This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

More than one Author with different Affiliations

Qigang Liang School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_[email protected] Xuejun Xu School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_[email protected] Institute of Computational Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, China, [email protected]

A Two-Level Preconditioned Helmholtz-Jacobi-Davidson Method for the Maxwell Eigenvalue Problem

Qigang Liang School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_[email protected] Xuejun Xu School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_[email protected] Institute of Computational Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, China, [email protected]

Abstract:  In this paper, based on a domain decomposition (DD) method, we shall propose an efficient two-level preconditioned Helmholtz-Jacobi-Davidson (PHJD) method for solving the algebraic eigenvalue problem resulting from the edge element approximation of the Maxwell eigenvalue problem. In order to eliminate the components in orthogonal complement space of the eigenvalue, we shall solve a parallel preconditioned system and a Helmholtz projection system together in fine space. After one coarse space correction in each iteration and minimizing the Rayleigh quotient in a small dimensional Davidson space, we finally get the error reduction of this two-level PHJD method as γ=c(H)(1Cδ2H2)\gamma=c(H)(1-C\frac{\delta^{2}}{H^{2}}), where CC is a constant independent of the mesh size hh and the diameter of subdomains HH, δ\delta is the overlapping size among the subdomains, and c(H)c(H) decreasing as H0H\to 0, which means the greater the number of subdomains, the better the convergence rate. Numerical results supporting our theory shall be given.

Keywords:  Maxwell eigenvalue problem, edge element, Helmholtz projection, Jacobi-Davidson method, domain decomposition.

1 Introduction

In this paper, we develop an efficient numerical algorithm for solving the Maxwell eigenvalue problem which plays an important role in computational electromagnetism (see, e.g., [12, 4, 18, 15, 16, 3]). The governing equations are

{𝒄𝒖𝒓𝒍𝑬=jωμ𝑯xΩ,div(ϵ𝑬)=0xΩ,𝒄𝒖𝒓𝒍𝑯=jωϵ𝑬xΩ,div(μ𝑯)=0xΩ,𝒏×𝑬=𝟎xΩ,(μ𝑯)𝒏=0xΩ,\begin{cases}\bm{curl}\bm{E}=-j\omega\mu\bm{H}&\text{$x\in\Omega$},\\ div(\epsilon\bm{E})=0&\text{$x\in\Omega$},\\ \bm{curl}\bm{H}=j\omega\epsilon\bm{E}&\text{$x\in\Omega$},\\ div(\mu\bm{H})=0&\text{$x\in\Omega$},\\ \bm{n}\times\bm{E}=\bm{0}&\text{$x\in\partial\Omega$},\\ (\mu\bm{H})\cdot\bm{n}=0&\text{$x\in\partial\Omega$},\\ \end{cases} (1.1)

and we eliminate the magnetic field 𝑯\bm{H}, then obtain the equivalent eigenvalue problem for the electric field 𝑬\bm{E} as follows:

{𝒄𝒖𝒓𝒍μ1𝒄𝒖𝒓𝒍𝑬=ω2ϵ𝑬xΩ,div(ϵ𝑬)=0xΩ,𝒏×𝑬=𝟎xΩ,\begin{cases}\bm{curl}\mu^{-1}\bm{curl}\bm{E}=\omega^{2}\epsilon\bm{E}\ \ \ &\text{$x\in\Omega$},\\ div(\epsilon\bm{E})=0\ \ \ &\text{$x\in\Omega$},\\ \bm{n}\times\bm{E}=\bm{0}\ \ \ &\text{$x\in\partial\Omega$},\end{cases} (1.2)

where the resonant cavity ΩR3\Omega\subset R^{3} is a bounded convex polyhedral domain, the coefficients ϵ\epsilon\ and μ\mu\ are the real electric permittivity and magnetic permeability, respectively, jj is an imaginary unit, and the notation ω\omega is the resonant angular frequency of the electromagnetic wave for cavity Ω\Omega. For convenience, we denote that

𝒖:=𝑬,λ:=ϵ0μ0ω2,\bm{u}:=\bm{E},\ \ \ \ \ \lambda:=\epsilon_{0}\mu_{0}\omega^{2},

where ϵ0\epsilon_{0} and μ0\mu_{0} are electric permittivity and magnetic permeability in vacuum, respectively. So equations (1.2)\eqref{MaxwellEigenvalue} may be rewritten as:

{𝒄𝒖𝒓𝒍μr1𝒄𝒖𝒓𝒍𝒖=λϵr𝒖xΩ,div(ϵr𝒖)=0xΩ,𝒏×𝒖=𝟎xΩ,\begin{cases}\bm{curl}\mu_{r}^{-1}\bm{curl}\bm{u}=\lambda\epsilon_{r}\bm{u}\ \ \ &\text{$x\in\Omega$},\\ div(\epsilon_{r}\bm{u})=0\ \ \ &\text{$x\in\Omega$},\\ \bm{n}\times\bm{u}=\bm{0}\ \ \ &\text{$x\in\partial\Omega$},\end{cases} (1.3)

where the coefficients ϵr\epsilon_{r}\ and μr\mu_{r}\ are the real relative electric permittivity and magnetic permeability, respectively. For simplicity, we consider that the media is isotropic and homogeneous, i.e., the coefficients ϵr(1)\epsilon_{r}(\geq 1) and μr(1)\mu_{r}(\geq 1) both are positive constants.

Edge elements were introduced by Ne´\acute{e}de´\acute{e}lec (see, e.g., [19, 20]). Actually, the lowest-order edge elements are often referred to as the Whitney elements (see, e.g., [12, 4] and therein references). As edge elements may eliminate the nonphysical spurious nonzero eigenvalues, they have been widely used and studied to solve the Maxwell eigenvalue problem. It is known that the challenging task for solving the Maxwell eigenvalue problem is how to deal with the infinite dimensional kernel of the 𝒄𝒖𝒓𝒍\bm{curl} operator. Owing to this difficulty, one of approaches is chosen to so-called the penalty method, which imposes divergence-free condition by introducing the penalty term (see [7]), but it usually results in spurious eigenvalues. Alternative approach is the mixed variational method, which is introduced by Kikuchi (see [11]) and Boffi (see, e.g., [5, 4]). The method may be used to handle the kernel of the 𝒄𝒖𝒓𝒍\bm{curl} operator but simultaneously brings larger scale size computational problem and difficult saddle-problem. The standard method drops the divergence-free condition, though it may induce spurious zero frequency, doing so does not contaminate the nonzero eigenvalues (see, e.g., [12, 4]). Two grid methods have been widely used to solve elliptic eigenvalue problems (see, e.g., [27, 14, 28]). Its application to the Maxwell eigenvalue problem has been considered in [30]. The idea of two grid methods is that one may first compute an eigenvalue problem on the coarse grid and then compute a boundary value problem on the fine grid. Rayleigh quotient may be used to accelerate the approximation of the eigenvalue. Under the assumptions h=O(Hi)(i=2,3,4h=O(H^{i})(i=2,3,4, see, [27], [30], [28]), asymptotically optimal error estimates may be obtained, respectively. Based on the de Rham complex, Hiptmair and Neymeyr (see [13]) proposed a projected preconditioned inverse iterative method. It can handle the kernel of the 𝒄𝒖𝒓𝒍\bm{curl} operator by the Helmholtz projection. A multilevel preconditioned technique is chosen to accelerate the inverse iteration procedure. This idea is also extended to the adaptive discretization for the Maxwell eigenvalue problem (see [9]).

The two-level preconditioned Jacobi-Davidson methods for eigenvalue problems were proposed by Zhao, Hwang and Cai (see [29]) and further developed and analyzed by Wang and Xu (see [25, 26]) for 2m2m-order (m=1,2)(m=1,2) elliptic eigenvalue problems. The convergence rate of the first eigenvalue of the elliptic eigenvalue problems is bounded by c(H)(1Cδ2m1H2m1)2c(H)(1-C\frac{\delta^{2m-1}}{H^{2m-1}})^{2} (m=1,2)(m=1,2). The first eigenvalue of the partial differential operator is usually so-called principal eigenvalue(see, e.g., [10]). In this paper, based a domain decomposition method, we shall propose an efficient and highly parallel two-level preconditioned Helmholtz-Jacobi-Davidson method (PHJD) for solving the Maxwell eigenvalue problem. We shall prove that the convergence rate of the principal eigenvalue is bounded by c(H)(1Cδ2H2)2c(H)(1-C\frac{\delta^{2}}{H^{2}})^{2}, i.e.,

λk+1λ1hc(H)(1Cδ2H2)2(λkλ1h),\lambda^{k+1}-\lambda_{1}^{h}\leq c(H)(1-C\frac{\delta^{2}}{H^{2}})^{2}(\lambda^{k}-\lambda_{1}^{h}), (1.4)

where CC is a constant independent of the mesh size hh and the diameter of subdomains HH, δ\delta is the overlapping size among the subdomains, λ1h\lambda_{1}^{h} is the first discretized eigenvalue for the Maxwell eigenvalue problem and λk\lambda^{k} is the kk-th iteration of the two-level PHJD method. In addition, our algorithm works very well when h<<H4h<<H^{4} in contrast to the two grid method which needs h=O(H3)h=O(H^{3}) for the Maxwell eigenvalue problem(see [30]). Meanwhile, our PHJD method holds good scalabilities, which shall be verified by our numerical experiments.

We must emphasize that the application of the two-level domain decomposition preconditioned algorithm to the Maxwell eigenvalue problem is nontrivial. The first difficulty is that the condition

|λ1hλ1|+uuh0+huuha=O(h2)|\lambda_{1}^{h}-\lambda_{1}|+||u-u_{h}||_{0}+h||u-u_{h}||_{a}=O(h^{2}) (1.5)

holds for 2m2m-order(m=1,2m=1,2) elliptic problems (see [26]), but it is not true for the first-type edge elements because the polynomial space is incomplete; The second difficulty is that the kernel of the 𝒄𝒖𝒓𝒍\bm{curl} operator in 𝑯0(𝒄𝒖𝒓𝒍;Ω)\bm{H}_{0}(\bm{curl};\Omega), which is H01(Ω)\nabla{H_{0}^{1}(\Omega)} in trivial topology domain, is very large while the kernel of the gradient operator in H01(Ω)H_{0}^{1}(\Omega) is zero space. Hence, if we take advantage of Jacobi-Davidson method to solve the algebraic system resulting from the edge element approximation of the Maxwell eigenvalue problem directly, we shall fail to work due to the fact that the iterative solution may plunge into the kernel of the 𝒄𝒖𝒓𝒍\bm{curl} operator; The third difficulty is that the discrete divergence-free space is non-nested for 𝑯0(𝒄𝒖𝒓𝒍;Ω)𝑯(div0;Ω;ϵr)\bm{H}_{0}(\bm{curl};\Omega)\cap\bm{H}(div_{0};\Omega;\epsilon_{r}) (defined in the following, (2.1),(2.2)\eqref{curldefinition},\eqref{div0definition}), which means that the discrete edge element space is essentially nonconforming for the space 𝑯0(𝒄𝒖𝒓𝒍;Ω)𝑯(div0;Ω;ϵr)\bm{H}_{0}(\bm{curl};\Omega)\cap\bm{H}(div_{0};\Omega;\epsilon_{r}). In this paper, we shall overcome these difficulties, and try to prove the convergence result of the principal eigenvalue is almost near optimal, i.e., (1.4)\eqref{introeigenvaluerate} is true.

The outline of this paper is organized as follows: Some preliminaries are introduced in Section 2. In Section 3, our two-level preconditioned Helmholtz-Jacobi-Davidson method for the Maxwell eigenvalue problem is proposed. Some useful lemmas and the main convergence analysis are given in Section 4. Finally we present our numerical results in Section 5.

2 The model problem and preliminary

Let ΩRd,d=2,3\Omega\subset R^{d},\ d=2,3 be a bounded convex polygonal or polyhedral domain. We use the standard notations for the Sobolev spaces and denote

𝑯0(𝒄𝒖𝒓𝒍;Ω):={{𝒖L2(Ω)2|curl𝒖L2(Ω),𝒖𝒕|Ω=0}(ifd=2),{𝒖L2(Ω)3|𝒄𝒖𝒓𝒍𝒖L2(Ω)3,𝒖×𝒏|Ω=𝟎}(ifd=3),\bm{H}_{0}(\bm{curl};\Omega):=\begin{cases}\{\bm{u}\in L^{2}(\Omega)^{2}\ |\ curl\bm{u}\in L^{2}(\Omega),\bm{u}\cdot\bm{t}|_{\partial{\Omega}}=0\ \}&(if\ d=2),\\ \{\bm{u}\in L^{2}(\Omega)^{3}\ |\ \bm{curl}\bm{u}\in L^{2}(\Omega)^{3},\bm{u}\times\bm{n}|_{\partial{\Omega}}=\bm{0}\ \}&(if\ d=3),\\ \end{cases} (2.1)

equipped with the norm 𝒖𝒄𝒖𝒓𝒍:={𝒖2+𝒄𝒖𝒓𝒍𝒖2}12||\bm{u}||_{\bm{curl}}:=\{||\bm{u}||^{2}+||\bm{curl}\bm{u}||^{2}\}^{\frac{1}{2}}, where curl𝒖(d=2)curl\bm{u}\ (d=2) denotes a scale variable u2x1u1x2\frac{\partial{u_{2}}}{\partial{x_{1}}}-\frac{\partial{u_{1}}}{\partial{x_{2}}}(xi\frac{\partial}{\partial{x_{i}}} means a weak derivative), 𝒄𝒖𝒓𝒍𝒖(d=3)\bm{curl}\bm{u}\ (d=3) denotes a vector (u3x2u2x3,u1x3u3x1,u2x1u1x2)(\frac{\partial{u_{3}}}{\partial{x_{2}}}-\frac{\partial{u_{2}}}{\partial{x_{3}}},\frac{\partial{u_{1}}}{\partial{x_{3}}}-\frac{\partial{u_{3}}}{\partial{x_{1}}},\frac{\partial{u_{2}}}{\partial{x_{1}}}-\frac{\partial{u_{1}}}{\partial{x_{2}}}), 𝒏\bm{n} denotes the outer unit normal vector, 𝒕\bm{t} denotes the unit tangential vector along the boundary Ω\partial{\Omega}, and ||||||\cdot|| symbols usual L2L^{2}-norm induced by L2L^{2}-inner product (,)(\cdot,\cdot). We also denote that

𝑯(div;Ω;ϵr):={𝒖L2(Ω)d|div(ϵr𝒖)L2(Ω)}(d=2,3)\bm{H}(div;\Omega;\epsilon_{r}):=\{\bm{u}\in L^{2}(\Omega)^{d}\ |\ div(\epsilon_{r}\bm{u})\in L^{2}(\Omega)\ \}\ \ \ \text{$(d=2,3)$}

and

𝑯(div0;Ω;ϵr):={𝒖𝑯(div;Ω;ϵr)|div(ϵr𝒖)=0}(d=2,3),\bm{H}(div_{0};\Omega;\epsilon_{r}):=\{\bm{u}\in\bm{H}(div;\Omega;\epsilon_{r})\ |\ div(\epsilon_{r}\bm{u})=0\ \}\ \ \ \text{$(d=2,3)$}, (2.2)

equipped with the norm 𝒖div:={𝒖2+div(ϵr𝒖)2}12||\bm{u}||_{div}:=\{||\bm{u}||^{2}+||div(\epsilon_{r}\bm{u})||^{2}\}^{\frac{1}{2}}, where div𝒖div\bm{u} denotes i=1duixi\sum_{i=1}^{d}\frac{\partial{u_{i}}}{\partial{x_{i}}}. For the convenience of symbols, we only consider 3-dimensional Maxwell eigenvalue problem in the following, but our algorithm also works very well and theoretical results also hold for 2-dimensional Maxwell eigenvalue problem.

2.1 Maxwell eigenvalue problem

We focus on the governing equations (1.3)\eqref{MaxwellEigenvalueu}. It is known that the equivalent variational form is as follows(see, e.g., [4]):

{Find (λ,𝒖)R×𝑯0(𝒄𝒖𝒓𝒍;Ω), such that λ>0,𝒖b=1,a(𝒖,𝒗)=λb(𝒖,𝒗)𝒗𝑯0(𝒄𝒖𝒓𝒍;Ω),\begin{cases}\text{Find $(\lambda,\bm{u})\in R\times\bm{H}_{0}(\bm{curl};\Omega)$, such that $\lambda>0,||\bm{u}||_{b}=1$},\\ a(\bm{u},\bm{v})=\lambda b(\bm{u},\bm{v})\ \ \ \ \forall\ \bm{v}\in\bm{H}_{0}(\bm{curl};\Omega),\end{cases} (2.3)

where a(𝒖,𝒗):=(μr1𝒄𝒖𝒓𝒍𝒖,𝒄𝒖𝒓𝒍𝒗),b(𝒖,𝒗):=(ϵr𝒖,𝒗)a(\bm{u},\bm{v}):=(\mu_{r}^{-1}\bm{curl}\bm{u},\bm{curl}\bm{v}),\ b(\bm{u},\bm{v}):=(\epsilon_{r}\bm{u},\bm{v}). Define the norm ||||b:=b(,)||\cdot||_{b}:=\sqrt{b(\cdot,\cdot)} in 𝑯0(𝒄𝒖𝒓𝒍;Ω)\bm{H}_{0}(\bm{curl};\Omega). Due to the fact that the Poincare´\acute{e} inequality holds in 𝑯0(𝒄𝒖𝒓𝒍;Ω)𝑯(div0;Ω;ϵr)\bm{H}_{0}(\bm{curl};\Omega)\cap\bm{H}(div_{0};\Omega;\epsilon_{r}), we may define the norm ||||a:=a(,)||\cdot||_{a}:=\sqrt{a(\cdot,\cdot)} in 𝑯0(𝒄𝒖𝒓𝒍;Ω)𝑯(div0;Ω;ϵr)\bm{H}_{0}(\bm{curl};\Omega)\cap\bm{H}(div_{0};\Omega;\epsilon_{r}). For any 𝒇L2(Ω)3\bm{f}\in L^{2}(\Omega)^{3}, define T:L2(Ω)3𝑯0(𝒄𝒖𝒓𝒍;Ω)𝑯(div0;Ω;ϵr)T:L^{2}(\Omega)^{3}\to\bm{H}_{0}(\bm{curl};\Omega)\cap\bm{H}(div_{0};\Omega;\epsilon_{r}), such that

a(T𝒇,𝒗)=b(𝒇,𝒗)𝒗𝑯0(𝒄𝒖𝒓𝒍;Ω)𝑯(div0;Ω;ϵr).a(T\bm{f},\bm{v})=b(\bm{f},\bm{v})\ \ \ \forall\ \bm{v}\in\bm{H}_{0}(\bm{curl};\Omega)\cap\bm{H}(div_{0};\Omega;\epsilon_{r}). (2.4)

Combining with the Poincare´\acute{e} inequality, we know that the definition of the operator TT is meaningful. It is obvious that TT is symmetric in the sense of b(,)b(\cdot,\cdot) because of the definitions of a(,)a(\cdot,\cdot) and b(,)b(\cdot,\cdot). Due to the fact that 𝑯0(𝒄𝒖𝒓𝒍;Ω)𝑯(div0;Ω;ϵr)\bm{H}_{0}(\bm{curl};\Omega)\cap\bm{H}(div_{0};\Omega;\epsilon_{r}) is embedded compactly in L2(Ω)3L^{2}(\Omega)^{3} (see, e.g., [1, 12]), we know that the operator T:L2(Ω)3L2(Ω)3T:L^{2}(\Omega)^{3}\to L^{2}(\Omega)^{3} is a compact operator. Furthermore, the operator T:(L2(Ω)3,b(,))(L2(Ω)3,b(,))T:(L^{2}(\Omega)^{3},b(\cdot,\cdot))\to(L^{2}(\Omega)^{3},b(\cdot,\cdot)) is also a compact operator. Hence, owing to the well-known Riesz-Schauder theorem, it is known that

T𝒖i=1λi𝒖i.T\bm{u}_{i}=\frac{1}{\lambda_{i}}\bm{u}_{i}.

Meanwhile,

0<λ1λ2λ3λn+n+,0<\lambda_{1}\leq\lambda_{2}\leq\lambda_{3}\leq...\leq\lambda_{n}\rightarrow+\infty\ \ \ \ n\to+\infty,

and corresponding eigenvectors are

𝒖1,𝒖2,𝒖3,,\bm{u}_{1},\bm{u}_{2},\bm{u}_{3},...,

which satisfy

a(𝒖i,𝒖j)=λib(𝒖i,𝒖j)=δijλi,a(\bm{u}_{i},\bm{u}_{j})=\lambda_{i}b(\bm{u}_{i},\bm{u}_{j})=\delta_{ij}\lambda_{i},

where δij\delta_{ij} is the Kronecker notation. Obviously the eigen-pair in (2.3)\eqref{continuosvariation} and the eigen-pair of the operator TT are all corresponding(see [5, 30]).

2.2 Finite element discretization

We use the standard edge elements to discretize 𝑯0(𝒄𝒖𝒓𝒍;Ω)\bm{H}_{0}(\bm{curl};\Omega) and our ultimate conclusions are true for all other edge elements(see [19, 20]). For simplicity, we only consider the lowest-order edge element. The local polynomial space is

ND(K)={𝒗|𝒗=𝒂+𝒃×𝒙,𝒂,𝒃𝑹3𝒙K},ND(K)=\{\bm{v}\ |\ \bm{v}=\bm{a}+\bm{b}\times\bm{x},\ \ \ \bm{a},\bm{b}\in\bm{R}^{3}\ \bm{x}\in K\ \}, (2.5)

and the moments are

M(𝒗,p0,eij)=eij𝒗𝒕ijp0𝑑sp0P0(K), 1i<j4,M(\bm{v},p_{0},e_{ij})=\int_{e_{ij}}\bm{v}\cdot\bm{t}_{ij}p_{0}ds\ \ \forall\ p_{0}\in P_{0}(K),\ \ 1\leq i<j\leq 4,

where 𝒕ij\bm{t}_{ij} is the unit tangential vector along edge eije_{ij}, and local basic vector fields are

𝝋ijK=λiKλjKλjKλiK, 1i<j4,\bm{\varphi}^{K}_{ij}=\lambda_{i}^{K}\nabla{\lambda_{j}^{K}}-\lambda_{j}^{K}\nabla{\lambda_{i}^{K}},\ \ 1\leq i<j\leq 4,

where the λiK\lambda_{i}^{K} is the barycentric coordinate corresponding to the ii-th node on the tetrahedron KK. So our edge element space is

Eh(Ωh):={𝒗𝑯0(𝒄𝒖𝒓𝒍;Ω)|𝒗|KND(K),Kτh}.E_{h}(\Omega_{h}):=\{\bm{v}\in\bm{H}_{0}(\bm{curl};\Omega)\ |\ \bm{v}|_{K}\in ND(K),\ \forall\ K\in\tau_{h}\ \}.

Then the discrete standard variational form of (2.3)\eqref{continuosvariation} may be written as follows:

{Find (λh,𝒖h)R×Eh(Ωh), such that λh>0,𝒖hb=1a(𝒖h,𝒗)=λhb(𝒖h,𝒗)𝒗Eh(Ωh).\begin{cases}\text{Find $(\lambda^{h},\bm{u}^{h})\in R\times E_{h}(\Omega_{h})$, such that $\lambda^{h}>0,||\bm{u}^{h}||_{b}=1$}\\ a(\bm{u}^{h},\bm{v})=\lambda^{h}b(\bm{u}^{h},\bm{v})\ \ \ \ \forall\ \bm{v}\in E_{h}(\Omega_{h}).\end{cases} (2.6)

Define the discrete divergence-free space to be Eh0(Ωh;ϵr):={𝒗Eh(Ωh)|b(𝒗,ph)=0,phSh(Ωh)}E_{h}^{0}(\Omega_{h};\epsilon_{r}):=\{\bm{v}\in E_{h}(\Omega_{h})\ |\ b(\bm{v},\nabla{p}_{h})=0,\ \ \forall\ p_{h}\in S_{h}(\Omega_{h})\ \}, with the Sh(Ωh)S_{h}(\Omega_{h}) denoting a continuous piecewise linear polynomial space in Ω\Omega with vanishing trace on Ω\partial{\Omega} and define the discrete operator Th:L2(Ω)3Eh0(Ωh;ϵr)T_{h}:L^{2}(\Omega)^{3}\to E_{h}^{0}(\Omega_{h};\epsilon_{r}) as follows: 𝒇L2(Ω)3\forall\bm{f}\in L^{2}(\Omega)^{3},

a(Th𝒇,𝒗)=b(𝒇,𝒗)𝒗Eh0(Ωh;ϵr).a(T_{h}\bm{f},\bm{v})=b(\bm{f},\bm{v})\ \ \ \ \ \forall\ \bm{v}\in E_{h}^{0}(\Omega_{h};\epsilon_{r}). (2.7)

Due to the discrete Poincare´\acute{e} inequality (see, e.g., [12]), we know that the definition of ThT_{h} is meaningful and may define the norm ||||a:=a(,)||\cdot||_{a}:=\sqrt{a(\cdot,\cdot)} in Eh0(Ωh;ϵr)E_{h}^{0}(\Omega_{h};\epsilon_{r}). It is easy to see that ThT_{h} is symmetric and compact. Because of the well-known Riesz-Schauder theorem, we have

Th𝒖ih=1λih𝒖ih.T_{h}\bm{u}_{i}^{h}=\frac{1}{\lambda_{i}^{h}}\bm{u}^{h}_{i}.

Meanwhile,

0<λ1hλ2hλ3hλndh,0<\lambda_{1}^{h}\leq\lambda_{2}^{h}\leq\lambda_{3}^{h}\leq...\leq\lambda_{nd}^{h},

and the corresponding eigenvectors are

𝒖1h,𝒖2h,𝒖3h,,𝒖ndh,\bm{u}_{1}^{h},\bm{u}_{2}^{h},\bm{u}_{3}^{h},...,\bm{u}_{nd}^{h},

which satisfy

a(𝒖ih,𝒖jh)=λihb(𝒖ih,𝒖jh)=δijλih,a(\bm{u}^{h}_{i},\bm{u}^{h}_{j})=\lambda_{i}^{h}b(\bm{u}^{h}_{i},\bm{u}^{h}_{j})=\delta_{ij}\lambda^{h}_{i},

where nd=dim(Eh0(Ωh;ϵr))nd=dim(E_{h}^{0}(\Omega_{h};\epsilon_{r})). Similar to the continuous case, the eigen-pair in (2.6)\eqref{discreteH0curl} and the eigen-pair of the operator ThT_{h} are all corresponding. For the convenience of the following error estimate, we define the operator Ah:Eh(Ωh)Eh(Ωh)A^{h}:E_{h}(\Omega_{h})\to E_{h}(\Omega_{h}) such that

b(Ah𝒗h,𝒘h)=a(𝒗h,𝒘h)𝒘hEh(Ωh),b(A^{h}\bm{v}^{h},\bm{w}^{h})=a(\bm{v}^{h},\bm{w}^{h})\ \ \ \ \forall\ \bm{w}^{h}\in E_{h}(\Omega_{h}),

which is the discrete analog of the operator 𝒄𝒖𝒓𝒍μr1𝒄𝒖𝒓𝒍\bm{curl}\mu_{r}^{-1}\bm{curl} in Eh(Ωh)E_{h}(\Omega_{h}).

Remark 2.1

In this paper, we are interested in the case that the principal eigenvalue is simple, i.e.,

0<λ1<λ2λ3λn+,n+,0<\lambda_{1}<\lambda_{2}\leq\lambda_{3}\leq...\leq\lambda_{n}\to+\infty,\ \ \ \ n\to+\infty,

and for the corresponding discrete version, we also have

0<λ1h<λ2hλ3hλndh.0<\lambda_{1}^{h}<\lambda_{2}^{h}\leq\lambda_{3}^{h}\leq...\leq\lambda_{nd}^{h}.

The principal eigenvalue with simple algebraic multiplicity is common. For example, the resonant domain Ω\Omega is a cuboid in R3R^{3}, where the length of each edge is different. Specifically, when the resonant cavity Ω=(0,L)×(0,K)×(0,R)\Omega=(0,L)\times(0,K)\times(0,R) is equipped with vacuum in (1.3)\eqref{MaxwellEigenvalueu}, we may know that λ=(πL)2m2+(πK)2n2+(πR)2l2\lambda=(\frac{\pi}{L})^{2}m^{2}+(\frac{\pi}{K})^{2}n^{2}+(\frac{\pi}{R})^{2}l^{2}, where m,nm,n and ll are nonnegative integers and at most one of elements in {m,n,l}\{m,n,l\} takes zero(see [3]).

It is known that we have the following spacial decomposition properties(see [4])

𝑯0(𝒄𝒖𝒓𝒍;Ω)=H01(Ω)M(λ1)M(λ1),\bm{H}_{0}(\bm{curl};\Omega)=\nabla{H_{0}^{1}(\Omega)}\oplus M(\lambda_{1})\oplus M^{\perp}(\lambda_{1}), (2.8)
Eh(Ωh)=Sh(Ωh)Mh(λ1)Mh(λ1),E_{h}(\Omega_{h})=\nabla{S_{h}(\Omega_{h})}\oplus M_{h}(\lambda_{1})\oplus M_{h}^{\perp}(\lambda_{1}), (2.9)

where M(λ1)=span{𝒖1},Mh(λ1)=span{𝒖1h}M(\lambda_{1})=span\{\bm{u}_{1}\},\ M_{h}(\lambda_{1})=span\{\bm{u}^{h}_{1}\} and the notation \oplus denotes the b(,)b(\cdot,\cdot)-orthogonal(also a(,)a(\cdot,\cdot)-orthogonal) direct sum. For the convenience of the following symbols, we denote that K0h:Eh(Ωh)Sh(Ωh),Q1h:Eh(Ωh)Mh(λ1),Q2h:Eh(Ωh)Mh(λ1)K_{0}^{h}:E_{h}(\Omega_{h})\to\nabla{S_{h}(\Omega_{h})},\ Q_{1}^{h}:E_{h}(\Omega_{h})\to M_{h}(\lambda_{1}),\ Q_{2}^{h}:E_{h}(\Omega_{h})\to M_{h}^{\perp}(\lambda_{1}) are the b(,)b(\cdot,\cdot)-orthogonal projections. Similarly, we may define the operator K0H,Q1H,Q2HK_{0}^{H},Q_{1}^{H},Q_{2}^{H} on the coarse level and let Z(0):=IK0HZ^{(0)}:=I-K_{0}^{H}.

It is obvious that Eh0(Ωh;ϵr)M(λ1)M(λ1)E_{h}^{0}(\Omega_{h};\epsilon_{r})\not\subset M(\lambda_{1})\oplus M^{\perp}(\lambda_{1}). Denote Hϵr:𝑯0(𝒄𝒖𝒓𝒍;Ω)M(λ1)M(λ1)H_{\epsilon_{r}}:\bm{H}_{0}(\bm{curl};\Omega)\to M(\lambda_{1})\oplus M^{\perp}(\lambda_{1}) to be b(,)b(\cdot,\cdot)-orthogonal projection, which is usually so-called Hodge operator, and let V+:=HϵrEh0(Ωh;ϵr)V^{+}:=H_{\epsilon_{r}}E_{h}^{0}(\Omega_{h};\epsilon_{r}). It is easy to see that the elements in V+V^{+} are not finite element functions, but 𝒄𝒖𝒓𝒍V+RT0(Ωh)\bm{curl}V^{+}\subset RT_{0}(\Omega_{h}), where RT0(Ωh)RT_{0}(\Omega_{h}) is a well-known Raviart-Thomas element space with vanishing normal trace along the boundary Ω\partial{\Omega}. We define an operator Ph:M(λ1)M(λ1)V+P^{h}:M(\lambda_{1})\oplus M^{\perp}(\lambda_{1})\to V^{+} as follows:

a(𝒖Ph𝒖,𝒗)=0𝒗V+.a(\bm{u}-P^{h}\bm{u},\bm{v})=0\ \ \ \ \forall\ \bm{v}\in V^{+}. (2.10)

Furthermore, we may also define Ph:𝑯0(𝒄𝒖𝒓𝒍;Ω)V+P^{h}:\bm{H}_{0}(\bm{curl};\Omega)\to V^{+} by a trivial extension.

According to the definition of PhP^{h}, we may obtain the following lemma (see [23]).

Lemma 2.1

Let Ω\Omega be a convex bounded polyhedral domain, we have

𝒖hPh𝒖hbCh𝒄𝒖𝒓𝒍𝒖hb𝒖hEh0(Ωh;ϵr).||\bm{u}^{h}-P^{h}\bm{u}^{h}||_{b}\leq Ch||\bm{curl}\bm{u}^{h}||_{b}\ \ \ \text{$\forall\ \bm{u}^{h}\in E^{0}_{h}(\Omega_{h};\epsilon_{r})$}. (2.11)

The following a prior error estimates (see Theorem 5.4 in [5], Subsection 4.3 and Subsection 4.4 in [12]) are useful in our convergence analysis. The proof of the estimates essentially needs strengthened discrete compactness properties and standard approximation properties. For interested readers, please refer to Theorem 19.6 in [4] or [21] for details.

Theorem 2.2

Let Ω\Omega be a bounded convex polyhedral domain. There exists h0>0h_{0}>0 such that for any hh (0<h<h0)(0<h<h_{0}) and for any λi\lambda_{i} (1<i<+)(1<i<+\infty), we have

|λiλi,jh|Ch2asλi,jhλi,j=1,2,,mi,|\lambda_{i}-\lambda_{i,j}^{h}|\leq Ch^{2}\ \ as\ \ \lambda_{i,j}^{h}\to\lambda_{i},\ \ \ \ j=1,2,...,m_{i},\ \

where C is independent of hh but not λi\lambda_{i} and mim_{i} is the algebraic multiplicity of λi\lambda_{i}. Moreover,

θ(Vλi,Mh(λi))Ch,\theta(V_{\lambda_{i}},M_{h}(\lambda_{i}))\leq Ch,

where Mh(λi)=j=1miVλi,jhM_{h}(\lambda_{i})=\oplus_{j=1}^{m_{i}}V_{\lambda^{h}_{i,j}}, dim(Vλi)=midim(V_{\lambda_{i}})=m_{i}, the notation VλV_{\lambda} denotes the eigenvector space corresponding to the eigenvalue λ\lambda, the θ(M,N)\theta(M,N) denotes the gap between subspace M𝐇0(𝐜𝐮𝐫𝐥;Ω)M\subset\bm{H}_{0}(\bm{curl};\Omega) and subspace N𝐇0(𝐜𝐮𝐫𝐥;Ω)N\subset\bm{H}_{0}(\bm{curl};\Omega), i.e.,

θ(M,N)=max{θ~(M,N),θ~(N,M)}\theta(M,N)=\max\{\widetilde{\theta}(M,N),\widetilde{\theta}(N,M)\}
θ~(M,N)=sup𝒖b=1,𝒖Minf𝒗N𝒖𝒗b,\widetilde{\theta}(M,N)=\sup_{||\bm{u}||_{b}=1,\ \bm{u}\in M}\inf_{\bm{v}\in N}||\bm{u}-\bm{v}||_{b},

or

θ~(M,N)=sup𝒖c=1,𝒖Minf𝒗N𝒖𝒗c,\widetilde{\theta}(M,N)=\sup_{||\bm{u}||_{c}=1,\ \bm{u}\in M}\inf_{\bm{v}\in N}||\bm{u}-\bm{v}||_{c},

where the norm ||||c:=a(,)+b(,)||\cdot||_{c}:=\sqrt{a(\cdot,\cdot)+b(\cdot,\cdot)} is equivalent to the norm ||||𝐜𝐮𝐫𝐥||\cdot||_{\bm{curl}} in 𝐇0(𝐜𝐮𝐫𝐥;Ω)\bm{H}_{0}(\bm{curl};\Omega).

Remark 2.2

In general BanachBanach Spaces, the gap between subspace MM and subspace NN does not construct a distance due to the fact that it does not satisfy the triangle inequality but does satisfy

θ(M,N)d(M,N)2θ(M,N),\theta(M,N)\leq d(M,N)\leq 2\theta(M,N),

where the d(M,N)d(M,N) denotes the Hausdorff distance between subspace MM and subspace NN. For interested readers, please refer to [17] for details on the distinction between the gap and Hausdorff distance.

From Theorem 2.1 and Remark 2.2, we obtain the following corollary.

Corollary 2.3

Under the assumption of Theorem 2.2, let (λ1h,𝐮1h)(\lambda_{1}^{h},\bm{u}_{1}^{h}) be the first eigen-pair of (2.6)\eqref{discreteH0curl}, 𝐮1hb=1||\bm{u}_{1}^{h}||_{b}=1 (𝐮1hc=1)(||\bm{u}_{1}^{h}||_{c}=1). Then there exists h0>0h_{0}>0 such that when 0<h<h00<h<h_{0}, it holds that

|λ1λ1h|Ch2,|\lambda_{1}-\lambda_{1}^{h}|\leq Ch^{2}, (2.12)

and there exists 𝐮1M(λ1)\bm{u}_{1}\in M(\lambda_{1}), 𝐮1b=1||\bm{u}_{1}||_{b}=1  (𝐮1c=1)(||\bm{u}_{1}||_{c}=1), such that

𝒖1𝒖1hbCh,(𝒖1𝒖1hcCh).||\bm{u}_{1}-\bm{u}_{1}^{h}||_{b}\leq Ch,\ \ \ \ (||\bm{u}_{1}-\bm{u}_{1}^{h}||_{c}\leq Ch). (2.13)

3 The two-level PHJD method

3.1 Domain decomposition

In this subsection, we shall introduce the domain decomposition and the corresponding subspaces decomposition.

Let the coarse quasi-uniform triangulation be τH:={Ωi}i=1N\tau_{H}:=\{\Omega_{i}\}_{i=1}^{N}, where H:=max{Hi|i=1,2,,N}H:=max\{H_{i}\ |\ i=1,2,...,N\} and Hi:=diam(Ωi)H_{i}:=diam(\Omega_{i}). The fine shaped-regular and quasi-uniform triangulation is obtained by subdividing τH\tau_{H} and we denote it by τh\tau_{h}. We may construct the edge element spaces EH(ΩH)Eh(Ωh)E_{H}(\Omega_{H})\subset E_{h}(\Omega_{h}) on τH\tau_{H} and τh\tau_{h} but it is well known that EH0(ΩH;ϵr)Eh0(Ωh;ϵr)E^{0}_{H}(\Omega_{H};\epsilon_{r})\not\subset E^{0}_{h}(\Omega_{h};\epsilon_{r}). To get the overlapping subdomains (Ωi, 1iN)(\Omega_{i}^{{}^{\prime}},\ 1\leq i\leq N), we enlarge the subdomains Ωi\Omega_{i} by adding fine elements inside Ωh\Omega_{h} layer by layer such that Ωi\partial\Omega_{i}^{{}^{\prime}} does not cut through any fine element. To measure the overlapping width between neighboring subdomains, we define the δi:=dist(ΩiΩ,ΩiΩ)\delta_{i}:=dist(\partial\Omega_{i}\setminus\partial\Omega,\partial\Omega_{i}^{{}^{\prime}}\setminus\partial\Omega) and denote δ:=min{δi|i=1,2,,N}\delta:=min\{\delta_{i}\ |\ i=1,2,...,N\}. We also assume that HiH_{i} is the diameter of the Ωi\Omega_{i}^{{}^{\prime}}.

The local subspaces may be defined by

V(i):={𝒗hEh(Ωh)|𝒗h(𝒙)=𝟎,𝒙ΩΩi},V^{(i)}:=\{\bm{v}_{h}\in E_{h}(\Omega_{h})\ |\ \bm{v}_{h}(\bm{x})=\bm{0},\ \ \bm{x}\in\Omega\setminus\Omega_{i}^{{}^{\prime}}\ \}, (3.1)
V0(i):={𝒗h(i)V(i)|b(𝒗h(i),ph)=0,phSh(i)},V_{0}^{(i)}:=\{\bm{v}^{(i)}_{h}\in V^{(i)}\ |\ b(\bm{v}_{h}^{(i)},\nabla{p}_{h})=0,\ \ \ \ p_{h}\in S^{(i)}_{h}\ \}, (3.2)

which are associated with the local fine mesh in Ωi(i=1,2,,N)\Omega_{i}^{{}^{\prime}}\ (i=1,2,...,N), where Sh(i):={phSh(Ωh)|ph(𝒙)=0𝒙ΩΩi}S^{(i)}_{h}:=\{p_{h}\in S_{h}(\Omega_{h})\ |\ p_{h}(\bm{x})=0\ \ \bm{x}\in\Omega\setminus\Omega_{i}^{{}^{\prime}}\}. We denote Z(i):V(i)V0(i)Z^{(i)}:V^{(i)}\to V_{0}^{(i)} to be the b(,)b(\cdot,\cdot)-orthogonal projection and let K(i):=IZ(i)K^{(i)}:=I-Z^{(i)}.

Assumption 1

The partition {Ωi}i=1N\{\Omega_{i}^{{}^{\prime}}\}_{i=1}^{N} may be colored using at most N0N_{0} colors, in such a way that subdomains with the same color are disjoint. N0N_{0} is independent of the number of subdomains NN.

According to the Assumption 1, we know that if xΩx\in\Omega, then it belongs to at most N0N_{0} subdomains in {Ωi}i=1N\{\Omega_{i}^{{}^{\prime}}\}_{i=1}^{N}. Besides, we obtain a partition of unity and then there exists a family of functions {θi}i=1N\{\theta_{i}\}_{i=1}^{N}, which are continuous piecewise linear polynomials, satisfy the following properties (see [24]):

supp(θi)Ωi¯, 0θi1,i=1Nθi(𝒙)=1,𝒙Ω,θi0,,ΩiCδ.supp(\theta_{i})\subset\overline{\Omega_{i}^{{}^{\prime}}},\ \ \ \ 0\leq\theta_{i}\leq 1,\ \ \ \ \sum_{i=1}^{N}\theta_{i}(\bm{x})=1,\ \ \bm{x}\in\Omega,\ \ \ \ ||\nabla{\theta_{i}}||_{0,\infty,\Omega_{i}^{{}^{\prime}}}\leq\frac{C}{\delta}. (3.3)

The strengthened Cauchy-Schwarz inequality is true over the local subspaces V(i)V^{(i)}, i.e., for 𝒗(i)V(i)\bm{v}^{(i)}\in V^{(i)} and 𝒗(j)V(j)\bm{v}^{(j)}\in V^{(j)}, 1i,jN1\leq i,j\leq N, there exists 0ηij10\leq\eta_{ij}\leq 1 such that

|b(𝒗(i),𝒗(j))|ηijb(𝒗(i),𝒗(i))b(𝒗(j),𝒗(j)).|b(\bm{v}^{(i)},\bm{v}^{(j)})|\leq\eta_{ij}\sqrt{b(\bm{v}^{(i)},\bm{v}^{(i)})}\sqrt{b(\bm{v}^{(j)},\bm{v}^{(j)})}. (3.4)

Let ρ(Λ)\rho(\Lambda) be the spectral radius of the matrix (ηij)1i,jN(\eta_{ij})_{1\leq i,j\leq N} and we have (see [24])

Lemma 3.1

Let Λ=(ηij)1i,jN\Lambda=(\eta_{ij})_{1\leq i,j\leq N}. If Assumption 1 holds, then

ρ(Λ)N0.\rho(\Lambda)\leq N_{0}.

Moreover, for any 𝐯(i)V(i),𝐯(j)V(j)(i,j=1,2,,N)\bm{v}^{(i)}\in V^{(i)},\bm{v}^{(j)}\in V^{(j)}\ (i,j=1,2,...,N),

i,j=1Nb(𝒗(i),𝒗(j))N0i=1Nb(𝒗(i),𝒗(i)),i,j=1Na(𝒗(i),𝒗(j))N0i=1Na(𝒗(i),𝒗(i)).\sum_{i,j=1}^{N}b(\bm{v}^{(i)},\bm{v}^{(j)})\leq N_{0}\sum_{i=1}^{N}b(\bm{v}^{(i)},\bm{v}^{(i)}),\ \ \ \sum_{i,j=1}^{N}a(\bm{v}^{(i)},\bm{v}^{(j)})\leq N_{0}\sum_{i=1}^{N}a(\bm{v}^{(i)},\bm{v}^{(i)}). (3.5)

3.2 The Jacobi-Davidson method

In this subsection, we focus on the Jacobi-Davidson method proposed by Sleijpen and Vorst (see [22]) which is an efficient algebraic method for solving eigenvalue problems. The idea of Jacobi-Davidson method is that one may first solve the Jacobi correction equation in the orthogonal complement space of the current approximation of the eigenvector and then update the new iterative solution in the expanding Davidson subspace. It suggests to compute the correction variable ee in the b(,)b(\cdot,\cdot)-orthogonal complement space of the current approximation 𝒖k\bm{u}^{k} and expand the subspace, in which the new eigen-pair approximation (λk+1,𝒖k+1)(\lambda^{k+1},\bm{u}^{k+1}) may be found.

Let Q𝒖k:Eh(Ωh)span{𝒖k}Q_{\bm{u}^{k}}:E_{h}(\Omega_{h})\to span\{\bm{u}^{k}\} be b(,)b(\cdot,\cdot)-orthogonal projection and we present the detailed Jacobi-Davidson algorithm as follows:

Algorithm 1 The Jacobi-Davidson algorithm
1. Given the initial approximation (λ1,𝒖1)(\lambda^{1},\bm{u}^{1}) of the first eigen-pair, W1=span{𝒖1}W^{1}=span\{\bm{u}^{1}\} and stopping
    tolerance toltol.
2. For k=k=1, 2, 3, …, denote 𝒓k=λk𝒖kAh𝒖k\bm{r}^{k}=\lambda^{k}\bm{u}^{k}-A^{h}\bm{u}^{k}, solving the Jacobi correction equation: (IQ𝒖k)(Ahλk)(IQ𝒖k)𝒆k+1=𝒓k,b(𝒆k+1,𝒖k)=0.(I-Q_{\bm{u}^{k}})(A^{h}-\lambda^{k})(I-Q_{\bm{u}^{k}})\bm{e}^{k+1}=\bm{r}^{k},\ \ b(\bm{e}^{k+1},\bm{u}^{k})=0. (3.6) 3. Minimizing the Rayleigh quotient in Wk+1W^{k+1}
𝒖k+1=argmin𝟎𝒗Wk+1Rq(𝒗),\bm{u}^{k+1}=\arg\min_{\bm{0}\neq\bm{v}\in W^{k+1}}Rq(\bm{v}), (3.7)     where Wk+1=Wk+span{𝒆k+1},λk+1=Rq(𝒖k+1),W^{k+1}=W^{k}+span\{\bm{e}^{k+1}\},\ \lambda^{k+1}=Rq(\bm{u}^{k+1}), where Rq(𝒗)=a(𝒗,𝒗)b(𝒗,𝒗)Rq(\bm{v})=\frac{a(\bm{v},\bm{v})}{b(\bm{v},\bm{v})}.
4. If 𝒓kb<tol||\bm{r}^{k}||_{b}<tol or |λk+1λk|<tol|\lambda^{k+1}-\lambda^{k}|<tol, then return (λk+1,𝒖k+1)(\lambda^{k+1},\bm{u}^{k+1}), otherwise goto step 2.

For the above algorithm, it is easy to see that (3.6)\eqref{Jacobicorrtionequation1} is equivalent to the following formulation

b((Ahλk)𝒆k+1,𝒗)=b(𝒓k,𝒗)𝒗span{𝒖k}.b((A^{h}-\lambda^{k})\bm{e}^{k+1},\bm{v})=b(\bm{r}^{k},\bm{v})\ \ \ \ \bm{v}\in span\{\bm{u}^{k}\}^{\perp}. (3.8)

The coefficient operator of the Jacobi correction equation is AhλkA^{h}-\lambda^{k}, which is indefinite and nearly singular as the approximation λkλ1h\lambda^{k}\to\lambda_{1}^{h}. From the fast and parallel computing point of view, we may try to design some efficient preconditioners for AhλkA^{h}-\lambda^{k}. Assume BhkAhλkB^{k}_{h}\cong A^{h}-\lambda^{k}, then we may get the preconditioned correction equation:

b(Bhk𝒆k+1,𝒗)=b(𝒓k,𝒗)𝒗(span{𝒖k}).b(B^{k}_{h}\bm{e}^{k+1},\bm{v})=b(\bm{r}^{k},\bm{v})\ \ \ \ \forall\ \bm{v}\in(span\{\bm{u}^{k}\})^{\perp}.

The correction variable 𝒆k+1\bm{e}^{k+1} may be obtained by

𝒆k+1=(Bhk)1𝒓k+βk(Bhk)1𝒖k,\bm{e}^{k+1}=(B^{k}_{h})^{-1}\bm{r}^{k}+\beta^{k}(B^{k}_{h})^{-1}\bm{u}^{k},

where βk=b((Bhk)1𝒓k,𝒖k)b((Bhk)1𝒖k,𝒖k)\beta^{k}=-\frac{b((B^{k}_{h})^{-1}\bm{r}^{k},\bm{u}^{k})}{b((B^{k}_{h})^{-1}\bm{u}^{k},\bm{u}^{k})} is so-called orthogonal parameter.

3.3 The two-level PHJD algorithm based on a domain decomposition

Next, we shall propose our two-level preconditioned Helmholtz-Jacobi-Davidson (PHJD) algorithm. In our case, the preconditioner (Bhk)1(B_{h}^{k})^{-1} may be chosen as

(Bhk)1:=(B0k)1QH+i=1N(Bik)1Q(i),(B_{h}^{k})^{-1}:=(B^{k}_{0})^{-1}Q^{H}+\sum_{i=1}^{N}(B^{k}_{i})^{-1}Q^{(i)}, (3.9)

where QH:L2(Ω)3EH(ΩH),Q(i):Eh(Ωh)V(i)Q^{H}:L^{2}(\Omega)^{3}\to E_{H}(\Omega_{H}),\ Q^{(i)}:E_{h}(\Omega_{h})\to V^{(i)} denote the b(,)b(\cdot,\cdot)-orthogonal projections, B0kB^{k}_{0} denotes AHλkA^{H}-\lambda^{k} and Bik(i=1,2,,N)B^{k}_{i}(i=1,2,...,N) denotes (Ahλk)|V(i)(A^{h}-\lambda^{k})|_{V^{(i)}}, i.e., they satisfy that for any 𝒗(i),𝒘(i)V(i)\bm{v}^{(i)},\bm{w}^{(i)}\in V^{(i)},

b(Bik𝒗(i),𝒘(i))=b((Ahλk)|V(i)𝒗(i),𝒘(i))=b((Ahλk)𝒗(i),𝒘(i)).b(B^{k}_{i}\bm{v}^{(i)},\bm{w}^{(i)})=b((A^{h}-\lambda^{k})|_{V^{(i)}}\bm{v}^{(i)},\bm{w}^{(i)})=b((A^{h}-\lambda^{k})\bm{v}^{(i)},\bm{w}^{(i)}). (3.10)

Combining the scaling argument, the Poincare´\acute{e} inequality and inverse estimate, it is easy to see that BikB^{k}_{i} is symmetric about b(,)b(\cdot,\cdot) and we may obtain the following properties:

λmin(Bik|V0(i))=O(H2),λmax(Bik|V0(i))=O(h2),i=1,2,,N.\lambda_{min}(B^{k}_{i}|_{V_{0}^{(i)}})=O(H^{-2}),\ \ \ \ \ \lambda_{max}(B^{k}_{i}|_{V_{0}^{(i)}})=O(h^{-2}),\ \ \ i=1,2,...,N. (3.11)
Algorithm 2 The two-level PHJD algorithm
1. Given the initial approximation (λ1,𝒖1)(\lambda^{1},\bm{u}^{1}) of the first eigen-pair.
AH𝒖1H=λ1H𝒖1H,𝒖1Hb=1.A^{H}\bm{u}_{1}^{H}=\lambda_{1}^{H}\bm{u}_{1}^{H},\ \ \ \ ||\bm{u}_{1}^{H}||_{b}=1. (3.12) {Find ph0Sh(Ωh), such thatb(ph0,qh)=b(𝒖1H,qh)qhSh(Ωh).\begin{cases}\text{Find $p^{0}_{h}\in S_{h}(\Omega_{h})$, such that}\\ b(\nabla{p}^{0}_{h},\nabla{q}_{h})=b(\bm{u}_{1}^{H},\nabla{q}_{h})\ \ \ \ \forall\ q_{h}\in S_{h}(\Omega_{h}).\end{cases}     Let 𝒖¯1=𝒖1Hph0,𝒖1=𝒖¯1𝒖¯1b,λ1=Rq(𝒖1),W1=span{𝒖1}.\bar{\bm{u}}^{1}=\bm{u}_{1}^{H}-\nabla{p}^{0}_{h},\ \ \bm{u}^{1}=\frac{\bar{\bm{u}}^{1}}{||\bar{\bm{u}}^{1}||_{b}},\ \lambda^{1}=Rq(\bm{u}^{1}),\ W^{1}=span\{\bm{u}^{1}\}.
2. Solving preconditioned Jacobi correction equation, i.e., for k=k=1, 2, 3, …,
     denote 𝒓k=λk𝒖kAh𝒖k\bm{r}^{k}=\lambda^{k}\bm{u}^{k}-A^{h}\bm{u}^{k} and let b(Bhk𝒆k+1,𝒗)=b(𝒓k,𝒗)𝒗(span{𝒖k}).b(B_{h}^{k}\bm{e}^{k+1},\bm{v})=b(\bm{r}^{k},\bm{v})\ \ \ \ \forall\ \bm{v}\in(span\{\bm{u}^{k}\})^{\perp}. (3.13)     Then define 𝒆k+1:=(Bhk)1𝒓k+βk(Bhk)1𝒖k,\bm{e}^{k+1}:=(B_{h}^{k})^{-1}\bm{r}^{k}+\beta^{k}(B_{h}^{k})^{-1}\bm{u}^{k}, (3.14)     where βk=b((Bhk)1𝒓k,𝒖k)b((Bhk)1𝒖k,𝒖k).\beta^{k}=-\frac{b((B_{h}^{k})^{-1}\bm{r}^{k},\bm{u}^{k})}{b((B_{h}^{k})^{-1}\bm{u}^{k},\bm{u}^{k})}.
3. Solving the Helmholtz projection system, {Find phkSh(Ωh), such thatb(phk,qh)=b(𝒆k+1,qh)qhSh(Ωh).\begin{cases}\text{Find $p^{k}_{h}\in S_{h}(\Omega_{h})$, such that}\\ b(\nabla{p}^{k}_{h},\nabla{q}_{h})=b(\bm{e}^{k+1},\nabla{q}_{h})\ \ \ \ \forall\ q_{h}\in S_{h}(\Omega_{h}).\end{cases} (3.15)     Let 𝒕k+1=𝒆k+1phk\bm{t}^{k+1}=\bm{e}^{k+1}-\nabla{p}^{k}_{h}.
4. Minimizing the Rayleigh quotient in Wk+1,W^{k+1},
𝒖k+1=argmin𝟎𝒗Wk+1Rq(𝒗),\bm{u}^{k+1}=\arg\min_{\bm{0}\neq\bm{v}\in W^{k+1}}Rq(\bm{v}), (3.16)     where Wk+1=Wk+span{𝒕k+1},λk+1=Rq(𝒖k+1).W^{k+1}=W^{k}+span\{\bm{t}^{k+1}\},\lambda^{k+1}=Rq(\bm{u}^{k+1}).
5. If 𝒓kb<tol||\bm{r}^{k}||_{b}<tol or |λk+1λk|<tol|\lambda^{k+1}-\lambda^{k}|<tol, then return (λk+1,𝒖k+1)(\lambda^{k+1},\bm{u}^{k+1}), otherwise goto step 2
Remark 3.1

We are interested in the simply connected domain Ω\Omega and we may handle the kernel of the 𝐜𝐮𝐫𝐥\bm{curl} operator by solving the Poisson equation based on the de Rham Complex. If the domain Ω\Omega equipped with the nontrivial topology is considered, we need to consider the harmonic form space 𝓗1\mathcal{\bm{H}}^{1} which is isomorphic to the de Rham co-homology group as well as the quotient space ker(𝐜𝐮𝐫𝐥)/H01(Ω)ker(\bm{curl})/\nabla{H_{0}^{1}(\Omega)} whose dimension is the corresponding Betti number(see, e.g., [2, 4]).

Remark 3.2

For the case λ1Hλ1h\lambda_{1}^{H}\leq\lambda_{1}^{h}, it is obvious that (B0k)1(B_{0}^{k})^{-1} is well-defined. For the case λ1hλ1H\lambda_{1}^{h}\leq\lambda_{1}^{H}, the B0kB_{0}^{k} may be singular in our iterative procedure. In this case, we only need to refine the initial grid in step 1 in Algorithm 2 to obtain λ1\lambda^{1}, which can ensure that (B0k)1(B_{0}^{k})^{-1} is well-defined.

4 Convergence analysis

In this section, we focus on giving a convergence analysis of the two-level PHJD method. First, we present some useful lemmas in our main proof. The first lemma illustrates that as the coarse grid size HH is sufficiently small, the distance in the sense of ||||b||\cdot||_{b}-norm between the first approximation of the eigenvector 𝒖1\bm{u}^{1} with 𝒖1H\bm{u}^{H}_{1} is sufficiently small too, as well as the distance between the first approximation of the eigenvalue λ1\lambda^{1} with λ1H\lambda^{H}_{1}. In fact, the proof of the first inequality in the first lemma essentially needs the Hodge operator lemma (see [12]). You may see a complete proof in [30]. So next, we only prove the second and the third inequality in Lemma 4.1.

Lemma 4.1

There exists a constant C such that

ph0b=𝒖1H𝒖¯1bCH,||\nabla{p}^{0}_{h}||_{b}=||\bm{u}_{1}^{H}-\bar{\bm{u}}^{1}||_{b}\leq C{H}, (4.1)
𝒖1H𝒖1bCH,||\bm{u}_{1}^{H}-\bm{u}^{1}||_{b}\leq C{H}, (4.2)
0λ1λ1HCH2,0\leq\lambda^{1}-\lambda_{1}^{H}\leq C{H}^{2}, (4.3)

where the notations ph0,𝐮1H,λ1H,𝐮¯1,𝐮1,λ1p^{0}_{h},\bm{u}_{1}^{H},\lambda_{1}^{H},\bar{\bm{u}}^{1},\bm{u}^{1},\lambda^{1} were defined in the above two-level PHJD algorithm.

Proof.  We first prove (4.2)\eqref{nablaph1}. Due to 𝒖¯1=𝒖1Hph0\bar{\bm{u}}^{1}=\bm{u}_{1}^{H}-\nabla{p}_{h}^{0} and (4.1)\eqref{nablaph}, we have

𝒖1H𝒖1b\displaystyle||\bm{u}_{1}^{H}-\bm{u}^{1}||_{b} 𝒖¯1𝒖1b+𝒖1H𝒖¯1b=1𝒖¯1b+𝒖1H𝒖¯1b\displaystyle\leq||\bar{\bm{u}}^{1}-\bm{u}^{1}||_{b}+||\bm{u}_{1}^{H}-\bar{\bm{u}}^{1}||_{b}=1-||\bar{\bm{u}}^{1}||_{b}+||\bm{u}_{1}^{H}-\bar{\bm{u}}^{1}||_{b}
1(𝒖1Hb𝒖1H𝒖¯1b)+𝒖1H𝒖¯1bCH.\displaystyle\leq 1-(||\bm{u}_{1}^{H}||_{b}-||\bm{u}_{1}^{H}-\bar{\bm{u}}^{1}||_{b})+||\bm{u}_{1}^{H}-\bar{\bm{u}}^{1}||_{b}\leq C{H}.

Next, we compute the formula λ1λ1H\lambda^{1}-\lambda_{1}^{H} directly. Owing to 𝒖¯1=𝒖1Hph0\bar{\bm{u}}^{1}=\bm{u}_{1}^{H}-\nabla{p}_{h}^{0} and 𝒖1=𝒖¯1𝒖¯1b\bm{u}^{1}=\frac{\bar{\bm{u}}^{1}}{||\bar{\bm{u}}^{1}||_{b}}, we have

λ1λ1H\displaystyle\lambda^{1}-\lambda_{1}^{H} =a(𝒖1,𝒖1)b(𝒖1,𝒖1)a(𝒖1H,𝒖1H)=a(𝒖¯1,𝒖¯1)b(𝒖¯1,𝒖¯1)a(𝒖1H,𝒖1H)\displaystyle=\frac{a(\bm{u}^{1},\bm{u}^{1})}{b(\bm{u}^{1},\bm{u}^{1})}-a(\bm{u}_{1}^{H},\bm{u}_{1}^{H})=\frac{a(\bar{\bm{u}}^{1},\bar{\bm{u}}^{1})}{b(\bar{\bm{u}}^{1},\bar{\bm{u}}^{1})}-a(\bm{u}_{1}^{H},\bm{u}_{1}^{H})
=(11b(ph0,ph0)1)a(𝒖1H,𝒖1H).\displaystyle=(\frac{1}{1-b(\nabla{p}^{0}_{h},\nabla{p}^{0}_{h})}-1)a(\bm{u}_{1}^{H},\bm{u}_{1}^{H}). (4.4)

Because of (4.1)\eqref{nablaph}, we obtain

λ1λ1H\displaystyle\lambda^{1}-\lambda_{1}^{H} CH21CH2a(𝒖1H,𝒖1H)\displaystyle\leq\frac{C{H}^{2}}{1-C{H}^{2}}a(\bm{u}_{1}^{H},\bm{u}_{1}^{H}) (4.5)
CH2.\displaystyle\leq C{H}^{2}.

Moreover, from (4.4)\eqref{pp1}, we know that λ1λ1H0\lambda^{1}-\lambda_{1}^{H}\geq 0. \Box

We now illustrate that all the norms ||||a,||||Ek,||||Eh,||||E||\cdot||_{a},||\cdot||_{E^{k}},||\cdot||_{E^{h}},||\cdot||_{E} defined in Mh(λ1)M^{\perp}_{h}(\lambda_{1}) are equivalent, i.e., these topologies induced by these norms are homeomorphic.

Lemma 4.2

The following bilinear forms construct the inner product in Mh(λ1)M^{\perp}_{h}(\lambda_{1}),

(𝒗2h,𝒗2h)Ek:=a(𝒗2h,𝒗2h)λkb(𝒗2h,𝒗2h)𝒗2hMh(λ1),\displaystyle\text{$(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}:=a(\bm{v}_{2}^{h},\bm{v}_{2}^{h})-\lambda^{k}b(\bm{v}_{2}^{h},\bm{v}_{2}^{h})$}\ \ \ \ \forall\ \bm{v}_{2}^{h}\in M^{\perp}_{h}(\lambda_{1}),
(𝒗2h,𝒗2h)Eh:=a(𝒗2h,𝒗2h)λ1hb(𝒗2h,𝒗2h)𝒗2hMh(λ1),\displaystyle\text{$(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{h}}:=a(\bm{v}_{2}^{h},\bm{v}_{2}^{h})-\lambda_{1}^{h}b(\bm{v}_{2}^{h},\bm{v}_{2}^{h})$}\ \ \ \ \forall\ \bm{v}_{2}^{h}\in M^{\perp}_{h}(\lambda_{1}),
(𝒗2h,𝒗2h)E:=a(𝒗2h,𝒗2h)λ1b(𝒗2h,𝒗2h)𝒗2hMh(λ1).\displaystyle\text{$(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E}:=a(\bm{v}_{2}^{h},\bm{v}_{2}^{h})-\lambda_{1}b(\bm{v}_{2}^{h},\bm{v}_{2}^{h})$}\ \ \ \ \ \forall\ \bm{v}_{2}^{h}\in M^{\perp}_{h}(\lambda_{1}).

Moreover, the norms ||||Ek,||||Eh,||||E||\cdot||_{E^{k}},||\cdot||_{E^{h}},||\cdot||_{E} induced by above inner products and the norm ||||a||\cdot||_{a} in Mh(λ1)M^{\perp}_{h}(\lambda_{1}) are equivalent.

Proof.  Combining (4.3)\eqref{lambda1lambda1H} and the fact that the Rayleigh quotient Rq(𝒗)Rq(\bm{v}) is a monotonic decreasing function with expanding Davidson space WkW^{k}, for sufficiently small HH, we have

λ2hλkC,\lambda_{2}^{h}-\lambda^{k}\geq C,

where the constant CC is independent of h,Hh,H. Furthermore, for any 𝒗2h(𝟎)Mh(λ1)\bm{v}_{2}^{h}(\neq\bm{0})\in M^{\perp}_{h}(\lambda_{1}), we have

(𝒗2h,𝒗2h)Ek\displaystyle(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}} =a(𝒗2h,𝒗2h)λkb(𝒗2h,𝒗2h)\displaystyle=a(\bm{v}_{2}^{h},\bm{v}_{2}^{h})-\lambda^{k}b(\bm{v}_{2}^{h},\bm{v}_{2}^{h})
(λ2hλk)b(𝒗2h,𝒗2h)\displaystyle\geq(\lambda_{2}^{h}-\lambda^{k})b(\bm{v}_{2}^{h},\bm{v}_{2}^{h}) (4.6)
C𝒗2hb2>0.\displaystyle\geq C||\bm{v}_{2}^{h}||^{2}_{b}>0.

Hence, we know that (,)Ek(\cdot,\cdot)_{E^{k}} defines an inner product in M(λ1)M^{\perp}(\lambda_{1}). For any 𝒗2hMh(λ1)\bm{v}_{2}^{h}\in M^{\perp}_{h}(\lambda_{1}), we have

a(𝒗2h,𝒗2h)a(𝒗2h,𝒗2h)λkb(𝒗2h,𝒗2h)=(𝒗2h,𝒗2h)Ek.a(\bm{v}_{2}^{h},\bm{v}_{2}^{h})\geq a(\bm{v}_{2}^{h},\bm{v}_{2}^{h})-\lambda^{k}b(\bm{v}_{2}^{h},\bm{v}_{2}^{h})=(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}.

Owing to (4.6)\eqref{line2}, we know (𝒗2h,𝒗2h)Ek(λ2hλk)b(𝒗2h,𝒗2h)(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}\geq(\lambda_{2}^{h}-\lambda^{k})b(\bm{v}_{2}^{h},\bm{v}_{2}^{h}). Hence,

(𝒗2h,𝒗2h)Ek=a(𝒗2h,𝒗2h)λkb(𝒗2h,𝒗2h)a(𝒗2h,𝒗2h)λkλ2hλk(𝒗2h,𝒗2h)Ek,(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}=a(\bm{v}_{2}^{h},\bm{v}_{2}^{h})-\lambda^{k}b(\bm{v}_{2}^{h},\bm{v}_{2}^{h})\geq a(\bm{v}_{2}^{h},\bm{v}_{2}^{h})-\frac{\lambda^{k}}{\lambda_{2}^{h}-\lambda^{k}}(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}},

that is

a(𝒗2h,𝒗2h)(1+λkλ2hλk)(𝒗2h,𝒗2h)Ek.a(\bm{v}_{2}^{h},\bm{v}_{2}^{h})\leq(1+\frac{\lambda^{k}}{\lambda_{2}^{h}-\lambda^{k}})(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}.

It is easy to see that as h0+,h\to 0^{+},

1+λkλ2hλk=λ2hλ2hλkλ2λ2λk,1+\frac{\lambda^{k}}{\lambda_{2}^{h}-\lambda^{k}}=\frac{\lambda_{2}^{h}}{\lambda_{2}^{h}-\lambda^{k}}\to\frac{\lambda_{2}}{\lambda_{2}-\lambda^{k}},

i.e.i.e., there exists a constant η\eta which is independent of h,Hh,H, such that 0<λ2λ2λkηλ2hλ2hλkλ2λ2λk+η0<\frac{\lambda_{2}}{\lambda_{2}-\lambda^{k}}-\eta\leq\frac{\lambda_{2}^{h}}{\lambda_{2}^{h}-\lambda^{k}}\leq\frac{\lambda_{2}}{\lambda_{2}-\lambda^{k}}+\eta. Other conclusions in this lemma can be proved by a similar argument. \Box

The following lemma, which may be proved by using the same technique as in the case of nodal spaces, may be regarded as the ’bridge’ between the coarse space and the fine space. (see [24, 23] and [6])

Lemma 4.3

Let τH\tau_{H} be a shape-regular and quasi-uniform triangulation. Then

𝒄𝒖𝒓𝒍QH𝒖bC|𝒖|1,Ω𝒖H1(Ω)3,||\bm{curl}Q^{H}\bm{u}||_{b}\leq C|\bm{u}|_{1,\Omega}\ \ \ \ \ \ \forall\ \bm{u}\in H^{1}(\Omega)^{3}, (4.7)
𝒖QH𝒖bCH|𝒖|1,Ω𝒖H1(Ω)3.||\bm{u}-Q^{H}\bm{u}||_{b}\leq CH|\bm{u}|_{1,\Omega}\ \ \ \ \ \ \forall\ \bm{u}\in H^{1}(\Omega)^{3}. (4.8)

Furthermore, we have

Lemma 4.4

For any 𝐯hEh(Ωh)\bm{v}^{h}\in E_{h}(\Omega_{h}), it holds that

K0hQ1H𝒗hbCHQ1H𝒗hb,||K_{0}^{h}Q_{1}^{H}\bm{v}^{h}||_{b}\leq CH||Q_{1}^{H}\bm{v}^{h}||_{b}, (4.9)
Q2hQ1H𝒗hbCHQ1H𝒗hb,andQ2hQ1H𝒗haCHQ1H𝒗ha,||Q_{2}^{h}Q_{1}^{H}\bm{v}^{h}||_{b}\leq CH||Q_{1}^{H}\bm{v}^{h}||_{b},\ \ and\ \ ||Q_{2}^{h}Q_{1}^{H}\bm{v}^{h}||_{a}\leq CH||Q_{1}^{H}\bm{v}^{h}||_{a}, (4.10)
Q2HQ1h𝒗hbCHQ1h𝒗hb,andQ2HQ1h𝒗haCHQ1h𝒗ha,||Q_{2}^{H}Q_{1}^{h}\bm{v}^{h}||_{b}\leq CH||Q_{1}^{h}\bm{v}^{h}||_{b},\ \ and\ \ ||Q_{2}^{H}Q_{1}^{h}\bm{v}^{h}||_{a}\leq CH||Q_{1}^{h}\bm{v}^{h}||_{a}, (4.11)

where CC is independent of H,hH,h.

Proof.  For any 𝒗1HMH(λ1)\bm{v}_{1}^{H}\in M_{H}(\lambda_{1}), let 𝒖1H=𝒗1H𝒗1Hb\bm{u}_{1}^{H}=\frac{\bm{v}_{1}^{H}}{||\bm{v}_{1}^{H}||_{b}}. According to the Theorem 2.2 and Corollary 2.3, we know that there exists a vector 𝒘1M(λ1)(𝒘1b=1)\bm{w}_{1}\in M(\lambda_{1})\ (||\bm{w}_{1}||_{b}=1) such that

𝒖1H𝒘1bCH.||\bm{u}_{1}^{H}-\bm{w}_{1}||_{b}\leq CH.

By multiplying the 𝒗1Hb||\bm{v}_{1}^{H}||_{b} at the both sides of the above inequality, we have

𝒗1H𝒗1Hb𝒘1bCH𝒗1Hb.||\bm{v}_{1}^{H}-||\bm{v}_{1}^{H}||_{b}\bm{w}_{1}||_{b}\leq CH||\bm{v}_{1}^{H}||_{b}.

Define 𝝃1:=𝒗1Hb𝒘M(λ1)\bm{\xi}_{1}:=||\bm{v}_{1}^{H}||_{b}\bm{w}\in M(\lambda_{1}), we have 𝝃1b=𝒗1Hb||\bm{\xi}_{1}||_{b}=||\bm{v}_{1}^{H}||_{b}. Moreover,

𝒗1H𝝃1bCH𝝃1b.||\bm{v}_{1}^{H}-\bm{\xi}_{1}||_{b}\leq CH||\bm{\xi}_{1}||_{b}. (4.12)

For the 𝝃1M(λ1)\bm{\xi}_{1}\in M(\lambda_{1}), similarly, we may find a 𝒗1hMh(λ1)\bm{v}_{1}^{h}\in M_{h}(\lambda_{1}) (𝒗1hb=𝝃1b)(||\bm{v}_{1}^{h}||_{b}=||\bm{\xi}_{1}||_{b}) such that

𝝃1𝒗1hbCh𝝃1b.||\bm{\xi}_{1}-\bm{v}_{1}^{h}||_{b}\leq Ch||\bm{\xi}_{1}||_{b}. (4.13)

Hence, combining (4.12),(4.13)\eqref{K0hQ1H1},\eqref{K0hQ1H2} with the triangle inequality, we obtain

𝒗1H𝒗1hbCH𝒗1Hb.||\bm{v}_{1}^{H}-\bm{v}_{1}^{h}||_{b}\leq CH||\bm{v}_{1}^{H}||_{b}. (4.14)

For Q1H𝒗hMH(λ1)Q_{1}^{H}\bm{v}^{h}\in M_{H}(\lambda_{1}), there exists a 𝜼1hMh(λ1)\bm{\eta}_{1}^{h}\in M_{h}(\lambda_{1}) such that

Q1H𝒗h𝜼1hbCHQ1H𝒗hb.||Q_{1}^{H}\bm{v}^{h}-\bm{\eta}_{1}^{h}||_{b}\leq CH||Q_{1}^{H}\bm{v}^{h}||_{b}.

Then

K0hQ1H𝒗hb2=b(K0hQ1H𝒗h,Q1H𝒗h𝜼1h)\displaystyle\ \ \ \ ||K_{0}^{h}Q_{1}^{H}\bm{v}^{h}||_{b}^{2}=b(K_{0}^{h}Q_{1}^{H}\bm{v}^{h},Q_{1}^{H}\bm{v}^{h}-\bm{\eta}_{1}^{h})
=K0hQ1H𝒗hbQ1H𝒗h𝜼1hbCHK0hQ1H𝒗hbQ1H𝒗hb.\displaystyle=||K_{0}^{h}Q_{1}^{H}\bm{v}^{h}||_{b}||Q_{1}^{H}\bm{v}^{h}-\bm{\eta}_{1}^{h}||_{b}\leq CH||K_{0}^{h}Q_{1}^{H}\bm{v}^{h}||_{b}||Q_{1}^{H}\bm{v}^{h}||_{b}.

Finally,

K0hQ1H𝒗hbCHQ1H𝒗hb.||K_{0}^{h}Q_{1}^{H}\bm{v}^{h}||_{b}\leq CH||Q_{1}^{H}\bm{v}^{h}||_{b}.

Note that the norm ||||c||\cdot||_{c} is equivalent to the norm ||||a||\cdot||_{a} in the discrete divergence-free space. By corollary 2.3, we may prove (4.10)\eqref{Q2Q1H} and (4.11)\eqref{Q2HQ1} by a similar argument. \Box

For the convenience of the following convergence analysis, we choose a special case to analyze the error reduction. Let 𝒖k=argmin𝟎𝒗WkRq(𝒗)\bm{u}^{k}=\arg\min_{\bm{0}\neq\bm{v}\in W^{k}}Rq(\bm{v}) and λk=Rq(𝒖k)\lambda^{k}=Rq(\bm{u}^{k}). Next, we minimize the Rq(𝒗)Rq(\bm{v}) in Wk+1W^{k+1} and choose the 𝒖ˇk+1\check{\bm{u}}^{k+1} in Wk+1W^{k+1} (𝒖ˇk+1b=1||\check{\bm{u}}^{k+1}||_{b}=1) to analyze the error reduction, i.e.,

𝒖~k+1=𝒖k+α𝒕k+1,\widetilde{\bm{u}}^{k+1}=\bm{u}^{k}+\alpha\bm{t}^{k+1}, (4.15)

and set

𝒖ˇk+1=𝒖~k+1𝒖~k+1b,\check{\bm{u}}^{k+1}=\frac{\widetilde{\bm{u}}^{k+1}}{||\widetilde{\bm{u}}^{k+1}||_{b}}, (4.16)

where α\alpha is an undetermined parameter depending on the N0N_{0}. By the above analysis, we know that λk+1λˇk+1\lambda^{k+1}\leq\check{\lambda}^{k+1}, where λˇk+1=Rq(𝒖ˇk+1)\check{\lambda}^{k+1}=Rq(\check{\bm{u}}^{k+1}).

Owing to the Helmholtz projection, we know that 𝒖~k+1Eh0(Ωh;ϵr)\widetilde{\bm{u}}^{k+1}\in E^{0}_{h}(\Omega_{h};\epsilon_{r}) and we denote

𝒖1k:=Q1h𝒖k,𝒆2k:=Q2h𝒖k,𝒆~2k:=Q2h𝒖~k.\bm{u}_{1}^{k}:=Q_{1}^{h}\bm{u}^{k},\ \ \ \ \ \ \bm{e}_{2}^{k}:=-Q_{2}^{h}\bm{u}^{k},\ \ \ \ \ \widetilde{\bm{e}}_{2}^{k}:=-Q_{2}^{h}\widetilde{\bm{u}}^{k}. (4.17)

From (3.14)\eqref{Correction}, (4.15)\eqref{specialcase1}, it is easy to see that

𝒆~2k+1\displaystyle\widetilde{\bm{e}}_{2}^{k+1} =Q2h{𝒖k+α𝒕k+1}=𝒆2kαQ2h{𝒆k+1phk}\displaystyle=-Q_{2}^{h}\{\bm{u}^{k}+\alpha\bm{t}^{k+1}\}=\bm{e}_{2}^{k}-\alpha Q_{2}^{h}\{\bm{e}^{k+1}-\nabla{p}_{h}^{k}\}
=𝒆2kαQ2h𝒆k+1=𝒆2kαQ2h{(Bhk)1𝒓k+βk(Bhk)1𝒖k}.\displaystyle=\bm{e}_{2}^{k}-\alpha Q_{2}^{h}\bm{e}^{k+1}=\bm{e}_{2}^{k}-\alpha Q_{2}^{h}\{(B_{h}^{k})^{-1}\bm{r}^{k}+\beta^{k}(B_{h}^{k})^{-1}\bm{u}^{k}\}.

We substitute the expression of the preconditioner (3.9)\eqref{Preconditioner} into the above formula, and then obtain

𝒆~2k+1\displaystyle\widetilde{\bm{e}}_{2}^{k+1} =𝒆2kαQ2h{(Bhk)1𝒓k+βk(Bhk)1𝒖k}\displaystyle=\bm{e}_{2}^{k}-\alpha Q_{2}^{h}\{(B_{h}^{k})^{-1}\bm{r}^{k}+\beta^{k}(B_{h}^{k})^{-1}\bm{u}^{k}\}
=𝒆2kαQ2h{(B0k)1QH𝒓k+i=1N(Bik)1Q(i)𝒓k\displaystyle=\bm{e}_{2}^{k}-\alpha Q_{2}^{h}\{(B^{k}_{0})^{-1}Q^{H}\bm{r}^{k}+\sum_{i=1}^{N}(B^{k}_{i})^{-1}Q^{(i)}\bm{r}^{k}
+βk(B0k)1QH𝒖k+βki=1N(Bik)1Q(i)𝒖k}\displaystyle\ \ \ \ +\beta^{k}(B^{k}_{0})^{-1}Q^{H}\bm{u}^{k}+\beta^{k}\sum_{i=1}^{N}(B^{k}_{i})^{-1}Q^{(i)}\bm{u}^{k}\}
=𝒆2kαQ2h{(B0k)1(K0H+Z(0))QH𝒓k+i=1N(Bik)1(K(i)+Z(i))Q(i)𝒓k\displaystyle=\bm{e}_{2}^{k}-\alpha Q_{2}^{h}\{(B^{k}_{0})^{-1}(K_{0}^{H}+Z^{(0)})Q^{H}\bm{r}^{k}+\sum_{i=1}^{N}(B^{k}_{i})^{-1}(K^{(i)}+Z^{(i)})Q^{(i)}\bm{r}^{k}
+βk(B0k)1(K0H+Z(0))QH𝒖k+βki=1N(Bik)1(K(i)+Z(i))Q(i)𝒖k},\displaystyle\ \ \ +\beta^{k}(B^{k}_{0})^{-1}(K_{0}^{H}+Z^{(0)})Q^{H}\bm{u}^{k}+\beta^{k}\sum_{i=1}^{N}(B^{k}_{i})^{-1}(K^{(i)}+Z^{(i)})Q^{(i)}\bm{u}^{k}\},

where the last equality has used the partitions of the identity operator defined on EH(ΩH)E_{H}(\Omega_{H}) and V(i)V^{(i)}. For any 𝒗Eh(Ωh)\bm{v}\in E_{h}(\Omega_{h}), (B0k)1K0HQH𝒗SH(ΩH)Sh(Ωh)(B^{k}_{0})^{-1}K_{0}^{H}Q^{H}\bm{v}\in\nabla{S_{H}(\Omega_{H})}\subset\nabla{S_{h}(\Omega_{h})}, (Bik)1K(i)Q(i)𝒗Sh(i)Sh(Ωh)(B^{k}_{i})^{-1}K^{(i)}Q^{(i)}\bm{v}\in\nabla{S^{(i)}_{h}}\subset\nabla{S_{h}(\Omega_{h})}, so we have

Q2h(B0k)1K0HQH𝒗=𝟎,Q2h(Bik)1K(i)Q(i)𝒗=𝟎.Q_{2}^{h}(B^{k}_{0})^{-1}K_{0}^{H}Q^{H}\bm{v}=\bm{0},\ \ \ Q_{2}^{h}(B^{k}_{i})^{-1}K^{(i)}Q^{(i)}\bm{v}=\bm{0}.

Furthermore, by using the partitions of the identity operator defined on EH0(ΩH;ϵr)E^{0}_{H}(\Omega_{H};\epsilon_{r}), we obtain

𝒆~2k+1\displaystyle\widetilde{\bm{e}}_{2}^{k+1} =𝒆2kαQ2h(B0k)1Z(0)QH𝒓kαQ2hi=1N(Bik)1Z(i)Q(i)𝒓k\displaystyle=\bm{e}_{2}^{k}-\alpha Q_{2}^{h}(B^{k}_{0})^{-1}Z^{(0)}Q^{H}\bm{r}^{k}-\alpha Q_{2}^{h}\sum_{i=1}^{N}(B^{k}_{i})^{-1}Z^{(i)}Q^{(i)}\bm{r}^{k}
αβkQ2h(B0k)1Z(0)QH𝒖kαβkQ2hi=1N(Bik)1Z(i)Q(i)𝒖k\displaystyle\ \ \ -\alpha\beta^{k}Q_{2}^{h}(B^{k}_{0})^{-1}Z^{(0)}Q^{H}\bm{u}^{k}-\alpha\beta^{k}Q_{2}^{h}\sum_{i=1}^{N}(B^{k}_{i})^{-1}Z^{(i)}Q^{(i)}\bm{u}^{k}
=𝒆2kαQ2h(B0k)1(Q1H+Q2H)Z(0)QH𝒓kαQ2hi=1N(Bik)1Z(i)Q(i)𝒓k\displaystyle=\bm{e}_{2}^{k}-\alpha Q_{2}^{h}(B^{k}_{0})^{-1}(Q_{1}^{H}+Q_{2}^{H})Z^{(0)}Q^{H}\bm{r}^{k}-\alpha Q_{2}^{h}\sum_{i=1}^{N}(B^{k}_{i})^{-1}Z^{(i)}Q^{(i)}\bm{r}^{k}
αβkQ2h(B0k)1(Q1H+Q2H)Z(0)QH𝒖kαβkQ2hi=1N(Bik)1Z(i)Q(i)𝒖k,\displaystyle\ \ \ -\alpha\beta^{k}Q_{2}^{h}(B^{k}_{0})^{-1}(Q_{1}^{H}+Q_{2}^{H})Z^{(0)}Q^{H}\bm{u}^{k}-\alpha\beta^{k}Q_{2}^{h}\sum_{i=1}^{N}(B^{k}_{i})^{-1}Z^{(i)}Q^{(i)}\bm{u}^{k},

which, together with the definition of residual vector 𝒓k\bm{r}^{k} and (4.17)\eqref{u1e2definition}, yields

𝒆~2k+1\displaystyle\widetilde{\bm{e}}_{2}^{k+1} ={𝒆2kαQ2h(B0k)1Q2HZ(0)QH(Ahλk)𝒆2kαQ2hi=1N(Bik)1Z(i)Q(i)(Ahλk)𝒆2k}\displaystyle=\{\bm{e}_{2}^{k}-\alpha Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{e}_{2}^{k}-\alpha Q_{2}^{h}\sum_{i=1}^{N}(B^{k}_{i})^{-1}Z^{(i)}Q^{(i)}(A^{h}-\lambda^{k})\bm{e}_{2}^{k}\}
+{αQ2h(B0k)1Q1HZ(0)QH(Ahλk)𝒖kαβkQ2h(B0k)1Q1HZ(0)QH𝒖k}\displaystyle\ \ \ +\{\alpha Q_{2}^{h}(B_{0}^{k})^{-1}Q_{1}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{u}^{k}-\alpha\beta^{k}Q_{2}^{h}(B_{0}^{k})^{-1}Q_{1}^{H}Z^{(0)}Q^{H}\bm{u}^{k}\}
+{αQ2h(B0k)1Q2HZ(0)QH(Ahλk)𝒖1k+αQ2hi=1N(Bik)1Z(i)Q(i)(Ahλk)𝒖1k\displaystyle\ \ \ +\{\alpha Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{u}_{1}^{k}+\alpha Q_{2}^{h}\sum_{i=1}^{N}(B^{k}_{i})^{-1}Z^{(i)}Q^{(i)}(A^{h}-\lambda^{k})\bm{u}_{1}^{k}
αβkQ2h(B0k)1Q2HZ(0)QH𝒖kαβkQ2hi=1N(Bik)1Z(i)Q(i)𝒖k}\displaystyle\ \ \ -\alpha\beta^{k}Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}^{k}-\alpha\beta^{k}Q_{2}^{h}\sum_{i=1}^{N}(B^{k}_{i})^{-1}Z^{(i)}Q^{(i)}\bm{u}^{k}\}
:=I1+I2+I3,\displaystyle:=I_{1}+I_{2}+I_{3}, (4.18)

here we define Gk:=IαQ2h(B0k)1Q2HZ(0)QH(Ahλk)αQ2hi=1N(Bik)1Z(i)Q(i)(Ahλk)G^{k}:=I-\alpha Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})-\alpha Q_{2}^{h}\sum_{i=1}^{N}(B^{k}_{i})^{-1}Z^{(i)}Q^{(i)}(A^{h}-\lambda^{k}) and let I1:=Gk𝒆2kI_{1}:=G^{k}\bm{e}_{2}^{k}. we call I1I_{1} as the error principal term and GkG^{k} as the error principal operator and I2I_{2} as the almost counterbalanced term. Noting that a(𝒖k,𝒖k)=λkb(𝒖k,𝒖k)a(\bm{u}^{k},\bm{u}^{k})=\lambda^{k}b(\bm{u}^{k},\bm{u}^{k}) and using (4.17)\eqref{u1e2definition}, it is easy to prove that

𝒆2kEk2=λkb(𝒖1k,𝒖1k)a(𝒖1k,𝒖1k)=(λkλ1h)b(𝒖1k,𝒖1k),||\bm{e}_{2}^{k}||^{2}_{E^{k}}=\lambda^{k}b(\bm{u}_{1}^{k},\bm{u}_{1}^{k})-a(\bm{u}_{1}^{k},\bm{u}_{1}^{k})=(\lambda^{k}-\lambda^{h}_{1})b(\bm{u}_{1}^{k},\bm{u}_{1}^{k}), (4.19)

which is useful in the following error estimates.

Moreover, we note that |λkλ1h|CH2|\lambda^{k}-\lambda_{1}^{h}|\leq CH^{2} and |λkλ1|CH2|\lambda^{k}-\lambda_{1}|\leq CH^{2}. In fact, as the Rayleigh quotient Rq(𝒗)Rq(\bm{v}) is a monotonic decreasing function with expanding the Davidson subspace WkW^{k}, we have λ1hλkλ1\lambda_{1}^{h}\leq\lambda^{k}\leq\lambda^{1}. For the case λ1Hλ1h\lambda_{1}^{H}\leq\lambda_{1}^{h}, by corollary 2.3 and (4.3)\eqref{lambda1lambda1H}, we know that

|λkλ1||λkλ1h|+|λ1hλ1||λ1λ1H|+|λ1hλ1|CH2.|\lambda^{k}-\lambda_{1}|\leq|\lambda^{k}-\lambda_{1}^{h}|+|\lambda_{1}^{h}-\lambda_{1}|\leq|\lambda^{1}-\lambda_{1}^{H}|+|\lambda_{1}^{h}-\lambda_{1}|\leq CH^{2}. (4.20)

For the case λ1H>λ1h\lambda_{1}^{H}>\lambda_{1}^{h}, by corollary 2.3 and (4.3)\eqref{lambda1lambda1H}, we have

|λkλ1|\displaystyle|\lambda^{k}-\lambda_{1}| |λkλ1h|+|λ1hλ1||λ1λ1h|+|λ1hλ1|\displaystyle\leq|\lambda^{k}-\lambda_{1}^{h}|+|\lambda_{1}^{h}-\lambda_{1}|\leq|\lambda^{1}-\lambda_{1}^{h}|+|\lambda_{1}^{h}-\lambda_{1}|
|λ1λ1H|+|λ1Hλ1h|+|λ1hλ1|CH2.\displaystyle\leq|\lambda^{1}-\lambda_{1}^{H}|+|\lambda_{1}^{H}-\lambda_{1}^{h}|+|\lambda_{1}^{h}-\lambda_{1}|\leq CH^{2}. (4.21)

4.1 Estimate of the error principal term I1I_{1}

In this subsection, we analyze the error principal term I1I_{1}.

Theorem 4.5

For sufficiently small α\alpha, there exists a constant CC such that

Gk𝒗2hEk(1Cδ2H2)𝒗2hEk𝒗2hMh(λ1),||G^{k}\bm{v}_{2}^{h}||_{E^{k}}\leq(1-C\frac{\delta^{2}}{H^{2}})||\bm{v}_{2}^{h}||_{E^{k}}\ \ \ \ \ \forall\ \bm{v}_{2}^{h}\in M_{h}^{\perp}(\lambda_{1}), (4.22)

where the constant CC is independent of H,δH,\ \delta and hh.

First of all, we give two useful lemmas.

Lemma 4.6

The error principal operator Gk:Mh(λ1)Mh(λ1)G^{k}:M_{h}^{\perp}(\lambda_{1})\to M_{h}^{\perp}(\lambda_{1}) is symmetric in the sense of (,)Ek(\cdot,\cdot)_{E^{k}}. Furthermore, if α\alpha is sufficiently small, the operator Gk:Mh(λ1)Mh(λ1)G^{k}:M_{h}^{\perp}(\lambda_{1})\to M_{h}^{\perp}(\lambda_{1}) is also positive definite.

Proof.  It is easy to see that (B0k)1(B_{0}^{k})^{-1} and (Bik)1,(i=1,2,,N)(B_{i}^{k})^{-1},\ (i=1,2,...,N) are symmetric in the sense of b(,)b(\cdot,\cdot), which result in

(Q2h(B0k)1Q2HZ(0)QH(Ahλk)𝒗2h,𝒘2h)Ek=(𝒗2h,Q2h(B0k)1Q2HZ(0)QH(Ahλk)𝒘2h)Ek,(Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{v}_{2}^{h},\bm{w}_{2}^{h})_{E^{k}}=(\bm{v}_{2}^{h},Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{w}_{2}^{h})_{E^{k}}, (4.23)

and

(Q2hi=1N(Bik)1Z(i)Q(i)(Ahλk)𝒗2h,𝒘2h)Ek=(𝒗2h,Q2hi=1N(Bik)1Z(i)Q(i)(Ahλk)𝒘2h)Ek,(Q_{2}^{h}\sum_{i=1}^{N}(B^{k}_{i})^{-1}Z^{(i)}Q^{(i)}(A^{h}-\lambda^{k})\bm{v}_{2}^{h},\bm{w}_{2}^{h})_{E^{k}}=(\bm{v}_{2}^{h},Q_{2}^{h}\sum_{i=1}^{N}(B^{k}_{i})^{-1}Z^{(i)}Q^{(i)}(A^{h}-\lambda^{k})\bm{w}_{2}^{h})_{E^{k}}, (4.24)

here 𝒗2h,𝒘2hMh(λ1)\bm{v}_{2}^{h},\bm{w}_{2}^{h}\in M_{h}^{\perp}(\lambda_{1}). Combining (4.23)\eqref{pricipalcoarse}, (4.24)\eqref{pricipalfine} with the definition of GkG^{k}, we obtain

(Gk𝒗2k,𝒘2k)Ek=(𝒗2k,Gk𝒘2k)Ek,(G^{k}\bm{v}_{2}^{k},\bm{w}_{2}^{k})_{E^{k}}=(\bm{v}_{2}^{k},G^{k}\bm{w}_{2}^{k})_{E^{k}}, (4.25)

which means that GkG^{k} is symmetric in the sense of (,)Ek(\cdot,\cdot)_{E^{k}}.

To obtain the second conclusion in this lemma, we define an operator T0k:Mh(λ1)MH(λ1)T_{0}^{k}:M_{h}^{\perp}(\lambda_{1})\to M_{H}^{\perp}(\lambda_{1}) as follows:

(T0k𝒗2h,𝒗2H)Ek=(𝒗2h,𝒗2H)Ek𝒗2HMH(λ1),(T_{0}^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{H})_{E^{k}}=(\bm{v}_{2}^{h},\bm{v}_{2}^{H})_{E^{k}}\ \ \ \ \ \forall\ \bm{v}_{2}^{H}\in M_{H}^{\perp}(\lambda_{1}), (4.26)

where 𝒗2hMh(λ1)\bm{v}_{2}^{h}\in M^{\perp}_{h}(\lambda_{1}). For sufficiently small HH, we know that λk<λ2H\lambda^{k}<\lambda_{2}^{H}. By the Lax-Milgram theorem in MH(λ1)M_{H}^{\perp}(\lambda_{1}), we may see that the above definition is meaningful. Similarly, we may also define operator Tik:Mh(λ1)V0(i)T_{i}^{k}:M_{h}^{\perp}(\lambda_{1})\to V_{0}^{(i)} (i=1,2,,N)(i=1,2,...,N) as follows:

(Tik𝒗2h,𝒗0(i))Ek=(𝒗2h,𝒗0(i))Ek𝒗0(i)V0(i),(T_{i}^{k}\bm{v}_{2}^{h},\bm{v}_{0}^{(i)})_{E^{k}}=(\bm{v}_{2}^{h},\bm{v}_{0}^{(i)})_{E^{k}}\ \ \ \ \ \forall\ \bm{v}_{0}^{(i)}\in V_{0}^{(i)}, (4.27)

where 𝒗2hMh(λ1)\bm{v}_{2}^{h}\in M_{h}^{\perp}(\lambda_{1}). Because the Poincare´\acute{e} inequality holds in local fine spaces V0(i),i=1,2,,NV_{0}^{(i)},\ \ i=1,2,...,N, the above definitions are also meaningful.

It is easy to check that T0k=(B0k)1Q2HZ(0)QH(Ahλk)T_{0}^{k}=(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k}). In fact, for any 𝒗2h,𝒗2H\bm{v}_{2}^{h},\bm{v}_{2}^{H}, we have

b(B0kT0k𝒗2h,𝒗2H)=b((AHλk)T0k𝒗2h,𝒗2H)=(T0k𝒗2h,𝒗2H)Ek=(𝒗2h,𝒗2H)Ekb(B^{k}_{0}T_{0}^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{H})=b((A^{H}-\lambda^{k})T_{0}^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{H})=(T_{0}^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{H})_{E^{k}}=(\bm{v}_{2}^{h},\bm{v}_{2}^{H})_{E^{k}}
=b((Ahλk)𝒗2h,𝒗2H)=b(Q2HZ(0)QH(Ahλk)𝒗2h,𝒗2H).=b((A^{h}-\lambda^{k})\bm{v}_{2}^{h},\bm{v}_{2}^{H})\\ =b(Q_{2}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{v}_{2}^{h},\bm{v}_{2}^{H}).

Similarly, Tik=(Bik)1Z(i)Q(i)(Ahλk)T_{i}^{k}=(B^{k}_{i})^{-1}Z^{(i)}Q^{(i)}(A^{h}-\lambda^{k}).

Hence, for any 𝒗2hM(λ1)\bm{v}_{2}^{h}\in M^{\perp}(\lambda_{1}), we have

(Gk𝒗2h,𝒗2h)Ek\displaystyle(G^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}} =(𝒗2h,𝒗2h)Ekα(Q2hT0k𝒗2h,𝒗2h)Ekα(Q2hi=1NTik𝒗2h,𝒗2h)Ek\displaystyle=(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}-\alpha(Q_{2}^{h}T_{0}^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}-\alpha(Q_{2}^{h}\sum_{i=1}^{N}T_{i}^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}
=𝒗2hEk2α(T0k𝒗2h,𝒗2h)Ekαi=1N(Tik𝒗2h,𝒗2h)Ek\displaystyle=||\bm{v}_{2}^{h}||^{2}_{E^{k}}-\alpha(T^{k}_{0}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}-\alpha\sum_{i=1}^{N}(T_{i}^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}
=𝒗2hEk2αT0k𝒗2hEk2αi=1NTik𝒗2hEk2.\displaystyle=||\bm{v}_{2}^{h}||^{2}_{E^{k}}-\alpha||T^{k}_{0}\bm{v}_{2}^{h}||^{2}_{E^{k}}-\alpha\sum_{i=1}^{N}||T_{i}^{k}\bm{v}_{2}^{h}||^{2}_{E^{k}}. (4.28)

For the second term of (4.28)\eqref{Gkpri}, owing to the definition of Q2hQ_{2}^{h} and Cauchy-Schwarz inequality, we have

T0k𝒗2hEk2=(T0k𝒗2h,𝒗2h)Ek=(Q2hT0k𝒗2h,𝒗2h)EkQ2hT0k𝒗2hEk𝒗2hEk.||T^{k}_{0}\bm{v}_{2}^{h}||^{2}_{E^{k}}=(T^{k}_{0}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}=(Q_{2}^{h}T^{k}_{0}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}\leq||Q_{2}^{h}T^{k}_{0}\bm{v}_{2}^{h}||_{E^{k}}||\bm{v}_{2}^{h}||_{E^{k}}. (4.29)

Meanwhile,

Q2hT0k𝒗2hEk2\displaystyle||Q_{2}^{h}T^{k}_{0}\bm{v}_{2}^{h}||^{2}_{E^{k}} =T0k𝒗2hEk2+(λkλ1h)Q1hT0k𝒗2hb2+λkK0hT0k𝒗2hb2\displaystyle=||T^{k}_{0}\bm{v}_{2}^{h}||^{2}_{E^{k}}+(\lambda^{k}-\lambda_{1}^{h})||Q_{1}^{h}T^{k}_{0}\bm{v}_{2}^{h}||^{2}_{b}+\lambda^{k}||K_{0}^{h}T^{k}_{0}\bm{v}_{2}^{h}||^{2}_{b}
T0k𝒗2hEk2+(λkλ1h)T0k𝒗2hb2+λkT0k𝒗2hb2\displaystyle\leq||T^{k}_{0}\bm{v}_{2}^{h}||^{2}_{E^{k}}+(\lambda^{k}-\lambda_{1}^{h})||T^{k}_{0}\bm{v}_{2}^{h}||^{2}_{b}+\lambda^{k}||T^{k}_{0}\bm{v}_{2}^{h}||^{2}_{b}
{1+Cλ1+CH2}T0k𝒗2hEk2.\displaystyle\leq\{1+C\lambda_{1}+CH^{2}\}||T^{k}_{0}\bm{v}_{2}^{h}||^{2}_{E^{k}}. (4.30)

Combining (4.29)\eqref{Tok1} and (4.30)\eqref{T0k2} together, we have

T0k𝒗2hEk2(1+Cλ1+CH2)𝒗2hEk2.||T^{k}_{0}\bm{v}_{2}^{h}||^{2}_{E^{k}}\leq(1+C\lambda_{1}+CH^{2})||\bm{v}_{2}^{h}||^{2}_{E^{k}}. (4.31)

For the third term of (4.28)\eqref{Gkpri}, we have

i=1NTik𝒗2hEk2=i=1N(Tik𝒗2h,𝒗2h)EkQ2hi=1NTik𝒗2hEk𝒗2hEk.\sum_{i=1}^{N}||T_{i}^{k}\bm{v}_{2}^{h}||^{2}_{E^{k}}=\sum_{i=1}^{N}(T_{i}^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}\leq||Q_{2}^{h}\sum_{i=1}^{N}T_{i}^{k}\bm{v}_{2}^{h}||_{E^{k}}||\bm{v}_{2}^{h}||_{E^{k}}. (4.32)

Owing to (2.9)\eqref{discretespectralspaces}, Lemma 3.1, Lemma 4.2 and the Poincare´\acute{e} inequality, we get

Q2hi=1NTik𝒗2hEk2CQ2hi=1NTik𝒗2hEh2Ci=1NTik𝒗2ha2+Cλ1i=1NTik𝒗2hb2\displaystyle\ \ \ \ ||Q_{2}^{h}\sum_{i=1}^{N}T_{i}^{k}\bm{v}_{2}^{h}||^{2}_{E^{k}}\leq C||Q_{2}^{h}\sum_{i=1}^{N}T_{i}^{k}\bm{v}_{2}^{h}||^{2}_{E^{h}}\leq C||\sum_{i=1}^{N}T_{i}^{k}\bm{v}_{2}^{h}||^{2}_{a}+C\lambda_{1}||\sum_{i=1}^{N}T_{i}^{k}\bm{v}_{2}^{h}||^{2}_{b}
=Ci=1Nl=1Na(Tik𝒗2h,Tlk𝒗2h)+Cλ1i=1Nl=1Nb(Tik𝒗2h,Tlk𝒗2h)\displaystyle=C\sum_{i=1}^{N}\sum_{l=1}^{N}a(T_{i}^{k}\bm{v}_{2}^{h},T_{l}^{k}\bm{v}_{2}^{h})+C\lambda_{1}\sum_{i=1}^{N}\sum_{l=1}^{N}b(T_{i}^{k}\bm{v}_{2}^{h},T_{l}^{k}\bm{v}_{2}^{h})
CN0i=1NTik𝒗2ha2+CN0λ1i=1NTik𝒗2hb2CN0(1+λ1H2)i=1NTik𝒗2hEk2.\displaystyle\leq CN_{0}\sum_{i=1}^{N}||T_{i}^{k}\bm{v}_{2}^{h}||_{a}^{2}+CN_{0}\lambda_{1}\sum_{i=1}^{N}||T_{i}^{k}\bm{v}_{2}^{h}||_{b}^{2}\leq CN_{0}(1+\lambda_{1}H^{2})\sum_{i=1}^{N}||T_{i}^{k}\bm{v}_{2}^{h}||_{E^{k}}^{2}. (4.33)

Combining (4.32)\eqref{Tik1} and (4.33)\eqref{Tik2} together, we get

i=1NTik𝒗2hEk2CN0(1+λ1H2)𝒗2hEk2,\sum_{i=1}^{N}||T_{i}^{k}\bm{v}_{2}^{h}||^{2}_{E^{k}}\leq CN_{0}(1+\lambda_{1}H^{2})||\bm{v}_{2}^{h}||^{2}_{E^{k}}, (4.34)

which, together with (4.28)\eqref{Gkpri} (4.31)\eqref{Gkcoarse}, yields

(Gk𝒗2h,𝒗2h)Ek\displaystyle(G^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}} =𝒗2hEk2α(T0k𝒗2h,𝒗2h)Ekαi=1NTik𝒗2hEk2\displaystyle=||\bm{v}_{2}^{h}||^{2}_{E^{k}}-\alpha(T^{k}_{0}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}-\alpha\sum_{i=1}^{N}||T_{i}^{k}\bm{v}_{2}^{h}||^{2}_{E^{k}}
{1α(1+CN0+Cλ1+CH2)}𝒗2hEk2,\displaystyle\geq\{1-\alpha(1+CN_{0}+C\lambda_{1}+CH^{2})\}||\bm{v}_{2}^{h}||^{2}_{E^{k}},

where C=O(1),λ1=O(1),N0=O(1)C=O(1),\ \lambda_{1}=O(1),\ N_{0}=O(1). If we take 0<α<α0=11+CN0+Cλ1+CH20<\alpha<\alpha_{0}=\frac{1}{1+CN_{0}+C\lambda_{1}+CH^{2}}, then we may obtain the conclusion of this lemma. \Box

Lemma 4.7

For the error space Mh(λ1)M_{h}^{\perp}(\lambda_{1}), it holds that

Mh(λ1)=Q2hMH(λ1)+i=1NQ2hV0(i)M_{h}^{\perp}(\lambda_{1})=Q_{2}^{h}M_{H}^{\perp}(\lambda_{1})+\sum_{i=1}^{N}Q_{2}^{h}V_{0}^{(i)}

and there exist 𝐰0Q2hMH(λ1)\bm{w}_{0}\in Q_{2}^{h}M_{H}^{\perp}(\lambda_{1}) and 𝐰0(i)V0(i)\bm{w}_{0}^{(i)}\in V_{0}^{(i)} such that

(𝒘0,𝒘0)Ek+i=1N(𝒘0(i),𝒘0(i))EkCN0(1+H2δ2)(𝒗2h,𝒗2h)Ek.(\bm{w}_{0},\bm{w}_{0})_{E^{k}}+\sum_{i=1}^{N}(\bm{w}_{0}^{(i)},\bm{w}_{0}^{(i)})_{E^{k}}\leq CN_{0}(1+\frac{H^{2}}{\delta^{2}})(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}. (4.35)

Proof.  For any 𝒗2hMh(λ1)\bm{v}_{2}^{h}\in M_{h}^{\perp}(\lambda_{1}), we take 𝒘0=Q2hQ2HZ(0)QHPh𝒗2h\bm{w}_{0}=Q_{2}^{h}Q_{2}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h} and 𝒘0(i)=Z(i)rhθi(𝒗2h𝒘0)\bm{w}_{0}^{(i)}=Z^{(i)}r_{h}\theta_{i}(\bm{v}_{2}^{h}-\bm{w}_{0}), where rhr_{h} is the standard edge element interpolation operator. Then

𝒘0+i=1NQ2h𝒘0(i)\displaystyle\bm{w}_{0}+\sum_{i=1}^{N}Q_{2}^{h}\bm{w}_{0}^{(i)} =𝒘0+i=1NQ2hZ(i)rhθi(𝒗2h𝒘0)\displaystyle=\bm{w}_{0}+\sum_{i=1}^{N}Q_{2}^{h}Z^{(i)}r_{h}\theta_{i}(\bm{v}_{2}^{h}-\bm{w}_{0})
=𝒘0+i=1NQ2h(IK(i))rhθi(𝒗2h𝒘0),\displaystyle=\bm{w}_{0}+\sum_{i=1}^{N}Q_{2}^{h}(I-K^{(i)})r_{h}\theta_{i}(\bm{v}_{2}^{h}-\bm{w}_{0}), (4.36)

which, together with the fact that for any 𝒗hEh(Ωh),K(i)𝒗hSh(Ωh)\bm{v}_{h}\in E_{h}(\Omega_{h}),\ K^{(i)}\bm{v}_{h}\in\nabla{S_{h}(\Omega_{h})}, yields

𝒘0+i=1NQ2h𝒘0(i)=𝒘0+i=1NQ2hrhθi(𝒗2h𝒘0)\displaystyle\ \ \ \ \bm{w}_{0}+\sum_{i=1}^{N}Q_{2}^{h}\bm{w}_{0}^{(i)}=\bm{w}_{0}+\sum_{i=1}^{N}Q_{2}^{h}r_{h}\theta_{i}(\bm{v}_{2}^{h}-\bm{w}_{0})
=𝒘0+Q2hrh(i=1Nθi)(𝒗2h𝒘0)=𝒘0+Q2hrh(𝒗2h𝒘0)=𝒗2h.\displaystyle=\bm{w}_{0}+Q_{2}^{h}r_{h}(\sum_{i=1}^{N}\theta_{i})(\bm{v}_{2}^{h}-\bm{w}_{0})=\bm{w}_{0}+Q_{2}^{h}r_{h}(\bm{v}_{2}^{h}-\bm{w}_{0})=\bm{v}_{2}^{h}.

Next, we prove (4.35)\eqref{Decomposition}. For the component in the coarse space, owing to Lemma 4.2, the orthogonality on Eh(Ωh)E_{h}(\Omega_{h}) and EH(ΩH)E_{H}(\Omega_{H}) in the sense of a(,)a(\cdot,\cdot) and b(,)b(\cdot,\cdot), the definition of Z(0)Z^{(0)} and the Poincare´\acute{e} inequality, we get

𝒘0Ek2\displaystyle||\bm{w}_{0}||^{2}_{E^{k}} CQ2hQ2HZ(0)QHPh𝒗2hEh2\displaystyle\leq C||Q_{2}^{h}Q_{2}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{E^{h}}
C{Q2HZ(0)QHPh𝒗2hEh2+λ1hK0hQ2HZ(0)QHPh𝒗2hb2}\displaystyle\leq C\{||Q_{2}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{E^{h}}+\lambda_{1}^{h}||K_{0}^{h}Q_{2}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}\}
CZ(0)QHPh𝒗2ha2+CZ(0)QHPh𝒗2hb2+Cλ1K0hQ2HZ(0)QHPh𝒗2hb2\displaystyle\leq C||Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{a}+C||Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||_{b}^{2}+C\lambda_{1}||K_{0}^{h}Q_{2}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}
CZ(0)QHPh𝒗2ha2+C(1+λ1)Z(0)QHPh𝒗2hb2\displaystyle\leq C||Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{a}+C(1+\lambda_{1})||Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||_{b}^{2}
CZ(0)QHPh𝒗2ha2C𝒄𝒖𝒓𝒍QHPh𝒗2hb2.\displaystyle\leq C||Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{a}\leq C||\bm{curl}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}. (4.37)

Using Lemma 4.3, the definition of PhP^{h} and the embedding theorem 𝑯0(𝒄𝒖𝒓𝒍;Ω)𝑯(div0;Ω;ϵr)H1(Ω)3\bm{H}_{0}(\bm{curl};\Omega)\cap\bm{H}(div_{0};\Omega;\epsilon_{r})\hookrightarrow H^{1}(\Omega)^{3}, we get

𝒄𝒖𝒓𝒍QHPh𝒗2hb2C|Ph𝒗2h|12C𝒄𝒖𝒓𝒍Ph𝒗2h02C𝒄𝒖𝒓𝒍𝒗2h02C𝒗2ha2C𝒗2hEk2.||\bm{curl}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}\leq C|P^{h}\bm{v}_{2}^{h}|^{2}_{1}\leq C||\bm{curl}P^{h}\bm{v}_{2}^{h}||^{2}_{0}\leq C||\bm{curl}\ \bm{v}_{2}^{h}||^{2}_{0}\leq C||\bm{v}_{2}^{h}||^{2}_{a}\leq C||\bm{v}_{2}^{h}||^{2}_{E^{k}}. (4.38)

Then

𝒘0Ek2C𝒗2hEk2.||\bm{w}_{0}||^{2}_{E^{k}}\leq C||\bm{v}_{2}^{h}||^{2}_{E^{k}}. (4.39)

For the local fine component, we may use the properties of the partition of unity (3.3)\eqref{unitypartition} and the property of the interpolation operator rhr_{h} to prove that

i=1NZ(i)rhθi(𝒗2h𝒘0)a2Ci=1N𝒄𝒖𝒓𝒍rhθi(𝒗2h𝒘0)b,Ωi2\displaystyle\ \ \ \ \ \sum_{i=1}^{N}||Z^{(i)}r_{h}\theta_{i}(\bm{v}_{2}^{h}-\bm{w}_{0})||^{2}_{a}\leq C\sum_{i=1}^{N}||\bm{curl}\ r_{h}\theta_{i}(\bm{v}_{2}^{h}-\bm{w}_{0})||^{2}_{b,\Omega^{{}^{\prime}}_{i}}
CN0{1δ2||𝒗2h𝒘0||b2+𝒄𝒖𝒓𝒍(𝒗2h𝒘0)b2},\displaystyle\leq CN_{0}\{\frac{1}{\delta^{2}}||\bm{v}_{2}^{h}-\bm{w}_{0}||^{2}_{b}+||\bm{curl}\ (\bm{v}_{2}^{h}-\bm{w}_{0})||^{2}_{b}\}, (4.40)

where the last inequality holds (see [23] or Lemma 10.9 in [24]). We first estimate the first term of (4.40)\eqref{localcomponent}. Combining the triangle inequality, (4.38)\eqref{QHPh}, Lemma 2.1 and Lemma 4.3, we have

𝒗2h𝒘0b2\displaystyle||\bm{v}_{2}^{h}-\bm{w}_{0}||^{2}_{b} =𝒗2hQ2hQ2HZ(0)QHPh𝒗2hb2𝒗2hQ2HZ(0)QHPh𝒗2hb2\displaystyle=||\bm{v}_{2}^{h}-Q_{2}^{h}Q_{2}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}\leq||\bm{v}_{2}^{h}-Q_{2}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}
C{||𝒗2hPh𝒗2h||b2+||Ph𝒗2hQHPh𝒗2h||b2\displaystyle\leq C\{||\bm{v}_{2}^{h}-P^{h}\bm{v}_{2}^{h}||_{b}^{2}+||P^{h}\bm{v}_{2}^{h}-Q^{H}P^{h}\bm{v}_{2}^{h}||_{b}^{2}
+||QHPh𝒗2hZ(0)QHPh𝒗2h||b2+||Z(0)QHPh𝒗2hQ2HZ(0)QHPh𝒗2h||b2}\displaystyle\ \ \ +||Q^{H}P^{h}\bm{v}_{2}^{h}-Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}+||Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}-Q_{2}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}\}
C{H2||𝒄𝒖𝒓𝒍𝒗2h||b2+||QHPh𝒗2hZ(0)QHPh𝒗2h||b2\displaystyle\leq C\{H^{2}||\bm{curl}\ \bm{v}_{2}^{h}||_{b}^{2}+||Q^{H}P^{h}\bm{v}_{2}^{h}-Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}
+||Z(0)QHPh𝒗2hQ2HZ(0)QHPh𝒗2h||b2}.\displaystyle\ \ \ +||Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}-Q_{2}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}\}. (4.41)

On the one hand, it is easy to see that QHPh𝒗2hZ(0)QHPh𝒗2h=K0HQHPh𝒗2hQ^{H}P^{h}\bm{v}_{2}^{h}-Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}=K_{0}^{H}Q^{H}P^{h}\bm{v}_{2}^{h}. So by using the orthogonality of 𝒗2hb(,)K0HQHPh𝒗2h\bm{v}_{2}^{h}\perp_{b(\cdot,\cdot)}K_{0}^{H}Q^{H}P^{h}\bm{v}_{2}^{h}, we know that the second term of (4.41)\eqref{localcomponentfirst1} may be estimate as follows:

K0HQHPh𝒗2hb2=b(K0HQHPh𝒗2h,QHPh𝒗2h)\displaystyle\ \ \ \ ||K_{0}^{H}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}=b(K_{0}^{H}Q^{H}P^{h}\bm{v}_{2}^{h},Q^{H}P^{h}\bm{v}_{2}^{h})
=b(K0HQHPh𝒗2h,QHPh𝒗2h𝒗2h)K0HQHPh𝒗2hbQHPh𝒗2h𝒗2hb.\displaystyle=b(K_{0}^{H}Q^{H}P^{h}\bm{v}_{2}^{h},Q^{H}P^{h}\bm{v}_{2}^{h}-\bm{v}_{2}^{h})\leq||K_{0}^{H}Q^{H}P^{h}\bm{v}_{2}^{h}||_{b}||Q^{H}P^{h}\bm{v}_{2}^{h}-\bm{v}_{2}^{h}||_{b}.

Then, combining Lemma 2.1 and Lemma 4.3, we obtain

K0HQHPh𝒗2hb2QHPh𝒗2h𝒗2hb2CH2𝒄𝒖𝒓𝒍𝒗2hb2,||K_{0}^{H}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}\leq||Q^{H}P^{h}\bm{v}_{2}^{h}-\bm{v}_{2}^{h}||^{2}_{b}\leq CH^{2}||\bm{curl}\ \bm{v}_{2}^{h}||^{2}_{b},

that is

QHPh𝒗2hZ(0)QHPh𝒗2hb2CH2𝒄𝒖𝒓𝒍𝒗2hb2.||Q^{H}P^{h}\bm{v}_{2}^{h}-Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||_{b}^{2}\leq CH^{2}||\bm{curl}\ \bm{v}_{2}^{h}||^{2}_{b}. (4.42)

On the other hand, we know Z(0)QHPh𝒗2hQ2HZ(0)QHPh𝒗2h=Q1HZ(0)QHPh𝒗2h.Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}-Q_{2}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}=Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}. Using the same argument with the proof of Lemma 4.4, we know that there exists 𝒘1hMh(λ1)\bm{w}_{1}^{h}\in M_{h}(\lambda_{1}) such that

Q1HZ(0)QHPh𝒗2h𝒘1hbCHQ1HZ(0)QHPh𝒗2hb.||Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}-\bm{w}_{1}^{h}||_{b}\leq CH||Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||_{b}.

Hence, by the orthogonality of 𝒘1hb(,)𝒗2h\bm{w}_{1}^{h}\perp_{b(\cdot,\cdot)}\bm{v}_{2}^{h}, Cauchy-Schwarz inequality, Lemma 2.1 and Lemma 4.3, we obtain

Q1HZ(0)QHPh𝒗2hb2\displaystyle\ \ \ \ ||Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}
=b(Q1HZ(0)QHPh𝒗2h,QHPh𝒗2h𝒗2h)+b(Q1HZ(0)QHPh𝒗2h,𝒗2h)\displaystyle=b(Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h},Q^{H}P^{h}\bm{v}_{2}^{h}-\bm{v}_{2}^{h})+b(Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h},\bm{v}_{2}^{h})
=b(Q1HZ(0)QHPh𝒗2h,QHPh𝒗2h𝒗2h)+b(Q1HZ(0)QHPh𝒗2h𝒘1h,𝒗2h)\displaystyle=b(Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h},Q^{H}P^{h}\bm{v}_{2}^{h}-\bm{v}_{2}^{h})+b(Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}-\bm{w}_{1}^{h},\bm{v}_{2}^{h})
Q1HZ(0)QHPh𝒗2hbQHPh𝒗2h𝒗2hb+Q1HZ(0)QHPh𝒗2h𝒘1hb𝒗2hb\displaystyle\leq||Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||_{b}||Q^{H}P^{h}\bm{v}_{2}^{h}-\bm{v}_{2}^{h}||_{b}+||Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}-\bm{w}_{1}^{h}||_{b}||\bm{v}_{2}^{h}||_{b}
CHQ1HZ(0)QHPh𝒗2hb𝒄𝒖𝒓𝒍𝒗2hb+CHQ1HZ(0)QHPh𝒗2hb𝒄𝒖𝒓𝒍𝒗2hb.\displaystyle\leq CH||Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||_{b}||\bm{curl}\bm{v}_{2}^{h}||_{b}+CH||Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||_{b}||\bm{curl}\bm{v}_{2}^{h}||_{b}.

Then, by the definition of Q1h,Z(0)Q_{1}^{h},\ Z^{(0)}, we get

Z(0)QHPh𝒗2hQ2HZ(0)QHPh𝒗2hb2Q1HZ(0)QHPh𝒗2hb2CH2𝒄𝒖𝒓𝒍𝒗2hb2,||Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}-Q_{2}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||_{b}^{2}\leq||Q_{1}^{H}Z^{(0)}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}\leq CH^{2}||\bm{curl}\bm{v}_{2}^{h}||_{b}^{2}, (4.43)

which, together with (4.41)\eqref{localcomponentfirst1}, (4.42)\eqref{localcomponentfirst2}, yields

𝒗2h𝒘0b2\displaystyle||\bm{v}_{2}^{h}-\bm{w}_{0}||^{2}_{b} C{H2||𝒄𝒖𝒓𝒍𝒗2h||b2+K0HQHPh𝒗2hb2+Q1HZ0QHPh𝒗2hb2}\displaystyle\leq C\{H^{2}||\bm{curl}\bm{v}_{2}^{h}||_{b}^{2}+||K_{0}^{H}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}+||Q_{1}^{H}Z^{0}Q^{H}P^{h}\bm{v}_{2}^{h}||^{2}_{b}\}
CH2𝒄𝒖𝒓𝒍𝒗2hb2CH2𝒗2ha2.\displaystyle\leq CH^{2}||\bm{curl}\bm{v}_{2}^{h}||_{b}^{2}\leq CH^{2}||\bm{v}_{2}^{h}||_{a}^{2}. (4.44)

For the second term of (4.40)\eqref{localcomponent}, by (4.39)\eqref{coarsedecom} and Lemma 4.2, we have

𝒄𝒖𝒓𝒍(𝒗2h𝒘0)b2C{𝒄𝒖𝒓𝒍𝒗2hb2+𝒄𝒖𝒓𝒍𝒘0b2}\displaystyle\ \ \ \ ||\bm{curl}(\bm{v}_{2}^{h}-\bm{w}_{0})||^{2}_{b}\leq C\{||\bm{curl}\bm{v}_{2}^{h}||^{2}_{b}+||\bm{curl}\bm{w}_{0}||_{b}^{2}\}
C{𝒄𝒖𝒓𝒍𝒗2hb2+𝒘0a2}C{𝒄𝒖𝒓𝒍𝒗2hb2+𝒘0Ek2}C𝒗2ha2.\displaystyle\leq C\{||\bm{curl}\bm{v}_{2}^{h}||^{2}_{b}+||\bm{w}_{0}||_{a}^{2}\}\leq C\{||\bm{curl}\bm{v}_{2}^{h}||^{2}_{b}+||\bm{w}_{0}||_{E^{k}}^{2}\}\leq C||\bm{v}_{2}^{h}||_{a}^{2}. (4.45)

Combining (4.45)\eqref{localcomponentsecond} and (4.44)\eqref{localcomponentfirst4}, we know

i=1NZ(i)rhθi(𝒗2h𝒘0)a2CN0(1+H2δ2)𝒗2ha2.\sum_{i=1}^{N}||Z^{(i)}r_{h}\theta_{i}(\bm{v}_{2}^{h}-\bm{w}_{0})||^{2}_{a}\leq CN_{0}(1+\frac{H^{2}}{\delta^{2}})||\bm{v}_{2}^{h}||_{a}^{2}. (4.46)

Finally, by Lemma 4.2, (4.37)\eqref{Coarsecomponentestimate} and (4.46)\eqref{Finecomponentestimate}, we may obtain the proof of (4.35)\eqref{Decomposition}. \Box

Proof of Theorem 4.5:  Because of Lemma 4.7, we know that for any 𝒗2hMh(λ1)\bm{v}_{2}^{h}\in M_{h}^{\perp}(\lambda_{1}), there exist 𝒘0Q2hMH(λ1)\bm{w}_{0}\in Q_{2}^{h}M_{H}^{\perp}(\lambda_{1}) and 𝒘iV0(i)\bm{w}_{i}\in V_{0}^{(i)} such that

𝒗2h=𝒘0+i=1NQ2h𝒘iandi=0N𝒘iEk2CN0(1+H2δ2)𝒗2hEk2.\bm{v}_{2}^{h}=\bm{w}_{0}+\sum_{i=1}^{N}Q_{2}^{h}\bm{w}_{i}\ \ \ \text{and}\ \ \sum_{i=0}^{N}||\bm{w}_{i}||^{2}_{E^{k}}\leq CN_{0}(1+\frac{H^{2}}{\delta^{2}})||\bm{v}_{2}^{h}||_{E^{k}}^{2}. (4.47)

By (4.26),(4.27)\eqref{T0k},\ \eqref{Tik}, (4.47)\eqref{stabledecomposition} and Cauchy-Schwarz inequality, we may obtain

(𝒗2h,𝒗2h)EkCN0(1+H2δ2)(Q2hi=0NTik𝒗2h,𝒗2h)Ek.(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}\leq CN_{0}(1+\frac{H^{2}}{\delta^{2}})(Q_{2}^{h}\sum_{i=0}^{N}T_{i}^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}. (4.48)

Moreover,

(Gk𝒗2h,𝒗2h)Ek\displaystyle(G^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}} =(𝒗2h,𝒗2h)Ekα(Q2hi=0NTik𝒗2h,𝒗2h)Ek\displaystyle=(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}-\alpha(Q_{2}^{h}\sum_{i=0}^{N}T_{i}^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}
(1C11+H2δ2)(𝒗2h,𝒗2h)Ek(1Cδ2H2)(𝒗2h,𝒗2h)Ek.\displaystyle\leq(1-C\frac{1}{1+\frac{H^{2}}{\delta^{2}}})(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}\leq(1-C\frac{\delta^{2}}{H^{2}})(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}.

Based on Lemma 4.6, we may define (Gk)1/2:Mh(λ1)Mh(λ1)(G^{k})^{1/2}:M_{h}^{\perp}(\lambda_{1})\to M_{h}^{\perp}(\lambda_{1}) and know that (Gk)1/2(G^{k})^{1/2} is also a symmetric positive definite operator on (,)Ek(\cdot,\cdot)_{E^{k}}. Hence, we have

(Gk𝒗2h,Gk𝒗2h)Ek=(Gk(Gk)1/2𝒗2h,(Gk)1/2𝒗2h)Ek\displaystyle\ \ \ \ (G^{k}\bm{v}_{2}^{h},G^{k}\bm{v}_{2}^{h})_{E^{k}}=(G^{k}(G^{k})^{1/2}\bm{v}_{2}^{h},(G^{k})^{1/2}\bm{v}_{2}^{h})_{E^{k}}
(1Cδ2H2)((Gk)1/2𝒗2h,(Gk)1/2𝒗2h)Ek=(1Cδ2H2)(Gk𝒗2h,𝒗2h)Ek\displaystyle\leq(1-C\frac{\delta^{2}}{H^{2}})((G^{k})^{1/2}\bm{v}_{2}^{h},(G^{k})^{1/2}\bm{v}_{2}^{h})_{E^{k}}=(1-C\frac{\delta^{2}}{H^{2}})(G^{k}\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}
(1Cδ2H2)2(𝒗2h,𝒗2h)Ek.\displaystyle\leq(1-C\frac{\delta^{2}}{H^{2}})^{2}(\bm{v}_{2}^{h},\bm{v}_{2}^{h})_{E^{k}}.

Then

Gk𝒗2hEk(1Cδ2H2)𝒗2hEk,||G^{k}\bm{v}_{2}^{h}||_{E^{k}}\leq(1-C\frac{\delta^{2}}{H^{2}})||\bm{v}_{2}^{h}||_{E^{k}}, (4.49)

which completes the proof of this theorem. \Box

4.2 Estimate of the almost counterbalanced term I2I_{2}

Before we analyze the estimate of the almost counterbalanced term I2I_{2}, we first estimate the orthogonal parameter βk=b((Bhk)1𝒓k,𝒖k)b((Bhk)1𝒖k,𝒖k)\beta^{k}=-\frac{b((B_{h}^{k})^{-1}\bm{r}^{k},\bm{u}^{k})}{b((B_{h}^{k})^{-1}\bm{u}^{k},\bm{u}^{k})}.

Lemma 4.8

For sufficiently small HH, it holds that

|βk|CHλkλ1h,|\beta^{k}|\leq CH\sqrt{\lambda^{k}-\lambda_{1}^{h}},

where CC is independent of H,hH,\ h.

Proof.  First, we decompose the numerator of |βk||\beta^{k}|. Due to the definition of 𝒓k,(Bhk)1\bm{r}^{k},(B_{h}^{k})^{-1} and the fact 𝒖k=𝒖1k𝒆2kEh0(Ωh;ϵr)\bm{u}^{k}=\bm{u}_{1}^{k}-\bm{e}_{2}^{k}\in E_{h}^{0}(\Omega_{h};\epsilon_{r}), we get

|b((Bhk)1𝒓k,𝒖k)|\displaystyle\ \ \ \ |b((B_{h}^{k})^{-1}\bm{r}^{k},\bm{u}^{k})|
=|b((Bhk)1(λkAh)𝒖1k,𝒖k)+b((Bhk)1(Ahλk)𝒆2k,𝒖k)|\displaystyle=|b((B_{h}^{k})^{-1}(\lambda^{k}-A^{h})\bm{u}_{1}^{k},\bm{u}^{k})+b((B_{h}^{k})^{-1}(A^{h}-\lambda^{k})\bm{e}_{2}^{k},\bm{u}^{k})|
(λkλ1h)|b((Bhk)1𝒖1k,𝒖k)|+|b((Bhk)1(Ahλk)𝒆2k,𝒖k)|\displaystyle\leq(\lambda^{k}-\lambda_{1}^{h})|b((B_{h}^{k})^{-1}\bm{u}_{1}^{k},\bm{u}^{k})|+|b((B_{h}^{k})^{-1}(A^{h}-\lambda^{k})\bm{e}_{2}^{k},\bm{u}^{k})|
=(λkλ1h)|b((Bhk)1𝒖1k,𝒖k)|+|b((B0k)1Q1HZ(0)QH(Ahλk)𝒆2k,𝒖k)|\displaystyle=(\lambda^{k}-\lambda_{1}^{h})|b((B_{h}^{k})^{-1}\bm{u}_{1}^{k},\bm{u}^{k})|+|b((B_{0}^{k})^{-1}Q_{1}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{e}_{2}^{k},\bm{u}^{k})|
+|b((B0k)1Q2HZ(0)QH(Ahλk)𝒆2k,𝒖k)+|b(i=1N(Bik)1Z(i)Q(i)(Ahλk)𝒆2k,𝒖k)|\displaystyle\ \ \ +|b((B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{e}_{2}^{k},\bm{u}^{k})+|b(\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}(A^{h}-\lambda^{k})\bm{e}_{2}^{k},\bm{u}^{k})|
(λkλ1h)|b((Bhk)1𝒖1k,𝒖k)|+|b((B0k)1Q1HZ(0)QH(Ahλk)𝒆2k,𝒖k)|\displaystyle\leq(\lambda^{k}-\lambda_{1}^{h})|b((B_{h}^{k})^{-1}\bm{u}_{1}^{k},\bm{u}^{k})|+|b((B_{0}^{k})^{-1}Q_{1}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{e}_{2}^{k},\bm{u}^{k})|
+T0k𝒆2kb+i=1NTik𝒆2kb:=(λkλ1h)Γ1+Γ2+Γ3+Γ4,\displaystyle\ \ \ +||T_{0}^{k}\bm{e}_{2}^{k}||_{b}+||\sum_{i=1}^{N}T_{i}^{k}\bm{e}_{2}^{k}||_{b}:=(\lambda^{k}-\lambda_{1}^{h})\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}, (4.50)

where the last inequality holds owing to Cauchy-Schwarz inequality and 𝒖kb=1||\bm{u}^{k}||_{b}=1. In fact, for k=1k=1, it is obvious that 𝒖1b=1||\bm{u}^{1}||_{b}=1 in algorithm 2. As 𝒖k\bm{u}^{k} is the minimum value point of Rayleigh quotient in Wk(k2)W^{k}(k\geq 2) in algorithm 2, without loss of generality, let 𝒖kb=1||\bm{u}^{k}||_{b}=1. Next, we estimate (4.50)\eqref{numerator} one by one. For the first term Γ1\Gamma_{1} in (4.50)\eqref{numerator}, we have

|b((Bhk)1𝒖1k,𝒖k)|\displaystyle\ \ \ \ |b((B_{h}^{k})^{-1}\bm{u}_{1}^{k},\bm{u}^{k})|
=|b((B0k)1Q1HZ(0)QH𝒖1k,𝒖k)|+|b((B0k)1Q2HZ(0)QH𝒖1k,𝒖k)|+|i=1Nb((Bik)1Z(i)Q(i)𝒖1k,𝒖k)|\displaystyle=|b((B_{0}^{k})^{-1}Q_{1}^{H}Z^{(0)}Q^{H}\bm{u}_{1}^{k},\bm{u}^{k})|+|b((B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}_{1}^{k},\bm{u}^{k})|+|\sum_{i=1}^{N}b((B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}_{1}^{k},\bm{u}^{k})|
{(B0k)1Q1HZ(0)QH𝒖1kb+(B0k)1Q2HZ(0)QH𝒖1kb+i=1N(Bik)1Z(i)Q(i)𝒖1kb}𝒖kb.\displaystyle\leq\{||(B_{0}^{k})^{-1}Q_{1}^{H}Z^{(0)}Q^{H}\bm{u}_{1}^{k}||_{b}+||(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}_{1}^{k}||_{b}+\sum_{i=1}^{N}||(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}_{1}^{k}||_{b}\}||\bm{u}^{k}||_{b}. (4.51)

By the definition of B0kB_{0}^{k}, (3.11)\eqref{Bik}, (4.11)\eqref{Q2HQ1} and Assumption 11, we know that for sufficiently small HH,

|b((Bhk)1𝒖1k,𝒖k)|1|λkλ1H|Q1H𝒖1kb+CH𝒖1kb+CH2i=1N𝒖1kb,Ωi\displaystyle\ \ \ \ |b((B_{h}^{k})^{-1}\bm{u}_{1}^{k},\bm{u}^{k})|\leq\frac{1}{|\lambda^{k}-\lambda_{1}^{H}|}||Q_{1}^{H}\bm{u}_{1}^{k}||_{b}+CH||\bm{u}_{1}^{k}||_{b}+CH^{2}\sum_{i=1}^{N}||\bm{u}_{1}^{k}||_{b,\Omega^{{}^{\prime}}_{i}}
C|λkλ1H|𝒖1kb+CH𝒖1kb+CN0H2𝒖1kbC|λkλ1H|.\displaystyle\leq\frac{C}{|\lambda^{k}-\lambda_{1}^{H}|}||\bm{u}_{1}^{k}||_{b}+CH||\bm{u}_{1}^{k}||_{b}+CN_{0}H^{2}||\bm{u}_{1}^{k}||_{b}\leq\frac{C}{|\lambda^{k}-\lambda_{1}^{H}|}. (4.52)

For the second term Γ2\Gamma_{2} in (4.50)\eqref{numerator}, by the definition of Q1H,Q2hQ_{1}^{H},\ Q_{2}^{h}, Lemma 4.4 and (4.19)\eqref{e2Eku1b}, we get

|b((B0k)1Q1HZ(0)QH(Ahλk)𝒆2k,𝒖k)|=1|λkλ1H||b(Q1H(Ahλk)𝒆2k,𝒖k)|\displaystyle\ \ \ \ |b((B_{0}^{k})^{-1}Q_{1}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{e}_{2}^{k},\bm{u}^{k})|=\frac{1}{|\lambda^{k}-\lambda_{1}^{H}|}|b(Q_{1}^{H}(A^{h}-\lambda^{k})\bm{e}_{2}^{k},\bm{u}^{k})|
=1|λkλ1H||(𝒆2k,Q2hQ1H𝒖k)Ek|C|λkλ1H|𝒆2kEkQ2hQ1H𝒖kaCHλkλ1h|λkλ1H|.\displaystyle=\frac{1}{|\lambda^{k}-\lambda_{1}^{H}|}|(\bm{e}_{2}^{k},Q_{2}^{h}Q_{1}^{H}\bm{u}^{k})_{E^{k}}|\leq\frac{C}{|\lambda^{k}-\lambda_{1}^{H}|}||\bm{e}_{2}^{k}||_{E^{k}}||Q_{2}^{h}Q_{1}^{H}\bm{u}^{k}||_{a}\leq\frac{CH\sqrt{\lambda^{k}-\lambda_{1}^{h}}}{|\lambda^{k}-\lambda_{1}^{H}|}. (4.53)

For the third term Γ3\Gamma_{3} in (4.50)\eqref{numerator}, by the Poincare´\acute{e} inequality, (4.19)\eqref{e2Eku1b} and (4.31)\eqref{Gkcoarse}, we obtain

T0k𝒆2kbCT0k𝒆2kEkC𝒆2kEk=Cλkλ1h𝒖1kbCλkλ1h.||T_{0}^{k}\bm{e}_{2}^{k}||_{b}\leq C||T_{0}^{k}\bm{e}_{2}^{k}||_{E^{k}}\leq C||\bm{e}_{2}^{k}||_{E^{k}}=C\sqrt{\lambda^{k}-\lambda_{1}^{h}}||\bm{u}_{1}^{k}||_{b}\leq C\sqrt{\lambda^{k}-\lambda_{1}^{h}}. (4.54)

For the fourth term Γ4\Gamma_{4} in (4.50)\eqref{numerator}, by Lemma 3.1, the Poincare´\acute{e} inequality, (4.19)\eqref{e2Eku1b} and (4.34)\eqref{Gkifinelocal}, we get

i=1NTik𝒆2kbN0i=1NTik𝒆2kb2CHN0i=1NTik𝒆2kEk2CH𝒆2kEkCHλkλ1h.||\sum_{i=1}^{N}T_{i}^{k}\bm{e}_{2}^{k}||_{b}\leq\sqrt{N_{0}\sum_{i=1}^{N}||T_{i}^{k}\bm{e}_{2}^{k}||^{2}_{b}}\leq CH\sqrt{N_{0}\sum_{i=1}^{N}||T_{i}^{k}\bm{e}_{2}^{k}||^{2}_{E^{k}}}\leq CH||\bm{e}_{2}^{k}||_{E^{k}}\leq CH\sqrt{\lambda^{k}-\lambda_{1}^{h}}. (4.55)

Combining (4.50)\eqref{numerator} and (4.52)(4.55)\eqref{numeratorfirst}\sim\eqref{numeratorfourth} together, for sufficiently small HH, we have

|b((Bhk)1𝒓k,𝒖k)|λkλ1h+CHλkλ1h|λkλ1H|.\displaystyle|b((B_{h}^{k})^{-1}\bm{r}^{k},\bm{u}^{k})|\leq\frac{\lambda^{k}-\lambda_{1}^{h}+CH\sqrt{\lambda^{k}-\lambda_{1}^{h}}}{|\lambda^{k}-\lambda_{1}^{H}|}. (4.56)

On the other hand, we analyze the denominator of |βk||\beta^{k}|

|b((Bhk)1𝒖k,𝒖k)|\displaystyle|b((B_{h}^{k})^{-1}\bm{u}^{k},\bm{u}^{k})| |b((B0k)1Q1HQH𝒖k,𝒖k)||b((B0k)1Q2HQH𝒖k,𝒖k)|\displaystyle\geq|b((B_{0}^{k})^{-1}Q_{1}^{H}Q^{H}\bm{u}^{k},\bm{u}^{k})|-|b((B_{0}^{k})^{-1}Q_{2}^{H}Q^{H}\bm{u}^{k},\bm{u}^{k})|
|b(i=1N(Bik)1Z(i)Q(i)𝒖k,𝒖k)|:=J1J2J3.\displaystyle\ \ \ -|b(\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}^{k},\bm{u}^{k})|:=J_{1}-J_{2}-J_{3}. (4.57)

Similarly, we estimate the terms in (4.57)\eqref{estimatedenoest} one by one. Note that by Lemma 4.4, we have

Q2H𝒖kb\displaystyle||Q_{2}^{H}\bm{u}^{k}||_{b} Q2H𝒖1kb+Q2H𝒆2kbCH𝒖1kb+C𝒆2kEk\displaystyle\leq||Q_{2}^{H}\bm{u}_{1}^{k}||_{b}+||Q_{2}^{H}\bm{e}_{2}^{k}||_{b}\leq CH||\bm{u}_{1}^{k}||_{b}+C||\bm{e}_{2}^{k}||_{E^{k}}
(CH+Cλkλ1h)𝒖1kbCH,\displaystyle\leq(CH+C\sqrt{\lambda^{k}-\lambda_{1}^{h}})||\bm{u}_{1}^{k}||_{b}\leq CH, (4.58)

and

K0H𝒖kbK0H𝒖1kb+K0H𝒆2kbCH𝒖1kb+C𝒆2kEkCH.||K_{0}^{H}\bm{u}^{k}||_{b}\leq||K_{0}^{H}\bm{u}_{1}^{k}||_{b}+||K_{0}^{H}\bm{e}_{2}^{k}||_{b}\leq CH||\bm{u}_{1}^{k}||_{b}+C||\bm{e}_{2}^{k}||_{E^{k}}\leq CH. (4.59)

Meanwhile,

Q1H𝒖kb2\displaystyle||Q_{1}^{H}\bm{u}^{k}||^{2}_{b} =QH𝒖kb2Q2H𝒖kb2K0H𝒖kb2\displaystyle=||Q^{H}\bm{u}^{k}||^{2}_{b}-||Q_{2}^{H}\bm{u}^{k}||^{2}_{b}-||K_{0}^{H}\bm{u}^{k}||^{2}_{b}
𝒖kb2𝒖kQH𝒖kb2CH21CH2,\displaystyle\geq||\bm{u}^{k}||_{b}^{2}-||\bm{u}^{k}-Q^{H}\bm{u}^{k}||_{b}^{2}-CH^{2}\geq 1-CH^{2}, (4.60)

where the last inequality holds due to the following estimate

𝒖kQH𝒖kb\displaystyle||\bm{u}^{k}-Q^{H}\bm{u}^{k}||_{b} 𝒖kQHPh𝒖kb+QHPh𝒖kQH𝒖kb\displaystyle\leq||\bm{u}^{k}-Q^{H}P^{h}\bm{u}^{k}||_{b}+||Q^{H}P^{h}\bm{u}^{k}-Q^{H}\bm{u}^{k}||_{b}
C𝒖kPh𝒖kb+Ph𝒖kQHPh𝒖kb\displaystyle\leq C||\bm{u}^{k}-P^{h}\bm{u}^{k}||_{b}+||P^{h}\bm{u}^{k}-Q^{H}P^{h}\bm{u}^{k}||_{b}
Ch𝒄𝒖𝒓𝒍𝒖kb+CH|Ph𝒖k|1Ch𝒄𝒖𝒓𝒍𝒖kb+CH𝒄𝒖𝒓𝒍Ph𝒖kb\displaystyle\leq Ch||\bm{curl}\bm{u}^{k}||_{b}+CH|P^{h}\bm{u}^{k}|_{1}\leq Ch||\bm{curl}\bm{u}^{k}||_{b}+CH||\bm{curl}P^{h}\bm{u}^{k}||_{b}
CH𝒄𝒖𝒓𝒍𝒖kbCH𝒖ka=CHλk𝒖kbCH,\displaystyle\leq CH||\bm{curl}\bm{u}^{k}||_{b}\leq CH||\bm{u}^{k}||_{a}=CH\sqrt{\lambda^{k}}||\bm{u}^{k}||_{b}\leq CH,

where the similar argument in (4.38)\eqref{QHPh} is used. Hence, for the first two terms J1,J2J_{1},\ J_{2} of (4.57)\eqref{estimatedenoest}, combining (4.58)\eqref{K0HQ1HQ2Hfirst} and (4.60)\eqref{K0HQ1HQ2Hthird}, as long as sufficiently small HH, we have

J1\displaystyle J_{1} =|b((B0k)1Q1H𝒖k,Q1H𝒖k)|\displaystyle=|b((B_{0}^{k})^{-1}Q_{1}^{H}\bm{u}^{k},Q_{1}^{H}\bm{u}^{k})|
=1|λkλ1H|Q1H𝒖kb2C|λkλ1H|,\displaystyle=\frac{1}{|\lambda^{k}-\lambda_{1}^{H}|}||Q_{1}^{H}\bm{u}^{k}||_{b}^{2}\geq\frac{C}{|\lambda^{k}-\lambda_{1}^{H}|}, (4.61)

and

J2\displaystyle J_{2} |b((B0k)1Q2H𝒖k,Q2H𝒖k)|\displaystyle\leq|b((B_{0}^{k})^{-1}Q_{2}^{H}\bm{u}^{k},Q_{2}^{H}\bm{u}^{k})|
1λ2HλkQ2H𝒖kb2CH2λ2HλkCH2.\displaystyle\leq\frac{1}{\lambda_{2}^{H}-\lambda^{k}}||Q_{2}^{H}\bm{u}^{k}||^{2}_{b}\leq\frac{CH^{2}}{\lambda_{2}^{H}-\lambda^{k}}\leq CH^{2}. (4.62)

For the third term J3J_{3} of (4.57)\eqref{estimatedenoest}, by (3.11)\eqref{Bik} and Assumption 11, we know

J3\displaystyle J_{3} CH2i=1Nb(Z(i)Q(i)𝒖k,Z(i)Q(i)𝒖k)\displaystyle\leq CH^{2}\sum_{i=1}^{N}b(Z^{(i)}Q^{(i)}\bm{u}^{k},Z^{(i)}Q^{(i)}\bm{u}^{k})
CH2i=1N𝒖kb,Ωi2CH2.\displaystyle\leq CH^{2}\sum_{i=1}^{N}||\bm{u}^{k}||_{b,\Omega_{i}^{{}^{\prime}}}^{2}\leq CH^{2}. (4.63)

Combining (4.61)(4.63)\eqref{denominatorfirst}\sim\eqref{denominatorthird} together, we get

|b((Bhk)1𝒖k,𝒖k)|C|λkλ1H|,|b((B_{h}^{k})^{-1}\bm{u}^{k},\bm{u}^{k})|\geq\frac{C}{|\lambda^{k}-\lambda_{1}^{H}|},

which, together with (4.56)\eqref{estimatnum}, proves this lemma. \Box

Next, we estimate the almost counterbalanced term I2I_{2}. For convenience of analysis, we set 𝒗^1H:=Q1HZ(0)QH(Ahλk)𝒖k,𝒗ˇ1H:=βkQ1HZ(0)QH𝒖k.\hat{\bm{v}}_{1}^{H}:=Q_{1}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{u}^{k},\ \check{\bm{v}}_{1}^{H}:=-\beta^{k}Q_{1}^{H}Z^{(0)}Q^{H}\bm{u}^{k}. It is easy to see that

αQ2h(B0k)1Q1HZ(0)QH(Ahλk)𝒖kαβkQ2h(B0k)1Q1HZ(0)QH𝒖k=αQ2h(B0k)1(𝒗^1H+𝒗ˇ1H).\alpha Q_{2}^{h}(B_{0}^{k})^{-1}Q_{1}^{H}Z^{(0)}Q^{H}(A_{h}-\lambda^{k})\bm{u}^{k}-\alpha\beta^{k}Q_{2}^{h}(B_{0}^{k})^{-1}Q_{1}^{H}Z^{(0)}Q^{H}\bm{u}^{k}=\alpha Q_{2}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H}).

For s=1, 2s=1,\ 2, we have

Qsh𝒕k+1\displaystyle Q_{s}^{h}\bm{t}^{k+1} =Qsh𝒆k+1=Qsh(Bhk)1𝒓k+βkQsh(Bhk)1𝒖k\displaystyle=Q_{s}^{h}\bm{e}^{k+1}=Q_{s}^{h}(B_{h}^{k})^{-1}\bm{r}^{k}+\beta^{k}Q_{s}^{h}(B_{h}^{k})^{-1}\bm{u}^{k}
=Qsh(B0k)1Q1HZ(0)QH𝒓k+Qsh(B0k)1Q2HZ(0)QH𝒓k+Qshi=1N(Bik)1Z(i)Q(i)𝒓k\displaystyle=Q_{s}^{h}(B_{0}^{k})^{-1}Q_{1}^{H}Z^{(0)}Q^{H}\bm{r}^{k}+Q_{s}^{h}(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{r}^{k}+Q_{s}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{r}^{k}
+βkQsh(B0k)1Q1HZ(0)QH𝒖k+βkQsh(B0k)1Q2HZ(0)QH𝒖k\displaystyle\ \ \ +\beta^{k}Q_{s}^{h}(B_{0}^{k})^{-1}Q_{1}^{H}Z^{(0)}Q^{H}\bm{u}^{k}+\beta^{k}Q_{s}^{h}(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}^{k}
+βkQshi=1N(Bik)1Z(i)Q(i)𝒖k.\displaystyle\ \ \ +\beta^{k}Q_{s}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}^{k}. (4.64)

Denote

f(Qsh)\displaystyle f(Q_{s}^{h}) :=Qsh(B0k)1Q2HZ(0)QH𝒓kb+Qshi=1N(Bik)1Z(i)Q(i)𝒓kb\displaystyle:=||Q_{s}^{h}(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{r}^{k}||_{b}+||Q_{s}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{r}^{k}||_{b}
+|βk|||Qsh(B0k)1Q2HZ(0)QH𝒖k||b+|βk|||Qshi=1N(Bik)1Z(i)Q(i)𝒖k||b.(s=1,2)\displaystyle\ \ \ \ +|\beta^{k}|||Q_{s}^{h}(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}^{k}||_{b}+|\beta^{k}|||Q_{s}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}^{k}||_{b}.\ \ \ \ \ (s=1,2) (4.65)

Using Lemma 4.2, the Pythagorean theorem on Eh(Ωh)E_{h}(\Omega_{h}) in the sense of ||||b||\cdot||_{b} and Lemma 4.4, we have

Q2h(B0k)1(𝒗^1H+𝒗ˇ1H)Ek2CQ2h(B0k)1(𝒗^1H+𝒗ˇ1H)Eh2\displaystyle\ \ \ \ ||Q_{2}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{E^{k}}\leq C||Q_{2}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{E^{h}}
=Cλ1hK0h(B0k)1(𝒗^1H+𝒗ˇ1H)b2(λ1hλ1H)(B0k)1(𝒗^1H+𝒗ˇ1H)b2\displaystyle=C\lambda_{1}^{h}||K_{0}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}-(\lambda_{1}^{h}-\lambda_{1}^{H})||(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}
CH2(B0k)1(𝒗^1H+𝒗ˇ1H)b2.\displaystyle\leq CH^{2}||(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}. (4.66)

Moreover,

(B0k)1(𝒗^1H+𝒗ˇ1H)b2\displaystyle\ \ \ \ ||(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}
=K0h(B0k)1(𝒗^1H+𝒗ˇ1H)b2+Q1h(B0k)1(𝒗^1H+𝒗ˇ1H)b2+Q2h(B0k)1(𝒗^1H+𝒗ˇ1H)b2\displaystyle=||K_{0}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}+||Q_{1}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}+||Q_{2}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}
CH2(B0k)1(𝒗^1H+𝒗ˇ1H)b2+Q1h(B0k)1(𝒗^1H+𝒗ˇ1H)b2+CH2(B0k)1(𝒗^1H+𝒗ˇ1H)b2.\displaystyle\leq CH^{2}||(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}+||Q_{1}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}+CH^{2}||(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}.

Then

(B0k)1(𝒗^1H+𝒗ˇ1H)b2CQ1h(B0k)1(𝒗^1H+𝒗ˇ1H)b2.||(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}\leq C||Q_{1}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||^{2}_{b}.

By (4.66)\eqref{combine1}, we may obtain

Q2h(B0k)1(𝒗^1H+𝒗ˇ1H)EkCHQ1h(B0k)1(𝒗^1H+𝒗ˇ1H)b.||Q_{2}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||_{E^{k}}\leq CH||Q_{1}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||_{b}.

Furthermore, combining (4.64)\eqref{Qs} and (4.65)\eqref{fQsh}, we have

Q2h(B0k)1(𝒗^1H+𝒗ˇ1H)EkCHQ1h(B0k)1(𝒗^1H+𝒗ˇ1H)b\displaystyle\ \ \ \ ||Q_{2}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||_{E^{k}}\leq CH||Q_{1}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||_{b}
CH||Q1h𝒆k+1Q1h(B0k)1Q2HZ(0)QH𝒓kQ1hi=1N(Bik)1Z(i)Q(i)𝒓k\displaystyle\leq CH||Q_{1}^{h}\bm{e}^{k+1}-Q_{1}^{h}(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{r}^{k}-Q_{1}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{r}^{k}
βkQ1h(B0k)1Q2HZ(0)QH𝒖kβkQ1hi=1N(Bik)1Z(i)Q(i)𝒖k||b\displaystyle\ \ \ -\beta^{k}Q_{1}^{h}(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}^{k}-\beta^{k}Q_{1}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}^{k}||_{b}
CH{Q1h𝒆k+1b+f(Q1h)}=CH{Q1h𝒕k+1b+f(Q1h)}.\displaystyle\leq CH\{||Q_{1}^{h}\bm{e}^{k+1}||_{b}+f(Q_{1}^{h})\}=CH\{||Q_{1}^{h}\bm{t}^{k+1}||_{b}+f(Q_{1}^{h})\}. (4.67)

Using the orthogonal property of Jacobi-Davidson method and Helmholtz orthogonal decomposotion, we get

Q1h𝒕k+1b\displaystyle||Q_{1}^{h}\bm{t}^{k+1}||_{b} =Q1h𝒆k+1b=|b(𝒖1h,𝒆k+1)|=|b(𝒖1h𝒖k,𝒆k+1)|\displaystyle=||Q_{1}^{h}\bm{e}^{k+1}||_{b}=|b(\bm{u}_{1}^{h},\bm{e}^{k+1})|=|b(\bm{u}_{1}^{h}-\bm{u}^{k},\bm{e}^{k+1})|
=|b(𝒖1h𝒖k,𝒆k+1phk)|𝒖1h𝒖kb𝒕k+1b.\displaystyle=|b(\bm{u}_{1}^{h}-\bm{u}^{k},\bm{e}^{k+1}-\nabla{p}_{h}^{k})|\leq||\bm{u}_{1}^{h}-\bm{u}^{k}||_{b}||\bm{t}^{k+1}||_{b}.

By (4.17)\eqref{u1e2definition}, (4.19)\eqref{e2Eku1b} and the Poincare´\acute{e} inequality, for sufficiently small HH, we have

𝒖1h𝒖kb𝒖1h𝒖1k+𝒆2kb𝒖1h𝒖1kb+𝒆2kb\displaystyle\ \ \ \ ||\bm{u}_{1}^{h}-\bm{u}^{k}||_{b}\leq||\bm{u}_{1}^{h}-\bm{u}_{1}^{k}+\bm{e}_{2}^{k}||_{b}\leq||\bm{u}_{1}^{h}-\bm{u}_{1}^{k}||_{b}+||\bm{e}_{2}^{k}||_{b}
=𝒖1hb𝒖1kb+𝒆2kb=𝒖kb𝒖1kb+𝒆2kb\displaystyle=||\bm{u}_{1}^{h}||_{b}-||\bm{u}_{1}^{k}||_{b}+||\bm{e}_{2}^{k}||_{b}=||\bm{u}^{k}||_{b}-||\bm{u}_{1}^{k}||_{b}+||\bm{e}_{2}^{k}||_{b}
2𝒆2kbC𝒆2kEkCλkλ1h.\displaystyle\leq 2||\bm{e}_{2}^{k}||_{b}\leq C||\bm{e}_{2}^{k}||_{E^{k}}\leq C\sqrt{\lambda^{k}-\lambda_{1}^{h}}. (4.68)

Then

Q1h𝒕k+1bCλkλ1h𝒕k+1b.||Q_{1}^{h}\bm{t}^{k+1}||_{b}\leq C\sqrt{\lambda^{k}-\lambda_{1}^{h}}||\bm{t}^{k+1}||_{b}.

It is known that

𝒕k+1bQ1h𝒕k+1b+Q2h𝒕k+1b,||\bm{t}^{k+1}||_{b}\leq||Q_{1}^{h}\bm{t}^{k+1}||_{b}+||Q_{2}^{h}\bm{t}^{k+1}||_{b},

we have

𝒕k+1bCQ2h𝒕k+1b.||\bm{t}^{k+1}||_{b}\leq C||Q_{2}^{h}\bm{t}^{k+1}||_{b}.

Furthermore,

Q1h𝒕k+1bCλkλ1hQ2h𝒕k+1b.||Q_{1}^{h}\bm{t}^{k+1}||_{b}\leq C\sqrt{\lambda^{k}-\lambda_{1}^{h}}||Q_{2}^{h}\bm{t}^{k+1}||_{b}. (4.69)

Combining (4.64)\eqref{Qs}, (4.65)\eqref{fQsh}, (4.67)\eqref{Q1htk1} and (4.69)\eqref{Q1ht}, we obtain

Q2h(B0k)1(𝒗^1H+𝒗ˇ1H)EkCH{Q1h𝒕k+1b+f(Q1h)}\displaystyle\ \ \ \ ||Q_{2}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||_{E^{k}}\leq CH\{||Q_{1}^{h}\bm{t}^{k+1}||_{b}+f(Q_{1}^{h})\}
CHf(Q1h)+CHλkλ1h{Q2h(B0k)1(𝒗^1H+𝒗ˇ1k)b+f(Q2h)}\displaystyle\leq CHf(Q_{1}^{h})+CH\sqrt{\lambda^{k}-\lambda_{1}^{h}}\{||Q_{2}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{k})||_{b}+f(Q_{2}^{h})\}
CHf(Q1h)+CHλkλ1h{Q2h(B0k)1(𝒗^1H+𝒗ˇ1k)Ek+f(Q2h)}.\displaystyle\leq CHf(Q_{1}^{h})+CH\sqrt{\lambda^{k}-\lambda_{1}^{h}}\{||Q_{2}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{k})||_{E^{k}}+f(Q_{2}^{h})\}.

Then

Q2h(B0k)1(𝒗^1H+𝒗ˇ1H)EkCHf(Q1h)+CHλkλ1hf(Q2h).||Q_{2}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{H})||_{E^{k}}\leq CHf(Q_{1}^{h})+CH\sqrt{\lambda^{k}-\lambda_{1}^{h}}f(Q_{2}^{h}). (4.70)

Next, we estimate the terms f(Q1h)f(Q_{1}^{h}) and f(Q2h)f(Q_{2}^{h}) in (4.65)\eqref{fQsh}. For the first term in (4.65)\eqref{fQsh}, by the Poincare´\acute{e} inequality, (4.19)\eqref{e2Eku1b} and (4.31)\eqref{Gkcoarse}, we get

(B0k)1Q2HZ(0)QH𝒓kb\displaystyle\ \ \ \ ||(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{r}_{k}||_{b}
(B0k)1Q2HZ(0)QH(Ahλk)𝒆2kb+(λkλ1h)(B0k)1Q2HZ(0)QH𝒖1kb\displaystyle\leq||(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}(A_{h}-\lambda^{k})\bm{e}_{2}^{k}||_{b}+(\lambda^{k}-\lambda_{1}^{h})||(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}_{1}^{k}||_{b}
T0k𝒆2kb+C(λkλ1h)Q2H𝒖1kb\displaystyle\leq||T_{0}^{k}\bm{e}_{2}^{k}||_{b}+C(\lambda^{k}-\lambda_{1}^{h})||Q_{2}^{H}\bm{u}_{1}^{k}||_{b}
T0k𝒆2kEk+CH(λkλ1h)𝒖1kbC𝒆2kEk.\displaystyle\leq||T_{0}^{k}\bm{e}_{2}^{k}||_{E^{k}}+CH(\lambda^{k}-\lambda_{1}^{h})||\bm{u}_{1}^{k}||_{b}\leq C||\bm{e}_{2}^{k}||_{E_{k}}. (4.71)

For the second term in (4.65)\eqref{fQsh}, by Lemma 3.1, the Poincare´\acute{e} inequality, (4.19)\eqref{e2Eku1b} and (4.34)\eqref{Gkifinelocal}, we have

i=1N(Bik)1Z(i)Q(i)𝒓kb\displaystyle\ \ \ \ ||\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{r}^{k}||_{b}
i=1N(Bik)1Z(i)Q(i)(Ahλk)𝒆2kb+(λkλ1h)i=1N(Bik)1Z(i)Q(i)𝒖1kb\displaystyle\leq||\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}(A^{h}-\lambda^{k})\bm{e}_{2}^{k}||_{b}+(\lambda^{k}-\lambda_{1}^{h})||\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}_{1}^{k}||_{b}
i=1NTik𝒆2kb+CH2(λkλ1h)i=1NZ(i)Q(i)𝒖1kbCH2𝒆2kEk.\displaystyle\leq||\sum_{i=1}^{N}T_{i}^{k}\bm{e}_{2}^{k}||_{b}+CH^{2}(\lambda^{k}-\lambda_{1}^{h})||\sum_{i=1}^{N}Z^{(i)}Q^{(i)}\bm{u}_{1}^{k}||_{b}\leq CH^{2}||\bm{e}_{2}^{k}||_{E^{k}}. (4.72)

For the third term in (4.65)\eqref{fQsh}, by (4.17)\eqref{u1e2definition}, Lemma 4.4 and Lemma 4.8, we obtain

|βk|(B0k)1Q2HZ(0)QH𝒖kb\displaystyle\ \ \ \ |\beta^{k}|\ ||(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}^{k}||_{b}
CHλkλ1h{(B0k)1Q2HZ(0)QH𝒆2kb+(B0k)1Q2HZ(0)QH𝒖1kb}\displaystyle\leq CH\sqrt{\lambda^{k}-\lambda_{1}^{h}}\{||(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{e}_{2}^{k}||_{b}+||(B_{0}^{k})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}_{1}^{k}||_{b}\}
CHλkλ1h{𝒆2kb+Q2H𝒖1kb}CH2𝒆2kEk.\displaystyle\leq CH\sqrt{\lambda^{k}-\lambda_{1}^{h}}\{||\bm{e}_{2}^{k}||_{b}+||Q_{2}^{H}\bm{u}_{1}^{k}||_{b}\}\leq CH^{2}||\bm{e}_{2}^{k}||_{E^{k}}. (4.73)

For the fourth term in (4.65)\eqref{fQsh}, by (3.11)\eqref{Bik} and Lemma 4.8, we know

|βk|i=1N(Bik)1Z(i)Q(i)𝒖kbCHλkλ1hCH2i=1NZ(i)Q(i)𝒖kb\displaystyle\ \ \ \ |\beta^{k}|\ ||\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}^{k}||_{b}\leq CH\sqrt{\lambda^{k}-\lambda_{1}^{h}}\cdot CH^{2}\sum_{i=1}^{N}||Z^{(i)}Q^{(i)}\bm{u}^{k}||_{b}
CH3λkλ1h𝒖kbCH3𝒆2kEk.\displaystyle\leq CH^{3}\sqrt{\lambda^{k}-\lambda_{1}^{h}}||\bm{u}^{k}||_{b}\leq CH^{3}||\bm{e}_{2}^{k}||_{E^{k}}. (4.74)

Finally, we may finish the estimate of the almost counterbalanced term I2I_{2} by combining Lemma 4.4, (4.65)\eqref{fQsh}, (4.70)\eqref{Twocom} and (4.71)(4.74)\eqref{twocomestimate1}\sim\eqref{twocomestimate4}, i.e.,

Q2h(B0k)1(𝒗^1H+𝒗ˇ1k)EkCHf(Q1h)+CHλkλ1hf(Q2h)CH2𝒆2kEk.||Q_{2}^{h}(B_{0}^{k})^{-1}(\hat{\bm{v}}_{1}^{H}+\check{\bm{v}}_{1}^{k})||_{E^{k}}\leq CHf(Q_{1}^{h})+CH\sqrt{\lambda^{k}-\lambda_{1}^{h}}f(Q_{2}^{h})\leq CH^{2}||\bm{e}_{2}^{k}||_{E^{k}}. (4.75)

4.3 The main result of this paper

In this subsection, we first estimate the term I3I_{3} in (4.18)\eqref{errorsplitting}, and then we shall give our main result of this paper. For convenience, we denote Sk:=Q2h(B0k)1Q2HZ(0)QHS^{k}:=Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}. So

Q2h(B0k)1Q2HZ(0)QH(Ahλk)𝒖1k=Sk(Ahλk)𝒖1k.Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{u}_{1}^{k}=S^{k}(A^{h}-\lambda^{k})\bm{u}_{1}^{k}.

For any 𝒗1hMh(λ1)\bm{v}_{1}^{h}\in M_{h}(\lambda_{1}), we have

Sk𝒗1hEk2\displaystyle||S^{k}\bm{v}_{1}^{h}||^{2}_{E^{k}} =b((B0k)1Q2HZ(0)QH𝒗1h,(Ahλk)Sk𝒗1h)\displaystyle=b((B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{v}_{1}^{h},(A^{h}-\lambda^{k})S^{k}\bm{v}_{1}^{h})
=b(Q2H𝒗1h,T0kSk𝒗1h)Q2H𝒗1hbT0kSk𝒗1hb.\displaystyle=b(Q_{2}^{H}\bm{v}_{1}^{h},T_{0}^{k}S^{k}\bm{v}_{1}^{h})\leq||Q_{2}^{H}\bm{v}_{1}^{h}||_{b}||T_{0}^{k}S^{k}\bm{v}_{1}^{h}||_{b}. (4.76)

Combining Lemma 4.4, (4.31)\eqref{Gkcoarse} and Sk𝒗1hMh(λ1)S^{k}\bm{v}_{1}^{h}\in M^{\perp}_{h}(\lambda_{1}), we obtain

Sk𝒗1hEk2CH𝒗1hbSk𝒗1hEk.||S^{k}\bm{v}_{1}^{h}||^{2}_{E^{k}}\leq CH||\bm{v}_{1}^{h}||_{b}||S^{k}\bm{v}_{1}^{h}||_{E^{k}}.

Hence,

Sk𝒗1hEk2CH2𝒗1hb2.||S^{k}\bm{v}_{1}^{h}||^{2}_{E^{k}}\leq CH^{2}||\bm{v}_{1}^{h}||_{b}^{2}.

Moreover, we may obtain the following estimate

Sk(Ahλk)𝒖1kEk2=(λkλ1h)2Sk𝒖1kEk2CH2(λkλ1h)2𝒖1kb2CH4𝒆2kEk2,\displaystyle||S^{k}(A^{h}-\lambda^{k})\bm{u}_{1}^{k}||_{E^{k}}^{2}=(\lambda^{k}-\lambda_{1}^{h})^{2}||S^{k}\bm{u}_{1}^{k}||_{E^{k}}^{2}\leq CH^{2}(\lambda^{k}-\lambda_{1}^{h})^{2}||\bm{u}_{1}^{k}||_{b}^{2}\leq CH^{4}||\bm{e}_{2}^{k}||^{2}_{E^{k}},

that is

Q2h(B0k)1Q2HZ(0)QH(Ahλk)𝒖1kEkCH2𝒆2kEk.||Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}(A^{h}-\lambda^{k})\bm{u}_{1}^{k}||_{E^{k}}\leq CH^{2}||\bm{e}_{2}^{k}||_{E^{k}}. (4.77)

For the term βkQ2h(B0k)1Q2HZ(0)QH𝒖k\beta^{k}Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}^{k} in I3I_{3}, by the similar argument with (4.76)\eqref{otherterms1}, it is easy to see that

Q2h(B0k)1Q2HZ(0)QH𝒖kEk2CQ2H𝒖kb2.||Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}^{k}||^{2}_{E^{k}}\leq C||Q_{2}^{H}\bm{u}^{k}||^{2}_{b}.

Hence, by Lemma 4.4, Lemma 4.8 and (4.19)\eqref{e2Eku1b}, we know

|βk|Q2h(B0k)1Q2HZ(0)QH𝒖kEk\displaystyle\ \ \ \ |\beta^{k}|||Q_{2}^{h}(B^{k}_{0})^{-1}Q_{2}^{H}Z^{(0)}Q^{H}\bm{u}^{k}||_{E^{k}}
C|βk|Q2H𝒖kbC|βk|{Q2H𝒖1kb+Q2H𝒆2kb}\displaystyle\leq C|\beta^{k}|||Q_{2}^{H}\bm{u}^{k}||_{b}\leq C|\beta^{k}|\{||Q_{2}^{H}\bm{u}_{1}^{k}||_{b}+||Q_{2}^{H}\bm{e}_{2}^{k}||_{b}\}
C|βk|{H||𝒖1k||b+𝒆2kb}CHλkλ1h(1+Hλkλ1h)𝒆2kEk\displaystyle\leq C|\beta^{k}|\{H||\bm{u}_{1}^{k}||_{b}+||\bm{e}_{2}^{k}||_{b}\}\leq CH\sqrt{\lambda^{k}-\lambda_{1}^{h}}(1+\frac{H}{\sqrt{\lambda^{k}-\lambda_{1}^{h}}})||\bm{e}_{2}^{k}||_{E^{k}}
CH2𝒆2kEk.\displaystyle\leq CH^{2}||\bm{e}_{2}^{k}||_{E^{k}}. (4.78)

For the terms Q2hi=1N(Bik)1Z(i)Q(i)(Ahλk)𝒖1kQ_{2}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}(A^{h}-\lambda^{k})\bm{u}_{1}^{k} and βkQ2hi=1N(Bik)1Z(i)Q(i)𝒖k\beta^{k}Q_{2}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}^{k} in I3I_{3}, we denote Fk:=i=1N(Bik)1Z(i)Q(i)F^{k}:=\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}. For any 𝒗hEh0(Ωh;ϵr)\bm{v}^{h}\in E^{0}_{h}(\Omega_{h};\epsilon_{r}), combining the Poincare´\acute{e} inequality and (4.34)\eqref{Gkifinelocal}, we have

Q2hFk𝒗hEk2=l=1Nb((Blk)1Z(l)Q(l)𝒗h,(Ahλk)Q2hFk𝒗h)\displaystyle\ \ \ \ ||Q_{2}^{h}F^{k}\bm{v}^{h}||^{2}_{E^{k}}=\sum_{l=1}^{N}b((B_{l}^{k})^{-1}Z^{(l)}Q^{(l)}\bm{v}^{h},(A^{h}-\lambda^{k})Q_{2}^{h}F^{k}\bm{v}^{h})
=l=1Nb(Q(l)𝒗h,TlkQ2hFk𝒗h)(l=1NQ(l)𝒗hb,Ωl2)12(l=1NTlkQ2hFk𝒗hb2)12\displaystyle=\sum_{l=1}^{N}b(Q^{(l)}\bm{v}^{h},T_{l}^{k}Q_{2}^{h}F^{k}\bm{v}^{h})\leq(\sum_{l=1}^{N}||Q^{(l)}\bm{v}^{h}||^{2}_{b,\Omega_{l}^{{}^{\prime}}})^{\frac{1}{2}}(\sum_{l=1}^{N}||T_{l}^{k}Q_{2}^{h}F^{k}\bm{v}^{h}||^{2}_{b})^{\frac{1}{2}}
CN0H𝒗hb(l=1NTlkQ2hFk𝒗hEk2)12CH𝒗hbQ2hFk𝒗hEk.\displaystyle\leq C\sqrt{N_{0}}H||\bm{v}^{h}||_{b}(\sum_{l=1}^{N}||T_{l}^{k}Q_{2}^{h}F^{k}\bm{v}^{h}||^{2}_{E^{k}})^{\frac{1}{2}}\leq CH||\bm{v}^{h}||_{b}||Q_{2}^{h}F^{k}\bm{v}^{h}||_{E^{k}}.

Then

Q2hi=1N(Bik)1Z(i)Q(i)𝒗hEk2CH2𝒗hb2𝒗hEh0(Ωh;ϵr).||Q_{2}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{v}^{h}||^{2}_{E^{k}}\leq CH^{2}||\bm{v}^{h}||^{2}_{b}\ \ \ \forall\ \bm{v}^{h}\in E^{0}_{h}(\Omega_{h};\epsilon_{r}). (4.79)

Specially, taking 𝒗h=𝒖1k\bm{v}^{h}=\bm{u}_{1}^{k}, we obtain

Q2hi=1N(Bik)1Z(i)Q(i)(Ahλk)𝒖1kEk2\displaystyle\ \ \ \ ||Q_{2}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}(A^{h}-\lambda^{k})\bm{u}_{1}^{k}||^{2}_{E^{k}}
(λkλ1h)2Q2hi=1N(Bik)1Z(i)Q(i)𝒖1kEk2\displaystyle\leq(\lambda^{k}-\lambda_{1}^{h})^{2}||Q_{2}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}_{1}^{k}||^{2}_{E^{k}}
CH2(λkλ1h)2𝒖1kb2CH4𝒆2kEk2.\displaystyle\leq CH^{2}(\lambda^{k}-\lambda_{1}^{h})^{2}||\bm{u}_{1}^{k}||^{2}_{b}\leq CH^{4}||\bm{e}_{2}^{k}||^{2}_{E^{k}}. (4.80)

and similarly taking 𝒗h=𝒖1k,𝒗h=𝒆2k\bm{v}^{h}=\bm{u}_{1}^{k},\bm{v}^{h}=\bm{e}_{2}^{k}, we then have

|βk|Q2hi=1N(Bik)1Z(i)Q(i)𝒖kEk\displaystyle\ \ \ \ |\beta^{k}|||Q_{2}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}^{k}||_{E^{k}}
|βk|{Q2hi=1N(Bik)1Z(i)Q(i)𝒖1kEk+Q2hi=1N(Bik)1Z(i)Q(i)𝒆2kEk}\displaystyle\leq|\beta^{k}|\{||Q_{2}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{u}_{1}^{k}||_{E^{k}}+||Q_{2}^{h}\sum_{i=1}^{N}(B_{i}^{k})^{-1}Z^{(i)}Q^{(i)}\bm{e}_{2}^{k}||_{E^{k}}\}
|βk|{CH||𝒖1k||b+CH𝒆2kb}CH2λkλ1h(1+1λkλ1h)𝒆2kEk\displaystyle\leq|\beta^{k}|\{CH||\bm{u}_{1}^{k}||_{b}+CH||\bm{e}_{2}^{k}||_{b}\}\leq CH^{2}\sqrt{\lambda^{k}-\lambda_{1}^{h}}(1+\frac{1}{\sqrt{\lambda^{k}-\lambda_{1}^{h}}})||\bm{e}_{2}^{k}||_{E^{k}}
CH2𝒆2kEk.\displaystyle\leq CH^{2}||\bm{e}_{2}^{k}||_{E^{k}}. (4.81)

Combining Theorem 4.5, Lemma 4.8, (4.75)\eqref{Twocom1}, (4.77)\eqref{othertermestimate1}, (4.78)\eqref{othertermestimate2}, (4.80)\eqref{othertermestimate3} and (4.81)\eqref{othertermestimate4}, we may obtain the main convergence result of this paper.

Theorem 4.9

For the Algorithm 2, the discrete principal eigenvalue of the Maxwell eigenvalue problem satisfies

𝒆2k+1Ec(H)(1Cδ2H2)𝒆2kE,||\bm{e}_{2}^{k+1}||_{E}\leq c(H)(1-C\frac{\delta^{2}}{H^{2}})||\bm{e}_{2}^{k}||_{E}, (4.82)

and

λk+1λ1hc(H)(1Cδ2H2)2(λkλ1h)\lambda^{k+1}-\lambda_{1}^{h}\leq c(H)(1-C\frac{\delta^{2}}{H^{2}})^{2}(\lambda^{k}-\lambda_{1}^{h}) (4.83)

where c(H)1c(H)\to 1, as H0H\to 0 and CC is independent of h,H,δh,\ H,\ \delta.

Proof.  By (4.20)\eqref{lowerboundestimate}, (4.21)\eqref{upperboundestimate} and Lemma 4.2, we have

𝒆~2k+1E2=𝒆~2k+1Ek2+(λkλ1)𝒆~2k+1b2\displaystyle\ \ \ \ ||\widetilde{\bm{e}}_{2}^{k+1}||_{E}^{2}=||\widetilde{\bm{e}}_{2}^{k+1}||_{E^{k}}^{2}+(\lambda^{k}-\lambda_{1})||\widetilde{\bm{e}}_{2}^{k+1}||_{b}^{2}
{(1Cδ2H2)2+CH2}𝒆2kEk2c(H)(1Cδ2H2)2𝒆2kE2,\displaystyle\leq\{(1-C\frac{\delta^{2}}{H^{2}})^{2}+CH^{2}\}||\bm{e}_{2}^{k}||_{E^{k}}^{2}\leq c(H)(1-C\frac{\delta^{2}}{H^{2}})^{2}||\bm{e}_{2}^{k}||_{E}^{2},

where c(H)1c(H)\to 1, as H0H\to 0. Combining the orthogonal property of Jacobi-Davidson method and Helmholtz orthogonal decomposition, we have b(𝒖k,𝒕k+1)=0b(\bm{u}^{k},\bm{t}^{k+1})=0. Due to (4.15)\eqref{specialcase1} and (4.16)\eqref{specialcase2}, we have

𝒖~k+1b2=𝒖kb2+α2𝒕k+1b21.||\widetilde{\bm{u}}^{k+1}||_{b}^{2}=||\bm{u}^{k}||_{b}^{2}+\alpha^{2}||\bm{t}^{k+1}||_{b}^{2}\geq 1.

Then

𝒆ˇ2k+1E2𝒆~2k+1E2c(H)(1Cδ2H2)2𝒆2kE2.||\check{\bm{e}}_{2}^{k+1}||^{2}_{E}\leq||\widetilde{\bm{e}}_{2}^{k+1}||^{2}_{E}\leq c(H)(1-C\frac{\delta^{2}}{H^{2}})^{2}||\bm{e}_{2}^{k}||_{E}^{2}.

By Lemma 4.2, we may obtain

𝒆ˇ2k+1Eh2c(H)(1Cδ2H2)2𝒆2kEh2.||\check{\bm{e}}_{2}^{k+1}||^{2}_{E^{h}}\leq c(H)(1-C\frac{\delta^{2}}{H^{2}})^{2}||\bm{e}_{2}^{k}||_{E^{h}}^{2}.

Moreover,

λˇk+1λ1hc(H)(1Cδ2H2)2(λkλ1h).\check{\lambda}^{k+1}-\lambda_{1}^{h}\leq c(H)(1-C\frac{\delta^{2}}{H^{2}})^{2}(\lambda^{k}-\lambda_{1}^{h}).

We know that 𝒖ˇk+1\check{\bm{u}}^{k+1} is a special vector in Wk+1W^{k+1} but is not stable function when minimizes the Rayleigh quotient. Hence,

λk+1λ1hλˇk+1λ1hc(H)(1Cδ2H2)2(λkλ1h).\lambda^{k+1}-\lambda_{1}^{h}\leq\check{\lambda}^{k+1}-\lambda_{1}^{h}\leq c(H)(1-C\frac{\delta^{2}}{H^{2}})^{2}(\lambda^{k}-\lambda_{1}^{h}).

Then

𝒆2k+1Ehc(H)(1Cδ2H2)𝒆2kEh.||\bm{e}_{2}^{k+1}||_{E^{h}}\leq c(H)(1-C\frac{\delta^{2}}{H^{2}})||\bm{e}_{2}^{k}||_{E^{h}}.

Moreover,

𝒆2k+1Ec(H)(1Cδ2H2)𝒆2kE,||\bm{e}_{2}^{k+1}||_{E}\leq c(H)(1-C\frac{\delta^{2}}{H^{2}})||\bm{e}_{2}^{k}||_{E},

which completes the proof of the theorem. \Box

5 Numerical experiments

In this section, we shall present several numerical experiments in two and three dimensional cases to support our theoretical findings. We do the computation in double decision but only display four digits after the decimal in tables except λit.\lambda^{it.} in order to show the convergent process. In 2D cases, the stopping tolerance is endowed by |λk+1λk|<108|\lambda^{k+1}-\lambda^{k}|<10^{-8}. In 3D cases, the stopping tolerance is endowed by 𝒓kb<105||\bm{r}^{k}||_{b}<10^{-5}.

5.1 2D Maxwell eigenvalue problems

In this subsection, we shall present some numerical results for the 2D Maxwell eigenvalue problem in rectangle domain, square domain and L-shaped domain.

Example 5.1

We consider the Maxwell eigenvalue problem (1.3)\eqref{MaxwellEigenvalueu} on the two dimensional domain Ω=(0,2π)×(0,π)\Omega=(0,2\pi)\times(0,\pi) with ϵr=μr=1\epsilon_{r}=\mu_{r}=1 and use the lowest triangle edge element to compute the principal eigenvalue which is λ1=0.25\lambda_{1}=0.25 with algebraic multiplicity m1=1m_{1}=1. First, we choose an initial uniform partition τH\tau_{H} in Ω\Omega with the number of subdomains N=64N=64, coarse grid size H=2π22H=\frac{\sqrt{2}\pi}{2^{2}}. we refine uniformly the grid layer by layer and fix the ratio δH=14\frac{\delta}{H}=\frac{1}{4}. Next, we test the optimality and scalability of our PHJD algorithm.

Table 1: The number of subdomains N=64N=64, the ratio δH=14\frac{\delta}{H}=\frac{1}{4}
hh d.o.f.d.o.f. it.it. |λk+1λk||\lambda^{k+1}-\lambda^{k}| 𝒓kb||\bm{r}^{k}||_{b} λit.\lambda^{it.} Con.ord.Con.ord.
2π24\frac{\sqrt{2}\pi}{2^{4}} 1488 8 8.8778e-10 1.1214e-04 0.249933057840449 -
2π25\frac{\sqrt{2}\pi}{2^{5}} 6048 7 1.1871e-09 2.5439e-04 0.249983266630354 2.0002
2π26\frac{\sqrt{2}\pi}{2^{6}} 24384 7 1.2434e-09 2.1708e-04 0.249995816760741 2.0000
2π27\frac{\sqrt{2}\pi}{2^{7}} 97920 7 7.5604e-10 1.3077e-04 0.249998954192258 2.0000
2π28\frac{\sqrt{2}\pi}{2^{8}} 392448 7 6.9670e-10 1.0839e-04 0.249999738755104 2.0011
2π29\frac{\sqrt{2}\pi}{2^{9}} 1571328 7 1.3278e-10 8.8096e-04 0.249999934697985 2.0002
2π210\frac{\sqrt{2}\pi}{2^{10}} 6288384 7 1.4611e-10 9.4527e-04 0.249999983669919 1.9996
Table 2: The number of subdomains N=64,256,1024N=64,256,1024
NN d.o.fd.o.f it.it.
64 6288384 7
256 6288384 6
1024 6288384 6

The notation hh means the fine grid size. d.o.f.d.o.f. means the degree of freedom. it.it. means iterative steps in our algorithm. Con.ord.Con.ord. means the convergence order of the principal eigenvalue. It is shown in Table 1 that the convergence rate does not deteriorate when h0h\to 0. Meanwhile, the PHJD algorithm works very well when h<<H4h<<H^{4} which coincides with our theory. In order to verify the scalability of our PHJD method, we choose the number of domains N=64,256,1024N=64,256,1024 to count the iterative steps for d.o.f=6288384d.o.f=6288384. The iterative steps decreasing in table 2 illustrates that our method based on domain decomposition is scalable, which coincides with our theory. Actually, the near optimality and scalability of our method hold not only for simple case but also for multiple case.

Example 5.2

We consider the Maxwell eigenvalue problem (1.3)\eqref{MaxwellEigenvalueu} in (0,π)2(0,\pi)^{2} with ϵr=1,μr=1\epsilon_{r}=1,\mu_{r}=1 and use the lowest triangle edge element to compute the principal eigenvalue which is λ1=1\lambda_{1}=1 with algebraic multiplicity m1=2m_{1}=2. First, we choose an initial uniform partition τH\tau_{H} in Ω\Omega with the number of subdomains N=8N=8, coarse grid size H=2π2H=\frac{\sqrt{2}\pi}{2}. we refine uniformly the grid layer by layer and fix the ratio δH=18\frac{\delta}{H}=\frac{1}{8}. Next, we also test the optimality and scalability of our PHJD algorithm.

Table 3: The number of subdomains N=8N=8, the ratio δH=18\frac{\delta}{H}=\frac{1}{8}
hh d.o.f.d.o.f. it.it. |λk+1λk||\lambda^{k+1}-\lambda^{k}| 𝒓kb||\bm{r}^{k}||_{b} λit.\lambda^{it.} Con.ord.Con.ord.
2π24\frac{\sqrt{2}\pi}{2^{4}} 736 7 2.1972e-09 2.0136e-04 0.998065902158390 -
2π25\frac{\sqrt{2}\pi}{2^{5}} 3008 7 3.2392e-09 1.8341e-04 0.999515561847595 1.9973
2π26\frac{\sqrt{2}\pi}{2^{6}} 12160 7 1.0886e-09 3.0479e-04 0.999878833291020 1.9993
2π27\frac{\sqrt{2}\pi}{2^{7}} 48896 7 1.5651e-09 1.8827e-04 0.999969704716447 1.9998
2π28\frac{\sqrt{2}\pi}{2^{8}} 196096 7 1.1096e-09 8.5103e-05 0.999992425964469 2.0000
2π29\frac{\sqrt{2}\pi}{2^{9}} 785408 7 1.6332e-09 2.1306e-04 0.999998106489943 2.0000
2π210\frac{\sqrt{2}\pi}{2^{10}} 3143680 7 1.2116e-10 6.8551e-04 0.999999526630577 2.0000
2π211\frac{\sqrt{2}\pi}{2^{11}} 12578816 7 1.0379e-10 9.3310e-04 0.999999881662115 2.0001
Table 4: The number of subdomains N=8,32,128,512N=8,32,128,512
NN d.o.f.d.o.f. it.it.
8 12578816 7
32 12578816 6
128 12578816 6
512 12578816 6

Although we only give the theoretical analysis for the first simple eigenvalue case, our algorithm still works well and keeps good scalability for the first multiple eigenvalue case. It is shown in Table 3 that the convergence rate does not deteriorate when h0h\to 0. Meanwhile, our PHJD algorithm works very well when h<<H4h<<H^{4}. Similarly, we choose the number of domains N=8,32,128,512N=8,32,128,512 to count the iterative steps for d.o.f.=12578816d.o.f.=12578816. Table 4 shows that the iterative steps keep stable when the number of domains NN increases, which illustrates that our PHJD method is scalable for the multiple principal eigenvalue case.

Example 5.3

We consider the Maxwell eigenvalue problem in (1,1)2\[0,1)×(1,0](-1,1)^{2}\backslash[0,1)\times(-1,0] with ϵr=μr=1\epsilon_{r}=\mu_{r}=1 and use the lowest triangle edge element to compute the principal eigenvalue which is 1.475621821.47562182 with algebraic multiplicity m1=1m_{1}=1 (see [8, 30]). First, we choose an initial uniform partition τH\tau_{H} in Ω\Omega with the number of subdomains N=96N=96, coarse grid size H=222H=\frac{\sqrt{2}}{2^{2}}. We refine uniformly the grid layer by layer and fix the ratio δH=18\frac{\delta}{H}=\frac{1}{8}. Next, we test the optimality and scalability of our PHJD algorithm.

Table 5: The number of subdomains N=96N=96, the ratio δH=18\frac{\delta}{H}=\frac{1}{8}
hh d.o.f.d.o.f. it.it. |λk+1λk||\lambda^{k+1}-\lambda^{k}| λit.\lambda^{it.} Con.ord.Con.ord.
225\frac{\sqrt{2}}{2^{5}} 9088 8 2.4067e-09 1.472164089752624 -
226\frac{\sqrt{2}}{2^{6}} 36608 7 9.7419e-09 1.474258883109039 1.3431
227\frac{\sqrt{2}}{2^{7}} 146944 7 2.8876e-09 1.475083316185965 1.3397
228\frac{\sqrt{2}}{2^{8}} 588800 7 4.1055e-10 1.475408720712429 1.3374
229\frac{\sqrt{2}}{2^{9}} 2357248 7 8.3497e-11 1.475537406431712 1.3360
2210\frac{\sqrt{2}}{2^{10}} 9433088 7 2.8653e-11 1.475588361248540 1.3351
Table 6: The number of subdomains N=96,384,1536N=96,384,1536
NN d.o.f.d.o.f. it.it.
96 9433088 7
384 9433088 7
1536 9433088 7

We note that the first Maxwell eigenvector in L-shaped domain has a strong unbounded singularity at the re-entrant corner but our PHJD method still works very well. It is shown in Table 5 that the iterative steps it.it. keep stable when h0h\to 0, which illustrates that the convergence rate of our algorithm is independent of the fine grid size hh. The fact that iterative steps keep stable with the number of subdomains increasing in Table 6 illustrates our algorithm is scalable. Although we only give the theoretical analysis for convex domain, our PHJD method works well and may be extended to more general Lipschitz domain.

5.2 3D Maxwell eigenvalue problems

In this subsection, we shall present some numerical results for the 3D Maxwell eigenvalue problem in cuboid domain and cube domain.

Example 5.4

We consider the Maxwell eigenvalue problem in (0,π)×(0,2π)×(0,1.2π)(0,\pi)\times(0,2\pi)\times(0,1.2\pi) with ϵr=μr=1\epsilon_{r}=\mu_{r}=1 and use the lowest cuboid edge element to compute the principal eigenvalue which is 1718=0.94˙\frac{17}{18}=0.9\dot{4} with algebraic multiplicity m1=1m_{1}=1. First, we choose an initial uniform partition τH\tau_{H} in Ω\Omega with the number of subdomains N=128N=128, coarse grid size H=1.2π22H=\frac{1.2\pi}{2^{2}}. We refine uniformly the grid layer by layer and fix the ratio δH=14\frac{\delta}{H}=\frac{1}{4}. Next, we test the optimality and scalability of our PHJD algorithm.

Table 7: The number of subdomains N=128N=128, the ratio δH=14\frac{\delta}{H}=\frac{1}{4}
hh d.o.fd.o.f it.it. 𝒓kb||\bm{r}^{k}||_{b} λit.\lambda^{it.} Con.ord.Con.ord.
1.2π24\frac{1.2\pi}{2^{4}} 22080 9 5.4339e-06 0.946879258942834 -
1.2π25\frac{1.2\pi}{2^{5}} 186496 8 3.1060e-06 0.945052693133526 2.0011
1.2π26\frac{1.2\pi}{2^{6}} 1532160 8 7.6311e-06 0.944598398293954 1.9822
Table 8: The number of subdomains N=128,1024N=128,1024
NN d.o.f.d.o.f. it.it.
128 1532160 8
1024 1532160 7

It is shown in Table 7 that the iterative steps keep stable when h0h\to 0, which illustrates that the convergence rate of our algorithm is independent of the fine grid size hh. The fact that iterative steps decreases in Table 8 illustrates our algorithm is scalable. These coincide with our theory in this paper. Actually, the near optimality and scalability of our method hold not only for simple case but also for multiple case in 3D case.

Example 5.5

We consider the Maxwell eigenvalue problem in (0,π)3(0,\pi)^{3} with ϵr=μr=1\epsilon_{r}=\mu_{r}=1 and use the lowest cuboid edge element to compute the principal eigenvalue which is λ1=2\lambda_{1}=2 with algebraic multiplicity m1=3m_{1}=3. First, we choose an initial uniform partition τH\tau_{H} in Ω\Omega with the number of subdomains N=64N=64, coarse grid size H=π22H=\frac{\pi}{2^{2}}. We refine uniformly the grid layer by layer and fix the ratio δH=14\frac{\delta}{H}=\frac{1}{4}. Next, we also test the optimality and scalability of our PHJD algorithm.

Table 9: The number of subdomains N=64N=64, the ratio δH=14\frac{\delta}{H}=\frac{1}{4}
hh d.o.fd.o.f it.it. 𝒓kb||\bm{r}^{k}||_{b} λit.\lambda^{it.} Con.ord.Con.ord.
π24\frac{\pi}{2^{4}} 10800 9 7.6503e-06 2.006433745425857 -
π25\frac{\pi}{2^{5}} 92256 8 4.5546e-06 2.001607079135022 2.0012
π26\frac{\pi}{2^{6}} 762048 7 9.8823e-06 2.000419881720004 1.9364
π27\frac{\pi}{2^{7}} 6193536 7 4.1799e-06 2.000105199582128 1.9969
Table 10: The number of subdomains N=64,512N=64,512
NN d.o.f.d.o.f. it.it.
64 6193536 7
512 6193536 6

Although we only give the theoretical analysis for the first simple eigenvalue case, our algorithm still works well and keeps good scalability for the first multiple eigenvalue case. The iterative steps keep stable in Table 99 when h0h\to 0, which illustrates that the convergence rate is independent of hh. It is shown in Table 10 that the iterative steps decrease, which illustrates that the PHJD method is scalable.

6 Conclusions

In this paper, based on the domain decomposition method, we propose a new and robust two-level PHJD method for solving the Maxwell eigenvalue problem. The two-level PHJD method has a good scalability and is asymptotically optimal without any assumption between coarse size HH and fine size hh. Numerical results confirm our theoretical findings.

References

  • [1] Cherif Amrouche, Christine Bernardi, Monique Dauge, and Vivette Girault. Vector potentials in three-dimensional non-smooth domains. Mathematical Methods in the Applied Sciences, 21(9):823–864, 1998.
  • [2] Douglas N Arnold, Richard S Falk, and Ragnar Winther. Finite element exterior calculus, homological techniques, and applications. Acta numerica, 15:1–155, 2006.
  • [3] Constantine A Balanis. Advanced Engineering Electromagnetics 2nd ed. John Wiley & Sons, 2012.
  • [4] Daniele Boffi. Finite element approximation of eigenvalue problems. Acta Numerica, 19:1–120, 2010.
  • [5] Daniele Boffi, Paolo Fernandes, Lucia Gastaldi, and Ilaria Perugia. Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM journal on numerical analysis, 36(4):1264–1290, 1999.
  • [6] James H Bramble and Jinchao Xu. Some estimates for a weighted L2L^{2} projection. Mathematics of Computation, 56(194):463–476, 1991.
  • [7] Annalisa Buffa, Patrick Ciarlet, and Erell Jamelot. Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements. Numerische Mathematik, 113(4):497–518, 2009.
  • [8] Annalisa Buffa, Paul Houston, and Ilaria Perugia. Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes. Journal of Computational &\& Applied Mathematics, 204(2):317–333, 2007.
  • [9] Junqing Chen, Yifeng Xu, and Jun Zou. An adaptive inverse iteration for Maxwell eigenvalue problem based on edge elements. Journal of Computational Physics, 229(7):2649–2658, 2010.
  • [10] Lawrence C Evans. Partial Differential Equations: Second Edition, volume 19. American Methematical Society, 2010.
  • [11] Kikuchi Fumio. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Computer Methods in Applied Mechanics and Engineering, 64(1-3):509–521, 1987.
  • [12] Ralf Hiptmair. Finite elements in computational electromagnetism. Acta Numerica, 11:237–339, 2002.
  • [13] Ralf Hiptmair and Klaus Neymeyr. Multilevel method for mixed eigenproblems. SIAM Journal on Scientific Computing, 23(6):2141–2164, 2002.
  • [14] Xiaozhe Hu and Xiaoliang Cheng. Acceleration of a two-grid method for eigenvalue problems. Mathematics of Computation, 80(275):1287–1301, 2011.
  • [15] Wei Jiang, Na Liu, Yifa Tang, and Qing Huo Liu. Mixed finite element method for 2d vector Maxwell’s eigenvalue problem in anisotropic media. Progress In Electromagnetics Research, 148:159–170, 2014.
  • [16] Wei Jiang, Na Liu, Yongqing Yue, and Qing Huo Liu. Mixed finite-element method for resonant cavity problem with complex geometric topology and anisotropic lossless media. IEEE Transactions on Magnetics, 52(2):1–8, 2015.
  • [17] Tosio Kato. Perturbation Theory for Linear Operators, volume 132. Springer Science & Business Media, 2013.
  • [18] Jie Liu, Wei Jiang, Fubiao Lin, Na Liu, and Qing Huo Liu. A two-grid vector discretization scheme for the resonant cavity problem with anisotropic media. IEEE Transactions on Microwave Theory and Techniques, 65(8):2719–2725, 2017.
  • [19] Jean-Claude Nédélec. Mixed finite elements in R3R^{3}. Numerische Mathematik, 35(3):315–341, 1980.
  • [20] Jean-Claude Nédélec. A new family of mixed finite elements in R3R^{3}. Numerische Mathematik, 50(1):57–81, 1986.
  • [21] John E Osborn. Spectral approximation for compact operators. Mathematics of Computation, 29(131):712–725, 1975.
  • [22] Gerard LG Sleijpen and Henk A Van der Vorst. A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Review, 42(2):267–293, 2000.
  • [23] Andrea Toselli. Overlapping schwarz methods for Maxwell’s equations in three dimensions. Numerische Mathematik, 86(4):733–752, 2000.
  • [24] Andrea Toselli and Olof Widlund. Domain Decomposition Methods-Algorithms and Theory, volume 34. Springer Science & Business Media, 2006.
  • [25] Wei Wang and Xuejun Xu. A two-level overlapping hybrid domain decomposition method for eigenvalue problems. SIAM Journal on Numerical Analysis, 56(1):344–368, 2018.
  • [26] Wei Wang and Xuejun Xu. On the convergence of a two-level preconditioned Jacobi–Davidson method for eigenvalue problems. Mathematics of Computation, 88(319):2295–2324, 2019.
  • [27] Jinchao Xu and Aihui Zhou. A two-grid discretization scheme for eigenvalue problems. Mathematics of Computation, 70(233):17–25, 2001.
  • [28] Yidu Yang and Hai Bi. Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems. SIAM Journal on Numerical Analysis, 49(4):1602–1624, 2011.
  • [29] Tao Zhao, Feng-Nan Hwang, and Xiao-Chuan Cai. A domain decomposition based Jacobi-Davidson algorithm for quantum dot simulation. In Domain Decomposition Methods in Science and Engineering XXII, pages 415–423. Springer, 2016.
  • [30] J Zhou, X Hu, L Zhong, S Shu, and L Chen. Two-grid methods for Maxwell eigenvalue problems. SIAM Journal on Numerical Analysis, 52(4):2027–2047, 2014.