This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

More than one Author with different Affiliations

Qigang Liang School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_[email protected] Xuejun Xu School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_[email protected] Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, [email protected] Shangyou Zhang Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA, [email protected]

On a Sharp Estimate of Overlapping Schwarz Methods in ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega) and ๐‘ฏโ€‹(div;ฮฉ)\bm{H}({\rm div};\Omega)

Qigang Liang School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_[email protected] Xuejun Xu School of Mathematical Science, Tongji University, Shanghai 200092, China, qigang_\_[email protected] Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, [email protected] Shangyou Zhang Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA, [email protected]

Abstract:ย ย The previous proved-bound is Cโ€‹(1+H2ฮด2)C(1+\frac{H^{2}}{\delta^{2}}) for the condition number of the overlapping domain decomposition ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega) and ๐‘ฏโ€‹(div;ฮฉ)\bm{H}({\rm div};\Omega) methods, where HH and ฮด\delta are the sizes of subdomains and overlaps respectively. But all numerical results indicate that the best bound is Cโ€‹(1+Hฮด)C(1+\frac{H}{\delta}). In this work, we solve this long-standing open problem by proving that Cโ€‹(1+Hฮด)C(1+\frac{H}{\delta}) is indeed the best bound.

Keywords:ย ย Maxwell equations, H-curl elements, H-div elements, Helmholtz decomposition, overlapping domain decomposition.

1 Introduction

Overlapping Schwarz method is one of the most important methods for computing the large-scale discrete problems arising from partial differential equations (PDE). This domain decomposition (DD) method is essentially parallel and has been extensively studied in the literature (see, e.g., [8, 6, 5, 4, 17, 10, 2, 12, 13] and the references therein). Generally speaking, the iterative convergence rate (e.g., PCG, preconditioned GMRES) depends on the condition number of the discrete system. Therefore, it is very important to obtain the sharp estimate of the preconditioned algebraic systems resulting from overlapping Schwarz methods.

For a long time, the best bound of the condition number of the overlapping domain decomposition method is Cโ€‹(1+H2ฮด2)C\left(1+\frac{H^{2}}{\delta^{2}}\right) for the second order elliptic boundary value problems, cf. [7, 18], where ฮด\delta is the overlapping size and HH is the diameter of subdomains. In 1994, Dryja and Widlund [8] first improved the bound to Cโ€‹(1+Hฮด)C\left(1+\frac{H}{\delta}\right). Subsequently, Brenner [6] proved the best bound is Cโ€‹(1+Hฮด)C\left(1+\frac{H}{\delta}\right). The same techniques used are applied to the fourth order elliptic boundary value problems and high-frequency Helmholtz problems (see [6, 5, 4, 10]).

The same situation happens to the analysis of the two-level overlapping domain decomposition method in ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega). Toselli [17] proved an upper bound of Cโ€‹(1+H2ฮด2)C\left(1+\frac{H^{2}}{\delta^{2}}\right) for the condition number. For many years, people wonder if the best bound should be Cโ€‹(1+Hฮด)C\left(1+\frac{H}{\delta}\right). Numerical results [17] indicate that the best bound should be Cโ€‹(1+Hฮด)C\left(1+\frac{H}{\delta}\right). Bonazzoli et al. [2] posed this open problem if the best bound is Cโ€‹(1+Hฮด)C\left(1+\frac{H}{\delta}\right). In this paper, we close this open problem and prove that Cโ€‹(1+Hฮด)C\left(1+\frac{H}{\delta}\right) is the best bound.

The key ideas in obtaining the sharp estimate of overlapping Schwarz methods in ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega) and ๐‘ฏโ€‹(div;ฮฉ)\bm{H}({\rm div};\Omega) are as follows. Firstly, the functions are limited to one element of the coarse triangulation where all functions are ๐‘ฏ1\bm{H}^{1} locally. This way get sharper estimates than the results in [17]. Secondly, by the Helmholtz decomposition, we get a solenoidal subspace in ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega) and an irrotational subspace in ๐‘ฏโ€‹(div;ฮฉ)\bm{H}({\rm div};\Omega) which is also in ๐‘ฏ1โ€‹(ฮฉ)\bm{H}^{1}(\Omega) when ฮฉ\Omega is convex. After the decomposition we can utilize the techniques from the domain decomposition method for H1H^{1} problems.

The rest of this paper is organized as follows: In section 2, we introduce model problems and some preliminaries. We introduce the overlapping Schwarz method and give a stable spacial decomposition for ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega)-elliptic problems in Section 3. An extension to ๐‘ฏโ€‹(div;ฮฉ)\bm{H}({\rm div};\Omega)-elliptic problems is introduced in Section 4. Finally, we present a conclusion in Section 5.

2 Model problems and preliminaries

Throughout this paper, we use standard notations for Sobolev spaces Hmโ€‹(D)H^{m}(D) and H0mโ€‹(D)H_{0}^{m}(D) with their associated norms โˆฅโ‹…โˆฅm,D\|\cdot\|_{m,D} and semi-norms |โ‹…|m,D|\cdot|_{m,D}. We denote by L2โ€‹(D):=H0โ€‹(D)L^{2}(D):=H^{0}(D), and use (โ‹…,โ‹…)0,D(\cdot,\cdot)_{0,D} to represents the L2L^{2}-inner product and ||โ‹…||0,D||\cdot||_{0,D} represents the corresponding L2L^{2}-norm. For vector field space, we use bold font ๐‘ณ2โ€‹(D)\bm{L}^{2}(D) and ๐‘ฏmโ€‹(D)\bm{H}^{m}(D) to represent [L2โ€‹(D)]d[L^{2}(D)]^{d} and [Hmโ€‹(D)]d[H^{m}(D)]^{d}, respectively (d=2,3d=2,3), and still use the notations of the norms โˆฅโ‹…โˆฅm,D\|\cdot\|_{m,D}, |โ‹…|m,D|\cdot|_{m,D} and ||โ‹…||0,D||\cdot||_{0,D} with its inner product (โ‹…,โ‹…)0,D(\cdot,\cdot)_{0,D}. If D=ฮฉD=\Omega, we drop the subscript ฮฉ\Omega in associated norms or semi-norms or inner products. Let

๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ):={๐’–โˆˆ๐‘ณ2โ€‹(ฮฉ)|๐œ๐ฎ๐ซ๐ฅโ€‹๐’–โˆˆ๐‘ณ2โ€‹(ฮฉ)}\displaystyle\bm{H}(\bm{{\rm curl}};\Omega):=\{\bm{u}\in\bm{L}^{2}(\Omega)\ |\ \bm{{\rm curl}}\bm{u}\in\bm{L}^{2}(\Omega)\ \}

equipped with the norm ||โ‹…||๐œ๐ฎ๐ซ๐ฅ2=||โ‹…||02+||๐œ๐ฎ๐ซ๐ฅโ‹…||02||\cdot||^{2}_{\bm{{\rm curl}}}=||\cdot||_{0}^{2}+||\bm{{\rm curl}}\cdot||_{0}^{2}. ๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}_{0}(\bm{{\rm curl}};\Omega) represents a subspace where the vector valued functions have a vanishing tangential trace at domain boundary. ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ0;ฮฉ)\bm{H}(\bm{{\rm curl}}_{0};\Omega) represents another supspace where the vector valued functions have a vanishing ๐œ๐ฎ๐ซ๐ฅ\bm{{\rm curl}}. We also let

๐‘ฏโ€‹(div;ฮฉ):={๐’–โˆˆ๐‘ณ2โ€‹(ฮฉ)|divโ€‹๐’–โˆˆ๐‘ณ2โ€‹(ฮฉ)}\displaystyle\bm{H}({\rm div};\Omega):=\{\bm{u}\in\bm{L}^{2}(\Omega)\ |\ {\rm div}\bm{u}\in\bm{L}^{2}(\Omega)\ \}

equipped with the norm ||โ‹…||div2=||โ‹…||02+||divโ‹…||02||\cdot||^{2}_{{\rm div}}=||\cdot||_{0}^{2}+||{\rm div}\cdot||_{0}^{2}. Let ๐‘ฏโ€‹(div0;ฮฉ)\bm{H}({\rm div}_{0};\Omega) be a subspace where the vector valued functions are divergence-free. For convenience of notations in this paper, we define

๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ):=๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)โˆฉ๐‘ฏโ€‹(div0;ฮฉ).\displaystyle\bm{H}^{\perp}_{0}(\bm{{\rm curl}};\Omega):=\bm{H}_{0}(\bm{{\rm curl}};\Omega)\cap\bm{H}({\rm div}_{0};\Omega). (2.1)

In this paper, we assume ฮฉ\Omega is convex, bounded and simple connected. Then we know that the kernel of ๐œ๐ฎ๐ซ๐ฅ\bm{{\rm curl}} operator in ๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}_{0}(\bm{{\rm curl}};\Omega) is โˆ‡H01โ€‹(ฮฉ)\nabla{H_{0}^{1}(\Omega)}. Moreover, the Helmholtz decomposition holds

๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)=โˆ‡H01โ€‹(ฮฉ)โŠ•๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ),\displaystyle\bm{H}_{0}(\bm{{\rm curl}};\Omega)=\nabla{H_{0}^{1}(\Omega)}\oplus\bm{H}^{\perp}_{0}(\bm{{\rm curl}};\Omega),

where โŠ•\oplus is an orthogonal decomposition under ๐‘ณ2โ€‹(ฮฉ)\bm{L}^{2}(\Omega). For the theoretical analysis in the following, we define an operator (called as Hodge operator in [11]) for the above decomposition,

ฮ˜โŸ‚:๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)โ†’๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ),ฮ˜โŸ‚โ€‹(๐’˜)=ฮ˜โŸ‚โ€‹(โˆ‡s+๐’˜โŸ‚)=๐’˜โŸ‚,\displaystyle\begin{aligned} &\Theta^{\perp}\ :\ \bm{H}_{0}(\bm{{\rm curl}};\Omega)\to\bm{H}^{\perp}_{0}(\bm{{\rm curl}};\Omega),\\ &\Theta^{\perp}(\bm{w})=\Theta^{\perp}(\nabla s+\bm{w}^{\perp})=\bm{w}^{\perp},\end{aligned} (2.2)

where sโˆˆH01โ€‹(ฮฉ)s\in H_{0}^{1}(\Omega) and ๐’˜โŸ‚โˆˆ๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{w}^{\perp}\in\bm{H}^{\perp}_{0}(\bm{{\rm curl}};\Omega). Therefore, ฮ˜โŸ‚\Theta^{\perp} is ๐œ๐ฎ๐ซ๐ฅ{\bf curl}-preserving that

๐œ๐ฎ๐ซ๐ฅโ€‹ฮ˜โŸ‚โ€‹๐’˜\displaystyle{\bf curl}\Theta^{\perp}\bm{w} =๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜.\displaystyle={\bf curl}\bm{w}. (2.3)

Using the Sobolev embedding theorem (see, e.g., [1, 11, 9]), we known that

๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)=๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)โˆฉ๐‘ฏโ€‹(div0;ฮฉ)โ†ช๐‘ฏ1โ€‹(ฮฉ).\displaystyle\bm{H}^{\perp}_{0}(\bm{{\rm curl}};\Omega)=\bm{H}_{0}(\bm{{\rm curl}};\Omega)\cap\bm{H}({\rm div}_{0};\Omega)\hookrightarrow\bm{H}^{1}(\Omega). (2.4)

Consider the model problem

{๐œ๐ฎ๐ซ๐ฅโ€‹๐œ๐ฎ๐ซ๐ฅโ€‹๐’–+๐’–=๐’‡inย ฮฉ,๐’ร—๐’–=๐ŸŽonย โˆ‚ฮฉ,\begin{cases}\bm{{\rm curl}}\;\bm{{\rm curl}}\bm{u}+\bm{u}=\bm{f}\ \ &\text{in $\Omega,$}\\ \ \ \ \ \ \bm{n}\times\bm{u}=\bm{0}\ \ &\text{on $\partial\Omega,$}\end{cases} (2.5)

where ๐’\bm{n} represents the outward unit normal vector on โˆ‚ฮฉ\partial{\Omega}. The variational form for (2.5) is as follows:

{Givenย ๐’‡โˆˆ๐‘ณ2โ€‹(ฮฉ), findย ๐’–โˆˆ๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)ย such thata๐œ๐ฎ๐ซ๐ฅโ€‹(๐’–,๐’—)=(๐’‡,๐’—)0โˆ€๐’—โˆˆ๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ),\begin{cases}\text{Given $\bm{f}\in\bm{L}^{2}(\Omega)$, find $\bm{u}\in\bm{H}_{0}(\bm{{\rm curl}};\Omega)$ such that}\\ \text{$a_{\bm{{\rm curl}}}(\bm{u},\bm{v})=(\bm{f},\bm{v})_{0}\ \ \ \ \forall\ \bm{v}\in\bm{H}_{0}(\bm{{\rm curl}};\Omega)$},\end{cases} (2.6)

where

a๐œ๐ฎ๐ซ๐ฅโ€‹(๐’˜,๐’—):=โˆซฮฉ(๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜โ‹…๐œ๐ฎ๐ซ๐ฅโ€‹๐’—+๐’˜โ‹…๐’—)โ€‹๐‘‘xa_{\bm{{\rm curl}}}(\bm{w},\bm{v}):=\int_{\Omega}\big{(}\bm{{\rm curl}}\bm{w}\cdot\bm{{\rm curl}}\bm{v}+\bm{w}\cdot\bm{v}\big{)}dx (2.7)

for all ๐’˜,๐’—โˆˆ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{w},\bm{v}\in\bm{H}(\bm{{\rm curl}};\Omega). By the Lax-Milgram theorem, it is easy to see that the solutions with respect to (2.6) are well-posed.

Let ๐’ฏh\mathcal{T}_{h} be a shape-regular and quasi-uniform triangulation. We consider the kk-th Nรฉdรฉlec element in ๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}_{0}(\bm{{\rm curl}};\Omega) as follows

๐’ฉโ€‹๐’Ÿh,0:={๐’—โˆˆ๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)|๐’—|ฯ„โˆˆ๐’ฉโ€‹๐’Ÿkโ€‹(ฯ„),โˆ€ฯ„โˆˆ๐’ฏh},\mathcal{ND}_{h,0}:=\{\bm{v}\in\bm{H}_{0}(\bm{{\rm curl}};\Omega)\ |\ \bm{v}|_{\tau}\in\mathcal{ND}_{k}(\tau),\ \forall\ \tau\in\mathcal{T}_{h}\ \}, (2.8)

where ๐’ฉโ€‹๐’Ÿkโ€‹(ฯ„)\mathcal{ND}_{k}(\tau) is the kk-th order local Nรฉdรฉlec space on element ฯ„\tau (see, e.g., [14, 15, 11]). The discrete variational form of (2.6) may be written as:

{Givenย ๐’‡โˆˆ๐‘ณ2โ€‹(ฮฉ), findย ๐’–hโˆˆ๐’ฉโ€‹๐’Ÿh,0ย such thatย a๐œ๐ฎ๐ซ๐ฅโ€‹(๐’–h,๐’—h)=(๐’‡,๐’—h)0โˆ€๐’—hโˆˆ๐’ฉโ€‹๐’Ÿh,0.\begin{cases}\text{Given $\bm{f}\in\bm{L}^{2}(\Omega)$, find $\bm{u}_{h}\in\mathcal{ND}_{h,0}$ such that }\\ a_{\bm{{\rm curl}}}(\bm{u}_{h},\bm{v}_{h})=(\bm{f},\bm{v}_{h})_{0}\ \ \ \ \forall\ \bm{v}_{h}\in\mathcal{ND}_{h,0}.\end{cases} (2.9)

Define an operator Ah:๐’ฉโ€‹๐’Ÿh,0โ†’๐’ฉโ€‹๐’Ÿh,0A_{h}:\mathcal{ND}_{h,0}\to\mathcal{ND}_{h,0} such that (Ahโ€‹๐’˜h,๐’—h)=a๐œ๐ฎ๐ซ๐ฅโ€‹(๐’˜h,๐’—h)(A_{h}\bm{w}_{h},\bm{v}_{h})=a_{\bm{{\rm curl}}}(\bm{w}_{h},\bm{v}_{h}) for all ๐’˜h,๐’—hโˆˆ๐’ฉโ€‹๐’Ÿh,0.\bm{w}_{h},\bm{v}_{h}\in\mathcal{ND}_{h,0}. We denote the discrete divergence-free space by

๐’ฉโ€‹๐’Ÿh,0โŸ‚={๐’—hโˆˆ๐’ฉโ€‹๐’Ÿh,0|(๐’—h,โˆ‡ph)0=0,โˆ€phโˆˆSh,0},\displaystyle\mathcal{ND}_{h,0}^{\perp}=\{\bm{v}_{h}\in\mathcal{ND}_{h,0}\ |\ (\bm{v}_{h},\nabla{p}_{h})_{0}=0,\ \ \forall\ p_{h}\in S_{h,0}\ \}, (2.10)

with Sh,0S_{h,0} being a continuous and piecewise Pk+1P_{k+1} polynomial space on ๐’ฏh\mathcal{T}_{h} with vanishing trace on โˆ‚ฮฉ\partial{\Omega}. Therefore, we have the discrete Helmholtz decomposition

๐’ฉโ€‹๐’Ÿh,0=โˆ‡Sh,0โŠ•๐’ฉโ€‹๐’Ÿh,0โŸ‚.\displaystyle\mathcal{ND}_{h,0}=\nabla{S_{h,0}}\oplus\mathcal{ND}_{h,0}^{\perp}. (2.11)

It is easy to see that ๐’ฉโ€‹๐’Ÿh,0โŸ‚โŠ„๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\mathcal{ND}_{h,0}^{\perp}\not\subset\bm{H}^{\perp}_{0}(\bm{{\rm curl}};\Omega), where ๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}^{\perp}_{0}(\bm{{\rm curl}};\Omega) is defined in (2.1). Let a subspace be

๐‘ฝ+:=ฮ˜โŸ‚โ€‹๐’ฉโ€‹๐’Ÿh,0โŸ‚โŠ‚๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ),\displaystyle\bm{V}^{+}:=\Theta^{\perp}\mathcal{ND}_{h,0}^{\perp}\subset\bm{H}^{\perp}_{0}(\bm{{\rm curl}};\Omega),

where ฮ˜โŸ‚\Theta^{\perp} is defined in (2.2). Define another operator

Ph:๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)โ†’๐‘ฝ+\displaystyle P_{h}:\bm{H}^{\perp}_{0}(\bm{{\rm curl}};\Omega)\to\bm{V}^{+}

such that

(๐œ๐ฎ๐ซ๐ฅโ€‹Phโ€‹๐’˜,๐œ๐ฎ๐ซ๐ฅโ€‹๐’—)0=(๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜,๐œ๐ฎ๐ซ๐ฅโ€‹๐’—)0โˆ€๐’˜โˆˆ๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ),๐’—โˆˆ๐‘ฝ+.\displaystyle(\bm{{\rm curl}}P_{h}\bm{w},\bm{{\rm curl}}\bm{v})_{0}=(\bm{{\rm curl}}\bm{w},\bm{{\rm curl}}\bm{v})_{0}\ \ \ \ \forall\ \bm{w}\in\bm{H}^{\perp}_{0}(\bm{{\rm curl}};\Omega),\ \bm{v}\in\bm{V}^{+}. (2.12)

Due to the fact that the Poincarรฉ inequality holds in ๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}^{\perp}_{0}(\bm{{\rm curl}};\Omega), we know that the operator PhP_{h} is well-defined in (2.12). Further, we extend the operator PhP_{h} to ๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}_{0}(\bm{{\rm curl}};\Omega) by

Phโ€‹โˆ‡s:=0,sโˆˆH01โ€‹(ฮฉ),Phโ€‹๐’˜=Phโ€‹(โˆ‡s+๐’˜โŸ‚)=Phโ€‹๐’˜โŸ‚,๐’˜โŸ‚โˆˆ๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ).\displaystyle\begin{aligned} &P_{h}\nabla s:=0,\quad s\in H^{1}_{0}(\Omega),\\ &P_{h}\bm{w}=P_{h}(\nabla s+\bm{w}^{\perp})=P_{h}\bm{w}^{\perp},\quad\ \bm{w}^{\perp}\in\bm{H}_{0}^{\perp}(\bm{{\rm curl}};\Omega).\end{aligned} (2.13)

It holds that for any ๐’˜hโŸ‚โˆˆ๐’ฉโ€‹๐’Ÿh,0โŸ‚\bm{w}_{h}^{\perp}\in\mathcal{ND}_{h,0}^{\perp}, we have

Phโ€‹๐’˜hโŸ‚\displaystyle P_{h}\bm{w}_{h}^{\perp} =Phโ€‹(โˆ‡s+ฮ˜โŸ‚โ€‹๐’˜hโŸ‚)=Phโ€‹ฮ˜โŸ‚โ€‹๐’˜hโŸ‚=ฮ˜โŸ‚โ€‹๐’˜hโŸ‚\displaystyle=P_{h}(\nabla s+\Theta^{\perp}\bm{w}_{h}^{\perp})=P_{h}\Theta^{\perp}\bm{w}_{h}^{\perp}=\Theta^{\perp}\bm{w}_{h}^{\perp} (2.14)

for some sโˆˆH01โ€‹(ฮฉ)s\in H^{1}_{0}(\Omega). By (2.3), we have

๐œ๐ฎ๐ซ๐ฅโ€‹Phโ€‹๐’˜hโŸ‚=๐œ๐ฎ๐ซ๐ฅโ€‹ฮ˜โŸ‚โ€‹๐’˜hโŸ‚\displaystyle\bm{{\rm curl}}\;P_{h}\bm{w}_{h}^{\perp}=\bm{{\rm curl}}\;\Theta^{\perp}\bm{w}_{h}^{\perp} =๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚.\displaystyle=\bm{{\rm curl}}\;\bm{w}_{h}^{\perp}. (2.15)

The following lemma holds (see Lemma 10.6 in [18]).

Lemma 2.1

Let ฮฉ\Omega be convex. Then the following error estimate holds,

โ€–๐’–hโŸ‚โˆ’Phโ€‹๐’–hโŸ‚โ€–0โ‰คCโ€‹hโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’–hโŸ‚โ€–0โˆ€๐’–hโŸ‚โˆˆ๐’ฉโ€‹๐’Ÿh,0โŸ‚,||\bm{u}_{h}^{\perp}-P_{h}\bm{u}_{h}^{\perp}||_{0}\leq Ch||\bm{{\rm curl}}\bm{u}^{\perp}_{h}||_{0}\ \ \ \ \forall\ \bm{u}^{\perp}_{h}\in\mathcal{ND}_{h,0}^{\perp},

with CC independent of hh and ๐ฎhโŸ‚\bm{u}^{\perp}_{h}, where PhP_{h} is defined in (2.12),ย (2.13) and ๐’ฉโ€‹๐’Ÿh,0โŸ‚\mathcal{ND}_{h,0}^{\perp} is defined in (2.10).

3 Overlapping Schwarz methods in ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega)

Let ๐’ฏH:={Ki}i=1N\mathcal{T}_{H}:=\{K_{i}\}_{i=1}^{N} be a shape-regular and quasi-uniform coarse triangular or tetrahedral mesh on ฮฉ\Omega, where H:=maxโก{Hi|i=1,2,โ€ฆ,N}H:=\max\{H_{i}\ |\ i=1,2,...,N\}. We let domain be subdivided into NN subdomains where

ฮฉi=Ki,i=1,โ€ฆ,N.\displaystyle\Omega_{i}=K_{i},\quad i=1,\dots,N.

The fine shape-regular and quasi-uniform triangulation {ฯ„}\{\tau\} is obtained by subdividing ๐’ฏH\mathcal{T}_{H} and we denote it by ๐’ฏh={ฯ„}\mathcal{T}_{h}=\{\tau\}. We may construct the edge element spaces ๐’ฉโ€‹๐’ŸH,0โŠ‚๐’ฉโ€‹๐’Ÿh,0\mathcal{ND}_{H,0}\subset\mathcal{ND}_{h,0} on ๐’ฏH\mathcal{T}_{H} and ๐’ฏh\mathcal{T}_{h} but it is well-known that ๐’ฉโ€‹๐’Ÿh,0โŸ‚โŠ„๐’ฉโ€‹๐’Ÿh,0โŸ‚\mathcal{ND}_{h,0}^{\perp}\not\subset\mathcal{ND}_{h,0}^{\perp}. To get overlapping subdomains (ฮฉiโ€ฒ, 1โ‰คiโ‰คN)(\Omega_{i}^{{}^{\prime}},\ 1\leq i\leq N), we enlarge a subdomain ฮฉi\Omega_{i} by adding a size-ฮด\delta layer of fine elements, where ฮด=Oโ€‹(distโ€‹(โˆ‚ฮฉiโˆ–โˆ‚ฮฉ,โˆ‚ฮฉiโ€ฒโˆ–โˆ‚ฮฉ))\delta=O({\rm dist}(\partial\Omega_{i}\setminus\partial\Omega,\partial\Omega_{i}^{{}^{\prime}}\setminus\partial\Omega)). We define, see the gray region in Figure 1 in 2D (The 3D case is same), the overlapping region inside ฮฉiโ€ฒ\Omega_{i}^{\prime} by

ฮฉi,j,ฮด=โ‹ƒฯ„โˆˆ๐’ฏh,ฯ„โŠ‚(ฮฉiโ€ฒโˆฉฮฉjโ€ฒ)ฯ„,ฮฉi,ฮด:=โ‹ƒฮฉjโ€ฒโˆฉฮฉiโ€ฒโ‰ โˆ…ฮฉi,j,ฮด.\displaystyle\begin{aligned} \Omega_{i,j,\delta}&=\bigcup_{\tau\in\mathcal{T}_{h},\ \tau\subset(\Omega_{i}^{\prime}\cap\Omega_{j}^{\prime})}\tau,\\ \Omega_{i,\delta}:&=\bigcup_{\Omega_{j}^{\prime}\cap\Omega_{i}^{\prime}\neq\emptyset}\Omega_{i,j,\delta}.\end{aligned} (3.1)
ฮฉiโ€ฒ\Omega_{i}^{\prime}ฮฉi\Omega_{i}ฮฉi,ฮด\Omega_{i,\delta}
Figure 1: The diagrammatic presentation of ฮฉiโ€ฒ,ฮฉi,ฮฉi,ฮด\Omega_{i}^{{}^{\prime}},\Omega_{i},\Omega_{i,\delta} for triangular mesh

We decompose the finite element space ๐’ฉโ€‹๐’Ÿh,0\mathcal{ND}_{h,0} in (2.8) into overlapping subspaces,

๐‘ฝi:=๐’ฉโ€‹๐’Ÿh,0โˆฉ๐‘ฏ0โ€‹(curl;ฮฉiโ€ฒ),i=1,2,โ€ฆ,N.\displaystyle\bm{V}_{i}:=\mathcal{ND}_{h,0}\cap\bm{H}_{0}(\bm{\mbox{curl}};\Omega_{i}^{{}^{\prime}}),\ \ \ \ i=1,2,...,N.

For describing the overlapping domain decomposition preconditioner for AhA_{h}, we define AH:๐’ฉโ€‹๐’ŸH,0โ†’๐’ฉโ€‹๐’ŸH,0A_{H}:\mathcal{ND}_{H,0}\to\mathcal{ND}_{H,0} such that

(AHโ€‹๐’˜H,๐’—H)0=a๐œ๐ฎ๐ซ๐ฅโ€‹(๐’˜H,๐’—H)โˆ€๐’˜H,๐’—Hโˆˆ๐’ฉโ€‹๐’ŸH,0.\displaystyle(A_{H}\bm{w}_{H},\bm{v}_{H})_{0}=a_{\bm{{\rm curl}}}(\bm{w}_{H},\bm{v}_{H})\ \ \ \ \forall\ \bm{w}_{H},\bm{v}_{H}\in\mathcal{ND}_{H,0}.

Similarly, we also define Ai:๐‘ฝiโ†’๐‘ฝiA_{i}:\bm{V}_{i}\to\bm{V}_{i} such that

(Aiโ€‹๐’˜i,๐’—i)0=a๐œ๐ฎ๐ซ๐ฅโ€‹(๐’˜i,๐’—i)โˆ€๐’˜i,๐’—iโˆˆ๐‘ฝi.\displaystyle(A_{i}\bm{w}_{i},\bm{v}_{i})_{0}=a_{\bm{{\rm curl}}}(\bm{w}_{i},\bm{v}_{i})\ \ \ \ \forall\ \bm{w}_{i},\bm{v}_{i}\in\bm{V}_{i}.

We denote by QH:๐‘ณ2โ€‹(ฮฉ)โ†’๐’ฉโ€‹๐’ŸH,0Q_{H}:\bm{L}^{2}(\Omega)\to\mathcal{ND}_{H,0} a ๐‘ณ2\bm{L}^{2}-orthogonal projector and Qi:๐‘ณ2โ€‹(ฮฉ)โ†’๐‘ฝi,(i=1,2,โ€ฆ,N)Q_{i}:\bm{L}^{2}(\Omega)\to\bm{V}_{i},\ (i=1,2,...,N) ๐‘ณ2\bm{L}^{2}-orthogonal projectors. So the preconditioner is

Bhโˆ’1=AHโˆ’1โ€‹QH+โˆ‘i=1NAiโˆ’1โ€‹Qi.\displaystyle B_{h}^{-1}=A_{H}^{-1}Q_{H}+\sum_{i=1}^{N}A_{i}^{-1}Q_{i}. (3.2)

Next, we introduce an assumption on overlapping domain decomposition (see [18]).

Assumption 1

The partition {ฮฉiโ€ฒ}i=1N\{\Omega_{i}^{{}^{\prime}}\}_{i=1}^{N} may be colored using at most N0N_{0} colors, in such a way that subdomains with the same color are disjoint. The integer N0N_{0} is independent of NN.

According to Assumption 1, we obtain a partition of unity, and then there exists a family continuous and piecewise linear polynomials {ฮธi}i=1N\{\theta_{i}\}_{i=1}^{N}, which satisfy the following properties

suppโ€‹(ฮธi)โŠ‚ฮฉiโ€ฒยฏ, 0โ‰คฮธiโ‰ค1,โˆ‘i=1Nฮธiโ‰ก1,xโˆˆฮฉ,(โˆ‡ฮธi)|ฮฉiโˆ˜=0,โ€–โˆ‡ฮธiโ€–0,โˆž,ฮฉi,ฮดโ‰คCฮด,\displaystyle\begin{aligned} &{\rm supp}(\theta_{i})\subset\overline{\Omega_{i}^{{}^{\prime}}},\ \ \ \ 0\leq\theta_{i}\leq 1,\\ &\sum_{i=1}^{N}\theta_{i}\equiv 1,\ \ \ \ x\in\Omega,\\ &\big{(}\nabla{\theta_{i}}\big{)}|_{\Omega_{i}^{\circ}}=0,\ \ \ \ ||\nabla{\theta_{i}}||_{0,\infty,\Omega_{i,\delta}}\leq\frac{C}{\delta},\end{aligned} (3.3)

where ฮฉiโˆ˜=ฮฉiโ€ฒ\ฮฉi,ฮดยฏ\Omega_{i}^{\circ}=\Omega_{i}^{{}^{\prime}}\backslash\overline{\Omega_{i,\delta}}.

Next, we first present the main result in this paper, and delay its proof.

Theorem 3.1

Let Assumption 1 hold. Then for any ๐ฏhโˆˆ๐’ฉโ€‹๐’Ÿh,0\bm{v}_{h}\in\mathcal{ND}_{h,0}, we have

1C1โ€‹(1+H/ฮด)โ€‹a๐œ๐ฎ๐ซ๐ฅโ€‹(๐’—h,๐’—h)โ‰คa๐œ๐ฎ๐ซ๐ฅโ€‹(Bhโˆ’1โ€‹Ahโ€‹๐’—h,๐’—h)โ‰คC2โ€‹a๐œ๐ฎ๐ซ๐ฅโ€‹(๐’—h,๐’—h),\displaystyle\frac{1}{C_{1}(1+{H}/{\delta})}a_{\bm{{\rm curl}}}(\bm{v}_{h},\bm{v}_{h})\leq a_{\bm{{\rm curl}}}(B_{h}^{-1}A_{h}\bm{v}_{h},\bm{v}_{h})\leq C_{2}a_{\bm{{\rm curl}}}(\bm{v}_{h},\bm{v}_{h}), (3.4)

with the constants C1C_{1} and C2C_{2} independent of h,H,ฮดh,\ H,\ \delta and ๐ฏh\bm{v}_{h}, but not N0N_{0}, where Bhโˆ’1B_{h}^{-1} is defined in (3.2) and N0N_{0} is defined in Assumption 1.

Remark 3.1

By the Assumption 1, the upper bound in (3.4) is standard, cf. [18]. We will prove the lower bound in (3.4).

For convenience of theoretical analysis, using the โ€œlocalโ€ argument (see [3]), we may denote by Q0,ฮฉi:๐‘ณ2โ€‹(ฮฉi)โ†’๐‘ท0โ€‹(ฮฉi),ฮฉiโˆˆ๐’ฏHQ_{0,\Omega_{i}}:\bm{L}^{2}(\Omega_{i})\to\bm{P}_{0}(\Omega_{i}),\ \ \Omega_{i}\in\mathcal{T}_{H}, a local ๐‘ณ2\bm{L}^{2}-orthogonal projector. We have

โ€–๐’˜โˆ’Q0,ฮฉiโ€‹๐’˜โ€–0,ฮฉiโ‰คCโ€‹Hโ€‹|๐’˜|1,ฮฉiโˆ€๐’˜โˆˆ๐‘ฏ1โ€‹(ฮฉi).\displaystyle||\bm{w}-Q_{0,\Omega_{i}}\bm{w}||_{0,\Omega_{i}}\leq CH|\bm{w}|_{1,\Omega_{i}}\ \ \ \ \forall\ \bm{w}\in\bm{H}^{1}(\Omega_{i}). (3.5)

In order to prove the main result, we first give some technical lemmas. In the following theoretical analysis, we also take advantage of the global ๐‘ณ2\bm{L}^{2}-orthogonal projector QHQ_{H}. The following lemma holds (see [17, 18]).

Lemma 3.2

Let ๐’ฏH\mathcal{T}_{H} be shape-regular and quasi-uniform. Then for ๐ฎโˆˆ๐‡1โ€‹(ฮฉ)\bm{u}\in\bm{H}^{1}(\Omega), we have

โ€–๐œ๐ฎ๐ซ๐ฅโ€‹(QHโ€‹๐’–)โ€–0โ‰คCโ€‹|๐’–|1,โ€–๐’–โˆ’QHโ€‹๐’–โ€–0โ‰คCโ€‹Hโ€‹|๐’–|1,\displaystyle\begin{aligned} ||\bm{{\rm curl}}(Q_{H}\bm{u})||_{0}&\leq C|\bm{u}|_{1},\\ ||\bm{u}-Q_{H}\bm{u}||_{0}&\leq CH|\bm{u}|_{1},\end{aligned} (3.6)

with the constant CC independent of ๐ฎ\bm{u} and HH, where QHQ_{H} is the ๐‹2\bm{L}^{2}-orthogonal projection to ๐’ฉโ€‹๐’ŸH,0\mathcal{ND}_{H,0}.

Lemma 3.3

Let ๐ฐ\bm{w} be a piecewise H1H^{1} function, i.e. ๐ฐ|ฮฉiโˆˆ๐‡1โ€‹(ฮฉi)\bm{w}|_{\Omega_{i}}\in\bm{H}^{1}(\Omega_{i}) on each ฮฉi\Omega_{i}. It holds that

โ€–๐’˜โ€–0,ฮฉi0,ฮด2โ‰คCโ€‹ฮด2โ€‹โˆ‘j=0I0{(1+Hฮด)|๐’˜|1,ฮฉij2+1ฮดโ€‹Hโ€‹โ€–๐’˜โ€–0,ฮฉij2},\displaystyle||\bm{w}||_{0,\Omega_{i_{0},\delta}}^{2}\leq C\delta^{2}\sum_{j=0}^{I_{0}}\left\{\big{(}1+\frac{H}{\delta}\big{)}|\bm{w}|_{1,\Omega_{i_{j}}}^{2}+\frac{1}{\delta H}||\bm{w}||^{2}_{0,\Omega_{i_{j}}}\right\}, (3.7)

where ฮฉi0,ฮด\Omega_{i_{0},\delta} is the layer of small elements around the boundary of ฮฉi0โ€ฒ\Omega_{i_{0}}^{\prime}, defined in (3.1), and ฮฉi1,โ€ฆ,ฮฉiI0\Omega_{i_{1}},\dots,\Omega_{i_{I_{0}}} are the I0I_{0} neighbor subdomains which have nonempty intersection ฮฉijโ€ฒโˆฉฮฉi0โ€ฒ\Omega_{i_{j}}^{\prime}\cap\Omega_{i_{0}}^{\prime} in the definition (3.1) of ฮฉi0,ฮด\Omega_{i_{0},\delta}.

Proof.ย  A similar proof is given in [18] for Lemma 3.10 there, except we have a piecewise ๐‘ฏ1\bm{H}^{1} function while it is global ๐‘ฏ1\bm{H}^{1} in [18]. For simplicity, we illustrate the proof in 2D case. The 3D case is same.

ฮฉi0\Omega_{i_{0}}ฮฉi1\Omega_{i_{1}}ฮฉi0โ€ฒโˆฉฮฉi1\Omega_{i_{0}}^{\prime}\cap\Omega_{i_{1}}sls_{l}
Figure 2: The definition of sls_{l} and the stripe ฮฉi0โ€ฒโˆฉฮฉi1\Omega_{i_{0}}^{\prime}\cap\Omega_{i_{1}}.

We claim all triangles in ฮฉi0,ฮด\Omega_{i_{0},\delta} belong to at least one of the following stripes, cf. Figures 2 and 3 where I0=12I_{0}=12,

ฮฉi1โ€ฒโˆฉฮฉi0,ฮฉi5โ€ฒโˆฉฮฉi0,ฮฉi9โ€ฒโˆฉฮฉi0,ฮฉi1โ€ฒโˆฉฮฉi2,โ€ฆ,ฮฉiI0โ€ฒโˆฉฮฉi1,ฮฉi1โˆฉฮฉi0โ€ฒ,ฮฉi5โˆฉฮฉi0โ€ฒ,ฮฉi9โˆฉฮฉi0โ€ฒ,ฮฉi1โˆฉฮฉi2โ€ฒ,โ€ฆ,ฮฉiI0โˆฉฮฉi1โ€ฒ.\displaystyle\begin{aligned} \Omega^{\prime}_{i_{1}}\cap\Omega_{i_{0}},\ \;\Omega_{i_{5}}^{\prime}\cap\Omega_{i_{0}},\ \;\Omega_{i_{9}}^{\prime}\cap\Omega_{i_{0}},\ \;\Omega_{i_{1}}^{\prime}\cap\Omega_{i_{2}},\ \dots,\ \;\Omega_{i_{I_{0}}}^{\prime}\cap\Omega_{i_{1}},\\ \Omega_{i_{1}}\cap\Omega_{i_{0}}^{\prime},\ \;\Omega_{i_{5}}\cap\Omega_{i_{0}}^{\prime},\ \;\Omega_{i_{9}}\cap\Omega_{i_{0}}^{\prime},\ \;\Omega_{i_{1}}\cap\Omega_{i_{2}}^{\prime},\ \dots,\ \;\Omega_{i_{I_{0}}}\cap\Omega_{i_{1}}^{\prime}.\end{aligned} (3.8)

We note that inside each stripe ๐’˜\bm{w} is ๐‘ฏ1\bm{H}^{1}. We will prove (3.7) on one stripe first, then get (3.7) by summing over all strips in (3.8).

ฮฉi0\Omega_{i_{0}}ฮฉi1\Omega_{i_{1}}ฮฉi2\Omega_{i_{2}}ฮฉi3\Omega_{i_{3}}ฮฉi4\Omega_{i_{4}}ฮฉi5\Omega_{i_{5}}ฮฉi6\Omega_{i_{6}}ฮฉi7\Omega_{i_{7}}ฮฉi8\Omega_{i_{8}}ฮฉi9\Omega_{i_{9}}ฮฉi10\Omega_{i_{10}}ฮฉi11\Omega_{i_{11}}ฮฉi12\Omega_{i_{12}}
Figure 3: All ฮฉij\Omega_{i_{j}} related to the estimation on ฮฉi0,ฮด\Omega_{i_{0},\delta}

We separate one stripe ฮฉi0โ€ฒโˆฉฮฉi1\Omega_{i_{0}}^{\prime}\cap\Omega_{i_{1}} into finite patches {sl}l=1ni0\{s_{l}\}_{l=1}^{n_{i_{0}}} of triangles ฯ„j\tau_{j} from ๐’ฏh\mathcal{T}_{h}, cf. Figure 2,

sl=โˆชj=1mlฯ„j,|sl|=Cโ€‹ฮด2,|โˆ‚slโˆฉโˆ‚ฮฉi1|=Cโ€‹ฮด.\displaystyle s_{l}=\cup_{j=1}^{m_{l}}\tau_{j},\quad\ \ |s_{l}|=C\delta^{2},\quad|\partial s_{l}\cap\partial\Omega_{i_{1}}|=C\delta.

By using the Ponicarรฉ-Friedrichs inequality on sls_{l}, because ๐’˜โˆˆ๐‘ฏ1โ€‹(ฮฉi)\bm{w}\in\bm{H}^{1}(\Omega_{i}), we have

โ€–๐’˜โ€–0,sl2โ‰คCโ€‹ฮด2โ€‹|๐’˜|1,sl2+Cโ€‹ฮดโ€‹โ€–๐’˜โ€–0,โˆ‚slโˆฉโˆ‚ฮฉi12.\displaystyle||\bm{w}||_{0,s_{l}}^{2}\leq C\delta^{2}|\bm{w}|_{1,s_{l}}^{2}+C\delta||\bm{w}||^{2}_{0,\partial{s_{l}}\cap\partial{\Omega_{i_{1}}}}.

Summing over the patches {sl}1โ‰คlโ‰คni0\{s_{l}\}_{1\leq l\leq n_{i_{0}}}, we get, using the trace theorem in ฮฉi1\Omega_{i_{1}}

โ€–๐’˜โ€–0,ฮฉi0โ€ฒโˆฉฮฉi12\displaystyle||\bm{w}||_{0,\Omega_{i_{0}}^{\prime}\cap\Omega_{i_{1}}}^{2} โ‰คCโ€‹ฮด2โ€‹|๐’˜|1,ฮฉi12+Cโ€‹ฮดโ€‹โ€–๐’˜โ€–0,โˆ‚ฮฉi0โˆฉโˆ‚ฮฉi12\displaystyle\leq C\delta^{2}|\bm{w}|_{1,\Omega_{i_{1}}}^{2}+C\delta||\bm{w}||^{2}_{0,\partial{\Omega_{i_{0}}}\cap\partial{\Omega_{i_{1}}}}
โ‰คCโ€‹ฮด2โ€‹|๐’˜|1,ฮฉi12+Cโ€‹ฮดโ€‹Hโ€‹|๐’˜|1,ฮฉi12+Cโ€‹ฮดโ€‹Hโˆ’1โ€‹โ€–๐’˜โ€–0,ฮฉi12\displaystyle\leq C\delta^{2}|\bm{w}|_{1,\Omega_{i_{1}}}^{2}+C\delta H|\bm{w}|^{2}_{1,\Omega_{i_{1}}}+C\delta H^{-1}||\bm{w}||^{2}_{0,\Omega_{i_{1}}}
โ‰คCโ€‹ฮด2โ€‹{(1+Hฮด)|๐’˜|1,ฮฉi12+1ฮดโ€‹Hโ€‹โ€–๐’˜โ€–0,ฮฉi12}.\displaystyle\leq C\delta^{2}\{\big{(}1+\frac{H}{\delta}\big{)}|\bm{w}|_{1,\Omega_{i_{1}}}^{2}+\frac{1}{\delta H}||\bm{w}||^{2}_{0,\Omega_{i_{1}}}\}.

Summing over all strips ฮฉijโ€ฒโˆฉฮฉik\Omega_{i_{j}}^{\prime}\cap\Omega_{i_{k}} in (3.8), by finite covering, we get (3.7). This completes the proof of the lemma. โ–ก\Box

For any ๐’–hโˆˆ๐’ฉโ€‹๐’Ÿh,0\bm{u}_{h}\in\mathcal{ND}_{h,0}, we decompose it as ๐’–h=โˆ‘i=0N๐’–i\bm{u}_{h}=\sum_{i=0}^{N}\bm{u}_{i}, where

๐’–0:=โˆ‡q0+๐’˜0โˆˆ๐’ฉโ€‹๐’ŸH,0,๐’–i:=โˆ‡qi+๐’˜iโˆˆ๐‘ฝi,i=1,2,โ€ฆ,N,q0=I~Hโ€‹qh,qi=Ihโ€‹(ฮธiโ€‹(qhโˆ’q0)),๐’˜0=QHโ€‹Phโ€‹๐’˜hโŸ‚,๐’˜i=ฮ E,hโ€‹(ฮธiโ€‹(๐’˜hโŸ‚โˆ’๐’˜0)),๐’–h=โˆ‡qh+๐’˜hโŸ‚,\displaystyle\begin{aligned} \bm{u}_{0}&:=\nabla{q_{0}}+\bm{w}_{0}\in\mathcal{ND}_{H,0},\\ \bm{u}_{i}&:=\nabla{q_{i}}+\bm{w}_{i}\in\bm{V}_{i},\ \ \ \ i=1,2,...,N,\\ q_{0}&=\tilde{I}_{H}q_{h},\\ q_{i}&=I_{h}(\theta_{i}(q_{h}-q_{0})),\\ \bm{w}_{0}&=Q_{H}P_{h}\bm{w}_{h}^{\perp},\\ \bm{w}_{i}&=\Pi_{E,h}(\theta_{i}(\bm{w}_{h}^{\perp}-\bm{w}_{0})),\\ \bm{u}_{h}&=\nabla q_{h}+\bm{w}_{h}^{\perp},\end{aligned} (3.9)

where qhq_{h} and ๐’˜hโŸ‚\bm{w}_{h}^{\perp} are defined in (2.11), ฮ E,h\Pi_{E,h} is the H-curl interpolation operator to ๐’ฉโ€‹๐’Ÿh,0\mathcal{ND}_{h,0}, ฮธi\theta_{i} is defined in (3.3), PhP_{h} is defined in (2.12), QHQ_{H} is defined in (3.6), IhI_{h} is the nodal value interpolation to Sh,0S_{h,0} defined in (2.10) and I~H\tilde{I}_{H} is the Scott-Zhang interpolation operator (see [16]) to SH,0S_{H,0}. In (3.9), the operation ฮ E,hโ€‹(ฮธiโ€‹(๐’˜hโŸ‚โˆ’๐’˜0))\Pi_{E,h}(\theta_{i}(\bm{w}_{h}^{\perp}-\bm{w}_{0})) is well-defined, because ฮธiโ€‹(๐’˜hโŸ‚โˆ’๐’˜0)โˆˆ๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\theta_{i}(\bm{w}_{h}^{\perp}-\bm{w}_{0})\in\bm{H}_{0}(\bm{{\rm curl}};\Omega) and ๐’˜0โˆˆ๐’ฉโ€‹๐’ŸH,0\bm{w}_{0}\in\mathcal{ND}_{H,0}. We check the decomposition,

โˆ‘i=0N๐’–i\displaystyle\sum_{i=0}^{N}\bm{u}_{i} =โˆ‡q0+๐’˜0+โˆ‘i=1N(โˆ‡qi+๐’˜i)\displaystyle=\nabla{q_{0}}+\bm{w}_{0}+\sum_{i=1}^{N}(\nabla{q_{i}}+\bm{w}_{i})
=โˆ‡q0+๐’˜0+โˆ‘i=1N(โˆ‡Ihโ€‹(ฮธiโ€‹(qhโˆ’q0))+ฮ E,hโ€‹(ฮธiโ€‹(๐’˜hโŸ‚โˆ’๐’˜0)))\displaystyle=\nabla{q_{0}}+\bm{w}_{0}+\sum_{i=1}^{N}\left(\nabla{I_{h}(\theta_{i}(q_{h}-q_{0}))}+\Pi_{E,h}(\theta_{i}(\bm{w}_{h}^{\perp}-\bm{w}_{0}))\right)
=โˆ‡q0+๐’˜0+โˆ‡Ihโ€‹(โˆ‘i=1Nฮธiโ€‹(qhโˆ’q0))+ฮ E,hโ€‹(โˆ‘i=1Nฮธiโ€‹(๐’˜hโŸ‚โˆ’๐’˜0))\displaystyle=\nabla{q_{0}}+\bm{w}_{0}+\nabla{I_{h}\left(\sum_{i=1}^{N}\theta_{i}(q_{h}-q_{0})\right)}+\Pi_{E,h}\left(\sum_{i=1}^{N}\theta_{i}(\bm{w}_{h}^{\perp}-\bm{w}_{0})\right)
=โˆ‡q0+๐’˜0+โˆ‡Ihโ€‹(qhโˆ’q0)+ฮ E,hโ€‹(๐’˜hโŸ‚โˆ’๐’˜0)\displaystyle=\nabla{q_{0}}+\bm{w}_{0}+\nabla{I_{h}\left(q_{h}-q_{0}\right)}+\Pi_{E,h}\left(\bm{w}_{h}^{\perp}-\bm{w}_{0}\right)
=โˆ‡q0+๐’˜0+โˆ‡(qhโˆ’q0)+(๐’˜hโŸ‚โˆ’๐’˜0)\displaystyle=\nabla{q_{0}}+\bm{w}_{0}+\nabla{\left(q_{h}-q_{0}\right)}+\left(\bm{w}_{h}^{\perp}-\bm{w}_{0}\right)
=โˆ‡qh+๐’˜hโŸ‚=๐’–h.\displaystyle=\nabla q_{h}+\bm{w}_{h}^{\perp}=\bm{u}_{h}.

In order to prove the lower bound in (3.4), we only need to give a stable decomposition (see Chapter 2 in [18]), and then prove that the stable parameter can be bounded by Cโ€‹(1+Hฮด)C(1+\frac{H}{\delta}).

Theorem 3.4

Let ๐ฎhโˆˆ๐’ฉโ€‹๐’Ÿh,0\bm{u}_{h}\in\mathcal{ND}_{h,0} be decomposed in (3.9). It holds that

โˆ‘i=0Na๐œ๐ฎ๐ซ๐ฅโ€‹(๐’–i,๐’–i)โ‰คCโ€‹(1+Hฮด)โ€‹a๐œ๐ฎ๐ซ๐ฅโ€‹(๐’–h,๐’–h).\displaystyle\sum_{i=0}^{N}a_{\bm{{\rm curl}}}(\bm{u}_{i},\bm{u}_{i})\leq C(1+\frac{H}{\delta})a_{\bm{{\rm curl}}}(\bm{u}_{h},\bm{u}_{h}). (3.10)

Proof.ย  By the discrete Helmholtz decomposition in the last equation in (3.9), we decompose ๐’–h\bm{u}_{h} in (3.9) as

๐’–h=โˆ‡q0+๐’˜0+โˆ‘i=1N(โˆ‡qi+๐’˜i).\displaystyle\bm{u}_{h}=\nabla{q_{0}}+\bm{w}_{0}+\sum_{i=1}^{N}(\nabla{q_{i}}+\bm{w}_{i}).

For the terms โˆ‡qi\nabla{q_{i}} of ๐’–h\bm{u}_{h}, using the result for continuous finite element spaces conforming in H01โ€‹(ฮฉ)H_{0}^{1}(\Omega) given in the proof of lemma 3.12 in [18] and (3.9), we have

โˆ‘i=0Na๐œ๐ฎ๐ซ๐ฅโ€‹(โˆ‡qi,โˆ‡qi)=โˆ‘i=0N|qi|1,ฮฉiโ€ฒ2โ‰คCโ€‹(1+Hฮด)โ€‹|qh|12=Cโ€‹(1+Hฮด)โ€‹a๐œ๐ฎ๐ซ๐ฅโ€‹(โˆ‡qh,โˆ‡qh).\displaystyle\begin{aligned} \sum_{i=0}^{N}a_{\bm{{\rm curl}}}(\nabla{q_{i}},\nabla{q_{i}})&=\sum_{i=0}^{N}|q_{i}|^{2}_{1,\Omega_{i}^{{}^{\prime}}}\leq C(1+\frac{H}{\delta})|q_{h}|^{2}_{1}\\ &=C(1+\frac{H}{\delta})a_{\bm{{\rm curl}}}(\nabla{q_{h}},\nabla{q_{h}}).\end{aligned} (3.11)

For the terms ๐’˜i\bm{w}_{i} of ๐’–h\bm{u}_{h}, we will prove the following by the four steps below.

โˆ‘i=0Na๐œ๐ฎ๐ซ๐ฅโ€‹(๐’˜i,๐’˜i)=โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜0โ€–02+โ€–๐’˜0โ€–02+โˆ‘i=1Nโ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜iโ€–0,ฮฉiโ€ฒ2+โˆ‘i=1Nโ€–๐’˜iโ€–0,ฮฉiโ€ฒ2โ‰คCโ€‹(1+Hฮด)โ€‹a๐œ๐ฎ๐ซ๐ฅโ€‹(๐’˜hโŸ‚,๐’˜hโŸ‚).\displaystyle\begin{aligned} \sum_{i=0}^{N}a_{\bm{{\rm curl}}}(\bm{w}_{i},\bm{w}_{i})&=||\bm{{\rm curl}}\bm{w}_{0}||_{0}^{2}+||\bm{w}_{0}||_{0}^{2}+\sum_{i=1}^{N}||\bm{{\rm curl}}\bm{w}_{i}||_{0,\Omega_{i}^{{}^{\prime}}}^{2}+\sum_{i=1}^{N}||\bm{w}_{i}||_{0,\Omega_{i}^{{}^{\prime}}}^{2}\\ &\leq C(1+\frac{H}{\delta})a_{\bm{{\rm curl}}}(\bm{w}^{\perp}_{h},\bm{w}^{\perp}_{h}).\end{aligned} (3.12)
  • (1)

    For the term โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜0โ€–0||\bm{{\rm curl}}\bm{w}_{0}||_{0} in (3.12), by (3.9), (3.6), (2.4) and (2.15), we get

    โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜0โ€–0=โ€–๐œ๐ฎ๐ซ๐ฅโ€‹QHโ€‹Phโ€‹๐’˜hโŸ‚โ€–0โ‰คCโ€‹|Phโ€‹๐’˜hโŸ‚|1โ‰คCโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹Phโ€‹๐’˜hโŸ‚โ€–0=Cโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚โ€–0.\displaystyle||\bm{{\rm curl}}\bm{w}_{0}||_{0}=||\bm{{\rm curl}}Q_{H}P_{h}\bm{w}_{h}^{\perp}||_{0}\leq C|P_{h}\bm{w}_{h}^{\perp}|_{1}\leq C||\bm{{\rm curl}}P_{h}\bm{w}_{h}^{\perp}||_{0}=C||\bm{{\rm curl}}\bm{w}_{h}^{\perp}||_{0}. (3.13)
  • (2)

    For the term โ€–๐’˜0โ€–0||\bm{w}_{0}||_{0} in (3.12), by (3.9), ๐‘ณ2\bm{L}^{2}-orthogonal projector QHQ_{H} and (2.14), we have

    โ€–๐’˜0โ€–0=โ€–QHโ€‹Phโ€‹๐’˜hโŸ‚โ€–0โ‰คโ€–Phโ€‹๐’˜hโŸ‚โ€–0=โ€–ฮ˜โŸ‚โ€‹๐’˜hโŸ‚โ€–0โ‰คโ€–๐’˜hโŸ‚โ€–0.\displaystyle||\bm{w}_{0}||_{0}=||Q_{H}P_{h}\bm{w}_{h}^{\perp}||_{0}\leq||P_{h}\bm{w}_{h}^{\perp}||_{0}=||\Theta^{\perp}\bm{w}_{h}^{\perp}||_{0}\leq||\bm{w}_{h}^{\perp}||_{0}. (3.14)

    Here the last inequality follows the argument

    (ฮ˜โŸ‚โ€‹๐’˜hโŸ‚,๐’ˆ)0=(ฮ˜โŸ‚โ€‹(โˆ‡s+๐’˜~โŸ‚),๐’ˆ)0=(๐’˜~โŸ‚,๐’ˆ)0=(โˆ‡s+๐’˜~โŸ‚,๐’ˆ)0=(๐’˜hโŸ‚,๐’ˆ)0\displaystyle(\Theta^{\perp}\bm{w}_{h}^{\perp},\bm{g})_{0}=(\Theta^{\perp}(\nabla s+\tilde{\bm{w}}^{\perp}),\bm{g})_{0}=(\tilde{\bm{w}}^{\perp},\bm{g})_{0}=(\nabla s+\tilde{\bm{w}}^{\perp},\bm{g})_{0}=(\bm{w}_{h}^{\perp},\bm{g})_{0}

    with ๐’ˆ=ฮ˜โŸ‚โ€‹๐’˜hโŸ‚\bm{g}=\Theta^{\perp}\bm{w}_{h}^{\perp} and the Cauchy-Schwarz inequality.

  • (3)

    For the terms โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜iโ€–0,ฮฉiโ€ฒ||\bm{{\rm curl}}\bm{w}_{i}||_{0,\Omega_{i}^{{}^{\prime}}} in (3.12), by the properties of {ฮธi}i=1N\{\theta_{i}\}_{i=1}^{N} and ฮ E,h\Pi_{E,h} (see Lemma 10.8 in [18]), we have

    โˆ‘i=1Nโ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜iโ€–0,ฮฉiโ€ฒ2โ‰คCโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’—โ€–0,ฮฉi,ฮด2+Cโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’—โ€–02,\displaystyle\sum_{i=1}^{N}||\bm{{\rm curl}}\bm{w}_{i}||_{0,\Omega_{i}^{{}^{\prime}}}^{2}\leq C\sum_{i=1}^{N}\delta^{-2}||\bm{v}||_{0,\Omega_{i,\delta}}^{2}+C||\bm{{\rm curl}}\bm{v}||_{0}^{2},

    where

    ๐’—=๐’˜hโŸ‚โˆ’๐’˜0=๐’˜hโŸ‚โˆ’QHโ€‹Phโ€‹๐’˜hโŸ‚.\displaystyle\bm{v}=\bm{w}_{h}^{\perp}-\bm{w}_{0}=\bm{w}_{h}^{\perp}-Q_{H}P_{h}\bm{w}_{h}^{\perp}.

    Denoting by ๐’—~:=Phโ€‹๐’˜hโŸ‚โˆ’QHโ€‹Phโ€‹๐’˜hโŸ‚\widetilde{\bm{v}}:=P_{h}\bm{w}_{h}^{\perp}-Q_{H}P_{h}\bm{w}_{h}^{\perp} and using the triangle inequality, we obtain from above inequality that

    โˆ‘i=1Nโ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜iโ€–0,ฮฉiโ€ฒ2โ‰คCโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’—~โ€–0,ฮฉi,ฮด2+Cโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’—~โˆ’๐’—โ€–0,ฮฉi,ฮด2+Cโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’—โ€–02=:I1+I2+I3.\displaystyle\begin{aligned} \sum_{i=1}^{N}||\bm{{\rm curl}}\bm{w}_{i}||_{0,\Omega_{i}^{{}^{\prime}}}^{2}&\leq C\sum_{i=1}^{N}\delta^{-2}||\widetilde{\bm{v}}||_{0,\Omega_{i,\delta}}^{2}+C\sum_{i=1}^{N}\delta^{-2}||\widetilde{\bm{v}}-\bm{v}||_{0,\Omega_{i,\delta}}^{2}+C||\bm{{\rm curl}}\bm{v}||_{0}^{2}\\ &=:I_{1}+I_{2}+I_{3}.\end{aligned} (3.15)

    For the first term I1I_{1} in (3.15), by Lemma 3.3 and the fact that ๐’—~โˆˆ๐‘ฏ1โ€‹(ฮฉi)\widetilde{\bm{v}}\in\bm{H}^{1}(\Omega_{i}), we get, because of finite overlapping,

    I1=Cโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’—~โ€–0,ฮฉi,ฮด2\displaystyle I_{1}=C\sum_{i=1}^{N}\delta^{-2}||\widetilde{\bm{v}}||_{0,\Omega_{i,\delta}}^{2} โ‰คCโ€‹(1+Hฮด)โ€‹โˆ‘i=1N|๐’—~|1,ฮฉi2+Cโ€‹1ฮดโ€‹Hโ€‹โ€–๐’—~โ€–0,ฮฉ2.\displaystyle\leq C(1+\frac{H}{\delta})\sum_{i=1}^{N}|\widetilde{\bm{v}}|^{2}_{1,\Omega_{i}}+C\frac{1}{\delta H}||\widetilde{\bm{v}}||^{2}_{0,\Omega}. (3.16)

    For the first term in (3.16), by the triangle inequality, the inverse estimate and (3.5), we obtain

    |๐’—~|1,ฮฉi\displaystyle|\widetilde{\bm{v}}|_{1,\Omega_{i}} =|Phโ€‹๐’˜hโŸ‚โˆ’QHโ€‹Phโ€‹๐’˜hโŸ‚|1,ฮฉiโ‰ค|Phโ€‹๐’˜hโŸ‚|1,ฮฉi+|QHโ€‹Phโ€‹๐’˜hโŸ‚|1,ฮฉi\displaystyle=|P_{h}\bm{w}_{h}^{\perp}-Q_{H}P_{h}\bm{w}_{h}^{\perp}|_{1,\Omega_{i}}\leq|P_{h}\bm{w}_{h}^{\perp}|_{1,\Omega_{i}}+|Q_{H}P_{h}\bm{w}_{h}^{\perp}|_{1,\Omega_{i}}
    =|Phโ€‹๐’˜hโŸ‚|1,ฮฉi+|QHโ€‹Phโ€‹๐’˜hโŸ‚โˆ’Q0,ฮฉiโ€‹Phโ€‹๐’˜hโŸ‚|1,ฮฉi\displaystyle=|P_{h}\bm{w}_{h}^{\perp}|_{1,\Omega_{i}}+|Q_{H}P_{h}\bm{w}_{h}^{\perp}-Q_{0,\Omega_{i}}P_{h}\bm{w}_{h}^{\perp}|_{1,\Omega_{i}}
    โ‰ค|Phโ€‹๐’˜hโŸ‚|1,ฮฉi+Cโ€‹Hโˆ’1โ€‹โ€–QHโ€‹Phโ€‹๐’˜hโŸ‚โˆ’Q0,ฮฉiโ€‹Phโ€‹๐’˜hโŸ‚โ€–0,ฮฉi\displaystyle\leq|P_{h}\bm{w}_{h}^{\perp}|_{1,\Omega_{i}}+CH^{-1}||Q_{H}P_{h}\bm{w}_{h}^{\perp}-Q_{0,\Omega_{i}}P_{h}\bm{w}_{h}^{\perp}||_{0,\Omega_{i}}
    โ‰ค|Phโ€‹๐’˜hโŸ‚|1,ฮฉi+Cโ€‹Hโˆ’1โ€‹โ€–QHโ€‹Phโ€‹๐’˜hโŸ‚โˆ’Phโ€‹๐’˜hโŸ‚โ€–0,ฮฉi\displaystyle\leq|P_{h}\bm{w}_{h}^{\perp}|_{1,\Omega_{i}}+CH^{-1}||Q_{H}P_{h}\bm{w}_{h}^{\perp}-P_{h}\bm{w}_{h}^{\perp}||_{0,\Omega_{i}}
    +Cโ€‹Hโˆ’1โ€‹โ€–Phโ€‹๐’˜hโŸ‚โˆ’Q0,ฮฉiโ€‹Phโ€‹๐’˜hโŸ‚โ€–0,ฮฉi\displaystyle\ \ \ \ +CH^{-1}||P_{h}\bm{w}_{h}^{\perp}-Q_{0,\Omega_{i}}P_{h}\bm{w}_{h}^{\perp}||_{0,\Omega_{i}}
    โ‰ค|Phโ€‹๐’˜hโŸ‚|1,ฮฉi+Cโ€‹Hโˆ’1โ€‹โ€–Phโ€‹๐’˜hโŸ‚โˆ’QHโ€‹Phโ€‹๐’˜hโŸ‚โ€–0,ฮฉi+Cโ€‹|Phโ€‹๐’˜hโŸ‚|1,ฮฉi,\displaystyle\leq|P_{h}\bm{w}_{h}^{\perp}|_{1,\Omega_{i}}+CH^{-1}||P_{h}\bm{w}_{h}^{\perp}-Q_{H}P_{h}\bm{w}_{h}^{\perp}||_{0,\Omega_{i}}+C|P_{h}\bm{w}_{h}^{\perp}|_{1,\Omega_{i}},

    which, together with (3.6), (2.4) and (2.15), yields

    โˆ‘i=1N|๐’—~|1,ฮฉi2โ‰คCโ€‹โˆ‘i=1N|Phโ€‹๐’˜hโŸ‚|1,ฮฉi2+Cโ€‹Hโˆ’2โ€‹โˆ‘i=1Nโ€–Phโ€‹๐’˜hโŸ‚โˆ’QHโ€‹Phโ€‹๐’˜hโŸ‚โ€–0,ฮฉi2โ‰คCโ€‹|Phโ€‹๐’˜hโŸ‚|12+Cโ€‹Hโˆ’2โ€‹โ€–Phโ€‹๐’˜hโŸ‚โˆ’QHโ€‹Phโ€‹๐’˜hโŸ‚โ€–02โ‰คCโ€‹|Phโ€‹๐’˜hโŸ‚|12โ‰คCโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹Phโ€‹๐’˜hโŸ‚โ€–02=Cโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚โ€–02.\displaystyle\begin{aligned} \sum_{i=1}^{N}|\widetilde{\bm{v}}|^{2}_{1,\Omega_{i}}&\leq C\sum_{i=1}^{N}|P_{h}\bm{w}_{h}^{\perp}|^{2}_{1,\Omega_{i}}+CH^{-2}\sum_{i=1}^{N}||P_{h}\bm{w}_{h}^{\perp}-Q_{H}P_{h}\bm{w}_{h}^{\perp}||^{2}_{0,\Omega_{i}}\\ &\leq C|P_{h}\bm{w}_{h}^{\perp}|^{2}_{1}+CH^{-2}||P_{h}\bm{w}_{h}^{\perp}-Q_{H}P_{h}\bm{w}_{h}^{\perp}||_{0}^{2}\\ &\leq C|P_{h}\bm{w}_{h}^{\perp}|^{2}_{1}\leq C||\bm{{\rm curl}}P_{h}\bm{w}_{h}^{\perp}||^{2}_{0}=C||\bm{{\rm curl}}\bm{w}_{h}^{\perp}||^{2}_{0}.\end{aligned} (3.17)

    For the second term in (3.16), by (3.6), (2.4) and (2.15), we have

    Cฮดโ€‹Hโ€‹โ€–๐’—~โ€–02=Cฮดโ€‹Hโ€‹โ€–Phโ€‹๐’˜hโŸ‚โˆ’QHโ€‹Phโ€‹๐’˜hโŸ‚โ€–02โ‰คCฮดโ€‹Hโ€‹Cโ€‹H2โ€‹|Phโ€‹๐’˜hโŸ‚|12โ‰คCโ€‹Hฮดโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹Phโ€‹๐’˜hโŸ‚โ€–02=Cโ€‹Hฮดโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚โ€–02.\displaystyle\begin{aligned} \frac{C}{\delta H}||\widetilde{\bm{v}}||_{0}^{2}&=\frac{C}{\delta H}||P_{h}\bm{w}_{h}^{\perp}-Q_{H}P_{h}\bm{w}_{h}^{\perp}||_{0}^{2}\\ &\leq\frac{C}{\delta H}CH^{2}|P_{h}\bm{w}_{h}^{\perp}|^{2}_{1}\leq C\frac{H}{\delta}||\bm{{\rm curl}}P_{h}\bm{w}_{h}^{\perp}||^{2}_{0}=C\frac{H}{\delta}||\bm{{\rm curl}}\bm{w}_{h}^{\perp}||^{2}_{0}.\end{aligned} (3.18)

    Combining (3.15), (3.16), (3.17) and (3.18), we get

    I1=Cโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’—~โ€–0,ฮฉi,ฮด2โ‰คCโ€‹(1+Hฮด)โ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚โ€–02.\displaystyle I_{1}=C\sum_{i=1}^{N}\delta^{-2}||\widetilde{\bm{v}}||_{0,\Omega_{i,\delta}}^{2}\leq C(1+\frac{H}{\delta})||\bm{{\rm curl}}\bm{w}_{h}^{\perp}||_{0}^{2}.

    For the second term I2I_{2} in (3.15), by Lemma 2.1, we deduce

    I2\displaystyle I_{2} =Cโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’—~โˆ’๐’—โ€–0,ฮฉi,ฮด2=Cโ€‹ฮดโˆ’2โ€‹โˆ‘i=1Nโ€–๐’˜hโŸ‚โˆ’Phโ€‹๐’˜hโŸ‚โ€–0,ฮฉi,ฮด2\displaystyle=C\sum_{i=1}^{N}\delta^{-2}||\widetilde{\bm{v}}-\bm{v}||_{0,\Omega_{i,\delta}}^{2}=C\delta^{-2}\sum_{i=1}^{N}||\bm{w}_{h}^{\perp}-P_{h}\bm{w}_{h}^{\perp}||_{0,\Omega_{i,\delta}}^{2}
    โ‰คCโ€‹ฮดโˆ’2โ€‹โ€–๐’˜hโŸ‚โˆ’Phโ€‹๐’˜hโŸ‚โ€–02โ‰คCโ€‹h2โ€‹ฮดโˆ’2โ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚โ€–02\displaystyle\leq C\delta^{-2}||\bm{w}_{h}^{\perp}-P_{h}\bm{w}_{h}^{\perp}||_{0}^{2}\leq Ch^{2}\delta^{-2}||\bm{{\rm curl}}\bm{w}_{h}^{\perp}||_{0}^{2}
    โ‰คCโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚โ€–02.\displaystyle\leq C||\bm{{\rm curl}}\bm{w}_{h}^{\perp}||_{0}^{2}.

    For the third term I3I_{3} in (3.15), we have, because of (3.13),

    I3=Cโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’—โ€–02โ‰คCโ€‹{โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚โ€–02+โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜0โ€–02}โ‰คCโ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚โ€–02.\displaystyle I_{3}=C||\bm{{\rm curl}}\bm{v}||_{0}^{2}\leq C\{||\bm{{\rm curl}}\bm{w}_{h}^{\perp}||_{0}^{2}+||\bm{{\rm curl}}\bm{w}_{0}||_{0}^{2}\}\leq C||\bm{{\rm curl}}\bm{w}_{h}^{\perp}||_{0}^{2}.

    By using (3.15) and the estimates of three terms I1,I2I_{1},I_{2} and I3I_{3}, we obtain

    โˆ‘i=1Nโ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜iโ€–0,ฮฉiโ€ฒ2โ‰คI1+I2+I3โ‰คCโ€‹(1+Hฮด)โ€‹โ€–๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚โ€–02.\displaystyle\sum_{i=1}^{N}||\bm{{\rm curl}}\bm{w}_{i}||_{0,\Omega_{i}^{{}^{\prime}}}^{2}\leq I_{1}+I_{2}+I_{3}\leq C(1+\frac{H}{\delta})||\bm{{\rm curl}}\bm{w}_{h}^{\perp}||_{0}^{2}. (3.19)
  • (4)

    For the terms โ€–๐’˜iโ€–0,ฮฉiโ€ฒ||\bm{w}_{i}||_{0,\Omega_{i}^{{}^{\prime}}} in (3.12), we have, by (3.9), the fact |ฮธi|โ‰ค1|\theta_{i}|\leq 1, triangle inequality, finite overlapping and (3.14),

    โˆ‘i=1Nโ€–๐’˜iโ€–0,ฮฉiโ€ฒ2โ‰คCโ€‹โˆ‘i=1Nโ€–ฮธiโ€‹(๐’˜hโŸ‚โˆ’๐’˜0)โ€–0,ฮฉiโ€ฒ2โ‰คCโ€‹โˆ‘i=1N{โ€–๐’˜hโŸ‚โ€–0,ฮฉiโ€ฒ2+โ€–๐’˜0โ€–0,ฮฉiโ€ฒ2}โ‰คCโ€‹โ€–๐’˜hโŸ‚โ€–02+Cโ€‹โ€–๐’˜0โ€–02โ‰คCโ€‹โ€–๐’˜hโŸ‚โ€–02.\displaystyle\begin{aligned} \sum_{i=1}^{N}||\bm{w}_{i}||^{2}_{0,\Omega_{i}^{{}^{\prime}}}&\leq C\sum_{i=1}^{N}||\theta_{i}(\bm{w}_{h}^{\perp}-\bm{w}_{0})||^{2}_{0,\Omega_{i}^{{}^{\prime}}}\leq C\sum_{i=1}^{N}\{||\bm{w}_{h}^{\perp}||^{2}_{0,\Omega_{i}^{{}^{\prime}}}+||\bm{w}_{0}||^{2}_{0,\Omega_{i}^{{}^{\prime}}}\}\\ &\leq C||\bm{w}_{h}^{\perp}||_{0}^{2}+C||\bm{w}_{0}||_{0}^{2}\leq C||\bm{w}_{h}^{\perp}||_{0}^{2}.\end{aligned} (3.20)

Finally, combining (3.13), (3.14) (3.19) and (3.20), we complete the proof of (3.12). By (3.9), adding (3.11) and (3.12), we get (3.10), noting that the decomposition in last equation of (3.9) is orthogonal under a๐œ๐ฎ๐ซ๐ฅโ€‹(โ‹…,โ‹…)a_{\bm{{\rm curl}}}(\cdot,\cdot). โ–ก\Box

Now we are in a position to give a proof of the main result.

Proof of Theorem 3.1:ย ย Based on Lemma 2.5 in Chapter 2 in [18] and Theorem 3.4 above, we obtain

1C1โ€‹(1+Hฮด)โ€‹a๐œ๐ฎ๐ซ๐ฅโ€‹(๐’—h,๐’—h)โ‰คa๐œ๐ฎ๐ซ๐ฅโ€‹(Bhโˆ’1โ€‹Ahโ€‹๐’—h,๐’—h)โˆ€๐’—hโˆˆ๐’ฉโ€‹๐’Ÿh,0,\displaystyle\frac{1}{C_{1}(1+\frac{H}{\delta})}a_{\bm{{\rm curl}}}(\bm{v}_{h},\bm{v}_{h})\leq a_{\bm{{\rm curl}}}(B_{h}^{-1}A_{h}\bm{v}_{h},\bm{v}_{h})\ \ \ \ \forall\ \bm{v}_{h}\in\mathcal{ND}_{h,0},

which completes the proof of this theorem. โ–ก\Box

4 Extension to ๐‘ฏโ€‹(div;ฮฉ)\bm{H}({\rm div};\Omega)

In this section, we extend the theoretical techniques to the overlapping Schwarz method in ๐‘ฏโ€‹(div;ฮฉ)\bm{H}({\rm div};\Omega). For convenience of theoretical analysis, we first define some notations:

๐‘ฏ0โ€‹(div;ฮฉ):\displaystyle\bm{H}_{0}({\rm div};\Omega): ={๐’—โˆˆ๐‘ฏโ€‹(div;ฮฉ)|๐’–โ‹…๐’=0},\displaystyle=\{\ \bm{v}\in\bm{H}({\rm div};\Omega)\ |\ \bm{u}\cdot\bm{n}=0\ \},
๐‘ฏ0โŸ‚โ€‹(div;ฮฉ):\displaystyle\bm{H}_{0}^{\perp}({\rm div};\Omega): =๐‘ฏ0โ€‹(div;ฮฉ)โˆฉ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ0;ฮฉ),\displaystyle=\bm{H}_{0}({\rm div};\Omega)\cap\bm{H}(\bm{{\rm curl}}_{0};\Omega),

and we know that (see [9, 1])

๐‘ฏ0โŸ‚โ€‹(div;ฮฉ)โ†ช๐‘ฏ1โ€‹(ฮฉ).\displaystyle\bm{H}_{0}^{\perp}({\rm div};\Omega)\hookrightarrow\bm{H}^{1}(\Omega). (4.1)

It is known that the following ๐‘ณ2\bm{L}^{2}-orthogonal (also adivโ€‹(โ‹…,โ‹…)a_{{\rm div}}(\cdot,\cdot)-orthogonal) decomposition holds (see [18]):

๐‘ฏ0โ€‹(div;ฮฉ)=๐œ๐ฎ๐ซ๐ฅโ€‹๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)โŠ•๐‘ฏ0โŸ‚โ€‹(div;ฮฉ)=๐œ๐ฎ๐ซ๐ฅโ€‹๐‘ฏ0โŸ‚โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)โŠ•๐‘ฏ0โŸ‚โ€‹(div;ฮฉ).\displaystyle\bm{H}_{0}({\rm div};\Omega)=\bm{{\rm curl}}\bm{H}_{0}(\bm{{\rm curl}};\Omega)\oplus\bm{H}_{0}^{\perp}({\rm div};\Omega)=\bm{{\rm curl}}\bm{H}_{0}^{\perp}(\bm{{\rm curl}};\Omega)\oplus\bm{H}_{0}^{\perp}({\rm div};\Omega).

Consider the model problem

{โˆ‡divโ€‹๐’–+๐’–=๐’‡inย ฮฉ,๐’โ‹…๐’–=0onย โˆ‚ฮฉ.\begin{cases}{\rm\nabla}{\rm div}\bm{u}+\bm{u}=\bm{f}\ \ &\text{in $\Omega,$}\\ \ \ \ \ \ \bm{n}\cdot\bm{u}=0\ \ &\text{on $\partial\Omega.$}\end{cases}

Its variational form is

{Givenย ๐’‡โˆˆ๐‘ณ2โ€‹(ฮฉ), findย ๐’–โˆˆ๐‘ฏ0โ€‹(div;ฮฉ)ย such thatadivโ€‹(๐’–,๐’—)=(๐’‡,๐’—)0โˆ€๐’—โˆˆ๐‘ฏ0โ€‹(div;ฮฉ),\begin{cases}\text{Given $\bm{f}\in\bm{L}^{2}(\Omega)$, find $\bm{u}\in\bm{H}_{0}({\rm div};\Omega)$ such that}\\ \text{$a_{{\rm div}}(\bm{u},\bm{v})=(\bm{f},\bm{v})_{0}\ \ \ \ \forall\ \bm{v}\in\bm{H}_{0}({\rm div};\Omega)$},\end{cases}

where

adivโ€‹(๐’˜,๐’—)=โˆซฮฉ(divโ€‹๐’˜โ€‹divโ€‹๐’—+๐’˜โ‹…๐’—)โ€‹๐‘‘xโˆ€๐’˜,๐’—โˆˆ๐‘ฏโ€‹(div;ฮฉ).\displaystyle a_{{\rm div}}(\bm{w},\bm{v})=\int_{\Omega}\big{(}{\rm div}\bm{w}\ {\rm div}\bm{v}+\bm{w}\cdot\bm{v}\big{)}dx\ \ \ \ \forall\ \bm{w},\bm{v}\in\bm{H}({\rm div};\Omega). (4.2)

We consider kk-th Raviart-Thomas finite element space

โ„›โ€‹๐’ฏh,0:={๐’—โˆˆ๐‘ฏ0โ€‹(div;ฮฉ)|๐’—|ฯ„โˆˆโ„›โ€‹๐’ฏkโ€‹(ฯ„)โ€‹โˆ€ฯ„โˆˆ๐’ฏh},\displaystyle\mathcal{RT}_{h,0}:=\{\ \bm{v}\in\bm{H}_{0}({\rm div};\Omega)\ |\ \bm{v}|_{\tau}\in\mathcal{RT}_{k}(\tau)\ \ \forall\ \tau\in\mathcal{T}_{h}\},

with โ„›โ€‹๐’ฏkโ€‹(ฯ„)\mathcal{RT}_{k}(\tau) being the kk-th order local Raviart-Thomas polynomial space on element ฯ„\tau. It also admits the discrete Helmholtz decomposition:

โ„›โ€‹๐’ฏh,0=๐œ๐ฎ๐ซ๐ฅโ€‹๐’ฉโ€‹๐’Ÿh,0โŠ•โ„›โ€‹๐’ฏh,0โŸ‚=๐œ๐ฎ๐ซ๐ฅโ€‹๐’ฉโ€‹๐’Ÿh,0โŸ‚โŠ•โ„›โ€‹๐’ฏh,0โŸ‚,\displaystyle\mathcal{RT}_{h,0}=\bm{{\rm curl}}\mathcal{ND}_{h,0}\oplus\mathcal{RT}_{h,0}^{\perp}=\bm{{\rm curl}}\mathcal{ND}_{h,0}^{\perp}\oplus\mathcal{RT}_{h,0}^{\perp}, (4.3)

where

โ„›โ€‹๐’ฏh,0โŸ‚={๐’˜hโˆˆโ„›โ€‹๐’ฏh,0|(๐’˜h,๐œ๐ฎ๐ซ๐ฅโ€‹๐’—h)0=0,โˆ€๐’—hโˆˆ๐’ฉโ€‹๐’Ÿh,0}.\displaystyle\mathcal{RT}_{h,0}^{\perp}=\{\ \bm{w}_{h}\in\mathcal{RT}_{h,0}\ |\ (\bm{w}_{h},\bm{{\rm curl}}\bm{v}_{h})_{0}=0,\ \ \ \ \forall\ \bm{v}_{h}\in\mathcal{ND}_{h,0}\}. (4.4)

As for the analysis in ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega), we may define similarly an ๐‘ณ2\bm{L}^{2}-orthogonal projector ฮ˜~โŸ‚:๐‘ฏ0โ€‹(div;ฮฉ)โ†’๐‘ฏ0โŸ‚โ€‹(div;ฮฉ)\widetilde{\Theta}^{\perp}:\bm{H}_{0}({\rm div};\Omega)\to\bm{H}_{0}^{\perp}({\rm div};\Omega). Define ๐‘ฝ~+:=ฮ˜~โŸ‚โ€‹โ„›โ€‹๐’ฏh,0โŸ‚โŠ‚๐‘ฏ0โŸ‚โ€‹(div;ฮฉ)\widetilde{\bm{V}}^{+}:=\widetilde{\Theta}^{\perp}\mathcal{RT}_{h,0}^{\perp}\subset\bm{H}_{0}^{\perp}({\rm div};\Omega). Further, we define P~h:๐‘ฏ0โŸ‚โ€‹(div;ฮฉ)โ†’๐‘ฝ~+\widetilde{P}_{h}:\bm{H}_{0}^{\perp}({\rm div};\Omega)\to\widetilde{\bm{V}}^{+} as

(divโ€‹P~hโ€‹๐’˜,divโ€‹๐’—)0=(divโ€‹๐’˜,divโ€‹๐’—)0โˆ€๐’˜โˆˆ๐‘ฏ0โŸ‚โ€‹(div;ฮฉ),๐’—โˆˆ๐‘ฝ~+.\displaystyle({\rm div}\widetilde{P}_{h}\bm{w},{\rm div}\bm{v})_{0}=({\rm div}\bm{w},{\rm div}\bm{v})_{0}\ \ \ \ \forall\ \bm{w}\in\bm{H}_{0}^{\perp}({\rm div};\Omega),\bm{v}\in\widetilde{\bm{V}}^{+}. (4.5)

Since the Poincarรฉ inequality holds in ๐‘ฏ0โŸ‚โ€‹(div;ฮฉ)\bm{H}_{0}^{\perp}({\rm div};\Omega), we know that P~h\widetilde{P}_{h} is well-defined. Moreover, we extend the operator P~h\widetilde{P}_{h} to ๐‘ฏ0โ€‹(div;ฮฉ)\bm{H}_{0}({\rm div};\Omega) by

P~hโ€‹๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜=๐ŸŽ,P~hโ€‹๐’—=P~hโ€‹๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜+P~hโ€‹๐’›=P~hโ€‹๐’›,\displaystyle\begin{aligned} &\widetilde{P}_{h}{\bf curl}\bm{w}=\bm{0},\\ &\widetilde{P}_{h}\bm{v}=\widetilde{P}_{h}{\bf curl}\bm{w}+\widetilde{P}_{h}\bm{z}=\widetilde{P}_{h}\bm{z},\end{aligned} (4.6)

where ๐’—=๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜+๐’›โˆˆ๐œ๐ฎ๐ซ๐ฅโ€‹๐‘ฏ0โ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)โŠ•๐‘ฏ0โŸ‚โ€‹(div;ฮฉ).\bm{v}={\bf curl}\bm{w}+\bm{z}\in{\bf curl}\bm{H}_{0}(\bm{{\rm curl}};\Omega)\oplus\bm{H}_{0}^{\perp}({\rm div};\Omega). Using the similar argument as in (2.14) and (2.15), we get that for any ๐’˜hโŸ‚โˆˆโ„›โ€‹๐’ฏh,0โŸ‚\bm{w}_{h}^{\perp}\in\mathcal{RT}_{h,0}^{\perp},

P~hโ€‹๐’˜hโŸ‚=ฮ˜~โŸ‚โ€‹๐’˜hโŸ‚,divโ€‹P~hโ€‹๐’˜hโŸ‚=divโ€‹ฮ˜~โŸ‚โ€‹๐’˜hโŸ‚=divโ€‹๐’˜hโŸ‚.\displaystyle\widetilde{P}_{h}\bm{w}_{h}^{\perp}=\widetilde{\Theta}^{\perp}\bm{w}_{h}^{\perp},\ \ \ \ \ {\rm div}\widetilde{P}_{h}\bm{w}_{h}^{\perp}={\rm div}\widetilde{\Theta}^{\perp}\bm{w}_{h}^{\perp}={\rm div}\bm{w}_{h}^{\perp}. (4.7)
Lemma 4.1

[18] Let ฮฉ\Omega be convex. Then

โ€–๐’˜hโŸ‚โˆ’P~hโ€‹๐’˜hโŸ‚โ€–0โ‰คCโ€‹hโ€‹โ€–divโ€‹๐’˜hโŸ‚โ€–0โˆ€๐’˜hโŸ‚โˆˆโ„›โ€‹๐’ฏh,0โŸ‚,\displaystyle||\bm{w}_{h}^{\perp}-\widetilde{P}_{h}\bm{w}_{h}^{\perp}||_{0}\leq Ch||{\rm div}\bm{w}_{h}^{\perp}||_{0}\ \ \ \ \forall\ \bm{w}_{h}^{\perp}\in\mathcal{RT}_{h,0}^{\perp},

with the constant CC independent of ๐ฐhโŸ‚\bm{w}_{h}^{\perp} and hh, where P~h\widetilde{P}_{h} is defined in (4.5), (4.6) and โ„›โ€‹๐’ฏh,0โŸ‚\mathcal{RT}_{h,0}^{\perp} is defined in (4.4).

Lemma 4.2

[18] Let ๐’ฏH\mathcal{T}_{H} be shape-regular and quasi-uniform and Q~H:๐‹2โ€‹(ฮฉ)โ†’โ„›โ€‹๐’ฏH,0\widetilde{Q}_{H}:\bm{L}^{2}(\Omega)\to\mathcal{RT}_{H,0} be a ๐‹2\bm{L}^{2}-orthogonal projector. Then for ๐ฎโˆˆ๐‡1โ€‹(ฮฉ)\bm{u}\in\bm{H}^{1}(\Omega), we have

โ€–divโ€‹(Q~Hโ€‹๐’–)โ€–0โ‰คCโ€‹|๐’–|1,โ€–๐’–โˆ’Q~Hโ€‹๐’–โ€–0โ‰คCโ€‹Hโ€‹|๐’–|1,\displaystyle\begin{aligned} ||{\rm div}(\widetilde{Q}_{H}\bm{u})||_{0}&\leq C|\bm{u}|_{1},\\ ||\bm{u}-\widetilde{Q}_{H}\bm{u}||_{0}&\leq CH|\bm{u}|_{1},\end{aligned} (4.8)

with the constant CC independent of ๐ฎ\bm{u} and HH.

Similar to the overlapping Schwarz method in ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega) in Section 3, we have the notations ฮฉiโ€ฒ,ฮฉi,ฮฉi0\Omega_{i}^{{}^{\prime}},\ \Omega_{i},\ \Omega_{i}^{0} and ฮฉi,ฮด\Omega_{i,\delta}. We denote by ๐‘พi:=โ„›โ€‹๐’ฏh,0โˆฉ๐‘ฏ0โ€‹(div;ฮฉiโ€ฒ)โ€‹(i=1,2,โ€ฆ,N)\bm{W}_{i}:=\mathcal{RT}_{h,0}\cap\bm{H}_{0}({\rm div};\Omega_{i}^{{}^{\prime}})\ (i=1,2,...,N) local subspaces. As for the analysis in ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega), we only need to prove following Theorem 4.3.

For any ๐’–hโˆˆโ„›โ€‹๐’ฏh,0\bm{u}_{h}\in\mathcal{RT}_{h,0}, we decompose it as ๐’–h=โˆ‘i=0N๐’–i\bm{u}_{h}=\sum_{i=0}^{N}\bm{u}_{i}, where

๐’–0:=๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜0+๐’›0โˆˆโ„›โ€‹๐’ฏH,0,๐’–i:=๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜i+๐’›iโˆˆ๐‘พi,i=1,2,โ€ฆ,N,๐’˜0=QHโ€‹Phโ€‹๐’˜hโŸ‚,๐’˜i=ฮ E,hโ€‹(ฮธiโ€‹(๐’˜hโŸ‚โˆ’๐’˜0)),๐’›0=Q~Hโ€‹P~hโ€‹๐’›hโŸ‚,๐’›i=ฮ F,hโ€‹(ฮธiโ€‹(๐’›hโŸ‚โˆ’๐’›0)),๐’–h=๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚+๐’›hโŸ‚,\displaystyle\begin{aligned} \bm{u}_{0}&:={\bf curl}\bm{w}_{0}+\bm{z}_{0}\in\mathcal{RT}_{H,0},\\ \bm{u}_{i}&:={\bf curl}\bm{w}_{i}+\bm{z}_{i}\in\bm{W}_{i},\ \ \ \ i=1,2,...,N,\\ \bm{w}_{0}&=Q_{H}P_{h}\bm{w}_{h}^{\perp},\\ \bm{w}_{i}&=\Pi_{E,h}(\theta_{i}(\bm{w}_{h}^{\perp}-\bm{w}_{0})),\\ \bm{z}_{0}&=\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp},\\ \bm{z}_{i}&=\Pi_{F,h}(\theta_{i}(\bm{z}_{h}^{\perp}-\bm{z}_{0})),\\ \bm{u}_{h}&={\bf curl}\bm{w}_{h}^{\perp}+\bm{z}_{h}^{\perp},\end{aligned} (4.9)

where ๐’˜hโŸ‚\bm{w}_{h}^{\perp} and ๐’›hโŸ‚\bm{z}_{h}^{\perp} are defined in (4.3), ฮ F,h\Pi_{F,h} is the H-div interpolation operator to โ„›โ€‹๐’ฏh,0\mathcal{RT}_{h,0}, ฮธi\theta_{i} is defined in (3.3), P~h\widetilde{P}_{h} is defined in (4.5), Q~H\widetilde{Q}_{H} is defined in (4.8), ฮ E,h\Pi_{E,h} is the H-curl interpolation operator to ๐’ฉโ€‹๐’Ÿh,0\mathcal{ND}_{h,0}, PhP_{h} is defined in (2.12) and QHQ_{H} is defined in (3.6).

Theorem 4.3

Let ๐ฎhโˆˆโ„›โ€‹๐’ฏh,0\bm{u}_{h}\in\mathcal{RT}_{h,0} be decomposed in (4.9). It holds that

โˆ‘i=0Nadivโ€‹(๐’–i,๐’–i)โ‰คCโ€‹(1+Hฮด)โ€‹adivโ€‹(๐’–h,๐’–h).\displaystyle\sum_{i=0}^{N}a_{{\rm div}}(\bm{u}_{i},\bm{u}_{i})\leq C(1+\frac{H}{\delta})a_{{\rm div}}(\bm{u}_{h},\bm{u}_{h}). (4.10)

Proof.ย  By the discrete Helmholtz decomposition in the last equation in (4.9), we decompose ๐’–h\bm{u}_{h} in (4.9) as

๐’–h=๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜0+๐’›0+โˆ‘i=1N(๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜i+๐’›i).\displaystyle\bm{u}_{h}={\bf curl}\bm{w}_{0}+\bm{z}_{0}+\sum_{i=1}^{N}({\bf curl}\bm{w}_{i}+\bm{z}_{i}).

For the terms ๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜i\bm{{\rm curl}}\bm{w}_{i} of ๐’–h\bm{u}_{h}, by Section 3 in this paper, we have ๐’˜0โˆˆ๐’ฉโ€‹๐’ŸH,0\bm{w}_{0}\in\mathcal{ND}_{H,0} and ๐’˜iโˆˆ๐‘ฝi\bm{w}_{i}\in\bm{V}_{i}, which satisfy

โˆ‘i=0Nadivโ€‹(๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜i,๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜i)โ‰คCโ€‹(1+Hฮด)โ€‹adivโ€‹(๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚,๐œ๐ฎ๐ซ๐ฅโ€‹๐’˜hโŸ‚).\displaystyle\sum_{i=0}^{N}a_{{\rm div}}(\bm{{\rm curl}}\bm{w}_{i},\bm{{\rm curl}}\bm{w}_{i})\leq C(1+\frac{H}{\delta})a_{{\rm div}}(\bm{{\rm curl}}\bm{w}_{h}^{\perp},\bm{{\rm curl}}\bm{w}_{h}^{\perp}). (4.11)

For the terms ๐’›i\bm{z}_{i}, we will prove the following by the steps (1) and (2) below.

โˆ‘i=0Nadivโ€‹(๐’›i,๐’›i)โ‰คCโ€‹(1+Hฮด)โ€‹adivโ€‹(๐’›hโŸ‚,๐’›hโŸ‚).\displaystyle\sum_{i=0}^{N}a_{{\rm div}}(\bm{z}_{i},\bm{z}_{i})\leq C(1+\frac{H}{\delta})a_{{\rm div}}(\bm{z}_{h}^{\perp},\bm{z}_{h}^{\perp}). (4.12)
  • (1)

    For the coarse component ๐’›0\bm{z}_{0}, by (4.9), (4.8), (4.1) and (4.7), we have

    โ€–divโ€‹๐’›0โ€–0=โ€–divโ€‹Q~Hโ€‹P~hโ€‹๐’›hโŸ‚โ€–0โ‰คCโ€‹|P~hโ€‹๐’›hโŸ‚|1โ‰คCโ€‹โ€–divโ€‹P~hโ€‹๐’›hโŸ‚โ€–0=Cโ€‹โ€–divโ€‹๐’›hโŸ‚โ€–0.\displaystyle||{\rm div}\bm{z}_{0}||_{0}=||{\rm div}\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0}\leq C|\widetilde{P}_{h}\bm{z}_{h}^{\perp}|_{1}\leq C||{\rm div}\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0}=C||{\rm div}\bm{z}_{h}^{\perp}||_{0}.

    By (4.9), (4.8), (4.7) and the definition ฮ˜~โŸ‚\widetilde{\Theta}^{\perp}, we get

    โ€–๐’›0โ€–0=โ€–Q~Hโ€‹P~hโ€‹๐’›hโŸ‚โ€–0โ‰คโ€–P~hโ€‹๐’›hโŸ‚โ€–0=โ€–ฮ˜~โŸ‚โ€‹๐’›hโŸ‚โ€–0โ‰คโ€–๐’›hโŸ‚โ€–0.\displaystyle||\bm{z}_{0}||_{0}=||\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0}\leq||\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0}=||\widetilde{\Theta}^{\perp}\bm{z}_{h}^{\perp}||_{0}\leq||\bm{z}_{h}^{\perp}||_{0}.

    The above two inequalities imply that, by the definition of adivโ€‹(โ‹…,โ‹…)a_{{\rm div}}(\cdot,\cdot) in (4.2),

    adivโ€‹(๐’›0,๐’›0)โ‰คCโ€‹adivโ€‹(๐’›hโŸ‚,๐’›hโŸ‚).\displaystyle a_{{\rm div}}(\bm{z}_{0},\bm{z}_{0})\leq Ca_{{\rm div}}(\bm{z}_{h}^{\perp},\bm{z}_{h}^{\perp}). (4.13)
  • (2)

    For the local components {๐’›i}i=1N\{\bm{z}_{i}\}_{i=1}^{N}, by the properties of {ฮธi}i=1N\{\theta_{i}\}_{i=1}^{N} and ฮ F,h\Pi_{F,h} (see Lemma 10.13 in [18]), we have

    โˆ‘i=1Nโ€–divโ€‹๐’›iโ€–0,ฮฉiโ€ฒ2โ‰คCโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’›โ€–0,ฮฉi,ฮด2+Cโ€‹โ€–divโ€‹๐’›โ€–02,\displaystyle\sum_{i=1}^{N}||{\rm div}\bm{z}_{i}||_{0,\Omega_{i}^{{}^{\prime}}}^{2}\leq C\sum_{i=1}^{N}\delta^{-2}||\bm{z}||_{0,\Omega_{i,\delta}}^{2}+C||{\rm div}\bm{z}||_{0}^{2},

    where

    ๐’›=๐’›hโŸ‚โˆ’๐’›0=๐’›hโŸ‚โˆ’Q~Hโ€‹P~hโ€‹๐’›hโŸ‚.\displaystyle\bm{z}=\bm{z}_{h}^{\perp}-\bm{z}_{0}=\bm{z}_{h}^{\perp}-\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp}.

    Denoting by ๐’›~:=P~hโ€‹๐’›hโŸ‚โˆ’Q~Hโ€‹P~hโ€‹๐’›hโŸ‚\widetilde{\bm{z}}:=\widetilde{P}_{h}\bm{z}_{h}^{\perp}-\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp} and using the triangle inequality, we obtain

    โˆ‘i=1Nโ€–divโ€‹๐’›iโ€–0,ฮฉiโ€ฒ2โ‰คCโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’›~โ€–0,ฮฉi,ฮด2+Cโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’›~โˆ’๐’›โ€–0,ฮฉi,ฮด2+Cโ€‹โ€–divโ€‹๐’›โ€–02:=J1+J2+J3.\displaystyle\begin{aligned} \sum_{i=1}^{N}||{\rm div}\bm{z}_{i}||_{0,\Omega_{i}^{{}^{\prime}}}^{2}&\leq C\sum_{i=1}^{N}\delta^{-2}||\widetilde{\bm{z}}||_{0,\Omega_{i,\delta}}^{2}+C\sum_{i=1}^{N}\delta^{-2}||\widetilde{\bm{z}}-\bm{z}||_{0,\Omega_{i,\delta}}^{2}+C||{\rm div}\bm{z}||_{0}^{2}\\ &:=J_{1}+J_{2}+J_{3}.\end{aligned} (4.14)

    For the first term J1J_{1} in (4.14), by Lemma 3.3 and the fact that ๐’›~โˆˆ๐‘ฏ1โ€‹(ฮฉi)\widetilde{\bm{z}}\in\bm{H}^{1}(\Omega_{i}), we get, because of finite overlapping,

    J1=Cโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’›~โ€–0,ฮฉi,ฮด2\displaystyle J_{1}=C\sum_{i=1}^{N}\delta^{-2}||\widetilde{\bm{z}}||_{0,\Omega_{i,\delta}}^{2} โ‰คCโ€‹(1+Hฮด)โ€‹โˆ‘i=1N|๐’›~|1,ฮฉi2+Cโ€‹1ฮดโ€‹Hโ€‹โ€–๐’›~โ€–0,ฮฉ2.\displaystyle\leq C(1+\frac{H}{\delta})\sum_{i=1}^{N}|\widetilde{\bm{z}}|^{2}_{1,\Omega_{i}}+C\frac{1}{\delta H}||\widetilde{\bm{z}}||^{2}_{0,\Omega}. (4.15)

    For the first term in (4.15), by the triangle inequality, inverse estimate and (3.5), we obtain

    |๐’›~|1,ฮฉi\displaystyle|\widetilde{\bm{z}}|_{1,\Omega_{i}} =|P~hโ€‹๐’›hโŸ‚โˆ’Q~Hโ€‹P~hโ€‹๐’›hโŸ‚|1,ฮฉiโ‰ค|P~hโ€‹๐’›hโŸ‚|1,ฮฉi+|Q~Hโ€‹P~hโ€‹๐’›hโŸ‚โˆ’Q0,ฮฉiโ€‹P~hโ€‹๐’›hโŸ‚|1,ฮฉi\displaystyle=|\widetilde{P}_{h}\bm{z}_{h}^{\perp}-\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp}|_{1,\Omega_{i}}\leq|\widetilde{P}_{h}\bm{z}_{h}^{\perp}|_{1,\Omega_{i}}+|\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp}-Q_{0,\Omega_{i}}\widetilde{P}_{h}\bm{z}_{h}^{\perp}|_{1,\Omega_{i}}
    โ‰ค|P~hโ€‹๐’›hโŸ‚|1,ฮฉi+Cโ€‹Hโˆ’1โ€‹โ€–Q~Hโ€‹P~hโ€‹๐’›hโŸ‚โˆ’Q0,ฮฉiโ€‹P~hโ€‹๐’›hโŸ‚โ€–0,ฮฉi\displaystyle\leq|\widetilde{P}_{h}\bm{z}_{h}^{\perp}|_{1,\Omega_{i}}+CH^{-1}||\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp}-Q_{0,\Omega_{i}}\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0,\Omega_{i}}
    โ‰ค|P~hโ€‹๐’›hโŸ‚|1,ฮฉi+Cโ€‹Hโˆ’1โ€‹โ€–Q~Hโ€‹P~hโ€‹๐’›hโŸ‚โˆ’P~hโ€‹๐’›hโŸ‚โ€–0,ฮฉi\displaystyle\leq|\widetilde{P}_{h}\bm{z}_{h}^{\perp}|_{1,\Omega_{i}}+CH^{-1}||\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp}-\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0,\Omega_{i}}
    +Cโ€‹Hโˆ’1โ€‹โ€–P~hโ€‹๐’›hโŸ‚โˆ’Q0,ฮฉiโ€‹P~hโ€‹๐’›hโŸ‚โ€–0,ฮฉi\displaystyle\ \ \ \ +CH^{-1}||\widetilde{P}_{h}\bm{z}_{h}^{\perp}-Q_{0,\Omega_{i}}\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0,\Omega_{i}}
    โ‰ค|P~hโ€‹๐’›hโŸ‚|1,ฮฉi+Cโ€‹Hโˆ’1โ€‹โ€–Q~Hโ€‹P~hโ€‹๐’›hโŸ‚โˆ’P~hโ€‹๐’›hโŸ‚โ€–0,ฮฉi+Cโ€‹|P~hโ€‹๐’›hโŸ‚|1,ฮฉi,\displaystyle\leq|\widetilde{P}_{h}\bm{z}_{h}^{\perp}|_{1,\Omega_{i}}+CH^{-1}||\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp}-\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0,\Omega_{i}}+C|\widetilde{P}_{h}\bm{z}_{h}^{\perp}|_{1,\Omega_{i}},

    which, together with Lemma 4.2, (4.1) and (4.7), yields

    โˆ‘i=1N|๐’›~|1,ฮฉi2โ‰คCโ€‹โˆ‘i=1N|P~hโ€‹๐’›hโŸ‚|1,ฮฉi2+Cโ€‹Hโˆ’2โ€‹โˆ‘i=1Nโ€–P~hโ€‹๐’›hโŸ‚โˆ’Q~Hโ€‹P~hโ€‹๐’›hโŸ‚โ€–0,ฮฉi2โ‰คCโ€‹|P~hโ€‹๐’›hโŸ‚|12+Cโ€‹Hโˆ’2โ€‹โ€–P~hโ€‹๐’›hโŸ‚โˆ’Q~Hโ€‹P~hโ€‹๐’›hโŸ‚โ€–02โ‰คCโ€‹|P~hโ€‹๐’›hโŸ‚|12โ‰คCโ€‹โ€–divโ€‹P~hโ€‹๐’›hโŸ‚โ€–02=Cโ€‹โ€–divโ€‹๐’›hโŸ‚โ€–02.\displaystyle\begin{aligned} \sum_{i=1}^{N}|\widetilde{\bm{z}}|^{2}_{1,\Omega_{i}}&\leq C\sum_{i=1}^{N}|\widetilde{P}_{h}\bm{z}_{h}^{\perp}|^{2}_{1,\Omega_{i}}+CH^{-2}\sum_{i=1}^{N}||\widetilde{P}_{h}\bm{z}_{h}^{\perp}-\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp}||^{2}_{0,\Omega_{i}}\\ &\leq C|\widetilde{P}_{h}\bm{z}_{h}^{\perp}|^{2}_{1}+CH^{-2}||\widetilde{P}_{h}\bm{z}_{h}^{\perp}-\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0}^{2}\\ &\leq C|\widetilde{P}_{h}\bm{z}_{h}^{\perp}|^{2}_{1}\leq C||{\rm div}\widetilde{P}_{h}\bm{z}_{h}^{\perp}||^{2}_{0}=C||{\rm div}\bm{z}_{h}^{\perp}||^{2}_{0}.\end{aligned} (4.16)

    For the second term in (4.15), by Lemma 4.2, (4.1) and (4.7), we get

    Cฮดโ€‹Hโ€‹โ€–๐’›~โ€–02\displaystyle\frac{C}{\delta H}||\widetilde{\bm{z}}||_{0}^{2} =Cฮดโ€‹Hโ€‹โ€–P~hโ€‹๐’›hโŸ‚โˆ’Q~Hโ€‹P~hโ€‹๐’›hโŸ‚โ€–02\displaystyle=\frac{C}{\delta H}||\widetilde{P}_{h}\bm{z}_{h}^{\perp}-\widetilde{Q}_{H}\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0}^{2}
    โ‰คCฮดโ€‹Hโ€‹Cโ€‹H2โ€‹|P~hโ€‹๐’›hโŸ‚|12โ‰คCโ€‹Hฮดโ€‹โ€–divโ€‹P~hโ€‹๐’›hโŸ‚โ€–02=Cโ€‹Hฮดโ€‹โ€–divโ€‹๐’›hโŸ‚โ€–02,\displaystyle\leq\frac{C}{\delta H}CH^{2}|\widetilde{P}_{h}\bm{z}_{h}^{\perp}|^{2}_{1}\leq C\frac{H}{\delta}||{\rm div}\widetilde{P}_{h}\bm{z}_{h}^{\perp}||^{2}_{0}=C\frac{H}{\delta}||{\rm div}\bm{z}_{h}^{\perp}||^{2}_{0},

    which, together with (4.15) and (4.16), yields

    J1=Cโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’›~โ€–0,ฮฉi,ฮด2โ‰คCโ€‹(1+Hฮด)โ€‹โ€–divโ€‹๐’›hโŸ‚โ€–02.\displaystyle J_{1}=C\sum_{i=1}^{N}\delta^{-2}||\widetilde{\bm{z}}||_{0,\Omega_{i,\delta}}^{2}\leq C(1+\frac{H}{\delta})||{\rm div}\bm{z}_{h}^{\perp}||_{0}^{2}.

    For the second term J2J_{2} in (4.14), by Lemma 4.1, we deduce

    J2\displaystyle J_{2} =Cโ€‹โˆ‘i=1Nฮดโˆ’2โ€‹โ€–๐’›~โˆ’๐’›โ€–0,ฮฉi,ฮด2=Cโ€‹ฮดโˆ’2โ€‹โˆ‘i=1Nโ€–๐’›hโŸ‚โˆ’P~hโ€‹๐’›hโŸ‚โ€–0,ฮฉi,ฮด2\displaystyle=C\sum_{i=1}^{N}\delta^{-2}||\widetilde{\bm{z}}-\bm{z}||_{0,\Omega_{i,\delta}}^{2}=C\delta^{-2}\sum_{i=1}^{N}||\bm{z}_{h}^{\perp}-\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0,\Omega_{i,\delta}}^{2}
    โ‰คCโ€‹ฮดโˆ’2โ€‹โ€–๐’›hโŸ‚โˆ’P~hโ€‹๐’›hโŸ‚โ€–02โ‰คCโ€‹h2โ€‹ฮดโˆ’2โ€‹โ€–divโ€‹๐’›hโŸ‚โ€–02\displaystyle\leq C\delta^{-2}||\bm{z}_{h}^{\perp}-\widetilde{P}_{h}\bm{z}_{h}^{\perp}||_{0}^{2}\leq Ch^{2}\delta^{-2}||{\rm div}\bm{z}_{h}^{\perp}||_{0}^{2}
    โ‰คCโ€‹โ€–divโ€‹๐’›hโŸ‚โ€–02.\displaystyle\leq C||{\rm div}\bm{z}_{h}^{\perp}||_{0}^{2}.

    For the third term J3J_{3} in (4.14), we have, because of (4.13),

    J3=Cโ€‹โ€–divโ€‹๐’›โ€–02โ‰ค2โ€‹{โ€–divโ€‹๐’›hโŸ‚โ€–02+โ€–divโ€‹๐’›0โ€–02}โ‰คCโ€‹โ€–divโ€‹๐’›hโŸ‚โ€–02.\displaystyle J_{3}=C||{\rm div}\bm{z}||_{0}^{2}\leq 2\{||{\rm div}\bm{z}_{h}^{\perp}||_{0}^{2}+||{\rm div}\bm{z}_{0}||_{0}^{2}\}\leq C||{\rm div}\bm{z}_{h}^{\perp}||_{0}^{2}.

    By using (4.14) and the estimates of three terms J1,J2J_{1},\ J_{2} and J3J_{3}, we obtain

    โˆ‘i=1Nโ€–divโ€‹๐’›iโ€–0,ฮฉiโ€ฒ2โ‰คJ1+J2+J3โ‰คCโ€‹(1+Hฮด)โ€‹โ€–divโ€‹๐’›hโŸ‚โ€–02.\displaystyle\sum_{i=1}^{N}||{\rm div}\bm{z}_{i}||_{0,\Omega_{i}^{{}^{\prime}}}^{2}\leq J_{1}+J_{2}+J_{3}\leq C(1+\frac{H}{\delta})||{\rm div}\bm{z}_{h}^{\perp}||_{0}^{2}. (4.17)

    For the ๐‘ณ2\bm{L}^{2}-norm estimate, we have, by (4.9), the fact |ฮธi|โ‰ค1|\theta_{i}|\leq 1, finite overlapping and (4.13),

    โˆ‘i=1Nโ€–๐’›iโ€–0,ฮฉiโ€ฒ2โ‰คCโ€‹โˆ‘i=1Nโ€–ฮธiโ€‹(๐’›hโŸ‚โˆ’๐’›0)โ€–0,ฮฉiโ€ฒ2โ‰คCโ€‹โˆ‘i=1N{โ€–๐’›hโŸ‚โ€–0,ฮฉiโ€ฒ2+โ€–๐’›0โ€–0,ฮฉiโ€ฒ2}โ‰คCโ€‹โ€–๐’›hโŸ‚โ€–02+Cโ€‹โ€–๐’›0โ€–02โ‰คCโ€‹โ€–๐’›hโŸ‚โ€–02.\displaystyle\begin{aligned} \sum_{i=1}^{N}||\bm{z}_{i}||^{2}_{0,\Omega_{i}^{{}^{\prime}}}&\leq C\sum_{i=1}^{N}||\theta_{i}(\bm{z}_{h}^{\perp}-\bm{z}_{0})||^{2}_{0,\Omega_{i}^{{}^{\prime}}}\leq C\sum_{i=1}^{N}\{||\bm{z}_{h}^{\perp}||^{2}_{0,\Omega_{i}^{{}^{\prime}}}+||\bm{z}_{0}||^{2}_{0,\Omega_{i}^{{}^{\prime}}}\}\\ &\leq C||\bm{z}_{h}^{\perp}||_{0}^{2}+C||\bm{z}_{0}||_{0}^{2}\leq C||\bm{z}_{h}^{\perp}||_{0}^{2}.\end{aligned} (4.18)

Combining (4.13), (4.17) and (4.18), we completes the proof of (4.12). Finally, by (4.9), (4.11) and (4.12), we get (4.10), noting that the decomposition (4.3) is also orthogonal under adivโ€‹(โ‹…,โ‹…)a_{{\rm div}}(\cdot,\cdot). โ–ก\Box

5 Conclusions

In this paper, we prove that the estimates of the condition numbers of the overlapping Schwarz methods in ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega) and ๐‘ฏโ€‹(div;ฮฉ)\bm{H}({\rm div};\Omega) are bounded by Cโ€‹(1+Hฮด)C\left(1+\frac{H}{\delta}\right), which is similar as the case in H1โ€‹(ฮฉ)H^{1}(\Omega). We emphasize that the previous bound is Cโ€‹(1+H2ฮด2)C\left(1+\frac{H^{2}}{\delta^{2}}\right). So we close this open problem for overlapping Schwarz methods in ๐‘ฏโ€‹(๐œ๐ฎ๐ซ๐ฅ;ฮฉ)\bm{H}(\bm{{\rm curl}};\Omega) and ๐‘ฏโ€‹(div;ฮฉ)\bm{H}({\rm div};\Omega).

References

  • [1] Chรฉrif Amrouche, Christine Bernardi, Monique Dauge, and Vivette Girault. Vector potentials in three-dimensional non-smooth domains. Mathematical Methods in the Applied Sciences, 21(9):823โ€“864, 1998.
  • [2] Marcella Bonazzoli, Victorita Dolean, Ivan Graham, Euan Spence, and Pierre Tournier. Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption. Mathematics of Computation, 88(320):2559โ€“2604, 2019.
  • [3] James Bramble and Jinchao Xu. Some estimates for a weighted L2L^{2} projection. Mathematics of Computation, 56(194):463โ€“476, 1991.
  • [4] Susanne Brenner. A two-level additive Schwarz preconditioner for nonconforming plate elements. Numerische Mathematik, 72(4):419โ€“447, 1996.
  • [5] Susanne Brenner. Two-level additive Schwarz preconditioners for nonconforming finite element methods. Mathematics of Computation, 65(215):897โ€“921, 1996.
  • [6] Susanne Brenner. Lower bounds for two-level additive Schwarz preconditioners with small overlap. SIAM Journal on Scientific Computing, 21(5):1657โ€“1669, 2000.
  • [7] Maksymilian Dryja and Olaf Widlund. An additive variant of the Schwarz alternating method for the case of many subregions, Technical Report TR-339, also Ultracomputer Note 131, Department of Computer Science, Courant Institute. 1987.
  • [8] Maksymilian Dryja and Olof Widlund. Domain decomposition algorithms with small overlap. SIAM Journal on Scientific Computing, 15(3):604โ€“620, 1994.
  • [9] Vivette Girault and Pierre-Arnaud Raviart. Finite Element Methods for Navier-Stokes Equations, volumeย 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms.
  • [10] Ivan Graham, Euan Spence, and Eero Vainikko. Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption. Mathematics of Computation, 86(307):2089โ€“2127, 2017.
  • [11] Ralf Hiptmair. Finite elements in computational electromagnetism. Acta Numerica, 11:237โ€“339, 2002.
  • [12] Ralf Hiptmair and Andrea Toselli. Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions. In Parallel solution of partial differential equations (Minneapolis, MN, 1997), volume 120 of The IMA Volumes in Mathematics and its Applications, pages 181โ€“208. Springer, New York, 2000.
  • [13] Qigang Liang and Xuejun Xu. A two-level preconditioned Helmholtz-Jacobi-Davidson method for the Maxwell eigenvalue problem. Mathematics of Computation, 91(334):623โ€“657, 2022.
  • [14] Jean-Claude Nรฉdรฉlec. Mixed finite elements in ๐‘3{\bf R}^{3}. Numerische Mathematik, 35(3):315โ€“341, 1980.
  • [15] Jean-Claude Nรฉdรฉlec. A new family of mixed finite elements in ๐‘3{\bf R}^{3}. Numerische Mathematik, 50(1):57โ€“81, 1986.
  • [16] Ridgway Scott and Shangyou Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Mathematics of Computation, 54(190):483โ€“493, 1990.
  • [17] Andrea Toselli. Overlapping Schwarz methods for Maxwellโ€™s equations in three dimensions. Numerische Mathematik, 86(4):733โ€“752, 2000.
  • [18] Andrea Toselli and Olof Widlund. Domain Decomposition Methodsโ€”Algorithms and Theory, volumeย 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.