This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Multichannel effects in the Efimov regime from broad to narrow Feshbach resonances

T. Secker Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands    D. J. M. Ahmed-Braun Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands    P. M. A. Mestrom Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands    S. J. J. M. F. Kokkelmans Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
Abstract

We study Efimov physics of three identical bosons with pairwise multichannel interactions for Feshbach resonances of adjustable width. We find that the two-body multichannel nature of the interaction can affect the universal three-body spectrum, especially for resonances of intermediate width. The shifts in this universal spectrum are caused by trimer states in the closed interaction channels that couple to the universal Efimov states. However, in the narrow resonance limit we find that the Efimov spectrum is set by the resonance width parameter rr^{*} only independent of the interaction potential considered. In the broad resonance limit all excited Efimov trimer energies approach the ones from the corresponding single-channel system for the scenarios investigated.

pacs:
31.15.-p, 34.50.-s, 67.85.-d

I Introduction

As originally analyzed by Efimov, three particles that interact with resonant pairwise interactions show universal behavior independent of the details of the interaction potentials Efimov (1970). Whereas Efimov first analyzed this effect in the context of nuclear physics, over the last decades ultracold alkali atoms have proven to be an ideal platform to study Efimov physics experimentally for Bose gases Knoop et al. (2009); Zaccanti et al. (2009); Gross et al. (2009); Pollack et al. (2009); Gross et al. (2010), Fermi gases Ottenstein et al. (2008); Lompe et al. (2010); Huckans et al. (2009); Williams et al. (2009); Nakajima et al. (2011) and mixtures Barontini et al. (2009); Pires et al. (2014a, b); Tung et al. (2014); Ulmanis et al. (2015); Johansen et al. (2017); Ulmanis et al. (2016a, b); Wacker et al. (2016). In these atomic systems, the pairwise interaction can be tuned into the resonant regime close to Feshbach resonances by applying external magnetic fields Chin et al. (2010). This tunability is a consequence of Zeeman shifts in the atomic hyperfine states of the individual atoms. Combinations of these internal hyperfine states on the two and three atom level form the different scattering channels of the system which are coupled by a multichannel interaction potential when the atoms approach each other.

The strength of the interaction in the underlying two-body system can be parametrized by the ss-wave scattering length aa in the ultracold regime. The behavior of aa near a Feshbach resonance can then be characterized by a background scattering length abga_{\mathrm{bg}} and a resonance width parameter rr^{*} Chin et al. (2010). The parameter rr^{*} is related to the width of the resonance in magnetic field ΔB=2/mdμabgr\Delta B=\hbar^{2}/m\,d\mu\,a_{\mathrm{bg}}\,r^{*}, with mm the mass of the atoms and dμd\mu the magnetic moment of the bound state associated with the resonance. Large values of rr^{*} therefore correspond to narrow Feshbach resonances, whereas small values correspond to broad ones. The term ΔB\Delta B can be determined from the magnetic field dependence of aa

a(B)=abg(1ΔBBB0),a(B)=a_{\mathrm{bg}}\left(1-\frac{\Delta B}{B-B_{0}}\right)\,, (1)

where BB and B0B_{0} denote the magnetic field strength and the resonance position in magnetic field, respectively.

The universal Efimov regime is characterized by large absolute values of the scattering length, which diverges on resonance (|a|rvdW|a|\gg r_{\mathrm{vdW}}), where rvdW=(mC6/2)1/4/2r_{\mathrm{vdW}}=(mC_{6}/\hbar^{2})^{1/4}/2 is the range associated with the C6/r6-C_{6}/r^{6} van der Waals tail of the atomic interaction. In the universal Efimov regime a single three-body parameter determines the location of three-body features, e.g. the binding energies EnE_{n} of an infinite sequence of weakly bound three-body states, referred to as Efimov trimers, that emerge successively when the interaction is tuned to resonance. The binding energies follow the universal scaling relation, En+1/En=e2π/s0E_{n+1}/E_{n}=e^{-2\pi/s_{0}} with s01.00624s_{0}\approx 1.00624 for identical bosons Efimov (1970); Braaten and Hammer (2006). The three-body parameter is often determined by the scattering length value a(0)a_{-}^{(0)} at which the lowest Efimov trimer state meets the three-body continuum and leads to an Efimov resonance.

The three-body parameter a(0)a_{-}^{(0)} has been measured for many species and Feshbach resonances Kraemer et al. (2006); Pollack et al. (2009); Gross et al. (2009, 2010); Zaccanti et al. (2009); Wild et al. (2012); Ferlaino et al. (2011); Berninger et al. (2011a). Surprisingly, most early experiments for identical bosons found the three-body parameter to be close to a(0)/rvdW9a_{-}^{(0)}/r_{\mathrm{vdW}}\approx-9 over different species and Feshbach resonances Kraemer et al. (2006); Gross et al. (2009, 2010); Wild et al. (2012); Ferlaino et al. (2011); Berninger et al. (2011a). Following the experiments, this universal value of a(0)a_{-}^{(0)} could be theoretically explained Wang et al. (2012); Naidon et al. (2014a, b) relying on single-channel models for the interaction potential. However, such single-channel models cannot correctly describe the two-body physics close to narrow Feshbach resonances.

For narrow resonances a(0)a_{-}^{(0)} can deviate from the universal value as has been predicted theoretically Petrov (2004); Gogolin et al. (2008); Schmidt et al. (2012); Langmack et al. (2018); Sørensen et al. (2012); Chapurin et al. (2019); Secker et al. (2020a) and observed experimentally Roy et al. (2013); Chapurin et al. (2019); Gross et al. (2011); Dyke et al. (2013). However, agreement between theory and experiment has been achieved only in a few instances Chapurin et al. (2019); Secker et al. (2020a). The deviation in a(0)a_{-}^{(0)} from the universal value thus indicates the importance of multichannel effects for narrow resonances. To represent narrow resonances on the two-body level simple two-channel models can be used to correctly account for the resonance width parameter rr^{*}. Generalizing those models to the three-body case resulted in studies of a(0)a_{-}^{(0)} as a function of rr^{*} Petrov (2004); Gogolin et al. (2008); Schmidt et al. (2012); Sørensen et al. (2012), as well as of both rr^{*} and abga_{\mathrm{bg}} Langmack et al. (2018). All those models find a dependence of a(0)a_{-}^{(0)} on rr^{*}, however opposite trends for the behavior of |a(0)||a_{-}^{(0)}| have been obtained. On the one hand |a(0)||a_{-}^{(0)}| can increase with increasing rr^{*} reaching a narrow resonance limit (rr^{*}\rightarrow\infty) where rr^{*} sets the three-body universal regime as well as the three-body parameter Petrov (2004); Gogolin et al. (2008); Schmidt et al. (2012) or on the other hand |a(0)||a_{-}^{(0)}| can decrease with increasing rr^{*} Sørensen et al. (2012). Interestingly both increasing Roy et al. (2013); Chapurin et al. (2019) and decreasing Gross et al. (2011); Dyke et al. (2013) trends have also been observed experimentally. One of the major differences in the models that predict opposite behavior is the way the two-body multichannel structure is embedded into the three-body multichannel space. This indicates the importance of an accurate representation of the multichannel structure of the three-atom system.

On the two-body level, a symmetric spin channel is in general either of the form |𝒸𝒸|\mathpzc{c}\mathpzc{c}\rangle or |𝒸𝒸𝒮=(|𝒸𝒸+|𝒸𝒸)/2|\mathpzc{c}\mathpzc{c}^{\prime}\rangle_{S}=(|\mathpzc{c}\mathpzc{c}^{\prime}\rangle+|\mathpzc{c}^{\prime}\mathpzc{c}\rangle)/\sqrt{2}, with 𝒸\mathpzc{c} and 𝒸\mathpzc{c}^{\prime} labeling the different internal spin states of the individual atoms. For identical bosons such symmetric spin channels need to be considered when combined with even partial wave components of the interaction. In this paper we analyze both realizations |𝒸𝒸|\mathpzc{c}\mathpzc{c}\rangle and |𝒸𝒸𝒮|\mathpzc{c}\mathpzc{c}^{\prime}\rangle_{S} for the closed channel and are thereby extending earlier studies Langmack et al. (2018); Schmidt et al. (2012); Gogolin et al. (2008); Petrov (2004) to the |𝒸𝒸𝒮|\mathpzc{c}\mathpzc{c}^{\prime}\rangle_{S} scenario. We consider pairwise separable interaction potentials that have been used to study the dynamics of the many-body system Colussi et al. (2018); Musolino et al. (2019) and generalize them to a multi-channel interaction. We find that the realization of the two-channel model in spin space affects the Efimov spectrum in the broad and especially intermediate resonance width regime, leading to both increasing and decreasing trends of |a||a_{-}| depending on the realization, while the narrow resonance limit can be recovered for rr^{*}\rightarrow\infty in all considered cases. Additionally, we find the narrow resonance limit to be independent of the form of the interaction we consider.

The paper is outlined as follows. In Sec. II, we start with the analysis of the three-body bound state equations in momentum representation for a general multichannel system. To keep the system clean whilst retaining the multichannel characteristics, we proceed to analyze a simple two-channel model in Sec. III, where we restrict ourselves to the case of separable ss-wave interactions and two internal spin states |a|a\rangle and |b|b\rangle per particle. Here, we distinguish between the two different closed-channel realizations |bb\ket{bb} and |abS\ket{ab}_{S} we mentioned earlier. The two-body details are discussed in section IV. The results of our analysis and a comparison of the different closed-channel realizations are presented in Sec. V.1. For the |bb\ket{bb} realization they resemble earlier multichannel studies and allow for an effective field theory description containing a dimer field Gogolin et al. (2008); Schmidt et al. (2012); Langmack et al. (2018) as we discuss in appendix C. In Sec. V.2 we analyze the narrow resonance limit of the two realizations. We then conclude in Sec. VI with a summary of the most important findings and suggestions for future research.

II Three-body bound states in a multichannel setting

For the three-body multichannel model system with separable interactions that we want to focus on in Secs. III to V, we choose to work in a momentum space representation. This enables us to study Efimov physics by solely considering a one-dimensional integral equation. Therefore we outline the general multichannel version of the three-body bound state equations for three identical bosons in momentum space here. Since we do not yet restrict ourselves to any special kind of model system, the equations presented should apply to any short range interaction including those coupled-channels models, which currently provide the most accurate theoretical description of the interatomic interaction.

We consider identical bosons with pairwise potentials VijV_{ij} describing the interaction between particles ii and jj. The three-body bound state equation can then be formulated in the following form Merkuriev and Faddeev (1993)

Φij=𝒯ij(E)G0(E)(P++P)Φij,\Phi_{ij}=\mathcal{T}_{ij}(E)G_{0}(E)\left(P_{+}+P_{-}\right)\Phi_{ij}\,, (2)

where 𝒯ij(E)\mathcal{T}_{ij}(E) is a generalized two-body transition operator, G0(E)G_{0}(E) is the free three-body Green’s operator, that in the multichannel context also accounts for the asymptotic energies of the channels, and where P+P_{+} and PP_{-} denote the two cyclic permutation operators. The index (ij)(ij) specifies a choice of a two particle subsystem formed by particle ii and jj. We introduce the corresponding system of Jacobi momenta

𝐩\displaystyle\mathbf{p} =12(𝐤j𝐤i)\displaystyle=\frac{1}{2}\left(\mathbf{k}_{j}-\mathbf{k}_{i}\right) (3)
𝐪\displaystyle\mathbf{q} =13(𝐤i+𝐤j)23𝐤k,\displaystyle=\frac{1}{3}(\mathbf{k}_{i}+\mathbf{k}_{j})-\frac{2}{3}\mathbf{k}_{k}\,, (4)

where 𝐤i\mathbf{k}_{i}, 𝐤j\mathbf{k}_{j} and 𝐤k\mathbf{k}_{k} denote the momentum of particle ii, jj and kk respectively, such that the relative momentum between particles ii and jj is now related to 𝐩\mathbf{p}. The particular choice of the pair (ij)(ij) is abitrary since we are considering identical bosons. Eq. (2) has a solution only when EE is an eigenenergy of the three-body Hamiltonian. The corresponding bound state wave function is then given by Ψ=(1+P++P)G0(E)Φij\Psi=(1+P_{+}+P_{-})G_{0}(E)\Phi_{ij}.

In the following we discuss the operators introduced in Eq. (2) in more detail. We start with the analysis of the generalized two-body transition operator 𝒯ij(E)\mathcal{T}_{ij}(E). Given the interaction VijV_{ij}, we can use the Lippmann-Schwinger equation in order to define 𝒯ij\mathcal{T}_{ij} Merkuriev and Faddeev (1993)

𝒯ij(E)=(1VijG0(E))1Vij.\mathcal{T}_{ij}(E)=\left(1-V_{ij}G_{0}(E)\right)^{-1}V_{ij}\,. (5)

𝒯ij(E)\mathcal{T}_{ij}(E) is related to the two-body tt operator t(z)t(z) by Merkuriev and Faddeev (1993)

𝒞,𝒸,𝐩,𝐪|𝒯𝒾𝒿()|𝒞,𝒸,𝐩,𝐪\displaystyle\langle\mathpzc{C},\mathpzc{c},\mathbf{p},\mathbf{q}|\mathcal{T}_{ij}(E)|\mathpzc{C}^{\prime},\mathpzc{c}^{\prime},\mathbf{p}^{\prime},\mathbf{q}^{\prime}\rangle
=𝒞,𝐩|𝓉(3𝐪2/4𝓂)|𝒞,𝐩𝒸,𝐪|𝒸,𝐪,\displaystyle=\langle\mathpzc{C},\mathbf{p}|t(E-3\mathbf{q}^{2}/4m)|\mathpzc{C}^{\prime},\mathbf{p}\rangle\langle\mathpzc{c},\mathbf{q}|\mathpzc{c}^{\prime},\mathbf{q}^{\prime}\rangle\,, (6)

where 𝒞\mathpzc{C} and 𝒞\mathpzc{C}^{\prime} represent any symmetric or antisymmetric combination of the product of internal states of particle ii and jj and where 𝒸\mathpzc{c} and 𝒸\mathpzc{c}^{\prime} represent the spin of particle kk.

Since we consider a three-body system of identical bosons, where each particle ii can occupy several internal spin states labeled by 𝒸𝒾\mathpzc{c}_{i}, we can define the permutation operators P±P_{\pm} as products of permutation operators P±cP_{\pm}^{c} acting only on coordinates and permutation operators P±sP_{\pm}^{s} acting only on internal states respectively, such that

P=PcPs and P+=P+cP+s,P_{-}=P_{-}^{c}P_{-}^{s}\,\text{ and }P_{+}=P_{+}^{c}P_{+}^{s}\,,\ (7)

where the coordinate permutation operators can be written in integral form as

Pc\displaystyle P_{-}^{c} =𝑑𝐪𝑑𝐪|𝐪+𝐪/2,𝐪𝐪/2𝐪,𝐪|\displaystyle=\int d\mathbf{q}^{\prime}d\mathbf{q}|\mathbf{q}^{\prime}+\mathbf{q}/2,\mathbf{q}\rangle\langle-\mathbf{q}^{\prime}/2-\mathbf{q},\mathbf{q}^{\prime}|\, (8)
P+c\displaystyle P_{+}^{c} =𝑑𝐪𝑑𝐪|𝐪𝐪/2,𝐪𝐪/2+𝐪,𝐪|,\displaystyle=\int d\mathbf{q}^{\prime}d\mathbf{q}|-\mathbf{q}^{\prime}-\mathbf{q}/2,\mathbf{q}\rangle\langle\mathbf{q}^{\prime}/2+\mathbf{q},\mathbf{q}^{\prime}|\,, (9)

with momentum states normalized according to 𝐩|𝐩=δ(𝐩𝐩)\langle\mathbf{p}^{\prime}|\mathbf{p}\rangle=\delta(\mathbf{p}^{\prime}-\mathbf{p}). The internal state permutation operators can be expressed using a summation over all available internal spin states, such that

Ps\displaystyle P_{-}^{s} =𝒸𝒾𝒸𝒿𝒸𝓀|𝒸𝒿,𝒸𝓀,𝒸𝒾𝒸𝓀,𝒸𝒾,𝒸𝒿|\displaystyle=\sum_{\mathpzc{c}_{i}\mathpzc{c}_{j}\mathpzc{c}_{k}}|\mathpzc{c}_{j},\mathpzc{c}_{k},\mathpzc{c}_{i}\rangle\langle\mathpzc{c}_{k},\mathpzc{c}_{i},\mathpzc{c}_{j}| (10)
P+s\displaystyle P_{+}^{s} =𝒸𝒾𝒸𝒿𝒸𝓀|𝒸𝒾,𝒸𝒿,𝒸𝓀𝒸𝓀,𝒸𝒾,𝒸𝒿|.\displaystyle=\sum_{\mathpzc{c}_{i}\mathpzc{c}_{j}\mathpzc{c}_{k}}|\mathpzc{c}_{i},\mathpzc{c}_{j},\mathpzc{c}_{k}\rangle\langle\mathpzc{c}_{k},\mathpzc{c}_{i},\mathpzc{c}_{j}|\,. (11)

The sum of permutation operators can then be written as Glöckle (1983)

P++P=2[𝒫ijSP+𝒫ijS+𝒫ijAP+𝒫ijA],P_{+}+P_{-}=2\left[\mathcal{P}^{S}_{ij}P_{+}\mathcal{P}^{S}_{ij}+\mathcal{P}^{A}_{ij}P_{+}\mathcal{P}^{A}_{ij}\right]\,, (12)

where

𝒫ijS=(1+Pij)/2and𝒫ijA=(1Pij)/2\mathcal{P}^{S}_{ij}=(1+P_{ij})/2\quad\text{and}\quad\mathcal{P}^{A}_{ij}=(1-P_{ij})/2 (13)

are the symmetrization and antisymmetrization operators in particles ii and jj and where PijP_{ij} is the operator exchanging the particles in the pair (ij)(ij). Eq. (12) then follows from the identity

P=PijP+Pij.P_{-}=P_{ij}P_{+}P_{ij}\,. (14)

For identical bosons we need Φij=PijΦij\Phi_{ij}=P_{ij}\Phi_{ij} such that Ψ\Psi is totally symmetric and therefore Eq. (2) simplifies to

Φij=2𝒯ij(E)G0(E)P+Φij.\Phi_{ij}=2\mathcal{T}_{ij}(E)G_{0}(E)P_{+}\Phi_{ij}\,. (15)

Using this we can give Eq. (2) in |𝒞,𝒸,𝐩,𝐪|\mathpzc{C},\mathpzc{c},\mathbf{p},\mathbf{q}\rangle representation, such that

𝒞,𝒸,𝐩,𝐪|Φ𝒾𝒿\displaystyle\left\langle\mathpzc{C},\mathpzc{c},\mathbf{p},\mathbf{q}\left|\Phi_{ij}\right\rangle\right.
=2𝒞,𝒞′′𝒸′′𝑑𝐪{𝒞,𝐩|𝓉(3𝐪2/4𝓂)|𝒞,𝐪𝐪/2EE(𝒞β)(𝐪2+𝐪2+𝐪𝐪)/𝓂𝒞,𝒸|𝒫+𝓈|𝒞′′,𝒸′′𝒞′′,𝒸′′,𝐪/2+𝐪,𝐪|Φ𝒾𝒿}.\displaystyle=2\sum_{\mathpzc{C}^{\prime},\mathpzc{C}^{\prime\prime}\mathpzc{c}^{\prime\prime}}\int d\mathbf{q}^{\prime}\left\{\frac{\left\langle\mathpzc{C},\mathbf{p}\left|t(E-3\mathbf{q}^{2}/4m)\right|\mathpzc{C}^{\prime},-\mathbf{q}^{\prime}-\mathbf{q}/2\right\rangle}{E-E(\mathpzc{C}^{\prime}\beta)-(\mathbf{q}^{2}+\mathbf{q}^{\prime 2}+\mathbf{q}\mathbf{q}^{\prime})/m}\right.\left.\langle\mathpzc{C}^{\prime},\mathpzc{c}|P_{+}^{s}|\mathpzc{C}^{\prime\prime},\mathpzc{c}^{\prime\prime}\rangle\left\langle\mathpzc{C}^{\prime\prime},\mathpzc{c}^{\prime\prime},\mathbf{q}^{\prime}/2+\mathbf{q},\mathbf{q}^{\prime}\left|\Phi_{ij}\right\rangle\right.\right\}\,. (16)

Note how the Green’s function has evaluated to

G0(E)|𝒞,𝒸,𝐩,𝐪\displaystyle G_{0}(E)|\mathpzc{C},\mathpzc{c},\mathbf{p},\mathbf{q}\rangle (17)
=|𝒞,𝒸,𝐩,𝐪EE(𝒞,𝒸)𝐩2/𝓂3𝐪2/4𝓂,\displaystyle=\frac{|\mathpzc{C},\mathpzc{c},\mathbf{p},\mathbf{q}\rangle}{E-E(\mathpzc{C},\mathpzc{c})-\mathbf{p}^{2}/m-3\mathbf{q}^{2}/4m}\,, (18)

where E(𝒞,𝒸)E(\mathpzc{C},\mathpzc{c}) represents the asymptotic energy of the channel |𝒞,𝒸|\mathpzc{C},\mathpzc{c}\rangle. In appendix A we give more details on how to work out the elements 𝒞,𝒸|𝒫+𝓈|𝒞′′,𝒸′′\langle\mathpzc{C}^{\prime},\mathpzc{c}|P_{+}^{s}|\mathpzc{C}^{\prime\prime},\mathpzc{c}^{\prime\prime}\rangle.

III Separable model systems

To explore possible multichannel effects we proceed with the analysis of a simple model potential, which has a single separable ss-wave component

𝒞,𝐩|𝒱|𝒞,𝐩=𝒞|𝓋|𝒞ζ(𝓅)ζ(𝓅)\langle\mathpzc{C},\mathbf{p}|V|\mathpzc{C}^{\prime},\mathbf{p}^{\prime}\rangle=\langle\mathpzc{C}|v|\mathpzc{C}^{\prime}\rangle\zeta(p)\zeta^{*}(p^{\prime}) (19)

with form factor ζ\zeta and only symmetric spin combinations 𝒞\mathpzc{C} and 𝒞\mathpzc{C}^{\prime}. In addition we assume just two internal spin states per particle, which we label with aa and bb (𝒸𝒾,𝒸𝒿,𝒸𝓀{𝒶,𝒷}\mathpzc{c}_{i},\mathpzc{c}_{j},\mathpzc{c}_{k}\in\{a,b\}) and assume a difference in channel energy of ϵab\epsilon_{ab}. Since the interaction is separable, so is the two-body tt-operator

𝒞,𝐩|𝓉(𝓏)|𝒞,𝐩=𝒞|τ(𝓏)|𝒞ζ(𝓅)ζ(𝓅),\langle\mathpzc{C},\mathbf{p}|t(z)|\mathpzc{C}^{\prime},\mathbf{p}^{\prime}\rangle=\langle\mathpzc{C}|\tau(z)|\mathpzc{C}^{\prime}\rangle\zeta(p)\zeta^{*}(p^{\prime})\,, (20)

that we work out explicitly for a step-function shaped form factor in the following section. Searching for solutions with zero total angular momentum, we can then make the ansatz 𝒞,𝒸,𝐩,𝐪|Φ𝒾𝒿=ζ(p)𝒞,𝒸,𝓆|ϕ𝒾𝒿\left\langle\mathpzc{C},\mathpzc{c},\mathbf{p},\mathbf{q}\left|\Phi_{ij}\right\rangle\right.=\zeta(p)\langle\mathpzc{C},\mathpzc{c},q|\phi_{ij}\rangle. Evaluating this ansatz in Eq. (II) and dividing both sides by ζ(p)\zeta(p), we find

𝒞,𝒸,𝓆|ϕ𝒾𝒿\displaystyle\langle\mathpzc{C},\mathpzc{c},q|\phi_{ij}\rangle
=4π𝒞,𝒞′′𝒸′′0q2dq11du{𝒞|τ(3𝓆2/4𝓂(𝒸))|𝒞ζ(𝓆2+𝓆2/4+𝓆𝓆𝓊)ζ(𝓆2/4+𝓆2+𝓆𝓆𝓊)EE(𝒞,𝒸)(𝓆2+𝓆2+𝓆𝓆𝓊)/𝓂\displaystyle=4\pi\sum_{\mathpzc{C}^{\prime},\mathpzc{C}^{\prime\prime}\mathpzc{c}^{\prime\prime}}\int_{0}^{\infty}q^{\prime 2}dq^{\prime}\int_{-1}^{1}du\Bigg{\{}\frac{\langle\mathpzc{C}|\tau(E-3q^{2}/4m-E(\mathpzc{c}))|\mathpzc{C}^{\prime}\rangle\zeta^{*}(\sqrt{q^{\prime 2}+q^{2}/4+q^{\prime}qu})\zeta(\sqrt{q^{\prime 2}/4+q^{2}+q^{\prime}qu})}{E-E(\mathpzc{C}^{\prime},\mathpzc{c})-(q^{2}+q^{\prime 2}+qq^{\prime}u)/m}
×𝒞𝒸|𝒫+𝓈|𝒞′′𝒸′′𝒞′′,𝒸′′,𝓆|ϕ𝒾𝒿}\displaystyle\phantom{=\frac{1}{1}}\qquad\qquad\qquad\times\langle\mathpzc{C}^{\prime}\mathpzc{c}|P_{+}^{s}|\mathpzc{C}^{\prime\prime}\mathpzc{c}^{\prime\prime}\rangle\langle\mathpzc{C}^{\prime\prime},\mathpzc{c}^{\prime\prime},q^{\prime}|\phi_{ij}\rangle\Bigg{\}} (21)
=𝒞𝒸0q2𝑑q𝒞𝒸𝓆|𝒦|𝒞𝒸𝓆𝒞𝒸𝓆|ϕ𝒾𝒿,\displaystyle=\sum_{\mathpzc{C}^{\prime}\mathpzc{c}^{\prime}}\int_{0}^{\infty}q^{\prime 2}dq^{\prime}\langle\mathpzc{C}\mathpzc{c}q|K|\mathpzc{C}^{\prime}\mathpzc{c}^{\prime}q^{\prime}\rangle\langle\mathpzc{C}^{\prime}\mathpzc{c}^{\prime}q^{\prime}|\phi_{ij}\rangle\,, (22)

where we implicitly defined the operator KK in the last line. We implement Eq. (III) numerically by replacing the qq^{\prime} integration by a summation over a finite qq^{\prime}-grid.

Applying the relations as presented in appendix A in order to analyze the elements 𝒞𝒸|𝒫+𝓈|𝒞′′𝒸′′\langle\mathpzc{C}^{\prime}\mathpzc{c}|P_{+}^{s}|\mathpzc{C}^{\prime\prime}\mathpzc{c}^{\prime\prime}\rangle and dropping the index in ϕij\phi_{ij}, Eq. (22) can be rewritten into the following matrix form

[aa¯a|ϕab¯a|ϕbb¯a|ϕaa¯b|ϕab¯b|ϕbb¯b|ϕ]\displaystyle\left[\begin{array}[]{c}\langle\underline{aa}a|\phi\rangle\\ \langle\underline{ab}a|\phi\rangle\\ \langle\underline{bb}a|\phi\rangle\\ \langle\underline{aa}b|\phi\rangle\\ \langle\underline{ab}b|\phi\rangle\\ \langle\underline{bb}b|\phi\rangle\\ \end{array}\right] (29)
=[aa¯a|K|aa¯aaa¯a|K|ab¯a0aa¯a|K|aa¯baa¯a|K|ab¯b0ab¯a|K|aa¯aab¯a|K|ab¯a0ab¯a|K|aa¯bab¯a|K|ab¯b0bb¯a|K|aa¯abb¯a|K|ab¯a0bb¯a|K|aa¯bbb¯a|K|ab¯b00aa¯b|K|ab¯aaa¯b|K|bb¯a0aa¯b|K|ab¯baa¯b|K|bb¯b0ab¯b|K|ab¯aab¯b|K|bb¯a0ab¯b|K|ab¯bab¯b|K|bb¯b0bb¯b|K|ab¯abb¯b|K|bb¯a0bb¯b|K|ab¯bbb¯b|K|bb¯b][aa¯a|ϕab¯a|ϕbb¯a|ϕaa¯b|ϕab¯b|ϕbb¯b|ϕ],\displaystyle=\left[\begin{array}[]{cccccc}\langle\underline{aa}a|K|\underline{aa}a\rangle&\langle\underline{aa}a|K|\underline{ab}a\rangle&0&\langle\underline{aa}a|K|\underline{aa}b\rangle&\langle\underline{aa}a|K|\underline{ab}b\rangle&0\\ \langle\underline{ab}a|K|\underline{aa}a\rangle&\langle\underline{ab}a|K|\underline{ab}a\rangle&0&\langle\underline{ab}a|K|\underline{aa}b\rangle&\langle\underline{ab}a|K|\underline{ab}b\rangle&0\\ \langle\underline{bb}a|K|\underline{aa}a\rangle&\langle\underline{bb}a|K|\underline{ab}a\rangle&0&\langle\underline{bb}a|K|\underline{aa}b\rangle&\langle\underline{bb}a|K|\underline{ab}b\rangle&0\\ 0&\langle\underline{aa}b|K|\underline{ab}a\rangle&\langle\underline{aa}b|K|\underline{bb}a\rangle&0&\langle\underline{aa}b|K|\underline{ab}b\rangle&\langle\underline{aa}b|K|\underline{bb}b\rangle\\ 0&\langle\underline{ab}b|K|\underline{ab}a\rangle&\langle\underline{ab}b|K|\underline{bb}a\rangle&0&\langle\underline{ab}b|K|\underline{ab}b\rangle&\langle\underline{ab}b|K|\underline{bb}b\rangle\\ 0&\langle\underline{bb}b|K|\underline{ab}a\rangle&\langle\underline{bb}b|K|\underline{bb}a\rangle&0&\langle\underline{bb}b|K|\underline{ab}b\rangle&\langle\underline{bb}b|K|\underline{bb}b\rangle\\ \end{array}\right]\left[\begin{array}[]{c}\langle\underline{aa}a|\phi\rangle\\ \langle\underline{ab}a|\phi\rangle\\ \langle\underline{bb}a|\phi\rangle\\ \langle\underline{aa}b|\phi\rangle\\ \langle\underline{ab}b|\phi\rangle\\ \langle\underline{bb}b|\phi\rangle\\ \end{array}\right]\,, (42)

where we write out the symmetric spin states in the pair (ijij) explicitly as 𝒞{𝒶𝒶¯,𝒶𝒷¯,𝒷𝒷¯}\mathpzc{C}\in\{\underline{aa},\underline{ab},\underline{bb}\}. This equation indicates, that even a model with a single ss-wave component and two internal states, yields a system with six coupled channels for the Faddeev component ϕ\phi.

By setting 𝒞|𝓋|𝒞=0\langle\mathpzc{C}^{\prime}|v|\mathpzc{C}\rangle=0 when 𝒞\mathpzc{C} or 𝒞\mathpzc{C}^{\prime} equals ab¯\underline{ab}, or alternatively setting 𝒞|𝓋|𝒞=0\langle\mathpzc{C}^{\prime}|v|\mathpzc{C}\rangle=0 when 𝒞\mathpzc{C} or 𝒞\mathpzc{C}^{\prime} equals bb¯\underline{bb} we can study scenarios where the closed symmetric spin channel QQ is either of the form |𝒸𝒸|\mathpzc{c}\mathpzc{c}\rangle or |𝒸𝒸𝒮=(|𝒸𝒸+|𝒸𝒸)/2|\mathpzc{c}\mathpzc{c}^{\prime}\rangle_{S}=(|\mathpzc{c}\mathpzc{c}^{\prime}\rangle+|\mathpzc{c}^{\prime}\mathpzc{c}\rangle)/\sqrt{2}, respectively. Thereby we reduce to a two-channel model on the two-body level with open channel P=aa¯P=\underline{aa} in both of these cases. As we will see in the following section 𝒞|τ(𝓏)|𝒞=0\langle\mathpzc{C}^{\prime}|\tau(z)|\mathpzc{C}\rangle=0 whenever 𝒞|𝓋|𝒞=0\langle\mathpzc{C}^{\prime}|v|\mathpzc{C}\rangle=0. Therefore some of the elements 𝒞𝒸|𝒦|𝒞𝒸\langle\mathpzc{C}^{\prime}\mathpzc{c}^{\prime}|K|\mathpzc{C}\mathpzc{c}\rangle in Eq. (III) evaluate to zero and the three-body equations can be simplified.

Considering Eq. (29) for the situation with closed channel Q=bb¯Q=\underline{bb}, we find that the three-body equations involving the open channel aa¯a\underline{aa}a can be reduced to

[aa¯a|ϕbb¯a|ϕ]=[aa¯a|K|aa¯a0bb¯a|K|aa¯a0][aa¯a|ϕbb¯a|ϕ].\displaystyle\left[\begin{array}[]{c}\langle\underline{aa}a|\phi\rangle\\ \langle\underline{bb}a|\phi\rangle\\ \end{array}\right]=\left[\begin{array}[]{cc}\langle\underline{aa}a|K|\underline{aa}a\rangle&0\\ \langle\underline{bb}a|K|\underline{aa}a\rangle&0\\ \end{array}\right]\left[\begin{array}[]{c}\langle\underline{aa}a|\phi\rangle\\ \langle\underline{bb}a|\phi\rangle\\ \end{array}\right]\,. (49)

The solution is thus solely determined by the open channel part

aa¯a|ϕ=aa¯a|K|aa¯aaa¯a|ϕ.\langle\underline{aa}a|\phi\rangle=\langle\underline{aa}a|K|\underline{aa}a\rangle\langle\underline{aa}a|\phi\rangle\,. (50)

Since just the open-channel component of the tt-operator is needed in this equation, we can later on use the Feshbach formalism Feshbach (1992), which we generalize in appendix B to an off shell version, to construct an approximate model system, in which the closed-channel is modelled by a separable energy-dependent interaction term added to the open channel. We analyze this model and its narrow resonance limit in more detail in Sec. V. We note that this model system is similar to the ones discussed in effective field theory Gogolin et al. (2008); Schmidt et al. (2012); Langmack et al. (2018) and the ones considered for the narrow resonance limit Petrov (2004); Gogolin et al. (2008). In appendix C we show that the Q=bb¯Q=\underline{bb} model can be approximated by the effective field theory models used in Gogolin et al. (2008); Schmidt et al. (2012); Langmack et al. (2018).

If we alternatively fix the closed channel QQ to correspond to ab¯\underline{ab}, we find that Eq. (29) can be expressed as

[aa¯a|ϕab¯a|ϕaa¯b|ϕab¯b|ϕ]=[aa¯a|K|aa¯aaa¯a|K|ab¯aaa¯a|K|aa¯b0ab¯a|K|aa¯aab¯a|K|ab¯aab¯a|K|aa¯b00aa¯b|K|ab¯a0aa¯b|K|ab¯b0ab¯b|K|ab¯a0ab¯b|K|ab¯b][aa¯a|ϕab¯a|ϕaa¯b|ϕab¯b|ϕ].\displaystyle\left[\begin{array}[]{c}\langle\underline{aa}a|\phi\rangle\\ \langle\underline{ab}a|\phi\rangle\\ \langle\underline{aa}b|\phi\rangle\\ \langle\underline{ab}b|\phi\rangle\\ \end{array}\right]=\left[\begin{array}[]{cccc}\langle\underline{aa}a|K|\underline{aa}a\rangle&\langle\underline{aa}a|K|\underline{ab}a\rangle&\langle\underline{aa}a|K|\underline{aa}b\rangle&0\\ \langle\underline{ab}a|K|\underline{aa}a\rangle&\langle\underline{ab}a|K|\underline{ab}a\rangle&\langle\underline{ab}a|K|\underline{aa}b\rangle&0\\ 0&\langle\underline{aa}b|K|\underline{ab}a\rangle&0&\langle\underline{aa}b|K|\underline{ab}b\rangle\\ 0&\langle\underline{ab}b|K|\underline{ab}a\rangle&0&\langle\underline{ab}b|K|\underline{ab}b\rangle\\ \end{array}\right]\left[\begin{array}[]{c}\langle\underline{aa}a|\phi\rangle\\ \langle\underline{ab}a|\phi\rangle\\ \langle\underline{aa}b|\phi\rangle\\ \langle\underline{ab}b|\phi\rangle\\ \end{array}\right]\,. (63)

Contrary to the realization where Q=bb¯Q=\underline{bb}, this equation indicates that the realization Q=ab¯Q=\underline{ab} results in coupling terms to the closed channels. Consequently it is no longer possible to describe the model in terms of the Feshbach formalism. As such, the system does no longer resemble the ones discussed in effective field theory Gogolin et al. (2008); Schmidt et al. (2012); Langmack et al. (2018) and requires a careful analysis in terms of all four coupled-channels as presented in Eq. (63). The results of this analysis will be presented in Sec. V.1.

IV Two-body transition operator

In the following we derive the two-body tt-operator for the separable system explicitly. We consider the cases of open channel P=aa¯P=\underline{aa} and closed channel Q=bb¯Q=\underline{bb} as well as open channel P=aa¯P=\underline{aa} and closed channel Q=ab¯Q=\underline{ab}. Since we can reduce to a two-body two-channel system in both cases, the tt-operators are identical, when the difference ϵ\epsilon in closed and open channel energy and the coupling strengths P|v|P,Q|v|Q,Q|v|P=Q|v|P\langle P|v|P\rangle,\,\langle Q|v|Q\rangle,\,\langle Q|v|P\rangle=\langle Q|v|P\rangle^{*} are the same. We get ϵ=2ϵab\epsilon=2\epsilon_{ab} for Q=bb¯Q=\underline{bb} and ϵ=ϵab\epsilon=\epsilon_{ab} for Q=ab¯Q=\underline{ab}. According to Eq. (19) we have a two-body interaction of the form

V=(v¯PPv¯PQv¯QPv¯QQ)|ζζ|mΛ=[v]|ζζ|,V=\left(\begin{matrix}\bar{v}_{PP}&\bar{v}_{PQ}\\ \bar{v}_{QP}&\bar{v}_{QQ}\end{matrix}\right)\frac{|\zeta\rangle\langle\zeta|}{m\Lambda}=[v]|\zeta\rangle\langle\zeta|\,, (64)

with potential interaction and coupling strength parameters v¯PP,v¯QQ,v¯PQ=v¯QP\bar{v}_{PP},\,\bar{v}_{QQ},\,\bar{v}_{PQ}=\bar{v}_{QP}\in\mathbb{R}. We define the form factor ζ\zeta as

𝐩|ζ=ζ(p)={1,p<Λ0,pΛ,\langle\mathbf{p}|\zeta\rangle=\zeta(p)=\begin{cases}1\,,p<\Lambda\\ 0\,,p\geq\Lambda\end{cases}\,, (65)

where Λ\Lambda is a momentum cut-off scale. For such an interaction, the two-body transition operator can be obtained analytically in a straightforward fashion. Resembling Eq. (5) the two-body operator is defined as

t(z)=(1Vg0(z))1V,t(z)=\left(1-Vg_{0}(z)\right)^{-1}V\,, (66)

with g0g_{0} the free Green’s function of the two-body system. Since we are considering the interaction between just two channels, we can fix the zero energy to equal the asymptotic energy of the open channel PP. By doing so, the asymptotic energy of the closed-channel QQ reduces to the energy difference ϵ\epsilon between the open and closed channel. Consequently, the free Green’s operator of the two-body system g0(z)g_{0}(z) can be expressed as

𝐩|g0(z)|𝐩\displaystyle\langle\mathbf{p}|g_{0}(z)|\mathbf{p}^{\prime}\rangle (67)
=((zp2/m)100(zϵp2/m)1)𝐩|𝐩.\displaystyle=\left(\begin{matrix}\left(z-p^{2}/m\right)^{-1}&0\\ 0&\left(z-\epsilon-p^{2}/m\right)^{-1}\end{matrix}\right)\langle\mathbf{p}|\mathbf{p}^{\prime}\rangle\,.

Next, the separable interactions allow us to express the tt-operator in the following separable form

t(z)=(τPP(z)τPQ(z)τQP(z)τQQ(z))|ζζ|,t(z)=\left(\begin{matrix}\tau_{PP}(z)&\tau_{PQ}(z)\\ \tau_{QP}(z)&\tau_{QQ}(z)\end{matrix}\right)|\zeta\rangle\langle\zeta|\,, (68)

where the energy dependent terms t𝒞𝒞(z)t_{\mathpzc{C}\mathpzc{C}^{\prime}}(z) can be computed explicitly from

(τPP(z)τPQ(z)τQP(z)τQQ(z))=(1[v]ζ|g0(z)|ζ)1[v].\left(\begin{matrix}\tau_{PP}(z)&\tau_{PQ}(z)\\ \tau_{QP}(z)&\tau_{QQ}(z)\end{matrix}\right)=\left(1-[v]\langle\zeta|g_{0}(z)|\zeta\rangle\right)^{-1}[v]\,. (69)

For step function shaped form factors considered in this section, the previous equation can be solved analytically using the identity

0Λ𝑑pp2pz2p2+i0\displaystyle\int_{0}^{\Lambda}dp\frac{p^{2}}{p_{z}^{2}-p^{2}+i0}
=Λ+pzarctanh(Λpz)\displaystyle=-\Lambda+p_{z}\mathrm{arctanh}\left(\frac{\Lambda}{p_{z}}\right) (70)

to solve for ζ|g0(z)|ζ\langle\zeta|g_{0}(z)|\zeta\rangle.

Here we would like to point out that it is possible to generalize this method to any finite number of channels and form factors. Furthermore, the model can be adjusted to match the low energy scattering properties of a given system. The scattering length is then given by

a=2π2mτPP(0)ζ(0)ζ(0)a=2\pi^{2}m\hbar\tau_{PP}(0)\zeta^{*}(0)\zeta(0) (71)

and depends on the parameters v¯PP\bar{v}_{PP}, v¯QQ\bar{v}_{QQ}, v¯PQ=v¯QP\bar{v}_{PQ}=\bar{v}_{QP} and ϵ\epsilon, so that we have a=a(v¯PP,v¯QQ,v¯PQ,ϵ)a=a(\bar{v}_{PP},\bar{v}_{QQ},\bar{v}_{PQ},\epsilon). We then define the background scattering length by

abg(v¯PP,v¯QQ,v¯PQ)=limϵa(v¯PP,v¯QQ,v¯PQ,ϵ),a_{\mathrm{bg}}(\bar{v}_{PP},\bar{v}_{QQ},\bar{v}_{PQ})=\lim_{\epsilon\rightarrow\infty}a(\bar{v}_{PP},\bar{v}_{QQ},\bar{v}_{PQ},\epsilon)\,, (72)

the resonance energy ϵ0\epsilon_{0} by

1/a(v¯PP,v¯QQ,v¯PQ,ϵ0(v¯PP,v¯QQ,v¯PQ))=01/a(\bar{v}_{PP},\bar{v}_{QQ},\bar{v}_{PQ},\epsilon_{0}(\bar{v}_{PP},\bar{v}_{QQ},\bar{v}_{PQ}))=0 (73)

and the resonance width parameter

r=ϵ(m2a)|ϵ=ϵ0.r^{*}=\left.\partial_{\epsilon}\left(\frac{m}{\hbar^{2}a}\right)\right|_{\epsilon=\epsilon_{0}}\,. (74)

With those definitions we can map any given set of (abg,r,ϵ0)(a_{\mathrm{bg}},r^{*},\epsilon_{0}) to a set of system parameters (v¯PP,v¯QQ,v¯PQ)(\bar{v}_{PP},\bar{v}_{QQ},\bar{v}_{PQ}).

To analyze the narrow resonance limit of τPP(z)\tau_{PP}(z) we first use the Feshbach formalism outlined in appendix B to approximate the system. We recognize that the transition matrix is the only operator in the three-body equation that depends on the form of the two-body interactions. Following the procedure as outlined in appendix B, we find that the transition matrix element τPP\tau_{PP} as introduced in Eq. (69) reduces to the following simple form in the narrow resonance limit

τ~PP\displaystyle\tilde{\tau}_{PP} τPP(z)r/m\displaystyle\underset{\phantom{r^{*}\rightarrow\infty}}{\equiv}\frac{\tau_{PP}(z)}{r^{*}/m\hbar} (75)
=r12π2|ζ(0)|2×1z~+a~1z~,\displaystyle\underset{r^{*}\rightarrow\infty}{=}\frac{1}{2\pi^{2}|\zeta(0)|^{2}}\times\frac{1}{\tilde{z}+\tilde{a}^{-1}-\sqrt{-\tilde{z}}}\,, (76)

where we have used system parameters in units of rr^{*}, such that t~PP=tPP/(r/m)\tilde{t}_{PP}=t_{PP}/(r^{*}/m\hbar), and where we have introduced the dimensionless scattering length a~=a/r\tilde{a}=a/r^{*} and energy z~=zmr2/2\tilde{z}=z\,m\,r^{*2}/\hbar^{2}. The above expression is valid for arbitrary form factors ζ\zeta and leads to a narrow resonance limit of the Efimov spectrum which we discuss in detail in section V.2. From that we conclude that the above limit also holds in the general setting with non separable interaction potentials. The tt-operator for those general potentials can be expanded in separable terms, with a single separable term representing the resonant component Mestrom et al. (2019); Secker et al. (2020b, a). Only the open-open component of the resonant term will approach the limit in Eq. (76). All other terms in the open-open component are finite even on resonance in units related to the range of the interaction and therefore vanish according to Eq. (75) in units of the resonance width parameter rr^{*} when taking it to infinity.

V Results

We study the dissociation scattering lengths a(n)a_{-}^{(n)} as well as the binding energies of the three deepest trimer states for varying values of the resonance width parameter rr^{*}. To completely determine the system we fix the threshold difference on resonance ϵ0\epsilon_{0} and the background scattering length abga_{bg}, such that we can map the scattering length aa to the threshold difference ϵ\epsilon between the open and closed channel. In the following we denote quantities made dimensionless in units of the cut-off scale Λ\Lambda with a bar. This means that all lengths are given in multiples of /Λ\hbar/\Lambda and all energies are given in multiples of Λ2/m\Lambda^{2}/m. We choose a¯bg=0.2\bar{a}_{bg}=-0.2 to have no additional bound background dimer states in our model and set the resonance position to a value of ϵ¯0=1.5\bar{\epsilon}_{0}=1.5 to just have a single closed channel trimer for Q=ab¯Q=\underline{ab} as will be discussed below in more detail.

V.1 Comparison of the Q=bb¯Q=\underline{bb} and Q=ab¯Q=\underline{ab} multichannel realizations

Refer to caption
Figure 1: We compare the three-body spectra of the systems we have analyzed. The red solid lines correspond to the Q=bb¯Q=\underline{bb} realization, whereas the blue dashed lines correspond to the Q=ab¯Q=\underline{ab} realization of the system. In both cases the resonance positions are fixed at a threshold difference of ϵ¯0=1.5\bar{\epsilon}_{0}=1.5 and the background scattering length is fixed to a¯bg=0.2\bar{a}_{bg}=-0.2. In (a) we show the inverse dissociation scattering lengths 1/a(n)1/a_{-}^{(n)} of the three most deeply bound trimer states rescaled with the lowest (in absolute value) single-channel dissociation scattering length asca_{-}^{sc} as a function of the resonance width r¯\bar{r}^{*}. The open circles correspond to experimental data Gross et al. (2011); Dyke et al. (2013); Chapurin et al. (2019); Roy et al. (2013); Wild et al. (2012); Berninger et al. (2011b); Kraemer et al. (2006); Wang and Julienne (2014), where we rescaled a(0)a_{-}^{(0)} by the universal value of 9.73rvdW-9.73\,r_{\mathrm{vdW}} Wang et al. (2012) and set r¯=r/rvdW\bar{r}^{*}=r^{*}/r_{\mathrm{vdW}}. The red band indicates the van der Waals universal region up to ±15%\pm 15\%. The diamonds correspond to experimental data Berninger et al. (2011b) related to very small values of rr^{*} and have been shifted by r¯=0.01\bar{r}^{*}=0.01 to fit on the plot. The thin black dashed line indicates asc/abga_{-}^{\mathrm{sc}}/a_{\mathrm{bg}}, while the light gray horizontal lines correspond to the trimer positions of the single-channel system. The vertical gray lines indicate the resonance widths at which we obtained full Efimov spectra shown in (b) - (d) for r¯=0.01,1,100\bar{r}^{*}=0.01,1,100 respectively. In Figs. (b) - (d) we show the binding energies of the lowest three trimer states (red full and blue dashed lines) as a function of the inverse scattering length 1/a¯1/\bar{a}. For better visibility both axes are rescaled as indicated by the axes labels. The thick black line indicates the dimer binding energy which agrees for both realizations since the tt-operator is identical. The thin gray lines correspond to the trimer spectrum of the single-channel model, while the thick gray line corresponds to the single-channel dimer binding energy. In Fig. 1(b) the trimer and dimer lines stop at some positive inverse scattering length close to 1/a¯1/4=0.41/\bar{a}^{1/4}=0.4, since the threshold difference related to this value of the scattering length is zero and we enter a regime irrelevant for this investigation beyond this point.

We start by comparing our results for a(n)a_{-}^{(n)} in the different closed channel realizations Q=bb¯Q=\underline{bb} and Q=ab¯Q=\underline{ab} for changing values of rr^{*}. Our results are summarized in Fig. 1(a). Here we also compare our results to the single-channel result corresponding to the interaction Naidon and Endo (2017); Colussi et al. (2018)

Vsc=a¯2π24πa¯|ζζ|mΛ.V^{\mathrm{sc}}=\frac{\bar{a}}{2\pi^{2}-4\pi\bar{a}}\frac{|\zeta\rangle\langle\zeta|}{m\Lambda}\,. (77)

We find that in the broad resonance limit (r¯0\bar{r}^{*}\rightarrow 0) we can recover the single-channel result for all a(n)a_{-}^{(n)} except for the dissociation scattering length a(0)a_{-}^{(0)} related to the lowest Efimov trimer state in the Q=ab¯Q=\underline{ab} realization, which still approaches a limiting value but is lowered in absolute value.

Our finding that a limiting result is approached for broad resonances is in agreement with earlier studies in effective field theory Schmidt et al. (2012); Langmack et al. (2018) and is also in line with the results of multichannel hyperradial calculations using van der Waals interaction potentials Wang and Julienne (2014). Also the experimental results for atomic systems indicated by the blue diamonds in Fig. 1(a) confirm this behavior Berninger et al. (2011b). When r¯\bar{r}^{*} is increased we find that |a(n)||a_{-}^{(n)}| increases for the Q=bb¯Q=\underline{bb} realization in agreement with Schmidt et al. (2012); Langmack et al. (2018). However, for Q=ab¯Q=\underline{ab} we find the opposite behavior and |a(n)||a_{-}^{(n)}| decreases with increasing r¯\bar{r}^{*}, for moderate values of r¯<0.3\bar{r}^{*}<0.3. This behavior is more in line with the results of Sørensen et al. (2012), where a lowering in |a(0)||a_{-}^{(0)}| was observed when r¯\bar{r}^{*} is increased. The value of |a(0)||a_{-}^{(0)}| corresponding to the lowest trimer state in the Q=ab¯Q=\underline{ab} realization even keeps decreasing when r¯\bar{r}^{*} reaches large values and converges to limr¯a(0)=abg\lim_{\bar{r}^{*}\rightarrow\infty}a_{-}^{(0)}=a_{bg}. This indicates that the lowest trimer state in the Q=ab¯Q=\underline{ab} realization is in this limit no longer related to the Efimov spectrum close to the resonance and has in fact purely closed-channel character, as will be discussed in the following section. Note that due to

a(ϵ)\displaystyle a(\epsilon) abg2/mrϵ0ϵ\displaystyle\approx a_{\mathrm{bg}}-\frac{\hbar^{2}/mr^{*}}{\epsilon_{0}-\epsilon} (78)

all fixed ϵ\epsilon will be mapped to abga_{bg} in the narrow resonance limit. In this limit (r¯\bar{r}^{*}\rightarrow\infty) we also find dissociation scattering lengths related to Efimov states that scale linearly with rr^{*} for both realizations Q=bb¯Q=\underline{bb} and Q=ab¯Q=\underline{ab}. We discuss this limit in more detail in section V.2.

In Fig. 1(b) - (d) we show some trimer spectra for increasing values of rr^{*}. These spectra may be most easily understood starting from the narrow resonance spectrum given in Fig. 1(d). In Fig. 1(d) we identify the closed-channel trimer as the one that is most deeply bound in the plot in the Q=ab¯Q=\underline{ab} realization. Close to the point where the dimer state merges with the three-body continuum we find a shrunken version of a universal Efimov trimer spectrum for both realizations Q=bb¯Q=\underline{bb} and Q=ab¯Q=\underline{ab}. The thin gray lines give the single-channel Efimov spectrum for comparison. As mentioned earlier the size of the Efimov trimer spectrum is set by rr^{*}, which is the dominating length scale in the narrow resonance limit. Therefore the size of the Efimov spectrum increases when rr^{*} decreases as can be seen from Fig. 1(c). In this intermediate resonance width regime where r¯1\bar{r}^{*}\sim 1 deviations between the different realizations Q=bb¯Q=\underline{bb} and Q=ab¯Q=\underline{ab} get pronounced, since the excited trimer states in the Q=ab¯Q=\underline{ab} realization start to couple to and get repelled by the lowest closed-channel trimer state. This causes the first and second excited trimer states to be shifted to higher energies as compared to the energies of the two lowest Efimov trimer states in the Q=bb¯Q=\underline{bb} realization. Due to the coupling to the open-channel (aa¯a\underline{aa}a) Efimov trimers the closed-channel (ab¯a\underline{ab}a and aa¯b\underline{aa}b) trimer acquires an open-channel component. We note that in the Q=bb¯Q=\underline{bb} realization it is not possible to couple to closed-channel trimer states, as is indicated by Eq. (50). For even broader resonances our results are shown in Fig. 1(b). There the lowest trimer state in the Q=ab¯Q=\underline{ab} realization adopts Efimov character, while the first and second excited trimer energies are matching with the ones of the Q=bb¯Q=\underline{bb} realization as well as with the single-channel result.

We also compare to experimental results in Fig. 1(a). We find that almost all experimentally measured values of a(0)a_{-}^{(0)} lie between the predictions of the Q=bb¯Q=\underline{bb} and Q=ab¯Q=\underline{ab} realizations, when rescaled according to the description in the caption of Fig. 1(a). This is promising since interpolating between the Q=bb¯Q=\underline{bb} and Q=ab¯Q=\underline{ab} interaction potentials while also properly adjusting ϵab\epsilon_{ab} provides us with a continuous mapping between the two limiting realizations we study. Therefore also the spectra should be continuously deformed into each other covering part of the area between the models, which contains the experimental values. This indicates that in the realistic situation a model including both realizations Q=bb¯Q=\underline{bb} and Q=ab¯Q=\underline{ab} needs to be applied to represent the atomic spin structure correctly. We note that in a realistic system usually both |𝒸𝒸|\mathpzc{c}\mathpzc{c}\rangle and |𝒸𝒸𝒮|\mathpzc{c}\mathpzc{c}^{\prime}\rangle_{S} type channels are involved in the multichannel interaction Secker et al. (2020a).

V.2 Narrow resonance limit

For the Q=bb¯Q=\underline{bb} realization we can immediately see from Eq. (50) that the trimer energies depend only on the three-body open channel component aa¯a|ϕ\langle\underline{aa}a|\phi\rangle. For the Q=ab¯Q=\underline{ab} realization on the other hand the coupling terms aa¯a|K|ab¯a\langle\underline{aa}a|K|\underline{ab}a\rangle and aa¯a|K|aa¯b\langle\underline{aa}a|K|\underline{aa}b\rangle, prevent this. However, these coupling terms vanish in the narrow resonance limit when expressed in units related to the width parameter rr^{*}, because the separation in threshold energy is E~(ab¯a)E~(aa¯a)=ϵ~r¯2\tilde{E}(\underline{ab}a)-\tilde{E}(\underline{aa}a)=\tilde{\epsilon}\propto\bar{r}^{*2}. Therefore G0G_{0} has a suppressing effect 1/r¯2\propto 1/\bar{r}^{*2}, which cancels the leading order diverging behavior of τ~PQ(z)r¯\tilde{\tau}_{PQ}(z)\propto\sqrt{\bar{r}^{*}} in the coupling terms aa¯a|K|ab¯a\langle\underline{aa}a|K|\underline{ab}a\rangle and aa¯a|K|aa¯b\langle\underline{aa}a|K|\underline{aa}b\rangle. In conclusion we find that in the narrow resonance limit Eq. (50) can be used to solve for three-body bound state energies in both realizations Q=bb¯Q=\underline{bb} and Q=ab¯Q=\underline{ab}. Since the scaling behavior of τ~PQ(z)r¯\tilde{\tau}_{PQ}(z)\propto\sqrt{\bar{r}^{*}} holds in general, the above reasoning is also true for realistic interactions including the full spin structure of the three-atom system. We thus conclude that the above limit holds in the narrow resonance limit for any multichannel interaction potential.

By applying the reduction given in Eq. (76) and by changing to the scaled momenta q~=qr/\tilde{q}=qr^{*}/\hbar, we find that q=q~/rq=\hbar\tilde{q}/r^{*} approaches a value of zero in the low-energy and narrow resonance limit. We can therefore simplify the expression of the integral kernel as presented in Eq. (III) by replacing the argument in the form-factors ζ\zeta by the value at zero momentum ζ(0)\zeta(0). The ζ(0)\zeta(0)-terms cancel with the ones contained in τ~PP(z)\tilde{\tau}_{PP}(z) (compare Eq. (76)). Consequently, the three-body wave function of any model with separable interactions can be expressed as

aa¯a,q~|ϕ\displaystyle\langle\underline{aa}a,\tilde{q}|\phi\rangle r4π𝑑q~q~aa¯a,q~|ϕ2π2q~(q~z2+a~1q~z)\displaystyle\underset{r^{*}\rightarrow\infty}{\approx}4\pi\int d\tilde{q}^{\prime}\frac{\tilde{q}^{\prime}\langle\underline{aa}a,\tilde{q}^{\prime}|\phi\rangle}{2\pi^{2}\tilde{q}(-\tilde{q}_{z}^{2}+\tilde{a}^{-1}-\tilde{q}_{z})}
×log(E~+q~2+q~2q~q~E~+q~2+q~2+q~q~),\displaystyle\phantom{\underset{r^{*}\rightarrow\infty}{\approx}}\times\text{log}\left(\frac{-\tilde{E}+\tilde{q}^{\prime 2}+\tilde{q}^{2}-\tilde{q}^{\prime}\tilde{q}}{-\tilde{E}+\tilde{q}^{\prime 2}+\tilde{q}^{2}+\tilde{q}^{\prime}\tilde{q}}\right), (79)

where the absence of form factors has allowed us to carry out the angular integration explicitly and where q~z=3q~2/4E~\tilde{q}_{z}=\sqrt{3\tilde{q}^{2}/4-\tilde{E}}.

As we have found a straightforward expression Eq. (79) for the three-body bound state equation in the narrow resonance limit, we can proceed with the computation of the dimensionless Efimov spectrum. In Fig. 2 we present our results for the Efimov spectrum in the narrow resonance limit. In addition we extract the dissociation scattering length a(n)a_{-}^{(n)} up to n=3n=3 as well as the wave number κ(n)\kappa_{*}^{(n)} related to the trimer binding energy on resonance. Our results are collected in Tab. 1.

Refer to caption
Figure 2: Efimov spectrum in the narrow resonance limit showing the first five Efimov trimers (purple) and the ground-state dimer (thick black) in dimensionless units of rr^{*}.
Table 1: Values of a~(n)enπ/s0\tilde{a}_{-}^{(n)}e^{-n\pi/s_{0}} as well as a(n+1)/a(n)a_{-}^{(n+1)}/a_{-}^{(n)} and κ(n)a(n)\kappa_{*}^{(n)}a_{-}^{(n)} for the four lowest Efimov trimers.
nn a~(n)enπ/s0\tilde{a}_{-}^{(n)}e^{-n\pi/s_{0}} a(n+1)/a(n)a_{-}^{(n+1)}/a_{-}^{(n)} κ(n)a(n)\kappa_{*}^{(n)}a_{-}^{(n)}
0 10.90-10.90 26.4826.48 1.281.28
11 12.72-12.72 22.9822.98 1.491.49
22 12.88-12.88 22.7122.71 1.511.51
33 12.90-12.90 22.7022.70 1.511.51

In agreement with Refs. Gogolin et al. (2008); Nishida (2012); Castin and Tignone (2011); Endo and Castin (2016); Naidon and Endo (2017), we find in the narrow resonance limit that the dissociation scattering length of the ground state a(0)a_{-}^{(0)} scales as a(0)/r10.90216a_{-}^{(0)}/r^{*}\simeq-10.90216, whereas highly excited trimer states (n1)(n\gg 1) approach a scaling a(n)enπ/s0/r12.9a_{-}^{(n)}e^{-n\pi/s_{0}}/r^{*}\simeq-12.9. In addition, we recognize the universal scaling laws a(n+1)/a(n)22.7a_{-}^{(n+1)}/a_{-}^{(n)}\approx-22.7 and κ(n)a(n)1.51\kappa_{*}^{(n)}a_{-}^{(n)}\approx 1.51 which are typical for Efimov spectra.

Having analyzed the trimer spectrum in the open three-body channel aa¯a\underline{aa}a in the narrow resonance limit, we are left with the narrow resonance limit analysis of the closed-channel trimer spectrum for the Q=ab¯Q=\underline{ab} realization. In the narrow resonance limit (rr^{*}\rightarrow\infty) we find that τ¯PQ(E3q2/4m)0\bar{\tau}_{PQ}(E-3q^{2}/4m)\rightarrow 0 for all EE considered. It follows that the coupling terms aa¯a|K|ab¯a\langle\underline{aa}a|K|\underline{ab}a\rangle, aa¯a|K|aa¯b\langle\underline{aa}a|K|\underline{aa}b\rangle, ab¯a|K|aa¯a\langle\underline{ab}a|K|\underline{aa}a\rangle, aa¯b|K|ab¯b\langle\underline{aa}b|K|\underline{ab}b\rangle and ab¯b|K|ab¯a\langle\underline{ab}b|K|\underline{ab}a\rangle vanish. We can therefore analyze the closed-channel components ab¯a\underline{ab}a and aa¯b\underline{aa}b separately, which leads to the following system of equations

[ab¯a|ϕaa¯b|ϕ]\displaystyle\left[\begin{array}[]{c}\langle\underline{ab}a|\phi\rangle\\ \langle\underline{aa}b|\phi\rangle\\ \end{array}\right] (82)
=[ab¯a|K|ab¯aab¯a|K|aa¯baa¯b|K|ab¯a0][ab¯a|ϕaa¯b|ϕ],\displaystyle=\left[\begin{array}[]{cc}\langle\underline{ab}a|K|\underline{ab}a\rangle&\langle\underline{ab}a|K|\underline{aa}b\rangle\\ \langle\underline{aa}b|K|\underline{ab}a\rangle&0\\ \end{array}\right]\left[\begin{array}[]{c}\langle\underline{ab}a|\phi\rangle\\ \langle\underline{aa}b|\phi\rangle\\ \end{array}\right]\,, (87)

The system consists of two particles in spin state |a|a\rangle and one particle in spin state |b|b\rangle and is therefore equivalent to a system of two identical bosons (B) and a distinguishable particle (X) (see also appendix C). The Efimov scaling laws on resonance for such a BBX system are determined by s00.41370s_{0}\approx 0.41370 Naidon and Endo (2017); Colussi, V. E. et al. (2016). We find our system in agreement with those results, when setting abg=0a_{\mathrm{bg}}=0 with s0=0.415s_{0}=0.415 that we determined from the scaling of the ground to first excited Efimov trimer energy on resonance.

However, since we fixed ϵ¯0=1.5\bar{\epsilon}_{0}=1.5 the closed-channel system we consider here has a dimer binding energy of ϵ0\epsilon_{0} with respect to the closed-channel threshold in the limit rr^{*}\rightarrow\infty. In Fig. 3 we show the closed-channel trimer spectrum in the narrow resonance limit with respect to the open-channel threshold as a function of the resonance position ϵ¯0\bar{\epsilon}_{0}. We observe that for increasing ϵ¯0\bar{\epsilon}_{0} the trimer binding energy increases and more trimer states are getting bound. However, to keep the analysis for the coupled case as simple as possible, we have chosen the resonance position ϵ0\epsilon_{0} such that we just have a single non-universal closed-channel trimer state near the open-channel threshold in the limit of zero coupling to the open-channel. Hence, we have fixed the resonance position to ϵ¯0=1.5\bar{\epsilon}_{0}=1.5 in Fig. 1.

For completeness we note that the closed-channel spectrum related to the remaining part

ab¯b|ϕ=ab¯b|K|ab¯bab¯b|ϕ\langle\underline{ab}b|\phi\rangle=\langle\underline{ab}b|K|\underline{ab}b\rangle\langle\underline{ab}b|\phi\rangle (88)

is equivalent to the closed-channel one we just discussed, when abga_{\mathrm{bg}} is set to zero (compare Eqs. (177) and (180) in appendix C). Since the ab¯b\underline{ab}b threshold energy lies ϵ0\epsilon_{0} higher in energy as the ab¯a\underline{ab}a threshold for ϵ=ϵ0\epsilon=\epsilon_{0} also the trimer spectrum needs to be shifted to higher energies by the threshold difference ϵ0\epsilon_{0}. Since the trimer binding energy E¯<1.5\bar{E}<1.5 for ϵ¯0=1.5\bar{\epsilon}_{0}=1.5 the ab¯b\underline{ab}b closed-channel trimer is located above the aa¯a\underline{aa}a threshold in the considered system. This is confirmed by our calculations that show only a single background trimer state in the narrow resonance limit.

Refer to caption
Figure 3: Narrow resonance limit of the closed-channel (ab¯a\underline{ab}a and aa¯b\underline{aa}b) trimer binding energies relative to the closed-channel dimer binding energy with respect to the closed-channel threshold, which in the narrow resonance limit coincides with the resonance position ϵ¯0\bar{\epsilon}_{0}. The gray line indicates the value ϵ¯0=1.5\bar{\epsilon}_{0}=1.5 that we set the resonance position to throughout our analysis of the multichannel system with varying values of r¯\bar{r}^{*}.

VI Conclusion and Outlook

We present a multichannel version of the three-body bound state equations in momentum space. In order to probe multichannel effects we analyze two different three-body realizations of an interaction, that on the two-body level leads to a standard two-channel model for Feshbach resonances with separable ss-wave interactions. The two models, that correspond to the different realizations, differ only in the combination of single-particle spins employed for the closed channel of the two-body model. Realistic full coupled-channels models for atomic ss-wave interactions include symmetric spin combinations of the form |𝒸𝒸|\mathpzc{c}\mathpzc{c}\rangle and |𝒸𝒸𝒮|\mathpzc{c}\mathpzc{c}^{\prime}\rangle_{S} for the closed channels. We analyze the three-body bound state spectrum for either a purely |𝒸𝒸|\mathpzc{c}\mathpzc{c}\rangle or a purely |𝒸𝒸𝒮|\mathpzc{c}\mathpzc{c}^{\prime}\rangle_{S} realization of the closed channel for various values of the resonance width. We find that the realization of the interaction in spin space can strongly affect the Efimov spectrum for intermediate resonance widths. Therefore our findings suggest that in this regime a full multichannel model is needed to identify the three-body parameter for identical bosonic alkali-metal atoms correctly. Additionally we find that trimers related to the closed channels can appear in the |𝒸𝒸𝒮|\mathpzc{c}\mathpzc{c}^{\prime}\rangle_{S} realization. Contrary to the regime of intermediate resonance width, we find that both the |𝒸𝒸|\mathpzc{c}\mathpzc{c}\rangle as well as the |𝒸𝒸𝒮|\mathpzc{c}\mathpzc{c}^{\prime}\rangle_{S} configurations reduce to the same narrow resonance limit of the Efimov spectrum. In this limit, the three-body dissociation scattering lengths a(n)a_{-}^{(n)} scale linearly with the resonance width parameter rr^{*}. We derive this limiting behavior by analyzing the three-body bound state equation. We find that the narrow resonance limit is independent of the interaction potential used. For the scenarios investigated and in the broad resonance limit the excited Efimov states appear to be independent of the closed channel configuration and agree with predictions from the corresponding single-channel model.

Our model can be extended by adding more separable terms even with higher partial wave components to represent the long-range van der Waals tail of the atomic interactions correctly. Studying such a class of models with only two internal spin states could help to understand the effects leading to van der Waals universality in the multichannel system and might lead to a better understanding of the robustness of van der Waals universality for Feshbach resonances with intermediate resonance widths. For completeness we note that in a realistic system the channels |𝒸𝒸𝒮|\mathpzc{c}\mathpzc{c}^{\prime}\rangle_{S} can be such that both 𝒸\mathpzc{c} and 𝒸\mathpzc{c}^{\prime} are different from the incoming channel Secker et al. (2020a). However, to realize this situation a third internal state on the single atom level would be required.

Acknowledgements

We thank Jinglun Li, Victor Colussi, Gijs Groeneveld, and Silvia Musolino for discussions. This research is financially supported by the Netherlands Organisation for Scientific Research (NWO) under Grant No. 680-47-623.

Appendix A Permutation operators and spin projection

We can split P+sP_{+}^{s} in four components, by introducing the operators 𝒫S\mathcal{P}_{S} and 𝒫A\mathcal{P}_{A}, which project the state onto either the symmetric or antisymmetric spin combinations of particle ii and jj. We find that

𝒫SP+s𝒫S\displaystyle\mathcal{P}_{S}P_{+}^{s}\mathcal{P}_{S} =𝒫SPs𝒫S\displaystyle=\mathcal{P}_{S}P_{-}^{s}\mathcal{P}_{S} =:PSS\displaystyle=:P_{SS} (89)
𝒫AP+s𝒫A\displaystyle\mathcal{P}_{A}P_{+}^{s}\mathcal{P}_{A} =𝒫APs𝒫A\displaystyle=\mathcal{P}_{A}P_{-}^{s}\mathcal{P}_{A} =:PAA\displaystyle=:P_{AA} (90)
𝒫SP+s𝒫A\displaystyle\mathcal{P}_{S}P_{+}^{s}\mathcal{P}_{A} =𝒫SPs𝒫A\displaystyle=-\mathcal{P}_{S}P_{-}^{s}\mathcal{P}_{A} =:PSA\displaystyle=:P_{SA} (91)
𝒫AP+s𝒫S\displaystyle\mathcal{P}_{A}P_{+}^{s}\mathcal{P}_{S} =𝒫APs𝒫S\displaystyle=-\mathcal{P}_{A}P_{-}^{s}\mathcal{P}_{S} =:PAS\displaystyle=:P_{AS}\, (92)

We define the symmetric and antisymmetric spin bases as

|𝒸𝒸′′,𝒸\displaystyle|\mathpzc{c}^{\prime}\odot\mathpzc{c}^{\prime\prime},\mathpzc{c}\rangle
=|𝒸1|𝒸′′2|𝒸3+|𝒸′′1|𝒸2|𝒸32(1+δ𝒸𝒸′′)\displaystyle=\frac{|\mathpzc{c}^{\prime}\rangle_{1}\otimes|\mathpzc{c}^{\prime\prime}\rangle_{2}\otimes|\mathpzc{c}\rangle_{3}+|\mathpzc{c}^{\prime\prime}\rangle_{1}\otimes|\mathpzc{c}^{\prime}\rangle_{2}\otimes|\mathpzc{c}\rangle_{3}}{\sqrt{2(1+\delta_{\mathpzc{c}^{\prime}\mathpzc{c}^{\prime\prime}})}} (93)
|𝒸𝒸′′,𝒸\displaystyle|\mathpzc{c}^{\prime}\wedge\mathpzc{c}^{\prime\prime},\mathpzc{c}\rangle
=|𝒸1|𝒸′′2|𝒸3|𝒸′′1|𝒸2|𝒸32\displaystyle=\frac{|\mathpzc{c}^{\prime}\rangle_{1}\otimes|\mathpzc{c}^{\prime\prime}\rangle_{2}\otimes|\mathpzc{c}\rangle_{3}-|\mathpzc{c}^{\prime\prime}\rangle_{1}\otimes|\mathpzc{c}^{\prime}\rangle_{2}\otimes|\mathpzc{c}\rangle_{3}}{\sqrt{2}} (94)

One can then work out the expressions for PSSP_{SS}, PAAP_{AA}, PASP_{AS} and PSAP_{SA} explicitly

PSS|𝒸𝒸,𝒸′′\displaystyle P_{SS}|\mathpzc{c}\odot\mathpzc{c}^{\prime},\mathpzc{c}^{\prime\prime}\rangle =121+δ𝒸𝒸(1+δ𝒸′′𝒸|𝒸′′𝒸,𝒸\displaystyle=\frac{1}{2\sqrt{1+\delta_{\mathpzc{c}\mathpzc{c}^{\prime}}}}\left(\sqrt{1+\delta_{\mathpzc{c}^{\prime\prime}\mathpzc{c}}}|\mathpzc{c}^{\prime\prime}\odot\mathpzc{c},\mathpzc{c}^{\prime}\rangle\right.
+1+δ𝒸′′𝒸|𝒸′′𝒸,𝒸)\displaystyle\phantom{=}\qquad\left.+\sqrt{1+\delta_{\mathpzc{c}^{\prime\prime}\mathpzc{c}^{\prime}}}|\mathpzc{c}^{\prime\prime}\odot\mathpzc{c}^{\prime},\mathpzc{c}\rangle\right) (95)
PAA|𝒸𝒸,𝒸′′\displaystyle P_{AA}|\mathpzc{c}\wedge\mathpzc{c}^{\prime},\mathpzc{c}^{\prime\prime}\rangle =12(|𝒸′′𝒸,𝒸|𝒸′′𝒸,𝒸)\displaystyle=\frac{1}{2}\left(|\mathpzc{c}^{\prime\prime}\wedge\mathpzc{c},\mathpzc{c}^{\prime}\rangle-|\mathpzc{c}^{\prime\prime}\wedge\mathpzc{c}^{\prime},\mathpzc{c}\rangle\right) (96)
PAS|𝒸𝒸,𝒸′′\displaystyle P_{AS}|\mathpzc{c}\odot\mathpzc{c}^{\prime},\mathpzc{c}^{\prime\prime}\rangle =121+δ𝒸𝒸(|𝒸′′𝒸,𝒸\displaystyle=\frac{1}{2\sqrt{1+\delta_{\mathpzc{c}\mathpzc{c}^{\prime}}}}\left(|\mathpzc{c}^{\prime\prime}\wedge\mathpzc{c},\mathpzc{c}^{\prime}\rangle\right.
+|𝒸′′𝒸,𝒸)\displaystyle\phantom{=}\qquad\left.+|\mathpzc{c}^{\prime\prime}\wedge\mathpzc{c}^{\prime},\mathpzc{c}\rangle\right) (97)
PSA|𝒸𝒸,𝒸′′\displaystyle P_{SA}|\mathpzc{c}\wedge\mathpzc{c}^{\prime},\mathpzc{c}^{\prime\prime}\rangle =12(1+δ𝒸′′𝒸|𝒸′′𝒸,𝒸\displaystyle=\frac{1}{2}\left(\sqrt{1+\delta_{\mathpzc{c}^{\prime\prime}\mathpzc{c}}}|\mathpzc{c}^{\prime\prime}\odot\mathpzc{c},\mathpzc{c}^{\prime}\rangle\right.
1+δ𝒸′′𝒸|𝒸′′𝒸,𝒸).\displaystyle\phantom{=}\qquad\left.-\sqrt{1+\delta_{\mathpzc{c}^{\prime\prime}\mathpzc{c}^{\prime}}}|\mathpzc{c}^{\prime\prime}\odot\mathpzc{c}^{\prime},\mathpzc{c}\rangle\right)\,. (98)

Appendix B The transition matrix for the bb-channel configuration

The two-body tt-operator can be defined as

t(z)=V+Vg(z)V,t(z)=V+Vg(z)V\,, (99)

where g(z)=(zH)1g(z)=(z-H)^{-1} is the Green’s operator related to the relative two-body Hamiltonian. This implies that the open channel component of the transition operator tPP(z)t_{PP}(z) can be expressed as

tPP(z)\displaystyle t_{PP}(z) =VPP(1+gPPVPP+gPQVQP)\displaystyle=V_{PP}\left(1+g_{PP}V_{PP}+g_{PQ}V_{QP}\right)
+VPQ(gQPVPP+gQQVQP).\displaystyle+V_{PQ}\left(g_{QP}V_{PP}+g_{QQ}V_{QP}\right). (100)

In order to simplify this expression we derive an operator version of the Feshbach formalism to eliminate the contributions gQPg_{QP}, gPQg_{PQ} and gQQg_{QQ} in Eq. (B), we apply the definition g(z)(zH)1g(z)(z-H)\equiv 1, such that we find

gQQ=gQQ0+gQPVPQgQQ0,\displaystyle g_{QQ}=g^{0}_{QQ}+g_{QP}V_{PQ}g^{0}_{QQ}, (101)

with gQQ0(z)=(zHQQ)1g^{0}_{QQ}(z)=(z-H_{QQ})^{-1} and

VPQgQP=gPQVQP=gPPWPP,\displaystyle V_{PQ}g_{QP}=g_{PQ}V_{QP}=g_{PP}W_{PP}, (102)

where we have introduced the factor WPP=VPQgQQ0(z)VQPW_{PP}=V_{PQ}g^{0}_{QQ}(z)V_{QP}. Substituting Eqs. (101) and (102) into Eq. (B), we obtain

tPP(z)=(VPP+WPP)[1+gPP(VPP+WPP)].\displaystyle t_{PP}(z)=\left(V_{PP}+W_{PP}\right)\left[1+g_{PP}\left(V_{PP}+W_{PP}\right)\right]. (103)

We recognize that Eq. (103) looks like a single-channel transition operator where the open channel potential interaction strength VPPV_{PP} has been replaced by an effective interaction strength VPP+WPPV_{PP}+W_{PP}.

Proceeding with the analysis of Eq. (103), we introduce the uncoupled transition operator tuncPPt_{unc}^{PP}, defined as

tPPunc=VPP+VPPg0tPPunc,\displaystyle t_{PP}^{unc}=V_{PP}+V_{PP}g_{0}t^{unc}_{PP}, (104)

such that we can rewrite Eq. (103) as

tPP=\displaystyle t_{PP}= tPPunc+(1+VPPgPP0)WPP\displaystyle t_{PP}^{unc}+\left(1+V_{PP}g^{0}_{PP}\right)W_{PP}
×(1+gPP(VPP+WPP)).\displaystyle\times\left(1+g_{PP}\left(V_{PP}+W_{PP}\right)\right). (105)

Equation (B) can be simplified through the application of the single resonance approximation. Under this approximation, the resolvent operator gQQ0g^{0}_{QQ} can be replaced by its dominant contribution, such that gQQ0(EEb)1|ϕQϕQ|g^{0}_{QQ}\approx(E-E_{\mathrm{b}})^{-1}\ket{\phi_{Q}}\bra{\phi_{Q}}, with closed channel bound state |ϕQ\ket{\phi_{Q}} and binding energy EbE_{\mathrm{b}}. Substituting this form of this Green’s function into the definition of the potential operator WPPW_{PP}, Eq. (B) reduces to

tPP=\displaystyle t_{PP}= tPPunc+1(EEb)(1+VPPgPP0)VPQ|ϕQ\displaystyle t_{PP}^{unc}+\frac{1}{{(E-E_{\mathrm{b}})}}\left(1+V_{PP}g^{0}_{PP}\right)V_{PQ}\ket{\phi_{Q}}
×ϕQ|VQP(1+gPP(VPP+WPP)).\displaystyle\times\bra{\phi_{Q}}V_{QP}\left(1+g_{PP}\left(V_{PP}+W_{PP}\right)\right). (106)

Using the resolvent equation for gPP=gPP0+gPP0WPPgPPg_{PP}=g_{PP}^{0}+g_{PP}^{0}W_{PP}g_{PP} (which can be derived from the expression for gPPg_{PP} analogous to Eq. (101) in combination with Eq. (102)) the last term can be rewritten as follows

ϕQ|VQP(1+gPP(VPP+WPP))\displaystyle\bra{\phi_{Q}}V_{QP}\left(1+g_{PP}\left(V_{PP}+W_{PP}\right)\right)
=ϕQ|VQP(1+gPP0VPP\displaystyle=\bra{\phi_{Q}}V_{QP}\left(1+g_{PP}^{0}V_{PP}\right. (107)
+gPP0WPP(1+gPP(VPP+WPP))).\displaystyle\phantom{=}\left.+g_{PP}^{0}W_{PP}\left(1+g_{PP}\left(V_{PP}+W_{PP}\right)\right)\right)\,.

Replacing the gQQ0g^{0}_{QQ} by the approximation we used earlier in the first WPPW_{PP} of the last line we arrive at an equation, which we can solve for

ϕQ|VQP(1+gPP(VPP+WPP))\displaystyle\bra{\phi_{Q}}V_{QP}\left(1+g_{PP}\left(V_{PP}+W_{PP}\right)\right)
=(EEb)ϕQ|VQP(1+gPP0VPP)EEbϕQ|VQPgPP0VPQ|ϕQ\displaystyle=\frac{(E-E_{\mathrm{b}})\bra{\phi_{Q}}V_{QP}\left(1+g_{PP}^{0}V_{PP}\right)}{E-E_{\mathrm{b}}-\bra{\phi_{Q}}V_{QP}g^{0}_{PP}V_{PQ}\ket{\phi_{Q}}} (108)

such that we find

tPP\displaystyle t_{PP} =tPPunc+(1+VPPgPP0)VPQ|ϕQϕQ|VQP(1+gPP0VPP)EEbϕQ|VQPgPP0VPQ|ϕQ\displaystyle=t_{PP}^{unc}+\frac{\left(1+V_{PP}g^{0}_{PP}\right)V_{PQ}\ket{\phi_{Q}}\bra{\phi_{Q}}V_{QP}\left(1+g_{PP}^{0}V_{PP}\right)}{E-E_{\mathrm{b}}-\bra{\phi_{Q}}V_{QP}g^{0}_{PP}V_{PQ}\ket{\phi_{Q}}} (109)
=tPPunc+(1+VPP(g0+g0tPPuncg0))VPQ|ϕQϕQ|VQP(1+(g0+g0tPPuncg0)VPP)EEbϕQ|VQP(g0+g0tPPuncg0)VPQ|ϕQ.\displaystyle=t_{PP}^{unc}+\frac{\left(1+V_{PP}(g_{0}+g_{0}t_{PP}^{unc}g_{0})\right)V_{PQ}\ket{\phi_{Q}}\bra{\phi_{Q}}V_{QP}\left(1+(g_{0}+g_{0}t_{PP}^{unc}g_{0})V_{PP}\right)}{E-E_{\mathrm{b}}-\bra{\phi_{Q}}V_{QP}(g_{0}+g_{0}t_{PP}^{unc}g_{0})V_{PQ}\ket{\phi_{Q}}}\,. (110)

Where we replaced the Green’s functions gPP0g^{0}_{PP} with the identity

gPP0=g0+g0tPPuncg0.\displaystyle g^{0}_{PP}=g_{0}+g_{0}t_{PP}^{unc}g_{0}. (111)

We can now use the separable interaction to explicitly get

tPPunc=τPPunc|ζζ|t_{PP}^{unc}=\tau_{PP}^{unc}|\zeta\rangle\langle\zeta| (112)

with

τPPunc=v¯PPmΛv¯PPζ|g0|ζ.\tau_{PP}^{unc}=\frac{\bar{v}_{PP}}{m\Lambda-\bar{v}_{PP}\langle\zeta|g_{0}|\zeta\rangle}\,. (113)

The interaction strength v¯PP\bar{v}_{PP} is then related to the background scattering length

v¯PP=a¯bg2π2+a¯bgζ|g0(0)|ζ¯a¯bg2π2Γ.\bar{v}_{PP}=\frac{\bar{a}_{\mathrm{bg}}}{2\pi^{2}+\bar{a}_{\mathrm{bg}}\overline{\langle\zeta|g_{0}(0)|\zeta\rangle}}\equiv\frac{\bar{a}_{\mathrm{bg}}}{2\pi^{2}}\Gamma\,. (114)

Note that the bar indicates quantities made dimensionless in units of Λ\Lambda as introduced in the beginning of section V. We define ξ(z)=ζ|g0(z)|ζ\xi(z)=\langle\zeta|g_{0}(z)|\zeta\rangle and have that tPP=τPP|ζζ|t_{PP}=\tau_{PP}|\zeta\rangle\langle\zeta|, since |ζ|\zeta\rangle also appears in VPQV_{PQ} and find

τPP\displaystyle\tau_{PP} =τPPunc+(1+vPP(ξ(z)+ξ(z)τPPuncξ(z)))vPQζ|ϕQϕQ|ζvQP(1+(ξ(z)+ξ(z)τPPuncξ(z))vPP)zEbϕQ|ζvQP(ξ(z)+ξ(z)τPPuncξ(z))vPQζ|ϕQ\displaystyle=\tau_{PP}^{unc}+\frac{\left(1+v_{PP}(\xi(z)+\xi(z)\tau_{PP}^{unc}\xi(z))\right)v_{PQ}\braket{\zeta}{\phi_{Q}}\braket{\phi_{Q}}{\zeta}v_{QP}\left(1+(\xi(z)+\xi(z)\tau_{PP}^{unc}\xi(z))v_{PP}\right)}{z-E_{\mathrm{b}}-\braket{\phi_{Q}}{\zeta}v_{QP}(\xi(z)+\xi(z)\tau_{PP}^{unc}\xi(z))v_{PQ}\braket{\zeta}{\phi_{Q}}} (115)
=τPPunc+(1+vPP(ξ+ξ2τPPunc))2|vPQζ|ϕQ|2zEb(ξ+ξ2τPPunc)|vPQζ|ϕQ|2.\displaystyle=\tau_{PP}^{unc}+\frac{\left(1+v_{PP}(\xi+\xi^{2}\tau_{PP}^{unc})\right)^{2}|v_{PQ}\braket{\zeta}{\phi_{Q}}|^{2}}{z-E_{\mathrm{b}}-(\xi+\xi^{2}\tau_{PP}^{unc})|v_{PQ}\braket{\zeta}{\phi_{Q}}|^{2}}\,. (116)

In this final form tPPt_{PP} is solely determined by v¯PP\bar{v}_{PP}, v¯PQ\bar{v}_{PQ} and EbE_{\mathrm{b}}, which can be related to abga_{\mathrm{bg}} (Eq. (114)) and rr^{*} by considering the z0z\rightarrow 0 limit

a¯=2π2τ¯PP(0)|ζ(0)|2=a¯bg+2π2|ζ(0)|2g¯2/Γ2Eb¯ξ¯(0)g¯2/Γ\bar{a}=2\pi^{2}\bar{\tau}_{PP}(0)|\zeta(0)|^{2}=\bar{a}_{\mathrm{bg}}+\frac{2\pi^{2}|\zeta(0)|^{2}\bar{g}^{2}/\Gamma^{2}}{-\bar{E_{\mathrm{b}}}-\bar{\xi}(0)\bar{g}^{2}/\Gamma} (117)

such that we arrive at

g¯|vPQζ|ϕQ|¯=Γ2π2r¯|ζ(0)|.\bar{g}\equiv\overline{|v_{PQ}\braket{\zeta}{\phi_{Q}}|}=\frac{\Gamma}{\sqrt{2\pi^{2}\bar{r}^{*}}|\zeta(0)|}\,. (118)

Fixing a~=a¯/r¯\tilde{a}=\bar{a}/\bar{r}^{*} and a¯bg\bar{a}_{\mathrm{bg}} we can find E¯b\bar{E}_{\mathrm{b}} in the narrow resonance limit

E¯b=r¯1r¯a~+ξ¯(0)g¯2/Γ.-\bar{E}_{\mathrm{b}}\underset{\bar{r}^{*}\rightarrow\infty}{=}\frac{1}{\bar{r}^{*}\tilde{a}}+\bar{\xi}(0)\bar{g}^{2}/\Gamma\,. (119)

We replace E¯b-\bar{E}_{\mathrm{b}} by this expression in τ¯PP\bar{\tau}_{PP} and change to units determined by rr^{*}, that we indicate by a tilde. We have z¯=z~/r¯2\bar{z}=\tilde{z}/\bar{r}^{*2} and therefore z¯0\bar{z}\rightarrow 0 in the narrow resonance limit. This leads us to

τ~PP\displaystyle\tilde{\tau}_{PP} τ¯PP/r¯\displaystyle\underset{\phantom{\bar{r}^{*}\rightarrow\infty}}{\equiv}\bar{\tau}_{PP}/\bar{r}^{*} (120)
=τ¯PPunc/r¯+12π2|ζ(0)|2r¯2×1+𝒪(z¯)z¯+1r¯2a~+[g¯2(ξ¯(0)+ξ¯(0)2τ¯PPunc(0)ξ¯(z¯)ξ¯(z¯)2τ¯PPunc(z¯))]\displaystyle\underset{\phantom{\bar{r}^{*}\rightarrow\infty}}{=}\bar{\tau}_{PP}^{unc}/\bar{r}^{*}+\frac{1}{2\pi^{2}|\zeta(0)|^{2}\bar{r}^{*2}}\times\frac{1+\mathcal{O}(\sqrt{-\bar{z}})}{\bar{z}+\frac{1}{\bar{r}^{*2}\tilde{a}}+\left[\bar{g}^{2}\left(\bar{\xi}(0)+\bar{\xi}(0)^{2}\bar{\tau}^{unc}_{PP}(0)-\bar{\xi}(\bar{z})-\bar{\xi}(\bar{z})^{2}\bar{\tau}^{unc}_{PP}(\bar{z})\right)\right]} (121)
=τ¯PPunc/r¯+12π2|ζ(0)|2r¯2×1+𝒪(z¯)z¯+1r¯2a~+[z¯+𝒪(z¯2)r¯]\displaystyle\underset{\phantom{\bar{r}^{*}\rightarrow\infty}}{=}\bar{\tau}_{PP}^{unc}/\bar{r}^{*}+\frac{1}{2\pi^{2}|\zeta(0)|^{2}\bar{r}^{*2}}\times\frac{1+\mathcal{O}(\sqrt{-\bar{z}})}{\bar{z}+\frac{1}{\bar{r}^{*2}\tilde{a}}+\left[\frac{-\sqrt{-\bar{z}}+\mathcal{O}(\sqrt{-\bar{z}}^{2})}{\bar{r}^{*}}\right]} (122)
=r¯12π2|ζ(0)|2×1z~+a~1z~.\displaystyle\underset{\bar{r}^{*}\rightarrow\infty}{=}\frac{1}{2\pi^{2}|\zeta(0)|^{2}}\times\frac{1}{\tilde{z}+\tilde{a}^{-1}-\sqrt{-\tilde{z}}}\,. (123)

In the first step we consider the numerator in the second term of Eq. (116). We replaced ξ¯\bar{\xi} by the limiting expression ξ¯(z¯)2π2z¯|ζ(0)|+ξ¯(0)\bar{\xi}(\bar{z})\approx 2\pi^{2}\sqrt{-\bar{z}}|\zeta(0)|+\bar{\xi}(0) for small z¯\sqrt{-\bar{z}}. With that we taylor expanded the numerator around z¯=0\sqrt{-\bar{z}}=0. The zeroth order term is then simply the z¯0\bar{z}\rightarrow 0 limit (2π2|ζ(0)|2r¯2)1(2\pi^{2}|\zeta(0)|^{2}\bar{r}^{*2})^{-1}. In the second step we consider the term []\left[...\right] and proceed similarly to arrive at the lowest order term in z¯\sqrt{-\bar{z}}. We have that τ¯PPunc/r¯0\bar{\tau}_{PP}^{unc}/\bar{r}^{*}\rightarrow 0 in the narrow resonance limit and rewrite z¯=z~/r¯2\bar{z}=\tilde{z}/\bar{r}^{*2}. With that we can take the limit r¯\bar{r}^{*}\rightarrow\infty in the final step. Equation (123) corresponds to Eq. (76) as presented in the main text.

Appendix C Second Quantization

We derive the second quantized form of the Q=bb¯Q=\underline{bb} and Q=ab¯Q=\underline{ab} realization of the three-body systems considered to be able to relate them to the Hamiltonians commonly considered in effective field theories. The notation we use in this section deviates from the one in the main text with α=(i,σ)\alpha=(i,\sigma) we now label a base |i|σ|i\rangle|\sigma\rangle in the single particle Hilbert space 1\mathcal{H}_{1}, where σ\sigma labels the internal or spin degrees of freedom and ii a base in configuration space.

C.1 Creation and Annihilation Operators

We have the bosonic annihilation and creation operators aαa_{\alpha} and aαa^{\dagger}_{\alpha} with

[aα,aβ]\displaystyle\left[a_{\alpha},a_{\beta}^{\dagger}\right] =δαβ\displaystyle=\delta_{\alpha\beta}
[aα,aβ]\displaystyle\left[a_{\alpha},a_{\beta}\right] =0\displaystyle=0 (124)
[aα,aβ]\displaystyle\left[a_{\alpha}^{\dagger},a_{\beta}^{\dagger}\right] =0\displaystyle=0

The operators aαa_{\alpha} and aαa^{\dagger}_{\alpha} act on the symmetric part of Fock space 𝒫S\mathcal{P}_{S}\mathcal{H}_{\mathcal{F}}

=N1N\mathcal{H}_{\mathcal{F}}=\bigoplus_{N}\mathcal{H}_{1}^{N}

by

aα|0=0a_{\alpha}|0\rangle=0 (125)

and

aα1aαN|0=1N!𝔭Σ(N)P𝔭|α1αN,a^{\dagger}_{\alpha_{1}}\dots a^{\dagger}_{\alpha_{N}}|0\rangle=\frac{1}{\sqrt{N!}}\sum_{\mathfrak{p}\in\Sigma(N)}P_{\mathfrak{p}}|\alpha_{1}\dots\alpha_{N}\rangle\,, (126)

with Σ(N)\Sigma(N) the permutation group of NN elements and P𝔭P_{\mathfrak{p}} the permutation operator related to the permutation 𝔭\mathfrak{p}. The projector on the totally symmetric subspace is defined as

𝒫SN=1N!𝔭Σ(N)P𝔭\mathcal{P}^{N}_{S}=\frac{1}{N!}\sum_{\mathfrak{p}\in\Sigma(N)}P_{\mathfrak{p}} (127)

C.2 Kinetic Energy and Interaction Potential

The kinetic energy operator TT acts on a single particle as

T1b=αβα|T|β|αβ|T_{1b}=\sum_{\alpha\beta}\langle\alpha|T|\beta\rangle|\alpha\rangle\langle\beta| (128)

with α|T|β=iα|2Δ/2m+Eσα)|iβδσασβ\langle\alpha|T|\beta\rangle=\langle i_{\alpha}|-\hbar^{2}\Delta/2m+E_{\sigma_{\alpha}})|i_{\beta}\rangle\delta_{\sigma_{\alpha}\sigma_{\beta}}. The interaction potential VV acts on two particles as

V2b=α1α2β1β2α1α2|V|β1β2|α1α2β1β2|,V_{2b}=\sum_{\alpha_{1}\alpha_{2}\beta_{1}\beta_{2}}\langle\alpha_{1}\alpha_{2}|V|\beta_{1}\beta_{2}\rangle|\alpha_{1}\alpha_{2}\rangle\langle\beta_{1}\beta_{2}|\,, (129)

with α1α2|V|β1β2=iα1iα2|Vσα1σα2,σβ1σβ2|iβ1iβ2\langle\alpha_{1}\alpha_{2}|V|\beta_{1}\beta_{2}\rangle=\langle i_{\alpha_{1}}i_{\alpha_{2}}|V_{\sigma_{\alpha_{1}}\sigma_{\alpha_{2}},\sigma_{\beta_{1}}\sigma_{\beta_{2}}}|i_{\beta_{1}}i_{\beta_{2}}\rangle. For three particles restricting to the fully symmetric subspace we have the kinetic energy operator

T3b𝒫S3\displaystyle T_{3b}\mathcal{P}_{S}^{3} =(T1b1+T1b2+T1b3)𝒫S3\displaystyle=(T_{1b}^{1}+T_{1b}^{2}+T_{1b}^{3})\mathcal{P}_{S}^{3}
=12(1+P++P)(1+P23)T1b1𝒫S3\displaystyle=\frac{1}{2}(1+P_{+}+P_{-})(1+P_{23})T_{1b}^{1}\mathcal{P}_{S}^{3}
=α¯β¯3!2α1|T|β1δα2β2δα3β3𝒫S3|α¯β¯|𝒫S3\displaystyle=\sum_{\underline{\alpha}\underline{\beta}}\frac{3!}{2}\langle\alpha_{1}|T|\beta_{1}\rangle\delta_{\alpha_{2}\beta_{2}}\delta_{\alpha_{3}\beta_{3}}\mathcal{P}_{S}^{3}|\underline{\alpha}\rangle\langle\underline{\beta}|\mathcal{P}_{S}^{3} (130)
=α¯β¯12α1|T|β1δα2β2δα3β3aα1aα2aα3|00|aβ1aβ2aβ3\displaystyle=\sum_{\underline{\alpha}\underline{\beta}}\frac{1}{2}\langle\alpha_{1}|T|\beta_{1}\rangle\delta_{\alpha_{2}\beta_{2}}\delta_{\alpha_{3}\beta_{3}}a^{\dagger}_{\alpha_{1}}a^{\dagger}_{\alpha_{2}}a^{\dagger}_{\alpha_{3}}|0\rangle\langle 0|a_{\beta_{1}}a_{\beta_{2}}a_{\beta_{3}}
=αβα|T|βaαaβ,\displaystyle=\sum_{\alpha\beta}\langle\alpha|T|\beta\rangle a^{\dagger}_{\alpha}a_{\beta}\,,

with P23P_{23} the permutation exchanging particles 22 and 33 and α¯\underline{\alpha} a shorthand notation for the three indices (α1α2α3)(\alpha_{1}\alpha_{2}\alpha_{3}). The interaction term then is

V3b𝒫S3\displaystyle V_{3b}\mathcal{P}_{S}^{3} =(V23+V31+V12)𝒫S3\displaystyle=(V^{23}+V^{31}+V^{12})\mathcal{P}_{S}^{3}
=12(1+P++P)(1+P23)V23𝒫S3\displaystyle=\frac{1}{2}(1+P_{+}+P_{-})(1+P_{23})V^{23}\mathcal{P}_{S}^{3}
=α¯β¯3!2α1α2|V|β1β2δα3β3𝒫S3|α¯β¯|𝒫S3\displaystyle=\sum_{\underline{\alpha}\underline{\beta}}\frac{3!}{2}\langle\alpha_{1}\alpha_{2}|V|\beta_{1}\beta_{2}\rangle\delta_{\alpha_{3}\beta_{3}}\mathcal{P}_{S}^{3}|\underline{\alpha}\rangle\langle\underline{\beta}|\mathcal{P}_{S}^{3} (131)
=α¯β¯12α1α2|V|β1β2δα3β3aα1aα2aα3|00|aβ1aβ2aβ3\displaystyle=\sum_{\underline{\alpha}\underline{\beta}}\frac{1}{2}\langle\alpha_{1}\alpha_{2}|V|\beta_{1}\beta_{2}\rangle\delta_{\alpha_{3}\beta_{3}}a^{\dagger}_{\alpha_{1}}a^{\dagger}_{\alpha_{2}}a^{\dagger}_{\alpha_{3}}|0\rangle\langle 0|a_{\beta_{1}}a_{\beta_{2}}a_{\beta_{3}}
=α1α2β1β212α1α2|V|β1β2aα1aα2aβ1aβ2.\displaystyle=\sum_{\alpha_{1}\alpha_{2}\beta_{1}\beta_{2}}\frac{1}{2}\langle\alpha_{1}\alpha_{2}|V|\beta_{1}\beta_{2}\rangle a^{\dagger}_{\alpha_{1}}a^{\dagger}_{\alpha_{2}}a_{\beta_{1}}a_{\beta_{2}}\,.

C.3 The Q=bb¯Q=\underline{bb} and Q=ab¯Q=\underline{ab} realization

We consider a model with two internal states per particle σ{a,b}\sigma\in\{a,b\}. We find that

T3b𝒫S3=ij[i|2Δ/2m+Ea|jaiaj+i|2Δ/2m+Eb|jbibj],T_{3b}\mathcal{P}_{S}^{3}=\sum_{ij}\left[\langle i|-\hbar^{2}\Delta/2m+E_{a}|j\rangle a^{\dagger}_{i}a_{j}+\langle i|-\hbar^{2}\Delta/2m+E_{b}|j\rangle b^{\dagger}_{i}b_{j}\right]\,, (132)

with ai=a(i,a)a_{i}=a_{(i,a)} and bi=a(i,b)b_{i}=a_{(i,b)}. Furthermore we restrict to an interaction term which reduces to a simple two-channel model on the two particle subspace.

C.3.1 Explicit Representations of the Field Operators

There is a unitary transformation

U:𝒫S313[𝒫S,aaa31,a3][1,b(𝒫S,aa21,a2)][1,a(𝒫S,bb21,b2)][𝒫S,bbb31,b3]U:\mathcal{P}_{S}^{3}\mathcal{H}_{1}^{3}\rightarrow\left[\mathcal{P}^{3}_{S,aaa}\mathcal{H}_{1,a}^{3}\right]\oplus\left[\mathcal{H}_{1,b}\otimes\left(\mathcal{P}_{S,aa}^{2}\mathcal{H}_{1,a}^{2}\right)\right]\oplus\left[\mathcal{H}_{1,a}\otimes\left(\mathcal{P}_{S,bb}^{2}\mathcal{H}_{1,b}^{2}\right)\right]\oplus\left[\mathcal{P}^{3}_{S,bbb}\mathcal{H}_{1,b}^{3}\right] (133)

connecting the representations of the field operator algebra. It is defined naturally by

aαaβaγ|0{aiαaiβaiγ|0 for σα=σβ=σγ=a,aiαaiβbiγ|0 for σα=σβ=a and σγ=b,aiαbiβbiγ|0 for σα=a and σβ=σγ=b,biαbiβbiγ|0 for σα=σβ=σγ=b.a^{\dagger}_{\alpha}a^{\dagger}_{\beta}a^{\dagger}_{\gamma}|0\rangle\mapsto\begin{cases}a^{\dagger}_{i_{\alpha}}a^{\dagger}_{i_{\beta}}a^{\dagger}_{i_{\gamma}}|0\rangle&\text{ for }\sigma_{\alpha}=\sigma_{\beta}=\sigma_{\gamma}=a\,,\\ a^{\dagger}_{i_{\alpha}}a^{\dagger}_{i_{\beta}}b^{\dagger}_{i_{\gamma}}|0\rangle&\text{ for }\sigma_{\alpha}=\sigma_{\beta}=a\text{ and }\sigma_{\gamma}=b\,,\\ a^{\dagger}_{i_{\alpha}}b^{\dagger}_{i_{\beta}}b^{\dagger}_{i_{\gamma}}|0\rangle&\text{ for }\sigma_{\alpha}=a\text{ and }\sigma_{\beta}=\sigma_{\gamma}=b\,,\\ b^{\dagger}_{i_{\alpha}}b^{\dagger}_{i_{\beta}}b^{\dagger}_{i_{\gamma}}|0\rangle&\text{ for }\sigma_{\alpha}=\sigma_{\beta}=\sigma_{\gamma}=b\,.\end{cases} (134)

C.3.2 Q=bb¯Q=\underline{bb} realization

First we consider the case

iα1iα2|Vσα1σα2,σβ1σβ2|iβ1iβ2=0[(σα1σα2)(aa) or (bb)]or[(σβ1σβ2)(aa) or (bb)]\langle i_{\alpha_{1}}i_{\alpha_{2}}|V_{\sigma_{\alpha_{1}}\sigma_{\alpha_{2}},\sigma_{\beta_{1}}\sigma_{\beta_{2}}}|i_{\beta_{1}}i_{\beta_{2}}\rangle=0\quad\forall\quad\left[(\sigma_{\alpha_{1}}\sigma_{\alpha_{2}})\neq(aa)\text{ or }(bb)\right]\text{or}\left[(\sigma_{\beta_{1}}\sigma_{\beta_{2}})\neq(aa)\text{ or }(bb)\right] (135)

such that we have

V3b𝒫S3\displaystyle V_{3b}\mathcal{P}_{S}^{3} =i1i2j1j212[i1i2|Vaa,aa|j1j2ai1ai2aj1aj2+i1i2|Vbb,bb|j1j2bi1bi2bj1bj2\displaystyle=\sum_{i_{1}i_{2}j_{1}j_{2}}\frac{1}{2}\left[\langle i_{1}i_{2}|V_{aa,aa}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}+\langle i_{1}i_{2}|V_{bb,bb}|j_{1}j_{2}\rangle b^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}b_{j_{1}}b_{j_{2}}\right. (136)
+i1i2|Vbb,aa|j1j2bi1bi2aj1aj2+i1i2|Vaa,bb|j1j2ai1ai2bj1bj2].\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\langle i_{1}i_{2}|V_{bb,aa}|j_{1}j_{2}\rangle b^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}+\langle i_{1}i_{2}|V_{aa,bb}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}b_{j_{1}}b_{j_{2}}\right]\,.

It is easy to show that there is no coupling between the subspaces spanned by

|ijkaaaS\displaystyle|ijk\rangle_{aaa}^{S} aiajak|0\displaystyle\sim a_{i}^{\dagger}a_{j}^{\dagger}a_{k}^{\dagger}|0\rangle (137)
|ijkabbS\displaystyle|ijk\rangle_{abb}^{S} aibjbk|0\displaystyle\sim a_{i}^{\dagger}b_{j}^{\dagger}b_{k}^{\dagger}|0\rangle

and

|ijkbbbS\displaystyle|ijk\rangle_{bbb}^{S} bibjbk|0\displaystyle\sim b_{i}^{\dagger}b_{j}^{\dagger}b_{k}^{\dagger}|0\rangle (138)
|ijkaabS\displaystyle|ijk\rangle_{aab}^{S} aiajbk|0.\displaystyle\sim a_{i}^{\dagger}a_{j}^{\dagger}b_{k}^{\dagger}|0\rangle\,.

We can rewrite the Hamiltonian acting in the aaaaaa and abbabb channels as

H=Haaa,aaa+Habb,aaa+Haaa,abb+Habb,abb,H=H_{aaa,aaa}+H_{abb,aaa}+H_{aaa,abb}+H_{abb,abb}\,, (139)

with

Haaa,aaa\displaystyle H_{aaa,aaa} =i¯j¯[12i1|Ta|j1δi2j2δi3j3+12i1i2|Vaa,aa|j1j2δi3j3]ai1ai2ai3|00|aj1aj2aj3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{1}|T_{a}|j_{1}\rangle\delta_{i_{2}j_{2}}\delta_{i_{3}j_{3}}+\frac{1}{2}\langle i_{1}i_{2}|V_{aa,aa}|j_{1}j_{2}\rangle\delta_{i_{3}j_{3}}\right]a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}a_{j_{2}}a_{j_{3}} (140)
Habb,abb\displaystyle H_{abb,abb} =i¯j¯[12i1|Ta|j1δi2j2δi3j3+i2|Tb|j2δi1j1δi3j3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{1}|T_{a}|j_{1}\rangle\delta_{i_{2}j_{2}}\delta_{i_{3}j_{3}}+\langle i_{2}|T_{b}|j_{2}\rangle\delta_{i_{1}j_{1}}\delta_{i_{3}j_{3}}\right. (141)
+12i2i3|Vbb,bb|j2j3δi1j1]ai1bi2bi3|00|aj1bj2bj3\displaystyle\phantom{=}\qquad\qquad\left.+\frac{1}{2}\langle i_{2}i_{3}|V_{bb,bb}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right]a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}b^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}b_{j_{2}}b_{j_{3}}
Habb,aaa\displaystyle H_{abb,aaa} =i¯j¯[12i2i3|Vbb,aa|j2j3δi1j1]ai1bi2bi3|00|aj1aj2aj3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{2}i_{3}|V_{bb,aa}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right]a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}b^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}a_{j_{2}}a_{j_{3}} (142)
Haaa,abb\displaystyle H_{aaa,abb} =i¯j¯[12i2i3|Vaa,bb|j2j3δi1j1]ai1ai2ai3|00|aj1bj2bj3,\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{2}i_{3}|V_{aa,bb}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right]a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}b_{j_{2}}b_{j_{3}}\,, (143)

where we again introduced i¯\underline{i} as a shorthand for the three indices (i1i2i3)(i_{1}i_{2}i_{3}). We get

Haaa,aaa\displaystyle H_{aaa,aaa} =(Ta1+Ta2+Ta3+Vaa,aa23+Vaa,aa31+Vaa,aa12)𝒫S,aaa3\displaystyle=\left(T_{a}^{1}+T_{a}^{2}+T_{a}^{3}+V_{aa,aa}^{23}+V_{aa,aa}^{31}+V_{aa,aa}^{12}\right)\mathcal{P}_{S,aaa}^{3} (144)
Habb,abb\displaystyle H_{abb,abb} =(1+P23,abb)i¯j¯(12i1|Ta|j1δi2j2δi3j3+i2|Tb|j2δi1j1δi3j3\displaystyle=(1+P_{23,abb})\sum_{\underline{i}\underline{j}}\left(\frac{1}{2}\langle i_{1}|T_{a}|j_{1}\rangle\delta_{i_{2}j_{2}}\delta_{i_{3}j_{3}}+\langle i_{2}|T_{b}|j_{2}\rangle\delta_{i_{1}j_{1}}\delta_{i_{3}j_{3}}\right.
+12i2i3|Vbb,bb|j2j3δi1j1)|i¯abbabbj¯|(1+P23,abb)/2\displaystyle\phantom{=}\qquad\qquad\left.+\frac{1}{2}\langle i_{2}i_{3}|V_{bb,bb}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right)|\underline{i}\rangle_{abb}{}_{abb}\langle\underline{j}|(1+P_{23,abb})/2
=(1+P23,abb)(12Ta1+Tb2+12Vbb,bb23)(1+P23,abb)/2\displaystyle=(1+P_{23,abb})\left(\frac{1}{2}T_{a}^{1}+T_{b}^{2}+\frac{1}{2}V_{bb,bb}^{23}\right)(1+P_{23,abb})/2
=(Ta1+Tb2+Tb3+Vbb,bb23)(1+P23,abb)/2\displaystyle=\left(T_{a}^{1}+T_{b}^{2}+T_{b}^{3}+V_{bb,bb}^{23}\right)(1+P_{23,abb})/2 (145)
Habb,aaa\displaystyle H_{abb,aaa} =3(1+P23,abb)i¯j¯[12i2i3|Vbb,aa|j2j3δi1j1]|i¯abbaaaj¯|𝒫S,aaa3\displaystyle=\sqrt{3}(1+P_{23,abb})\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{2}i_{3}|V_{bb,aa}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right]|\underline{i}\rangle_{abb}{}_{aaa}\langle\underline{j}|\mathcal{P}_{S,aaa}^{3}
=3Vbb,aa23𝒫S,aaa3\displaystyle=\sqrt{3}V_{bb,aa}^{23}\mathcal{P}_{S,aaa}^{3} (146)
Haaa,abb\displaystyle H_{aaa,abb} =26𝒫S,aaa3i¯j¯[12i2i3|Vaa,bb|j2j3δi1j1]|i¯j¯|(1+P23,abb)/2\displaystyle=\sqrt{2}\sqrt{6}\mathcal{P}_{S,aaa}^{3}\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{2}i_{3}|V_{aa,bb}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right]|\underline{i}\rangle\langle\underline{j}|(1+P_{23,abb})/2
=13(1+P+,aaa+P,aaa)(1+P23,aaa)i¯j¯[12i2i3|Vaa,bb|j2j3δi1j1]|i¯j¯|(1+P23,abb)/2\displaystyle=\frac{1}{\sqrt{3}}(1+P_{+,aaa}+P_{-,aaa})(1+P_{23,aaa})\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{2}i_{3}|V_{aa,bb}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right]|\underline{i}\rangle\langle\underline{j}|(1+P_{23,abb})/2
=13(1+P+,aaa+P,aaa)Vaa,bb23(1+P23,abb)/2,\displaystyle=\frac{1}{\sqrt{3}}(1+P_{+,aaa}+P_{-,aaa})V_{aa,bb}^{23}(1+P_{23,abb})/2\,, (147)

when representing the model on 1,a31,a1,b2\mathcal{H}_{1,a}^{3}\oplus\mathcal{H}_{1,a}\otimes\mathcal{H}_{1,b}^{2}, where the indices aaaaaa and abbabb of the operators P+P_{+}, PP_{-} and P23P_{23} indicate the subspaces they are acting on and P23,abb=1a𝒫S,bb2P_{23,abb}=1_{a}\otimes\mathcal{P}_{S,bb}^{2}.

In the following we approximate the Hamiltonian Habb,abbH_{abb,abb} by introducing a dimer field. For that we introduce relative rr and center-of-mass coordinates RR for the two particles in the bb state with positions r2r_{2} and r3r_{3}. We assume the following form of the interaction Vbb,bb23=1r11RVbb,bbrV_{bb,bb}^{23}=1_{r_{1}}\otimes 1_{R}\otimes V_{bb,bb}^{r} with ψE\psi_{E} a bound Eigenstate fulfilling (Δr/m+Vbb,bbr)ψE=EψE(-\hbar\Delta_{r}/m+V_{bb,bb}^{r})\psi_{E}=E\psi_{E}. We introduce the projector 𝒫ψE\mathcal{P}_{\psi_{E}} onto the state ψE\psi_{E} such that we can restrict Habb,abbH_{abb,abb} to Habb,abb𝒫ψE=𝒫ψEHabb,abb=Habb,abbψEH_{abb,abb}\mathcal{P}_{\psi_{E}}=\mathcal{P}_{\psi_{E}}H_{abb,abb}=H_{abb,abb}^{\psi_{E}}. The coupling term then acts on a state ϕ\phi as [𝒫ψEVbb,aa23ψ](r1,r2,r3)=ψE(r2r3)𝑑rχ(r)ϕ(r1,(r2+r3)/2+r,(r2+r3)/2r)[\mathcal{P}_{\psi_{E}}V_{bb,aa}^{23}\psi](r_{1},r_{2},r_{3})=\psi_{E}(r_{2}-r_{3})\int dr\chi^{*}(r)\phi(r_{1},(r_{2}+r_{3})/2+r,(r_{2}+r_{3})/2-r) with χ(r)=[ψEVbb,aa](r)\chi^{*}(r)=[\psi_{E}^{*}V_{bb,aa}](r). With that we can approximate the total Hamiltonian by

Haaa,aaa\displaystyle H_{aaa,aaa} =(Ta1+Ta2+Ta3+Vaa,aa23+Vaa,aa31+Vaa,aa12)𝒫S,aaa3\displaystyle=\left(T_{a}^{1}+T_{a}^{2}+T_{a}^{3}+V_{aa,aa}^{23}+V_{aa,aa}^{31}+V_{aa,aa}^{12}\right)\mathcal{P}_{S,aaa}^{3} (148)
Habb,abb\displaystyle H_{abb,abb} (Ta1+Td+E)𝒫ψE\displaystyle\approx\left(T_{a}^{1}+T_{d}+E\right)\mathcal{P}_{\psi_{E}} (149)
Habb,aaa\displaystyle H_{abb,aaa} 3𝒫ψEVbb,aa23𝒫S,aaa3\displaystyle\approx\sqrt{3}\mathcal{P}_{\psi_{E}}V_{bb,aa}^{23}\mathcal{P}_{S,aaa}^{3} (150)
Haaa,abb\displaystyle H_{aaa,abb} 13(1+P+,aaa+P,aaa)Vaa,bb23𝒫ψE\displaystyle\approx\frac{1}{\sqrt{3}}(1+P_{+,aaa}+P_{-,aaa})V_{aa,bb}^{23}\mathcal{P}_{\psi_{E}} (151)

with Td=2ΔR/4mT_{d}=-\hbar^{2}\Delta_{R}/4m. By rewriting the projector

𝒫ψE(1+P23,abb)/2\displaystyle\mathcal{P}_{\psi_{E}}\left(1+P_{23,abb}\right)/2 =(1+P23,abb)/2i¯j¯k~i2i3|ψE,k~ψE,k~|j2j3δi1j1|i¯abbabbj¯|(1+P23,abb)/2\displaystyle=\left(1+P_{23,abb}\right)/2\sum_{\underline{i}\underline{j}\tilde{k}}\langle i_{2}i_{3}|\psi_{E},\tilde{k}\rangle\langle\psi_{E},\tilde{k}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}|\underline{i}\rangle_{abb}{}_{abb}\langle\underline{j}|\left(1+P_{23,abb}\right)/2 (152)
=i¯j¯k~[12i2i3|ψE,k~ψE,k~|j2j3δi1j1]ai1bi2bi3|00|aj1bj2bj3\displaystyle=\sum_{\underline{i}\underline{j}\tilde{k}}\left[\frac{1}{2}\langle i_{2}i_{3}|\psi_{E},\tilde{k}\rangle\langle\psi_{E},\tilde{k}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right]a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}b^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}b_{j_{2}}b_{j_{3}} (153)
=kk~ak(i2i3[12i2i3|ψE,k~bi2bi3])|00|ak(j2j3[12ψE,k~|j2j3bj2bj3])\displaystyle=\sum_{k\tilde{k}}a^{\dagger}_{k}\left(\sum_{i_{2}i_{3}}\left[\frac{1}{\sqrt{2}}\langle i_{2}i_{3}|\psi_{E},\tilde{k}\rangle b^{\dagger}_{i_{2}}b^{\dagger}_{i_{3}}\right]\right)|0\rangle\langle 0|a_{k}\left(\sum_{j_{2}j_{3}}\left[\frac{1}{\sqrt{2}}\langle\psi_{E},\tilde{k}|j_{2}j_{3}\rangle b_{j_{2}}b_{j_{3}}\right]\right) (154)
=kk~akdk~|00|akdk~,\displaystyle=\sum_{k\tilde{k}}a^{\dagger}_{k}d^{\dagger}_{\tilde{k}}|0\rangle\langle 0|a_{k}d_{\tilde{k}}\,, (155)

with k~\tilde{k} labeling a base in RR we can single out the dimer field operator dk~d_{\tilde{k}}. We find

Haaa,aaa\displaystyle H_{aaa,aaa} =i¯j¯[12i1|Ta|j1δi2j2δi3j3+12i1i2|Vaa,aa|j1j2δi3j3]ai1ai2ai3|00|aj1aj2aj3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{1}|T_{a}|j_{1}\rangle\delta_{i_{2}j_{2}}\delta_{i_{3}j_{3}}+\frac{1}{2}\langle i_{1}i_{2}|V_{aa,aa}|j_{1}j_{2}\rangle\delta_{i_{3}j_{3}}\right]a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}a_{j_{2}}a_{j_{3}} (156)
Habb,abb\displaystyle H_{abb,abb} =ijk~p~[i|Ta|jδk~p~+k~|Td|p~δij+Eδijδk~p~]aidk~|00|ajdp~\displaystyle=\sum_{ij\tilde{k}\tilde{p}}\left[\langle i|T_{a}|j\rangle\delta_{\tilde{k}\tilde{p}}+\langle\tilde{k}|T_{d}|\tilde{p}\rangle\delta_{ij}+E\delta_{ij}\delta_{\tilde{k}\tilde{p}}\right]a^{\dagger}_{i}d^{\dagger}_{\tilde{k}}|0\rangle\langle 0|a_{j}d_{\tilde{p}} (157)
Habb,aaa\displaystyle H_{abb,aaa} =ik~j¯[12χ,k~|j2j3δij1]ai1dk~|00|aj1aj2aj3\displaystyle=\sum_{i\tilde{k}\underline{j}}\left[\frac{1}{\sqrt{2}}\langle\chi,\tilde{k}|j_{2}j_{3}\rangle\delta_{ij_{1}}\right]a^{\dagger}_{i_{1}}d^{\dagger}_{\tilde{k}}|0\rangle\langle 0|a_{j_{1}}a_{j_{2}}a_{j_{3}} (158)
Haaa,abb\displaystyle H_{aaa,abb} =i¯jp~[12i2i3|χ,k~δi1j]ai1ai2ai3|00|aj1dp~\displaystyle=\sum_{\underline{i}j\tilde{p}}\left[\frac{1}{\sqrt{2}}\langle i_{2}i_{3}|\chi,\tilde{k}\rangle\delta_{i_{1}j}\right]a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}d_{\tilde{p}} (159)

or

H\displaystyle H =iji|Ta|jaiaj+i1i2j1j212i1i2|Vaa,aa|j1j2ai1ai2aj1aj2\displaystyle=\sum_{ij}\langle i|T_{a}|j\rangle a^{\dagger}_{i}a_{j}+\sum_{i_{1}i_{2}j_{1}j_{2}}\frac{1}{2}\langle i_{1}i_{2}|V_{aa,aa}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}
+k~p~k~|Td+E|p~dk~dp~+k~j1j2[12χ,k~|j1j2]dk~aj1aj2+h.c.,\displaystyle\phantom{=}+\sum_{\tilde{k}\tilde{p}}\langle\tilde{k}|T_{d}+E|\tilde{p}\rangle d^{\dagger}_{\tilde{k}}d_{\tilde{p}}+\sum_{\tilde{k}j_{1}j_{2}}\left[\frac{1}{\sqrt{2}}\langle\chi,\tilde{k}|j_{1}j_{2}\rangle\right]d^{\dagger}_{\tilde{k}}a_{j_{1}}a_{j_{2}}+h.c.\,, (160)

which is the Hamiltonian usually considered in effective field theory.

C.3.3 Q=ab¯Q=\underline{ab} realization

As a next example we consider the case

iα1iα2|σα1σα2|σα2σα1|2V|σβ1σβ2|σβ2σβ12|iβ1iβ2=iα1iα2|Vσα1σα2,σβ1σβ2Aσ|iβ1iβ2=0\langle i_{\alpha_{1}}i_{\alpha_{2}}|\frac{\langle\sigma_{\alpha_{1}}\sigma_{\alpha_{2}}|-\langle\sigma_{\alpha_{2}}\sigma_{\alpha_{1}}|}{\sqrt{2}}V\frac{|\sigma_{\beta_{1}}\sigma_{\beta_{2}}\rangle-|\sigma_{\beta_{2}}\sigma_{\beta_{1}}\rangle}{\sqrt{2}}|i_{\beta_{1}}i_{\beta_{2}}\rangle=\langle i_{\alpha_{1}}i_{\alpha_{2}}|V_{\sigma_{\alpha_{1}}\sigma_{\alpha_{2}},\sigma_{\beta_{1}}\sigma_{\beta_{2}}}^{A_{\sigma}}|i_{\beta_{1}}i_{\beta_{2}}\rangle=0 (161)

and

iα1iα2|σα1σα2|+σα2σα1|2+2δα1α2V|σβ1σβ2+|σβ2σβ12+2δβ1β2|iβ1iβ2=iα1iα2|Vσα1σα2,σβ1σβ2Sσ|iβ1iβ2\langle i_{\alpha_{1}}i_{\alpha_{2}}|\frac{\langle\sigma_{\alpha_{1}}\sigma_{\alpha_{2}}|+\langle\sigma_{\alpha_{2}}\sigma_{\alpha_{1}}|}{\sqrt{2+2\delta_{\alpha_{1}\alpha_{2}}}}V\frac{|\sigma_{\beta_{1}}\sigma_{\beta_{2}}\rangle+|\sigma_{\beta_{2}}\sigma_{\beta_{1}}\rangle}{\sqrt{2+2\delta_{\beta_{1}\beta_{2}}}}|i_{\beta_{1}}i_{\beta_{2}}\rangle=\langle i_{\alpha_{1}}i_{\alpha_{2}}|V_{\sigma_{\alpha_{1}}\sigma_{\alpha_{2}},\sigma_{\beta_{1}}\sigma_{\beta_{2}}}^{S_{\sigma}}|i_{\beta_{1}}i_{\beta_{2}}\rangle (162)

with

iα1iα2|Vσα1σα2,σβ1σβ2Sσ|iβ1iβ2=0[(σα1σα2)(aa) or (ab)]or[(σβ1σβ2)(aa) or (ab)]\langle i_{\alpha_{1}}i_{\alpha_{2}}|V_{\sigma_{\alpha_{1}}\sigma_{\alpha_{2}},\sigma_{\beta_{1}}\sigma_{\beta_{2}}}^{S_{\sigma}}|i_{\beta_{1}}i_{\beta_{2}}\rangle=0\quad\forall\quad\left[(\sigma_{\alpha_{1}}\sigma_{\alpha_{2}})\neq(aa)\text{ or }(ab)\right]\text{or}\left[(\sigma_{\beta_{1}}\sigma_{\beta_{2}})\neq(aa)\text{ or }(ab)\right] (163)

and no coupling between the symmetric and antisymmetric spin components. We then have

V3b𝒫S3\displaystyle V_{3b}\mathcal{P}_{S}^{3} =i1i2j1j212[i1i2|Vaa,aa|j1j2ai1ai2aj1aj2\displaystyle=\sum_{i_{1}i_{2}j_{1}j_{2}}\frac{1}{2}\left[\langle i_{1}i_{2}|V_{aa,aa}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}\right.
+i1i2|Vaa,ab|j1j2ai1ai2aj1bj2+i1i2|Vaa,ba|j1j2ai1ai2bj1aj2\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\langle i_{1}i_{2}|V_{aa,ab}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}b_{j_{2}}+\langle i_{1}i_{2}|V_{aa,ba}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}b_{j_{1}}a_{j_{2}}\right.
+i1i2|Vab,aa|j1j2ai1bi2aj1aj2+i1i2|Vba,aa|j1j2bi1ai2aj1aj2\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\langle i_{1}i_{2}|V_{ab,aa}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}+\langle i_{1}i_{2}|V_{ba,aa}|j_{1}j_{2}\rangle b^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}\right. (164)
+i1i2|Vab,ab|j1j2ai1bi2aj1bj2+i1i2|Vab,ba|j1j2ai1bi2bj1aj2\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\langle i_{1}i_{2}|V_{ab,ab}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}a_{j_{1}}b_{j_{2}}+\langle i_{1}i_{2}|V_{ab,ba}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}b_{j_{1}}a_{j_{2}}\right.
+i1i2|Vba,ab|j1j2bi1ai2aj1bj2+i1i2|Vba,ba|j1j2bi1ai2bj1aj2]\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\langle i_{1}i_{2}|V_{ba,ab}|j_{1}j_{2}\rangle b^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}b_{j_{2}}+\langle i_{1}i_{2}|V_{ba,ba}|j_{1}j_{2}\rangle b^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}b_{j_{1}}a_{j_{2}}\right]
=i1i2j1j212[i1i2|Vaa,aa|j1j2ai1ai2aj1aj2\displaystyle=\sum_{i_{1}i_{2}j_{1}j_{2}}\frac{1}{2}\left[\langle i_{1}i_{2}|V_{aa,aa}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}\right.
+(i1i2|Vaa,ab|j1j2+i2i1|Vaa,ba|j2j1)ai1ai2aj1bj2\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\left(\langle i_{1}i_{2}|V_{aa,ab}|j_{1}j_{2}\rangle+\langle i_{2}i_{1}|V_{aa,ba}|j_{2}j_{1}\rangle\right)a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}b_{j_{2}}\right. (165)
+(i1i2|Vab,aa|j1j2+i2i1|Vba,aa|j2j1)ai1bi2aj1aj2\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\left(\langle i_{1}i_{2}|V_{ab,aa}|j_{1}j_{2}\rangle+\langle i_{2}i_{1}|V_{ba,aa}|j_{2}j_{1}\rangle\right)a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}\right.
+(i1i2|Vab,ab|j1j2+i1i2|Vab,ba|j2j1+i2i1|Vba,ab|j1j2+i2i1|Vba,ba|j2j1)ai1bi2aj1bj2]\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\left(\langle i_{1}i_{2}|V_{ab,ab}|j_{1}j_{2}\rangle+\langle i_{1}i_{2}|V_{ab,ba}|j_{2}j_{1}\rangle+\langle i_{2}i_{1}|V_{ba,ab}|j_{1}j_{2}\rangle+\langle i_{2}i_{1}|V_{ba,ba}|j_{2}j_{1}\rangle\right)a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}a_{j_{1}}b_{j_{2}}\right]
=i1i2j1j212[i1i2|Vaa,aa|j1j2ai1ai2aj1aj2\displaystyle=\sum_{i_{1}i_{2}j_{1}j_{2}}\frac{1}{2}\left[\langle i_{1}i_{2}|V_{aa,aa}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}\right.
+2i1i2|Vaa,ab|j1j2ai1ai2aj1bj2\displaystyle\phantom{=}\left.\qquad\qquad\qquad+2\langle i_{1}i_{2}|V_{aa,ab}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}b_{j_{2}}\right. (166)
+2i1i2|Vab,aa|j1j2ai1bi2aj1aj2\displaystyle\phantom{=}\left.\qquad\qquad\qquad+2\langle i_{1}i_{2}|V_{ab,aa}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}\right.
+(2i1i2|Vab,ab|j1j2+2i1i2|Vab,ba|j2j1)ai1bi2aj1bj2]\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\left(2\langle i_{1}i_{2}|V_{ab,ab}|j_{1}j_{2}\rangle+2\langle i_{1}i_{2}|V_{ab,ba}|j_{2}j_{1}\rangle\right)a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}a_{j_{1}}b_{j_{2}}\right]
=i1i2j1j212[i1i2|Vaa,aaSσ|j1j2ai1ai2aj1aj2\displaystyle=\sum_{i_{1}i_{2}j_{1}j_{2}}\frac{1}{2}\left[\langle i_{1}i_{2}|V_{aa,aa}^{S_{\sigma}}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}\right.
+2i1i2|Vaa,abSσ|j1j2ai1ai2aj1bj2\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\sqrt{2}\langle i_{1}i_{2}|V_{aa,ab}^{S_{\sigma}}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a_{j_{1}}b_{j_{2}}\right. (167)
+2i1i2|Vab,aaSσ|j1j2ai1bi2aj1aj2\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\sqrt{2}\langle i_{1}i_{2}|V_{ab,aa}^{S_{\sigma}}|j_{1}j_{2}\rangle a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}a_{j_{1}}a_{j_{2}}\right.
+(i1i2|Vab,abSσ|j1j2+i1i2|Vab,abSσ|j2j1)ai1bi2aj1bj2].\displaystyle\phantom{=}\left.\qquad\qquad\qquad+\left(\langle i_{1}i_{2}|V_{ab,ab}^{S_{\sigma}}|j_{1}j_{2}\rangle+\langle i_{1}i_{2}|V_{ab,ab}^{S_{\sigma}}|j_{2}j_{1}\rangle\right)a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}a_{j_{1}}b_{j_{2}}\right]\,.

We can rewrite the Hamiltonian acting in the aaaaaa, aabaab and abbabb channels as

H=Haaa,aaa+Haab,aaa+Haaa,aab+Haab,aab+Habb,aab+Haab,abb+Habb,abb,H=H_{aaa,aaa}+H_{aab,aaa}+H_{aaa,aab}+H_{aab,aab}+H_{abb,aab}+H_{aab,abb}+H_{abb,abb}\,, (168)

with

Haaa,aaa\displaystyle H_{aaa,aaa} =i¯j¯[12i1|Ta|j1δi2j2δi3j3+12i1i2|Vaa,aaSσ|j1j2δi3j3]ai1ai2ai3|00|aj1aj2aj3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{1}|T_{a}|j_{1}\rangle\delta_{i_{2}j_{2}}\delta_{i_{3}j_{3}}+\frac{1}{2}\langle i_{1}i_{2}|V_{aa,aa}^{S_{\sigma}}|j_{1}j_{2}\rangle\delta_{i_{3}j_{3}}\right]a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}a_{j_{2}}a_{j_{3}} (169)
Haab,aab\displaystyle H_{aab,aab} =i¯j¯[12i3|Tb|j3δi1j1δi2j2+i1|Ta|j1δi2j2δi3j3+12i1i2|Vaa,aa|j1j2δi3j3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{3}|T_{b}|j_{3}\rangle\delta_{i_{1}j_{1}}\delta_{i_{2}j_{2}}+\langle i_{1}|T_{a}|j_{1}\rangle\delta_{i_{2}j_{2}}\delta_{i_{3}j_{3}}+\frac{1}{2}\langle i_{1}i_{2}|V_{aa,aa}|j_{1}j_{2}\rangle\delta_{i_{3}j_{3}}\right.
+12(i2i3|Vab,abSσ|j2j3+i2i3|Vab,abSσ|j3j2)δi1j1]ai1ai2bi3|00|aj1aj2bj3\displaystyle\phantom{=}\qquad\qquad\left.+\frac{1}{2}\left(\langle i_{2}i_{3}|V_{ab,ab}^{S_{\sigma}}|j_{2}j_{3}\rangle+\langle i_{2}i_{3}|V_{ab,ab}^{S_{\sigma}}|j_{3}j_{2}\rangle\right)\delta_{i_{1}j_{1}}\right]a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}b^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}a_{j_{2}}b_{j_{3}} (170)
Habb,abb\displaystyle H_{abb,abb} =i¯j¯[12i1|Ta|j1δi2j2δi3j3+i2|Tb|j2δi1j1δi3j3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{1}|T_{a}|j_{1}\rangle\delta_{i_{2}j_{2}}\delta_{i_{3}j_{3}}+\langle i_{2}|T_{b}|j_{2}\rangle\delta_{i_{1}j_{1}}\delta_{i_{3}j_{3}}\right.
+12(i1i2|Vab,abSσ|j1j2+i1i2|Vab,abSσ|j2j1)δi3j3]ai1bi2bi3|00|aj1bj2bj3\displaystyle\phantom{=}\qquad\qquad\left.+\frac{1}{2}\left(\langle i_{1}i_{2}|V_{ab,ab}^{S_{\sigma}}|j_{1}j_{2}\rangle+\langle i_{1}i_{2}|V_{ab,ab}^{S_{\sigma}}|j_{2}j_{1}\rangle\right)\delta_{i_{3}j_{3}}\right]a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}b^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}b_{j_{2}}b_{j_{3}} (171)
Haab,aaa\displaystyle H_{aab,aaa} =i¯j¯[12i2i3|Vab,aaSσ|j2j3δi1j1]ai1ai2bi3|00|aj1aj2aj3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{\sqrt{2}}\langle i_{2}i_{3}|V_{ab,aa}^{S_{\sigma}}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right]a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}b^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}a_{j_{2}}a_{j_{3}} (172)
Haaa,aab\displaystyle H_{aaa,aab} =i¯j¯[12i2i3|Vaa,abSσ|j2j3δi1j1]ai1ai2ai3|00|aj1aj2bj3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{\sqrt{2}}\langle i_{2}i_{3}|V_{aa,ab}^{S_{\sigma}}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right]a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}a^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}a_{j_{2}}b_{j_{3}} (173)
Habb,aab\displaystyle H_{abb,aab} =i¯j¯[12i1i2|Vab,aaSσ|j1j2δi3j3]ai1bi2bi3|00|aj1aj2bj3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{\sqrt{2}}\langle i_{1}i_{2}|V_{ab,aa}^{S_{\sigma}}|j_{1}j_{2}\rangle\delta_{i_{3}j_{3}}\right]a^{\dagger}_{i_{1}}b^{\dagger}_{i_{2}}b^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}a_{j_{2}}b_{j_{3}} (174)
Haab,abb\displaystyle H_{aab,abb} =i¯j¯[12i1i2|Vaa,abSσ|j1j2δi3j3]ai1ai2bi3|00|aj1bj2bj3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{\sqrt{2}}\langle i_{1}i_{2}|V_{aa,ab}^{S_{\sigma}}|j_{1}j_{2}\rangle\delta_{i_{3}j_{3}}\right]a^{\dagger}_{i_{1}}a^{\dagger}_{i_{2}}b^{\dagger}_{i_{3}}|0\rangle\langle 0|a_{j_{1}}b_{j_{2}}b_{j_{3}} (175)

This leads us to

Haaa,aaa\displaystyle H_{aaa,aaa} =(Ta1+Ta2+Ta3+Vaa,aa23+Vaa,aa31+Vaa,aa12)𝒫S,aaa3\displaystyle=\left(T_{a}^{1}+T_{a}^{2}+T_{a}^{3}+V_{aa,aa}^{23}+V_{aa,aa}^{31}+V_{aa,aa}^{12}\right)\mathcal{P}_{S,aaa}^{3} (176)
Haab,aab\displaystyle H_{aab,aab} =(1+P12,aab)i¯j¯[12i3|Tb|j3δi1j1δi2j2+i1|Ta|j1δi2j2δi3j3+12i1i2|Vaa,aaSσ|j1j2δi3j3\displaystyle=\left(1+P_{12,aab}\right)\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{3}|T_{b}|j_{3}\rangle\delta_{i_{1}j_{1}}\delta_{i_{2}j_{2}}+\langle i_{1}|T_{a}|j_{1}\rangle\delta_{i_{2}j_{2}}\delta_{i_{3}j_{3}}+\frac{1}{2}\langle i_{1}i_{2}|V_{aa,aa}^{S_{\sigma}}|j_{1}j_{2}\rangle\delta_{i_{3}j_{3}}\right.
+12(i2i3|Vab,abSσ|j2j3+i2i3|Vab,abSσ|j3j2)δi1j1]|i¯aabaabj¯|(1+P12,aab)/2\displaystyle\phantom{=}\qquad\qquad\left.+\frac{1}{2}\left(\langle i_{2}i_{3}|V_{ab,ab}^{S_{\sigma}}|j_{2}j_{3}\rangle+\langle i_{2}i_{3}|V_{ab,ab}^{S_{\sigma}}|j_{3}j_{2}\rangle\right)\delta_{i_{1}j_{1}}\right]|\underline{i}\rangle_{aab}{}_{aab}\langle\underline{j}|\left(1+P_{12,aab}\right)/2 (177)
=(1+P12,aab)[12Tb3+Ta1+12Vaa,aaSσ,12+12Vab,abSσ,23(1+P23,aab)](1+P12,aab)/2\displaystyle=\left(1+P_{12,aab}\right)\left[\frac{1}{2}T_{b}^{3}+T_{a}^{1}+\frac{1}{2}V_{aa,aa}^{S_{\sigma},12}+\frac{1}{2}V_{ab,ab}^{S_{\sigma},23}\left(1+P_{23,aab}\right)\right]\left(1+P_{12,aab}\right)/2 (178)
=[Ta1+Ta2+Tb3+Vaa,aaSσ,12+(1+P12,aab)12Vab,abSσ,23(1+P23,aab)](1+P12,aab)/2\displaystyle=\left[T_{a}^{1}+T_{a}^{2}+T_{b}^{3}+V_{aa,aa}^{S_{\sigma},12}+\left(1+P_{12,aab}\right)\frac{1}{2}V_{ab,ab}^{S_{\sigma},23}\left(1+P_{23,aab}\right)\right]\left(1+P_{12,aab}\right)/2 (179)
Habb,abb\displaystyle H_{abb,abb} =(1+P23,abb)i¯j¯[12i1|Ta|j1δi2j2δi3j3+i2|Tb|j2δi1j1δi3j3\displaystyle=\left(1+P_{23,abb}\right)\sum_{\underline{i}\underline{j}}\left[\frac{1}{2}\langle i_{1}|T_{a}|j_{1}\rangle\delta_{i_{2}j_{2}}\delta_{i_{3}j_{3}}+\langle i_{2}|T_{b}|j_{2}\rangle\delta_{i_{1}j_{1}}\delta_{i_{3}j_{3}}\right.
+12(i1i2|Vab,abSσ|j1j2+i1i2|Vab,abSσ|j2j1)δi3j3]|i¯abbabbj¯|(1+P23,abb)/2\displaystyle\phantom{=}\qquad\qquad\left.+\frac{1}{2}\left(\langle i_{1}i_{2}|V_{ab,ab}^{S_{\sigma}}|j_{1}j_{2}\rangle+\langle i_{1}i_{2}|V_{ab,ab}^{S_{\sigma}}|j_{2}j_{1}\rangle\right)\delta_{i_{3}j_{3}}\right]|\underline{i}\rangle_{abb}{}_{abb}\langle\underline{j}|\left(1+P_{23,abb}\right)/2 (180)
=[Ta1++Tb2+Tb3+(1+P23,abb)12Vab,abSσ,12(1+P12,abb)](1+P23,abb)/2\displaystyle=\left[T_{a}^{1}++T_{b}^{2}+T_{b}^{3}+\left(1+P_{23,abb}\right)\frac{1}{2}V_{ab,ab}^{S_{\sigma},12}\left(1+P_{12,abb}\right)\right]\left(1+P_{23,abb}\right)/2 (181)
Haab,aaa\displaystyle H_{aab,aaa} =i¯j¯[12i2i3|Vab,aaSσ|j2j3δi1j1]6/2(1+P12,aab)|i¯aabaaaj¯|𝒫S,aaa3\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{\sqrt{2}}\langle i_{2}i_{3}|V_{ab,aa}^{S_{\sigma}}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right]\sqrt{6}/\sqrt{2}\left(1+P_{12,aab}\right)|\underline{i}\rangle_{aab}{}_{aaa}\langle\underline{j}|\mathcal{P}_{S,aaa}^{3} (182)
=32(1+P12,aab)Vab,aaSσ,23𝒫S,aaa3\displaystyle=\frac{\sqrt{3}}{\sqrt{2}}\left(1+P_{12,aab}\right)V_{ab,aa}^{S_{\sigma},23}\mathcal{P}_{S,aaa}^{3} (183)
Haaa,aab\displaystyle H_{aaa,aab} =i¯j¯[12i2i3|Vaa,abSσ|j2j3δi1j1]23𝒫S,aaa3|i¯aaaaabj¯|(1+P12,aab)/2\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{\sqrt{2}}\langle i_{2}i_{3}|V_{aa,ab}^{S_{\sigma}}|j_{2}j_{3}\rangle\delta_{i_{1}j_{1}}\right]2\sqrt{3}\mathcal{P}_{S,aaa}^{3}|\underline{i}\rangle_{aaa}{}_{aab}\langle\underline{j}|\left(1+P_{12,aab}\right)/2 (184)
=16(1+P++P)(1+P12,aaa)Vaa,abSσ,23(1+P12,aab)/2\displaystyle=\frac{1}{\sqrt{6}}\left(1+P_{+}+P_{-}\right)\left(1+P_{12,aaa}\right)V_{aa,ab}^{S_{\sigma},23}\left(1+P_{12,aab}\right)/2 (185)
Habb,aab\displaystyle H_{abb,aab} =i¯j¯[12i1i2|Vab,aaSσ|j1j2δi3j3](1+P23,abb)|i¯abbaabj¯|(1+P12,aab)/2\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{\sqrt{2}}\langle i_{1}i_{2}|V_{ab,aa}^{S_{\sigma}}|j_{1}j_{2}\rangle\delta_{i_{3}j_{3}}\right]\left(1+P_{23,abb}\right)|\underline{i}\rangle_{abb}{}_{aab}\langle\underline{j}|\left(1+P_{12,aab}\right)/2 (186)
=(1+P23,abb)12Vab,aaSσ,12(1+P12,aab)/2\displaystyle=\left(1+P_{23,abb}\right)\frac{1}{\sqrt{2}}V_{ab,aa}^{S_{\sigma},12}\left(1+P_{12,aab}\right)/2 (187)
Haab,abb\displaystyle H_{aab,abb} =i¯j¯[12i1i2|Vaa,abSσ|j1j2δi3j3](1+P12,aab)|i¯abbabbj¯|(1+P23,abb)/2\displaystyle=\sum_{\underline{i}\underline{j}}\left[\frac{1}{\sqrt{2}}\langle i_{1}i_{2}|V_{aa,ab}^{S_{\sigma}}|j_{1}j_{2}\rangle\delta_{i_{3}j_{3}}\right]\left(1+P_{12,aab}\right)|\underline{i}\rangle_{abb}{}_{abb}\langle\underline{j}|\left(1+P_{23,abb}\right)/2 (188)
=(1+P12,aab)12Vaa,abSσ,12(1+P23,abb)/2.\displaystyle=\left(1+P_{12,aab}\right)\frac{1}{\sqrt{2}}V_{aa,ab}^{S_{\sigma},12}\left(1+P_{23,abb}\right)/2\,. (189)

Note that even when the couplings between the channels are of separable form, it is not straightforward to rewrite this Hamiltonian in terms of a dimer field. However, since we can interpret our results in terms of couplings to a closed-channel trimer state maybe the introduction of a trimer field could lead to a good approximation.

References