This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Multidimensional empirical wavelet transform

Charles-Gérard Lucas Department of Mathematics & Statistics, San Diego State University, 5500 Campanile Dr., San Diego, 92182, CA, USA. ([email protected], [email protected]).    Jérôme Gilles11footnotemark: 1
Abstract

The empirical wavelet transform is a data-driven time-scale representation consisting of an adaptive filter bank. Its robustness to data has made it the subject of intense developments and an increasing number of applications in the last decade. However, it has been mostly studied theoretically for signals and its extension to images is limited to a particular generating function. This work presents a general framework for multidimensional empirical wavelet transform based on any wavelet kernel. It also provides conditions to build wavelet frames for both continuous and discrete transforms. Moreover, numerical simulations of transforms are given.

Keywords: empirical wavelets, multidimensional transform, frames, image processing.

MSCcodes: 42C15, 42C40, 68U10.

1 Introduction

The wavelet transform is a reference tool for time-scale representation used in many signal and image processing techniques, such as denoising, deconvolution and texture segmentation. Originally, it consists of projecting data onto wavelet filters that are built from a mother wavelet which is scaled and modulated independently of the data. In practice, this leads to the construction of wavelet filters based on a prescribed scheme, such as a dyadic decomposition. Although this approach is widely used in contemporary research, it is not guaranteed to be optimal for the data at hand, since a prescribed scheme does not take into account the specificity of the underlying Fourier spectrum. Therefore, data-driven filtering approaches have received much attention to provide an accurate time-scale representation that is robust to the data. Among them, empirical mode decomposition [14], a purely algorithmic approach which behaves as a filter bank [6], has been widely used in real-world applications. Inspired by this decomposition, empirical wavelet transform has been introduced in [7] to provide a more consistant decomposition with a sound theoretical foundation [18, 30]. In the last decade, this transform has been the subject of an increasing interest through a continuous development and numerous applications in various fields, as reviewed in [15, 23]. To name a few applications, we can mention seismic time-frequency analysis [22], electrocardiogram (ECG) signal compression [19], epileptic seizure detection [1, 27], speech recognition [21], time series forecasting [25], glaucoma detection [24], hyperspectral image classification [26], texture segmentation [16], multimodal medical image fusion [28] and cancer histopathological image classification [5]. Particularly, this transform has shown to outperform traditional wavelet transforms for texture segmentation [15] and framelet tranforms for texture denoising [17].

The construction of empirical wavelet systems consists of two steps: (i)(i) extracting supports of the harmonic modes of the function under study, and (ii)(ii) constructing empirical wavelet filters that are compactly (or very rapidly decaying) supported in the Fourier domain by the extracted supports. This construction is the core of an ongoing and active research effort for one-dimensional (1D) and two-dimensional (2D) functions. For 1D functions, the detection of the segments supporting each harmonic modes in the Fourier domain is usually performed by extracting the lowest minima between them using a scale-space representation [11]. For 2D functions, several different techniques have been proposed to delimit the supports of the harmonic modes, such as the Curvelet [12], Watershed [17] and Voronoi [9] partitioning methods. The construction of wavelet filters based on the detected supports is usually done in the Fourier domain. In the 1D domain, [8] proposed a general framework to build continuous empirical wavelet filters from a generating function, such as the Meyer, Shannon or Gabor scaling functions. These 1D empirical wavelet systems are written as modulations and dilations of a wavelet kernel based on segments that divide the Fourier line. Such systems have been shown to induce both continuous and discrete frames in [10]. In the 2D domain, empirical wavelet filters have been designed following the Littlewood-Palley wavelet formulation for various Fourier partitioning methods [9, 12, 17]. However, the proposed construction is only valid for discrete images and is entirely based on the distance to the support boundaries, which limits its extension to classic scaling functions. So far, no construction of empirical wavelets in higher dimensions has been proposed. In addition, empirical wavelet filters for real-valued functions are built from supports that take into account the symmetry of the corresponding Fourier transform, but these have been little studied theoretically.

This work aims to provide a general framework for empirical wavelet transforms of multidimensional functions, thus extending the 1D framework in [8, 10]. We show that we can build empirical wavelets on Fourier supports, symmetric or not, from any wavelet kernel defined in the Fourier domain, using diffeomorphisms that map these supports to the wavelet kernel’s Fourier support. Both continuous and discrete transforms are considered. In addition, conditions for the construction of wavelet frames are examined.

The paper is organized as follows. The construction of the multidimensional empirical wavelet systems and the resulting transforms is described in Section 3. Theoretical results on these systems as frames are given in Section 4. The special case of Fourier supports resulting from affine deformations of the wavelet kernel’s Fourier support is studied in Section 5. Finally, in Section 6, specific 2D wavelet systems are tailored from classic wavelet kernels and studied numerically on images. A Matlab toolbox will be made publicly available at the time of publication.

2 Notations and reminders

We respectively denote Ω\partial\Omega and Ω¯\overline{\Omega} the boundary and closure of a set ΩN\Omega\in{\mathbb{R}}^{N}. We denote Υ+={nΥn0}\Upsilon^{+}=\{n\in\Upsilon\mid n\geq 0\} the subset of positive elements of a set Υ\Upsilon\in{\mathbb{Z}}. The Jacobian of a differentiable function γ\gamma is denoted JγJ_{\gamma}. We recall that a function γ\gamma is called a diffeomorphism if it is infinitely differentiable and invertible of inverse infinitely differentiable.

We consider that the space of square integrable functions L2(N){\mathrm{L}^{2}}({\mathbb{R}}^{N}) is endowed with the usual inner product

f,g=Nf(x)g(x)¯dx.\langle f,g\rangle=\int_{{\mathbb{R}}^{N}}f(x)\overline{g(x)}{\mathrm{d}}x.

The Fourier transform f^\widehat{f} of a function fL2(N)f\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}) and its inverse are given by, respectively,

f^(ξ)=(f)(ξ)=Nf(x)e2πı(ξx)dx,\displaystyle\widehat{f}(\xi)={\mathcal{F}}(f)(\xi)=\int_{{\mathbb{R}}^{N}}f(x)e^{-2\pi\imath(\xi\cdot x)}{\mathrm{d}}x,
f(x)=1(f^)(x)=Nf^(ξ)e2πı(ξx)dξ,\displaystyle f(x)={\mathcal{F}}^{-1}(\widehat{f})(x)=\int_{{\mathbb{R}}^{N}}\widehat{f}(\xi)e^{2\pi\imath(\xi\cdot x)}{\mathrm{d}}\xi,

where \cdot stands for the usual dot product in N{\mathbb{R}}^{N}. The translation operator TyT_{y} of a function fL2(N)f\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}) for yNy\in{\mathbb{R}}^{N} is defined by

(Tyf)(x)=f(xy).(T_{y}f)(x)=f(x-y).

We recall hereafter definitions on frames that are essential throughout this work. A set of functions {gp}p𝒱\{g_{p}\}_{p\in{\mathcal{V}}} of L2(N){\mathrm{L}^{2}}({\mathbb{R}}^{N}) is a frame if there exist two constants 0<A1A2<0<A_{1}\leq A_{2}<\infty such that, for every fL2(N)f\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}),

A1f2𝒱|f,gp|2dμ(p)A2f2,A_{1}\|f\|_{2}\leq\int_{{\mathcal{V}}}|\langle f,g_{p}\rangle|^{2}\,{\mathrm{d}}\mu(p)\leq A_{2}\|f\|_{2},

with (𝒱,μ)({\mathcal{V}},\mu) a measure set. In particular, {gp}p𝒱\{g_{p}\}_{p\in{\mathcal{V}}} is called a tight frame if A1=A2A_{1}=A_{2} and a Parseval frame if A1=A2=1A_{1}=A_{2}=1. A frame {g~p}p𝒱\{\widetilde{g}_{p}\}_{p\in{\mathcal{V}}} is the dual frame of {gp}p𝒱\{g_{p}\}_{p\in{\mathcal{V}}} if, for every fL2(N)f\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}),

f(x)=𝒱f,gpg~p(x)dμ(p).f(x)=\int_{{\mathcal{V}}}\langle f,g_{p}\rangle\,\widetilde{g}_{p}(x)\,{\mathrm{d}}\mu(p).

It is well known that a frame {gp}p𝒱\{g_{p}\}_{p\in{\mathcal{V}}} is a tight frame if and only if there exist A>0A>0 such that {gp/A}p𝒱\{g_{p}/A\}_{p\in{\mathcal{V}}} is a dual frame of {gp}p𝒱\{g_{p}\}_{p\in{\mathcal{V}}}. In these definitions, the set 𝒱{\mathcal{V}} can be a cartesian product of both uncountable and countable sets. In particular, countable sets equipped with a counting measure lead to summations instead of integrals. For an in-depth introduction to frames, interested readers can see [2].

3 Multidimensional dimensional empirical wavelet system

In this section, we build empirical wavelet systems for the analysis of a given NN-variate function fL2(N)f\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}), with NN\in{\mathbb{N}}. A key feature of empirical wavelet filters is that they are adaptive: they are constructed from a Fourier domain partitioning scheme that is data-driven rather than pre-specified. We first define this Fourier partitioning. We then provide the formalism to construct empirical wavelet systems. Finally, we define empirical wavelet transforms.

3.1 Fourier domain partitions

In this section, we introduce the formalism used for the Fourier supports involved in the construction of empirical wavelet systems.

Definition 1.

A partition of the Fourier domain is defined as a family of disjoint connected open sets {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon}, with Υ\Upsilon\subset{\mathbb{Z}}, of closures covering the Fourier domain, i.e., satisfying

N=nΥΩn¯ and nmΩnΩm=.{\mathbb{R}}^{N}=\bigcup_{n\in\Upsilon}\overline{\Omega_{n}}\quad\textrm{ and }\quad n\neq m\Rightarrow\Omega_{n}\cap\Omega_{m}=\varnothing.

A partition can consist of either (i)(i) an infinite number of Ωn\Omega_{n} with compact closure Ωn¯\overline{\Omega_{n}} or (ii)(ii) a finite number of Ωn\Omega_{n} composed of both compact and non-compact closures Ωn¯\overline{\Omega_{n}}. Since the sets Ωn\Omega_{n} are connected, the closure Ωn¯\overline{\Omega_{n}} is compact if and only if Ωn\Omega_{n} is bounded.

In the 1D domain, this definition coincides with the Fourier line partitioning proposed by [8] where unbounded intervals, called rays, correspond to non-compact supported closures and segments to compact supported closures. An example of a partition of the Fourier domain in the 2D domain is given in fig. 1.

Refer to caption
Figure 1: Partitioning. Example of a partition of a square domain in the 2D case.

The partition {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} is usually constructed such that each set Ωn\Omega_{n} contains one mode of the Fourier domain. To this end, we can first detect the modes of the Fourier spectrum using the scale-space representation [11] and then define boundaries Ωn\partial\Omega_{n} separating these modes. In 1D, the intervals Ωn\Omega_{n} can be defined using the lowest minima between these modes. In 2D, the extraction of supports Ωn\Omega_{n} can be performed by various methods, such as the Tensor (grid) [7], Ridgelet (radial), Curvelet (radial and angular) [12], Watershed [17] or Voronoi [9] tilings.

A special case is raised by the real-valued functions since their Fourier spectrum is even. It is therefore natural to consider a symmetric partition {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon}, defined as follows.

Definition 2.

A partition {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} is called symmetric if

nΥnΥ and ξΩnξΩn.n\in\Upsilon\Rightarrow-n\in\Upsilon\quad\textrm{ and }\quad\xi\in\Omega_{n}\Rightarrow-\xi\in\Omega_{-n}.

This definition implies that the region Ω0\Omega_{0} contains the zero frequency. A procedure of symmetrization of partitions has been proposed in [17]. For such partitions, we will build filters on sets of paired regions ΩnΩn\Omega_{n}\cup\Omega_{-n} rather than on single regions Ωn\Omega_{n}.

3.2 Empirical wavelet filter bank

In this section, we introduce empirical wavelet filter banks induced by a wavelet kernel for a given Fourier domain partition. Two types of filters are proposed, depending on the symmetry of the Fourier domain supports.

Let ψL2(N)\psi\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}) be a wavelet kernel such that its Fourier transform ψ^\widehat{\psi} is localized in frequency and verifies, for some connected open bounded subset Λsuppψ\Lambda\subseteq\mathrm{supp}\,\psi,

 0δ<1,Λ¯|ψ^(ξ)|2dξ=(1δ)ψ^L2.\exists\,0\leq\delta<1,\quad\int_{\overline{\Lambda}}\left|\widehat{\psi}(\xi)\right|^{2}{\mathrm{d}}\xi=(1-\delta)\left\lVert\widehat{\psi}\right\rVert_{{\mathrm{L}^{2}}}.

This condition ensures that ψ^\widehat{\psi} is mostly supported by Λ¯\overline{\Lambda}. Generally, ψ^\widehat{\psi} is homogeneous or separable, implying that Λ\Lambda is a 11-ball or 22-ball in N{\mathbb{R}}^{N}.

Given a partition {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon}, the goal of this section is to define, from any wavelet kernel ψ\psi, two banks of wavelet filters that are mostly supported in the Fourier domain by (i)(i) Ωn\Omega_{n}, or (ii)(ii) ΩnΩn\Omega_{n}\cup\Omega_{-n} in the case of a symmetric partition. To this end, we make the following assumption, which is used throughout the paper.

Hypothesis 1.

For every nΥn\in\Upsilon, there exists a diffeomorphism γn\gamma_{n} on N{\mathbb{R}}^{N} such that

{Λ=γn(Ωn)if Ωn is bounded,Λγn(Ωn)otherwise.\begin{cases}\displaystyle\Lambda=\gamma_{n}(\Omega_{n})&\textrm{if }\Omega_{n}\textrm{ is bounded},\\ \displaystyle\Lambda\subsetneq\gamma_{n}(\Omega_{n})&\textrm{otherwise}.\end{cases}

A diffeomorphism on a bounded set Ωn\Omega_{n} is illustrated in Figure 2. This assumption is mild since, by the Hadamard-Cacciopoli theorem [4], if Λ\Lambda is simply connected (i.e., has no hole), an infinitely differentiable function γn\gamma_{n} is a diffeomorphism if and only if it is proper, i.e., the preimage of any compact set under γn\gamma_{n} is compact.

Refer to caption
Figure 2: Mapping. Illustration of a diffeomorphism from a set Ωn\Omega_{n} to a disk Λ\Lambda.

First, we consider the case of a partition {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} that is not necessarily symmetric.

Definition 3.

The empirical wavelet system, denoted {ψn}nΥ\{\psi_{n}\}_{n\in\Upsilon}, corresponding to the partition {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} is defined by, for every ξN\xi\in{\mathbb{R}}^{N},

ψ^n(ξ)=|detJγn(ξ)|ψ^(γn(ξ)).\widehat{\psi}_{n}(\xi)=\sqrt{|\mathrm{det}\;J_{\gamma_{n}}(\xi)|}\;\widehat{\psi}(\gamma_{n}(\xi)).

The determinant is a normalization coefficient for the conservation of energy when Λ=γn(Ωn)\Lambda=\gamma_{n}(\Omega_{n}), i.e.,

Ωn|ψ^n(ξ)|2dξ=Λ|ψ^(u)|2du.\int_{\Omega_{n}}\left|\widehat{\psi}_{n}(\xi)\right|^{2}\mathrm{d}\xi=\int_{\Lambda}\left|\widehat{\psi}(u)\right|^{2}\mathrm{d}u.
Example 3.1.

We consider the 1D case (N=1N=1). Let ψ\psi a wavelet kernel on {\mathbb{R}} of Fourier transform ψ^\widehat{\psi} with support Λ=(12,12)\Lambda=(-\frac{1}{2},\frac{1}{2}) and {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} a family of non-overlapping open bounded intervals with center ωn\omega_{n} such that =nΥΩn¯{\mathbb{R}}=\bigcup_{n\in\Upsilon}\overline{\Omega_{n}}. Then γn:ξ1|Ωn|(ξωn)\gamma_{n}:\xi\mapsto\frac{1}{|\Omega_{n}|}(\xi-\omega_{n}) are diffeomorphisms such that Λ=γn(Ωn)\Lambda=\gamma_{n}(\Omega_{n}) and the empirical wavelet system is given by, for every ξ\xi\in{\mathbb{R}},

ψ^n(ξ)=1|Ωn|ψ^(ξωn|Ωn|).\widehat{\psi}_{n}(\xi)=\frac{1}{\sqrt{|\Omega_{n}|}}\widehat{\psi}\left(\frac{\xi-\omega_{n}}{|\Omega_{n}|}\right). (1)

This definition is in agreement with the definition given in [8]. For the diffeomorphisms κn:ξ1|Ωn|(ωnξ)\kappa_{n}:\xi\mapsto\frac{1}{|\Omega_{n}|}(\omega_{n}-\xi) also satisfying Λ=κn(Ωn)\Lambda=\kappa_{n}(\Omega_{n}), Definition 1 becomes, for every ξ\xi\in{\mathbb{R}},

ψ^n(ξ)=1|Ωn|ψ^(ωnξ|Ωn|),\widehat{\psi}_{n}(\xi)=\frac{1}{\sqrt{|\Omega_{n}|}}\widehat{\psi}\left(\frac{\omega_{n}-\xi}{|\Omega_{n}|}\right),

which is different from Equation 1 if ψ^\widehat{\psi} is not even.

Now, we consider that {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} is a symmetric partition. To build wavelet filters χn\chi_{n} which are mostly supported by ΩnΩn\Omega_{n}\cup\Omega_{-n}, we assume that Λ\Lambda satisfies

uΛuΛ.u\in\Lambda\Rightarrow-u\in\Lambda.

Necessarily, the system {χn}nΥ\{\chi_{n}\}_{n\in\Upsilon} must be symmetric with respect to frequency band, that is, it must satisfy the property

χ^n=χ^n.\widehat{\chi}_{n}=\widehat{\chi}_{-n}.

In this context, we only consider the diffeomorphisms γn\gamma_{n} for n0n\geq 0. The function γn:ξγn(ξ)\gamma_{-n}:\xi\mapsto-\gamma_{n}(-\xi) is a diffeomorphism, that verifies γn(Ωn)=Λ\gamma_{-n}(\Omega_{-n})=\Lambda when γn(Ωn)=Λ\gamma_{n}(\Omega_{n})=\Lambda, which suggests the following definition.

Definition 4.

The symmetric empirical wavelet system, denoted {χn}nΥ\{\chi_{n}\}_{n\in\Upsilon}, corresponding to the symmetric partition {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} is defined by, for every ξN\xi\in{\mathbb{R}}^{N},

{χ^0(ξ)=ψ^0(ξ),χ^n(ξ)=12(ψ^n(ξ)+ψ^n(ξ)) for n0,\begin{cases}&\displaystyle\widehat{\chi}_{0}(\xi)=\widehat{\psi}_{0}(\xi),\\ &\displaystyle\widehat{\chi}_{n}(\xi)=\frac{1}{\sqrt{2}}\left(\widehat{\psi}_{n}(\xi)+\widehat{\psi}_{-n}(\xi)\right)\quad\textrm{ for }n\neq 0,\end{cases} (2)

where ψ^n=ψ^γn\widehat{\psi}_{n}=\widehat{\psi}\circ\gamma_{n} and γn:ξγn(ξ)\gamma_{-n}:\xi\mapsto-\gamma_{n}(-\xi).

In this definition, χ^n\widehat{\chi}_{n} is not necessarily even for any nΥn\in\Upsilon, but ensures that the parity of ψ^n\widehat{\psi}_{n} implies the parity of χ^n\widehat{\chi}_{n}. Moreover, we can write Equation 2 explicitely as follows, for every nΥ{0}n\in\Upsilon\setminus\{0\} and ξN\xi\in{\mathbb{R}}^{N},

χ^n(ξ)=12(|detJγn(ξ)|ψ^(γn(ξ))+|detJγn(ξ)|ψ^(γn(ξ))).\widehat{\chi}_{n}(\xi)=\frac{1}{\sqrt{2}}\left(\sqrt{|\mathrm{det}\;J_{\gamma_{n}}(\xi)|}\;\widehat{\psi}(\gamma_{n}(\xi))+\sqrt{|\mathrm{det}\;J_{\gamma_{n}}(-\xi)|}\;\widehat{\psi}(-\gamma_{n}(-\xi))\right).

Thus, for nΥ{0}n\in\Upsilon\setminus\{0\} such that ΩnΩnψ^(γn(ξ))ψ^(γn(ξ))¯=0\int_{\Omega_{n}\cup\Omega_{-n}}\widehat{\psi}(\gamma_{n}(\xi))\overline{\widehat{\psi}(-\gamma_{n}(-\xi))}=0 and Λ=γn(Ωn)\Lambda=\gamma_{n}(\Omega_{n}), the factor 1/21/\sqrt{2} guarantees the conservation of the energy, i.e.,

ΩnΩn|χ^n(ξ)|2dξ=Λ|ψ^(u)|2du.\int_{\Omega_{n}\cup\Omega_{-n}}\left|\widehat{\chi}_{n}(\xi)\right|^{2}\mathrm{d}\xi=\int_{\Lambda}\left|\widehat{\psi}(u)\right|^{2}\mathrm{d}u.

In particular, if Ωn\partial\Omega_{n} and Ωn\partial\Omega_{-n} are disjoint, the conservation of energy is guaranteed when ψ^\widehat{\psi} has a compact support.

Example 3.2.

As in Example 3.1, we consider N=1N=1, ψ^\widehat{\psi} on {\mathbb{R}} with support Λ=(12,12)\Lambda=(-\frac{1}{2},\frac{1}{2}) and {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} a family of non-overlapping bounded intervals with center ωn\omega_{n} such that =nΥΩn¯{\mathbb{R}}=\bigcup_{n\in\Upsilon}\overline{\Omega_{n}}. For the diffeomorphism γn:ξ1|Ωn|(ξωn)\gamma_{n}:\xi\mapsto\frac{1}{|\Omega_{n}|}(\xi-\omega_{n}), the symmetric empirical wavelet system reads, for every ξ\xi\in{\mathbb{R}},

{χ^0(ξ)=1|Ω0|ψ^(ξ|Ω0|),χ^n(ξ)=12|Ωn|[ψ^(ξωn|Ωn|)+ψ^(ξ+ωn|Ωn|)] for n0.\begin{cases}&\displaystyle\widehat{\chi}_{0}(\xi)=\frac{1}{\sqrt{|\Omega_{0}|}}\widehat{\psi}\left(\frac{\xi}{|\Omega_{0}|}\right),\\ &\displaystyle\widehat{\chi}_{n}(\xi)=\frac{1}{\sqrt{2|\Omega_{n}|}}\left[\widehat{\psi}\left(\frac{\xi-\omega_{n}}{|\Omega_{n}|}\right)+\widehat{\psi}\left(\frac{\xi+\omega_{n}}{|\Omega_{n}|}\right)\right]\quad\textrm{ for }n\neq 0.\end{cases}
Remark 1.

Due to the linearity of the inverse Fourier tranform, the symmetric empirical wavelet system {χn}nΥ\{\chi_{n}\}_{n\in\Upsilon} also satisfies, in the spatial domain, for every xNx\in{\mathbb{R}}^{N},

χ0(x)=ψ0(x) and χn(x)=12(ψn(x)+ψn(x)) for n0.\chi_{0}(x)=\psi_{0}(x)\quad\textrm{ and }\quad\chi_{n}(x)=\frac{1}{\sqrt{2}}\left(\psi_{n}(x)+\psi_{-n}(x)\right)\quad\textrm{ for }n\neq 0. (3)

It is therefore sufficient to write ψn\psi_{n} in the spatial domain to write χn\chi_{n} in the spatial domain.

3.3 Empirical wavelet transform

In this section, we introduce continuous and discrete transforms of a function fL2(N)f\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}) based on either the empirical wavelet systems {ψn}nΥ\{\psi_{n}\}_{n\in\Upsilon} or the symmetric empirical wavelet systems {χn}nΥ\{\chi_{n}\}_{n\in\Upsilon}.

Definition 5.

The NN-dimensional continuous empirical wavelet transform of a real or complex-valued function fL2(N)f\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}) is defined by, for every nΥn\in\Upsilon and bNb\in{\mathbb{R}}^{N},

ψf(b,n)=f,Tbψn.{\mathcal{E}}_{\psi}^{f}(b,n)=\langle f,T_{b}\psi_{n}\rangle. (4)

The NN-dimensional continuous symmetric empirical wavelet transform of a real-valued function fL2(N)f\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}) is defined by, for every nΥn\in\Upsilon and bNb\in{\mathbb{R}}^{N},

χf(b,n)=f,Tbχn.{\mathcal{E}}_{\chi}^{f}(b,n)=\langle f,T_{b}\chi_{n}\rangle. (5)

In this definition, the NN-dimensional continuous symmetric empirical wavelet transform χf{\mathcal{E}}_{\chi}^{f} is symmetric for the frequency variable nn but not for the translation variable bb.

The following proposition shows that the NN-dimensional continuous empirical wavelet transform can be rewritten as a filtering process. It is a straight generalization of Proposition 1 of [8]. We will adopt the notation ψ(t)ψ(t)\psi^{*}(t)\equiv\psi(-t), and denote \star and \bullet the convolution and pointwise product of functions, respectively.

Proposition 1 (Filtering process).

The NN-dimensional continuous empirical wavelet transform ψf(b,n){\mathcal{E}}_{\psi}^{f}(b,n) is equivalent to the convolution of ff with the function ψn¯\overline{\psi^{*}_{n}}, i.e., for every nΥn\in\Upsilon and bNb\in{\mathbb{R}}^{N},

ψf(b,n)=(fψn¯)(b)=1(f^ψ^n¯)(b).{\mathcal{E}}_{\psi}^{f}(b,n)=\left(f\star\overline{\psi^{*}_{n}}\right)(b)={\mathcal{F}}^{-1}\left(\widehat{f}\bullet\overline{\widehat{\psi}_{n}}\right)(b). (6)

In addition, if ff is a real-valued function, for every nΥn\in\Upsilon and bNb\in{\mathbb{R}}^{N},

χf(b,n)=(fχn¯)(b)=1(f^χ^n¯)(b).{\mathcal{E}}_{\chi}^{f}(b,n)=\left(f\star\overline{\chi^{*}_{n}}\right)(b)={\mathcal{F}}^{-1}\left(\widehat{f}\bullet\overline{\widehat{\chi}_{n}}\right)(b). (7)
Proof.

Given functions ff and ψ\psi, we have,

ψf(b,n)=f,Tbψn=Nf(x)Tbψn(x)¯dx\displaystyle{\mathcal{E}}_{\psi}^{f}(b,n)=\left\langle f,T_{b}\psi_{n}\right\rangle=\int_{{\mathbb{R}}^{N}}f(x)\overline{T_{b}\psi_{n}(x)}\mathrm{d}x =Nf(x)ψn(xb)¯dx\displaystyle=\int_{{\mathbb{R}}^{N}}f(x)\overline{\psi_{n}(x-b)}\mathrm{d}x
=Nf(x)ψn(bx)¯dx\displaystyle=\int_{{\mathbb{R}}^{N}}f(x)\overline{\psi^{*}_{n}(b-x)}\mathrm{d}x
=(fψn¯)(b).\displaystyle=\left(f\star\overline{\psi^{*}_{n}}\right)(b).

This proves the first equality of Equation 6. Now, noticing that

ψn¯^(ξ)=Nψn(x)¯e2πı(ξx)dx\displaystyle\widehat{\overline{\psi^{*}_{n}}}(\xi)=\int_{{\mathbb{R}}^{N}}\overline{\psi_{n}(-x)}e^{-2\pi\imath(\xi\cdot x)}\mathrm{d}x =Nψn(x)e2πı(ξx)dx¯\displaystyle=\overline{\int_{{\mathbb{R}}^{N}}\psi_{n}(-x)e^{2\pi\imath(\xi\cdot x)}\mathrm{d}x}
=Nψn(x)e2πı(ξx)dx¯=ψ^n¯(ξ),\displaystyle=\overline{\int_{{\mathbb{R}}^{N}}\psi_{n}(x)e^{-2\pi\imath(\xi\cdot x)}\mathrm{d}x}=\overline{\widehat{\psi}_{n}}(\xi),

we can rewrite the convolution obtained above as a pointwise multiplication in the Fourier domain,

ψf(b,n)=1((fψn¯))(b)=1(f^ψn¯^)(b)=1(f^ψ^n¯)(b).\displaystyle{\mathcal{E}}_{\psi}^{f}(b,n)={\mathcal{F}}^{-1}\left({\mathcal{F}}\left(f\star\overline{\psi^{*}_{n}}\right)\right)(b)={\mathcal{F}}^{-1}\left(\widehat{f}\bullet\widehat{\overline{\psi^{*}_{n}}}\right)(b)={\mathcal{F}}^{-1}\left(\widehat{f}\bullet\overline{\widehat{\psi}_{n}}\right)(b).

This provides the second equality of Equation 6.

Given the relation between χn\chi_{n} and ψn\psi_{n} in the spatial domain, which is given by Equation 3, Equation 7 directly stems from Equation 6 using the linearity of the convolution, the inner product and the inverse Fourier transform. ∎

Definition 6.

Let {bn}nΥ{0}\{b_{n}\}_{n\in\Upsilon}\in{\mathbb{R}}\setminus\{0\}. The NN-dimensional discrete empirical wavelet transform of a real or complex-valued function fL2(N)f\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}) is defined by, for every nΥn\in\Upsilon and kNk\in\mathbb{Z}^{N},

ψf(bnk,n)=f,Tbnkψn.{\mathcal{E}}_{\psi}^{f}(b_{n}k,n)=\langle f,T_{b_{n}k}\psi_{n}\rangle.

The NN-dimensional discrete symmetric empirical wavelet transform of a real-valued function fL2(N)f\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}) is defined by, for every nΥn\in\Upsilon and kNk\in\mathbb{Z}^{N},

χf(bnk,n)=f,Tbnkχn,{\mathcal{E}}_{\chi}^{f}(b_{n}k,n)=\langle f,T_{b_{n}k}\chi_{n}\rangle,

with bn=bnb_{n}=b_{-n}.

4 Frames of empirical wavelets

In this section, we provide conditions to build empirical wavelet frames for both continuous and discrete empirical wavelet transforms of a given function fL2(N)f\in{\mathrm{L}^{2}}({\mathbb{R}}^{N}). In particular, we examine the potential reconstruction of ff.

4.1 Continuous frames

In this section, we build dual frames for the two proposed systems

{Tbψn}(n,b)Υ×N and {Tbχn}(n,b)Υ+×N,\{T_{b}\psi_{n}\}_{(n,b)\in\Upsilon\times{\mathbb{R}}^{N}}\quad\textrm{ and }\quad\{T_{b}\chi_{n}\}_{(n,b)\in\Upsilon^{+}\times{\mathbb{R}}^{N}},

with Υ+={nΥn0}\Upsilon^{+}=\{n\in\Upsilon\mid n\geq 0\}, involved in the continuous wavelet transform of Definition 5. This allows to find sufficients conditions for these systems to be tight frames.

First, we consider the system {ψn}nΥ\{\psi_{n}\}_{n\in\Upsilon}. The following theorem guarantees the exact reconstruction of a function ff from the continuous empirical wavelet transform ψf{\mathcal{E}}_{\psi}^{f} given by Equation 4. It is a straight generalization of Proposition 2 of [8] to the NN-dimensional case.

Theorem 1 (Continuous dual frame).

Let assume that, for a.e.ξNa.e.\,\xi\in{\mathbb{R}}^{N},

0<nΥ|ψ^n(ξ)|2<.\displaystyle 0<\sum_{n\in\Upsilon}\left|\widehat{\psi}_{n}(\xi)\right|^{2}<\infty.

Then, for every xNx\in{\mathbb{R}}^{N},

f(x)=nΥ(ψf(,n)ψ~n)(x)=nΥbNf,TbψnTbψ~n(x)db,\displaystyle f(x)=\sum_{n\in\Upsilon}\left({\mathcal{E}}_{\psi}^{f}(\cdot,n)\star\widetilde{\psi}_{n}\right)(x)=\sum_{n\in\Upsilon}\int_{b\in{\mathbb{R}}^{N}}\langle f,T_{b}\psi_{n}\rangle T_{b}\widetilde{\psi}_{n}(x)\mathrm{d}b, (8)

where the set of dual empirical wavelets {ψ~n}nΥ\{\widetilde{\psi}_{n}\}_{n\in\Upsilon} is defined by, for every nΥn\in\Upsilon and ξN\xi\in{\mathbb{R}}^{N},

ψ~n^(ξ)=ψ^n(ξ)nΥ|ψ^n(ξ)|2.\widehat{\widetilde{\psi}_{n}}(\xi)=\frac{\widehat{\psi}_{n}(\xi)}{\displaystyle\sum_{n\in\Upsilon}\left|\widehat{\psi}_{n}(\xi)\right|^{2}}.
Proof.

Using the Fourier transform and its inverse, we can write

nΥ(ψf(,n)ψ~n)\displaystyle\sum_{n\in\Upsilon}\left({\mathcal{E}}_{\psi}^{f}(\cdot,n)\star\widetilde{\psi}_{n}\right) =1((nΥ(ψf(,n)ψ~n)))\displaystyle={\mathcal{F}}^{-1}\left({\mathcal{F}}\left(\sum_{n\in\Upsilon}\left({\mathcal{E}}_{\psi}^{f}(\cdot,n)\star\widetilde{\psi}_{n}\right)\right)\right)
=1(nΥψf^(,n)ψ~n^)\displaystyle={\mathcal{F}}^{-1}\left(\sum_{n\in\Upsilon}\widehat{{\mathcal{E}}_{\psi}^{f}}(\cdot,n)\bullet\widehat{\widetilde{\psi}_{n}}\right)
=1(nΥf^ψ^n¯ψ~n^)\displaystyle={\mathcal{F}}^{-1}\left(\sum_{n\in\Upsilon}\widehat{f}\bullet\overline{\widehat{\psi}_{n}}\bullet\widehat{\widetilde{\psi}_{n}}\right)
=1(f^nΥψ^n¯ψn^nΥ|ψ^n|2)\displaystyle={\mathcal{F}}^{-1}\left(\widehat{f}\bullet\sum_{n\in\Upsilon}\overline{\widehat{\psi}_{n}}\bullet\frac{\widehat{\psi_{n}}}{\sum_{n\in\Upsilon}\left|\widehat{\psi}_{n}\right|^{2}}\right)
=1(f^)=f.\displaystyle={\mathcal{F}}^{-1}\left(\widehat{f}\right)=f.

This proves the first equality of Equation 8. Moreover, we can rewrite

nΥ(ψf(,n)ψ~n)(x)\displaystyle\sum_{n\in\Upsilon}\left({\mathcal{E}}_{\psi}^{f}(\cdot,n)\star\widetilde{\psi}_{n}\right)(x) =nΥbNψf(b,n)ψ~n(xb)db\displaystyle=\sum_{n\in\Upsilon}\int_{b\in{\mathbb{R}}^{N}}{\mathcal{E}}_{\psi}^{f}(b,n)\widetilde{\psi}_{n}(x-b)\mathrm{d}b
=nΥbNf,TbψnTbψ~n(x)db.\displaystyle=\sum_{n\in\Upsilon}\int_{b\in{\mathbb{R}}^{N}}\langle f,T_{b}\psi_{n}\rangle T_{b}\widetilde{\psi}_{n}(x)\mathrm{d}b.

This proves the second equality of Equation 8. ∎

A particular case of the previous theorem is given by the following corollary.

Corollary 1 (Continuous tight frame).

If, for a.e.ξNa.e.\,\xi\in{\mathbb{R}}^{N},

0<nΥ|ψ^n(ξ)|2=A<,\displaystyle 0<\sum_{n\in\Upsilon}\left|\widehat{\psi}_{n}(\xi)\right|^{2}=A<\infty,

then {Tbψn}(n,b)Υ×N\{T_{b}\psi_{n}\}_{(n,b)\in\Upsilon\times{\mathbb{R}}^{N}} is a continuous tight frame. Specifically, for every xNx\in{\mathbb{R}}^{N},

f(x)=1AnΥbNf,TbψnTbψn(x)db.f(x)=\frac{1}{A}\sum_{n\in\Upsilon}\int_{b\in{\mathbb{R}}^{N}}\langle f,T_{b}\psi_{n}\rangle T_{b}\psi_{n}(x)\mathrm{d}b.
Proof.

From Theorem 1 with

ψ~n^(ξ)=ψ^n(ξ)nΥ|ψ^n(ξ)|2=ψ^n(ξ)A,\widehat{\widetilde{\psi}_{n}}(\xi)=\frac{\widehat{\psi}_{n}(\xi)}{\sum_{n\in\Upsilon}\left|\widehat{\psi}_{n}(\xi)\right|^{2}}=\frac{\widehat{\psi}_{n}(\xi)}{A},

it follows that

f(x)=1AnΥ(ψf(,n)ψn)(x)=1AnΥbNf,TbψnTbψn(x)db.f(x)=\frac{1}{A}\sum_{n\in\Upsilon}\left({\mathcal{E}}_{\psi}^{f}(\cdot,n)\star\psi_{n}\right)(x)=\frac{1}{A}\sum_{n\in\Upsilon}\int_{b\in{\mathbb{R}}^{N}}\langle f,T_{b}\psi_{n}\rangle T_{b}\psi_{n}(x)\mathrm{d}b.

Now, we consider the symmetric wavelet filter bank {χn}nΥ+\{\chi_{n}\}_{n\in\Upsilon^{+}}. The following theorem guarantees the exact reconstruction of a real-valued function ff from the continuous symmetric empirical wavelet transform χf{\mathcal{E}}_{\chi}^{f} given in Equation 5.

Theorem 2 (Continuous symmetric dual frame).

Let assume that, for a.e.ξNa.e.\,\xi\in{\mathbb{R}}^{N},

0<nΥ+|ψ^n(ξ)|2< and nΥ+{0}|ψ^n(ξ)||ψ^n(ξ)|<.\displaystyle 0<\sum_{n\in\Upsilon^{+}}\left|\widehat{\psi}_{n}(\xi)\right|^{2}<\infty\quad\textrm{ and }\quad\sum_{n\in\Upsilon^{+}\setminus\{0\}}\left|\widehat{\psi}_{n}(\xi)\right|\left|\widehat{\psi}_{-n}(\xi)\right|<\infty.

Then, for any xNx\in{\mathbb{R}}^{N},

f(x)=nΥ+(χf(,n)χ~n)(x)=nΥ+bNf,TbχnTbχ~n(x)db,\displaystyle f(x)=\sum_{n\in\Upsilon^{+}}\left({\mathcal{E}}_{\chi}^{f}(\cdot,n)\star\tilde{\chi}_{n}\right)(x)=\sum_{n\in\Upsilon^{+}}\int_{b\in{\mathbb{R}}^{N}}\langle f,T_{b}\chi_{n}\rangle T_{b}\widetilde{\chi}_{n}(x)\mathrm{d}b, (9)

where the set of dual symmetric empirical wavelets {χ~n}nΥ\{\widetilde{\chi}_{n}\}_{n\in\Upsilon} is defined by, for every nΥn\in\Upsilon and ξN\xi\in{\mathbb{R}}^{N},

χ~n^(ξ)=χ^n(ξ)nΥ+|χ^n(ξ)|2.\widehat{\widetilde{\chi}_{n}}(\xi)=\frac{\widehat{\chi}_{n}(\xi)}{\displaystyle\sum_{n\in\Upsilon^{+}}\left|\widehat{\chi}_{n}(\xi)\right|^{2}}.
Proof.

First, we have

nΥ+|χ^n(ξ)|2\displaystyle\sum_{n\in\Upsilon^{+}}\left|\widehat{\chi}_{n}(\xi)\right|^{2} =|ψ^0(ξ)|2+12nΥ+{0}|ψ^n(ξ)+ψ^n(ξ)|2\displaystyle=\left|\widehat{\psi}_{0}(\xi)\right|^{2}+\frac{1}{2}\sum_{n\in\Upsilon^{+}\setminus\{0\}}\left|\widehat{\psi}_{n}(\xi)+\widehat{\psi}_{-n}(\xi)\right|^{2}
=12nΥ+|ψ^n(ξ)|2+12nΥ+|ψ^n(ξ)|2+nΥ+{0}|ψ^n(ξ)||ψ^n(ξ)|<,\displaystyle=\frac{1}{2}\sum_{n\in\Upsilon^{+}}\left|\widehat{\psi}_{n}(\xi)\right|^{2}+\frac{1}{2}\sum_{n\in\Upsilon^{+}}\left|\widehat{\psi}_{-n}(\xi)\right|^{2}+\sum_{n\in\Upsilon^{+}\setminus\{0\}}\left|\widehat{\psi}_{n}(\xi)\right|\left|\widehat{\psi}_{-n}(\xi)\right|<\infty,

which ensures that the symmetric empirical wavelet filters χ~n\widetilde{\chi}_{n} are well defined. Then, Equation 9 stems from the same computation as in the proof of Theorem 1. ∎

Similarly to Corollary 1, the following corollary gives a particular case of the previous theorem.

Corollary 2 (Continuous symmetric tight frame).

If, for a.e.ξNa.e.\,\xi\in{\mathbb{R}}^{N},

0<nΥ+|ψ^n(ξ)|2=A< and nΥ+{0}|ψ^n(ξ)||ψ^n(ξ)|=B<,\displaystyle 0<\sum_{n\in\Upsilon^{+}}\left|\widehat{\psi}_{n}(\xi)\right|^{2}=A<\infty\quad\textrm{ and }\quad\sum_{n\in\Upsilon^{+}\setminus\{0\}}\left|\widehat{\psi}_{n}(\xi)\right|\left|\widehat{\psi}_{-n}(\xi)\right|=B<\infty,

then {Tbχn}(n,b)Υ+×N\{T_{b}\chi_{n}\}_{(n,b)\in\Upsilon^{+}\times{\mathbb{R}}^{N}} is a continuous tight frame. Specifically, for every xNx\in{\mathbb{R}}^{N},

f(x)=1A+BnΥ+bNf,TbχnTbχn(x)db.f(x)=\frac{1}{A+B}\sum_{n\in\Upsilon^{+}}\int_{b\in{\mathbb{R}}^{N}}\langle f,T_{b}\chi_{n}\rangle T_{b}\chi_{n}(x)\mathrm{d}b.
Proof.

We can write

nΥ+|χ^n(ξ)|2\displaystyle\sum_{n\in\Upsilon^{+}}\left|\widehat{\chi}_{n}(\xi)\right|^{2} =12nΥ+|ψ^n(ξ)|2+12nΥ+|ψ^n(ξ)|2+nΥ+{0}|ψ^n(ξ)||ψ^n(ξ)|=A+B,\displaystyle=\frac{1}{2}\sum_{n\in\Upsilon^{+}}\left|\widehat{\psi}_{n}(\xi)\right|^{2}+\frac{1}{2}\sum_{n\in\Upsilon^{+}}\left|\widehat{\psi}_{-n}(\xi)\right|^{2}+\sum_{n\in\Upsilon^{+}\setminus\{0\}}\left|\widehat{\psi}_{n}(\xi)\right|\left|\widehat{\psi}_{-n}(\xi)\right|=A+B,

and the result follows from the fact that χ~n=χn/(A+B)\widetilde{\chi}_{n}=\chi_{n}/(A+B). ∎

4.2 Discrete frames

In this section, we exhibit conditions to build discrete wavelet frames involved in the wavelet transforms of Definition 6. These conditions depend on the compactness of the support of the wavelet kernel’s Fourier transform ψ^\widehat{\psi}. The two underlying cases are examined separately.

4.2.1 Compactly supported 𝝍^\boldsymbol{\widehat{\psi}}

In this section, we consider that ψ^\widehat{\psi} has a compact support. Excluding the supports of a partition {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} with non-compact closure, we can state sufficient and necessary conditions for which the systems

{Tbnkψn}(n,k)Υcomp×N and {Tbnkχn}(n,k)Υcomp+×N,\{T_{b_{n}k}\psi_{n}\}_{(n,k)\in\Upsilon_{\rm comp}\times{\mathbb{Z}}^{N}}\quad\textrm{ and }\quad\{T_{b_{n}k}\chi_{n}\}_{(n,k)\in\Upsilon_{\rm comp}^{+}\times{\mathbb{Z}}^{N}},

are Parseval frames, with

Υcomp={nΥΩn¯ is compact} and Υcomp+={nΥ+Ωn¯ is compact}.\Upsilon_{\rm comp}=\{n\in\Upsilon\mid\overline{\Omega_{n}}\textrm{ is compact}\}\;\textrm{ and }\;\Upsilon_{\rm comp}^{+}=\{n\in\Upsilon^{+}\mid\overline{\Omega_{n}}\textrm{ is compact}\}.

The following theorem first gives a sufficient and necessary condition to build a tight frame from {ψn}nΥcomp\{\psi_{n}\}_{n\in\Upsilon_{\rm comp}}. It is a straight generalization of Theorems 4-7 of [10] to the NN-dimensional case.

Theorem 3 (Discrete Parseval frame).

Let us denote Lcomp2(N)={fL2(N)suppf^Γcomp}\mathrm{L}_{\rm comp}^{2}({\mathbb{R}}^{N})=\{f\in\mathrm{L}^{2}({\mathbb{R}}^{N})\mid\mathrm{supp}\,\widehat{f}\subseteq\Gamma_{\rm comp}\} and Γcomp=nΥcompΩn¯\Gamma_{\rm comp}=\underset{n\in\Upsilon_{\rm comp}}{\bigcup}\overline{\Omega_{n}}. The system {Tbnkψn}(n,k)Υcomp×N\{T_{b_{n}k}\psi_{n}\}_{(n,k)\in\Upsilon_{\rm comp}\times{\mathbb{Z}}^{N}} is a Parseval frame for Lcomp2(N)\mathrm{L}_{\rm comp}^{2}({\mathbb{R}}^{N}) if and only if, for a.e.ξNa.e.\,\xi\in{\mathbb{R}}^{N},

nΥα1|bn|ψ^n(ξ)ψ^n(ξ+α)¯=δα,0,\sum_{n\in\Upsilon_{\alpha}}\frac{1}{|b_{n}|}\widehat{\psi}_{n}(\xi)\overline{\widehat{\psi}_{n}(\xi+\alpha)}=\delta_{\alpha,0},

for every α𝒦\alpha\in\mathcal{K}, where

𝒦=nΥcompbn1N,Υα={nΥcompbnαN},\mathcal{K}=\underset{n\in\Upsilon_{\rm comp}}{\bigcup}b_{n}^{-1}\mathbb{Z}^{N},\qquad\Upsilon_{\alpha}=\{n\in\Upsilon_{\rm comp}\mid b_{n}\alpha\in\mathbb{Z}^{N}\},

and δα,0\delta_{\alpha,0} stands for the Kronecker delta function on N{\mathbb{R}}^{N}, i.e., δα,0=1\delta_{\alpha,0}=1 if α=0\alpha=0 and δα,0=0\delta_{\alpha,0}=0 otherwise.

Proof.

Let us denote 𝒟={fL2(N)f^L(N) and suppf^Γcomp}.\mathcal{D}=\{f\in\mathrm{L}^{2}({\mathbb{R}}^{N})\mid\widehat{f}\in\mathrm{L}^{\infty}({\mathbb{R}}^{N})\textrm{ and }\mathrm{supp}\,\widehat{f}\subset\Gamma_{\rm comp}\}. Theorem 2.1 in [13] states, with gp=ψng_{p}=\psi_{n}, Cp=bnC_{p}=b_{n} and 𝒫=Υcomp\mathcal{P}=\Upsilon_{\rm comp}, the desired equivalence under the condition that

f𝒟,nΥcompkNsuppf^|f^(ξ+bn1k)|21|bn||ψ^n(ξ)|2dξ<.\forall f\in\mathcal{D},\;\sum_{n\in\Upsilon_{\rm comp}}\sum_{k\in\mathbb{Z}^{N}}\int_{\mathrm{supp}\,\widehat{f}}\left|\widehat{f}(\xi+b_{n}^{-1}k)\right|^{2}\frac{1}{|b_{n}|}\left|\widehat{\psi}_{n}(\xi)\right|^{2}\mathrm{d}\xi<\infty.

The condition above is given by the proof of Theorem 4 in [10], replacing \mathbb{Z} by N\mathbb{Z}^{N}. This results comes from the fact that suppf^\mathrm{supp}\,\widehat{f} and suppψ^n\mathrm{supp}\,\widehat{\psi}_{n} are compact and that there are finitely many suppψ^n\mathrm{supp}\,\widehat{\psi}_{n} that intersect suppf^\mathrm{supp}\,\widehat{f}. This proves the equivalence. ∎

Remark 2.

The previous theorem implicitely permits to easily build dual frames ψ~n\widetilde{\psi}_{n} when, for a.e.ξNa.e.\,\xi\in{\mathbb{R}}^{N},

nΥ1|bn||ψ^n(ξ)|2<,\sum_{n\in\Upsilon}\frac{1}{|b_{n}|}\left|\widehat{\psi}_{n}(\xi)\right|^{2}<\infty,

as follows:

ψ~n^(ξ)=ψ^n(ξ)nΥ1|bn||ψ^n(ξ)|2.\widehat{\widetilde{\psi}_{n}}(\xi)=\frac{\widehat{\psi}_{n}(\xi)}{\displaystyle\sum_{n\in\Upsilon}\frac{1}{|b_{n}|}\left|\widehat{\psi}_{n}(\xi)\right|^{2}}.

Similarly, the following theorem gives a sufficient and necessary condition to build a tight frame from the symmetric filter bank {χn}nΥcomp+\{\chi_{n}\}_{n\in\Upsilon_{\rm comp}^{+}}.

Theorem 4 (Discrete symmetric Parseval frame).

Let us denote Lcomp2(N)={fL2(N)suppf^Γcomp}\mathrm{L}_{\rm comp}^{2}({\mathbb{R}}^{N})=\{f\in\mathrm{L}^{2}({\mathbb{R}}^{N})\mid\mathrm{supp}\,\widehat{f}\subseteq\Gamma_{\rm comp}\} and Γcomp=nΥcompΩn¯\Gamma_{\rm comp}=\underset{n\in\Upsilon_{\rm comp}}{\bigcup}\overline{\Omega_{n}}. Then, the system {Tbnkχn}(n,b)Υcomp+×N\{T_{b_{n}k}\chi_{n}\}_{(n,b)\in\Upsilon_{\rm comp}^{+}\times{\mathbb{Z}}^{N}} is a Parseval frame for Lcomp2(N)\mathrm{L}_{\rm comp}^{2}({\mathbb{R}}^{N}) if and only if, for a.e.ξNa.e.\,\xi\in{\mathbb{R}}^{N},

nΥα+1|bn|χ^n(ξ)χ^n(ξ+α)¯=δα,0,\sum_{n\in\Upsilon_{\alpha}^{+}}\frac{1}{|b_{n}|}\widehat{\chi}_{n}(\xi)\overline{\widehat{\chi}_{n}(\xi+\alpha)}=\delta_{\alpha,0}, (10)

for every α𝒦+\alpha\in\mathcal{K}^{+}, where

𝒦+=nΥcomp+bn1N,Υα+={nΥcomp+bnαN},\mathcal{K}^{+}=\underset{n\in\Upsilon_{\rm comp}^{+}}{\bigcup}b_{n}^{-1}\mathbb{Z}^{N},\qquad\Upsilon_{\alpha}^{+}=\{n\in\Upsilon_{\rm comp}^{+}\mid b_{n}\alpha\in\mathbb{Z}^{N}\},

and δα,0\delta_{\alpha,0} stands for the Kronecker delta function on N{\mathbb{R}}^{N}.

Proof.

Let us denote 𝒟={fL2(N)f^L(N) and suppf^Γcomp}.\mathcal{D}=\{f\in\mathrm{L}^{2}({\mathbb{R}}^{N})\mid\widehat{f}\in\mathrm{L}^{\infty}({\mathbb{R}}^{N})\textrm{ and }\mathrm{supp}\,\widehat{f}\subset\Gamma_{\rm comp}\}. Noticing that

Γcomp=nΥcomp+(Ωn¯Ωn¯).\Gamma_{\rm comp}=\underset{n\in\Upsilon_{\rm comp}^{+}}{\bigcup}\left(\overline{\Omega_{n}}\cup\overline{\Omega_{-n}}\right).

Theorem 2.1 in [13] states (by taking gp=χng_{p}=\chi_{n}, Cp=bnC_{p}=b_{n} and 𝒫=Υcomp+\mathcal{P}=\Upsilon_{\rm comp}^{+}) that the system {Tbnkχn}(n,k)Υ+×N\{T_{b_{n}k}\chi_{n}\}_{(n,k)\in\Upsilon^{+}\times{\mathbb{Z}}^{N}} is a Parseval frame for Lcomp2(N)\mathrm{L}_{\rm comp}^{2}({\mathbb{R}}^{N}) if and only if, for a.e.ξNa.e.\,\xi\in{\mathbb{R}}^{N},

nΥα+1|bn|χ^n(ξ)χ^n(ξ+α)¯=δα,0,\sum_{n\in\Upsilon_{\alpha}^{+}}\frac{1}{|b_{n}|}\widehat{\chi}_{n}(\xi)\overline{\widehat{\chi}_{n}(\xi+\alpha)}=\delta_{\alpha,0},

under the condition that

f𝒟,nΥcomp+kNsuppf^|f^(ξ+bn1k)|21|bn||χ^n(ξ)|2dξ<.\forall f\in\mathcal{D},\;\sum_{n\in\Upsilon_{\rm comp}^{+}}\sum_{k\in\mathbb{Z}^{N}}\int_{\mathrm{supp}\,\widehat{f}}\left|\widehat{f}(\xi+b_{n}^{-1}k)\right|^{2}\frac{1}{|b_{n}|}\left|\widehat{\chi}_{n}(\xi)\right|^{2}\mathrm{d}\xi<\infty.

This condition is given by the proof of Theorem 4 in [10], replacing \mathbb{Z} by N\mathbb{Z}^{N} and ψn\psi_{n} by χn\chi_{n}. It results from the fact that suppf^\mathrm{supp}\,\widehat{f} and suppχ^n\mathrm{supp}\,\widehat{\chi}_{n} are compact and that there are finitely many suppψ^n\mathrm{supp}\,\widehat{\psi}_{n} that intersect suppf^\mathrm{supp}\,\widehat{f}. This proves the equivalence. ∎

4.2.2 Non-compactly supported 𝝍^\boldsymbol{\widehat{\psi}}

In this section, we assume that the support of ψ^\widehat{\psi} is not compact. The following theorems state sufficient conditions for which the system

{Tbnkψn}(n,k)Υ×N and {Tbnkχn}(n,k)Υ+×N\{T_{b_{n}k}\psi_{n}\}_{(n,k)\in\Upsilon\times{\mathbb{Z}}^{N}}\quad\textrm{ and }\quad\{T_{b_{n}k}\chi_{n}\}_{(n,k)\in\Upsilon^{+}\times{\mathbb{Z}}^{N}}

are frames. The first theorem, for the system {ψn}nΥ\{\psi_{n}\}_{n\in\Upsilon}, is a straight generalization of Theorem 8 in [10]

Theorem 5 (Discrete frame).

If

A=infξN(nΥ1|bn||ψ^n(ξ)|2nΥk01|bn||ψ^n(ξ)ψ^n(ξbn1k)|)>0A=\inf_{\xi\in{\mathbb{R}}^{N}}\left(\sum_{n\in\Upsilon}\frac{1}{|b_{n}|}\left|\hat{\psi}_{n}(\xi)\right|^{2}-\sum_{n\in\Upsilon}\sum_{k\neq 0}\frac{1}{|b_{n}|}\left|\hat{\psi}_{n}(\xi)\widehat{\psi}_{n}(\xi-b_{n}^{-1}k)\right|\right)>0

and

B=supξNnΥkN1|bn||ψ^n(ξ)ψ^n(ξbn1k)|<,B=\sup_{\xi\in{\mathbb{R}}^{N}}\sum_{n\in\Upsilon}\sum_{k\in\mathbb{Z}^{N}}\frac{1}{|b_{n}|}\left|\hat{\psi}_{n}(\xi)\widehat{\psi}_{n}(\xi-b_{n}^{-1}k)\right|<\infty,

then the system {Tbnkψn}nΥ,kN\{T_{b_{n}k}\psi_{n}\}_{n\in\Upsilon,k\in\mathbb{Z}^{N}} is a frame for L2(N)\mathrm{L}^{2}({\mathbb{R}}^{N}) with frame bounds AA and BB.

Proof.

Let f𝒟f\in\mathcal{D}. We follow the proof of Theorem 8 in [10], replacing \mathbb{Z} by N\mathbb{Z}^{N} and {\mathbb{R}} by N{\mathbb{R}}^{N}. First, we use arguments similar to the proof of Theorem 3.4 in [20]. Since N{\mathbb{R}}^{N} can be written as a disjoint union N=lNbn1(𝕋l){\mathbb{R}}^{N}=\bigcup_{l\in{\mathbb{Z}}^{N}}b_{n}^{-1}(\mathbb{T}-l) with 𝕋=[0,1)N\mathbb{T}=[0,1)^{N}, we rewrite

kN|f,Tbnkψn|2\displaystyle\sum_{k\in{\mathbb{Z}}^{N}}|\langle f,T_{b_{n}k}\psi_{n}\rangle|^{2} =kN|Nf^(ξ)ψ^n(ξ)¯e2πı(bnkξ)dξ|2\displaystyle=\sum_{k\in{\mathbb{Z}}^{N}}\left|\int_{{\mathbb{R}}^{N}}\widehat{f}(\xi)\overline{\widehat{\psi}_{n}(\xi)}e^{2\pi\imath(b_{n}k\cdot\xi)}{\mathrm{d}}\xi\right|^{2}
=kN|bn1𝕋(lNf^(ξbn1l)ψ^n(ξbn1l)¯)e2πıbn(kξ)dξ|2\displaystyle=\sum_{k\in{\mathbb{Z}}^{N}}\left|\int_{b_{n}^{-1}\mathbb{T}}\left(\sum_{l\in{\mathbb{Z}}^{N}}\widehat{f}(\xi-b_{n}^{-1}l)\overline{\widehat{\psi}_{n}(\xi-b_{n}^{-1}l)}\right)e^{2\pi\imath b_{n}(k\cdot\xi)}{\mathrm{d}}\xi\right|^{2}
=kN|bn1𝕋(lNf^(ξbn1l)ψ^n(ξbn1l)¯)e2πı1bn1(kξ)dξ|2,\displaystyle=\sum_{k\in{\mathbb{Z}}^{N}}\left|\int_{b_{n}^{-1}\mathbb{T}}\left(\sum_{l\in{\mathbb{Z}}^{N}}\widehat{f}(\xi-b_{n}^{-1}l)\overline{\widehat{\psi}_{n}(\xi-b_{n}^{-1}l)}\right)e^{2\pi\imath\frac{1}{b_{n}^{-1}}\left(k\cdot\xi\right)}{\mathrm{d}}\xi\right|^{2},

with 𝕋=[0,1)N\mathbb{T}=[0,1)^{N}.

The function ξlNf^(ξbn1l)ψ^n(ξbn1l)¯\xi\mapsto\sum_{l\in{\mathbb{Z}}^{N}}\widehat{f}(\xi-b_{n}^{-1}l)\overline{\widehat{\psi}_{n}(\xi-b_{n}^{-1}l)} belongs to L2(bn1𝕋){\mathrm{L}^{2}}(b_{n}^{-1}\mathbb{T}) and each of its component is bn1Nb_{n}^{-1}{\mathbb{Z}}^{N}-periodic. Thus, by Parseval’s identity, we get

kN|f,Tbnkψn|2\displaystyle\sum_{k\in{\mathbb{Z}}^{N}}|\langle f,T_{b_{n}k}\psi_{n}\rangle|^{2} =1|bn|bn1𝕋|lNf^(ξbn1l)ψ^n(ξbn1l)¯|2dξ\displaystyle=\frac{1}{|b_{n}|}\int_{b_{n}^{-1}\mathbb{T}}\left|\sum_{l\in{\mathbb{Z}}^{N}}\widehat{f}(\xi-b_{n}^{-1}l)\overline{\widehat{\psi}_{n}(\xi-b_{n}^{-1}l)}\right|^{2}{\mathrm{d}}\xi
=1|bn|bn1𝕋lNf^(ξbn1l)ψ^n(ξbn1l)¯uNf^(ξbn1u)ψ^n(ξbn1u)¯¯dξ.\displaystyle=\frac{1}{|b_{n}|}\int_{b_{n}^{-1}\mathbb{T}}\sum_{l\in{\mathbb{Z}}^{N}}\widehat{f}(\xi-b_{n}^{-1}l)\overline{\widehat{\psi}_{n}(\xi-b_{n}^{-1}l)}\overline{\sum_{u\in{\mathbb{Z}}^{N}}\widehat{f}(\xi-b_{n}^{-1}u)\overline{\widehat{\psi}_{n}(\xi-b_{n}^{-1}u)}}{\mathrm{d}}\xi.

Hence, by the change of indices u=l+ku=l+k, we get

kN|f,\displaystyle\sum_{k\in{\mathbb{Z}}^{N}}|\langle f, Tbnkψn|2\displaystyle T_{b_{n}k}\psi_{n}\rangle|^{2}
=1|bn|bn1𝕋l,kNf^(ξbn1l)ψ^n(ξbn1l)¯f^(ξbn1(l+k))¯ψ^n(ξbn1(l+k))dξ\displaystyle=\frac{1}{|b_{n}|}\int_{b_{n}^{-1}\mathbb{T}}\sum_{l,k\in{\mathbb{Z}}^{N}}\widehat{f}(\xi-b_{n}^{-1}l)\overline{\widehat{\psi}_{n}(\xi-b_{n}^{-1}l)}\,\overline{\widehat{f}(\xi-b_{n}^{-1}(l+k))}\widehat{\psi}_{n}(\xi-b_{n}^{-1}(l+k)){\mathrm{d}}\xi
=1|bn|l,kNbn1𝕋f^(ξbn1l)ψ^n(ξbn1l)¯f^(ξbn1(l+k))¯ψ^n(ξbn1(l+k))dξ\displaystyle=\frac{1}{|b_{n}|}\sum_{l,k\in{\mathbb{Z}}^{N}}\int_{b_{n}^{-1}\mathbb{T}}\widehat{f}(\xi-b_{n}^{-1}l)\overline{\widehat{\psi}_{n}(\xi-b_{n}^{-1}l)}\,\overline{\widehat{f}(\xi-b_{n}^{-1}(l+k))}\widehat{\psi}_{n}(\xi-b_{n}^{-1}(l+k)){\mathrm{d}}\xi
=1|bn|kNNf^(ξ)ψ^n(ξ)¯f^(ξbn1k)¯ψ^n(ξbn1k)dξ.\displaystyle=\frac{1}{|b_{n}|}\sum_{k\in{\mathbb{Z}}^{N}}\int_{{\mathbb{R}}^{N}}\widehat{f}(\xi)\overline{\widehat{\psi}_{n}(\xi)}\,\overline{\widehat{f}(\xi-b_{n}^{-1}k)}\widehat{\psi}_{n}(\xi-b_{n}^{-1}k){\mathrm{d}}\xi.

Splitting the terms when k=0k=0 and k0k\neq 0, we obtain

nΥkN|f,Tbnkψn|2=N|f^(ξ)|2nΥ1|bn||ψ^n(ξ)|2dξ+R(f),\sum_{n\in\Upsilon}\sum_{k\in{\mathbb{Z}}^{N}}|\langle f,T_{b_{n}k}\psi_{n}\rangle|^{2}=\int_{{\mathbb{R}}^{N}}\left|\widehat{f}(\xi)\right|^{2}\sum_{n\in\Upsilon}\frac{1}{|b_{n}|}\left|\widehat{\psi}_{n}(\xi)\right|^{2}{\mathrm{d}}\xi+R(f), (11)

where

R(f)=nΥk01|bn|Nf^(ξ)f^(ξbn1k)¯ψ^n(ξ)¯ψ^n(ξbn1k)dξ.R(f)=\sum_{n\in\Upsilon}\sum_{k\neq 0}\frac{1}{|b_{n}|}\int_{{\mathbb{R}}^{N}}\widehat{f}(\xi)\overline{\widehat{f}(\xi-b_{n}^{-1}k)}\,\overline{\widehat{\psi}_{n}(\xi)}\widehat{\psi}_{n}(\xi-b_{n}^{-1}k){\mathrm{d}}\xi.

Finally, the arguments of the proof of Theorem 3.1 in [3], with d=Nd=N, Cj=bnC_{j}=b_{n}, gj=ψng_{j}=\psi_{n} and 𝒥=Υ\mathcal{J}=\Upsilon, give the results. ∎

Theorem 6 (Discrete symmetric frame).

If

A=infξN(nΥ+1|bn||χ^n(ξ)|2nΥ+k01|bn||χ^n(ξ)χ^n(ξbn1k)|)>0A=\inf_{\xi\in{\mathbb{R}}^{N}}\left(\sum_{n\in\Upsilon^{+}}\frac{1}{|b_{n}|}\left|\widehat{\chi}_{n}(\xi)\right|^{2}-\sum_{n\in\Upsilon^{+}}\sum_{k\neq 0}\frac{1}{|b_{n}|}\left|\widehat{\chi}_{n}(\xi)\widehat{\chi}_{n}(\xi-b_{n}^{-1}k)\right|\right)>0

and

B=supξNnΥ+kN1|bn||χ^n(ξ)χ^n(ξbn1k)|<,B=\sup_{\xi\in{\mathbb{R}}^{N}}\sum_{n\in\Upsilon^{+}}\sum_{k\in\mathbb{Z}^{N}}\frac{1}{|b_{n}|}\left|\widehat{\chi}_{n}(\xi)\widehat{\chi}_{n}(\xi-b_{n}^{-1}k)\right|<\infty,

then the system {Tbnkχn}nΥ+,kN\{T_{b_{n}k}\chi_{n}\}_{n\in\Upsilon^{+},k\in\mathbb{Z}^{N}} is a frame for L2(N)\mathrm{L}^{2}({\mathbb{R}}^{N}) with frame bounds AA and BB.

Proof.

This results from the argumentation of the proof of Theorem 5 by replacing Υ\Upsilon by Υ+\Upsilon^{+} and ψn\psi_{n} by χn\chi_{n}. ∎

5 Empirical wavelet systems from affine deformations

In this section, we consider a partition {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} for which we can find diffeomorphisms γn\gamma_{n} that are affine functions, i.e., of the form γn(ξ)=βn(ξηn)\gamma_{n}(\xi)=\beta_{n}(\xi-\eta_{n}) with βn\beta_{n} a linear function. If the construction of the empirical wavelet systems introduced in Section 3 is natural in the Fourier domain, it is also possible to build them directly in the spatial domain for affine mappings.

First, the following Lemma gives the explicit expression of a function with Fourier transform deformed by a linear function.

Lemma 1.

Let β:xAx\beta:x\mapsto Ax be a linear function (non identically zero), with AN×NA\in{\mathbb{R}}^{N\times N}. The function gg corresponding to the inverse Fourier transform of the deformation of the Fourier transform f^\widehat{f} of a function ff by β\beta, i.e., g^=f^β\widehat{g}=\widehat{f}\circ\beta, is given by, for every xNx\in{\mathbb{R}}^{N},

g(x)=1|detA|f(Ax),g(x)=\frac{1}{\left|det\;A\right|}f(A^{-\intercal}x), (12)

where β=(β1)\beta^{-\intercal}=(\beta^{-1})^{\intercal}.

Proof.

By taking the inverse Fourier transform, we have (using the substitution ξ=β1(u)dξ=|detJβ1(u)|du\xi=\beta^{-1}(u)\to d\xi=|\mathrm{det}\;J_{\beta^{-1}}(u)|du)

g(x)=Nf^(β(ξ))e2πı(ξx)dξ\displaystyle g(x)=\int_{{\mathbb{R}}^{N}}\widehat{f}(\beta(\xi))e^{2\pi\imath(\xi\cdot x)}\mathrm{d}\xi =β(N)f^(u)e2πı(β1(u)x)|detJβ1(u)|du\displaystyle=\int_{\beta({\mathbb{R}}^{N})}\widehat{f}(u)e^{2\pi\imath(\beta^{-1}(u)\cdot x)}\left|\mathrm{det}\;J_{\beta^{-1}}(u)\right|\mathrm{d}u
=1|detA|Nf^(u)e2πı(uβ(x))du\displaystyle=\frac{1}{\left|det\;A\right|}\int_{{\mathbb{R}}^{N}}\widehat{f}(u)e^{2\pi\imath(u\cdot\beta^{-\intercal}(x))}\mathrm{d}u
=1|detA|1(f^)(β(x))\displaystyle=\frac{1}{\left|det\;A\right|}{\mathcal{F}}^{-1}\left(\widehat{f}\right)(\beta^{-\intercal}(x))
=1|detA|f(Ax).\displaystyle=\frac{1}{\left|det\;A\right|}f(A^{-\intercal}x).

Finally, for affine diffeormorphisms, empirical wavelet systems {ψn}nΥ\{\psi_{n}\}_{n\in\Upsilon} can be built in the spatial domain using the following proposition.

Proposition 2 (Spatial domain construction).

Let {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} be a partition of the Fourier domain and ψ\psi a wavelet kernel. Let assume there exists a set of linear functions {βn:ξAnξ}nΥ\{\beta_{n}:\xi\mapsto A_{n}\xi\}_{n\in\Upsilon} such that Λ=βn(Ωnηn)\Lambda=\beta_{n}(\Omega_{n}-\eta_{n}) if Ωn\Omega_{n} is bounded and Λβn(Ωnηn)\Lambda\subsetneq\beta_{n}(\Omega_{n}-\eta_{n}) otherwise. The set of empirical wavelets, {ψn}nΥ\{\psi_{n}\}_{n\in\Upsilon}, defined in the Fourier domain by, for every ξN\xi\in{\mathbb{R}}^{N},

ψ^n(ξ)=|detJβn(ξηn)|ψ^(βn(ξηn))=|detAn|ψ^(An(ξηn)),\widehat{\psi}_{n}(\xi)=\sqrt{\left|\mathrm{det}J_{\beta_{n}}(\xi-\eta_{n})\right|}\,\widehat{\psi}(\beta_{n}(\xi-\eta_{n}))=\sqrt{\left|\mathrm{det}A_{n}\right|}\,\widehat{\psi}(A_{n}(\xi-\eta_{n})),

is given in the spatial domain by, for every xNx\in{\mathbb{R}}^{N},

ψn(x)=1|detAn|ψ(Anx)e2πıηnx.\psi_{n}(x)=\frac{1}{\sqrt{\left|\mathrm{det}A_{n}\right|}}\psi(A_{n}^{-\intercal}x)\,e^{2\pi\imath\,\eta_{n}x}.
Proof.

Moreover, since the translation by ηn\eta_{n} in the Fourier domain is a modulation of frequency ηn\eta_{n} in the spatial domain, we can rewrite

ψn(x)=1(|detAn|ψ^βn)(x)e2πıηnx.\psi_{n}(x)={\mathcal{F}}^{-1}\left(\sqrt{\left|\mathrm{det}A_{n}\right|}\widehat{\psi}\circ\beta_{n}\right)(x)\,e^{2\pi\imath\eta_{n}x}.

By applying Lemma 1 with f^=|detAn|ψ^\widehat{f}=\sqrt{\left|\mathrm{det}A_{n}\right|}\widehat{\psi} and β=βn\beta=\beta_{n}, we obtain the result. ∎

Example 5.1.

As in Example 3.1, we consider the 1D case with ψ^\widehat{\psi} of support Λ\Lambda the open interval of size 11 centered on 0 and {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon} a partition of open bounded intervals with center ωn\omega_{n}. The diffeomorphism γn:ξ1|Ωn|(ξωn)\gamma_{n}:\xi\mapsto\frac{1}{|\Omega_{n}|}(\xi-\omega_{n}), satisfying Λ=γn(Ωn)\Lambda=\gamma_{n}(\Omega_{n}), can be rewritten γn(ξ)=βn(ξηn)\gamma_{n}(\xi)=\beta_{n}(\xi-\eta_{n}) with βn:ξξ/|Ωn|\beta_{n}:\xi\mapsto\xi/|\Omega_{n}| and ηn=ωn\eta_{n}=\omega_{n}. The associated empirical wavelet system is therefore given in the spatial domain by, for every xx\in{\mathbb{R}},

ψn(x)\displaystyle\psi_{n}(x) =|Ωn|ψ(|Ωn|x)e2πıωnx.\displaystyle=\sqrt{|\Omega_{n}|}\,\psi(|\Omega_{n}|x)\,e^{2\pi\imath\,\omega_{n}x}.

We thus retrieve the definition given in [8].

Example 5.2.

We can also build wavelets on a 2D dyadic tiling. We consider a separable wavelet kernel ψ^2D(ξ1,ξ2)=ψ^(ξ1)ψ^(ξ2)\widehat{\psi}^{\rm 2D}(\xi_{1},\xi_{2})=\widehat{\psi}(\xi_{1})\widehat{\psi}(\xi_{2}), where ψ^\widehat{\psi} is a scaling function supported by an open interval Λ\Lambda centered in 0, and the diffeomorphism γj,n:ξ2j(ξωn)\gamma_{j,n}:\xi\mapsto 2^{j}(\xi-\omega_{n}), n=1,2,3n=1,2,3, with ω1=(ω0,0)\omega_{1}=(\omega_{0},0), ω2=(0,ω0)\omega_{2}=(0,\omega_{0}) and ω3=(ω0,ω0)\omega_{3}=(\omega_{0},\omega_{0}). The associated translated empirical wavelet system is given in the spatial domain by, for every (x,y)2(x,y)\in{\mathbb{R}}^{2} and (l,m)2(l,m)\in{\mathbb{Z}}^{2},

ψj,n((x,y)2j(l,m))\displaystyle\psi_{j,n}((x,y)-2^{j}(l,m)) =12jψ(x2jl2j)ψ(y2jm2j).\displaystyle=\frac{1}{2^{j}}\,\psi\left(\frac{x-2^{j}l}{2^{j}}\right)\psi\left(\frac{y-2^{j}m}{2^{j}}\right).

Finally, the transform resulting from definition 6 using this system is similar to the classic discrete wavelet transform.

The construction of a symmetric empirical wavelet system {χn}nΥ\{\chi_{n}\}_{n\in\Upsilon}, induced by affine diffeomorphisms, in the spatial domain stems from Proposition 2, using Equation 3.

Example 5.3.

We consider again the 1D domain. From the system {ψn}nΥ\{\psi_{n}\}_{n\in\Upsilon} defined as in Example 5.1, we can build a symmetric system {χn}nΥ\{\chi_{n}\}_{n\in\Upsilon} as follows, for every xx\in{\mathbb{R}},

χ0(x)=|Ω0|ψ(|Ω0|x),\chi_{0}(x)=\sqrt{|\Omega_{0}|}\,\psi(|\Omega_{0}|x),

and, for n0n\neq 0,

χn(x)\displaystyle\chi_{n}(x) =|Ωn|2ψ(|Ωn|x)e2πıωnx+|Ωn|2ψ(|Ωn|x)e2πıωnx\displaystyle=\sqrt{\frac{|\Omega_{n}|}{2}}\psi(|\Omega_{n}|x)e^{2\pi\imath\,\omega_{n}x}+\sqrt{\frac{|\Omega_{n}|}{2}}\psi(|\Omega_{n}|x)e^{-2\pi\imath\,\omega_{n}x}
=2|Ωn|ψ(|Ωn|x)cos(2πωnx).\displaystyle=\sqrt{2|\Omega_{n}|}\,\psi(|\Omega_{n}|x)\,\cos(2\pi\omega_{n}x).

In particular, this extends the definitions of 1D empirical wavelet systems in [8] to symmetric partitions of the Fourier domain.

6 Construction of empirical wavelet systems

In this section, 2D continuous empirical wavelet systems are constructed from Gabor and Shannon wavelet kernels and we examine their guarantees of reconstruction. Their practical behaviors are analyzed through numerical experiments conducted on two different (real-valued) images: a toy image of size 256×256256\times 256 and the classic Barbara image of size 512×512512\times 512. These images are shown in Figure 3 (left).

For the Fourier domain partitioning of both images, the NmN_{m} harmonic modes are detected by the scale-space representation [11] on the logarithm of the Fourier spectrum, using a scale-space parameter set to s0=0.8s_{0}=0.8. We get Nm=10N_{m}=10 for the toy image and Nm=15N_{m}=15 for the Barbara image. The Fourier domain is then partitioned by separating the detected modes using either the Watershed [17] or Voronoi [9] methods, which provide as many connected supports of low constrained shapes as modes. Figure 3 (middle and right) shows the (symmetric) Fourier tranform of both images, partitioned by either Watershed or Voronoi into NmN_{m} symmetric regions ΩnΩn\Omega_{n}\cup\Omega_{-n}, with nΥ+={0,,Nm1}n\in\Upsilon^{+}=\{0,\ldots,N_{m}-1\}.

Refer to caption
Refer to caption
Refer to caption
(a)

Refer to caption
Refer to caption
Refer to caption
(b)
Figure 3: Images and Fourier partitions. (Top) Toy image of size 256×256256\times 256 and (bottom) classic Barbara image of size 512×512512\times 512, along with the (middle) Watershed and (right) Voronoi partitions (overlapping in red) of the logarithm of their Fourier spectra.

To numerically construct empirical wavelet systems {χn}nΥ+\{\chi_{n}\}_{n\in\Upsilon^{+}} as in Equation 2, we need to compute an estimate γ˘n\breve{\gamma}_{n} of the diffeomorphism γn\gamma_{n}. This estimation is performed using the demons algorithm [29], which is inspired by a diffusion process and is widely used in medical image registration. This algorithm estimates a displacement field representing the desired mapping by alternating between solving the flow equations and regularization. For each region Ωn\Omega_{n}, the pair of smoothing parameter and number of multiresolution image pyramid levels is selected by a grid search minimizing the quadratic risk Λγ˘n(Ωn)22\|\Lambda-\breve{\gamma}_{n}(\Omega_{n})\|_{2}^{2} on the values in (0.3,0.35,,0.7)×(nP2,nP1,nP)(0.3,0.35,\ldots,0.7)\times(n_{P}-2,n_{P}-1,n_{P}), where nPn_{P} is the highest integer such that 2nP2^{n_{P}} is smaller than each dimension of the image. The number of iterations at the nPn_{P} pyramid levels are set to (24,,2nP+1)(2^{4},\ldots,2^{n_{P}+1}) from the highest to the lowest pyramid level.

For all the numerical experiments, the symmetric empirical wavelet transform is computed as in Definition 6 with bn=1b_{n}=1 for every nΥ+n\in\Upsilon^{+}, so that the results for continuous wavelet frames in Section 4 apply. To each wavelet transform coefficient χf(,n){\mathcal{E}}_{\chi}^{f}(\cdot,n) of an image ff of size M×MM\times M, we associate the wavelet transform spectrum defined as |χf(,n)|2|{\mathcal{E}}_{\chi}^{f}(\cdot,n)|^{2} and the Fourier spectrum energy En\mathrm{E}_{n} of the underlying region ΩnΩn\Omega_{n}\cup\Omega_{-n} that reads

En=1M2(m1,m2)ΩnΩn|f^(m1,m2)|2.\mathrm{E}_{n}=\frac{1}{M^{2}}\sum_{(m_{1},m_{2})\in\Omega_{n}\cup\Omega_{-n}}\left|\widehat{f}(m_{1},m_{2})\right|^{2}.

The reconstruction rr of ff given by Equation 9 is assessed by the Mean Squared Error (MSE) given by

MSE(r)=1M2m1=1Mm2=1M|r(m1,m2)f(m1,m2)|2.\mathrm{MSE}(r)=\frac{1}{M^{2}}\sum_{m_{1}=1}^{M}\sum_{m_{2}=1}^{M}|r(m_{1},m_{2})-f(m_{1},m_{2})|^{2}.

6.1 2D empirical Gabor wavelets

The Fourier transform of the 1D Gabor wavelet kernel is given by (see [8]), for every uu\in{\mathbb{R}},

ψ^1DG(u)=eπ(52u)2,\widehat{\psi}^{\mathrm{1D-G}}(u)=e^{-\pi\left(\frac{5}{2}u\right)^{2}},

which is mostly supported by (12,12)(-\frac{1}{2},\frac{1}{2}). We define its extension to 2D by, for every u2u\in{\mathbb{R}}^{2},

ψ^G(u)=eπ(52)2u22,\widehat{\psi}^{\mathrm{G}}(u)=e^{-\pi\left(\frac{5}{2}\right)^{2}\|u\|^{2}_{2}},

which is mostly supported by the open disk of center 0 and radius 1/21/2 denoted Λ=B2(0,1/2)\Lambda=\mathrm{B}_{2}(0,1/2).

The following proposition gives guarantees of reconstruction from a Gabor empirical wavelet systems.

Proposition 3 (Gabor empirical wavelet reconstruction).

Let assume that the diffeomorphisms γn\gamma_{n} satisfy, for a.e.ξ2a.e.\,\xi\in{\mathbb{R}}^{2}, |{mΥγm(ξ)=γn(ξ)}|Kξ|\{m\in\Upsilon\mid\gamma_{m}(\xi)=\gamma_{n}(\xi)\}|\leq K_{\xi}\in\mathbb{N} for every nΥn\in\Upsilon and {|detJγn(ξ)|}nΥ\{|\mathrm{det}\;J_{\gamma_{n}}(\xi)|\}_{n\in\Upsilon} is a bounded sequence. Then, the continuous reconstruction is guaranteed for the empirical wavelet systems {ψn}nΥ\{\psi_{n}\}_{n\in\Upsilon} and {χn}nΥ\{\chi_{n}\}_{n\in\Upsilon} induced by ψ^Gγn\widehat{\psi}^{\mathrm{G}}\circ\gamma_{n}, and is given by Equations 8 and 9.

Proof.

We have, for every ξ2\xi\in{\mathbb{R}}^{2},

nΥ|ψ^n(ξ)|2=nΥ|detJγn(ξ)||ψ^(γn(ξ))|2=nΥ|detJγn(ξ)|e2π(52)2γn(ξ)2.\displaystyle\sum_{n\in\Upsilon}\left|\widehat{\psi}_{n}(\xi)\right|^{2}=\sum_{n\in\Upsilon}|\mathrm{det}\;J_{\gamma_{n}}(\xi)|\left|\widehat{\psi}(\gamma_{n}(\xi))\right|^{2}=\sum_{n\in\Upsilon}|\mathrm{det}\;J_{\gamma_{n}}(\xi)|e^{-2\pi(\frac{5}{2})^{2}\|\gamma_{n}(\xi)\|^{2}}.

First, since γn\gamma_{n} is a diffeomorphism, we have, for every ξ2\xi\in{\mathbb{R}}^{2}, |detJγn(ξ)|>0|\mathrm{det}\;J_{\gamma_{n}}(\xi)|>0 and therefore

nΥ|ψ^n(ξ)|2>0.\sum_{n\in\Upsilon}\left|\widehat{\psi}_{n}(\xi)\right|^{2}>0.

Now, let us denote Γξ={mΥγm(ξ)=γn(ξ)nm}\Gamma_{\xi}=\left\{m\in\Upsilon\mid\gamma_{m}(\xi)=\gamma_{n}(\xi)\Rightarrow n\geq m\right\}. For a.e.ξ2a.e.\,\xi\in{\mathbb{R}}^{2} and every nΓξn\in\Gamma_{\xi}, the γn(ξ)\gamma_{n}(\xi) are all different and the condition |{mΥγm(ξ)=γn(ξ)}|Kξ|\{m\in\Upsilon\mid\gamma_{m}(\xi)=\gamma_{n}(\xi)\}|\leq K_{\xi}\in\mathbb{N} means that there are at most KξK_{\xi} integers mΥm\in\Upsilon for which the γm(ξ)\gamma_{m}(\xi) have the same value as γn(ξ)\gamma_{n}(\xi). It follows that, for a.e.ξ2a.e.\,\xi\in{\mathbb{R}}^{2},

nΥ|ψ^n(ξ)|2\displaystyle\sum_{n\in\Upsilon}\left|\widehat{\psi}_{n}(\xi)\right|^{2} maxnΥ|detJγn(ξ)|nΥe2π(52)2γn(ξ)2\displaystyle\leq\max_{n\in\Upsilon}|\mathrm{det}\;J_{\gamma_{n}}(\xi)|\sum_{n\in\Upsilon}e^{-2\pi(\frac{5}{2})^{2}\|\gamma_{n}(\xi)\|^{2}}
KξmaxnΥ|detJγn(ξ)|nΓξe2π(52)2γn(ξ)2\displaystyle\leq K_{\xi}\max_{n\in\Upsilon}|\mathrm{det}\;J_{\gamma_{n}}(\xi)|\sum_{n\in\Gamma_{\xi}}e^{-2\pi(\frac{5}{2})^{2}\|\gamma_{n}(\xi)\|^{2}}
KξmaxnΥ|detJγn(ξ)|2e2π(52)2u2du<,\displaystyle\leq K_{\xi}\max_{n\in\Upsilon}|\mathrm{det}\;J_{\gamma_{n}}(\xi)|\int_{{\mathbb{R}}^{2}}e^{-2\pi(\frac{5}{2})^{2}\|u\|^{2}}\mathrm{d}u<\infty,

where the last line comes from the fact that {γn(ξ)|nΓξ}\{\gamma_{n}(\xi)|n\in\Gamma_{\xi}\} is a sampling of 2{\mathbb{R}}^{2} and ue2π(52)2u2u\mapsto e^{-2\pi(\frac{5}{2})^{2}\|u\|^{2}} is a positive function. Then, Theorem 1 applies and gives a dual frame of {ψn}nΥ\{\psi_{n}\}_{n\in\Upsilon}. This guarantees the reconstruction using Equation 8.

In addition, in the case of a symmetric partition {Ωn}nΥ\{\Omega_{n}\}_{n\in\Upsilon}, we show similarly that, for a.e.ξ2a.e.\,\xi\in{\mathbb{R}}^{2},

nΥ{0}|ψ^n(ξ)||ψ^n(ξ)|\displaystyle\sum_{n\in\Upsilon\setminus\{0\}}\left|\widehat{\psi}_{n}(\xi)\right|\left|\widehat{\psi}_{-n}(\xi)\right| =nΥ{0}|detJγn(ξ)detJγn(ξ)|eπ(52)2(γn(ξ)2+γn(ξ)2)\displaystyle=\sum_{n\in\Upsilon\setminus\{0\}}\sqrt{|\mathrm{det}\;J_{\gamma_{n}}(\xi)\mathrm{det}\;J_{\gamma_{n}}(-\xi)|}e^{-\pi(\frac{5}{2})^{2}\left(\|\gamma_{n}(\xi)\|^{2}+\|\gamma_{-n}(\xi)\|^{2}\right)}
=KξmaxnΥ{0}|detJγn(ξ)|nΓξeπ(52)2(γn(ξ)2+γn(ξ)2)\displaystyle=K_{\xi}\max_{n\in\Upsilon\setminus\{0\}}|\mathrm{det}\;J_{\gamma_{n}}(\xi)|\sum_{n\in\Gamma_{\xi}}e^{-\pi(\frac{5}{2})^{2}\left(\|\gamma_{n}(\xi)\|^{2}+\|\gamma_{-n}(\xi)\|^{2}\right)}
=KξmaxnΥ{0}|detJγn(ξ)|4eπ(52)2u2du<.\displaystyle=K_{\xi}\max_{n\in\Upsilon\setminus\{0\}}|\mathrm{det}\;J_{\gamma_{n}}(\xi)|\int_{{\mathbb{R}}^{4}}e^{-\pi(\frac{5}{2})^{2}\|u\|^{2}}{\mathrm{d}}u<\infty.

Then, Theorem 2 applies and gives a dual frame of {χn}nΥ+\{\chi_{n}\}_{n\in\Upsilon^{+}}. The reconstruction is then given by Equation 9. ∎

For the toy image, Figures 4 and 5 compare the preimage of Λ=B2(0,12)\Lambda=\mathrm{B}_{2}(0,\frac{1}{2}) under the diffeomorphism estimate γ˘n\breve{\gamma}_{n} to the targeted Ωn\Omega_{n} and show the symmetric empirical Gabor wavelet coefficients induced by ψ^Gγ˘n\widehat{\psi}^{\mathrm{G}}\circ\breve{\gamma}_{n}, for the Watershed and Voronoi partitions, respectively, and n{0,,9}n\in\{0,\ldots,9\}. The diffeomorphisms γn\gamma_{n} are well estimated for both partitions but the more constrained shapes of the Voronoi partition allow for better estimates. The MSE of the reconstruction from the Watershed and Voronoi transforms are, respectively, 6.93×10306.93\times 10^{-30} and 1.65×10311.65\times 10^{-31}, confirming the accurate diffeomorphism estimation. In addition, the different components of the toy image are well recovered by the wavelet coefficients associated with the highest Fourier spectrum energies.

Refer to caption

 

Refer to caption

Figure 4: Gabor Watershed transform of the toy image. (Top) Sets γ˘n1(Λ)\breve{\gamma}_{n}^{-1}(\Lambda) (in white) for the diffeomorphisms γn\gamma_{n} mapping the Watershed regions Ωn\Omega_{n} (with contour in red) to the disk Λ=B2(0,1/2)\Lambda=\mathrm{B}_{2}(0,1/2) and (bottom) resulting empirical Gabor wavelet transform spectra, for the toy image and n{0,,9}n\in\{0,\ldots,9\}. The Fourier spectrum energies En\mathrm{E}_{n} over the regions ΩnΩn\Omega_{n}\cup\Omega_{-n} are indicated above the wavelet spectra.

Refer to caption

 

Refer to caption

Figure 5: Gabor Voronoi transform of the toy image. (Top) Sets γ˘n1(Λ)\breve{\gamma}_{n}^{-1}(\Lambda) (in white) for the diffeomorphisms γn\gamma_{n} mapping the Voronoi regions Ωn\Omega_{n} (with contour in red) to the disk Λ=B2(0,1/2)\Lambda=\mathrm{B}_{2}(0,1/2) and (bottom) resulting empirical Gabor wavelet transform spectra, for the toy image and n{0,,9}n\in\{0,\ldots,9\}. The Fourier spectrum energies En\mathrm{E}_{n} over the regions ΩnΩn\Omega_{n}\cup\Omega_{-n} are indicated above the wavelet spectra.

For the Barbara image, Figures 6 and 7 compare the preimage of Λ=B2(0,12)\Lambda=\mathrm{B}_{2}(0,\frac{1}{2}) under γ˘n\breve{\gamma}_{n} to the targeted Ωn\Omega_{n} and show the symmetric empirical Gabor wavelet coefficients induced by ψ^Gγ˘n\widehat{\psi}^{\mathrm{G}}\circ\breve{\gamma}_{n}, for the Watershed and Voronoi partitions, respectively, and n{0,,9}n\in\{0,\ldots,9\}. The diffeomorphism estimation is much more accurate on the Vornoi partition than on the Watershed partition, in particular for the region Ω0\Omega_{0} which is very large for the Watershed partition. Thus, in terms of reconstruction, Watershed and Voronoi partition lead to MSE of 5.02×10255.02\times 10^{-25} and 2.10×10302.10\times 10^{-30}, respectively.

Refer to caption

 

Refer to caption

Figure 6: Gabor Watershed transform of the Barbara image. (Top) Sets γ˘n1(Λ)\breve{\gamma}_{n}^{-1}(\Lambda) (in white) for the diffeomorphisms γn\gamma_{n} mapping the Watershed regions Ωn\Omega_{n} (with contour in red) to the disk Λ=B2(0,1/2)\Lambda=\mathrm{B}_{2}(0,1/2) and (bottom) resulting empirical Gabor wavelet transform spectra, for the Barbara image and n{0,,14}n\in\{0,\ldots,14\}. The Fourier spectrum energies En\mathrm{E}_{n} over the regions ΩnΩn\Omega_{n}\cup\Omega_{-n} are indicated above the wavelet spectra.

Refer to caption

 

Refer to caption

Figure 7: Gabor Voronoi transform of the Barbara image. (Top) Sets γ˘n1(Λ)\breve{\gamma}_{n}^{-1}(\Lambda) (in white) for the diffeomorphisms γn\gamma_{n} mapping the Voronoi regions Ωn\Omega_{n} (with contour in red) to the disk Λ=B2(0,1/2)\Lambda=\mathrm{B}_{2}(0,1/2) and (bottom) resulting empirical Gabor wavelet transform spectra, for the Barbara image and n{0,,14}n\in\{0,\ldots,14\}. The Fourier spectrum energies En\mathrm{E}_{n} over the regions ΩnΩn\Omega_{n}\cup\Omega_{-n} are indicated above the wavelet spectra.

6.2 2D empirical Shannon wavelets

The 1D Shannon scaling function is a sincsinc function given in the Fourier domain by, for every uu\in{\mathbb{R}},

ψ^1DS(u)=eıπ(u+32)𝟙(12,12)(u).\widehat{\psi}^{\mathrm{1D-S}}(u)=e^{-\imath\pi(u+\frac{3}{2})}\mathbb{1}_{\left(-\frac{1}{2},\frac{1}{2}\right)}(u).

This definition can be extended to the 2D domain as a separable function given by, for every u=(u1,u2)2u=(u_{1},u_{2})\in{\mathbb{R}}^{2},

ψ^S(u)=ψ^1DS(u1)ψ^1DS(u2),\widehat{\psi}^{\mathrm{S}}(u)=\widehat{\psi}^{\mathrm{1D-S}}(u_{1})\,\widehat{\psi}^{\mathrm{1D-S}}(u_{2}),

which is supported by the square centered in 0 of side length 11 denoted Λ=(12,12)×(12,12)\Lambda=\left(-\frac{1}{2},\frac{1}{2}\right)\times\left(-\frac{1}{2},\frac{1}{2}\right).

The following proposition gives guarantees of reconstruction of Shannon empirical wavelet systems.

Proposition 4 (Shannon wavelet reconstruction).

Assume that the boundaries Ωn\partial\Omega_{n} have measures zero. Then, the continuous reconstruction is guaranteed for the empirical wavelet systems {ψn}nΥ\{\psi_{n}\}_{n\in\Upsilon} and {χn}nΥ\{\chi_{n}\}_{n\in\Upsilon} induced by ψ^Sγn\widehat{\psi}^{\mathrm{S}}\circ\gamma_{n}, and is given by Equations 8 and 9.

Proof.

Let fix mΥm\in\Upsilon. For every ξΩm\xi\in\Omega_{m},

nΥ|ψ^n(ξ)|2=nΥ|detJγn(ξ)||ψ^(γn(ξ))|2=|detJγm(ξ)|.\sum_{n\in\Upsilon}\left|\widehat{\psi}_{n}(\xi)\right|^{2}=\sum_{n\in\Upsilon}|\mathrm{det}\;J_{\gamma_{n}}(\xi)|\left|\widehat{\psi}(\gamma_{n}(\xi))\right|^{2}=|\mathrm{det}\;J_{\gamma_{m}}(\xi)|.

Since γn\gamma_{n} is a diffeomorphism, it follows that, for a.e.ξ2a.e.\,\xi\in{\mathbb{R}}^{2}, |detJγm(ξ)|>0|\mathrm{det}\;J_{\gamma_{m}}(\xi)|>0 and therefore

0<nΥ|ψ^n(ξ)|2<.0<\sum_{n\in\Upsilon}\left|\widehat{\psi}_{n}(\xi)\right|^{2}<\infty.

This corresponds to the condition of Theorem 1, which gives the reconstruction from a dual frame of {ψn}nΥ\{\psi_{n}\}_{n\in\Upsilon} using Equation 8.

In addition, for every ξN\xi\in{\mathbb{R}}^{N},

nΥ{0}|ψ^n(ξ)||ψ^n(ξ)|=0.\sum_{n\in\Upsilon\setminus\{0\}}\left|\widehat{\psi}_{n}(\xi)\right|\left|\widehat{\psi}_{-n}(\xi)\right|=0.

Then, Theorem 2 gives a dual frame of {χn}nΥ+\{\chi_{n}\}_{n\in\Upsilon^{+}} permitting the reconstruction following Equation 9. ∎

For the toy image, Figures 8 and 9 compare the preimage of Λ=(12,12)×(12,12)\Lambda=\left(-\frac{1}{2},\frac{1}{2}\right)\times\left(-\frac{1}{2},\frac{1}{2}\right) under the diffeomorphism estimate γ˘n\breve{\gamma}_{n} to the targeted Ωn\Omega_{n} and show the symmetric empirical Shannon wavelet coefficients induced by ψ^Sγ˘n\widehat{\psi}^{\mathrm{S}}\circ\breve{\gamma}_{n}, for the Watershed and Voronoi partitions, respectively, and n{0,,9}n\in\{0,\ldots,9\}. Most of the diffeomorphisms γn\gamma_{n} are well estimated for both partitions except for the region Ω4\Omega_{4} of the Watershed partition. Thus, the MSE of the reconstruction from the Watershed and Voronoi transforms are, respectively, 6.24×10106.24\times 10^{-10} and 3.88×10323.88\times 10^{-32}, confirming the higher accuracy of the diffeormophism estimation for the Voronoi partition. However, the components of the toy image are better separated by the wavelet coefficients associated to the Watershed partition.

Refer to caption

 

Refer to caption

Figure 8: Shannon Watershed transform of the toy image. (Top) Sets γ˘n1(Λ)\breve{\gamma}_{n}^{-1}(\Lambda) (in white) for the diffeomorphisms γn\gamma_{n} mapping the Watershed regions Ωn\Omega_{n} (with contour in red) to the square Λ=(12,12)×(12,12)\Lambda=\left(-\frac{1}{2},\frac{1}{2}\right)\times\left(-\frac{1}{2},\frac{1}{2}\right) and (bottom) resulting empirical Shannon wavelet transform spectra, for the toy image and n{0,,9}n\in\{0,\ldots,9\}. The Fourier spectrum energies En\mathrm{E}_{n} over the regions ΩnΩn\Omega_{n}\cup\Omega_{-n} are indicated above the wavelet spectra.

Refer to caption

 

Refer to caption

Figure 9: Shannon Voronoi transform of the toy image. (Top) Sets γ˘n1(Λ)\breve{\gamma}_{n}^{-1}(\Lambda) (in white) for the diffeomorphisms γn\gamma_{n} mapping the Voronoi regions Ωn\Omega_{n} (with contour in red) to the square Λ=(12,12)×(12,12)\Lambda=\left(-\frac{1}{2},\frac{1}{2}\right)\times\left(-\frac{1}{2},\frac{1}{2}\right) and (bottom) resulting empirical Shannon wavelet transform spectra, for the toy image and n{0,,9}n\in\{0,\ldots,9\}. The Fourier spectrum energies En\mathrm{E}_{n} over the regions ΩnΩn\Omega_{n}\cup\Omega_{-n} are indicated above the wavelet spectra.

For the Barbara image, Figures 10 and 11 compare the preimage of Λ=(12,12)×(12,12)\Lambda=\left(-\frac{1}{2},\frac{1}{2}\right)\times\left(-\frac{1}{2},\frac{1}{2}\right) under γ˘n\breve{\gamma}_{n} to the targeted Ωn\Omega_{n} along with the symmetric empirical Shannon wavelet coefficients induced by ψ^Sγ˘n\widehat{\psi}^{\mathrm{S}}\circ\breve{\gamma}_{n}, for the Watershed and Voronoi partitions, respectively, and n{0,,9}n\in\{0,\ldots,9\}. The diffeomorphism estimates associated with the Watershed partition show little accuracy for some regions, in particular regions Ω0\Omega_{0}, Ω5\Omega_{5} and Ω9\Omega_{9}. In contrast, the Voronoi partition allows for better estimates despite some singularity due to the irregularity at the corner of the square Λ¯\overline{\Lambda}. The reconstruction from the Watershed and Voronoi partitions lead to MSE of, respectively, 9.45×1059.45\times 10^{-5} and 2.19×10292.19\times 10^{-29}, which quantifies the higher accuracy of diffeomorphism estimation for the Voronoi partition.

Refer to caption

 

Refer to caption

Figure 10: Shannon Watershed transform of the Barbara image. (Top) Sets γ˘n1(Λ)\breve{\gamma}_{n}^{-1}(\Lambda) (in white) for the diffeomorphisms γn\gamma_{n} mapping the Watershed regions Ωn\Omega_{n} (with contour in red) to the square Λ=(12,12)×(12,12)\Lambda=\left(-\frac{1}{2},\frac{1}{2}\right)\times\left(-\frac{1}{2},\frac{1}{2}\right) and (bottom) resulting empirical Shannon wavelet transform spectra, for the Barbara image and n{0,,14}n\in\{0,\ldots,14\}. The Fourier spectrum energies En\mathrm{E}_{n} over the regions ΩnΩn\Omega_{n}\cup\Omega_{-n} are indicated above the wavelet spectra.

Refer to caption

 

Refer to caption

Figure 11: Shannon Voronoi transform of the Barbara image. (Top) Sets γ˘n1(Λ)\breve{\gamma}_{n}^{-1}(\Lambda) (in white) for the diffeomorphisms γn\gamma_{n} mapping the Voronoi regions Ωn\Omega_{n} (with contour in red) to the square Λ=(12,12)×(12,12)\Lambda=\left(-\frac{1}{2},\frac{1}{2}\right)\times\left(-\frac{1}{2},\frac{1}{2}\right) and (bottom) resulting empirical Shannon wavelet transform spectra, for the Barbara image and n{0,,14}n\in\{0,\ldots,14\}. The Fourier spectrum energies En\mathrm{E}_{n} over the regions ΩnΩn\Omega_{n}\cup\Omega_{-n} are indicated above the wavelet spectra.

6.3 Discussion

As illustrated in this section, continuous wavelet frames can easily be built theoretically but the resulting numerical transform significantly relies on the estimation of the mappings γn\gamma_{n}. Overall, the Voronoi partitions provides regions that are easier to map than the Watershed partitions, particularly when the wavelet kernel’s Fourier support is a square. However, the Voronoi partition can lead to a less adapted separation of the harmonic modes, implying that different wavelet coefficients can contain information of the same frequency band. These observations highlight the need for an efficient diffeomorphism estimator robust to sets Λ\Lambda and Ωn\Omega_{n} for extensions to higher dimensions and applications. Moreover, a perfect detection and delimitation of harmonic modes is difficult in practice, which suggests to explore several wavelet kernels in applications.

7 Conclusions

In this work, we proposed a general formalism to build multidimensional empirical wavelet systems for a large variety of (potentially symmetric) Fourier domain partitions based on continuous wavelet kernels. Moreover, we showed conditions for the existence of continuous and discrete empirical wavelet frames, which in particular allow to guarantee the reconstruction from the wavelet transforms. Specific wavelet systems based on classic wavelet kernels have also been developed and have been shown to be frames under mild assumptions on the Fourier supports. In addition, the implementation toolbox of these wavelet systems will be made freely available at the time of publication. Future work will focus on estimating robustly and efficiently the diffeomorphisms involved in the proposed definitions in 2D and 3D. Applications will also be considered.

Acknowledgements

This work has been sponsored by the Air Force Office of Scientific Research, grant FA9550-21-1-0275.

References

  • [1] A. Bhattacharyya, V. Gupta, and R. B. Pachori, Automated identification of epileptic seizure EEG signals using empirical wavelet transform based Hilbert marginal spectrum, in Proceedings of the 22nd International Conference on Digital Signal Processing (DSP), 2017, pp. 1–5, https://doi.org/10.1109/icdsp.2017.8096122.
  • [2] O. Christensen, Frames and bases: An introductory course, Birkhäuser Boston, MA, 2008, https://doi.org/10.1007/978-0-8176-4678-3.
  • [3] O. Christensen and A. Rahimi, Frame properties of wave packet systems in L2(d)L^{2}({\mathbb{R}}^{d}), Advances in Computational Mathematics, 29 (2008), pp. 101–111, https://doi.org/10.1007/s10444-007-9038-3.
  • [4] G. De Marco, G. Gorni, and G. Zampieri, Global inversion of functions: an introduction, Nonlinear Differential Equations and Applications NoDEA, 1 (1994), pp. 229–248, https://doi.org/10.1007/BF01197748.
  • [5] B. S. Deo, M. Pal, P. K. Panigrahi, and A. Pradhan, An ensemble deep learning model with empirical wavelet transform feature for oral cancer histopathological image classification, International Journal of Data Science and Analytics, (2024), pp. 1–18, https://doi.org/10.1007/s41060-024-00507-y.
  • [6] P. Flandrin, G. Rilling, and P. Goncalves, Empirical mode decomposition as a filter bank, IEEE signal processing letters, 11 (2004), pp. 112–114.
  • [7] J. Gilles, Empirical wavelet transform, IEEE Transactions on Signal Processing, 61 (2013), pp. 3999–4010, https://doi.org/10.1109/TSP.2013.2265222.
  • [8] J. Gilles, Continuous empirical wavelets systems, Advances in Data Science and Adaptive Analysis, 12 (2020), p. 2050006, https://doi.org/10.1142/S2424922X20500060.
  • [9] J. Gilles, Empirical voronoi wavelets, Constructive Mathematical Analysis, 5 (2022), pp. 183–189, https://doi.org/10.33205/cma.1181174.
  • [10] J. Gilles and R. Castro, Empirical wavelet frames, arXiv preprint arXiv:2407.16089, (2024).
  • [11] J. Gilles and K. Heal, A parameterless scale-space approach to find meaningful modes in histograms - application to image and spectrum segmentation, International Journal of Wavelets, Multiresolution and Information Processing, 12 (2014), p. 1450044, https://doi.org/10.1142/S0219691314500441.
  • [12] J. Gilles, G. Tran, and S. Osher, 2D Empirical transforms. Wavelets, Ridgelets and Curvelets Revisited, SIAM Journal on Imaging Sciences, 7 (2014), pp. 157–186, https://doi.org/10.1137/130923774.
  • [13] E. Hernández, D. Labate, and G. Weiss, A unified characterization of reproducing systems generated by a finite family, ii, The Journal of Geometric Analysis, 12 (2002), pp. 615–662, https://doi.org/10.1007/BF02930656.
  • [14] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454 (1998), pp. 903–995, https://doi.org/10.1098/rspa.1998.0193.
  • [15] Y. Huang, V. De Bortoli, F. Zhou, and J. Gilles, Review of wavelet-based unsupervised texture segmentation, advantage of adaptive wavelets, IET Image Processing, 12 (2018), pp. 1626–1638, https://doi.org/10.1049/iet-ipr.2017.1005.
  • [16] Y. Huang, F. Zhou, and J. Gilles, Empirical curvelet based fully convolutional network for supervised texture image segmentation, Neurocomputing, 349 (2019), pp. 31–43, https://doi.org/10.1016/j.neucom.2019.04.021.
  • [17] B. Hurat, Z. Alvarado, and J. Gilles, The empirical watershed wavelet, Journal of Imaging, 6 (2020), p. 140, https://doi.org/10.3390/jimaging6120140.
  • [18] M. Kedadouche, M. Thomas, and A. Tahan, A comparative study between empirical wavelet transforms and empirical mode decomposition methods: Application to bearing defect diagnosis, Mechanical Systems and Signal Processing, 81 (2016), pp. 88–107.
  • [19] R. Kumara and I. Saini, Empirical Wavelet Transform based ECG signal compression, IETE Journal of Research, 60 (2014), pp. 423–431, https://doi.org/10.1080/03772063.2014.963173.
  • [20] D. Labate, G. Weiss, and E. Wilson, An approach to the study of wave packet systems, Contemporary Mathematics, 345 (2004), pp. 215–236, https://doi.org/10.1090/conm/345/06250.
  • [21] O. Lavrynenko, D. Bakhtiiarov, V. Kurushkin, S. Zavhorodnii, V. Antonov, and P. Stanko, A method for extracting the semantic features of speech signal recognition based on empirical wavelet transform, Radioelectronic and Computer Systems, (2023), pp. 101–124, https://doi.org/10.32620/reks.2023.3.09.
  • [22] W. Liu, S. Cao, and Y. Chen, Seismic time-frequency analysis via empirical wavelet transform, IEEE Geoscience and Remote Sensing Letters, 13 (2016), pp. 28–32, https://doi.org/10.1109/lgrs.2015.2493198.
  • [23] W. Liu and W. Chen, Recent advancements in empirical wavelet transform and its applications, IEEE Access, 7 (2019), pp. 103770–103780, https://doi.org/10.1109/ACCESS.2019.2930529.
  • [24] S. Maheshwari, R. B. Pachori, and U. R. Acharya, Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images, IEEE journal of biomedical and health informatics, 21 (2016), pp. 803–813, https://doi.org/10.1109/JBHI.2016.2544961.
  • [25] H. A. Mohammadi, S. Ghofrani, and A. Nikseresht, Using empirical wavelet transform and high-order fuzzy cognitive maps for time series forecasting, Applied Soft Computing, 135 (2023), p. 109990, https://doi.org/10.1016/j.asoc.2023.109990.
  • [26] T. V. Nidhin Prabhakar and P. Geetha, Two-dimensional empirical wavelet transform based supervised hyperspectral image classification, ISPRS Journal of Photogrammetry and Remote Sensing, 133 (2017), pp. 37–45, https://doi.org/10.1016/j.isprsjprs.2017.09.003.
  • [27] S. Panda, A. Das, S. Mishra, and M. N. Mohanty, Epileptic seizure detection using deep ensemble network with empirical wavelet transform, Measurement Science Review, 21 (2021), pp. 110–116, https://doi.org/10.2478/msr-2021-0016.
  • [28] S. Polinati and R. Dhuli, Multimodal medical image fusion using empirical wavelet decomposition and local energy maxima, Optik, 205 (2020), p. 163947, https://doi.org/10.1016/j.ijleo.2019.163947.
  • [29] J.-P. Thirion, Image matching as a diffusion process: an analogy with maxwell’s demons, Medical image analysis, 2 (1998), pp. 243–260, https://doi.org/10.1016/S1361-8415(98)80022-4.
  • [30] A. N. Wardana, A comparative study of emd, ewt and vmd for detecting the oscillation in control loop, in 2016 International Seminar on Application for Technology of Information and Communication (ISemantic), IEEE, 2016, pp. 58–63.