_{s,\star}\boldsymbol{x}\quad\text{for all }\boldsymbol{x}\in\mathbb{R}^{\#\mathcal{T}_{L}}.

Figure 3 shows the results for adaptive meshes and s=12,34s=\tfrac{1}{2},\tfrac{3}{4}. Note that we expect that λmin,Π0\lambda_{\mathrm{min},\Pi^{0}} deteriorates, see [32, Theorem 2] and Section 1.1 for the case of uniform meshes and s12s\geq\tfrac{1}{2}. This can be seen in our results also for the adaptive meshes under consideration. Contrary, Theorem 19 predicts uniformly bounded λmin,P\lambda_{\mathrm{min},P^{\prime}}, λmax,P\lambda_{\mathrm{max},P^{\prime}} which is also observed in Figure 3.

6. Concluding remarks

First, all given theorems in Section 3 are valid if we replace the Lipschitz domain Ω\Omega with a regular manifold Γ~Γ=Ω\widetilde{\Gamma}\subseteq\Gamma=\partial\Omega. The proofs are almost identical with some minor modifications. The most notable are the use of Raviart–Thomas surface elements, the definition of the corresponding operator from Lemma 3, and the use of local Laplace–Beltrami problems in (18) resp. (20). In our work [19] we considered the case of a closed manifold Γ~\widetilde{\Gamma} and proved Theorem 18 for s=1/2s=1/2 using different techniques (we constructed extension operators into spaces associated to the volume Ω\Omega similar as in [28]). Numerical examples in [19, Section 4] provide the numerical evidence of the optimality of the preconditioners associated to the multilevel decompositions for the case s=1/2s=1/2. We stress that in [19] we did not prove optimality for open manifolds but only claimed it [19, Remark 4]. Thus, Theorem 18 provides the mathematical proof of this claim which is supported by numerical experiments [19, Section 4.4].

Second, concerning implementation of the preconditioners corresponding to Theorem 17 resp. Theorem 18 it is well-known that multilevel decompositions based on one-dimensional subspaces lead to (local) multilevel diagonal scaling preconditioners which are utmost simple to implement. Moreover, the preconditioners can be evaluated in 𝒪(#𝒯L)\mathcal{O}(\#\mathcal{T}_{L}) operations and the storage requirements are 𝒪(#𝒯L)\mathcal{O}(\#\mathcal{T}_{L}) units. We refer to [19, Section 3] for a short discussion.

Third, concerning implementation of the multilevel norms from Theorem 19 resp. Theorem 20 we note that the local definition of the involved operators imply that (PP1)ϕ(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi is supported only in a neighborhood of 𝒯𝒯1\mathcal{T}_{\ell}\setminus\mathcal{T}_{\ell-1} and therefore the multilevel norms can be evaluated in 𝒪(#𝒯L)\mathcal{O}(\#\mathcal{T}_{L}) operations. Contrary to [2] our proposed multilevel norms do not rely on the evaluation of powers of a matrix.

Fourth, the decompositions 𝒳L\mathcal{X}_{L} resp. 𝒳~L\widetilde{\mathcal{X}}_{L} in Theorem 17 resp. Theorem 18 can be replaced by

𝒳L\displaystyle\mathcal{X}_{L} :={𝒫0(𝒯0)}{𝒳,E:E~,=1,,L}resp.\displaystyle:=\{\mathcal{P}^{0}(\mathcal{T}_{0})\}\cup\big{\{}\mathcal{X}_{\ell,E}\,:\,E\in\widetilde{}\mathcal{E}_{\ell},\,\ell=1,\dots,L\big{\}}\quad\text{resp.}
𝒳~L\displaystyle\widetilde{\mathcal{X}}_{L} :={𝒫0(𝒯0)}{𝒳,E:E~Ω,=1,,L}.\displaystyle:=\{\mathcal{P}^{0}(\mathcal{T}_{0})\}\cup\big{\{}\mathcal{X}_{\ell,E}\,:\,E\in\widetilde{}\mathcal{E}_{\ell}^{\Omega},\,\ell=1,\dots,L\big{\}}.

Note that the additional space 𝒫0(𝒯0)\mathcal{P}^{0}(\mathcal{T}_{0}) necessitates the inversion of the Riesz matrix corresponding to the inner product (,)s(\cdot\hskip 1.42262pt,\cdot)_{-s} resp. (,)s,(\cdot\hskip 1.42262pt,\cdot)_{-s,\sim} or a discrete one on the coarsest level when implementing the preconditioners. However, tighter equivalence constants are expected.

Fifth, decompositions resp. multilevel norms for polynomial discretization spaces of higher order can be handled using the following observations: For some fixed p1p\geq 1 consider

𝒫p(𝒯L)=𝒫0(𝒯L)𝒫p(𝒯L)\displaystyle\mathcal{P}^{p}(\mathcal{T}_{L})=\mathcal{P}^{0}(\mathcal{T}_{L})\oplus\mathcal{P}_{*}^{p}(\mathcal{T}_{L})

where 𝒫p(𝒯L)\mathcal{P}_{*}^{p}(\mathcal{T}_{L}) is L2(Ω)L^{2}(\Omega) orthogonal to 𝒫0(𝒯L)\mathcal{P}^{0}(\mathcal{T}_{L}). Let {χT^,1,,χT^,dp1}\{\chi_{\widehat{T},1},\dots,\chi_{\widehat{T},d_{p}-1}\} denote a basis of 𝒫p(T^)\mathcal{P}_{*}^{p}(\widehat{T}) with T^\widehat{T} being a reference element and dp=dim(𝒫p(T))d_{p}=\dim(\mathcal{P}^{p}(T)). Using affine transformations this basis defines a basis {χT,1,,χT,dp1}\{\chi_{T,1},\dots,\chi_{T,d_{p}-1}\} of 𝒫p(T)\mathcal{P}_{*}^{p}(T) for all T𝒯LT\in\mathcal{T}_{L}. Then,

ϕs2ϕ0s2+T𝒯Lj=1dp1ϕT,js2.\displaystyle\|\phi\|_{-s}^{2}\simeq\|\phi_{0}\|_{-s}^{2}+\sum_{T\in\mathcal{T}_{L}}\sum_{j=1}^{d_{p}-1}\|\phi_{T,j}\|_{-s}^{2}.

for ϕ=ϕ0+T𝒯Lj=1dp1ϕT,j𝒫p(𝒯L)\phi=\phi_{0}+\sum_{T\in\mathcal{T}_{L}}\sum_{j=1}^{d_{p}-1}\phi_{T,j}\in\mathcal{P}^{p}(\mathcal{T}_{L}) with ϕ0𝒫0(𝒯L)\phi_{0}\in\mathcal{P}^{0}(\mathcal{T}_{L}) and ϕT,jspan{χT,j}\phi_{T,j}\in\operatorname{span}\{\chi_{T,j}\}. The case s=0s=0 is trivial, the case s=1s=1 can be seen from boundedness of ΠL0\Pi^{0}_{L} restricted to polynomials and inverse estimates see, e.g. [20, Lemma 9]. The general case s(0,1)s\in(0,1) is derived from the latter two. The latter equivalence holds replacing s\|\cdot\|_{-s} with s,\|\cdot\|_{-s,\sim}, thus, we conclude:

Corollary 27.

Let p0p\in\mathbb{N}_{0}. Theorem 17 and Theorem 18 remain valid if 𝒫0(𝒯L)\mathcal{P}^{0}(\mathcal{T}_{L}) is replaced with 𝒫p(𝒯L)\mathcal{P}^{p}(\mathcal{T}_{L}) and the decompositions 𝒳L\mathcal{X}_{L} resp. 𝒳~L\widetilde{\mathcal{X}}_{L} are replaced with

𝒳Lp\displaystyle\mathcal{X}_{L}^{p} :=𝒳L{span{χT,j}:j=1,,dp1,T𝒯L}resp.\displaystyle:=\mathcal{X}_{L}\cup\big{\{}\operatorname{span}\{\chi_{T,j}\}\,:\,j=1,\dots,d_{p}-1,\,T\in\mathcal{T}_{L}\big{\}}\quad\text{resp.}
𝒳~Lp\displaystyle\widetilde{\mathcal{X}}_{L}^{p} :=𝒳~L{span{χT,j}:j=1,,dp1,T𝒯L}.\displaystyle:=\widetilde{\mathcal{X}}_{L}\cup\big{\{}\operatorname{span}\{\chi_{T,j}\}\,:\,j=1,\dots,d_{p}-1,\,T\in\mathcal{T}_{L}\big{\}}.

The involved constants additionally depend on p0p\in\mathbb{N}_{0} and the basis of 𝒫p(T^)\mathcal{P}_{*}^{p}(\widehat{T}).

Similarly, we adapt the multilevel norms from Theorem 19 resp. 20:

Corollary 28.

Let p0p\in\mathbb{N}_{0}, s(0,1)s\in(0,1). Then,

ϕs2\displaystyle\|\phi\|_{-s}^{2} =0Lhs(PP1)ϕ02+T𝒯Lj=1dp1hT2sϕT,jT2,\displaystyle\simeq\sum_{\ell=0}^{L}\|h_{\ell}^{s}(P_{\ell}^{\prime}-P_{\ell-1}^{\prime})\phi_{0}\|^{2}+\sum_{T\in\mathcal{T}_{L}}\sum_{j=1}^{d_{p}-1}h_{T}^{2s}\|\phi_{T,j}\|_{T}^{2},
ϕs,2\displaystyle\|\phi\|_{-s,\sim}^{2} =0Lhs(P¯P¯1)ϕ02+T𝒯Lj=1dp1hT2sϕT,jT2\displaystyle\simeq\sum_{\ell=0}^{L}\|h_{\ell}^{s}(\overline{P}_{\ell}^{\prime}-\overline{P}_{\ell-1}^{\prime})\phi_{0}\|^{2}+\sum_{T\in\mathcal{T}_{L}}\sum_{j=1}^{d_{p}-1}h_{T}^{2s}\|\phi_{T,j}\|_{T}^{2}

for all ϕ:=ϕ0+ϕ1:=ΠL0ϕ+(1ΠL0)ϕ𝒫p(𝒯L)\phi:=\phi_{0}+\phi_{1}:=\Pi^{0}_{L}\phi+(1-\Pi^{0}_{L})\phi\in\mathcal{P}^{p}(\mathcal{T}_{L}) with (1ΠL0)ϕ=T𝒯Lj=1dp1ϕT,j(1-\Pi^{0}_{L})\phi=\sum_{T\in\mathcal{T}_{L}}\sum_{j=1}^{d_{p}-1}\phi_{T,j}. The involved constants depend only on Ω\Omega, ss, dd, pp, the constants from (A1)(A3), 𝒯0\mathcal{T}_{0}, and the basis of 𝒫p(T^)\mathcal{P}_{*}^{p}(\widehat{T}).

Finally, besides the already mentioned applications in preconditioning, the presented multilevel norms can be used in minimization problems involving negative order Sobolev spaces, which will be reported in future works.

References

  • [1] M. Ainsworth, W. McLean, and T. Tran. The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal., 36(6):1901–1932, 1999.
  • [2] M. Arioli and D. Loghin. Discrete interpolation norms with applications. SIAM J. Numer. Anal., 47(4):2924–2951, 2009.
  • [3] T. Bærland, M. Kuchta, and K.-A. Mardal. Multigrid methods for discrete fractional Sobolev spaces. SIAM J. Sci. Comput., 41(2):A948–A972, 2019.
  • [4] J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.
  • [5] S. Berrone, A. Bonito, R. Stevenson, and M. Verani. An optimal adaptive fictitious domain method. Math. Comp., 88(319):2101–2134, 2019.
  • [6] F. Bornemann and H. Yserentant. A basic norm equivalence for the theory of multilevel methods. Numer. Math., 64(4):455–476, 1993.
  • [7] F. A. Bornemann. Interpolation spaces and optimal multilevel preconditioners. In Domain decomposition methods in scientific and engineering computing (University Park, PA, 1993), volume 180 of Contemp. Math., pages 3–8. Amer. Math. Soc., Providence, RI, 1994.
  • [8] J. H. Bramble, J. E. Pasciak, and P. S. Vassilevski. Computational scales of Sobolev norms with application to preconditioning. Math. Comp., 69(230):463–480, 2000.
  • [9] C. Burstedde. On the numerical evaluation of fractional Sobolev norms. Commun. Pure Appl. Anal., 6(3):587–605, 2007.
  • [10] C. Canuto, A. Tabacco, and K. Urban. The wavelet element method. I. Construction and analysis. Appl. Comput. Harmon. Anal., 6(1):1–52, 1999.
  • [11] S. N. Chandler-Wilde, D. P. Hewett, and A. Moiola. Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples. Mathematika, 61(2):414–443, 2015.
  • [12] H. Chen, R. H. W. Hoppe, and X. Xu. Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation. ESAIM Math. Model. Numer. Anal., 47(1):125–147, 2013.
  • [13] H. Chen, X. Xu, and W. Zheng. Local multilevel methods for second-order elliptic problems with highly discontinuous coefficients. J. Comput. Math., 30(3):223–248, 2012.
  • [14] L. Chen, R. H. Nochetto, and J. Xu. Optimal multilevel methods for graded bisection grids. Numer. Math., 120(1):1–34, 2012.
  • [15] W. Dahmen, H. Harbrecht, and R. Schneider. Adaptive methods for boundary integral equations: complexity and convergence estimates. Math. Comp., 76(259):1243–1274, 2007.
  • [16] A. Ern, T. Gudi, I. Smears, and M. Vohralík. Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in H(div). IMA J. Numer. Anal., 03 2021. draa103, published online.
  • [17] M. Faustmann and J. M. Melenk. On the stability of Scott-Zhang type operators and application to multilevel preconditioning in fractional diffusion. ESAIM Math. Model. Numer. Anal., 55(2):595–625, 2021.
  • [18] M. Feischl, T. Führer, D. Praetorius, and E. P. Stephan. Optimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations. Calcolo, 54(1):367–399, 2017.
  • [19] T. Führer, A. Haberl, D. Praetorius, and S. Schimanko. Adaptive BEM with inexact PCG solver yields almost optimal computational costs. Numer. Math., 141(4):967–1008, 2019.
  • [20] T. Führer and N. Heuer. Optimal quasi-diagonal preconditioners for pseudodifferential operators of order minus two. J. Sci. Comput., 79(2):1161–1181, 2019.
  • [21] S. Funken, D. Praetorius, and P. Wissgott. Efficient implementation of adaptive P1-FEM in Matlab. Comput. Methods Appl. Math., 11(4):460–490, 2011.
  • [22] D. Gallistl, M. Schedensack, and R. P. Stevenson. A remark on newest vertex bisection in any space dimension. Comput. Methods Appl. Math., 14(3):317–320, 2014.
  • [23] I. G. Graham, W. Hackbusch, and S. A. Sauter. Finite elements on degenerate meshes: inverse-type inequalities and applications. IMA J. Numer. Anal., 25(2):379–407, 2005.
  • [24] H. Harbrecht and R. Schneider. Biorthogonal wavelet bases for the boundary element method. Math. Nachr., 269/270:167–188, 2004.
  • [25] N. Heuer. Additive Schwarz method for the pp-version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math., 88(3):485–511, 2001.
  • [26] N. Heuer, E. P. Stephan, and T. Tran. Multilevel additive Schwarz method for the hh-pp version of the Galerkin boundary element method. Math. Comp., 67(222):501–518, 1998.
  • [27] R. Hiptmair. Operator preconditioning. Comput. Math. Appl., 52(5):699–706, 2006.
  • [28] R. Hiptmair, C. Jerez-Hanckes, and S. Mao. Extension by zero in discrete trace spaces: inverse estimates. Math. Comp., 84(296):2589–2615, 2015.
  • [29] R. Hiptmair, H. Wu, and W. Zheng. Uniform convergence of adaptive multigrid methods for elliptic problems and Maxwell’s equations. Numer. Math. Theory Methods Appl., 5(3):297–332, 2012.
  • [30] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.
  • [31] P. Oswald. Multilevel finite element approximation. Teubner Skripten zur Numerik. [Teubner Scripts on Numerical Mathematics]. B. G. Teubner, Stuttgart, 1994. Theory and applications.
  • [32] P. Oswald. Multilevel norms for H1/2H^{-1/2}. Computing, 61(3):235–255, 1998.
  • [33] P. Oswald. Interface preconditioners and multilevel extension operators. In Eleventh International Conference on Domain Decomposition Methods (London, 1998), pages 97–104. DDM.org, Augsburg, 1999.
  • [34] J. Peetre. A theory of interpolation of normed spaces. Notas de Matemática, No. 39. Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.
  • [35] G. Schmidlin and C. Schwab. Wavelet Galerkin BEM on unstructured meshes by aggregation. In Multiscale and multiresolution methods, volume 20 of Lect. Notes Comput. Sci. Eng., pages 359–378. Springer, Berlin, 2002.
  • [36] L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54(190):483–493, 1990.
  • [37] R. Stevenson. Piecewise linear (pre-)wavelets on non-uniform meshes. In Multigrid methods V (Stuttgart, 1996), volume 3 of Lect. Notes Comput. Sci. Eng., pages 306–319. Springer, Berlin, 1998.
  • [38] R. Stevenson. Stable three-point wavelet bases on general meshes. Numer. Math., 80(1):131–158, 1998.
  • [39] R. Stevenson. The completion of locally refined simplicial partitions created by bisection. Math. Comp., 77(261):227–241, 2008.
  • [40] R. Stevenson and R. van Venetië. Uniform preconditioners for problems of negative order. Math. Comp., 89(322):645–674, 2020.
  • [41] R. Stevenson and R. van Venetië. Uniform preconditioners for problems of positive order. Comput. Math. Appl., 79(12):3516–3530, 2020.
  • [42] R. Stevenson and R. van Venetië. Uniform preconditioners of linear complexity for problems of negative order. Comput. Methods Appl. Math., 21(2):469–478, 2021.
  • [43] A. Toselli and O. Widlund. Domain decomposition methods—algorithms and theory, volume 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.
  • [44] T. Tran and E. P. Stephan. Additive Schwarz method for the h-version boundary element method. Appl. Anal., 60:63–84, 1996.
  • [45] H. Triebel. Interpolation theory, function spaces, differential operators, volume 18 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-New York, 1978.
  • [46] H. Wu and Z. Chen. Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China Ser. A, 49(10):1405–1429, 2006.
  • [47] J. Wu and H. Zheng. Uniform convergence of multigrid methods for adaptive meshes. Appl. Numer. Math., 113:109–123, 2017.