This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: [email protected]thanks: [email protected]

Multi-criticality and long-range effects in non-Hermitian topological models

Y R Kartik Theoretical Sciences Division, Poornaprajna Institute of Scientific Research, Bidalur, Bengaluru 562164, India. Graduate Studies, Manipal Academy of Higher Education, Madhava Nagar, Manipal-576104, India.    Sujit Sarkar Theoretical Sciences Division, Poornaprajna Institute of Scientific Research, Bidalur, Bengaluru 562164, India.
Abstract

Long-range effects induce some interesting behavior and considered as a gateway to understand the non-local behavior in the quantum systems. Especially, the long-range topological models became a platform for the realization of new quasi-particles, which are believed to be potential candidates for the topological qubits. In this work, we consider non-Hermitian Su-Schriffer-Heeger (SSH) model and discuss the interplay of non-Hermiticity and long-range effects. We use the approach of momentum space characterization, critical exponents and curvature renormalization group (CRG) method to understand the aspects of interplay. The longer-range (finite neighbors) effect produces higher winding numbers, where we observe a staircase of transitions among the even-even and odd-odd winding numbers which depends on the number of interacting neighbors. Here we also highlight the effect of multi-criticality in the system and show that they belong to a different universality class. The interplay of long-range (infinite neighbors) effect and non-Hermiticity produces fractional topological invariants, and we analyze them from the behavior of pseudo-spin vectors. We also determine the long-range and short-range limit of the model through universality class of critical exponents. Our work mainly showcases that how the study of criticality in topological system is interesting in exploring the interplay of non-Hermiticity and long-range effects.

I Introduction

Topological state of matter is the milestone in the area of condensed matter, both from the perspective of theory and experimentsHasan and Kane (2010); Moore (2010); Stanescu (2016); Bernevig and Hughes (2013); Ortmann et al. (2015); Haldane (2017). The transitions among the topological phases can not be apprehended by the conventional Landau theory of symmetry breaking, as they do not possess an order parameterLandau (1965); Berry (1985); Wilczek and Shapere (1989); Wen (2016). The topological phases possess localized edge modes which are protected by certain symmetries and are robust against the external perturbationsNiu et al. (2012); Sarma et al. (2015); Kitaev (2001). Topological invariant is the most accepted tool to differentiate the index of the topological phases, where topological invariant is equal to the number of localized edge modesAlecce and Dell’Anna (2017). Even though topological invariant can not be considered as local order parameter, it has a well defined form in gapped phases and ill-defined at criticality. The edge mode contains a topological localization length, which diverges as the system drives towards criticalityContinentino et al. (2020); Chen and Sigrist (2019); Molignini et al. (2020a, 2018); Chen (2016); Chen et al. (2017); Malard et al. (2020a); Chen et al. (2016); Chen (2018); Chen and Schnyder (2019); Molignini et al. (2020b); Abdulla et al. (2020); Molignini et al. (2020a); Kumar et al. (2022). This diverging nature gives the idea of explaining the criticality through set of critical exponents and renormalization group methodsKempkes et al. (2016); Rufo et al. (2019); Kartik et al. (2021); Kumar et al. (2021a). Especially renormalization group (RG) method can be very helpful during the topological transitions where there are actually no order parametersSachdev (2007).
Introducing non-Hermiticity in topological systems opened a new doorway towards the unexplored parts of novel phases of matter Ashida et al. (2020). The works in non-Hermitian topological systems from the perspective of bulk-boundary correspondenceJin and Song (2019), loss-gainAgarwal and Joglekar (2021), dissipationRahul (2022), symmetryShiozaki and Ono (2021); Wang et al. (2015); Kawabata et al. (2019, 2018), skin effectYao and Wang (2018) and critical scalingArouca et al. (2020) gained a lot of attention in recent days. The realization of non-Hermitian models in experimental setups provided new understandings in optical systemsSchomerus (2010); El-Ganainy et al. (2019), electric circuitsHofmann et al. (2020); Zhang and Franz (2020) and ultra-cold atomic gasesJotzu et al. (2014); Bloch et al. (2012). The longer-range effects in non-Hermitian topological system created some fractional topological phases including non metallic phasesBao et al. (2021); Yin et al. (2018), which gained attention both theoretically and experimentally Xu et al. (2021); Li and Miroshnichenko (2018); Bao et al. (2021).
The longer-range models are important milestones in topological systems due to the formation of more than one edge modes and formation of multi-critical pointsKartik et al. (2021). The increase in the number of coupling neighbor generates higher winding numbers (WNs). Furthermore, the increase in the decay parameter reduces the system towards short-range through staircase of topological transitionKartik et al. (2021). Multi-criticality is an interesting phenomenon which can exhibit a combined behavior of two or more different criticalitiesKumar et al. (2021a, b); Kartik et al. (2021). In Hermitian systems, multi-critical point witnesses transition between different (gapped-gapped, gapless-gapless, gapped-gapless) phasesKartik et al. (2021). In addition, under some cases, multi-critical points have been recognized as the point where Lorentz invariance violatesKumar et al. (2021a). Also, there are observations, where the introduction of non-Hermiticity violates multi-critical effectsRahul (2022).
On the other hand, long-range effects in condensed matter has a long history and had been an area of curiosity over the decadesDefenu et al. (2021). Especially, long-range effects in topological systems been used to understand the non-local behavior of the fermionsVodola (2015). Long-range topological models exhibit the emergence of massive edge modesVodola et al. (2014), topological transition without gap closingVodola et al. (2014); Kartik et al. (2021), area law violation for Von Neumann entropy and breaking of Lorentz invarianceVodola et al. (2015). The long-range models are also important as they can be realized in the experiment setups of trapped ionsDeng et al. (2005); Britton et al. (2012); Hauke et al. (2010); Roy et al. (2019), multi-mode cavitiesDouglas et al. (2015), magnetic impuritiesZhang et al. (2019); Ménard et al. (2015) and simulated circuitsAmin et al. (2019). Even in two dimensional models, long-range effects has enhanced the topological behaviorsViyuela et al. (2018). The massive edge modes has been predicted to be a potential qubit for topological computationViyuela et al. (2016). The extension of long-range effects towards the non-Hermitian systems naturally triggers the curiosity to explore the interplay among them. Here our motivation is as follows.

  • To understand the behavior of non-Hermitian system with increased neighboring coupling.

  • To explore the multi-critical effects in non-Hermitian systems and to differentiate the multi-criticality from normal criticalities through universality class and curvature renormalization group (CRG).

  • To understand the interplay of non-Hermiticity and long-range effect in a topological system, thus to understand the non-local behaviors of the fermions in these systems.

  • The interface of short-range and long-range limit is an interesting topic of discussion. There are many arguments to decide the short-range limit based on entanglement entropyVodola et al. (2014), conformal invarianceVodola et al. (2015) and bulk-edge correspondenceLepori and Dell’Anna (2017). Here we give an approach of universality class of critical exponents to decide the short-range limit in a non-Hermitian long-range system.

With these motivations, we present the manuscript in following pattern. In Sec.II we introduce the model Hamiltonian and explain the momentum space properties. This section includes the study of universality class of critical exponents, CRG method and behavior of multi-critical points in longer-range model. In Sec.III, we study on long-range models with winding vector analysis, universality class, higher order quantum transitions and interplay among non-Hermiticity and long-range effect. In Sec.IV we give outlook and experimental possibility of our work and conclude in Sec.V.

II Model Hamiltonian and properties

We consider chiral non-Hermitian 1D Su-Schriffer-Heeger (SSH) chain with long-range interaction. Here, the non-Hermiticity is due to the imbalanced intracell hoppings, i.e., the hopping within the lattice ii (between the sub-lattice Ai,BiA_{i},B_{i}) is a real non-reciprocal quantity, which violates the Hermiticity in the HamiltonianYin et al. (2018).

H\displaystyle H =\displaystyle= j=1Ll(tδ)cj,acj,b+(t+δ)cj,bcj,a\displaystyle\sum_{j=1}^{L-l}(t-\delta)c^{\dagger}_{j,a}c_{j,b}+(t+\delta)c^{\dagger}_{j,b}c_{j,a} (1)
+\displaystyle+ j=1Lll=1rtlα(cj+l,acj,b+cj,bcj+l,a),\displaystyle\sum_{j=1}^{L-l}\sum_{l=1}^{r}\frac{t^{\prime}}{l^{\alpha}}(c^{\dagger}_{j+l,a}c_{j,b}+c^{\dagger}_{j,b}c_{j+l,a}),

where tlα\frac{t^{\prime}}{l^{\alpha}} is the intercell long-range hopping with ll as site index and α\alpha as decay parameter respectively. The imbalance in the intracell coupling is introduced through the non-zero term δ\delta, which breaks the Hermiticity and leads to non-Hermitian skin effectYao and Wang (2018); Yin et al. (2018). The term LL is the system size where the intercell coupling occurs between sites ii and i+li+l. The term ll can take the upper limit rr, where rr can be infinite. In such cases, it is called long-range systems with infinite number of coupling neighbors. On the other hand, if rr is finite, then it is longer-range with finite number of coupling neighbors. In addition to these factors, as α\alpha\rightarrow\infty, the model reduces to short-range version irrespective of number of interacting neighbors.

Refer to caption
Figure 1: (Color online) Schematic representation of non-Hermitian long-range SSH chain with open boundary condition. Colored rectangles represent the unit cell, t+δt+\delta and tδt-\delta are the forward and backward hopping (intracell hopping) between sub-lattice sites AA and BB respectively. Here tt^{\prime} is the intercell hopping (short-range limit) and trα\frac{t^{\prime}}{r^{\alpha}} is the longer-range hopping parameter.

After the Fourier transformation, BdG Hamiltonian can be written as

HBdG(k)=(0χx(k)+iχy(k)χx(k)iχy(k)0).H_{BdG}(k)=\left(\begin{matrix}0&&\chi_{x}(k)+i\chi_{y}(k)\\ \chi_{x}(k)-i\chi_{y}(k)&&0\\ \end{matrix}\right). (2)

With the use of Anderson pseudo-spin approach Anderson (1958); Sarkar (2018), we write the BdG Hamiltonian in the pseudo-spin basis as

HBdG(k)=χx(k)σx+χy(k)σy,H_{BdG}(k)=\chi_{x}(k)\vec{\sigma_{x}}+\chi_{y}(k)\vec{\sigma_{y}}, (3)

where σx,σy\sigma_{x},\sigma_{y} are the Pauli matrices and the corresponding coefficients,

χx(k)\displaystyle\chi_{x}(k) =\displaystyle= t+tl=1rcos(kl)lα,\displaystyle t+t^{\prime}\sum_{l=1}^{r}\frac{\cos(kl)}{l^{\alpha}},
χy(k)\displaystyle\chi_{y}(k) =\displaystyle= tl=1rsin(kl)lαiδ.\displaystyle t^{\prime}\sum_{l=1}^{r}\frac{\sin(kl)}{l^{\alpha}}-i\delta. (4)

It is to be noted that for rr\rightarrow\infty the series involving cos(kl)lα\frac{\cos(kl)}{l^{\alpha}} and sin(kl)lβ\frac{\sin(kl)}{l^{\beta}} terms give rise to polylogarithmic functions Alecce and Dell’Anna (2017); Vodola et al. (2014). Energy dispersion is given byRufo et al. (2019); Chen and Sigrist (2019)

E(k,𝐌)\displaystyle E(k,\mathbf{M}) =\displaystyle= ±(χz(k))2+(χy(k))2,\displaystyle\pm\sqrt{(\chi_{z}(k))^{2}+(\chi_{y}(k))^{2}},
=\displaystyle= (t)2+t2δ2+2ttcos(lk)lα+i2δtsin(lk)lα.\displaystyle\sqrt{(t^{\prime})^{2}+t^{2}-\delta^{2}+2tt^{\prime}\frac{\cos(lk)}{l^{\alpha}}+i2\delta t^{\prime}\frac{\sin(lk)}{l^{\alpha}}}.

Due to the non-Hermiticity, the Eq II gives the complex energy spectrum for finite δ\deltaYin et al. (2018). At the phase boundary the imaginary part vanishes, such that the criticality condition is monitored by the real part. For a non-Hermitian system, the Fermi sea level is contributed by the real part, while the imaginary part signals the decoherence (information leak to the environment)Rahul (2022); Yin et al. (2018).

II.1 Winding number in non-Hermitian systems

For topological conditions, the winding vectors form a closed loop in the parameter space, due to the periodicity in the boundary condition. In Hermitian systems, when the parameter kk runs from π-\pi to π\pi, which gives topological invariantWilczek and Shapere (1989),

W=(12π)ππχxkχyχykχxχx2+χy2𝑑k.W=\left(\frac{1}{2\pi}\right)\int_{-\pi}^{\pi}\frac{\chi_{x}\partial_{k}\chi_{y}-\chi_{y}\partial_{k}\chi_{x}}{\chi_{x}^{2}+\chi_{y}^{2}}dk. (6)

The imbalance in the intercell hopping induces non-Hermiticity in the Hamiltonian which results in the complex topological angle (ϕ\phi), i.e.,

ϕ=ϕre+iϕim,\phi=\phi^{re}+i\phi^{im}, (7)

where the imaginary parts do not contributes to the argument of the topological angleYin et al. (2018). But the imaginary part creates two exceptional points (with topological angles ϕ1,ϕ2\phi_{1},\phi_{2}) instead of single Dirac (gap closing) point. The angles ϕ1\phi_{1} and ϕ2\phi_{2} are real and they produce the winding number asYin et al. (2018)

W=12(12π)(kϕ1dk+kϕ2dk),W=\frac{1}{2}\left(\frac{1}{2\pi}\right)(\oint\partial_{k}\phi_{1}dk+\oint\partial_{k}\phi_{2}dk), (8)

where ϕ1=tan1(χyre(k)+χxim(k)χxre(k)χyim(k))\phi_{1}=\tan^{-1}\left(\frac{\chi_{y}^{re}(k)+\chi_{x}^{im}(k)}{\chi_{x}^{re}(k)-\chi_{y}^{im}(k)}\right) and ϕ2=tan1(χyre(k)χxim(k)χxre(k)+χyim(k))\phi_{2}=\tan^{-1}\left(\frac{\chi_{y}^{re}(k)-\chi_{x}^{im}(k)}{\chi_{x}^{re}(k)+\chi_{y}^{im}(k)}\right).(For detailed derivation, refer Appendix A)
Here, we initially consider the simplest longer-range model with two neighbor couplings. We gradually increase the number of neighbor couplings to get further longer-range models and to analyze the transitions among them. At the end, we consider infinite couplings to understand the interplay of non-Hermiticity and long-range behavior.

II.2 Critical exponents and universality class

In the vicinity of phase transition point, the physical quantities shows the diverging nature, which can be quantified by the critical exponentsContinentino (2017); Continentino et al. (2020). The set of critical exponents constitutes the universality class, which effectively categorizes the phase transitions based on their behavior. Here we analyze a few critical exponents (relevant to zero temperature TQPTs) and analyze their behavior.

The dynamical critical exponent (z)(z) defines the nature of dispersion and can be calculated by expanding Eq. II around gap closing point k0k_{0}Rufo et al. (2019). i.e.,

E(k,𝐌)=|δg|2+A1k+A2k2+A4k4+,E(k,\mathbf{M})=\sqrt{|\delta g|^{2}+A_{1}k+A_{2}k^{2}+A_{4}k^{4}+...}, (9)

where the dominating terms among A1,A2,A4A_{1},A_{2},A_{4} are real numbers which decides the nature of dispersion and corresponding zz.
For the simplest longer-range model with two neighbors, the winding vectors are given by

χx\displaystyle\chi_{x} =\displaystyle= t+cos(k)+cos(2k)2α,\displaystyle t+\cos(k)+\frac{\cos(2k)}{2^{\alpha}},
χy\displaystyle\chi_{y} =\displaystyle= sin(k)+sin(2k)2αiδ,\displaystyle\sin(k)+\frac{\sin(2k)}{2^{\alpha}}-i\delta, (10)

with t=1t^{\prime}=1. The criticality occurs at three values of kk, i.e., k=0,πk=0,\pi and cos1(2α1)\cos^{-1}(-2^{\alpha-1}) which results in six exceptional points respectively. Thus the model possesses six TQCLs

k\displaystyle k =\displaystyle= 0t=12α+δ1,t=12αδ1,\displaystyle 0\implies t=-\frac{1}{2^{\alpha}}+\delta-1,\hskip 5.69046ptt=-\frac{1}{2^{\alpha}}-\delta-1,
k\displaystyle k =\displaystyle= πt=12α+δ+1,t=12αδ+1,\displaystyle\pi\implies t=-\frac{1}{2^{\alpha}}+\delta+1,\hskip 5.69046ptt=-\frac{1}{2^{\alpha}}-\delta+1,
k\displaystyle k =\displaystyle= cos1(2α1)t=12α+δ,t=12αδ.\displaystyle\cos^{-1}(-2^{\alpha-1})\implies t=\frac{1}{2^{\alpha}}+\delta,\hskip 5.69046ptt=\frac{1}{2^{\alpha}}-\delta.

with red, blue, green, black, magenta and gray respectively (Fig 2 a).
Here we observe two different spectrum of real and absolute energy dispersion with different critical exponents. Due to the non Hermiticity, the energy dispersion need not to be symmetric around the gap closing values, which may result as different exponents around a same pointArouca et al. (2020). In our study, both real and absolute spectrum yield z=1/2z=1/2 for all TQCLs except at multi-criticality (Fig 3 a). At multi-criticality the real spectrum yield z=2,1z=2,1 and 0.5 while (Fig 3 b)absolute spectrum yield z=1,1z=1,1 and 0.5 for MC1, MC2 and MC3 respectively (absolute spectrum is not showed here).
The longer-range non-Hermitian SSH model contains both fractional and integer WNs, where the WN is given by Eq. 8, which physically means the encircling of the winding vectors around the origin of the pseudo-spin parameter space. Due to non-Hermiticity, there occurs two exceptional points instead of single Dirac point which act as center of pseudo-spin space. If the winding vectors encircle both the exceptional points equal times, then the WN is integer. If the winding vectors encircle either one of the exceptional point, or unequal number of time, then there occur fractional WN.
In Fig. 2 b, when winding vectors encircle both the EPs once (twice), we get W=1(W=2)W=1(W=2) topological phase which is equivalent to Hermitian version of topological phases. If the winding vectors encircle either one of the exceptional point, it gives W=1/2W=1/2 and encircling first (second) EP twice (once) while other only once (twice) give rise to W=3/2W=3/2, which do not have any Hermitian counterpart. Under some special cases, winding vectors encircle one of the exceptional point even number of times and do not encircles the other, which also results in the integer WN. With the increasing decay parameter, the longer-range reduces to its short-range version at α=1\alpha=1 through the intersection of TQCLs i.e., multi-critical points.

Localization critical exponent (ν)(\nu): In a topological system, the zero energy modes are localized at the edges and protected by the bulk Bloch states.

Refer to caption
Figure 2: (Color online) (a) Phase diagram for non-Hermitian longer-range SSH chain with two interacting neighbors. Here the red, blue, green, black, magenta and brown lines represent six TQCLs respectively. The points MC1, MC2 and MC3 correspond to first, second and third multi-critical points respectively. The positions a,b,c,da,b,c,d and ee represent the topological regions W=0,1/2,1,3/2W=0,1/2,1,3/2 and W=2W=2 respectively. (b) Variation of winding number against parameter tt. (c) Energy dispersion (real part) for TQCLs. (d) Energy dispersion (real part) for multi-critical points.(e) Energy dispersion (imaginary part) for TQCLs. (f) Energy dispersion (imaginary part) for multi-critical points.

As a simple example, we consider Eq.1 with two neighbor couplings (r=2r=2). For a semi-infinite system with j=1,2,3j=1,2,3..., with wave function ψn\psi_{n}, the energy relation yieldsYin et al. (2018)

(t+δ)ψa,j+tψa,j+1+t2αψa,j+2=Enψb,j\displaystyle(t+\delta)\psi_{a,j}+t^{\prime}\psi_{a,j+1}+\frac{t^{\prime}}{2^{\alpha}}\psi_{a,j+2}=E_{n}\psi_{b,j}
(tδ)ψb,j+tψb,j1+t2αψb,j2=Enψa,j.\displaystyle(t-\delta)\psi_{b,j}+t^{\prime}\psi_{b,j-1}+\frac{t^{\prime}}{2^{\alpha}}\psi_{b,j-2}=E_{n}\psi_{a,j}. (11)

We construct the boundary condition with zero energy state (E=0E=0) as

(t+δ)ψa,j+tψa,j+1+t2αψa,j+2=0\displaystyle(t+\delta)\psi_{a,j}+t^{\prime}\psi_{a,j+1}+\frac{t^{\prime}}{2^{\alpha}}\psi_{a,j+2}=0
(tδ)ψb,j+tψb,j1+t2αψb,j2=0.\displaystyle(t-\delta)\psi_{b,j}+t^{\prime}\psi_{b,j-1}+\frac{t^{\prime}}{2^{\alpha}}\psi_{b,j-2}=0. (12)

Here the boundary condition ψb,j=0\psi_{b,j}=0 is true for every nn. The ratio of nth localized zero eigenstate to that of first is given byContinentino (2017); Continentino et al. (2020)

δψn=ψn(E=0)ψ1(E=0)=|δgA1,2,4|n1.\delta\psi_{n}=\frac{\psi_{n}(E=0)}{\psi_{1}(E=0)}=\left|\frac{\delta g}{A_{1,2,4}}\right|^{n-1}. (13)

These states are ensured by the condition eik0=(δgA1,2,4)e^{ik_{0}}=-\left(\frac{\delta g}{A_{1,2,4}}\right). Thus the k0k_{0} is a complex number with k0=i(δgA1,2,4)k_{0}=i\left(\frac{\delta g}{A_{1,2,4}}\right), where A1,2,4A_{1,2,4} are the real numbers and dominating term among them decides the value of k0k_{0}. With the system size nn, the localization of the eigenstates is given by,

δψn=e(n1)ξ,\delta\psi_{n}=e^{\frac{-(n-1)}{\xi}}, (14)

where ξ\xi is the localization length with ξ=An|δg|νξ=ξ0|δg|ν\xi=\frac{A_{n}}{|\delta g|^{\nu}}\implies\xi=\xi_{0}|\delta g|^{-\nu}, with ξ0\xi_{0} as the natural length of the system. Here AnA_{n} is the dominating term in Eq. 9 and ν\nu is the localization critical exponent. In non-Hermitian systems, the edge localization is highly influenced by the skin-effect which decides the bulk-edge correspondence. In our model, we get ν=1\nu=1 for both TQCLs and multi-critical points (Fig.3 e,f).
To understand the number of localized edge modes at each end, we write Eq.12 as

(t+δ)+tλ+t2αλ2=0,\displaystyle(t+\delta)+t^{\prime}\lambda+\frac{t^{\prime}}{2^{\alpha}}\lambda^{2}=0,
(tδ)+tλ+t2αλ2=0.\displaystyle(t-\delta)+t^{\prime}\lambda^{\prime}+\frac{t^{\prime}}{2^{\alpha}}\lambda^{\prime 2}=0. (15)

with λ=ψa,j+1ψa,j\lambda=\frac{\psi_{a,j+1}}{\psi_{a,j}} and λ=ψb,j+1ψb,j\lambda^{\prime}=\frac{\psi_{b,j+1}}{\psi_{b,j}}, corresponding to the left and right localized modes respectively. The quadratic form gives two roots

λ±=t±(t)24(t2α)(t±δ)21α(t).\lambda_{\pm}=\frac{-t^{\prime}\pm\sqrt{(t^{\prime})^{2}-4(\frac{t^{\prime}}{2^{\alpha}})(t\pm\delta)}}{2^{1-\alpha}(t^{\prime})}. (16)

The topological limit forms a unit circle, where the number of solutions less than unity represent the number of localized modes. The roots of λ\lambda and λ\lambda^{\prime} represent the left and right localized modes respectively. The combination of these two solution constitutes the phase diagram as mentioned in Ref. Yin et al. (2018).

Crossover critical exponent (y)(y): The scaling behavior near the TQCL is given byArouca et al. (2020),

E(kk0,𝐌=𝐌c)\displaystyle E(k\rightarrow k_{0},\mathbf{M}=\mathbf{M}_{c}) \displaystyle\propto kz,\displaystyle k^{z},
E(k=k0,𝐌𝐌c)\displaystyle E(k=k_{0},\mathbf{M}\rightarrow\mathbf{M}_{c}) \displaystyle\propto |g|y,\displaystyle\left|\partial g\right|^{y}, (17)

where yy is called crossover or gap critical exponent with y=zνy=z\nu. This exponent gives the relation between zz and ν\nu and can be calculated in the limit E(k0,𝐌𝐌c)E(k_{0},\mathbf{M}\rightarrow\mathbf{M}_{c}). The energy gap at criticality behaves like Δ|δg|zν\Delta\propto|\delta g|^{z\nu}, where δg\delta g is the distance from the criticality. In our case, both real and absolute spectrum give y=0.5y=0.5 for TQCLs as well as for multi-critical points (Fig. 3 c,d).

Refer to caption
Figure 3: (Color online) Critical exponents through non-linear curve fitting method with the parameter space t=1t^{\prime}=1 and δ=0.2\delta=0.2 respectively. The red, blue, green and black colors in left panel correspond to first (α=1.5,tc=1.15\alpha=1.5,t_{c}=-1.15), second (1.5,1.551.5,-1.55), third (1.5,1.841.5,1.84) and fourth (1.5,0.441.5,0.44) TQCLs respectively. The red, blue and green colors in right panel correspond to first (1,0.7), second (1,0.3) and third (0.53,0.5) multi-critical points respectively.(a-b) Dynamical critical exponent (zz) (c-d) Crossover critical exponent (yy) (e-f) Localization critical exponent (ν\nu). (g-h) Susceptibility critical exponent (γ\gamma)

Canonical critical exponent (α)(\alpha^{*}): The concept of thermodynamic grand potential (Ω\Omega) helps to understand the order of phase transition and corresponding critical exponentArouca et al. (2020); Kempkes et al. (2016). The divergence or non-analyticity in the derivative of the grand potential signals the order of the corresponding transition. For a system with periodic boundary condition at zero temperature, the grand potential density is given by,

ω=ΩN=ππE(k,𝐌)𝑑k,\omega=\frac{\Omega}{N}=-\int_{-\pi}^{\pi}E(k,\mathbf{M})dk, (18)

where NN is the system size. The above integral is convergent for all positive α\alpha, which makes the grand potential as independent of system size in this limit. The order of the transition can be calculated through the derivative of the grand potential. The transition can be nth order if the nth derivative of grand potential shows a cusp or spike against the parameter and the (n+1)th derivative shows a discontinuityMalard et al. (2020b); Chen et al. (2008).

Refer to caption
Figure 4: (Color online) Derivatives of ground state energy for k=πk=\pi critical line at different values of α\alpha. (a1-a3) Normal critical lines showing cusp for second order derivatives. (b1-b3) Behavior of multi-critical points, where MC1 and MC2 show cusp for second and first order derivatives respectively.

In Fig. 4, we study k=πk=\pi critical line (t=1-12α±δ\frac{1}{2^{\alpha}}\pm\delta) under two different configurations. For α=0.1\alpha=0.1 the second derivative with respect to tt shows a cusp at criticality followed by a discontinuous third order derivative. At multi-criticality (α=1\alpha=1), the first order derivative shows cusp at MC2 and a continuous curve at MC2. The second order derivative shows discontinuity at MC2 and a cusp at MC1 respectively. This observation signals that, the multi-criticalities MC1 and MC2 exhibit different nature of transitions. To understand this in detail we study the hyperscaling relation.
Here, the grand potential (ω\omega) contains two parts, i.e., regular and singular parts. The singular part of the grand potential density scales asArouca et al. (2020)

ωsingular|g|2α,\omega_{singular}\propto|g|^{2-\alpha^{*}}, (19)

where α\alpha^{*} is the canonical critical exponent and 2α2-\alpha^{*} signals the order of transition. These critical exponents are connected by the relations called scaling laws which governs the phase transitions. One such relation is the Josephson’s hyperscaling relation given byContinentino (2017)

2α=ν(z+d),2-\alpha^{*}=\nu(z+d), (20)

where z+dz+d is the effective dimension. This law connects the dimensionality, dynamical and correlation critical exponents with order of transition through hyper-scaling relation. Thus, through hyper-scaling relation (Eq.20),

2α\displaystyle 2-\alpha^{*} =\displaystyle= 1(1/2+1)=3/2for TQCLs,\displaystyle 1(1/2+1)=3/2\hskip 14.22636pt\text{for TQCLs},
2α\displaystyle 2-\alpha^{*} =\displaystyle= 1(2+1)=3for MC1,\displaystyle 1(2+1)=3\hskip 14.22636pt\text{for MC1},
2α\displaystyle 2-\alpha^{*} =\displaystyle= 1(1+1)=2for MC2,\displaystyle 1(1+1)=2\hskip 14.22636pt\text{for MC2},
2α\displaystyle 2-\alpha^{*} =\displaystyle= 1(1/2+1)=3/2for MC3.\displaystyle 1(1/2+1)=3/2\hskip 14.22636pt\text{for MC3}. (21)

which clearly signals the difference between the order of transitions among normal criticality and multi-criticality. The fraction order of transitions are the interesting observations in non-Hermitian systems, which are different than their corresponding Hermitian counterparts. In Ref. Arouca et al. (2020), the authors have tried to analyze this issue by scaling the singular part with the factor ξ|δg|ν\xi\propto|\delta g|^{-\nu}. As the grand potential has a contribution from system size LL, every distance is divided by the correlation length. This has showed that, for the lower range of δg\delta g the singular part of grand potential scales as δg1/2\delta g^{1/2}, whereas for the higher range it scales as δg1\delta g^{1}. This is the reason behind the difficulty to decide whether the transitions are first order or second order. However, in our model also we find similar observation at normal criticality, but multi-criticality remains interesting and merits more attention in this regard.

II.3 Criticality and renormalization group approach

Due to the non-Hermitian effects, the TQPT occurs through the exceptional points at (0,χyim)(0,\chi_{y}^{im}) and (0,χyim)(0,-\chi_{y}^{im}) instead of the Dirac points. The WN is given by Eq. 8, with

F1(k,𝐌)\displaystyle F_{1}(k,\mathbf{M}) =\displaystyle= kϕ1=(χxreχyim)kχyreχyrek(χxreχyim)(χxreχyim)2+(χyre)2,\displaystyle\partial_{k}\phi_{1}=\frac{(\chi_{x}^{re}-\chi_{y}^{im})\partial_{k}\chi_{y}^{re}-\chi_{y}^{re}\partial_{k}(\chi_{x}^{re}-\chi_{y}^{im})}{(\chi_{x}^{re}-\chi_{y}^{im})^{2}+(\chi_{y}^{re})^{2}},
F2(k,𝐌)\displaystyle F_{2}(k,\mathbf{M}) =\displaystyle= kϕ2=(χxre+χyim)kχyreχyrek(χxre+χyim)(χxre+χyim)2+(χyre)2.\displaystyle\partial_{k}\phi_{2}=\frac{(\chi_{x}^{re}+\chi_{y}^{im})\partial_{k}\chi_{y}^{re}-\chi_{y}^{re}\partial_{k}(\chi_{x}^{re}+\chi_{y}^{im})}{(\chi_{x}^{re}+\chi_{y}^{im})^{2}+(\chi_{y}^{re})^{2}}.

Here we deal with an interesting quantity called curvature function (CF). CF is the quantity whose integral over the Brillouin zone gives the topological invariant, like Berry connection, Berry curvature and Pfaffian wave functionKumar et al. (2021a); Chen and Sigrist (2019). In 1D models, we consider Berry connection as our CF which is an gauge dependent quantity. The CF exhibits non-analyticity at the criticality and yields ill-defined topological invariant at these points. In case of non-Hermitian systems, exceptional points are the points of non-analyticity. Based on the behavior in the vicinity of exceptional points, CF can be classified as following.

  1. 1.

    High symmetry points (HSP): When the CF exhibits a symmetric nature around the gap closing point k0k_{0}, i.e.,F(k0+δk,𝐌)=F(k0δk,𝐌)F(k_{0}+\delta k,\mathbf{M})=F(k_{0}-\delta k,\mathbf{M}) is called a HSP. Here the Lorentzian peak is is symmetric under condition k0=k0k_{0}=-k_{0}. The CF diverges as one approach k0k_{0} from one direction 𝐌𝐌c+\mathbf{M}\rightarrow\mathbf{M}_{c}^{+} and flips the direction as one moves away 𝐌𝐌c\mathbf{M}\rightarrow\mathbf{M}_{c}^{-} from k0k_{0} with same diverging curve. This can be represented as fixed peak with varying height (Fig. 5 a1,b1).

  2. 2.

    Non-High Symmetry points (non-HSP): In this case, as one approaches criticality, there occurs diverging peak with different k0k_{0} values. Here one can observe the flipping of peaks but the Lorentzian peak keep moving along the BZ (Fig. 5 a2,b2).

  3. 3.

    Fixed point (FP): Generally this kind of behavior is observed at the multi-criticality where HSP and non-HSP meet togetherKartik et al. (2021); Kumar et al. (2021a, b). Here the CF shows a diverging peak as 𝐌𝐌c+\mathbf{M}\rightarrow\mathbf{M}_{c}^{+} from one side, and at k0k_{0} we observe a peak with diminished height. As we go away 𝐌𝐌c\mathbf{M}\rightarrow\mathbf{M}_{c}^{-} we observe a peak with constant height with increasing width. The multi-critical points MC1 and MC2 show the FP nature (Fig. 5 a3,b3).

Refer to caption
Figure 5: (Color online) Behavior of curvature function around HSP, non-HSP and fixed points respectively. The left panels represent criticality t=112αδt=1-\frac{1}{2^{\alpha}}-\delta (F1(k,𝐌)F1(k,\mathbf{M}) parameter space) and the right represent t=112α+δt=1-\frac{1}{2^{\alpha}}+\delta (F2(k,𝐌)F2(k,\mathbf{M}) parameter space) respectively.

Susceptibility critical exponent (γ)(\gamma): Here the CF exhibits non-analytic property at the exceptional points, which gives the idea of critical scaling near these pointsChen and Sigrist (2019). In present case, we consider Berry connection as our CF, which is a gauge dependent quantity. Without loss of generality, we write CF in Ornstein-Zernike form as,

F(k0+δk,𝐌)=F(k0,𝐌)1±ξ2δk2+ξ4δk4,F(k_{0}+\delta k,\mathbf{M})=\frac{F(k_{0},\mathbf{M})}{1\pm\xi^{2}\delta k^{2}+\xi^{4}\delta k^{4}}, (23)

where k0k_{0} is a gap closing point, δk\delta k is a small deviation from gap closing and ξ\xi is the characteristic scale respectively. At k=k0k=k_{0} and 𝐌𝐌\mathbf{M}\rightarrow\mathbf{M}, the CF diverges signaling a TQPT where the characteristic length vanishes.

lim𝐌𝐌c+F(k0,𝐌)=lim𝐌𝐌cF(k0,𝐌)=±.lim_{\mathbf{M}\rightarrow\mathbf{M}_{c}^{+}}F(k_{0},\mathbf{M})=-lim_{\mathbf{M}\rightarrow\mathbf{M}_{c}^{-}}F(k_{0},\mathbf{M})=\pm\infty. (24)

and CF exhibiting an interesting nature

F(k0,𝐌)=F(k0+δk,𝐌),F(k_{0},\mathbf{M}^{\prime})=F(k_{0}+\delta k,\mathbf{M}), (25)

which gives the idea of renormalization group study near criticality.

Refer to caption
Figure 6: (Color online) CRG flow diagram for non-Hermitian longer-range SSH chain with two interacting neighbors. (a) Flow for F1(k,𝐌)F1(k,\mathbf{M}) at k=0k=0. (a) Flow for F1(k,𝐌)F1(k,\mathbf{M}) at k=πk=\pi. (a) Flow for F2(k,𝐌)F2(k,\mathbf{M}) at k=0k=0. (a) Flow for F2(k,𝐌)F2(k,\mathbf{M}) at k=πk=\pi. Here the colored lines represent critical and fixed configurations. For detailed derivation, refer AppendixB.

The divergence of CF and characteristic length gives the critical exponent F(k0,𝐌)|𝐌𝐌c|γF(k_{0},\mathbf{M})\propto|\mathbf{M}-\mathbf{M}_{c}|^{-\gamma} and ξ(k0,𝐌)|𝐌𝐌c|ν\xi(k_{0},\mathbf{M})\propto|\mathbf{M}-\mathbf{M}_{c}|^{-\nu}, where γ\gamma and ν\nu are the susceptibility and characteristic critical exponents respectively, where the susceptibility exponent explains the quality of the transition to be topological. Here we get γ=1\gamma=1 for both TQCLs and multi-critical points.
Expanding Eq 25 up to a leading order, we get CRG equation asChen and Sigrist (2019),

d𝐌dl=(12)d2F(k,𝐌)dk2|k=k0dF(k0,𝐌)d𝐌,\frac{d\mathbf{M}}{dl}=\frac{(\frac{1}{2})\frac{d^{2}F(k,\mathbf{M})}{dk^{2}}|_{k=k_{0}}}{\frac{dF(k_{0},\mathbf{M})}{d\mathbf{M}}}, (26)

where |d𝐌dl|\left|\frac{d\mathbf{M}}{dl}\right|\rightarrow\infty defines criticality and |d𝐌dl|0\left|\frac{d\mathbf{M}}{dl}\right|\rightarrow 0 defines fixed point configuration respectively. In our model, at k=πk=\pi (both F1(k,𝐌)F1(k,\mathbf{M}) and F2(k,𝐌)F2(k,\mathbf{M})), there occurs a superposition of all critical and fixed lines at α=1\alpha=1. Here we find a whirlpool kind of behavior where the flow lines encircle a single point (Fig. 6). At this point, d2Fdk2,dFdα,dFdμ0\frac{d^{2}F}{dk^{2}},\frac{dF}{d\alpha},\frac{dF}{d\mu}\rightarrow 0 and dαdl,dμdl00\frac{d\alpha}{dl},\frac{d\mu}{dl}\rightarrow\frac{0}{0}. Interestingly at this point, we observe a different class of UCCE through multi-critical points. On the other hand, we do not observe any such behavior for k=0k=0 criticality. (For detailed derivation, refer AppendixB)

Model k\hskip 5.69046ptk\hskip 5.69046pt z\hskip 5.69046ptz\hskip 5.69046pt ν\hskip 5.69046pt\nu\hskip 5.69046pt γ1,2\hskip 5.69046pt\gamma_{1,2}\hskip 5.69046pt y\hskip 5.69046pty\hskip 5.69046pt 2α2-\alpha^{*}
Short-range model 0 0.5 1 1 0.5 1.5
π\pi 0.5 1 1 0.5 1.5
Longer-range model 0 0.5 1 1 0.5 1.5
(r=r= Even and α=1\alpha=1) π\pi (2,1) 1 1 0.5 (3,2)
Longer-range model 0 0.5 1 1 0.5 1.5
(r=r= Odd, α\forall\alpha) π\pi 0.5 1 1 0.5 1.5
(r=r= Even, α1\alpha\neq 1)
Table 1: A comparison of universality class of critical exponents between the original Kitaev chain and the reduced long-range Kitaev chain.

II.4 Significance of multi-criticality

Multi-criticalities are the intersection of (at least) two TQCLs and distinguish (at least) three different topological regimes. So far, multi-critical points acted as unique points, where we witnessed the breaking of Lorentz invariance, topological transition without bulk gap and as a point with zero entanglement entropyKumar et al. (2021b). There are category of multi-critical points based on the conformal field theory where we get different central charge. However, in case of non-Hermitian systems, multi-critical points may behave differently based on the nature of non-Hermitian factor. For example, recently there has been the observation on the vanishing of multi-criticality when the non-Hermiticity is introduced into an extended Kitaev chain through chemical potentialRahul (2022). In our case, we have introduced non-Hermiticity through local imbalance in the hopping, which splits the Hermitian multi-critical points into two. We can observe that multi-critical points as the superposition of HSP and non-HSP with a fixed point behavior and belong to separate UCCE. This part is in similarity with Hermitian counterpart.

Refer to caption
Figure 7: (Color online) Localization of edge modes at criticality calculated through Eq. 15. The unit circle represent the topological limit. The solution less than, equal to and greater than unity represent the edge mode, criticality and no edge mode condition respectively. (a1-a3) Edge mode behavior at left end. (b1-b3) Edge mode behavior at right end.

The expansion of Eq. II around exceptional points k0k_{0} gives the better understanding towards the underlying physics of multi-criticality. At normal criticalities, the dispersion behaves as E(kk0,𝐌c)k1/2E(k\rightarrow k_{0},\mathbf{M}_{c})\propto k^{1/2}. At multi-criticalities, the dispersion takes first (E(kk0,𝐌c)k1E(k\rightarrow k_{0},\mathbf{M}_{c})\propto k^{1} for MC1) and second order (E(kk0,𝐌c)k2E(k\rightarrow k_{0},\mathbf{M}_{c})\propto k^{2} for MC2) corrections as shown in Eq.9 respectively. On the other hand, the multi-critical point MC3 is no different than the normal criticalities, as it shows similar behaviors of normal criticality. However, we observe similar cases in Hermitian counterpart, where the the instance is recognized as breaking of Lorentz invarianceKumar et al. (2021a).
Exponent zz gives information about the massless condition of the system. In condensed matter, the energy dispersion at Fermi surface resembles the relativeistic energy form E2=c2p2+m2c4E^{2}=c^{2}p^{2}+m^{2}c^{4}. For gap closing points, the equation gives masless condition with E2=c2p2E^{2}=c^{2}p^{2}. Under some cases, the equation takes correction form as, E2=c2p2+m2c4+Ap4E^{2}=c^{2}p^{2}+m^{2}c^{4}+Ap^{4} with AA as constantSadhukhan et al. (2020). Similar effects we observe at exceptional points. For normal criticalities, we get E2=AKE^{2}=\sqrt{AK} and for multi-criticalities, we obtain E2=Ak+Bk2E^{2}=\sqrt{Ak+Bk^{2}} and E2=Ak+Bk4E^{2}=\sqrt{Ak+Bk^{4}} respectively. This creates the difference in the nature of energy dispersion and thereby dynamical critical exponent. Transition among gapless phases: Localization at criticality is an important phenomenon, which is important both from the perspective of theory and experimental aspects  Jones and Verresen (2019); Thorngren et al. (2020); Kestner et al. (2011); Cheng and Tu (2011); Fidkowski et al. (2012); Sau et al. (2011); Kraus et al. (2013); Scaffidi et al. (2017); Jiang et al. (2018), especially in longer-range modelsRahul et al. (2021); Kumar et al. (2021a); Verresen et al. (2019, 2018); Verresen (2020); Kumar et al. (2021b). In our model, the multi-critical points act as an unique point, which witnesses the topological transition among critical phases. Here MC1 and MC2 are present on the k=πt=1±δ+t2αk=\pi\rightarrow t=1\pm\delta+\frac{t^{\prime}}{2^{\alpha}} respectively. Through Eq.15, we find the solutions of quadratic equation as shown in Fig. 7. Throughout the critical line, one of the solution remains unity, which confirms the gapless condition. For α<1\alpha<1, one of the solution is less than unity (λ=0.4\lambda=0.4), indicating a localization of edge mode at criticality. At α=1\alpha=1, the both the solutions are unity, indicating a transition among gapless phases through multi-criticality. For α>1\alpha>1, one of the solution is greater than unity (λ=1.8\lambda=1.8), indicating the absence of localized modes. Hence, both MC1 and MC2 act as transition points among gapless phases. A similar phenomenon has been observed in the Hermitian counterpart of the similar modelRahul et al. (2021); Kumar et al. (2021a).

II.5 Staircase of topological transitions:

Due to the feature of long-range coupling in Eq.1, it is possible to achieve higher winding number with the increase of interacting neighbors, i.e., finite rr. For the limit r<L/2r<L/2, we can obtain higher WNs where the uppermost WN is W=rW=r. This is an effective method to obtain more localized modes through static method while similar can be achieved through periodic driving which is dynamical in natureKartik et al. (2021); Tong et al. (2013). However the higher WNs are comparatively less stable and reduce to consecutive lower WNs with the increasing of α\alpha. Here we find an interesting patter of transitions , i.e., a staircase of TQPTs.

  • Even-Even transition: When the number of neighbor is an even number (for r>2r>2), the uppermost WN will be an even number and the transition occurs among only even WNs.

  • Odd-Odd transition: When the number of neighbor is an odd number (for r>2r>2), the uppermost WN will be an odd number and the transition occurs among only odd WNs.

  • Even-Odd transition: When the number of neighbor is an even number (for r>2r>2), the uppermost WN is an even number and with the increasing α\alpha, the longer-range model reduces to short-range version. At the interface of short-range and longer-range, there occurs a transition between W:21W:2\rightarrow 1. For very small δ\delta, this can be clearly observed and with the increase in α\alpha, the transition occurs like W:2321W:2\rightarrow\frac{3}{2}\rightarrow 1. This transition occurs through the multi-critical points.

Refer to caption
Figure 8: (Color online) Staircase of TQPTs with different number of interacting neighbors. For even (odd) ’rr’, transitions occurs among only even (odd) winding numbers. Near short-range limit, we do not observe this behavior. The star mark indicates the numerical limitation of converging for higher WNs.

Here we choose parameter space (t=0.5,δ=0.1t=0.5,\delta=0.1), where the increase in δ\delta suppresses the uppermost WN and creates fractional WNs. For the even rr, the fractional WNs are observable with small δ\delta and large α\alpha, whereas the similar effect is not visible for odd rr. The interface of short-range and longer-range occurs through multi-critical points as shown in Fig. 8(d). These multi-critical points can also be recognized by the CRG method also (Not shown here).

III Long-range

Refer to caption
Figure 9: (Color online) (a) Phase diagram of long-range model in a 3D representaion. (b) 2D representation of phase diagram. (c1-c6) Behavior of winding vectors in long-range non-Hermitian SSH chain. The blue and green winding vectors represent the F1(k,𝐌\mathbf{M}) and F2(k,𝐌\mathbf{M}) parameter spaces respectively. The combined effect determines the topological index of the system.

With the introduction of infinite number of neighbors (rr\rightarrow\infty), Eq.1 represents long-range non-Hermitian SSH chain, where the pseudo-spin parameters exhibit the polylogarithmic natureVodola et al. (2014), i.e.,

χx(k)\displaystyle\chi_{x}(k) =\displaystyle= t+t(Liα[eik]+Liα[eik]2),\displaystyle t+t^{\prime}\left(\frac{Li_{\alpha}[e^{ik}]+Li_{\alpha}[e^{-ik}]}{2}\right),
χy(k)\displaystyle\chi_{y}(k) =\displaystyle= t(Liα[eik]Liα[eik]2i)iδ.\displaystyle t^{\prime}\left(\frac{Li_{\alpha}[e^{ik}]-Li_{\alpha}[e^{-ik}]}{2i}\right)-i\delta. (27)

Expansions of polylogarithmic function around a gap closing point k0k_{0} is given byOlver et al. (2010),

Liα[eik]=Γ[1α](ik)α1+n=0ζ[αn]n!(ik)n.Li_{\alpha}[e^{ik}]=\Gamma[1-\alpha](-ik)^{\alpha-1}+\sum_{n=0}^{\infty}\frac{\zeta[\alpha-n]}{n!}(ik)^{n}. (28)

For the detailed study, we can expand the polylogarithmic function around k=0k=0 as

χx\displaystyle\chi_{x} =\displaystyle= t+t(Γ[1α](k)α1sin(πα2)\displaystyle t+t^{\prime}(\Gamma[1-\alpha](k)^{\alpha-1}\sin\left(\frac{\pi\alpha}{2}\right)
+\displaystyle+ n=0ζ[αn]n!(k)ncos(πn2)),\displaystyle\sum_{n=0}^{\infty}\frac{\zeta[\alpha-n]}{n!}(k)^{n}\cos\left(\frac{\pi n}{2}\right)),
χy\displaystyle\chi_{y} =\displaystyle= t(Γ[1α](k)α1cos(πα2)\displaystyle t^{\prime}(\Gamma[1-\alpha](k)^{\alpha-1}\cos\left(\frac{\pi\alpha}{2}\right) (29)
+\displaystyle+ n=0ζ[αn]n!(k)nsin(πn2))iδ.\displaystyle\sum_{n=0}^{\infty}\frac{\zeta[\alpha-n]}{n!}(k)^{n}\sin\left(\frac{\pi n}{2}\right))-i\delta.

We analyze the properties of momentum space to characterize the non-Hermitian long-range SSH chain.

III.1 Energy dispersion, Fermi velocity, GSE density, critical exponents:

The quasi-particle energy dispersion is given by Eq. II, where the band gap vanishes for k=0k=0 and π\pi respectively. Due to the polylogarithmic nature, the band gap closes for all values of α\alpha at k=πk=\pi and only α>1\alpha>1 at k=0k=0. The parameter space possesses two exceptional points and four TQCLs corresponding to two values of k0k_{0}. i.e.,

  1. 1.

    t=δLiα(1)t=\delta-\text{Li}_{\alpha}(1) for k=0k=0 for α>1\alpha>1,

  2. 2.

    t=δLiα(1)t=-\delta-\text{Li}_{\alpha}(1) for k=0k=0 for α>1\alpha>1,

  3. 3.

    t=δLiα(1)t=\delta-\text{Li}_{\alpha}(-1) for k=πk=\pi and α\forall\alpha,

  4. 4.

    t=δLiα(1)t=-\delta-\text{Li}_{\alpha}(-1) for k=πk=\pi and α\forall\alpha.

Here the pseudo-spin parameters go as sin(k)\sin(k) instead of sin(lk)\sin(lk) which result in the single time encircling of the origin. Thus the phase diagram is given by Fig. 9(a,b).

Behavior of winding vectors: Due to the long-range effect, the winding vectors exhibit a discontinuity at k=0k=0 for α<1\alpha<1 which give rise to fractional winding number. Thus the region ±δLiα(1)<μ<±δLiα(1)\pm\delta-\text{Li}_{\alpha}(1)<\mu<\pm\delta-\text{Li}_{\alpha}(-1) for α>1\alpha>1 gives topological (Hermitian and non-Hermitian) phase where the winding vectors encircle the origin of the parameter space without any discontinuity. Due to the polylogarithmic behavior, we find a less population of winding vectors in the region 1<α<21<\alpha<2, technically which do not affects the winding number. In the region δLiα(1)<μ<δLiα(1)\delta-\text{Li}_{\alpha}(1)<\mu<-\delta-\text{Li}_{\alpha}(-1) for α>1\alpha>1, we find that both set of winding vectors encircle the origin of each parameter space which yield W=1W=1. The region μ<±δLiα(1)\mu<\pm\delta-\text{Li}_{\alpha}(-1) for α<1\alpha<1 gives topologically ill-defined (fractional) phase where winding vectors corresponding to both the parameter space shows a discontinuity at k=0k=0. If both set of vectors exhibit half encirclement around their corresponding origin, then it yield W=1/2W=1/2. If any one exhibits this behavior, it yields W=±1/4W=\pm 1/4 where the sign indicates the direction of encircling. On the other hand, due to the imbalance in intracell hopping, there arise fractional WN for δLiα(1)<μ<δLiα(1)-\delta-\text{Li}_{\alpha}(1)<\mu<\delta-\text{Li}_{\alpha}(1) and δLiα(1)<μ<δLiα(1)-\delta-\text{Li}_{\alpha}(-1)<\mu<\delta-\text{Li}_{\alpha}(-1) for α>1\alpha>1. These are the non-Hermitian topological phases and do not posses any Hermitian counterpart. Here any one set of the winding vector encircle the origin by yielding W=1/2W=1/2. Extended winding vectors are given by

χx(ext)\displaystyle\chi_{x}(ext) =\displaystyle= ±δ+Liα(exp(ik))+Liα(exp(ik))2+t,\displaystyle\pm\delta+\frac{\text{Li}_{\alpha}(\exp(-ik))+\text{Li}_{\alpha}(\exp(ik))}{2}+t,
χy(ext)\displaystyle\chi_{y}(ext) =\displaystyle= Liα(exp(ik))Liα(exp(ik))2i.\displaystyle\frac{\text{Li}_{\alpha}(\exp(ik))-\text{Li}_{\alpha}(\exp(-ik))}{2i}. (30)

The behavior of extended winding vectors are presented in Fig. 9(c1-c6).

Momentum space behavior: Due to the polylogarithmic nature, in the limit k0k\rightarrow 0, the χy\chi_{y} term shows a divergence for α<1\alpha<1 and converges towards zero for α>1\alpha>1 and a discontinuity at α=1\alpha=1 respectively(Fig. 10c). This reflects in the behavior of CF and energy dispersion. For α<1\alpha<1 the CF shows a divergence (Fig. 10d) at k=0k=0 which leads to the emergence of the fractional WN. The corresponding energy spectrum shows a gapped region with diverging bands(Fig. 10a).The transition from α<1\alpha<1 to α>1\alpha>1 occurs at α=1\alpha=1, where we observe topological transition without gap closing (W:1/40,1/41/2,W:1/21)(W:-1/4\rightarrow 0,1/4\rightarrow 1/2,W:-1/2\rightarrow 1). This is an interesting behavior which can be observed in long-range models.

Refer to caption
Figure 10: (Color online) Properties of non-Hermitian long-range SSH chain. (a) Real part of energy spectrum where the spectrum is divergent for α<1\alpha<1 and representation of topological transition at α=1\alpha=1 without gap closing. (b) A sharp variation of imaginary part of spectrum at α=1\alpha=1 interface. (c) Divergence of χy\chi_{y} term for α<1\alpha<1 region due to the polylogarithmic behavior. (d) Behavior of curvature function for α<1\alpha<1 region. The divergences at k=πk=\pi and 0 is due to the criticality and removable singularity respectively. (e) Decay of Wannier state correlation function around k=πk=\pi. The nature is similar α\forall\alpha. (f) Decay of correlation function around k=0k=0, only for α>2\alpha>2.

Curvature function and Wannier state correlation function: Substituting the values of Eq. 27 into Eq. LABEL:cf we get the CF in Ornstein-Zernike form as

F(k,𝐌)Akα2Bkα1Ck2α3Dk2α21+(Ekα1Fkα1)2.\displaystyle F(k,\mathbf{M})\propto\frac{\frac{Ak^{\alpha-2}}{Bk^{\alpha-1}}-\frac{Ck^{2\alpha-3}}{Dk^{2\alpha-2}}}{1+(\frac{Ek^{\alpha-1}}{Fk^{\alpha-1}})^{2}}. (31)

There are three possible cases,

  • When α<1\alpha<1, the term kα2k^{\alpha-2} dominates and F(k,𝐌)F(k,\mathbf{M})\rightarrow\infty as k0k\rightarrow 0, irrespective of 𝐌𝐌c\mathbf{M}\rightarrow\mathbf{M}_{c}.

  • When 1<α<21<\alpha<2, the term kα2k^{\alpha-2} dominates and F(k,𝐌)F(k,\mathbf{M})\rightarrow\infty as k0k\rightarrow 0, irrespective of 𝐌𝐌c\mathbf{M}\rightarrow\mathbf{M}_{c}.

  • When α>2\alpha>2, again the term kα2k^{\alpha-2} dominates and F(k,𝐌)F(k,\mathbf{M})\rightarrow\infty as k0k\rightarrow 0 with 𝐌𝐌c\mathbf{M}\rightarrow\mathbf{M}_{c}.

Thus we can define the CF in the Ornstein-Zernike form and corresponding critical exponents only for α>2\alpha>2 around k=0k=0 regionSadhukhan and Dziarmaga (2021). For k=πk=\pi, the CF can expressed Ornstein-Zernike form for all values of α\alpha.
Wannier state correlation function is the quantity, which discusses the phase transition among different phasesKumar et al. (2021a); Chen and Sigrist (2019); Kumar et al. (2021b). Conceptually, it is the overlap between the Wannier state centering at the origin and that of distance RR. i.e.,

r|R=Wn(rR)\displaystyle\langle r|R\rangle=W_{n}(r-R) (32)

with

|Rn=1Nkeik.(rR)|uk\displaystyle|R_{n}\rangle=\frac{1}{N}\sum_{k}e^{ik.(r-R)}|u_{k}\rangle

(the form of |uk|u_{k}\rangle is expressed in Appendix A.)
Mathematically, Wannier states can be expressed as Fourier transform of the CF, i.e.,

λR=dk2πeik.RF(k,𝐌).\lambda_{R}=\int\frac{dk}{2\pi}e^{ik.R}F(k,\mathbf{M}). (33)

In our case, we observe the decay of Wannier state correlation function around k=πk=\pi for all values of α\alpha, with a critical exponent ν=1\nu=1 (Fig. 10 e). For k=0k=0, there occurs no correlation decay in the region 1<α<21<\alpha<2, which results in the undefined critical exponent. For the region α>2\alpha>2, we observe the decay of correlation function, which is very sharp near the criticality with an exponent ν=1\nu=1 (Fig. 10 f).

Energy dispersion and Fermi velocity: By substituting Eq. 27 into Eq. II, we get energy dispersion. The first order derivative of the energy dispersion gives the Fermi velocity as

E(k,𝐌)\displaystyle E(k,\mathbf{M}) =\displaystyle= Ak2α2+Bkα1+C,\displaystyle\sqrt{Ak^{2\alpha-2}+Bk^{\alpha-1}+C},
dEkdk\displaystyle\frac{dE_{k}}{dk} =\displaystyle= Ak2α3+Bkα1+CkA2k2α2+Bkα+C2k2.\displaystyle\frac{Ak^{2\alpha-3}+Bk^{\alpha-1}+Ck}{\sqrt{A^{2}k^{2\alpha-2}+Bk^{\alpha}+C^{2}k^{2}}}. (34)

where A,BA,B and CC are constants. For the values α<1\alpha<1, the Fermi velocity is dependent on α\alpha as shown in Table 2

Condition Relation k=0k=0 k=πk=\pi
α<1\alpha<1 Ak2α3Bkα1\frac{Ak^{2\alpha-3}}{Bk^{\alpha-1}} vFv_{F}\rightarrow\infty vF(𝐌c)0v_{F}(\mathbf{M}_{c})\rightarrow 0
1<α<1.51<\alpha<1.5 Ak2α3Ak^{2\alpha-3} vFv_{F}\rightarrow\infty vF(𝐌c)0v_{F}(\mathbf{M}_{c})\rightarrow 0
α>1.5\alpha>1.5 CkCk vF(𝐌c)0v_{F}(\mathbf{M}_{c})\rightarrow 0 vF(𝐌c)0v_{F}(\mathbf{M}_{c})\rightarrow 0
Table 2: Behavior of Fermi velocity with respect to decay parameter α\alpha. At k=0k=0, the Fermi velocity vanishes as the system drives towards criticality only for α>1.5\alpha>1.5

Thus, as k0k\rightarrow 0 we obtain a diverging energy spectrum and Fermi velocity for α<1\alpha<1. For 1<α<1.51<\alpha<1.5 we obtain gapless energy spectrum and a diverging Fermi-velocity as k0k\rightarrow 0. For α>1.5\alpha>1.5, we obtain vanishing Fermi velocity as the system drives towards criticality.

Refer to caption
Figure 11: (Color online) Critical exponents through non-linear curve fitting method. The left and right panels represent the k=0k=0 and k=πk=\pi criticalities respectively. The parameter space δ=0.2,t=1\delta=0.2,t^{\prime}=1 is considered. The red, blue, green and black colors represent the first (α=2.5,tc=1.14\alpha=2.5,t_{c}=-1.14), second (2.5,-1.54), third (2.5,1.06) and fourth (2.5,0.66) critical lines respectively. (a-b) Dynamical critical exponent. The inset represent the region 1<α<21<\alpha<2 with parameter space (α=1.1,tc=10.38\alpha=1.1,t_{c}=-10.38) and (1.1,-10.78), where z<0.5z<0.5. (c-d) Crossover critical exponent. (e-f) Localization critical exponent. (g-h) Susceptibility critical exponent.

Here we analyze the UCCE through nonlinear curve fitting method (Fig. 11). Around k=0k=0, we obtain z<0.5z<0.5 for the region 1<α<21<\alpha<2, whereas z=0.5z=0.5 for α>2\alpha>2. In the region 1<α<21<\alpha<2, we obtain undefined ν,γ\nu,\gamma and yy critical exponents, and ν=1,γ=1,y=0.5\nu=1,\gamma=1,y=0.5 for α>2\alpha>2. On the other hand, we get z=0.5,y=0.5,ν=1z=0.5,y=0.5,\nu=1 and γ=1\gamma=1 for all values of α\alpha around k=πk=\pi. Table 3 summaries the critical exponents for different regions of non-Hermitian long-range SSH chain.

III.2 Higher order bulk transitions:

To understand the order of phase transition, we check the derivatives of grand potential density for different orders. The phase transitions act as singularities in the density parameter space and the derivatives of density signals the order of transition with non-analytic curves. The polylogarithmic nature creates a singularity in the vicinity of k0k\rightarrow 0, while the entire BZ contributes to the geometric phase. i.e., if ωsingular\omega_{singular} represents the grand potential density of the bulk, then it can be expressed asCats et al. (2018)

ωsingular=ωx+ωy,\omega_{singular}=\omega_{x}+\omega_{y}, (35)

where ωx\omega_{x} integral around k=0k=0 and ωy\omega_{y} is the integral over the rest of the BZ respectively.

Refer to caption
Figure 12: (Color online) Different order derivatives of ground state energy density. The singularities in the ground state represents distinction between the topological phases. The order of the transition represents the order of transition.

Through Eq. 28, we write an expanded term around k=0k=0 as

ωx(k=0,𝐌(α>2))=0ϵ0+ϵ𝐌2+k2𝑑k𝐌2ln|𝐌|.\omega_{x}(k=0,\mathbf{M}(\alpha>2))=\int_{0-\epsilon}^{0+\epsilon}\sqrt{\mathbf{M}^{2}+k^{2}}dk\propto\mathbf{M}^{2}\ln|\mathbf{M}|. (36)

In this case we can observe a divergence in the second order derivative of the above equation, signaling a second order bulk transition. For the region 1<α<21<\alpha<2,

ωx(k=0,𝐌(1<α<2))0ϵ0+ϵ𝐌2+k2(α1)𝑑k.\omega_{x}(k=0,\mathbf{M}(1<\alpha<2))\approx\int_{0-\epsilon}^{0+\epsilon}\sqrt{\mathbf{M}^{2}+k^{2(\alpha-1)}}dk. (37)

Through the Eq. 28, we observe the above term is proportional to Γ(α2(α1))Γ(2α12(α1))𝐌αα1\Gamma(-\frac{\alpha}{2(\alpha-1)})\Gamma(\frac{2\alpha-1}{2(\alpha-1)})\mathbf{M}^{\frac{\alpha}{\alpha-1}}, where Γ\Gamma function diverges for α=nn1\alpha=\frac{n}{n-1} where nNn\in N. Thus as one approaches α=1\alpha=1 from the side of α=2\alpha=2, the integral shows divergence for higher orders signaling a higher order bulk transitions. Thus as we take the higher order derivatives, the criticalities corresponding to k=πk=\pi show the peaks while k=0k=0 fails to produce the same. This signals a possible higher order phase transitions as one approaches α=1\alpha=1. The region with integral WN (Fig. 9) has similar Hermitian counterpart as explained in Ref. , while the fractional WN do not have Hermitian counterpart. Interestingly, the fractional WN corresponding to k=0k=0 shows a very narrow phase boundary, and as α1\alpha\rightarrow 1, the non-Hermitian phase gradually vanishes. Thus at α=1\alpha=1, the Hermitian phase exhibits an infinite order of bulk transition, while non-Hermitian phases shows almost none. This is also in good agreement with the hyper-scaling relation (Eq. 20) also.

2α\displaystyle 2-\alpha^{*} =\displaystyle= 1(1/2+1)=3/2for k=π,\displaystyle 1(1/2+1)=3/2\hskip 14.22636pt\text{for $k=\pi$},
2α\displaystyle 2-\alpha^{*} =\displaystyle= 1(1/2+1)=3/2for k=0,α>2,\displaystyle 1(1/2+1)=3/2\hskip 14.22636pt\text{for $k=0,\alpha>2$},
2α\displaystyle 2-\alpha^{*} =\displaystyle= Higher as α1for k=0,1<α<2.\displaystyle\text{Higher as $\alpha\rightarrow 1$}\hskip 14.22636pt\text{for $k=0,1<\alpha<2$}.
α\hskip 5.69046pt\alpha\hskip 5.69046pt k\hskip 5.69046ptk\hskip 5.69046pt z\hskip 5.69046ptz\hskip 5.69046pt ν\hskip 5.69046pt\nu\hskip 5.69046pt γ1,2\hskip 5.69046pt\gamma_{1,2}\hskip 5.69046pt y\hskip 5.69046pty\hskip 5.69046pt 2α2-\alpha^{*}
α<1\alpha<1 0 - - - - -
1<α<21<\alpha<2 z<0.5z<0.5 - - 0.5 higher
α>2\alpha>2 0.5 1 1 0.5 3/2
\forallα\alpha π\pi 0.5 1 1 0.5 3/2
Table 3: A comparison of universality class of critical exponents of long-range Kitaev chain for different parameter spaces.

IV Outlook and experimental aspects

Non-Hermitian topological systems are sensitive to boundary conditions, where the phase diagram may vary based on the choice of the boundary conditions. Here, we have worked on the periodic boundary condition, while the appearance of multi-criticality may be different in other conditions. We have observed the signature of localized modes at the gapless phases, which is an interesting phenomenon and merits further analysis in that regard.
Hermitian long-range models are the platform to realize the massive edge modes, which also can act as an effective topological qubit. Such possibility to explore massive edge modes in non-Hermitian counterparts can be interesting both from the perspective of theory and experiment. The field theoretical analysis of the Hermitian long-rang models reveals the breakdown of Lorentz invariance for the region 1<α<21<\alpha<2. Our current work also signals such behavior through dynamical critical exponent, however, a detailed field theoretical analysis may answer this.
Long-range models are the field of interest from the experimental aspects also. The nature of shrinking characteristic length with the longer-range interaction helps to suppress the finite-size effects even by using a relatively small number of ionsGong et al. (2016). Long-range models have been realized in trapped ions Deng et al. (2005); Britton et al. (2012); Hauke et al. (2010); Roy et al. (2019), atom coupled to multi-mode cavities Douglas et al. (2015), magnetic impurities Zhang et al. (2019); Ménard et al. (2015) and quantum computation Amin et al. (2019). The effects of non-Hermiticity may give a different dimension towards the understanding of long-range systems.

V Discussion and Conclusion

Understanding the behavior of topological system with different range of coupling has attracted the attention of scientific community. The UCCE is an efficient tool to characterize the criticalities based on their behavior. The uniqueness of the multi-criticalities can be observed through UCCE. Here CRG is an useful tool to obtain the fixed and critical line configurations. But the CRG limits its coverage only to certain parameter spaces like HSP and non-HSPs corresponding to lower WNs. The symmetry plays a major role in defining the topological invariant. The current methodology may vary for the systems which lack chiral symmetry.
To conclude, we have provided a detailed analysis of criticality in longer and long-range non-Hermitian SSH chain. We have adopted the approach of separating the real and imaginary parts of the complex angle and defined the topological invariant. With the construction of staircase of transitions, we have observed the transition among even-even and odd-odd winding numbers, which actually has the Hermitian counterparts. To analyze the critical exponents, we have considered the r=2r=2 case and calculated the universality class of critical exponents along with order of transition. The multi-critical point have shown some interesting feature, where the universality class is different than the rest of the parameter space. We adopt the CRG method to non-Hermitian systems and observe the fixed point configuration which actually depicts the difference in the universality class.
The long-range models are well known in Hermitian systems, due to the emergence of exotic particles like massive edge modes and physics of short-range,long-range inter-phase. Here we analyze model from momentum space characterization, and observe the interplay of polylogarithmic and non-Hermitian effect in winding vectors. Here we preferred the universality class of critical exponents to find the short-range limit rather than the topological invariant. CRG analysis gives the understanding of fixed/critical point configurations in long-range models. We observe the in the α1\alpha\rightarrow 1 limit, it is possible to observe the higher order topological transitions.
The studies of long-range effects in non-hermitian models are less in literature. We believe, our work can be useful in understanding the interplay of long-range and non-Hermitian effects in topological state of matter.

Acknowledgments: SS would like to acknowledge DST (CRG/2021/000996) for the support and RRI library for the books and journals. YRK is grateful to AMEF for providing a PhD fellowship. The authors would like to acknowledge B S Ramachandra, C Sivaram, Rahul S and Ranjith Kumar R for useful discussions.

References

  • Hasan and Kane (2010) M. Z. Hasan and C. L. Kane, Reviews of modern physics 82, 3045 (2010).
  • Moore (2010) J. E. Moore, Nature 464, 194 (2010).
  • Stanescu (2016) T. D. Stanescu, Introduction to topological quantum matter & quantum computation (CRC Press, 2016).
  • Bernevig and Hughes (2013) B. A. Bernevig and T. L. Hughes, Topological insulators and topological superconductors (Princeton university press, 2013).
  • Ortmann et al. (2015) F. Ortmann, S. Roche,  and S. O. Valenzuela, Topological insulators: Fundamentals and perspectives (John Wiley & Sons, 2015).
  • Haldane (2017) F. D. M. Haldane, Reviews of Modern Physics 89, 040502 (2017).
  • Landau (1965) L. D. Landau, Collected papers of LD Landau (Pergamon, 1965).
  • Berry (1985) M. Berry, Journal of physics A: Mathematical and general 18, 15 (1985).
  • Wilczek and Shapere (1989) F. Wilczek and A. Shapere, Geometric phases in physics, Vol. 5 (World Scientific, 1989).
  • Wen (2016) X.-G. Wen, URL http://web. mit. edu/physics/people/faculty/docs/wen_intro_topological_orders. pdf 34, 54 (2016).
  • Niu et al. (2012) Y. Niu, S. B. Chung, C.-H. Hsu, I. Mandal, S. Raghu,  and S. Chakravarty, Physical Review B 85, 035110 (2012).
  • Sarma et al. (2015) S. D. Sarma, M. Freedman,  and C. Nayak, npj Quantum Information 1, 1 (2015).
  • Kitaev (2001) A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).
  • Alecce and Dell’Anna (2017) A. Alecce and L. Dell’Anna, Physical Review B 95, 195160 (2017).
  • Continentino et al. (2020) M. A. Continentino, S. Rufo,  and G. M. Rufo, in Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory (Springer, 2020) pp. 289–307.
  • Chen and Sigrist (2019) W. Chen and M. Sigrist, Advanced Topological Insulators , 239 (2019).
  • Molignini et al. (2020a) P. Molignini, R. Chitra,  and W. Chen, EPL (Europhysics Letters) 128, 36001 (2020a).
  • Molignini et al. (2018) P. Molignini, W. Chen,  and R. Chitra, Physical Review B 98, 125129 (2018).
  • Chen (2016) W. Chen, Journal of Physics: Condensed Matter 28, 055601 (2016).
  • Chen et al. (2017) W. Chen, M. Legner, A. Rüegg,  and M. Sigrist, Physical Review B 95, 075116 (2017).
  • Malard et al. (2020a) M. Malard, H. Johannesson,  and W. Chen, Physical Review B 102, 205420 (2020a).
  • Chen et al. (2016) W. Chen, M. Sigrist,  and A. P. Schnyder, Journal of Physics: Condensed Matter 28, 365501 (2016).
  • Chen (2018) W. Chen, Physical Review B 97, 115130 (2018).
  • Chen and Schnyder (2019) W. Chen and A. P. Schnyder, New Journal of Physics 21, 073003 (2019).
  • Molignini et al. (2020b) P. Molignini, W. Chen,  and R. Chitra, Physical Review B 101, 165106 (2020b).
  • Abdulla et al. (2020) F. Abdulla, P. Mohan,  and S. Rao, Physical Review B 102, 235129 (2020).
  • Kumar et al. (2022) R. R. Kumar, Y. Kartik,  and S. Sarkar, arXiv preprint arXiv:2211.03320  (2022).
  • Kempkes et al. (2016) S. Kempkes, A. Quelle,  and C. M. Smith, Scientific reports 6, 38530 (2016).
  • Rufo et al. (2019) S. Rufo, N. Lopes, M. A. Continentino,  and M. Griffith, Physical Review B 100, 195432 (2019).
  • Kartik et al. (2021) Y. Kartik, R. R. Kumar, S. Rahul, N. Roy,  and S. Sarkar, Physical Review B 104, 075113 (2021).
  • Kumar et al. (2021a) R. R. Kumar, Y. R. Kartik, S. Rahul,  and S. Sarkar, Scientific Reports 11, 1 (2021a).
  • Sachdev (2007) S. Sachdev, Handbook of Magnetism and Advanced Magnetic Materials  (2007).
  • Ashida et al. (2020) Y. Ashida, Z. Gong,  and M. Ueda, Advances in Physics 69, 249 (2020).
  • Jin and Song (2019) L. Jin and Z. Song, Physical Review B 99, 081103 (2019).
  • Agarwal and Joglekar (2021) K. S. Agarwal and Y. N. Joglekar, Physical Review A 104, 022218 (2021).
  • Rahul (2022) S. Rahul, S. Sarkar, Scientific Reports 12, 6993 (2022).
  • Shiozaki and Ono (2021) K. Shiozaki and S. Ono, Physical Review B 104, 035424 (2021).
  • Wang et al. (2015) X. Wang, T. Liu, Y. Xiong,  and P. Tong, Physical Review A 92, 012116 (2015).
  • Kawabata et al. (2019) K. Kawabata, K. Shiozaki, M. Ueda,  and M. Sato, Physical Review X 9, 041015 (2019).
  • Kawabata et al. (2018) K. Kawabata, Y. Ashida, H. Katsura,  and M. Ueda, Physical Review B 98, 085116 (2018).
  • Yao and Wang (2018) S. Yao and Z. Wang, Physical review letters 121, 086803 (2018).
  • Arouca et al. (2020) R. Arouca, C. Lee,  and C. M. Smith, Physical Review B 102, 245145 (2020).
  • Schomerus (2010) H. Schomerus, Physical review letters 104, 233601 (2010).
  • El-Ganainy et al. (2019) R. El-Ganainy, M. Khajavikhan, D. N. Christodoulides,  and S. K. Ozdemir, Communications Physics 2, 1 (2019).
  • Hofmann et al. (2020) T. Hofmann, T. Helbig, F. Schindler, N. Salgo, M. Brzezińska, M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši, et al., Physical Review Research 2, 023265 (2020).
  • Zhang and Franz (2020) X.-X. Zhang and M. Franz, Physical Review Letters 124, 046401 (2020).
  • Jotzu et al. (2014) G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif,  and T. Esslinger, Nature 515, 237 (2014).
  • Bloch et al. (2012) I. Bloch, J. Dalibard,  and S. Nascimbene, Nature Physics 8, 267 (2012).
  • Bao et al. (2021) X.-X. Bao, G.-F. Guo,  and L. Tan, Journal of Physics: Condensed Matter 33, 465403 (2021).
  • Yin et al. (2018) C. Yin, H. Jiang, L. Li, R. Lü,  and S. Chen, Physical Review A 97, 052115 (2018).
  • Xu et al. (2021) K. Xu, X. Zhang, K. Luo, R. Yu, D. Li,  and H. Zhang, Physical Review B 103, 125411 (2021).
  • Li and Miroshnichenko (2018) C. Li and A. E. Miroshnichenko, Physics 1, 2 (2018).
  • Kumar et al. (2021b) R. R. Kumar, N. Roy, Y. Kartik, S. Rahul,  and S. Sarkar, arXiv preprint arXiv:2112.02485  (2021b).
  • Defenu et al. (2021) N. Defenu, T. Donner, T. Macrì, G. Pagano, S. Ruffo,  and A. Trombettoni, arXiv preprint arXiv:2109.01063  (2021).
  • Vodola (2015) D. Vodola, Correlations and quantum dynamics of 1D fermionic models: new results for the Kitaev chain with long-range pairing, Ph.D. thesis, Strasbourg (2015).
  • Vodola et al. (2014) D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov,  and G. Pupillo, Physical review letters 113, 156402 (2014).
  • Vodola et al. (2015) D. Vodola, L. Lepori, E. Ercolessi,  and G. Pupillo, New Journal of Physics 18, 015001 (2015).
  • Deng et al. (2005) X.-L. Deng, D. Porras,  and J. I. Cirac, Physical Review A 72, 063407 (2005).
  • Britton et al. (2012) J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk,  and J. J. Bollinger, Nature 484, 489 (2012).
  • Hauke et al. (2010) P. Hauke, F. M. Cucchietti, A. Müller-Hermes, M.-C. Bañuls, J. I. Cirac,  and M. Lewenstein, New Journal of Physics 12, 113037 (2010).
  • Roy et al. (2019) N. Roy, A. Sharma,  and R. Mukherjee, Physical Review A 99, 052342 (2019).
  • Douglas et al. (2015) J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble,  and D. E. Chang, Nature Photonics 9, 326 (2015).
  • Zhang et al. (2019) K. Zhang, P. Wang,  and Z. Song, Scientific Reports 9, 1 (2019).
  • Ménard et al. (2015) G. C. Ménard, S. Guissart, C. Brun, S. Pons, V. S. Stolyarov, F. Debontridder, M. V. Leclerc, E. Janod, L. Cario, D. Roditchev, et al., arXiv preprint arXiv:1506.06666  (2015).
  • Amin et al. (2019) S. T. Amin, B. Mera, N. Paunković,  and V. R. Vieira, Journal of Physics: Condensed Matter 31, 485402 (2019).
  • Viyuela et al. (2018) O. Viyuela, L. Fu,  and M. A. Martin-Delgado, Physical review letters 120, 017001 (2018).
  • Viyuela et al. (2016) O. Viyuela, D. Vodola, G. Pupillo,  and M. A. Martin-Delgado, Physical Review B 94, 125121 (2016).
  • Lepori and Dell’Anna (2017) L. Lepori and L. Dell’Anna, New Journal of Physics 19, 103030 (2017).
  • Anderson (1958) P. W. Anderson, Physical review 110 (1958).
  • Sarkar (2018) S. Sarkar, Scientific reports 8, 1 (2018).
  • Continentino (2017) M. Continentino, Quantum scaling in many-body systems (Cambridge University Press, 2017).
  • Malard et al. (2020b) M. Malard, D. Brandao, P. E. de Brito,  and H. Johannesson, arXiv preprint arXiv:2001.10079  (2020b).
  • Chen et al. (2008) S. Chen, L. Wang, Y. Hao,  and Y. Wang, Physical Review A 77, 032111 (2008).
  • Sadhukhan et al. (2020) D. Sadhukhan, A. Sinha, A. Francuz, J. Stefaniak, M. M. Rams, J. Dziarmaga,  and W. H. Zurek, Physical Review B 101, 144429 (2020).
  • Jones and Verresen (2019) N. G. Jones and R. Verresen, Journal of Statistical Physics 175, 1164 (2019).
  • Thorngren et al. (2020) R. Thorngren, A. Vishwanath,  and R. Verresen, arXiv preprint arXiv:2008.06638  (2020).
  • Kestner et al. (2011) J. Kestner, B. Wang, J. D. Sau,  and S. D. Sarma, Physical Review B 83, 174409 (2011).
  • Cheng and Tu (2011) M. Cheng and H.-H. Tu, Physical Review B 84, 094503 (2011).
  • Fidkowski et al. (2012) L. Fidkowski, R. Lutchyn, C. Nayak,  and M. Fisher, APS 2012, Q29 (2012).
  • Sau et al. (2011) J. D. Sau, B. Halperin, K. Flensberg,  and S. D. Sarma, Physical Review B 84, 144509 (2011).
  • Kraus et al. (2013) C. V. Kraus, M. Dalmonte, M. A. Baranov, A. M. Läuchli,  and P. Zoller, arXiv preprint arXiv:1302.0701  (2013).
  • Scaffidi et al. (2017) T. Scaffidi, D. E. Parker,  and R. Vasseur, Physical Review X 7, 041048 (2017).
  • Jiang et al. (2018) H.-C. Jiang, Z.-X. Li, A. Seidel,  and D.-H. Lee, Science bulletin 63, 753 (2018).
  • Rahul et al. (2021) S. Rahul, R. R. Kumar, Y. Kartik,  and S. Sarkar, Journal of the Physical Society of Japan 90, 094706 (2021).
  • Verresen et al. (2019) R. Verresen, R. Thorngren, N. G. Jones,  and F. Pollmann, arXiv preprint arXiv:1905.06969  (2019).
  • Verresen et al. (2018) R. Verresen, N. G. Jones,  and F. Pollmann, Physical review letters 120, 057001 (2018).
  • Verresen (2020) R. Verresen, arXiv preprint arXiv:2003.05453  (2020).
  • Tong et al. (2013) Q.-J. Tong, J.-H. An, J. Gong, H.-G. Luo,  and C. Oh, Physical Review B 87, 201109 (2013).
  • Olver et al. (2010) F. W. Olver, D. W. Lozier, R. F. Boisvert,  and C. W. Clark, NIST handbook of mathematical functions hardback and CD-ROM (Cambridge university press, 2010).
  • Sadhukhan and Dziarmaga (2021) D. Sadhukhan and J. Dziarmaga, arXiv preprint arXiv:2107.02508  (2021).
  • Cats et al. (2018) P. Cats, A. Quelle, O. Viyuela, M. Martin-Delgado,  and C. M. Smith, Physical Review B 97, 121106 (2018).
  • Gong et al. (2016) Z.-X. Gong, M. F. Maghrebi, A. Hu, M. L. Wall, M. Foss-Feig,  and A. V. Gorshkov, Physical Review B 93, 041102 (2016).

Appendix A Derivation of winding number for non-Hermitian system

The non-Hermiticity of the Hamiltonian reflects in the eigenvectors of the Hamiltonian asYin et al. (2018)

W=(12π)ππukL|ik|ukRukL|ukR𝑑k,W=\left(\frac{1}{2\pi}\right)\int_{-\pi}^{\pi}\frac{\langle u_{k}^{L}|i\partial_{k}|u_{k}^{R}\rangle}{\langle u_{k}^{L}|u_{k}^{R}\rangle}dk, (38)

where

ukL|=12(χx+iχyχx2+χy21),|ukR=12(χxiχyχx2+χy21).\langle u_{k}^{L}|=\frac{1}{\sqrt{2}}\left(\begin{matrix}\frac{\chi_{x}+i\chi_{y}}{\sqrt{\chi_{x}^{2}+\chi_{y}^{2}}}\\ -1\end{matrix}\right),\hskip 14.22636pt|u_{k}^{R}\rangle=\frac{1}{\sqrt{2}}\left(\begin{matrix}\frac{\chi_{x}-i\chi_{y}}{\sqrt{\chi_{x}^{2}+\chi_{y}^{2}}}\\ -1\end{matrix}\right). (39)

Due to the non-Hermiticity, the winding vectors become complex (at least one of them) and the criticality condition is given by hx2+hy2=0h_{x}^{2}+h_{y}^{2}=0. In Hermitian case, criticality occurs through single gap closing Dirac cone whereas in non-Hermitian case it is through (at least two) exceptional points. Due to the complex nature, the position of the exceptional point is given by,

χxre(k)=χyim(k)\displaystyle\chi_{x}^{re}(k)=-\chi_{y}^{im}(k) and χyre(k)=χxim(k),\displaystyle\chi_{y}^{re}(k)=\chi_{x}^{im}(k),
or
χxre(k)=χyim(k)\displaystyle\chi_{x}^{re}(k)=\chi_{y}^{im}(k) and χyre(k)=χxim(k).\displaystyle\chi_{y}^{re}(k)=-\chi_{x}^{im}(k). (40)

In this model, we observe only two exceptional points. Thus we define a complex topological angle as,

ϕ=ϕre+iϕim.\phi=\phi^{re}+i\phi^{im}. (41)

Here the real and imaginary parts contribute to the argument and amplitude respectively. Thus the winding number is not affected by the imaginary part. Thus

ei2ϕ\displaystyle e^{i2\phi} =\displaystyle= 1+itan(ϕ)1itan(ϕ)=χx+iχyχxiχy,\displaystyle\frac{1+i\tan(\phi)}{1-i\tan(\phi)}=\frac{\chi_{x}+i\chi_{y}}{\chi_{x}-i\chi_{y}},
ei2ϕ\displaystyle e^{-i2\phi} =\displaystyle= |χx+iχyχxiχy|,ei2ϕr=χx+iχyχxiχy|χx+iχyχxiχy|,\displaystyle\left|\frac{\chi_{x}+i\chi_{y}}{\chi_{x}-i\chi_{y}}\right|,\hskip 14.22636pte^{-i2\phi_{r}}=\frac{\frac{\chi_{x}+i\chi_{y}}{\chi_{x}-i\chi_{y}}}{\left|\frac{\chi_{x}+i\chi_{y}}{\chi_{x}-i\chi_{y}}\right|},
tan(2ϕr)\displaystyle\tan(2\phi_{r}) =\displaystyle= Im(χx+iχyχxiχy)Re(χx+iχyχxiχy).\displaystyle\frac{Im(\frac{\chi_{x}+i\chi_{y}}{\chi_{x}-i\chi_{y}})}{Re(\frac{\chi_{x}+i\chi_{y}}{\chi_{x}-i\chi_{y}})}. (42)

which can be represented in a single equation as,

tan(2ϕr)=tan(ϕ1)+tan(ϕ2)1tan(ϕ1)tan(ϕ2)=tan(ϕ1+ϕ2),\tan(2\phi_{r})=\frac{\tan(\phi_{1})+\tan(\phi_{2})}{1-\tan(\phi_{1})\tan(\phi_{2})}=\tan(\phi_{1}+\phi_{2}), (43)

where tan(ϕ1)=χyre(k)+χxim(k)χxre(k)+χyim(k)\tan(\phi_{1})=\frac{\chi_{y}^{re}(k)+\chi_{x}^{im}(k)}{\chi_{x}^{re}(k)+\chi_{y}^{im}(k)} and tan(ϕ2)=χyre(k)χxim(k)χxre(k)+χyim(k)\tan(\phi_{2})=\frac{\chi_{y}^{re}(k)-\chi_{x}^{im}(k)}{\chi_{x}^{re}(k)+\chi_{y}^{im}(k)}. The angles ϕ1\phi_{1} and ϕ2\phi_{2} are real and they produce the winding number as

W=12(12π)(kϕ1dk+kϕ2dk).W=\frac{1}{2}\left(\frac{1}{2\pi}\right)(\oint\partial_{k}\phi_{1}dk+\oint\partial_{k}\phi_{2}dk). (44)

For our model only χy\chi_{y} contains the imaginary part. Thus the exceptional points are located at (0,χyim)(0,\chi_{y}^{im}) and (0,χyim)(0,-\chi_{y}^{im}). The wrapping of winding vectors (χxre,χyre)(\chi_{x}^{re},\chi_{y}^{re}) around first (second) exceptional point gives complex angle ϕ1(ϕ2)\phi_{1}(\phi_{2}) with corresponding winding number W1(W2)W_{1}(W_{2}) respectively. Due to the non-Hermiticity, each exceptional point induces its own origin of pseudo-spin space and corresponding winding vectors. Thus we work on extended winding vectors to understand the non-Hermitian effect in the parameter space. i.e.,

χx(extended)=χxre(k)±χyim(k),\displaystyle\chi_{x}(extended)=\chi_{x}^{re}(k)\pm\chi_{y}^{im}(k),
χy(extended)=χyre(k)±χxim(k),\displaystyle\chi_{y}(extended)=\chi_{y}^{re}(k)\pm\chi_{x}^{im}(k), (45)

which correspond to parameter space F1(k,𝐌)F_{1}(k,\mathbf{M}) and F2(k,𝐌)F_{2}(k,\mathbf{M}) respectively.

Appendix B Detailed derivation of CRG equations

Considering Eq. 26, we calculate the CRG flow equations to the longer-range model with r=2r=2. Here x1,x2x1,x2 and x3,x4x3,x4 are critical and fixed lines respectively.The terms X1,2,Y1,2X_{1,2},Y_{1,2} and Z1,2Z_{1,2} are given by

X1,2\displaystyle X_{1,2} =\displaystyle= 2(21α1)3(2αδ+t1)33(±122α)(21α1)(2αδ+t1)2,\displaystyle-\frac{2\left(2^{1-\alpha}\mp 1\right)^{3}}{\left(2^{-\alpha}-\delta+t\mp 1\right)^{3}}-\frac{3\left(\pm 1-2^{2-\alpha}\right)\left(2^{1-\alpha}\mp 1\right)}{\left(2^{-\alpha}-\delta+t\mp 1\right)^{2}},
+\displaystyle+ ±123α2αδ+t1\displaystyle\frac{\pm 1-2^{3-\alpha}}{2^{-\alpha}-\delta+t\mp 1}
Y1,2\displaystyle Y_{1,2} =\displaystyle= 21α1(2αδ+t1)2,\displaystyle\frac{2^{1-\alpha}\mp 1}{\left(2^{-\alpha}-\delta+t\mp 1\right)^{2}},
Z1,2\displaystyle Z_{1,2} =\displaystyle= 2α(21α1)log(2)(2αδ+t1)221αlog(2)2αδ+t1.\displaystyle\frac{2^{-\alpha}\left(2^{1-\alpha}\mp 1\right)\log(2)}{\left(2^{-\alpha}-\delta+t\mp 1\right)^{2}}-\frac{2^{1-\alpha}\log(2)}{2^{-\alpha}-\delta+t\mp 1}.

1) In the vicinity of first exceptional point (parameter space corresponding to F1(k,𝐌)F1(k,\mathbf{M})), The CRG equations corresponding to k=0k=0 are given by,

dtdl\displaystyle\frac{dt}{dl} =\displaystyle= (12)(X2Y2),dαdl=(12)(X2Z2).\displaystyle\left(\frac{1}{2}\right)\left(-\frac{X_{2}}{Y_{2}}\right),\frac{d\alpha}{dl}=\left(\frac{1}{2}\right)\left(\frac{X_{2}}{Z_{2}}\right). (46)

with x1=12(2δ1)(red),x2=12αδ1(blue),x3=2αδ(green),x4=2αδ2α+8δ+12α+8(black)x1=\frac{1}{2}(-2\delta-1)\text{(red)},x2=-\frac{1}{2^{\alpha}}-\delta-1\text{(blue)},x3=2^{-\alpha}-\delta\text{(green)},x4=-\frac{2^{\alpha}\delta-2^{\alpha}+8\delta+1}{2^{\alpha}+8}\text{(black)}.

2) In the vicinity of first exceptional point (parameter space corresponding to F1(k,𝐌)F1(k,\mathbf{M})), The CRG equations corresponding to k=πk=\pi are given by,

dtdl\displaystyle\frac{dt}{dl} =\displaystyle= (12)(X1Y1),dαdl=(12)(X1Z1),\displaystyle\left(\frac{1}{2}\right)\left(-\frac{X_{1}}{Y_{1}}\right),\frac{d\alpha}{dl}=\left(\frac{1}{2}\right)\left(\frac{X_{1}}{Z_{1}}\right), (47)

with x1=12(12δ)(red),x2=12αδ+1(blue),x3=12(21αδ)(green),x4=2αδ+2α8δ+12α8(black).x1=\frac{1}{2}(1-2\delta)\text{(red)},x2=-\frac{1}{2^{\alpha}}-\delta+1\text{(blue)},x3=\frac{1}{2}\left(2^{1-\alpha}-\delta\right)\text{(green)},x4=-\frac{2^{\alpha}\delta+2^{\alpha}-8\delta+1}{2^{\alpha}-8}\text{(black)}.

3) In the vicinity of second exceptional point (parameter space corresponding to F2(k,𝐌)F2(k,\mathbf{M})), The CRG equations corresponding to k=0k=0 are given by,

dtdl\displaystyle\frac{dt}{dl} =\displaystyle= (12)(X2Y2),dαdl=(12)(X2Z2).\displaystyle\left(\frac{1}{2}\right)\left(-\frac{X_{2}}{Y_{2}}\right),\frac{d\alpha}{dl}=\left(\frac{1}{2}\right)\left(\frac{X_{2}}{Z_{2}}\right). (48)

Here x1=12(2δ1)(red),x2=12α+δ1(blue),x3=2α+δ(green),x4=2αδ+2α+8δ12α+8(black)x1=\frac{1}{2}(2\delta-1)\text{(red)},x2=-\frac{1}{2^{\alpha}}+\delta-1\text{(blue)},x3=2^{-\alpha}+\delta\text{(green)},x4=\frac{2^{\alpha}\delta+2^{\alpha}+8\delta-1}{2^{\alpha}+8}\text{(black)}.

4) In the vicinity of second exceptional point (parameter space corresponding to F2(k,𝐌)F2(k,\mathbf{M})), The CRG equations corresponding to k=πk=\pi are given by,

dtdl\displaystyle\frac{dt}{dl} =\displaystyle= (12)(X1Y1),dαdl=(12)(X1Z1).\displaystyle\left(\frac{1}{2}\right)\left(-\frac{X_{1}}{Y_{1}}\right),\frac{d\alpha}{dl}=\left(\frac{1}{2}\right)\left(\frac{X_{1}}{Z_{1}}\right). (49)

Here x1=12(2δ+1)(red),x2=12αδ+1(blue),x3=2α+δ(green),x4=2αδ2α8δ12α8(black)x1=\frac{1}{2}(2\delta+1)\text{(red)},x2=-\frac{1}{2^{\alpha}}-\delta+1\text{(blue)},x3=2^{-\alpha}+\delta\text{(green)},x4=\frac{2^{\alpha}\delta-2^{\alpha}-8\delta-1}{2^{\alpha}-8}\text{(black)}.