This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

More than one Author with different Affiliations

Jitendra Pal [email protected] Hemant Rathi [email protected] Arindam Lala [email protected] Department of Physics, Indian Institute of Technology Madras, Chennai 600036 Tamil Nadu, India Institute of Physics, sachivalaya Marg, Bhubaneswar, Odisha 751005, India
&
Homi Bhabha National Institute,Training School Complex, Anushakti Nagar, Mumbai 400085, India
Dibakar Roychowdhury [email protected]

Non-chaotic dynamics for Yang-Baxter deformed AdS4×CP3\text{AdS}_{4}\times\text{CP}^{3} superstrings

Jitendra Pal [email protected] Hemant Rathi [email protected] Arindam Lala [email protected] Department of Physics, Indian Institute of Technology Madras, Chennai 600036 Tamil Nadu, India Institute of Physics, sachivalaya Marg, Bhubaneswar, Odisha 751005, India
&
Homi Bhabha National Institute,Training School Complex, Anushakti Nagar, Mumbai 400085, India
Dibakar Roychowdhury [email protected]
Abstract

We explore a novel class of Yang-Baxter deformed AdS4 ×\times CP3 backgrounds [Jour. High Ener. Phys. 01 (2021) 056] which exhibit a non-chaotic dynamics for (super)strings propagating over it. We explicitly use the Kovacic’s algorithm in order to establish non-chaotic dynamics of string σ\sigma models over these deformed backgrounds. This analysis is complemented with numerical techniques whereby we probe the classical phase space of these (semi)classical strings and calculate various chaos indicators, such as, the Poincaré sections and the Lyapunov exponents. We find compatibility between the two approaches. Nevertheless, our analysis does not ensure integrability; rather, it excludes the possibility of non-integrability for the given string embeddings.

1 Introduction and summary

Understanding the chaotic behaviour [1]-[19] and the associated non-integrable structure in various examples of gauge/gravity correspondence [20]-[21] has been an outstanding problem for past couple of decades. While in most of these cases one encounters a chaotic motion, there have been some handful of examples that confirm non-chaotic behaviour of the embedded super strings and hence rules out the possibility of non-integrable dynamics in the stringy phase space.

Non-chaotic dynamics are therefore always special in holographic dualities. The central idea behind these analyses is to probe the classical phase space configuration of (semi-)classical strings with various chaos indicators. These indicators ensure whether the phase space allows a Kolmogorov–Arnold–Moser (KAM) tori and thereby (quasi-)periodic orbits [1]-[3]. Identification of these orbits in the first place, is the key step towards unveiling an integrable structure associated with the classical phase space.

On the other hand, one can use the notion of Kovacic’s algorithm to analytically check the Liouvillian (non-)integrability criteria for a classical 2d2d sigma model over general backgrounds based on a set of necessary but non sufficient rules [4]-[6]. In this paper, we use both these methods to explore classical (non-)chaotic dynamics of the associated sigma models in the stringy phase space.111It must be emphasized that, parallel to the Kovacic’s algorithm, there exist other approaches to check the (non-)integrability of the sigma models, such as the S-matrix factorization [22, 23, 24, 25].

Following the holographic duality [20]-[21], one can argue that these semi-classical strings are dual to a class of single trace operators in the large NN limit of the dual QFT. This would therefore enable us to conjecture about the integrability of the dual QFT at strong coupling. It must be stressed that, examples of integrable superstring sigma models within the holographic dualities are scarce. In fact, the absence of any systematic procedure to construct Lax pairs for these two-dimensional field theories makes our tasks even more challenging. However, so far there are some handful of examples starting with AdS×5S5{}_{5}\times S^{5} and AdS×4{}_{4}\times CP3 where the classical integrability can be established by means of Lax pair [26]-[30]. On the other hand, it is equally interesting to look for integrable models which are deformations of the original sigma models. Along this line, β\beta-deformations (a marginal deformation) of the 𝒩=4\mathcal{N}=4 super-Yang-Mills (SYM) theory [31], which is dual to the type IIB super-string theory on AdS×5S5{}_{5}\times S^{5}, was studied in [32]-[33]. The deformed model was found to be integrable [33] for real deformation parameters and non-integrable [34] for complex deformation parameters.

The purpose of the present paper is to apply these concepts to a novel class of Yang-Baxter (YB) deformed [35]-[47] backgrounds those were obtained until recently by the authors in [48]-[51]. These are the deformations of the original AdS4 ×\times CP3 background [52] where the deformation is generated through classical rr-matrices satisfying the YB equation. However, unlike the undeformed case [27]-[29], the integrable structures associated with these deformed class of backgrounds are yet to be confirmed through systematic analyses.

Classical rr-matrices satisfying modified classical Yang-Baxter equation (mCYBE) [53, 54] have been applied to symmetric cosets [37] as well as AdS5 ×\times S5S^{5} super-cosets [38]-[40]. For the later case, the type IIB equations were confirmed until recently [43]. On the other hand, Abelian rr-matrices satisfying CYBE were applied to AdS5 ×\times S5S^{5} sigma models in [44] which were further generalized for the non-Abelian case in [55]. For classical rr-matrices satisfying CYBE, the resulting background is found to satisfy type IIB supergravity equations of motion.

Motivated by these AdS5 ×\times S5S^{5} examples, abelian rr-matrices satisfying CYBE have been applied to AdS4 ×\times CP3 sigma models until very recently [48]-[51]. In their construction, the authors consider various YB deformations of the AdS4 subspaces and/or the internal CP3 manifold. These result into a class of deformed ABJM models (as dual descriptions) which we summarise below.

Depending on the type of YB deformations, one eventually generates a class of gravity duals [48]-[51] for (1) β\beta-deformed ABJM, (2) Noncommutative ABJM, (3) Dipole deformed ABJM and (4) Nonrelativistic ABJM. It is worth mentioning that three parameter β\beta-deformed backgrounds can also be obtained following a TsT (T-duality–shift–T-duality) transformation of AdS4 ×\times CP3 [56]. On a similar note, a three parameter dipole deformation as well as gravity duals for noncommutative ABJM were also obtained by applying TsT transformations on AdS4 ×\times CP3 backgrounds [56]. Moreover, the TsT transformation on the AdS4 ×\times CP3 background generating the gravity dual of the nonrelativistic ABJM has also been found in [51]. These guarantee that all these YB deformed backgrounds are string backgrounds in the type IIA supergravity.

In the present paper, we consider (semi)classical string dynamics for each of these deformed backgrounds and calculate their respective chaos indicators, namely, the Poincaré section and the Lyapunov exponent (λ\lambda) [1]-[3]. For an integrable dynamical system that does not show chaos, the 2N2N dimensional phase space consists of NN dimensional hypersurfaces known as KAM tori. In these dynamical systems the equations of motion describe a flow in the phase space which are indeed nicely foliated trajectories. However, in order to make the analysis simpler, a lower dimensional slicing of the KAM tori is chosen. This later hypersurface is known as the Poincaré section. The flow trajectories then continuously cross the Poincaré section. When chaos sets in, the nice shape of the KAM tori is destroyed. On the other hand, the Lyapunov exponent (λ\lambda) is an essential tool to determine the chaotic behaviour of a dynamical system. It is the rate of the exponential separation of initially close trajectories in the phase space of the system with time. When the system is non-chaotic, λ\lambda decays to zero with time. Whereas for a chaotic system, the initial separation between two nearby trajectories grows exponentially. A non-zero positive value of λ\lambda is usually an indication of chaos.

In our analyses, we find no indications of chaotic dynamics of the strings; the shapes of the KAM tori are never distorted and the Lyapunov exponents decay to zero over time. By implementing numerical algorithm, we test these latter results for various possible values of the string energy as well. Our numerical analyses are substantiated by analytical computations. The analytical calculations make use of the Kovacic’s algorithm which determines the Liouvillian (non-)integrability of a homogeneous linear second order ordinary differential equation with polynomial coefficients [4, 5, 6, 18]. It must be stressed that, in our analysis, the Kovacic’s algorithm rules out the possibility of non-integrability. The system is likely to be integrable. However, in our case to ensure the integrability we need to find the appropriate Lax pair which is not the focus of the present article. More details about the analytical and numerical methodologies are provided in Appendices A and B, respectively.

The organization for the rest of the paper is as follows. In Section 2, we present the preliminary requisites to perform our analyses for the rest of the paper. In Section 3, we apply the analytical as well as numerical algorithms to look for indications of chaotic behaviours of the string sigma models for each of the four examples listed above. Finally, we conclude in Section 4. The two Appendices A and B describe the analytical and numerical methods that have been used in our analyses. The additional two Appendices C and D collect several mathematical expressions that appear in the main text of the article.

2 Basic set up

The starting point of our analysis will be the classical 2d2d string sigma model which, in the conformal gauge, can be written as [57]

SP=12dτdσ(ηabGMN+ϵabBMN)aXMbXN,S_{P}=-\frac{1}{2}\int\differential\tau\differential\sigma\left(\eta^{ab}G_{MN}+\epsilon^{ab}B_{MN}\right)\partial_{a}X^{M}\partial_{b}X^{N}\;, (1)

where ηab=diag(1,1)\displaystyle\eta_{ab}=\text{diag}\left(-1,1\right) is the world-sheet metric with world-sheet coordinates (τ,σ)(\tau,\sigma). We choose the following convention for the Levi-Civita symbol: ϵτσ=1\epsilon^{\tau\sigma}=-1. Note that, the above action (1) is the Polyakov action in the presence of non-trivial BB-field.

The conjugate momenta corresponding to the target space coordinates XμX^{\mu} can be computed from the action (1) as

pμ=PX˙μ=GμντXν+BμνσXν.p_{\mu}=\frac{\partial\mathcal{L}_{P}}{\partial\dot{X}^{\mu}}=G_{\mu\nu}\partial_{\tau}X^{\nu}+B_{\mu\nu}\partial_{\sigma}X^{\nu}\,. (2)

The Hamiltonian of the system can be written as

=pμτXμP=12Gμν(τXμτXν+σXμσXν).\mathcal{H}=p_{\mu}\partial_{\tau}X^{\mu}-\mathcal{L}_{P}=\frac{1}{2}G_{\mu\nu}\quantity(\partial_{\tau}X^{\mu}\partial_{\tau}X^{\nu}+\partial_{\sigma}X^{\mu}\partial_{\sigma}X^{\nu})\,. (3)

Note that, the Hamiltonian (3) is indeed equal to the (τ,τ)(\tau,\tau) component TττT_{\tau\tau} of the energy-momentum tensor TabT_{ab} whose general expression can be derived from the action (1) as

Tab=12(GμνaXμbXν12habhcdGμνcXμdXν),T_{ab}=\frac{1}{2}\quantity(G_{\mu\nu}\partial_{a}X^{\mu}\partial_{b}X^{\nu}-\frac{1}{2}h_{ab}h^{cd}G_{\mu\nu}\partial_{c}X^{\mu}\partial_{d}X^{\nu})\,, (4)

where hab=e2ω(τ,σ)ηabh_{ab}=e^{2\omega\quantity(\tau,\sigma)}\eta_{ab} in the conformal gauge [14].

The Virasoro constraints imply that

Tττ=Tσσ=0,Tτσ=Tστ=0.\displaystyle\begin{split}T_{\tau\tau}=T_{\sigma\sigma}&=0\,,\\ T_{\tau\sigma}=T_{\sigma\tau}&=0\,.\end{split} (5)

3 Main results: Analytical and numerical

The purpose of this section is to elaborate on the key analytical as well as numerical steps to check (non-)chaotic dynamics of the string σ\sigma-models within Yang-Baxter (YB) deformed ABJM theories those are in accordance to the algorithms described in Appendices A and B, respectively. Below, we describe them in detail taking individual examples of the YB deformed ABJM model.

3.1 β\beta-deformed ABJM

The Yang-Baxter (YB) deformed background dual to β\beta-deformed ABJM is obtained by deforming the CP3 subspace using Abelian rr-matrices222The form of the rr-matrix that leads to the three-parameter deformed background (6) is chosen as [48] r=γ^1𝐋𝐌3+γ^2𝐋3𝐌3+γ^3𝐋3𝐋,r=\leavevmode\nobreak\ \hat{\gamma}_{1}\mathbf{L}\wedge\mathbf{M}_{3}+\hat{\gamma}_{2}\mathbf{L}_{3}\wedge\mathbf{M}_{3}+\hat{\gamma}_{3}\mathbf{L}_{3}\wedge\mathbf{L}\,, where 𝐋=1/3𝐋8+2/3𝐋15\mathbf{L}=-1/\sqrt{3}\,\mathbf{L}_{8}+\sqrt{2/3}\,\mathbf{L}_{15} and 𝐋3,𝐋8,𝐋15,𝐌3\mathbf{L}_{3}\,,\mathbf{L}_{8}\,,\mathbf{L}_{15}\,,\mathbf{M}_{3} \in 𝔰𝔲(4)𝔰𝔲(2)\mathfrak{su}(4)\oplus\mathfrak{su}(2) are Cartan generators.[48] which results in the following space-time line element

dsR×CP32=14dt2+dξ2+14cos2ξ(dθ12+sin2θ1dφ12)+14sin2ξ(dθ22+sin2θ2dφ22)+cos2ξsin2ξ(dψ+12cosθ1dφ112cosθ2dφ2)2+sin4ξcos4ξsin2θ1sin2θ2(γ^1dφ1+γ^2dφ2+γ^3dψ)2.\displaystyle\begin{split}\differential s_{R\times CP^{3}}^{2}&=-\frac{1}{4}\differential t^{2}+\differential\xi^{2}+\frac{1}{4}\cos^{2}\xi\left(\differential\theta_{1}^{2}+\mathcal{M}\sin^{2}\theta_{1}\differential\varphi_{1}^{2}\right)+\frac{1}{4}\sin^{2}\xi\left(\differential\theta_{2}^{2}+\mathcal{M}\sin^{2}\theta_{2}\differential\varphi_{2}^{2}\right)\\ &+\mathcal{M}\cos^{2}\xi\sin^{2}\xi\left(\differential\psi+\frac{1}{2}\cos\theta_{1}\differential\varphi_{1}-\frac{1}{2}\cos\theta_{2}\differential\varphi_{2}\right)^{2}\\ &+\mathcal{M}\sin^{4}\xi\cos^{4}\xi\sin^{2}\theta_{1}\sin^{2}\theta_{2}\left(\hat{\gamma}_{1}\differential\varphi_{1}+\hat{\gamma}_{2}\differential\varphi_{2}+\hat{\gamma}_{3}d\psi\right)^{2}\,.\end{split} (6)

Notice that, in writing the metric (6) we switch off the remaining coordinates of the AdS4AdS_{4}. Here γ^i\hat{\gamma}_{i} (i=1,2,3i=1,2,3) are the YB deformation parameters.

The corresponding NS-NS 2-form field is given by

B=sin2ξcos2ξ[12(2γ^2+γ^3cosθ2)cos2ξsin2θ1dψdφ1+12(2γ^1+γ^3cosθ1)sin2ξsin2θ2dψdφ2+14(γ^3sin2θ1sin2θ2+(2γ^2+γ^3cosθ2)cos2ξsin2θ1cosθ2+(2γ^1+γ^3cosθ1)sin2ξsin2θ2cosθ1)dφ1dφ2],\displaystyle\begin{split}B&=-\mathcal{M}\sin^{2}\xi\cos^{2}\xi\bigg{[}\frac{1}{2}(2\hat{\gamma}_{2}+\hat{\gamma}_{3}\cos\theta_{2})\cos^{2}\xi\sin^{2}\theta_{1}\differential\psi\wedge\differential\varphi_{1}\\ &+\frac{1}{2}\left(-2\hat{\gamma}_{1}+\hat{\gamma}_{3}\cos\theta_{1}\right)\sin^{2}\xi\sin^{2}\theta_{2}d\psi\wedge d\varphi_{2}+\frac{1}{4}\bigg{(}\hat{\gamma}_{3}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\\ &+(2\hat{\gamma}_{2}+\hat{\gamma}_{3}\cos\theta_{2})\cos^{2}\xi\sin^{2}\theta_{1}\cos\theta_{2}+(-2\hat{\gamma}_{1}+\hat{\gamma}_{3}\cos\theta_{1})\sin^{2}\xi\sin^{2}\theta_{2}\cos\theta_{1}\bigg{)}\differential\varphi_{1}\wedge\differential\varphi_{2}\bigg{]}\,,\end{split} (7)

where

1=1+sin2ξcos2ξ(γ^32sin2θ1sin2θ2+(2γ^2+γ^3cos(θ2))2cos2ξsin2θ1+(2γ^1+γ^3cos(θ1))2sin2ξsin2θ2).\displaystyle\begin{split}\mathcal{M}^{-1}&=\hskip 2.84526pt1+\sin^{2}\xi\cos^{2}\xi\bigg{(}\hat{\gamma}_{3}^{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}+(2\hat{\gamma}_{2}+\hat{\gamma}_{3}\cos{\theta_{2}})^{2}\cos^{2}\xi\sin^{2}\theta_{1}\\ &+(-2\hat{\gamma}_{1}+\hat{\gamma}_{3}\cos{\theta_{1}})^{2}\sin^{2}{\xi}\sin^{2}{\theta_{2}}\bigg{)}\,.\end{split} (8)

Next we consider the winding string ansatz given by

t\displaystyle t =t(τ),\displaystyle=t(\tau)\,, θ1\displaystyle\theta_{1} =θ1(τ),\displaystyle=\theta_{1}(\tau)\,, θ2\displaystyle\theta_{2} =θ2(τ),\displaystyle=\theta_{2}(\tau)\,, ξ\displaystyle\xi =ξ(τ),\displaystyle=\xi(\tau)\,, (9)
ϕ1\displaystyle\phi_{1} =α2σ,\displaystyle=\alpha_{2}\sigma\,, ϕ2\displaystyle\phi_{2} =α4σ,\displaystyle=\alpha_{4}\sigma\,, ψ\displaystyle\psi =α6σ,\displaystyle=\alpha_{6}\sigma\,,

where αi\alpha_{i} (i=2,4,6i=2,4,6) are the winding numbers.

Using the above ansatz (9), the Lagrangian density in the Polyakov action (1) can be written as

LP=12[14t˙2ξ˙214(θ˙12cos2ξ+θ˙22sin2ξ)+ϕ124cos2ξ(sin2θ1+sin2ξcos2θ1+4γ^12sin2θ1sin2θ2sin4ξcos2ξ)+ϕ224sin2ξ(sin2θ2+cos2ξcos2θ2+4γ^22sin2θ1×sin2θ2sin2ξcos4ξ)+ψ2sin2ξcos2ξ(1+γ^32sin2θ1sin2θ2sin2ξcos2ξ)+ϕ1ψsin2ξcos2ξ(cosθ1+2γ^1γ^3sin2θ1sin2θ2sin2ξcos2ξ)ϕ2ψsin2ξcos2ξ(cosθ22γ^2γ^3sin2θ1sin2θ2sin2ξcos2ξ)12ϕ1ϕ2sin2ξcos2ξ(cosθ1cosθ24γ^1γ^2sin2θ1sin2θ2sin2ξcos2ξ)]\displaystyle\begin{split}L_{P}&=\leavevmode\nobreak\ -\frac{1}{2}\Bigg{[}\frac{1}{4}\dot{t}^{2}-\dot{\xi}^{2}-\frac{1}{4}\quantity(\dot{\theta}_{1}^{2}\cos^{2}\xi+\dot{\theta}_{2}^{2}\sin^{2}\xi)+\frac{\mathcal{M}\phi_{1}^{\prime 2}}{4}\cos^{2}\xi\Big{(}\sin^{2}\theta_{1}+\sin^{2}\xi\cos^{2}\theta_{1}\\ &+4\hat{\gamma}_{1}^{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{4}\xi\cos^{2}\xi\Big{)}+\frac{\mathcal{M}\phi_{2}^{\prime 2}}{4}\sin^{2}\xi\Big{(}\sin^{2}\theta_{2}+\cos^{2}\xi\cos^{2}\theta_{2}+4\hat{\gamma}_{2}^{2}\sin^{2}\theta_{1}\\ &\times\sin^{2}\theta_{2}\sin^{2}\xi\cos^{4}\xi\Big{)}+\mathcal{M}\psi^{\prime 2}\sin^{2}\xi\cos^{2}\xi\Big{(}1+\hat{\gamma}_{3}^{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}\xi\cos^{2}\xi\Big{)}\\ &+\mathcal{M}\phi_{1}^{\prime}\psi^{\prime}\sin^{2}\xi\cos^{2}\xi\Big{(}\cos\theta_{1}+2\hat{\gamma}_{1}\hat{\gamma}_{3}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}\xi\cos^{2}\xi\Big{)}\\ &-\mathcal{M}\phi_{2}^{\prime}\psi^{\prime}\sin^{2}\xi\cos^{2}\xi\Big{(}\cos\theta_{2}-2\hat{\gamma}_{2}\hat{\gamma}_{3}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}\xi\cos^{2}\xi\Big{)}\\ &-\frac{1}{2}\mathcal{M}\phi_{1}^{\prime}\phi_{2}^{\prime}\sin^{2}\xi\cos^{2}\xi\Big{(}\cos\theta_{1}\cos\theta_{2}-4\hat{\gamma}_{1}\hat{\gamma}_{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}\xi\cos^{2}\xi\Big{)}\Bigg{]}\end{split} (10a)
=12[14t˙2ξ˙214(θ˙12cos2ξ+θ˙22sin2ξ)+α224cos2ξ(sin2θ1+sin2ξcos2θ1+4γ^12sin2θ1sin2θ2sin4ξcos2ξ)+α424sin2ξ(sin2θ2+cos2ξcos2θ2+4γ^22sin2θ1×sin2θ2sin2ξcos4ξ)+α62sin2ξcos2ξ(1+γ^32sin2θ1sin2θ2sin2ξcos2ξ)+α2α6sin2ξcos2ξ(cosθ1+2γ^1γ^3sin2θ1sin2θ2sin2ξcos2ξ)α4α6sin2ξcos2ξ(cosθ22γ^2γ^3sin2θ1sin2θ2sin2ξcos2ξ)12α2α4sin2ξcos2ξ(cosθ1cosθ24γ^1γ^2sin2θ1sin2θ2sin2ξcos2ξ)].\displaystyle\begin{split}&=\leavevmode\nobreak\ -\frac{1}{2}\Bigg{[}\frac{1}{4}\dot{t}^{2}-\dot{\xi}^{2}-\frac{1}{4}\quantity(\dot{\theta}_{1}^{2}\cos^{2}\xi+\dot{\theta}_{2}^{2}\sin^{2}\xi)+\frac{\mathcal{M}\alpha_{2}^{2}}{4}\cos^{2}\xi\Big{(}\sin^{2}\theta_{1}+\sin^{2}\xi\cos^{2}\theta_{1}\\ &+4\hat{\gamma}_{1}^{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{4}\xi\cos^{2}\xi\Big{)}+\frac{\mathcal{M}\alpha_{4}^{2}}{4}\sin^{2}\xi\Big{(}\sin^{2}\theta_{2}+\cos^{2}\xi\cos^{2}\theta_{2}+4\hat{\gamma}_{2}^{2}\sin^{2}\theta_{1}\\ &\times\sin^{2}\theta_{2}\sin^{2}\xi\cos^{4}\xi\Big{)}+\mathcal{M}\alpha_{6}^{2}\sin^{2}\xi\cos^{2}\xi\Big{(}1+\hat{\gamma}_{3}^{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}\xi\cos^{2}\xi\Big{)}\\ &+\mathcal{M}\alpha_{2}\alpha_{6}\sin^{2}\xi\cos^{2}\xi\Big{(}\cos\theta_{1}+2\hat{\gamma}_{1}\hat{\gamma}_{3}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}\xi\cos^{2}\xi\Big{)}\\ &-\mathcal{M}\alpha_{4}\alpha_{6}\sin^{2}\xi\cos^{2}\xi\Big{(}\cos\theta_{2}-2\hat{\gamma}_{2}\hat{\gamma}_{3}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}\xi\cos^{2}\xi\Big{)}\\ &-\frac{1}{2}\mathcal{M}\alpha_{2}\alpha_{4}\sin^{2}\xi\cos^{2}\xi\Big{(}\cos\theta_{1}\cos\theta_{2}-4\hat{\gamma}_{1}\hat{\gamma}_{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}\xi\cos^{2}\xi\Big{)}\Bigg{]}\,.\end{split} (10b)

3.1.1 Analytical results

We begin our analysis by first finding the equations of motion (eom) corresponding to the non-isometry directions θ1\theta_{1}, θ2\theta_{2} and ξ\xi from the Lagrangian density (10b). The results may formally be written as

8θ¨1cos2ξ8θ˙1ξ˙sin2ξθ1Tθ1(1)+Tθ1(2)=0,\displaystyle\begin{split}8\ddot{\theta}_{1}\,\cos^{2}\xi-8\dot{\theta}_{1}\dot{\xi}\,\sin 2\xi-\partial_{\theta_{1}}\mathcal{M}\cdot T^{(1)}_{\theta_{1}}+\mathcal{M}\cdot T^{(2)}_{\theta_{1}}&=0\,,\end{split} (11a)
8θ¨2sin2ξ+8θ˙2ξ˙sin2ξθ2Tθ2(1)Tθ2(2)=0,\displaystyle\begin{split}8\ddot{\theta}_{2}\,\sin^{2}\xi+8\dot{\theta}_{2}\dot{\xi}\,\sin 2\xi-\partial_{\theta_{2}}\mathcal{M}\cdot T^{(1)}_{\theta_{2}}-\mathcal{M}\cdot T^{(2)}_{\theta_{2}}&=0\,,\end{split} (11b)
32ξ¨4sin2ξ(θ˙22θ˙12)ξTξ(1)Tξ(2)=0,\displaystyle\begin{split}32\ddot{\xi}-4\sin 2\xi\quantity(\dot{\theta}_{2}^{2}-\dot{\theta}_{1}^{2})-\partial_{\xi}\mathcal{M}\cdot T^{(1)}_{\xi}-\mathcal{M}\cdot T^{(2)}_{\xi}&=0\,,\end{split} (11c)

where

θ1=22sin2ξcos2ξsinθ1(cosθ1cos2ξ(4γ^22+γ^32+4γ^2γ^3cosθ2)+2γ^1γ^3sin2θ2sin2ξ),\displaystyle\begin{split}\partial_{\theta_{1}}\mathcal{M}&=-2\mathcal{M}^{2}\sin^{2}\xi\cos^{2}\xi\sin\theta_{1}\Big{(}\cos\theta_{1}\cos^{2}\xi\quantity(4\hat{\gamma}_{2}^{2}+\hat{\gamma}_{3}^{2}+4\hat{\gamma}_{2}\hat{\gamma}_{3}\cos\theta_{2})\\ &\quad+2\hat{\gamma}_{1}\hat{\gamma}_{3}\sin^{2}\theta_{2}\sin^{2}\xi\Big{)}\,,\end{split} (12a)
θ2=22sin2ξcos2ξsinθ2(cosθ2sin2ξ(4γ^12+γ^324γ^1γ^3cosθ1)2γ^2γ^3sin2θ1cos2ξ),\displaystyle\begin{split}\partial_{\theta_{2}}\mathcal{M}&=-2\mathcal{M}^{2}\sin^{2}\xi\cos^{2}\xi\sin\theta_{2}\Big{(}\cos\theta_{2}\sin^{2}\xi\quantity(4\hat{\gamma}_{1}^{2}+\hat{\gamma}_{3}^{2}-4\hat{\gamma}_{1}\hat{\gamma}_{3}\cos\theta_{1})\\ &\quad-2\hat{\gamma}_{2}\hat{\gamma}_{3}\sin^{2}\theta_{1}\cos^{2}\xi\Big{)}\,,\end{split} (12b)
ξ=2sin2ξ[(2γ^2+γ^3cosθ2)cos4ξsin2θ1+γ^3cos2ξ{2(4γ^1+γ^3cosθ1)×cosθ1sin2θ2sin2ξ+sin2θ1(γ^3sin2θ22cosθ2(4γ^2+γ^3cosθ2)sin2ξ)}sin2θ1(2γ^22sin22ξ+γ^32sin2ξsin2θ2)+sin2θ2(2γ^12sin22ξsin4ξ(2γ^1+γ^3cosθ1)2)].\displaystyle\begin{split}\partial_{\xi}\mathcal{M}&=-\mathcal{M}^{2}\sin 2\xi\Big{[}\quantity(2\hat{\gamma}_{2}+\hat{\gamma}_{3}\cos\theta_{2})\cos^{4}\xi\sin^{2}\theta_{1}+\hat{\gamma}_{3}\cos^{2}\xi\Big{\{}2\quantity(-4\hat{\gamma}_{1}+\hat{\gamma}_{3}\cos\theta_{1})\\ &\quad\times\cos\theta_{1}\sin^{2}\theta_{2}\sin^{2}\xi+\sin^{2}\theta_{1}\quantity(\hat{\gamma}_{3}\sin^{2}\theta_{2}-2\cos\theta_{2}\quantity(4\hat{\gamma}_{2}+\hat{\gamma}_{3}\cos\theta_{2})\sin^{2}\xi)\Big{\}}\\ &\quad-\sin^{2}\theta_{1}\quantity(2\hat{\gamma}_{2}^{2}\sin^{2}2\xi+\hat{\gamma}_{3}^{2}\sin^{2}\xi\sin^{2}\theta_{2})\\ &\quad+\sin^{2}\theta_{2}\quantity(2\hat{\gamma}_{1}^{2}\sin^{2}2\xi-\sin^{4}\xi\quantity(-2\hat{\gamma}_{1}+\hat{\gamma}_{3}\cos\theta_{1})^{2})\Big{]}\,.\end{split} (12c)

The detailed expressions for the coefficients Ti(j)T^{(j)}_{i} (j=1,2j=1,2, i=θ1,θ2,ξi=\theta_{1},\theta_{2},\xi) that appear in the above eqs.(11a)-(11c) are provided in the Appendix C.

In the next step, we use (10a) to calculate the conjugate momenta333Here we use the standard definition of the conjugate momenta as Pq=LP/qi˙P_{q}=\partial L_{P}/\partial\dot{q_{i}}, where qiq_{i} are the canonical coordinates. associated with the isometry coordinates as

ELPt˙=t˙4,PΦiLPΦ˙i=0,E\equiv\partialderivative{L_{P}}{\dot{t}}=-\frac{\dot{t}}{4}\,,\qquad P_{\Phi_{i}}\equiv\partialderivative{L_{P}}{\dot{\Phi}_{i}}=0\,, (13)

where Φi={ϕ1,ϕ2,ψ}\Phi_{i}=\{\phi_{1},\phi_{2},\psi\}.

From (13) it is clear that the requirement of the conservation of the momenta, JiJ_{i},444Here we define the charge as Ji=12πα02πdσPi,J_{i}=\frac{1}{2\pi\alpha^{\prime}}\int_{0}^{2\pi}\differential\sigma P_{i}\,, (14) where PiP_{i} are the conjugate momenta. given as

τJi=0,\partial_{\tau}J_{i}=0\,, (15)

is trivially satisfied. Moreover, the conservation of energy (τE=0\partial_{\tau}E=0) requires us to choose the gauge t=τt=\tau.

In addition, using (3), (9) and the eoms (11) it is easy to check that555This is an easy but lengthy calculation. Here we avoid writing this very long expression in order to avoid cluttering. the Hamiltonian of the system is indeed conserved on-shell, namely

τTττ=0,\partial_{\tau}T_{\tau\tau}=0\,, (16)

which satisfies the consistency requirement of the Virasoro constraints. On the other hand, using (4) and (9) we observe that the non-diagonal component of the energy-momentum tensor (TτσT_{\tau\sigma}) is also conserved trivially, namely τTτσ=0\displaystyle\partial_{\tau}T_{\tau\sigma}=0.

The dynamics of the string is described by the eoms (11a)-(11c). In order to study the string configuration methodically, we first choose the θ2\theta_{2} invariant plane in the phase space given by

θ20,Πθ2:=θ˙2=0.\theta_{2}\sim 0\,,\qquad\quad\Pi_{\theta_{2}}:=\dot{\theta}_{2}=0\,. (17)

Notice that, the above choice (17) trivially satisfies the θ2\theta_{2} eom (11b). On the other hand, the remaining two eoms (11b) and (11c) become

8θ¨1cos2ξ8θ˙1ξ˙sin2ξθ1~Tθ1(1)~+~Tθ1(2)~=0,\displaystyle\begin{split}8\ddot{\theta}_{1}\,\cos^{2}\xi-8\dot{\theta}_{1}\dot{\xi}\,\sin 2\xi-\widetilde{\partial_{\theta_{1}}\mathcal{M}}\cdot\widetilde{T^{(1)}_{\theta_{1}}}+\widetilde{\mathcal{M}}\cdot\widetilde{T^{(2)}_{\theta_{1}}}&=0\,,\end{split} (18a)
32ξ¨+4sin2ξθ˙12ξ~Tξ(1)~~Tξ(2)~=0,\displaystyle\begin{split}32\ddot{\xi}+4\sin 2\xi\dot{\theta}_{1}^{2}-\widetilde{\partial_{\xi}\mathcal{M}}\cdot\widetilde{T^{(1)}_{\xi}}-\widetilde{\mathcal{M}}\cdot\widetilde{T^{(2)}_{\xi}}&=0\,,\end{split} (18b)

where

~=(1+(2γ^2+γ^3)2sin2θ1sin2ξcos4ξ)1,\displaystyle\begin{split}\widetilde{\mathcal{M}}&=\quantity(1+\quantity(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\sin^{2}\theta_{1}\sin^{2}\xi\cos^{4}\xi)^{-1}\,,\end{split} (19a)
θ1~=(2γ^2+γ^3)2sin2ξcos4ξsin2θ1(1+(2γ^2+γ^3)2sin2θ1sin2ξcos4ξ)2,\displaystyle\begin{split}\widetilde{\partial_{\theta_{1}}\mathcal{M}}&=-\frac{\quantity(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\sin^{2}\xi\cos^{4}\xi\sin 2\theta_{1}}{\quantity(1+\quantity(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\sin^{2}\theta_{1}\sin^{2}\xi\cos^{4}\xi)^{2}}\,,\end{split} (19b)
ξ~=(2γ^2+γ^3)2(1+3cos2ξ)sinξcos3ξsin2θ1(1+(2γ^2+γ^3)2sin2θ1sin2ξcos4ξ)2,\displaystyle\begin{split}\widetilde{\partial_{\xi}\mathcal{M}}&=-\frac{\quantity(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\quantity(-1+3\cos 2\xi)\sin\xi\cos^{3}\xi\sin^{2}\theta_{1}}{\quantity(1+\quantity(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\sin^{2}\theta_{1}\sin^{2}\xi\cos^{4}\xi)^{2}}\,,\end{split} (19c)
Tθ1(1)~=4cos2ξ[α22sin2θ1+α62sin2ξ+sin2ξ((α4α2cosθ1)2+4α6(α2cosθ1α4))],\displaystyle\begin{split}\widetilde{T^{(1)}_{\theta_{1}}}&=-4\cos^{2}\xi\Big{[}\alpha_{2}^{2}\sin^{2}\theta_{1}+\alpha_{6}^{2}\sin^{2}\xi+\sin^{2}\xi\Big{(}\quantity(\alpha_{4}-\alpha_{2}\cos\theta_{1})^{2}\\ &\quad+4\alpha_{6}\quantity(\alpha_{2}\cos\theta_{1}-\alpha_{4})\Big{)}\Big{]}\,,\end{split} (19d)
Tθ1(2)~=α22sin2θ1(4cos2ξsin22ξ)+2α2sin22ξsinθ1(α42α6),\displaystyle\begin{split}\widetilde{T^{(2)}_{\theta_{1}}}&=\alpha_{2}^{2}\sin 2\theta_{1}\quantity(4\cos^{2}\xi-\sin^{2}2\xi)+2\alpha_{2}\sin^{2}2\xi\sin\theta_{1}\quantity(\alpha_{4}-2\alpha_{6})\,,\end{split} (19e)
Tξ(1)~=4sin2ξcos2ξ(α22cos2θ1+2α2α4cosθ1α424α2α6cosθ1+4α4α6)4(α22sin2θ1cos2ξ+α62sin22ξ),\displaystyle\begin{split}\widetilde{T^{(1)}_{\xi}}&=4\sin^{2}\xi\cos^{2}\xi\quantity(-\alpha_{2}^{2}\cos^{2}\theta_{1}+2\alpha_{2}\alpha_{4}\cos\theta_{1}-\alpha_{4}^{2}-4\alpha_{2}\alpha_{6}\cos\theta_{1}+4\alpha_{4}\alpha_{6})\\ &\quad-4\quantity(\alpha_{2}^{2}\sin^{2}\theta_{1}\cos^{2}\xi+\alpha_{6}^{2}\sin^{2}2\xi)\,,\end{split} (19f)
Tξ(2)~=2[α22(sin4ξcos2θ12sin2θ1sin2ξ)+sin4ξ(2α2cosθ1(2α6α4)+(α42α6)2)].\displaystyle\begin{split}\widetilde{T^{(2)}_{\xi}}&=-2\Big{[}\alpha_{2}^{2}\quantity(\sin 4\xi\cos^{2}\theta_{1}-2\sin^{2}\theta_{1}\sin 2\xi)+\sin 4\xi\Big{(}2\alpha_{2}\cos\theta_{1}\quantity(2\alpha_{6}-\alpha_{4})+\quantity(\alpha_{4}-2\alpha_{6})^{2}\Big{)}\Big{]}\,.\end{split} (19g)

In the next step, in order to utilize the Kovacic’s algorithm to the string configuration in the reduced phase-space described by (18a) and (18b), we make the choice

θ10,Πθ1θ˙10.\displaystyle\theta_{1}\sim 0\,,\qquad\Pi_{\theta_{1}}\equiv\dot{\theta}_{1}\sim 0\,. (20)

Eq.(20) indeed satisfies (18a), and the remaining eom (18b) can be recast in the form

ξ¨+𝒜BDsin4ξ=0,\ddot{\xi}+\mathcal{A}_{\text{BD}}\sin 4\xi=0\,, (21)

where

𝒜BD=116[α22+2α2(2α6α4)+(α42α6)2].\mathcal{A}_{\text{BD}}=\frac{1}{16}\quantity[\alpha_{2}^{2}+2\alpha_{2}\quantity(2\alpha_{6}-\alpha_{4})+\quantity(\alpha_{4}-2\alpha_{6})^{2}]\,. (22)

In order to proceed farther, we consider infinitesimal fluctuation (η\eta) around the θ1\theta_{1} invariant plane in the phase space. Considering terms only upto (η)\order{\eta}, we may re-express (18a) as

8η¨cos2ξ¯8ξ¯˙sin2ξ¯η˙+(8α2cos2ξ¯(α2cos2ξ¯+α4(α42α6)sin2ξ¯)8(2γ^2+γ^3)2sin4ξ¯cos6ξ¯(4α62+(α2α4)2+4α6(α2α4)))η=0,\displaystyle\begin{split}&8\ddot{\eta}\cos^{2}\bar{\xi}-8\dot{\bar{\xi}}\sin 2\bar{\xi}\,\dot{\eta}+\Big{(}8\alpha_{2}\cos^{2}\bar{\xi}\quantity(\alpha_{2}\cos^{2}\bar{\xi}+\alpha_{4}\quantity(\alpha_{4}-2\alpha_{6})\sin^{2}\bar{\xi})\\ &\quad-8\quantity(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\sin^{4}\bar{\xi}\cos^{6}\bar{\xi}\quantity(4\alpha_{6}^{2}+\quantity(\alpha_{2}-\alpha_{4})^{2}+4\alpha_{6}\quantity(\alpha_{2}-\alpha_{4}))\Big{)}\eta=0\,,\end{split} (23)

where ξ¯\bar{\xi} is the solution to (21).

In order to study (23), we make the change in variable as

cosξ¯=z.\cos\bar{\xi}=z\,. (24)

Using (24) we can convert (23) to a second order linear homogeneous differential equation, known as the Lamé equation [7], as

η′′(z)+B(z)η(z)+A(z)η(z)=0,\eta^{\prime\prime}(z)+B(z)\eta^{\prime}(z)+A(z)\eta(z)=0\,, (25)

where

B(z)=f(z)2f(z)+2z,\displaystyle\begin{split}B(z)&=\frac{f^{\prime}(z)}{2f(z)}+\frac{2}{z}\,,\end{split} (26a)
f(z)=ξ¯˙2sin2ξ¯=(E+𝒜BD2(8z48z2+1))(1z2),\displaystyle\begin{split}f(z)&=\dot{\bar{\xi}}^{2}\sin^{2}\bar{\xi}=\quantity(E+\frac{\mathcal{A}_{\text{BD}}}{2}\quantity(8z^{4}-8z^{2}+1))\quantity(1-z^{2})\,,\end{split} (26b)
A(z)=(α2(α2z2+(α42α6)(1z2))(2γ2+γ3)2(4α62+(α2α4)(α2α4+4α6))z4(1z2)2)1f(z).\displaystyle\begin{split}A(z)&=\leavevmode\nobreak\ \Big{(}\alpha_{2}\quantity(\alpha_{2}z^{2}+\quantity(\alpha_{4}-2\alpha_{6})\quantity(1-z^{2}))\\ &\leavevmode\nobreak\ -\quantity(2\gamma_{2}+\gamma_{3})^{2}\quantity(4\alpha_{6}^{2}+\quantity(\alpha_{2}-\alpha_{4})\quantity(\alpha_{2}-\alpha_{4}+4\alpha_{6}))z^{4}\quantity(1-z^{2})^{2}\Big{)}\cdot\frac{1}{f(z)}\,.\end{split} (26c)

In our subsequent analysis we choose the string energy E=1E=1 in (26b).

We can farther express (25) in the Schrödinger form (A3) by using the change in variable (A2). The result may formally be written as

ω(z)+ω2(z)=2B(z)+B2(z)4A(z)4𝒱BD(z),\omega^{\prime}(z)+\omega^{2}(z)=\frac{2B^{\prime}(z)+B^{2}(z)-4A(z)}{4}\equiv\mathcal{V}_{\text{BD}}(z)\,, (27)

where the potential is given by

𝒱BD={8α2(z21)(α2z2(z21)(α22α6)z2(z21)2(α2α4+2α6)2(2γ^2+γ^3)2)×(2+(18z2+8z4)𝒜BD)+z2(4+6z2+(2+27z264z4+40z6)𝒜BD)2[2z2{4(23z2+3z4)+4(215z2+11z4+4z6)𝒜BD+(227z2+211z4632z6+1024z8896z10+320z12)𝒜BD}]}×14(z21)2((8z48z2+1)𝒜BD+2)2.\displaystyle\begin{split}\mathcal{V}_{\text{BD}}&=\leavevmode\nobreak\ \Bigg{\{}8\alpha_{2}\quantity(z^{2}-1)\Big{(}\alpha_{2}z^{2}-\quantity(z^{2}-1)\quantity(\alpha_{2}-2\alpha_{6})-z^{2}\quantity(z^{2}-1)^{2}\quantity(\alpha_{2}-\alpha_{4}+2\alpha_{6})^{2}\quantity(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\Big{)}\\ &\leavevmode\nobreak\ \times\Big{(}2+\quantity(1-8z^{2}+8z^{4})\mathcal{A}_{\text{BD}}\Big{)}+z^{-2}\Big{(}-4+6z^{2}+\quantity(-2+27z^{2}-64z^{4}+40z^{6})\mathcal{A}_{\text{BD}}\Big{)}^{2}\\ &\leavevmode\nobreak\ -\Bigg{[}2z^{-2}\Big{\{}4\quantity(2-3z^{2}+3z^{4})+4\quantity(2-15z^{2}+11z^{4}+4z^{6})\mathcal{A}_{\text{BD}}\\ &\leavevmode\nobreak\ +\quantity(2-27z^{2}+211z^{4}-632z^{6}+1024z^{8}-896z^{10}+320z^{12})\mathcal{A}_{\text{BD}}\Big{\}}\Bigg{]}\Bigg{\}}\\ &\leavevmode\nobreak\ \times\frac{1}{4\left(z^{2}-1\right)^{2}\Big{(}\left(8z^{4}-8z^{2}+1\right)\mathcal{A}_{\text{BD}}+2\Big{)}^{2}}\,.\end{split} (28)

In order to find the solution to (27), we first notice that the value of ξ\xi cannot be zero since this implies that one of the two-spheres in the CP3CP^{3} space in (6) vanishes. This restricts our analysis to a particular subspace of the CP3CP^{3} space. However, since we want to take into consideration the entire metric space, we exclude this possibility. Hence, 0|z|<10\leq|z|<1. This argument allows us to expand the potential 𝒱BD\mathcal{V}_{\text{BD}} in zz. In the leading order in zz, (27) is found to have the form

ω(z)+ω2(z)=C~1.\omega^{\prime}(z)+\omega^{2}(z)=\widetilde{C}_{1}\,. (29)

where

C~1=4α2α48α2α6+27𝒜BD+62𝒜BD+4.\widetilde{C}_{1}=\leavevmode\nobreak\ -\frac{4\alpha_{2}\alpha_{4}-8\alpha_{2}\alpha_{6}+27\mathcal{A}_{\text{BD}}+6}{2\mathcal{A}_{\text{BD}}+4}\,. (30)

The solution to (29) is found to be

ω(z)=C~1tanh[C~1(z+𝖢1)],\omega(z)=\sqrt{\widetilde{C}_{1}}\leavevmode\nobreak\ \tanh[\sqrt{\widetilde{C}_{1}}\leavevmode\nobreak\ \quantity(z+\mathsf{C}_{1})\Big{]}\,, (31)

where 𝖢1\mathsf{C}_{1} is an arbitrary integration constant.

Now from (28) we observe that the potential has poles of order 22 at the following values of zz:

z=±1,z=±1222𝒜BD(𝒜BD2)𝒜BD,z=±122+2𝒜BD(𝒜BD2)𝒜BD.z=\pm 1\,,\quad z=\pm\frac{1}{2}\sqrt{2-\frac{\sqrt{2}\sqrt{\mathcal{A}_{\text{BD}}\quantity(\mathcal{A}_{\text{BD}}-2)}}{\mathcal{A}_{\text{BD}}}}\,,\quad z=\pm\frac{1}{2}\sqrt{2+\frac{\sqrt{2}\sqrt{\mathcal{A}_{\text{BD}}\quantity(\mathcal{A}_{\text{BD}}-2)}}{\mathcal{A}_{\text{BD}}}}\,. (32)

On the other hand, from (28) the order at infinity of 𝒱BD\mathcal{V}_{\text{BD}} is found to be 22. Thus 𝒱BD\mathcal{V}_{\text{BD}} satisfies the condition Cd.(iii)(iii) of the Kovacic’s classification discussed in Appendix A. On top of that, for small values of zz the solution (31) is indeed a polynomial of degree 11. This matches one of the integrability criteria as put forward by the Kovacic’s algorithm discussed in Appendix A.

In order to support our analytic result, below we numerically check the non-chaotic dynamics of the propagating string.

3.1.2 Numerical results

In our numerical analysis, we use the ansatz (9) together with the choice αi=1\alpha_{i}=1 (i=2,4,6i=2,4,6) of the winding numbers. The resulting Hamilton’s equations of motion can be written as

θ˙1=4pθ1sec2ξ,\displaystyle\begin{split}\dot{\theta}_{1}=&4p_{\theta_{1}}\sec^{2}\xi\,,\end{split} (33a)
ξ˙=pξ,\displaystyle\begin{split}\dot{\xi}=&p_{\xi}\,,\end{split} (33b)
θ˙1=cos2ξsinθ1(4cosθ1cos2ξ+4sin2ξ+(2γ^2+γ^3)2cos4(θ1/2)sin4(2ξ))16(1+(2γ^2+γ^3)2cos4ξsin2θ1sin2ξ)2\displaystyle\begin{split}\dot{\theta}_{1}=&\frac{\cos^{2}\xi\sin\theta_{1}\Big{(}-4\cos\theta_{1}\cos^{2}\xi+4\sin^{2}\xi+(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\cos^{4}{(\theta_{1}/2)}\sin^{4}(2\xi)\Big{)}}{16\Big{(}1+(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\cos^{4}\xi\sin^{2}\theta_{1}\sin^{2}\xi\Big{)}^{2}}\end{split} (33c)
pξ˙=𝒩1128(1+(2γ^2+γ^3)2cos4ξsin2θ1sin2ξ)2\displaystyle\begin{split}\dot{p_{\xi}}=&\frac{\mathcal{N}_{1}}{128\Big{(}1+(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\cos^{4}\xi\sin^{2}\theta_{1}\sin^{2}\xi\Big{)}^{2}}\end{split} (33d)

where

𝒩1=\displaystyle\mathcal{N}_{1}= 16(2γ^2+γ^3)2cos5ξ(1+3cos(2ξ))sin2θ1sin3ξ+32(2γ^2+γ^3)2cosθ1cos5ξ(1+\displaystyle\hskip 2.84526pt16(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\cos^{5}\xi(-1+3\cos(2\xi))\sin^{2}\theta_{1}\sin^{3}\xi+32(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\cos\theta_{1}\cos^{5}\xi(-1+
3cos(2ξ))sin2θ1sin3ξ+(2γ^2+γ^3)2cos5ξ(6+2cos(2θ1)+cos(2θ12ξ)+\displaystyle 3\cos(2\xi))\sin^{2}\theta_{1}\sin^{3}\xi+(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\cos^{5}\xi(-6+2\cos(2\theta_{1})+\cos(2\theta_{1}-2\xi)+
2cos(2ξ)+cos(2θ1+2ξ))sin2θ1(5sinξ3sin(3ξ))8(1+(2γ^2+γ^3)2cos4ξ×\displaystyle 2\cos(2\xi)+\cos(2\theta_{1}+2\xi))\sin^{2}\theta_{1}(5\sin\xi-3\sin(3\xi))-8(1+(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\cos^{4}\xi\times
sin2θ1sin2ξ)sin(4ξ)16cosθ1(1+(2γ^2+γ^3)2cos4ξsin2θ1sin2ξ)sin(4ξ)\displaystyle\sin^{2}\theta_{1}\sin^{2}\xi)\sin(4\xi)-16\cos\theta_{1}(1+(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\cos^{4}\xi\sin^{2}\theta_{1}\sin^{2}\xi)\sin(4\xi)
+4(1+(2γ^2+γ^3)2cos4ξsin2θ1sin2ξ)(4sin2θ1sin(2ξ)2cos2θ1sin(4ξ))\displaystyle+4(1+(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\cos^{4}\xi\sin^{2}\theta_{1}\sin^{2}\xi)(4\sin^{2}\theta_{1}\sin(2\xi)-2\cos^{2}\theta_{1}\sin(4\xi))
512pθ12sec2ξ(1+(2γ^2+γ^3)2cos4ξsin2θ1sin2ξ)2tan(ξ).\displaystyle-512p^{2}_{\theta_{1}}\sec^{2}\xi(1+(2\hat{\gamma}_{2}+\hat{\gamma}_{3})^{2}\cos^{4}\xi\sin^{2}\theta_{1}\sin^{2}\xi)^{2}\tan{\xi}. (34)

It must be stressed that, in writing the Hamilton’s eoms (33), we set θ2=pθ2=0\theta_{2}=p_{\theta_{2}}=0.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Numerical plots of the Poincaré sections (Left column) and Lyapunov exponents (Right column) for β\beta-deformed ABJM. Here we set the energy of the string E0=0.01E_{0}=0.01. The top plots are for γ^2=γ^3=0.01\hat{\gamma}_{2}=\hat{\gamma}_{3}=0.01 and the bottom plots are for γ^2=γ^3=0.8\hat{\gamma}_{2}=\hat{\gamma}_{3}=0.8. The Poincaré sections are nicely foliated KAM tori and the Lyapunov exponent decays to zero for large time tt, indicating non-chaotic dynamics of the string.

In order to obtain the corresponding Poincaré sections, we solve the Hamiltonian’s eoms (33a)-(33d) subjected to the constraints (3) and (B2). These are plotted in the left column of fig.1. The energy of the string is fixed at some particular value E=E0=0.01E=E_{0}=0.01, whereas the values of the YB deformation parameters are set as γ^2=γ^3=0.01, 0.8\hat{\gamma}_{2}=\hat{\gamma}_{3}=0.01,\leavevmode\nobreak\ 0.8. In addition, we choose the initial conditions as θ1(0)=0\theta_{1}(0)=0 and pξ(0)=0p_{\xi}(0)=0. Given this initial set of data, we generate a random data set for an interval ξ(0)[0,1]\xi(0)\in[0,1] which fixes the corresponding pθ1(0)p_{\theta_{1}}(0) in accordance with that of the constraint (3).

It is important to note that the other deformation parameter γ^1\hat{\gamma}_{1} disappears from the numerical simulation since we switch off the {θ2,pθ2}\quantity{\theta_{2},p_{\theta_{2}}} variables in the phase space. This is also visible form the Hamilton’s eoms (33a)-(33d), which do not depend on the choice of γ^1\hat{\gamma}_{1}.

We plot all these points on the {ξ,pξ}\{\xi,p_{\xi}\} plane every time the trajectories pass through θ1=0\theta_{1}=0 hyper-plane. For the present example, the phase space under consideration is four dimensional, namely it is characterized by the coordinates {θ1,pθ1,ξ,pξ}\{\theta_{1},p_{\theta_{1}},\xi,p_{\xi}\}. Poincare sections in this case show regular patches indicating a foliation in the phase space (cf. left column of fig.1).

In order to calculate the Lyapunonv exponent (λ\lambda), we choose to work with the initial conditions E=E0=0.01E=E_{0}=0.01 together with {θ1(0)=0,ξ(0)=0.008,pθ1(0)=0.009,pξ(0)=0}\{\theta_{1}(0)=0,\xi(0)=0.008,p_{\theta_{1}}(0)=0.009,p_{\xi}(0)=0\} which are consistent with (3). When γ^2=γ^3=0.8\hat{\gamma}_{2}=\hat{\gamma}_{3}=0.8, the initial conditions are set to be {θ1(0)=0,ξ(0)=0.013,pθ1(0)=0.007,pξ(0)=0}\{\theta_{1}(0)=0,\xi(0)=0.013,p_{\theta_{1}}(0)=0.007,p_{\xi}(0)=0\} while we keep the energy to be fixed at E=E0=0.01E=E_{0}=0.01. With this initial set of data, we study the dynamical evolution of two nearby orbits in the phase space those have an initial separation ΔX0=107\Delta X_{0}=10^{-7} (cf. (B1) ). In the process, we generate a zero Lyapunov exponent at large tt as shown in the right column of fig.1. This observation indeed exhibits a non-chaotic dynamics of the super string in the phase space. Moreover, we also verified the above conclusion by permitting higher values of the string energy as shown in Fig.2 below.

Refer to caption
Refer to caption
Figure 2: Additional plots of the Poincaré sections for β\beta-deformed ABJM. On the left plot we set 𝐄𝟎=𝟏\mathbf{E_{0}=1}, γ^2=γ^3=0.5\hat{\gamma}_{2}=\hat{\gamma}_{3}=0.5. The plot on right corresponds to 𝐄𝟎=0.5\mathbf{E_{0}=0.5}, γ^2=γ^3=0.1\hat{\gamma}_{2}=\hat{\gamma}_{3}=0.1.

3.2 Noncommutative ABJM

Noncommutative ABJM corresponds to a gravity dual that is obtained by applying YB deformation to its AdS4 subspace. The corresponding Abelian rr-matrix is constructed using the momenta operators along AdS4 666The form of the rr-matrix is taken to be r=μ𝐩1𝐩2,r=\leavevmode\nobreak\ \mu\,\mathbf{p}_{1}\wedge\mathbf{p}_{2}\,, where 𝐩1\mathbf{p}_{1} and 𝐩2\mathbf{p}_{2} are the momentum operators along the x1x_{1} and x2x_{2} directions, respectively. The BB-field (36) results in the noncommutativity [x1,x2]μ\displaystyle\left[x_{1},x_{2}\right]\sim\mu in the x1x2x_{1}-x_{2} plane [49]. . The resulting space-time metric is given by [49]

ds2=14(r2(dt2+(dx12+dx22))+dr2r2)+dsCP32,dsCP32=dξ2+14cos2ξ(dθ12+sin2θ1dϕ12)+14sin2ξ(dθ22+sin2θ2dϕ22)+(12cos(θ1)dϕ112cos(θ2)dϕ2+dψ)2sin2ξcos2ξ,\displaystyle\begin{split}\differential s^{2}=&\hskip 2.84526pt\frac{1}{4}\left(r^{2}\left(-dt^{2}+\mathcal{M}\left(dx_{1}^{2}+dx_{2}^{2}\right)\right)+\frac{dr^{2}}{r^{2}}\right)+ds_{CP^{3}}^{2}\,,\\[7.0pt] \differential s^{2}_{CP^{3}}=&\hskip 2.84526pt\mathrm{d}\xi^{2}+\frac{1}{4}\cos^{2}{\xi}(\mathrm{d}\theta_{1}^{2}+\sin^{2}{\theta_{1}}\mathrm{d}\phi_{1}^{2})+\frac{1}{4}\sin^{2}{\xi}(\mathrm{d}\theta_{2}^{2}+\sin^{2}{\theta_{2}}\mathrm{d}\phi_{2}^{2})\\ &+\bigg{(}\frac{1}{2}\cos{\theta_{1}}\mathrm{d}\phi_{1}-\frac{1}{2}\cos{\theta_{2}}\mathrm{d}\phi_{2}+\mathrm{d}\psi\bigg{)}^{2}\sin^{2}{\xi}\cos^{2}{\xi}\,,\end{split} (35)

which is accompanied by a NS-NS two form

B=μr44dx1dx2,1=1+μ2r44,\displaystyle B=\frac{\mu\mathcal{M}r^{4}}{4}dx^{1}\wedge dx^{2},\hskip 5.69054pt\mathcal{M}^{-1}=1+\frac{\mu^{2}r^{4}}{4}\,, (36)

where tt, x1x_{1}, x2x_{2} and rr are the coordinates of AdS4AdS_{4} background and μ\mu is the YB deformation parameter. We set r=1r=1 for the rest of our analysis.

In the next step, we consider the winding string ansatz of the form

t=\displaystyle t= t(τ),θ1=θ1(τ),θ2=θ2(τ),ξ=ξ(τ),ϕ1=α2σ,ϕ2=α4σ,\displaystyle\hskip 2.84526ptt(\tau),\quad\theta_{1}=\theta_{1}(\tau),\quad\theta_{2}=\theta_{2}(\tau),\quad\xi=\xi(\tau),\quad\phi_{1}=\alpha_{2}\sigma,\quad\phi_{2}=\alpha_{4}\sigma,
ψ=\displaystyle\psi= α6σ,x1=α8σ,x2=α10σ,\displaystyle\hskip 2.84526pt\alpha_{6}\sigma,\quad x_{1}=\alpha_{8}\sigma,\quad x_{2}=\alpha_{10}\sigma\,, (37)

where αi\alpha_{i} (i=2,4,6,8,10i=2,4,6,8,10) are the winding numbers. Notice that, with the above ansatz (3.2) the contribution of the BB-field in the Polyakov action (1) vanishes.

In the next step, using (35) and (3.2), the Polyakov action (1) can be expressed as777Notice that, the information of the deformation parameter (μ\mu) is encoded in \mathcal{M} ((36)) which in turn modifies the Hamiltonian (3).

LP=12[14t˙2ξ˙214θ˙12cos2ξ14θ˙22sin2ξ+4(x12+x22)+ϕ124cos2ξ(sin2θ1+cos2θ1sin2ξ)+ϕ224sin2ξ(sin2θ2+cos2θ2cos2ξ)+sin2ξcos2ξ{ψ2+ϕ1ψcosθ1ϕ2ψcosθ212ϕ1ϕ2cosθ1cosθ2}]\displaystyle\begin{split}L_{P}&=\leavevmode\nobreak\ -\frac{1}{2}\left[\frac{1}{4}\dot{t}^{2}-\dot{\xi}^{2}-\frac{1}{4}\dot{\theta}_{1}^{2}\,\cos^{2}\xi-\frac{1}{4}\dot{\theta}_{2}^{2}\,\sin^{2}\xi+\frac{\mathcal{M}}{4}\quantity(x_{1}^{\prime 2}+x_{2}^{\prime 2})\right.\\[5.0pt] &\quad\left.+\frac{\phi_{1}^{\prime 2}}{4}\cos^{2}\xi\quantity(\sin^{2}\theta_{1}+\cos^{2}\theta_{1}\sin^{2}\xi)+\frac{\phi_{2}^{\prime 2}}{4}\sin^{2}\xi\quantity(\sin^{2}\theta_{2}+\cos^{2}\theta_{2}\cos^{2}\xi)\right.\\[5.0pt] &\quad\left.+\sin^{2}\xi\cos^{2}\xi\Big{\{}\psi^{\prime 2}+\phi_{1}^{\prime}\psi^{\prime}\cos\theta_{1}-\phi_{2}^{\prime}\psi^{\prime}\cos\theta_{2}-\frac{1}{2}\phi_{1}^{\prime}\phi_{2}^{\prime}\cos\theta_{1}\cos\theta_{2}\Big{\}}\right]\end{split} (38a)
=12[14t˙2ξ˙214θ˙12cos2ξ14θ˙22sin2ξ+4(α82+α102)+α224cos2ξ(sin2θ1+cos2θ1sin2ξ)+α424sin2ξ(sin2θ2+cos2θ2cos2ξ)+sin2ξcos2ξ{α62+α2α6cosθ1α4α6cosθ212α2α4cosθ1cosθ2}].\displaystyle\begin{split}&=\leavevmode\nobreak\ -\frac{1}{2}\left[\frac{1}{4}\dot{t}^{2}-\dot{\xi}^{2}-\frac{1}{4}\dot{\theta}_{1}^{2}\,\cos^{2}\xi-\frac{1}{4}\dot{\theta}_{2}^{2}\,\sin^{2}\xi+\frac{\mathcal{M}}{4}\quantity(\alpha_{8}^{2}+\alpha_{10}^{2})\right.\\[5.0pt] &\quad\left.+\frac{\alpha_{2}^{2}}{4}\cos^{2}\xi\quantity(\sin^{2}\theta_{1}+\cos^{2}\theta_{1}\sin^{2}\xi)+\frac{\alpha_{4}^{2}}{4}\sin^{2}\xi\quantity(\sin^{2}\theta_{2}+\cos^{2}\theta_{2}\cos^{2}\xi)\right.\\[5.0pt] &\quad\left.+\sin^{2}\xi\cos^{2}\xi\Big{\{}\alpha_{6}^{2}+\alpha_{2}\alpha_{6}\cos\theta_{1}-\alpha_{4}\alpha_{6}\cos\theta_{2}-\frac{1}{2}\alpha_{2}\alpha_{4}\cos\theta_{1}\cos\theta_{2}\Big{\}}\right]\;.\end{split} (38b)

3.2.1 Analytical results

The equations of motion corresponding to the non-isometry coordinates θ1\theta_{1}, θ2\theta_{2} and ξ\xi can be computed from (38b) as

θ¨12tanξξ˙θ˙1+α2sinθ1(α2cos2ξcosθ1+(α4cosθ22α6)sin2ξ)=0,\displaystyle\begin{split}&\ddot{\theta}_{1}-2\tan\xi\,\dot{\xi}\dot{\theta}_{1}+\alpha_{2}\sin\theta_{1}\Big{(}\alpha_{2}\cos^{2}\xi\cos\theta_{1}+\quantity(\alpha_{4}\cos\theta_{2}-2\alpha_{6})\sin^{2}\xi\Big{)}=0\,,\end{split} (39a)
θ¨2+2cotξξ˙θ˙2+α4sinθ2(α4sin2ξcosθ2+(α2cosθ1+2α6)cos2ξ)=0,\displaystyle\begin{split}&\ddot{\theta}_{2}+2\cot\xi\,\dot{\xi}\dot{\theta}_{2}+\alpha_{4}\sin\theta_{2}\Big{(}\alpha_{4}\sin^{2}\xi\cos\theta_{2}+\quantity(\alpha_{2}\cos\theta_{1}+2\alpha_{6})\cos^{2}\xi\Big{)}=0\,,\end{split} (39b)
8ξ¨+sin2ξ(θ˙12θ˙22)+2α62sin4ξ2α4α6cosθ2sin4ξα2cosθ1sin4ξ(α4cosθ22α6)+α22(sin2θ1sin2ξ+12cos2θ1sin4ξ)+α42(sin2θ2sin2ξ+12cos2θ2sin4ξ)=0.\displaystyle\begin{split}&8\ddot{\xi}+\sin 2\xi\quantity(\dot{\theta}_{1}^{2}-\dot{\theta}_{2}^{2})+2\alpha_{6}^{2}\sin 4\xi-2\alpha_{4}\alpha_{6}\cos\theta_{2}\sin 4\xi\\ &-\alpha_{2}\cos\theta_{1}\sin 4\xi\quantity(\alpha_{4}\cos\theta_{2}-2\alpha_{6})+\alpha_{2}^{2}\quantity(-\sin^{2}\theta_{1}\sin 2\xi+\frac{1}{2}\cos^{2}\theta_{1}\sin 4\xi)\\ &+\alpha_{4}^{2}\quantity(\sin^{2}\theta_{2}\sin 2\xi+\frac{1}{2}\cos^{2}\theta_{2}\sin 4\xi)=0\,.\end{split} (39c)

The conjugate momenta corresponding to the coordinates {t,Φi}\{t,\Phi_{i}\} with (i=ϕ1,ϕ2,ψ,x1,x2)(i=\phi_{1},\phi_{2},\psi,x_{1},x_{2}) can be computed as

ELPt˙=t˙4,PΦiLPΦi˙=0.E\equiv\frac{\partial L_{P}}{\partial\dot{t}}=-\frac{\dot{t}}{4}\,,\qquad P_{\Phi_{i}}\equiv\frac{\partial L_{P}}{\partial\dot{\Phi_{i}}}=0\,. (40)

Using (14) it is trivial to check that the corresponding charges are indeed conserved.

τE=0(in t=τ gauge),τPΦi=0.\partial_{\tau}E=0\,\quad(\text{in $t=\tau$ gauge})\,,\qquad\partial_{\tau}P_{\Phi_{i}}=0\,. (41)

Next, following the same line of arguments as in the previous Section 3.1.1 (cf. eq.(16)), we may easily verify that the energy-momentum tensor satisfies the Virasoro consistency conditions

τTττ= 0,on-shell,τTτσ= 0,trivially.\displaystyle\begin{split}\partial_{\tau}T_{\tau\tau}&=\leavevmode\nobreak\ 0\,,\quad\text{on-shell}\,,\\[5.0pt] \partial_{\tau}T_{\tau\sigma}&=\leavevmode\nobreak\ 0\,,\quad\text{trivially}\,.\end{split} (42)

The string configuration is described by the three equations of motion (39a)-(39c). In order to study this configuration systematically, we choose the following invariant plane in the phase space:

θ2\displaystyle\theta_{2} 0,\displaystyle\sim 0\,, Πθ2\displaystyle\Pi_{\theta_{2}} θ˙20.\displaystyle\equiv\dot{\theta}_{2}\sim 0\,. (43)

Notice that, the choice (43) automatically satisfies the θ2\theta_{2} eom (39b). The eoms corresponding to θ1\theta_{1} and ξ\xi then reduce to

θ¨12ξ˙θ˙1tanξ+α2sinθ1[α2cosθ1cos2ξ+sin2ξ(α42α6)]=0,\displaystyle\begin{split}&\ddot{\theta}_{1}-2\dot{\xi}\dot{\theta}_{1}\tan\xi+\alpha_{2}\sin\theta_{1}\quantity[\alpha_{2}\cos\theta_{1}\cos^{2}\xi+\sin^{2}\xi\quantity(\alpha_{4}-2\alpha_{6})]=0\,,\end{split} (44a)
8ξ¨+sin2ξθ˙12+sin4ξ[2α62+α4222α4α6α2cosθ1(α42α6)]+α22[sin2θ1sin2ξ+12sin4ξcos2θ1]=0.\displaystyle\begin{split}&8\ddot{\xi}+\sin 2\xi\,\dot{\theta}_{1}^{2}+\sin 4\xi\Big{[}2\alpha_{6}^{2}+\frac{\alpha_{4}^{2}}{2}-2\alpha_{4}\alpha_{6}-\alpha_{2}\cos\theta_{1}\quantity(\alpha_{4}-2\alpha_{6})\Big{]}\\ &\qquad\qquad+\alpha_{2}^{2}\Big{[}-\sin^{2}\theta_{1}\sin 2\xi+\frac{1}{2}\sin 4\xi\cos^{2}\theta_{1}\Big{]}=0\,.\end{split} (44b)

In the next step, in order to utilize the Kovacic’s algorithm to the string configuration in the reduced phase-space described by (44a) and (44b), we make the choice

θ1\displaystyle\theta_{1} 0,\displaystyle\sim 0\,, Πθ1\displaystyle\Pi_{\theta_{1}} θ˙10.\displaystyle\equiv\dot{\theta}_{1}\sim 0\,. (45)

This choice satisfies (44a) trivially, and we are left with the following eom:

ξ¨+𝒜NCsin4ξ=0,\ddot{\xi}+\mathcal{A}_{\text{NC}}\sin 4\xi=0\,, (46)

where

𝒜NC=18[2α6(α6α4)α2(α42α6)+12(α22+α42)].\mathcal{A}_{\text{NC}}=\frac{1}{8}\quantity[2\alpha_{6}\quantity(\alpha_{6}-\alpha_{4})-\alpha_{2}\quantity(\alpha_{4}-2\alpha_{6})+\frac{1}{2}\quantity(\alpha_{2}^{2}+\alpha_{4}^{2})]\,. (47)

We now consider small fluctuations (η\eta) around the invariant plane θ1\theta_{1}. This results the normal variational equation (NVE) of the form

η¨2ξ¯˙tanξ¯η˙+α2[α2cos2ξ¯+(α42α6)sin2ξ¯]η=0,\ddot{\eta}-2\dot{\bar{\xi}}\tan\bar{\xi}\;\dot{\eta}+\alpha_{2}\quantity[\alpha_{2}\cos^{2}\bar{\xi}+\quantity(\alpha_{4}-2\alpha_{6})\sin^{2}\bar{\xi}\,]\eta=0\,, (48)

where ξ¯\bar{\xi} is the solution to (46).

In order to study the NVE (48), we introduce the variable zz such that

cosξ¯=z.\cos\bar{\xi}=z\,. (49)

With (49) we may recast the NVE (48) as

η′′(z)+(f(z)2f(z)+2z)η(z)+α2f(z)(α2z2+(α42α6)(1z2))η(z)=0,\displaystyle\begin{split}\eta^{\prime\prime}(z)+\quantity(\frac{f^{\prime}(z)}{2f(z)}+\frac{2}{z})\eta^{\prime}(z)+\frac{\alpha_{2}}{f(z)}\Big{(}\alpha_{2}z^{2}+\quantity(\alpha_{4}-2\alpha_{6})\quantity(1-z^{2})\Big{)}\eta(z)=0\,,\end{split} (50)

where

f(z)=ξ¯˙2sin2ξ¯=(E+𝒜NC2(8z48z2+1))(1z2),f(z)=\dot{\bar{\xi}}^{2}\sin^{2}\bar{\xi}=\quantity(E+\frac{\mathcal{A}_{\text{NC}}}{2}\quantity(8z^{4}-8z^{2}+1))\quantity(1-z^{2})\,, (51)

EE being the constant of integration equal to the energy of the string. We set E=1E=1 in our analysis.

Next, we convert (50) into the Schrödinger form by using (A2). The resulting equation can be written as

ω(z)+ω2(z)=2B(z)+B2(z)4A(z)4𝒱NC(z),\omega^{\prime}(z)+\omega^{2}(z)=\frac{2B^{\prime}(z)+B^{2}(z)-4A(z)}{4}\equiv\mathcal{V}_{\text{NC}}(z)\,, (52)

where 𝒱NC(z)\mathcal{V}_{\text{NC}}(z) is the Schrödinger potential and

A(z)=α2f(z)(α2z2+(α42α6)(1z2)),\displaystyle\begin{split}A(z)&=\frac{\alpha_{2}}{f(z)}\Big{(}\alpha_{2}z^{2}+\quantity(\alpha_{4}-2\alpha_{6})\quantity(1-z^{2})\Big{)}\,,\end{split} (53a)
B(z)=(f(z)2f(z)+2z).\displaystyle\begin{split}B(z)&=\quantity(\frac{f^{\prime}(z)}{2f(z)}+\frac{2}{z})\,.\end{split} (53b)

The Schrödinger potential 𝒱NC(z)\mathcal{V}_{\text{NC}}(z) can be written as

𝒱NC=𝒩NC𝒟NC,\mathcal{V}_{\text{NC}}=\frac{\mathcal{N}_{\text{NC}}}{\mathcal{D}_{\text{NC}}}\,, (54)

where

𝒩NC=12(z22)+𝒜NC2[54+536z2+16z4(147+263z2208z4+60z6)]+4𝒜NC[30+187z2280z4+120z6+2α2(1+9z216z4+8z6)+16α2(z21)(z2α2(z21)α42α6)],\displaystyle\begin{split}\mathcal{N}_{\text{NC}}&=12\quantity(z^{2}-2)+\mathcal{A}^{2}_{\text{NC}}\Big{[}-54+536z^{2}+16z^{4}\quantity(-147+263z^{2}-208z^{4}+60z^{6})\Big{]}\\ &\qquad+4\mathcal{A}_{\text{NC}}\Big{[}-30+187z^{2}-280z^{4}+120z^{6}+2\alpha_{2}\quantity(-1+9z^{2}-16z^{4}+8z^{6})\\ &\qquad\quad\quad\quad+16\alpha_{2}\quantity(z^{2}-1)\quantity(z^{2}\alpha_{2}-\quantity(z^{2}-1)\alpha_{4}-2\alpha_{6})\Big{]}\,,\end{split} (55a)
𝒟NC=4(1z2)2(2+(18z2+8z4)𝒜NC)2.\displaystyle\begin{split}\mathcal{D}_{\text{NC}}&=4\quantity(1-z^{2})^{2}\quantity(2+\quantity(1-8z^{2}+8z^{4})\mathcal{A}_{\text{NC}})^{2}\,.\end{split} (55b)

In order to find the solution to (52), we now expand the potential 𝒱NC\mathcal{V}_{\text{NC}} for small values of zz following the same argument that was presented in the previous section 3.1. The resulting ω(z)\omega(z) equation may be written as

ω(z)+ω2(z)C~2,\displaystyle\begin{split}&\leavevmode\nobreak\ \omega^{\prime}(z)+\omega^{2}(z)\simeq\widetilde{C}_{2}\,,\end{split} (56a)
C~2=6+27𝒜NC+4α2(α42α6)2(2+𝒜NC).\displaystyle\begin{split}&\leavevmode\nobreak\ \widetilde{C}_{2}=\leavevmode\nobreak\ -\frac{6+27\mathcal{A}_{\text{NC}}+4\alpha_{2}\quantity(\alpha_{4}-2\alpha_{6})}{2\quantity(2+\mathcal{A}_{\text{NC}})}\,.\end{split}

whose solution may be expressed as

ω(z)=C~2tanh[C~2(z+𝖢2)],\omega(z)=\sqrt{\widetilde{C}_{2}}\leavevmode\nobreak\ \tanh[\sqrt{\widetilde{C}_{2}}\leavevmode\nobreak\ \quantity(z+\mathsf{C}_{2})\Big{]}\,, (57)

where 𝖢2\mathsf{C}_{2} is an arbitrary constant.

Now the Schrödinger potential 𝒱NC\mathcal{V}_{\text{NC}} given by (54) has poles of order 22 at

z=±1,z=±1222𝒜NC(𝒜NC2)𝒜NC,z=±122+2𝒜NC(𝒜NC2)𝒜NC.z=\pm 1\,,\quad z=\pm\frac{1}{2}\sqrt{2-\frac{\sqrt{2}\sqrt{\mathcal{A}_{\text{NC}}\quantity(\mathcal{A}_{\text{NC}}-2)}}{\mathcal{A}_{\text{NC}}}}\,,\quad z=\pm\frac{1}{2}\sqrt{2+\frac{\sqrt{2}\sqrt{\mathcal{A}_{\text{NC}}\quantity(\mathcal{A}_{\text{NC}}-2)}}{\mathcal{A}_{\text{NC}}}}\,. (58)

On the other hand, the order at infinity of 𝒱NC\mathcal{V}_{\text{NC}} is determined to be 22. These satisfy the criterion Cd.(iii)(iii) of the Kovacic’s algorithm as discussed in Appendix A. Also, for small zz the solution (57) is indeed a polynomial of degree 11. These information together ensure the analytic integrability of the system.

3.2.2 Numerical results

In order to numerically study the integrability of the string configuration, we use the ansatz (3.2) together with the choice αi=1\alpha_{i}=1 of the winding numbers.

The resulting Hamilton’s equations of motion are obtained as

θ1˙=4pθ1sec2ξ,\displaystyle\begin{split}\dot{\theta_{1}}=&\hskip 2.84526pt4p_{\theta_{1}}\sec^{2}\xi\,,\end{split} (59a)
ξ˙=pξ,\displaystyle\begin{split}\dot{\xi}=&\hskip 2.84526ptp_{\xi}\,,\end{split} (59b)
pθ1˙=12cos2ξsinθ1(sin2ξcosθ1cos2ξ),\displaystyle\begin{split}\dot{p_{\theta_{1}}}=&\hskip 2.84526pt\frac{1}{2}\cos^{2}\xi\sin\theta_{1}\quantity(\sin^{2}\xi-\cos\theta_{1}\cos^{2}\xi)\,,\end{split} (59c)
pξ˙=12(cosξsin2θ1sinξcos4θ12sin4ξ8pθ12sec2ξtanξ),\displaystyle\begin{split}\dot{p_{\xi}}=&\hskip 2.84526pt\frac{1}{2}\quantity(\cos\xi\sin^{2}\theta_{1}\sin\xi-\cos^{4}\frac{\theta_{{}_{1}}}{2}\sin 4\xi-8p^{2}_{\theta_{1}}\sec^{2}\xi\tan\xi)\,,\end{split} (59d)

where we set θ2=pθ2=0\theta_{2}=p_{\theta_{2}}=0 in the rest of our analysis.

For numerical simulation, we set the following values of the Yang-Baxter deformation parameter: μ=0.01\mu=0.01, 0.80.8.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Numerical plots of the Poincaré sections (Left column) and Lyapunov exponents (Right column) for non-commutative ABJM. Here we set the energy of the string E0=0.4E_{0}=0.4. The top plots are for μ=0.01\mu=0.01 while the bottom plots are for μ=0.8\mu=0.8. The Poincaré sections are nicely foliated KAM tori in the phase space and the Lyapunov exponent decays to zero for large time tt, indicating non-chaotic dynamics of the string.

Fig.3 shows the corresponding Poincaré sections when the energy of the string is E=E0=0.4E=E_{0}=0.4. Note that, we take the initial condition as θ1(0)=0\theta_{1}(0)=0, pξ(0)=0p_{\xi}(0)=0. We generate a random data set by choosing ξ(0)[0,1]\xi(0)\in[0,1] which fixes the initial momenta pθ1(0)p_{\theta_{1}}(0) following the Hamiltonian constraints (3) and (B2). The {ξ,pξ}\quantity{\xi,p_{\xi}} cross-section is obtained by collecting the data every time the trajectory passes through the θ1=0\theta_{1}=0 plane.

In order to plot the Lyapunov exponent (λ\lambda) (fig.3), we set the initial conditions as {θ1(0)=0,ξ(0)=0.11,pθ1(0)=0.17,pξ(0)=0}\{\theta_{1}(0)=0,\xi(0)=0.11,p_{\theta_{1}}(0)=0.17,p_{\xi}(0)=0\} together with ΔX0=107\Delta X_{0}=10^{-7} in (B1). For μ=0.8\mu=0.8 the initial conditions are changed to {θ1(0)=0,ξ(0)=0.11,pθ1(0)=0.22,pξ(0)=0}\quantity{\theta_{1}(0)=0,\xi(0)=0.11,p_{\theta_{1}}(0)=0.22,p_{\xi}(0)=0}. The energy of these orbits are fixed at E=E0=0.4E=E_{0}=0.4 such that, when put together, they satisfy the Hamiltonian constraints (3) and (B2). In the process, we finally generate a vanishing Lyapunov exponent at large time (tt) exhibiting a non-chaotic motion. The validity of the above conclusions is further checked by plotting the Poincaré section for other values of the string energy, as shown in Fig.4.

Refer to caption
Refer to caption
Figure 4: Additional plots of the Poincaré sections for non-commutative ABJM. On the left plot we set 𝐄𝟎=𝟏\mathbf{E_{0}=1} and μ= 0.5\mu=\leavevmode\nobreak\ 0.5 whereas, the plot on the right corresponds to 𝐄𝟎=0.45\mathbf{E_{0}=0.45}, μ= 0.1\mu=\leavevmode\nobreak\ 0.1.

3.3 Dipole deformed ABJM

Gravity dual of dipole deformed ABJM is obtained by considering a three parameter YB deformation of AdS4 ×\times CP3. The associated rr-matrix is constructed combining the generators of both the AdS4 and CP3 subspaces888The rr-matrix can be written as r=𝐩2(μ1𝐋3+μ2𝐋+μ3𝐌3),r=\leavevmode\nobreak\ \mathbf{p}_{2}\wedge\quantity(\mu_{1}\mathbf{L}_{3}+\mu_{2}\mathbf{L}+\mu_{3}\mathbf{M}_{3})\,, where 𝐋=1/3𝐋8+2/3𝐋15\mathbf{L}=-1/\sqrt{3}\,\mathbf{L}_{8}+\sqrt{2/3}\,\mathbf{L}_{15} and 𝐋3,𝐋8,𝐋15,𝐌3\mathbf{L}_{3}\,,\mathbf{L}_{8}\,,\mathbf{L}_{15}\,,\mathbf{M}_{3} \in 𝔰𝔲(4)𝔰𝔲(2)\mathfrak{su}(4)\oplus\mathfrak{su}(2) are Cartan generators. Here μ1\mu_{1}, μ2\mu_{2} and μ3\mu_{3} are deformation parameters in the theory [49]. For this particular choice of the rr-matrix, the deformation is along the x2x_{2} direction in the AdS4 and along the angular direction (φ1,φ2,ψ)\quantity(\varphi_{1},\varphi_{2},\psi) in CP3.. The corresponding line element is given by [49]

ds2=14(r2(dx02+dx12)+r21+f32dx22+dr2r2)+dξ2+14cos2ξ(dθ12+sin2θ1dφ12)+14sin2ξ(dθ22+sin2θ2dφ22)+11+f32(12cosθ1dφ112cosθ2dφ2+dψ)2sin2ξcos2ξ,\displaystyle\begin{split}\differential s^{2}=&\leavevmode\nobreak\ \frac{1}{4}\left(r^{2}\left(-\differential x_{0}^{2}+\differential x_{1}^{2}\right)+\frac{r^{2}}{1+f_{3}^{2}}\differential x_{2}^{2}+\frac{\differential r^{2}}{r^{2}}\right)+\differential\xi^{2}\\ &+\frac{1}{4}\cos^{2}\xi\left(\differential\theta_{1}^{2}+\sin^{2}\theta_{1}\differential\varphi_{1}^{2}\right)+\frac{1}{4}\sin^{2}\xi\left(\differential\theta_{2}^{2}+\sin^{2}\theta_{2}\differential\varphi_{2}^{2}\right)\\ &+\frac{1}{1+f_{3}^{2}}\left(\frac{1}{2}\cos\theta_{1}\differential\varphi_{1}-\frac{1}{2}\cos\theta_{2}\differential\varphi_{2}+\differential\psi\right)^{2}\sin^{2}\xi\cos^{2}\xi\,,\end{split} (60)

together with the NS-NS fluxes

B=14(f31+f32)rdx2(12cosθ1dφ112cosθ2dφ2+dψ)sinξcosξ,f3=μr2sin(2ξ).\displaystyle\begin{split}B=&-\frac{1}{4}\left(\frac{f_{3}}{1+f_{3}^{2}}\right)r\differential x_{2}\wedge\left(\frac{1}{2}\cos\theta_{1}\differential\varphi_{1}-\frac{1}{2}\cos\theta_{2}\differential\varphi_{2}+\differential\psi\right)\sin\xi\cos\xi\,,\\ f_{3}=&\frac{\mu r}{2}\sin(2\xi)\,.\end{split} (61)

We also set the Yang-Baxter deformation parameters as μ1=μ2=0,μ3=μ\mu_{1}=\mu_{2}=0,\mu_{3}=\mu. Here, {r,x0,x1,x2}\{r,x_{0},x_{1},x_{2}\} are the AdS4AdS_{4} coordinates. On the other hand, {ξ,θ1,θ2,φ1,φ2,ψ}\{\xi,\theta_{1},\theta_{2},\varphi_{1},\varphi_{2},\psi\} are the coordinates of internal CP3CP^{3} manifold. In the following analysis, we choose x0=tx_{0}=t,x1=x_{1}= constant and r=1r=1.

In our analysis, we choose to work with the winding string ansatz of the form

t=\displaystyle t= t(τ),θ1=θ1(τ),θ2=θ2(τ),ξ=ξ(τ),φ1=α2σ,\displaystyle t(\tau),\quad\theta_{1}=\theta_{1}(\tau),\quad\theta_{2}=\theta_{2}(\tau),\quad\xi=\xi(\tau),\quad\varphi_{1}=\alpha_{2}\sigma,\quad
φ2=\displaystyle\varphi_{2}= β2σ,ψ=γ2σ,x2=η2σ,\displaystyle\beta_{2}\sigma,\quad\psi=\gamma_{2}\sigma,\quad x_{2}=\eta_{2}\sigma\,, (62)

where α2\alpha_{2}, β2\beta_{2}, γ2\gamma_{2} and η2\eta_{2} are the string winding numbers.

Using the above ansatz (3.3) we may write the Lagrangian in the action (1) as

LP=12[14t˙2ξ˙214θ˙12cos2ξ14θ˙22sin2ξ+x224(1+f32)+ϕ12cos2ξ4×(sin2θ1+sin2ξcos2θ11+f32)+ϕ22sin2ξ4(sin2θ2+cos2ξcos2θ21+f32)+sin2ξcos2ξ1+f32(ψ212ϕ1ϕ2cosθ1cosθ2+ϕ1ψcosθ1ϕ2ψcosθ2)]\displaystyle\begin{split}L_{P}&=\leavevmode\nobreak\ -\frac{1}{2}\Bigg{[}\frac{1}{4}\dot{t}^{2}-\dot{\xi}^{2}-\frac{1}{4}\dot{\theta}_{1}^{2}\cos^{2}\xi-\frac{1}{4}\dot{\theta}_{2}^{2}\sin^{2}\xi+\frac{x_{2}^{\prime 2}}{4\quantity(1+f_{3}^{2})}+\frac{\phi_{1}^{\prime 2}\cos^{2}\xi}{4}\\ &\quad\times\quantity(\sin^{2}\theta_{1}+\frac{\sin^{2}\xi\cos^{2}\theta_{1}}{1+f_{3}^{2}})+\frac{\phi_{2}^{\prime 2}\sin^{2}\xi}{4}\quantity(\sin^{2}\theta_{2}+\frac{\cos^{2}\xi\cos^{2}\theta_{2}}{1+f_{3}^{2}})\\ &\quad+\frac{\sin^{2}\xi\cos^{2}\xi}{1+f_{3}^{2}}\Big{(}\psi^{\prime 2}-\frac{1}{2}\phi_{1}^{\prime}\phi_{2}^{\prime}\cos\theta_{1}\cos\theta_{2}+\phi_{1}^{\prime}\psi^{\prime}\cos\theta_{1}-\phi_{2}^{\prime}\psi^{\prime}\cos\theta_{2}\Big{)}\Bigg{]}\end{split} (63a)
=12[14t˙2ξ˙214θ˙12cos2ξ14θ˙22sin2ξ+η224(1+f32)+α22cos2ξ4×(sin2θ1+sin2ξcos2θ11+f32)+β22sin2ξ4(sin2θ2+cos2ξcos2θ21+f32)+sin2ξcos2ξ1+f32(γ2212α2β2cosθ1cosθ2+α2γ2cosθ1β2γ2cosθ2)].\displaystyle\begin{split}&=-\frac{1}{2}\Bigg{[}\frac{1}{4}\dot{t}^{2}-\dot{\xi}^{2}-\frac{1}{4}\dot{\theta}_{1}^{2}\cos^{2}\xi-\frac{1}{4}\dot{\theta}_{2}^{2}\sin^{2}\xi+\frac{\eta_{2}^{2}}{4\quantity(1+f_{3}^{2})}+\frac{\alpha_{2}^{2}\cos^{2}\xi}{4}\\ &\quad\times\quantity(\sin^{2}\theta_{1}+\frac{\sin^{2}\xi\cos^{2}\theta_{1}}{1+f_{3}^{2}})+\frac{\beta_{2}^{2}\sin^{2}\xi}{4}\quantity(\sin^{2}\theta_{2}+\frac{\cos^{2}\xi\cos^{2}\theta_{2}}{1+f_{3}^{2}})\\ &\quad+\frac{\sin^{2}\xi\cos^{2}\xi}{1+f_{3}^{2}}\Big{(}\gamma_{2}^{2}-\frac{1}{2}\alpha_{2}\beta_{2}\cos\theta_{1}\cos\theta_{2}+\alpha_{2}\gamma_{2}\cos\theta_{1}-\beta_{2}\gamma_{2}\cos\theta_{2}\Big{)}\Bigg{]}\,.\end{split} (63b)

3.3.1 Analytical results

The eoms resulting from the variations of θ1\theta_{1}, θ2\theta_{2} and ξ\xi in (63b) can be computed as999It is interesting to note that the order of the YB deformation parameter that appear in the eoms is indeed (μ2)\order{\mu^{2}} and no term of (μ)\order{\mu} appears in the eoms. This is because the BB field does not contribute to the eoms due to the choice of the ansatz (3.3).

0= 4(1+μ24sin22ξ)(cosξθ¨12sinξξ˙θ˙1)4α2cosξsin2ξ(2γ2β2cosθ2)sinθ1+2α22(1+μ2sin2ξ)cos3ξsin2θ1,\displaystyle\begin{split}0=&\leavevmode\nobreak\ 4\quantity(1+\frac{\mu^{2}}{4}\sin^{2}2\xi)\quantity(\cos\xi\,\ddot{\theta}_{1}-2\sin\xi\,\dot{\xi}\,\dot{\theta}_{1})-4\alpha_{2}\cos\xi\sin^{2}\xi\quantity(2\gamma_{2}-\beta_{2}\cos\theta_{2})\sin\theta_{1}\\ &\leavevmode\nobreak\ +2\alpha_{2}^{2}\quantity(1+\mu^{2}\sin^{2}\xi)\cos^{3}\xi\sin 2\theta_{1}\,,\end{split} (64a)
0= 2(1+μ24sin22ξ)(sinξθ¨22cosξξ˙θ˙2)+2β2sinξcos2ξ(2γ2+α2cosθ1β2cosθ2)sinθ2+β22(1+μ24sin22ξ)sinξsin2θ2,\displaystyle\begin{split}0=&\leavevmode\nobreak\ 2\quantity(1+\frac{\mu^{2}}{4}\sin^{2}2\xi)\quantity(\sin\xi\,\ddot{\theta}_{2}-2\cos\xi\,\dot{\xi}\,\dot{\theta}_{2})+2\beta_{2}\sin\xi\cos^{2}\xi\big{(}2\gamma_{2}+\alpha_{2}\cos\theta_{1}\\ &\leavevmode\nobreak\ -\beta_{2}\cos\theta_{2}\big{)}\sin\theta_{2}+\beta_{2}^{2}\quantity(1+\frac{\mu^{2}}{4}\sin^{2}2\xi)\sin\xi\sin 2\theta_{2}\,,\end{split} (64b)
0=(1+μ24sin22ξ)2(16ξ¨+2sin2ξ(θ˙12θ˙22β22sin2θ2α22sin2θ1))+sin4ξ2(4γ22μ2η22+α22cos2θ1+β22cos2θ24β2γ2cosθ2+2α2cosθ1(2γ2β2cosθ2)).\displaystyle\begin{split}0=&\leavevmode\nobreak\ \quantity(1+\frac{\mu^{2}}{4}\sin^{2}2\xi)^{2}\quantity(16\ddot{\xi}+2\sin 2\xi\quantity(\dot{\theta}_{1}^{2}-\dot{\theta}_{2}^{2}-\beta_{2}^{2}\sin^{2}\theta_{2}-\alpha_{2}^{2}\sin^{2}\theta_{1}))\\ &\leavevmode\nobreak\ +\frac{\sin 4\xi}{2}\Big{(}4\gamma_{2}^{2}-\mu^{2}\eta_{2}^{2}+\alpha_{2}^{2}\cos^{2}\theta_{1}+\beta_{2}^{2}\cos^{2}\theta_{2}-4\beta_{2}\gamma_{2}\cos\theta_{2}\\ &\leavevmode\nobreak\ +2\alpha_{2}\cos\theta_{1}\quantity(2\gamma_{2}-\beta_{2}\cos\theta_{2})\Big{)}\,.\end{split} (64c)

We observe that the conjugate momenta corresponding to the coordinates {t,Φi}\{t,\Phi_{i}\} with (i=φ1,φ2,ψ,x2)(i=\varphi_{1},\varphi_{2},\psi,x_{2}) can be computed as

ELPt˙=t˙4,PΦiLPΦi˙=0,E\equiv\frac{\partial L_{P}}{\partial\dot{t}}=-\frac{\dot{t}}{4}\,,\qquad P_{\Phi_{i}}\equiv\frac{\partial L_{P}}{\partial\dot{\Phi_{i}}}=0\,, (65)

which are indeed found to be conserved

τE=0(in t=τ gauge),τPΦi=0.\partial_{\tau}E=0\,\quad(\text{in $t=\tau$ gauge})\,,\qquad\partial_{\tau}P_{\Phi_{i}}=0\,. (66)

Now using the definition (4) of the energy-momentum tensor TabT_{ab}, it is easy to check that

τTττ=0,on-shell,τTτσ=0,trivially.\displaystyle\begin{split}\partial_{\tau}T_{\tau\tau}&=0\,,\quad\text{on-shell}\,,\\[4.0pt] \partial_{\tau}T_{\tau\sigma}&=0\,,\quad\text{trivially}\,.\end{split} (67)

In the next step, we study the dynamics of the string governed by the eoms (64). In our analysis we first choose the θ2\theta_{2} invariant plane in the phase space defined as

θ20Πθ2:=θ˙20.\theta_{2}\sim 0\,\qquad\Pi_{\theta_{2}}:=\dot{\theta}_{2}\sim 0\,. (68)

This choice trivially satisfies the θ2\theta_{2} eom (64b), and the remaining two eoms (64a), (64c) reduce to

0= 4(1+μ24sin22ξ)(cosξθ¨12sinξξ˙θ˙1)4α2cosξsin2ξ(2γ2β2)sinθ1+2α22(1+μ2sin2ξ)cos3ξsin2θ1,\displaystyle\begin{split}0=&\leavevmode\nobreak\ 4\quantity(1+\frac{\mu^{2}}{4}\sin^{2}2\xi)\quantity(\cos\xi\,\ddot{\theta}_{1}-2\sin\xi\,\dot{\xi}\,\dot{\theta}_{1})-4\alpha_{2}\cos\xi\sin^{2}\xi\quantity(2\gamma_{2}-\beta_{2})\sin\theta_{1}\\ &\leavevmode\nobreak\ +2\alpha_{2}^{2}\quantity(1+\mu^{2}\sin^{2}\xi)\cos^{3}\xi\sin 2\theta_{1}\,,\end{split} (69a)
0=(1+μ24sin22ξ)2(16ξ¨+2sin2ξ(θ˙12α22sin2θ1))+sin4ξ2(4γ22μ2η22+α22cos2θ1+β224β2γ2+2α2cosθ1(2γ2β2)).\displaystyle\begin{split}0=&\leavevmode\nobreak\ \quantity(1+\frac{\mu^{2}}{4}\sin^{2}2\xi)^{2}\quantity(16\ddot{\xi}+2\sin 2\xi\quantity(\dot{\theta}_{1}^{2}-\alpha_{2}^{2}\sin^{2}\theta_{1}))\\ &\leavevmode\nobreak\ +\frac{\sin 4\xi}{2}\Big{(}4\gamma_{2}^{2}-\mu^{2}\eta_{2}^{2}+\alpha_{2}^{2}\cos^{2}\theta_{1}+\beta_{2}^{2}-4\beta_{2}\gamma_{2}+2\alpha_{2}\cos\theta_{1}\quantity(2\gamma_{2}-\beta_{2})\Big{)}\,.\end{split} (69b)

The dynamics of the string in the reduced phase space, governed by (69a) and (69b), can be studied by further choosing the θ1\theta_{1} invariant plane defined as

θ10,Πθ1θ˙10.\theta_{1}\sim 0\,,\qquad\Pi_{\theta_{1}}\equiv\dot{\theta}_{1}\sim 0\,. (70)

While is choice trivially satisfies (69a), (69b) reduces to the form

16(1+μ24sin22ξ)2ξ¨+(𝒜DDμ2η22)sin4ξ=0,16\quantity(1+\frac{\mu^{2}}{4}\sin^{2}2\xi)^{2}\ddot{\xi}+\quantity(\mathcal{A}_{\text{DD}}-\mu^{2}\eta_{2}^{2})\sin 4\xi=0\,, (71)

where

𝒜DD=12(4γ22+α22+β224β2γ2+2α2(2γ2β2)).\mathcal{A}_{\text{DD}}=\frac{1}{2}\Big{(}4\gamma_{2}^{2}+\alpha_{2}^{2}+\beta_{2}^{2}-4\beta_{2}\gamma_{2}+2\alpha_{2}\quantity(2\gamma_{2}-\beta_{2})\Big{)}\,. (72)

Next we consider infinitesimal fluctuation (δθ1η\delta\theta_{1}\sim\eta) around the θ1\theta_{1} invariant plane. This results in the normal variational equation (NVE) equation which can be written as

(1+μ24sin22ξ)(cosξη¨2sinξξ˙η˙1)+(α22(1+μ2sin2ξ¯)cos3ξ¯α2(2γ2β2)cosξ¯sin2ξ¯)η= 0.\displaystyle\begin{split}&\quantity(1+\frac{\mu^{2}}{4}\sin^{2}2\xi)\quantity(\cos\xi\,\ddot{\eta}-2\sin\xi\,\dot{\xi}\,\dot{\eta}_{1})\\ &\qquad\qquad+\Big{(}\alpha_{2}^{2}\quantity(1+\mu^{2}\sin^{2}\bar{\xi})\cos^{3}\bar{\xi}-\alpha_{2}\quantity(2\gamma_{2}-\beta_{2})\cos\bar{\xi}\sin^{2}\bar{\xi}\Big{)}\eta=\leavevmode\nobreak\ 0\,.\end{split} (73)

Using the change in variable cosξ¯=z\displaystyle\cos\bar{\xi}=z we may recast (73) in the form

η′′(z)+B(z)η(z)+A(z)=0,\eta^{\prime\prime}(z)+B(z)\eta^{\prime}(z)+A(z)=0\,, (74)

where

B(z)=f(z)2f(z)+2z,\displaystyle\begin{split}B(z)=&\leavevmode\nobreak\ \frac{f^{\prime}(z)}{2f(z)}+\frac{2}{z}\,,\end{split} (75a)
A(z)=α22z2(1+μ2(1z2))α2(2γ2β2)(1z2)(1+μ2z2(1z2))f(z),\displaystyle\begin{split}A(z)=&\leavevmode\nobreak\ \frac{\alpha_{2}^{2}z^{2}\quantity(1+\mu^{2}\quantity(1-z^{2}))-\alpha_{2}\quantity(2\gamma_{2}-\beta_{2})\quantity(1-z^{2})}{\Big{(}1+\mu^{2}z^{2}\quantity(1-z^{2})\Big{)}f(z)}\,,\end{split} (75b)
f(z)=ξ¯˙2sin2ξ¯=(E+𝒜DDμ2η2232(8z48z2+1)μ2𝒜DD128(128z8+256z6152z4+24z2))×(1z2).\displaystyle\begin{split}f(z)=&\leavevmode\nobreak\ \dot{\bar{\xi}}^{2}\sin^{2}\bar{\xi}\\ =&\leavevmode\nobreak\ \Bigg{(}E+\frac{\mathcal{A}_{\text{DD}}-\mu^{2}\eta_{2}^{2}}{32}\quantity(8z^{4}-8z^{2}+1)-\frac{\mu^{2}\mathcal{A}_{\text{DD}}}{128}\quantity(-128z^{8}+256z^{6}-152z^{4}+24z^{2})\Bigg{)}\\ &\leavevmode\nobreak\ \times\quantity(1-z^{2})\,.\end{split} (75c)

In (75c) EE is the energy of the propagating string and we choose E=1E=1 without any loss of generality. Also notice that, in deriving (75c) we series expand (71) for small values of the YB parameter μ\mu and keep terms upto (μ2)\order{\mu^{2}}.

We can further recast (74) in the Schrödinger form (A3) using (A2). The resulting equation can then be written as

ω(z)+ω2(z)=2B(z)+B2(z)4A(z)4𝒱DD(z),\omega^{\prime}(z)+\omega^{2}(z)=\frac{2B^{\prime}(z)+B^{2}(z)-4A(z)}{4}\equiv\mathcal{V}_{\text{DD}}(z)\,, (76)

where 𝒱DD(z)\mathcal{V}_{\text{DD}}(z) is the Schrödinger potential whose exact form is quite complicated and we avoid writing the detailed expression here. However, we can expand this potential 𝒱DD(z)\mathcal{V}_{\text{DD}}(z) for small μ\mu as well as small zz. The latter expansion is justified whenever we work with the full CP3 metric (60). The final form of (76) can be computed as

ω(z)+ω2(z)C~3,\omega^{\prime}(z)+\omega^{2}(z)\approx\widetilde{C}_{3}\,, (77)

where

C~3=96+27𝒜DD+64α2β2128α2γ22(32+𝒜DD)+(288𝒜DD9𝒜DD2+384η2232α2β2η22+64α2γ2η22)μ2(32+𝒜DD)2+(μ4).\displaystyle\begin{split}\widetilde{C}_{3}=&\leavevmode\nobreak\ -\frac{96+27\mathcal{A}_{\text{DD}}+64\alpha_{2}\beta_{2}-128\alpha_{2}\gamma_{2}}{2\quantity(32+\mathcal{A}_{\text{DD}})}\\ &\leavevmode\nobreak\ +\frac{\quantity(-288\mathcal{A}_{\text{DD}}-9\mathcal{A}_{\text{DD}}^{2}+384\eta_{2}^{2}-32\alpha_{2}\beta_{2}\eta_{2}^{2}+64\alpha_{2}\gamma_{2}\eta_{2}^{2})\mu^{2}}{\quantity(32+\mathcal{A}_{\text{DD}})^{2}}+\order{\mu^{4}}\,.\end{split} (78)

The general solution to (77) may be obtained as

ω(z)=C~3tanh(C~3(z+𝖢3)),\omega(z)=\sqrt{\widetilde{C}_{3}}\leavevmode\nobreak\ \tanh\quantity(\sqrt{\widetilde{C}_{3}}\leavevmode\nobreak\ \quantity(z+\mathsf{C}_{3}))\,, (79)

where 𝖢3\mathsf{C}_{3} is the integration constant. Note that, for small zz the solution (79) is indeed a polynomial of degree 11. Moreover, there are poles of order 22 of the potential 𝒱DD(z)\mathcal{V}_{\text{DD}}(z) at101010The detailed expressions of the poles at ziz_{i} are not important in our discussion. Hence we avoid writing their forms here.

z=±1,z=zii=1,,4,z=\pm 1\,,\qquad z=z_{i}\,\quad i=1,\cdots,4\,, (80)

and the order at infinity of 𝒱DD(z)\mathcal{V}_{\text{DD}}(z) is 22. Thus the criterion Cd(iii) of the Kovacic’s algorithm, discussed in Appendix A, is satisfied. From these results we can infer that the system is indeed integrable.

3.3.2 Numerical results

We now explore the non-chaotic dynamics of the string configuration using numerical methods. In order to do so, we note down the corresponding Hamilton’s equations of motion111111We choose, θ2=pθ2=0\theta_{2}=p_{\theta_{2}}=0 as before.

θ1˙=4pθ1sec2ξ,\displaystyle\begin{split}\dot{\theta_{1}}=&\hskip 2.84526pt4p_{\theta_{1}}\sec^{2}\xi\,,\end{split} (81a)
ξ˙=pξ,\displaystyle\begin{split}\dot{\xi}=&\hskip 2.84526ptp_{\xi}\,,\end{split} (81b)
pθ1˙=cos4ξ(2μ2+μ2cos(2ξ))sin(2θ1)+sinθ1sin2(2ξ)8+2μ2sin2(2ξ),\displaystyle\begin{split}\dot{p_{\theta_{1}}}=&\hskip 2.84526pt\frac{\cos^{4}\xi(-2-\mu^{2}+\mu^{2}\cos(2\xi))\sin(2\theta_{1})+\sin\theta_{1}\sin^{2}(2\xi)}{8+2\mu^{2}\sin^{2}(2\xi)}\,,\end{split} (81c)
pξ˙=𝒩28(4+μ2sin2(2ξ))2,\displaystyle\begin{split}\dot{p_{\xi}}=&\hskip 2.84526pt\frac{\mathcal{N}_{2}}{8(4+\mu^{2}\sin^{2}(2\xi))^{2}}\,,\end{split} (81d)

where we denote

𝒩2=\displaystyle\mathcal{N}_{2}= (32(32μ2+4cosθ1+cos((2θ1)))cos(2ξ)8(8+μ2μ2cos(4ξ))2pθ12sec4ξ\displaystyle\hskip 2.84526pt\bigg{(}-32\big{(}3-2\mu^{2}+4\cos\theta_{1}+\cos{(2\theta_{1})}\big{)}\cos(2\xi)-8\big{(}8+\mu^{2}-\mu^{2}\cos(4\xi)\big{)}^{2}p^{2}_{\theta_{1}}\sec^{4}\xi
+(8+μ2μ2cos(4ξ))2sin2θ1)cosξsinξ.\displaystyle+\big{(}8+\mu^{2}-\mu^{2}\cos(4\xi)\big{)}^{2}\sin^{2}\theta_{1}\bigg{)}\cos\xi\sin\xi. (82)
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: Numerical plots of the Poincaré sections (Left column) and Lyapunov exponents (Right column) for dipole deformed ABJM. Here we set the energy of the string E0=0.35E_{0}=0.35. The top plots are for μ=0.01\mu=0.01 while the bottom plots are for μ=0.8\mu=0.8. The Poincaré sections can be seen to be undistorted foliations of KAM tori in the phase space and for large time tt the Lyapunov exponent decays to zero. These are indications of the non-chaotic dynamics of the string configuration.

In order to obtain the Poincaré sections, we set the energy as E=E0=0.35E=E_{0}=0.35 while the rest of the data is chosen as θ1(0)=0\theta_{1}(0)=0 and pξ(0)=0p_{\xi}(0)=0. Given this initial data, we generate a random data set for pθ1(0)p_{\theta_{1}}(0) by choosing ξ(0)[0,1]\xi(0)\in[0,1] such that the constraints (B2) are satisfied. We also set the values of the winding numbers in (3.3) as α2=β2=γ2=η2=1\alpha_{2}=\beta_{2}=\gamma_{2}=\eta_{2}=1.

In our numerical analysis, the YB parameter is set to be, μ=0.01\mu=0.01 and 0.80.8. As in the previous cases, the Poincaré sections (Fig.5) are obtained by plotting all the points those are on the {ξ,pξ}\{\xi,p_{\xi}\} plane which correspond to trajectories passing through the θ1=0\theta_{1}=0 hyper-plane.

In order to calculate the Lyapunov exponent (λ\lambda), we set the initial conditions as θ1(0)=0\theta_{1}(0)=0, pξ(0)=0p_{\xi}(0)=0, ξ(0)=0.1\xi(0)=0.1 and pθ1(0)=0.23p_{\theta_{1}}(0)=0.23 those are compatible with the Hamiltonian constraint (B2). The initial separation between the two nearby trajectories is set to be ΔX0=107\Delta X_{0}=10^{-7} as before, which eventually results in a zero value for the Lyapunov (Fig.5) for large tt. For YB parameter value μ=0.8\mu=0.8, the initial data are set to be θ1(0)=0\theta_{1}(0)=0, pξ(0)=0p_{\xi}(0)=0, ξ(0)=0.2\xi(0)=0.2 and pθ1(0)=0.22p_{\theta_{1}}(0)=0.22.

Clearly, the nicely foliated KAM tori trajectories in the phase space along with the vanishing Lyapunov exponent indicate non-chaotic dynamics of the superstring propagating in this deformed background. We further plot Poincaré sections corresponding to two different energies (E=0.55E=0.55 and E=1E=1) of the string in Fig.6. In these cases we observe that the KAM tori trajectories are nicely foliated as well, ruling out the chaotic behaviour of the string configuration.

Refer to caption
Refer to caption
Figure 6: Additional plots of the Poincaré sections for dipole deformed ABJM. On the left plot we set 𝐄𝟎=𝟏\mathbf{E_{0}=1} and μ= 0.5\mu=\leavevmode\nobreak\ 0.5, and on the right plot we set 𝐄𝟎=0.55\mathbf{E_{0}=0.55}, μ= 0.1\mu=\leavevmode\nobreak\ 0.1.

3.4 Nonrelativistic ABJM

The gravity dual of nonrelativistic ABJM is obtained by constructing Abelian rr-matrices using Cartan generators of both AdS4 as well as CP3 subspaces121212The rr-matrix is written as r=𝐩(μ1𝐋3+μ2𝐋+μ3𝐌3),r=\leavevmode\nobreak\ \mathbf{p}_{-}\wedge\quantity(\mu_{1}\mathbf{L}_{3}+\mu_{2}\mathbf{L}+\mu_{3}\mathbf{M}_{3})\,, where μi\mu_{i} are the YB deformation parameters and 𝐩±=(𝐩0±𝐩2)/2\mathbf{p}_{\pm}=\leavevmode\nobreak\ \quantity(\mathbf{p}_{0}\pm\mathbf{p}_{2})\big{/}\sqrt{2} are the light-cone momenta corresponding to the light-cone coordinates (86) [49].. The corresponding line element is given by [49]

ds2=14(2r2dx+dx+r2dx12+dr2r2r2dx+2)+dsCP32,dsCP32=dξ2+14cos2ξ(dθ12+sin2θ1dϕ12)+14sin2ξ(dθ22+sin2θ2dϕ22)+(12cos(θ1)dϕ112cos(θ2)dϕ2+dψ)2sin2ξcos2ξ,\displaystyle\begin{split}\differential s^{2}=&\frac{1}{4}\left(-2r^{2}dx_{+}dx_{-}+r^{2}dx_{1}^{2}+\frac{dr^{2}}{r^{2}}-\mathcal{M}r^{2}dx_{+}^{2}\right)+\differential s_{CP^{3}}^{2}\,,\\[5.0pt] \mathrm{d}s^{2}_{CP^{3}}=&\hskip 2.84526pt\mathrm{d}\xi^{2}+\frac{1}{4}\cos^{2}{\xi}(\mathrm{d}\theta_{1}^{2}+\sin^{2}{\theta_{1}}\mathrm{d}\phi_{1}^{2})+\frac{1}{4}\sin^{2}{\xi}(\mathrm{d}\theta_{2}^{2}+\sin^{2}{\theta_{2}}\mathrm{d}\phi_{2}^{2})\\ &\quad+\bigg{(}\frac{1}{2}\cos{\theta_{1}}\mathrm{d}\phi_{1}-\frac{1}{2}\cos{\theta_{2}}\mathrm{d}\phi_{2}+\mathrm{d}\psi\bigg{)}^{2}\sin^{2}{\xi}\cos^{2}{\xi}\,,\end{split} (83)

where

=f12+f22+f32,f1=r22μ1sinθ1cosξ,f2=r22μ2sinθ2sinξ,f3=r22(2μ3μ1cosθ1+μ2cosθ2)sinξcosξ.\displaystyle\begin{split}\mathcal{M}&=f_{1}^{2}+f_{2}^{2}+f_{3}^{2}\,,\\ f_{1}&=\frac{r}{2\sqrt{2}}\mu_{1}\sin\theta_{1}\cos\xi\,,\\ f_{2}&=\frac{r}{2\sqrt{2}}\mu_{2}\sin\theta_{2}\sin\xi\,,\\ f_{3}&=\frac{r}{2\sqrt{2}}\left(2\mu_{3}-\mu_{1}\cos\theta_{1}+\mu_{2}\cos\theta_{2}\right)\sin\xi\cos\xi\,.\end{split} (84)

The corresponding BB-field may be written as

B=12rcosξ(f1sinθ1f3cosθ1sinξ)dx+dφ112rsinξ(f3cosθ2cosξ+f2sinθ2)dx+dφ2+12rsin(2ξ)f3dx+dψ.\displaystyle\begin{split}B=&-\frac{1}{\sqrt{2}}r\cos\xi\left(f_{1}\sin\theta_{1}-f_{3}\cos\theta_{1}\sin\xi\right)dx_{+}\wedge d\varphi_{1}\\ &-\frac{1}{\sqrt{2}}r\sin\xi\left(f_{3}\cos\theta_{2}\cos\xi+f_{2}\sin\theta_{2}\right)dx_{+}\wedge d\varphi_{2}\\ &+\frac{1}{\sqrt{2}}r\sin(2\xi)f_{3}dx_{+}\wedge d\psi\,.\end{split} (85)

The light-cone coordinates x±x_{\pm} appearing in (83) and (85) are given by

x±=12(x0±x2).\displaystyle x_{\pm}=\frac{1}{\sqrt{2}}\left(x^{0}\pm x^{2}\right)\,. (86)

Notice that, in (83) μi\mu_{i} (i=1,2,3)(i=1,2,3) are the Yang-Baxter (YB) deformation parameters of the theory. Also, the metric (83) corresponds to a Schrödinger space-time with dynamical critical exponent 22. In the following analytical and numerical analyses, we choose the AdS4 coordinates as x0=tx_{0}=t, r=1r=1 and x1=x_{1}=constant.

We now work with the winding string ansatz of the form

x+\displaystyle x_{+} =x+(τ),\displaystyle=\leavevmode\nobreak\ x_{+}(\tau)\,, θ1\displaystyle\theta_{1} =θ1(τ),\displaystyle=\theta_{1}(\tau)\,, θ2\displaystyle\theta_{2} =θ2(τ),\displaystyle=\theta_{2}(\tau)\,, ξ\displaystyle\xi =ξ(τ),\displaystyle=\xi(\tau)\,, (87)
ϕ1\displaystyle\phi_{1} =α2σ,\displaystyle=\alpha_{2}\sigma\,, ϕ2\displaystyle\phi_{2} =α4σ,\displaystyle=\alpha_{4}\sigma\,, ψ\displaystyle\psi =α6σ,\displaystyle=\alpha_{6}\sigma\,, x\displaystyle x_{-} =η1τ.\displaystyle=\eta_{1}\tau\,.

Here α2\alpha_{2}, α4\alpha_{4}, α6\alpha_{6} and η1\eta_{1} are the winding numbers of the string.

Using (87), the Lagrangian in the Polyakov action (1) can be written as

LP=12[4x˙+2ξ˙214(θ˙12cos2ξ+θ˙22sin2ξ)+ϕ124cos2ξ(sin2θ1+sin2ξcos2θ1)+ϕ224sin2ξ(sin2θ2+cos2ξcos2θ2)+sin2ξcos2ξ(ψ2+ϕ1ψcosθ1ϕ2ψcosθ212ϕ1ϕ2cosθ1cosθ2)]ϕ12x˙+cosξ(f1sinθ1f3sinξcosθ1)ϕ22x˙+sinξ(f2sinθ2+f3cosξcosθ2)x˙++ψ2x˙+f3sin2ξ\displaystyle\begin{split}L_{P}&=\leavevmode\nobreak\ -\frac{1}{2}\Bigg{[}\frac{\mathcal{M}}{4}\dot{x}_{+}^{2}-\dot{\xi}^{2}-\frac{1}{4}\quantity(\dot{\theta}_{1}^{2}\cos^{2}\xi+\dot{\theta}_{2}^{2}\sin^{2}\xi)+\frac{\phi_{1}^{\prime 2}}{4}\cos^{2}\xi\quantity(\sin^{2}\theta_{1}+\sin^{2}\xi\cos^{2}\theta_{1})\\ &\quad+\frac{\phi_{2}^{\prime 2}}{4}\sin^{2}\xi\quantity(\sin^{2}\theta_{2}+\cos^{2}\xi\cos^{2}\theta_{2})+\sin^{2}\xi\cos^{2}\xi\Big{(}\psi^{\prime 2}+\phi_{1}^{\prime}\psi^{\prime}\cos\theta_{1}-\phi_{2}^{\prime}\psi^{\prime}\cos\theta_{2}\\ &\quad-\frac{1}{2}\phi_{1}^{\prime}\phi_{2}^{\prime}\cos\theta_{1}\cos\theta_{2}\Big{)}\Bigg{]}-\frac{\phi_{1}^{\prime}}{\sqrt{2}}\dot{x}_{+}\cos\xi\quantity(f_{1}\sin\theta_{1}-f_{3}\sin\xi\cos\theta_{1})\\ &\quad-\frac{\phi_{2}^{\prime}}{\sqrt{2}}\dot{x}_{+}\sin\xi\quantity(f_{2}\sin\theta_{2}+f_{3}\cos\xi\cos\theta_{2})\dot{x}_{+}+\frac{\psi^{\prime}}{\sqrt{2}}\dot{x}_{+}f_{3}\sin 2\xi\end{split} (88a)
=12[4x˙+2ξ˙214(θ˙12cos2ξ+θ˙22sin2ξ)+α224cos2ξ(sin2θ1+sin2ξcos2θ1)+α424sin2ξ(sin2θ2+cos2ξcos2θ2)+sin2ξcos2ξ(α62+α2α6cosθ1α4α6cosθ212α2α4cosθ1cosθ2)]α22x˙+cosξ(f1sinθ1f3sinξcosθ1)α42x˙+sinξ(f2sinθ2+f3cosξcosθ2)+α62x˙+f3sin2ξ.\displaystyle\begin{split}&=\leavevmode\nobreak\ -\frac{1}{2}\Bigg{[}\frac{\mathcal{M}}{4}\dot{x}_{+}^{2}-\dot{\xi}^{2}-\frac{1}{4}\quantity(\dot{\theta}_{1}^{2}\cos^{2}\xi+\dot{\theta}_{2}^{2}\sin^{2}\xi)+\frac{\alpha_{2}^{2}}{4}\cos^{2}\xi\quantity(\sin^{2}\theta_{1}+\sin^{2}\xi\cos^{2}\theta_{1})\\ &\quad+\frac{\alpha_{4}^{2}}{4}\sin^{2}\xi\quantity(\sin^{2}\theta_{2}+\cos^{2}\xi\cos^{2}\theta_{2})+\sin^{2}\xi\cos^{2}\xi\Big{(}\alpha_{6}^{2}+\alpha_{2}\alpha_{6}\cos\theta_{1}-\alpha_{4}\alpha_{6}\cos\theta_{2}\\ &\quad-\frac{1}{2}\alpha_{2}\alpha_{4}\cos\theta_{1}\cos\theta_{2}\Big{)}\Bigg{]}-\frac{\alpha_{2}}{\sqrt{2}}\dot{x}_{+}\cos\xi\quantity(f_{1}\sin\theta_{1}-f_{3}\sin\xi\cos\theta_{1})\\ &\quad-\frac{\alpha_{4}}{\sqrt{2}}\dot{x}_{+}\sin\xi\quantity(f_{2}\sin\theta_{2}+f_{3}\cos\xi\cos\theta_{2})+\frac{\alpha_{6}}{\sqrt{2}}\dot{x}_{+}f_{3}\sin 2\xi\,.\end{split} (88b)

Notice that, even with the ansatz (87), there exists a non-trivial contribution of the BB-field in the dynamics of the string unlike the previous cases in Sections 3.1, 3.2 and 3.3.

3.4.1 Analytical results

We first use (88b) to compute the eom corresponding to the coordinate x+x_{+}. The result can be written as

ddτx˙++x˙+ddτ(4B+j)= 0,\mathcal{M}\frac{\differential}{\differential\tau}\dot{x}_{+}+\dot{x}_{+}\frac{\differential}{\differential\tau}\big{(}\mathcal{M}-4B_{+j}\big{)}=\leavevmode\nobreak\ 0\,, (89)

where B+jB_{+j} (+x++\equiv x_{+}, j=φ1,φ2,ψj=\varphi_{1},\varphi_{2},\psi) are the components of the BB field in (85) which also appear in the Lagrangian (88b).

We can get rid of the first term in the LHS of (89) by choosing

x+=τ.x_{+}=\mathscr{E}\tau\,. (90)

We can always set =1\mathscr{E}=1 without loss of any generality. Eq.(90) shows that x+x_{+} is indeed the world-sheet time. However, the vanishing of the second term in the LHS of (89) results in the following constraint equation:

ξ˙[(μ22sin2θ2μ12sin2θ1)sin2ξ+(2μ3μ1cosθ1+μ2cosθ2)2cos2ξ]+θ˙1[μ12sin2θ1cos2ξ+μ1sinθ1(2μ3μ1cosθ1+μ2cosθ2)sin2ξ]+θ˙2[μ22sin2θ2sin2ξμ2sinθ2(2μ3μ1cosθ1+μ2cosθ2)sin2ξ]= 0.\displaystyle\begin{split}&\dot{\xi}\Big{[}\quantity(\mu_{2}^{2}\sin^{2}\theta_{2}-\mu_{1}^{2}\sin^{2}\theta_{1})\sin 2\xi+\quantity(2\mu_{3}-\mu_{1}\cos\theta_{1}+\mu_{2}\cos\theta_{2})^{2}\cos 2\xi\Big{]}\\ &+\dot{\theta}_{1}\Big{[}\mu_{1}^{2}\sin 2\theta_{1}\cos^{2}\xi+\mu_{1}\sin\theta_{1}\quantity(2\mu_{3}-\mu_{1}\cos\theta_{1}+\mu_{2}\cos\theta_{2})\sin 2\xi\Big{]}\\ &+\dot{\theta}_{2}\Big{[}\mu_{2}^{2}\sin 2\theta_{2}\sin^{2}\xi-\mu_{2}\sin\theta_{2}\quantity(2\mu_{3}-\mu_{1}\cos\theta_{1}+\mu_{2}\cos\theta_{2})\sin 2\xi\Big{]}=\leavevmode\nobreak\ 0\,.\end{split} (91)

Next we again use (88b) to derive the eoms corresponding to the θ1\theta_{1}, θ2\theta_{2} and ξ\xi coordinates. The results are formally written as

0= 8cosξθ¨116sinξξ˙θ˙1sin2ξcosξsinθ1(16μ1α68μ1α2cosθ1+8μ1α4cosθ2(μ1+8α2)(2μ3+μ1cosθ1μ2cosθ2)+8(2α2α6+α2α4cosθ2))+cosξsin2θ1(8μ1α2+4α22cos2ξ+μ12/2),\displaystyle\begin{split}0=&\leavevmode\nobreak\ 8\cos\xi\leavevmode\nobreak\ \ddot{\theta}_{1}-16\sin\xi\leavevmode\nobreak\ \dot{\xi}\dot{\theta}_{1}-\sin^{2}\xi\cos\xi\sin\theta_{1}\Big{(}16\mu_{1}\alpha_{6}-8\mu_{1}\alpha_{2}\cos\theta_{1}+8\mu_{1}\alpha_{4}\cos\theta_{2}\\ &\leavevmode\nobreak\ -\quantity(\mu_{1}+8\alpha_{2})\quantity(-2\mu_{3}+\mu_{1}\cos\theta_{1}-\mu_{2}\cos\theta_{2})+8\quantity(-2\alpha_{2}\alpha_{6}+\alpha_{2}\alpha_{4}\cos\theta_{2})\Big{)}\\ &\leavevmode\nobreak\ +\cos\xi\sin 2\theta_{1}\quantity(8\mu_{1}\alpha_{2}+4\alpha_{2}^{2}\cos^{2}\xi+\mu_{1}^{2}\big{/}2)\,,\end{split} (92a)
0= 8sinξθ¨2+16cosξξ˙θ˙2+sinξcos2ξsinθ2(16μ2α68μ2α4cosθ2+8μ2α2cosθ1(μ2+8α4)(2μ3μ1cosθ1+μ2cosθ2)8(2α4α6α2α4cosθ1))+sinξsin2θ2(8μ2α4+4α42sin2ξ+μ22/2),\displaystyle\begin{split}0=&\leavevmode\nobreak\ 8\sin\xi\leavevmode\nobreak\ \ddot{\theta}_{2}+16\cos\xi\leavevmode\nobreak\ \dot{\xi}\dot{\theta}_{2}+\sin\xi\cos^{2}\xi\sin\theta_{2}\Big{(}16\mu_{2}\alpha_{6}-8\mu_{2}\alpha_{4}\cos\theta_{2}+8\mu_{2}\alpha_{2}\cos\theta_{1}\\ &\leavevmode\nobreak\ -\quantity(\mu_{2}+8\alpha_{4})\quantity(2\mu_{3}-\mu_{1}\cos\theta_{1}+\mu_{2}\cos\theta_{2})-8\quantity(-2\alpha_{4}\alpha_{6}-\alpha_{2}\alpha_{4}\cos\theta_{1})\Big{)}\\ &\leavevmode\nobreak\ +\sin\xi\sin 2\theta_{2}\quantity(8\mu_{2}\alpha_{4}+4\alpha_{4}^{2}\sin^{2}\xi+\mu_{2}^{2}\big{/}2)\,,\end{split} (92b)
0=ξ¨+sin2ξ(θ˙12θ˙22)+Tξ,\displaystyle\begin{split}0=&\leavevmode\nobreak\ \ddot{\xi}+\sin 2\xi\quantity(\dot{\theta}_{1}^{2}-\dot{\theta}_{2}^{2})+T_{\xi}\,,\end{split} (92c)

where

Tξ= 2(2μ3μ1cosθ1+μ2cosθ2)(1α62α22cosθ1+α42cosθ2+(2μ3μ1cosθ1+μ2cosθ2)/32)sin4ξ+2sin4ξ(α62α4α6cosθ212cosθ1(2α2α6+α2α4cosθ2))+sin2ξ{12(α22cos2θ1cos2ξα42cos2θ2sin2ξ)116(μ12sin2θ1μ22sin2θ2)(μ1α2sin2θ1μ2α4sin2θ2)α222(sin2θ1+sin2ξcos2θ1)+α422(sin2θ2+cos2ξcos2θ2)}.\displaystyle\begin{split}T_{\xi}=&\leavevmode\nobreak\ 2\quantity(2\mu_{3}-\mu_{1}\cos\theta_{1}+\mu_{2}\cos\theta_{2})\Big{(}-1-\frac{\alpha_{6}}{2}-\frac{\alpha_{2}}{2}\cos\theta_{1}+\frac{\alpha_{4}}{2}\cos\theta_{2}\\ &\leavevmode\nobreak\ +\quantity(2\mu_{3}-\mu_{1}\cos\theta_{1}+\mu_{2}\cos\theta_{2})\big{/}32\Big{)}\sin 4\xi+2\sin 4\xi\leavevmode\nobreak\ \Big{(}\alpha_{6}^{2}-\alpha_{4}\alpha_{6}\cos\theta_{2}\\ &\leavevmode\nobreak\ -\frac{1}{2}\cos\theta_{1}\quantity(-2\alpha_{2}\alpha_{6}+\alpha_{2}\alpha_{4}\cos\theta_{2})\Big{)}+\sin 2\xi\leavevmode\nobreak\ \Bigg{\{}\frac{1}{2}\Big{(}\alpha_{2}^{2}\cos^{2}\theta_{1}\cos^{2}\xi-\alpha_{4}^{2}\cos^{2}\theta_{2}\sin^{2}\xi\Big{)}\\ &\leavevmode\nobreak\ -\frac{1}{16}\quantity(\mu_{1}^{2}\sin^{2}\theta_{1}-\mu_{2}^{2}\sin^{2}\theta_{2})-\quantity(\mu_{1}\alpha_{2}\sin^{2}\theta_{1}-\mu_{2}\alpha_{4}\sin^{2}\theta_{2})\\ &\leavevmode\nobreak\ -\frac{\alpha_{2}^{2}}{2}\Big{(}\sin^{2}\theta_{1}+\sin^{2}\xi\cos^{2}\theta_{1}\Big{)}+\frac{\alpha_{4}^{2}}{2}\Big{(}\sin^{2}\theta_{2}+\cos^{2}\xi\cos^{2}\theta_{2}\Big{)}\Bigg{\}}\,.\end{split} (93)

Using (88a) we next calculate the momenta conjugate to the isometry coordinates as

ELPx˙+=14x˙+,PΦiLPΦi˙=0,(Φi={ϕ1ϕ2,ψ}).E\equiv\frac{\partial L_{P}}{\partial\dot{x}_{+}}=-\frac{1}{4}\mathcal{M}\dot{x}_{+}\,,\qquad P_{\Phi_{i}}\equiv\frac{\partial L_{P}}{\partial\dot{\Phi_{i}}}=0\,,\quad\quantity(\Phi_{i}=\{\phi_{1}\phi_{2},\psi\})\,. (94)

Using (14) and (89) it is easy to check that the corresponding charges (JJ) are conserved:

τE=0(on-shell),τPΦi=0.\partial_{\tau}E=0\,\quad(\text{on-shell})\,,\qquad\partial_{\tau}P_{\Phi_{i}}=0\,. (95)

We may now compute the energy-momentum tensors using the definition (4). It is easy to check that131313Notice that, in order to avoid clutter in the resulting expressions – which are rather large – from here on we set μ1=μ2=μ3=μ\mu_{1}=\mu_{2}=\mu_{3}=\mu.

τTττ\displaystyle\partial_{\tau}T_{\tau\tau} =,\displaystyle=\mathcal{R}\,, (96)
τTτσ\displaystyle\partial_{\tau}T_{\tau\sigma} =0,\displaystyle=0\,, (97)

where

=μ64[cos2ξsinθ1θ˙1{4μ+2(μ4)cosθ14μcos2ξ(4μ)(cos(θ12ξ)+cos(θ1+2ξ)cos(θ22ξ)cos(θ2+2ξ))}+sin2ξθ˙2{4(2μ+(μ4)cosθ1+4cosθ2)cos2ξsinθ22sin2θ2(4+μsin2ξ)}sinξcosξξ˙{2(μ4)(cos2θ1cos2θ2)+4(2+cosθ1cosθ2)(2(μ+4)+(μ4)(cosθ1cosθ2))cos2ξ}].\displaystyle\begin{split}\mathcal{R}=&\leavevmode\nobreak\ \frac{\mu}{64}\Bigg{[}-\cos^{2}\xi\sin\theta_{1}\leavevmode\nobreak\ \dot{\theta}_{1}\Big{\{}4\mu+2\quantity(\mu-4)\cos\theta_{1}-4\mu\cos 2\xi\\ &\leavevmode\nobreak\ -\quantity(4-\mu)\Big{(}\cos\quantity(\theta_{1}-2\xi)+\cos\quantity(\theta_{1}+2\xi)-\cos\quantity(\theta_{2}-2\xi)-\cos\quantity(\theta_{2}+2\xi)\Big{)}\Big{\}}\\ &\leavevmode\nobreak\ +\sin^{2}\xi\leavevmode\nobreak\ \dot{\theta}_{2}\Big{\{}-4\quantity(-2\mu+\quantity(\mu-4)\cos\theta_{1}+4\cos\theta_{2})\cos^{2}\xi\sin\theta_{2}\\ &\leavevmode\nobreak\ -2\sin 2\theta_{2}\quantity(-4+\mu\sin^{2}\xi)\Big{\}}-\sin\xi\cos\xi\leavevmode\nobreak\ \dot{\xi}\Big{\{}2\quantity(\mu-4)\quantity(\cos 2\theta_{1}-\cos 2\theta_{2})\\ &\leavevmode\nobreak\ +4\quantity(-2+\cos\theta_{1}-\cos\theta_{2})\Big{(}-2\quantity(\mu+4)+\quantity(\mu-4)\quantity(\cos\theta_{1}-\cos\theta_{2})\Big{)}\cos 2\xi\Big{\}}\Bigg{]}\,.\end{split} (98)

However, the Virasoro consistency conditions τTab=0\displaystyle\partial_{\tau}T_{ab}=0 require us to set =0\mathcal{R}=0 in (98). Using this latter requirement and (91) we may now solve for ξ˙\dot{\xi} algebraically and substitute the resulting solution into the eoms (92a) and (92b) corresponding to θ1\theta_{1} and θ2\theta_{2}, respectively. The resulting eoms are obvious and we avoid writing them here. Moreover, if we choose the θ2\theta_{2} invariant plane in the phase space described as

θ20,Πθ2:=θ˙20,\theta_{2}\sim 0\,,\qquad\Pi_{\theta_{2}}:=\dot{\theta}_{2}\sim 0\,, (99)

then we observe that the resulting θ2\theta_{2} eom (92b) (after ξ˙\dot{\xi} substitution) is satisfied trivially. The other two ξ˙\dot{\xi} substituted eoms (92a) and (92c) then reduce to

0= 8cosξθ¨1+8sin2ξsinθ1θ1˙2𝒦θ1+cosξsin2θ1(8μ+4cos2ξ+μ22)cosξsin2ξsin2θ1(8μ(cosθ1+2)+8(1μ)+μ(3+cosθ1)(μ+8)),\displaystyle\begin{split}0=&\leavevmode\nobreak\ 8\cos\xi\leavevmode\nobreak\ \ddot{\theta}_{1}+8\sin 2\xi\sin\theta_{1}\leavevmode\nobreak\ \dot{\theta_{1}}^{2}\leavevmode\nobreak\ \mathscr{K}_{\theta_{1}}+\cos\xi\sin 2\theta_{1}\quantity(8\mu+4\cos^{2}\xi+\frac{\mu^{2}}{2})\\ &\leavevmode\nobreak\ -\cos\xi\sin^{2}\xi\sin 2\theta_{1}\Big{(}8\mu\quantity(\cos\theta_{1}+2)+8\quantity(1-\mu)+\mu\quantity(-3+\cos\theta_{1})\quantity(\mu+8)\Big{)}\,,\end{split} (100a)
0= 4ξ¨+12sin2ξθ˙12+𝒯ξ,\displaystyle\begin{split}0=&\leavevmode\nobreak\ 4\ddot{\xi}+\frac{1}{2}\sin 2\xi\,\dot{\theta}_{1}^{2}+\mathscr{T}_{\xi}\,,\end{split} (100b)

where

𝒦θ1=(16+6μ)(1cos2ξ)+2(μ+8)cosθ1+2(μ+8)cosθ1cos2ξ)2sinξ((μ+8)(cos2θ11)+2cos2ξ(3+cosθ1)(83μ+(μ+8)cos2ξ))+(3+cosθ1cot2ξ)sinξsin2θ1(3cosθ1)2cos2ξ,\displaystyle\begin{split}\mathscr{K}_{\theta_{1}}&=\leavevmode\nobreak\ -\frac{\quantity(16+6\mu)\quantity(1-\cos 2\xi)+2\quantity(\mu+8)\cos\theta_{1}+2\quantity(\mu+8)\cos\theta_{1}\cos 2\xi)}{2\sin\xi\Big{(}\quantity(\mu+8)\quantity(\cos 2\theta_{1}-1)+2\cos 2\xi\quantity(-3+\cos\theta_{1})\quantity(8-3\mu+\quantity(\mu+8)\cos 2\xi)\Big{)}}\\ &\leavevmode\nobreak\ +\frac{\quantity(3+\cos\theta_{1}\cot^{2}\xi)\sin\xi}{\sin^{2}\theta_{1}\quantity(3-\cos\theta_{1})^{2}\cos 2\xi}\,,\end{split} (101)
𝒯ξ=μ2(3+cosθ1)sin4ξ+cos2θ1sinξcos3ξ+2μ(2+(3+cosθ1))cosθ1sinξcos3ξ+(μ28(3+cosθ1)2+1)cos3ξsinξμsin2θ1sin2ξ18cosξ{(8+μ2)sin2θ1sinξ+sin3ξ(8+9μ22(8+24μ+3μ2)cosθ1+(8+16μ+μ2)cos2θ1)}.\displaystyle\begin{split}\mathscr{T}_{\xi}=&\leavevmode\nobreak\ \frac{\mu}{2}\quantity(-3+\cos\theta_{1})\sin 4\xi+\cos^{2}\theta_{1}\sin\xi\cos^{3}\xi\\ &\leavevmode\nobreak\ +2\mu\Big{(}2+\quantity(-3+\cos\theta_{1})\Big{)}\cos\theta_{1}\sin\xi\cos^{3}\xi\\ &\leavevmode\nobreak\ +\quantity(\frac{\mu^{2}}{8}\quantity(-3+\cos\theta_{1})^{2}+1)\cos^{3}\xi\sin\xi-\mu\sin^{2}\theta_{1}\sin 2\xi\\ &\leavevmode\nobreak\ -\frac{1}{8}\cos\xi\Big{\{}\quantity(8+\mu^{2})\sin^{2}\theta_{1}\sin\xi+\sin^{3}\xi\Big{(}8+9\mu^{2}-2\quantity(-8+24\mu+3\mu^{2})\cos\theta_{1}\\ &\leavevmode\nobreak\ +\quantity(8+16\mu+\mu^{2})\cos^{2}\theta_{1}\Big{)}\Big{\}}\,.\end{split} (102)

In the next step, we make the following choice of the θ1\theta_{1} invariant plane in the phase space:

θ10,Πθ1:=θ˙10,\theta_{1}\sim 0\,,\qquad\Pi_{\theta_{1}}:=\dot{\theta}_{1}\sim 0\,, (103)

which clearly satisfies (100a). Subsequently, the ξ\xi eom (100b) can be written in the form

ξ¨+𝒜NRsin4ξ=0,\ddot{\xi}+\mathcal{A}_{\text{NR}}\sin 4\xi=0\,, (104)

where

𝒜NR=816μ+μ232.\displaystyle\begin{split}\mathcal{A}_{\text{NR}}=\frac{8-16\mu+\mu^{2}}{32}\,.\end{split} (105)

Now from (91) and (98) we notice that, for the successive choices of the invariant planes in the phase space, namely (99) and (103), ξ˙=0\dot{\xi}=0. Moreover, this solution must be consistent with (104). Since 0ξ<π\displaystyle 0\leq\xi<\pi, the possible solutions of (104) can be expressed as

ξ¯=nπ4,0n<4,n.\bar{\xi}=\leavevmode\nobreak\ \frac{n\pi}{4}\,,\quad 0\leq n<4\,,n\in\mathbb{Z}\,. (106)

We now consider infinitesimal fluctuations (δθ1η\delta\theta_{1}\sim\eta) around the θ1\theta_{1} invariant plane. The resulting NVE can then be written as

η¨18(2sin2ξ¯(4μ2)8cos2ξ¯16μμ2)η 0,\displaystyle\begin{split}\ddot{\eta}-\frac{1}{8}\Big{(}2\sin^{2}\bar{\xi}\quantity(4-\mu^{2})-8\cos^{2}\bar{\xi}-16\mu-\mu^{2}\Big{)}\eta\approx\leavevmode\nobreak\ 0\,,\end{split} (107)

where ξ¯\bar{\xi} is given by (106). Also notice that, in writing the above NVE (107), we have neglected the second term in the R.H.S of (100a) since this term is (η3)\order{\eta^{3}}.

Next, with the given solutions (106), (107) can easily be solved. The solutions can formally be written as

η(τ)=𝖢1cos(𝖢0τ)+𝖢2sin(𝖢0τ),\eta(\tau)=\leavevmode\nobreak\ \mathsf{C}_{1}\cos\quantity(\sqrt{\mathsf{C}_{0}}\leavevmode\nobreak\ \tau)+\mathsf{C}_{2}\sin\quantity(\sqrt{\mathsf{C}_{0}}\leavevmode\nobreak\ \tau)\,, (108)

where

𝖢0={18(μ2+16μ+8),for n=014(μ2+8μ),for n=118(3μ2+16μ8),for n=214(μ2+8μ),for n=3,\mathsf{C}_{0}=\begin{cases}\frac{1}{8}\quantity(\mu^{2}+16\mu+8)\,,&\text{for $n=0$}\\[3.0pt] \frac{1}{4}\quantity(\mu^{2}+8\mu)\,,&\text{for $n=1$}\\[3.0pt] \frac{1}{8}\quantity(3\mu^{2}+16\mu-8)\,,&\text{for $n=2$}\\[3.0pt] \frac{1}{4}\quantity(\mu^{2}+8\mu)\,,&\text{for $n=3$}\,,\end{cases} (109)

and 𝖢1\mathsf{C}_{1} and 𝖢2\mathsf{C}_{2} are constants of integration.

Clearly, these solutions (108) are Liouvillian which reflect the underlying non-chaotic dynamics of the string.

3.4.2 Numerical results

We now check the integrability of the string configuration numerically using the methodology discussed in Appendix B.

Using the embedding (87) together with α2=α4=α6=η1=1\alpha_{2}=\alpha_{4}=\alpha_{6}=\eta_{1}=1, the resulting Hamilton’s equations can be computed as141414In order to perform the numerical analysis, we choose to work with the original coordinates and set x0=t(τ)x_{0}=t(\tau) and x2=η1τx_{2}=\eta_{1}\tau, with η1=1\eta_{1}=1.

θ1˙= 4pθ1sec2ξ,\displaystyle\begin{split}\dot{\theta_{1}}=&\leavevmode\nobreak\ 4p_{\theta_{1}}\sec^{2}\xi\,,\end{split} (110a)
ξ˙=pξ,\displaystyle\begin{split}\dot{\xi}=&\leavevmode\nobreak\ p_{\xi}\,,\end{split} (110b)
pθ1˙=1128(16cos2ξsin(2θ1)+2μ1cos2ξsinθ1(μ1cosθ1cos2ξ+(μ2+2μ3)sin2ξ)+4sin(2θ1)sin2(2ξ)+𝒩3),\displaystyle\begin{split}\dot{p_{\theta_{1}}}=&\leavevmode\nobreak\ \frac{1}{128}\bigg{(}-16\cos^{2}\xi\sin(2\theta_{1})+2\mu_{1}\cos^{2}\xi\sin\theta_{1}\big{(}\mu_{1}\cos\theta_{1}\cos^{2}\xi+\big{(}\mu_{2}+2\mu_{3}\big{)}\sin^{2}\xi\big{)}\\ &+4\sin(2\theta_{1})\sin^{2}(2\xi)+\mathcal{N}_{3}\bigg{)}\,,\end{split} (110c)
pξ˙=1128(32cos3ξsinξ32cos2θ1cos3ξsinξ+2(μ2μ1cosθ1)(μ2+4μ3μ1cosθ1)×cos3ξsinξ+32cosξsin3ξ+32cos2θ1cosξsin3ξ2cosξsinξ(μ12sin2θ1+(μ2μ1cosθ1)(μ2+4μ3μ1cosθ1)sin2ξ)+𝒩4512pθ12sec2ξtanξ+2μ32sin(4ξ)),\displaystyle\begin{split}\dot{p_{\xi}}=&\leavevmode\nobreak\ \frac{1}{128}\bigg{(}-32\cos^{3}\xi\sin\xi-32\cos^{2}\theta_{1}\cos^{3}\xi\sin\xi+2(\mu_{2}-\mu_{1}\cos\theta_{1})\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\\ &\times\cos^{3}\xi\sin\xi+32\cos\xi\sin^{3}\xi+32\cos^{2}\theta_{1}\cos\xi\sin^{3}\xi-2\cos\xi\sin\xi\big{(}\mu_{1}^{2}\sin^{2}\theta_{1}\\ &+\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}\xi\big{)}+\mathcal{N}_{4}-512p_{\theta_{1}}^{2}\sec^{2}\xi\tan\xi+2\mu_{3}^{2}\sin(4\xi)\bigg{)}\,,\end{split} (110d)

where the detailed expressions for the functions 𝒩3\mathcal{N}_{3} and 𝒩4\mathcal{N}_{4} are given in Appendix D.

As in our previous cases, we set θ2=pθ2=0\theta_{2}=p_{\theta_{2}}=0 throughout the rest of the analysis. The Poincaré sections, plotted in the left column of Fig.7, are obtained by setting E=E0=0.3E=E_{0}=0.3 (The plots corresponding to other values of the energy E=0.95E=0.95, E=0.55E=0.55 are shown in Fig.8). We as well set the following values of the YB deformation parameters: μ1=μ2=μ3=0.01\mu_{1}=\mu_{2}=\mu_{3}=0.01, 0.80.8. On top of that, the initial conditions are chosen as θ1(0)=0.1\theta_{1}(0)=0.1 and pξ(0)=0p_{\xi}(0)=0. The random data set for pθ1(0)p_{\theta_{1}}(0) is then generated by choosing ξ(0)[0,1]\xi(0)\in[0,1]. The Poincaré section is obtained by collecting the data set {ξ,pξ}\{\xi,p_{\xi}\} every time the orbits pass through the θ1=0\theta_{1}=0 hyper-plane.

In order to calculate the Lyapunov exponent (λ\lambda), plotted in the right column in Fig.7), the corresponding initial conditions are chosen as {θ1(0)=0.1,ξ(0)=0.1,pξ(0)=0,pθ1(0)=0.159}\{\theta_{1}(0)=0.1,\xi(0)=0.1,p_{\xi}(0)=0,p_{\theta_{1}}(0)=0.159\} such that the Hamiltonian constraints (3), (B2) are satisfied. The initial separation between the orbits as defined in (B1) is fixed at ΔX0=107\Delta X_{0}=10^{-7} as before. This finally yield a zero Lyapunov exponent at large time, like in the previous three examples. This shows a non-chaotic motion for the dynamical phase space under consideration. For YB parameter value 0.80.8, the initial conditions are set to be {θ1(0)=0.1,ξ(0)=0.256,pξ(0)=0,pθ1(0)=0.093}\{\theta_{1}(0)=0.1,\xi(0)=0.256,p_{\xi}(0)=0,p_{\theta_{1}}(0)=0.093\}. Thus we find consistency between the analytical and the numerical analyses and the string indeed undergoes non-chaotic dynamics.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7: Numerical plots of the Poincaré sections (Left column) and Lyapunov exponents (Right column) for non-relativistic ABJM. Here we set the energy of the string E0=0.3E_{0}=0.3. The top plots are for μ1=μ2=μ3=0.01\mu_{1}=\mu_{2}=\mu_{3}=0.01 while the bottom plots are for μ1=μ2=μ3=0.8\mu_{1}=\mu_{2}=\mu_{3}=0.8. The Poincaré sections are undistorted foliations of KAM tori in the phase space and for large time tt the Lyapunov exponent decays to zero. These are indications of the non-chaotic dynamics of the string configuration.
Refer to caption
Refer to caption
Figure 8: Additional plots of the Poincaré sections for non-relativistic ABJM. On the left plot we set 𝐄𝟎=0.95\mathbf{E_{0}=0.95} and μ1=μ2=μ3= 0.55\mu_{1}=\mu_{2}=\mu_{3}=\leavevmode\nobreak\ 0.55, and on the right plot we set 𝐄𝟎=0.55\mathbf{E_{0}=0.55}, μ1=μ2=μ3= 0.1\mu_{1}=\mu_{2}=\mu_{3}=\leavevmode\nobreak\ 0.1.

4 Final remarks and future directions

We confirm the non-chaotic dynamics for a class of Yang-Baxter (YB) deformed AdS4×CP3\text{AdS}_{4}\times\text{CP}^{3} (super) string sigma models. The deformed backgrounds that we considered in our analysis are in fact dual to various deformations of the ABJM model [52] at strong coupling [48]-[51], [56]. These backgrounds are generated through the Yang-Baxter (YB) deformations: there exist classical rr-matrices that satisfy classical YB equation [35, 36].

Interestingly, the YB deformed backgrounds can be generated by a TsT transformation [56] on AdS4×CP3AdS_{4}\times CP^{3} background with real deformation parameters. Our analysis reveals the absence of non-integrability for the given string embedding, which is consistent with the aforementioned fact as well as the analysis done by authors in [33] for the real β\beta-deformation of 𝒩\mathcal{N}=4 SYM. On the other hand, one loses integrability for the complex deformation parameter [34].

The primary motivation for our study stemmed from the absence of any systematic analysis of the integrable structures of these class of deformed backgrounds. This is in stark contrast to the undeformed AdS4×CP3\text{AdS}_{4}\times\text{CP}^{3} case where both analytical and numerical confirmations of the integrability of string sigma models have been established [27]-[29].

In our investigation, we have used both analytical as well as numerical methods. For our analytical computations, we have used the famed Kovacic’s algorithm [4, 5, 6, 18] which checks the Liouvillian (non-)integrability of linear homogeneous second order ordinary differential equations of the form (A1) via a set of necessary but not sufficient criteria. In our analysis, we have been able to recast the dynamical equations of motion of the propagating string in the form of (A1) and checked the fulfilment of the criteria put forward by the algorithm. This established the non-chaotic dynamics of the string in the corresponding deformed backgrounds.

Our analytical results have been substantiated by numerical analysis where we estimated various chaos indicators of the theory, namely, the Poincaré section and the Lyapunov exponent. In our computations, using the standard Hamiltonian formulation [1]-[19], we explicitly checked that the shapes of the KAM tori never get distorted as we increase the YB deformation parameters in all the four cases. At this point, we must mention that the nice foliations of the Poincaré sections that we observed in Figs.1,3,5,7 do not necessarily guarantee that the system is non-chaotic for the entire range of values of the parameters in the theories — string energy (EE) and various Yang-Baxter deformation parameters — as was observed earlier, e.g., in [8, 15]. In order to establish our claim, we take additional set of values of the above mentioned parameters and find that our reults are indeed consistent. The corresponding plots are given in Figs.2,4,6,8. Also, the Lyapunov exponent decays to zero with time. These two results allow us to conclude that the phase space of the propagating string does not show any chaotic behaviour, thereby establishing consistency with our analytical results. Nevertheless, our analyses do not prove integrability following the traditional Lax pair formulation; rather, it disproves non-integrable structure for certain physical stringy configurations.

The (semi)classical strings, those probe these YB deformed backgrounds, are dual to a class of single trace operators in some sub-sector(s) of these deformed ABJM models. Our analysis, therefore points towards an underlying integrable structure associated with these deformed ABJM models. A systematic analysis of the Lax pairs would further strengthen this claim.

From the perspective of the deformed ABJMs, a similar investigation on the dilatation operators should shed further light on an integrable structure associated with the dual quantum field theory. This would be an interesting future direction to look for which would eventually take us into a new class of Gauge/String dualities those are associated with an underlying integrable structure.

Acknowledgments

J.P., H.R. and D.R. are indebted to the authorities of IIT Roorkee for their unconditional support towards researches in basic sciences. D.R. would also like to acknowledge The Royal Society, UK for financial assistance, and acknowledges the Grant (No. SRG/2020/000088), and Mathematical Research Impact Centric Support (MATRICS) grant (MTR/2023/000005) received from the Science and Engineering Research Board (SERB), Govt. of India. AL would like to thank the authorities of IIT Madras and IOP Bhubaneswar for supporting research in fundamental physics. He also acknowledges the financial support from the project “Quantum Information Theory” (No. SB20210807PHMHRD008128).

Appendix A The Kovacic’s algorithm

The Kovacic’s algorithm is a systematic method to determine whether a second-order linear homogeneous differential equation of the form

η(z)+M(z)η(z)+N(z)η(z)=0,\eta^{\prime\prime}(z)+M(z)\eta^{\prime}(z)+N(z)\eta(z)=0\,, (A1)

where M(z)M(z), N(z)N(z) are polynomial coefficients, are integrable in the Liouvillian sense. This implies the existence of the solutions of (A1) in the form of algebraic functions, trigonometric functions and exponentials.

We here discuss only the necessary details regarding the formalism as the detailed mathematical analysis is rather involved. One wishes to find the relation among M(z)M(z), M(z)M^{\prime}(z) and N(z)N(z) that makes the DE (A1) integrable. In order to achieve this, we start from the change in variable of the form

η(z)=exp[dz(w(z)M(z)2)].\eta(z)=\exp\quantity[\int\differential z\quantity(w(z)-\frac{M(z)}{2})]\,. (A2)

Eq.(A2) permits us to express (A1) in the following form:

w(z)+w2(z)=𝒱(z)=2M(z)+M2(z)4N(z)4.w^{\prime}(z)+w^{2}(z)=\mathcal{V}(z)=\frac{2M^{\prime}(z)+M^{2}(z)-4N(z)}{4}\,. (A3)

Now the group of symmetry transformations, 𝒢\mathcal{G}, of the solutions of the DE (A1) is a subgroup of SL(2,)SL\quantity(2,\mathbb{C}): 𝒢SL(2,)\mathcal{G}\subset SL\quantity(2,\mathbb{C}). The following four cases are of interest [6, 18]:

  1. (i)

    The subgroup is generated by

    𝒢=(a0b1/a),a,b.\mathcal{G}=\matrixquantity*(a&0\\ b&1/a)\,,\quad a,b\in\mathbb{C}\,.

    In this case w(z)w(z) is a rational function of degree 11.

  2. (ii)

    The subgroup is generated by

    𝒢=(c001/c),𝒢=(0c1/c0),c.\mathcal{G}=\matrixquantity*(c&0\\ 0&1/c)\,,\quad\mathcal{G}=\matrixquantity*(0&c\\ -1/c&0)\,,\quad c\in\mathbb{C}\,.

    In this case w(z)w(z) is a rational function of degree 22.

  3. (iii)

    𝒢\mathcal{G} is a finite group, excluding the above two possibilities. In this case w(z)w(z) is a rational function of degree either 44, 66, or 1212.

  4. (iv)

    The group 𝒢\mathcal{G} is SL(2,)SL(2,\mathbb{C}). If the solution w(z)w(z) at all exists, they non-Liouvillian.

There exists a set of three necessary but not sufficient conditions for the rational polynomial function 𝒱(z)\mathcal{V}(z) which are compatible with the above group theoretic analysis. These can be enumerated as follows [4, 5]:

  1. Cd.(i)

    𝒱(z)\mathcal{V}(z) has pole of order 11, or 2n2n (n+)(n\in\mathbb{Z}^{+}). Also, the order of 𝒱(z)\mathcal{V}(z) at infinity151515Here we define the order at infinity of a polynomial as the difference between the highest power of its argument in the denominator and that in the numerator. This convention is different from that used in [18] where the difference is replaced by subtraction. is either 2n2n or greater than 22.

  2. Cd.(ii)

    𝒱(z)\mathcal{V}(z) either has pole of order 22, or poles of order 2n+12n+1 greater than 22.

  3. Cd.(iii)

    𝒱(z)\mathcal{V}(z) has poles not greater than 22 and the order of 𝒱(z)\mathcal{V}(z) at infinity is at least 22.

If any one of these criteria is satisfied, we are eligible to apply the Kovacic’s algorithm to the DE (A1). We then need to determine whether w(z)w(z) is a polynomial function of degree 11, 22, 44, 66, or 1212 in which case (A1) turns out to be integrable. On the contrary, if none of the above criteria is satisfied, the solution to (A1) is non-Liouvillian and ensures the non-integrability of the DE (A1).

Appendix B Numerical Methodology

In the present work, we focus on two chaos indicators namely, the Poincaré section and the Lyapunov exponent [1]-[3]. For the familiarity of the reader, below we briefly elaborate on them and outline basic steps to calculate these entities in a holographic set up.

The signatures of integrability or non-integrability can be differentiated by looking into the phase space dynamics of the system. Integrable systems do not exhibit chaos and the trajectories are (quasi)periodic at equilibrium points. Non-integrable systems, on the other hand, are associated with the phase space that could be mixed showing (quasi)periodic orbits for some initial conditions and chaotic for others.

For a 2N2N dimensional integrable phase space, there are NN conserved charges QiQ_{i}, those define an NN dimensional hypersurface in the phase space known as the KAM tori. For such systems, the phase space trajectory flows are complete and they appear with a nicely foliated picture of the phase space. Different initial conditions give rise to different sets of trajectories in the phase space those are in the form of the tori. In numerical investigations, Poincaré sections161616It is a lower dimensional slicing hypersurface of an NN dimensional foliated KAM tori. (see left panels of Figs. 1,3, 5,7) are essentially the footprints of such foliations in the phase space [2]. As the strength of the non-integrable deformation increases, most of these tori get destroyed and one essentially runs away from the foliation picture. This results into a chaotic motion and Poincaré sections loose its structure, eventually becoming like a random distribution of points in the phase space.

Lyapunov exponents (see right panels of Figs. 1,3,5, 7), on the other hand, are the signature trademarks of a chaotic motion. They encode the sensitivity of the phase space trajectories on the initial conditions and are defined as171717For a 2N2N dimensional phase space, there are in principle 2N2N Lyapunov exponents satisfying the constraint, i=12Nλi=0\sum_{i=1}^{2N}\lambda_{i}=0. In this paper, however, we compute the largest positive Lyapunov among all these possible ones.[1]-[3]

λ=limtlimΔX001tlogΔX(X0,t)ΔX(X0,0),\lambda=\lim_{t\rightarrow\infty}\lim_{\Delta X_{0}\rightarrow 0}\frac{1}{t}\log\frac{\Delta X(X_{0},t)}{\Delta X(X_{0},0)}, (B1)

where, ΔX\Delta X is the infinitesimal separation between two trajectories in the phase space. For integrable trajectories, those pertaining to a particular KAM tori, the corresponding λ\lambda approaches zero at late times. On the other hand, it exhibits a nonzero value for chaotic orbits.

To calculate the above entities in a string theory set up, one has to start with the 2D string sigma model description in (1). Given the conjugate momenta (2) and the Hamiltonian (3), we study the corresponding Hamilton’s equations of motion (for a given string embedding) those are subjected to the Virasoro (or the Hamiltonian) constraints of the form [1]

=Tττ0,Tτσ=Tστ0.\displaystyle\begin{split}\mathcal{H}&=T_{\tau\tau}\approx 0\,,\\ T_{\tau\sigma}&=T_{\sigma\tau}\approx 0\,.\end{split} (B2)

The above constraints (B2) are always satisfied during the time evolution of the system. The initial data that satisfy (B2) are used to find solutions to the Hamilton’s equations of motion corresponding to different backgrounds those are listed above. These solutions are what we call the phase space data those are finally used to explore the chaos indicators mentioned above.

Appendix C Expressions for the coefficients in (11)

T(1)θ1=4α22(α22sin2θ1cos2ξ+cos2θ1sin22ξ/4)4sin2ξcos2ξ(α22cos2θ1+α42cos2θ2+4α2α6cosθ12α2α4cosθ1cosθ24α4α6cosθ2)sin2θ1sin2θ2sin42ξ×(γ^12α22+2α2α4γ^1γ^2+γ^22α42+2α2α6γ^1γ^3+2α4α6γ^2γ^3+γ^32α62)4α62sin22ξ.\displaystyle\begin{split}T^{(1)}_{\theta_{1}}&=-4\alpha_{2}^{2}\quantity(\alpha_{2}^{2}\sin^{2}\theta_{1}\cos^{2}\xi+\cos^{2}\theta_{1}\sin^{2}2\xi\big{/}4)-4\sin^{2}\xi\cos^{2}\xi\Big{(}\alpha_{2}^{2}\cos^{2}\theta_{1}+\alpha_{4}^{2}\cos^{2}\theta_{2}\\ &\quad+4\alpha_{2}\alpha_{6}\cos\theta_{1}-2\alpha_{2}\alpha_{4}\cos\theta_{1}\cos\theta_{2}-4\alpha_{4}\alpha_{6}\cos\theta_{2}\Big{)}-\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{4}2\xi\,\times\\ &\quad\Big{(}\hat{\gamma}_{1}^{2}\alpha_{2}^{2}+2\alpha_{2}\alpha_{4}\hat{\gamma}_{1}\hat{\gamma}_{2}+\hat{\gamma}_{2}^{2}\alpha_{4}^{2}+2\alpha_{2}\alpha_{6}\hat{\gamma}_{1}\hat{\gamma}_{3}+2\alpha_{4}\alpha_{6}\hat{\gamma}_{2}\hat{\gamma}_{3}+\hat{\gamma}_{3}^{2}\alpha_{6}^{2}\Big{)}-4\alpha_{6}^{2}\sin^{2}2\xi\,.\end{split} (C1)
T(2)θ1=α22(4cos2ξsin22ξ+γ^12sin2θ2sin42ξ)sin2θ1+(α4γ^2+α6γ^3)2sin2θ1sin2θ2×sin42ξ+2α2[α4(sinθ1cosθ2sin22ξ+γ^1γ^2sin2θ1sin2θ2sin42ξ)+α6sin22ξ×(2sinθ1+γ^1γ^3sin2θ1sin2θ2sin22ξ)].\displaystyle\begin{split}T^{(2)}_{\theta_{1}}&=\alpha_{2}^{2}\quantity(4\cos^{2}\xi-\sin^{2}2\xi+\hat{\gamma}_{1}^{2}\sin^{2}\theta_{2}\sin^{4}2\xi)\sin 2\theta_{1}+\quantity(\alpha_{4}\hat{\gamma}_{2}+\alpha_{6}\hat{\gamma}_{3})^{2}\sin 2\theta_{1}\sin^{2}\theta_{2}\times\\ &\quad\sin^{4}2\xi+2\alpha_{2}\Big{[}\alpha_{4}\quantity(\sin\theta_{1}\cos\theta_{2}\sin^{2}2\xi+\hat{\gamma}_{1}\hat{\gamma}_{2}\sin 2\theta_{1}\sin^{2}\theta_{2}\sin^{4}2\xi)+\alpha_{6}\sin^{2}2\xi\,\times\\ &\quad\quantity(-2\sin\theta_{1}+\hat{\gamma}_{1}\hat{\gamma}_{3}\sin 2\theta_{1}\sin^{2}\theta_{2}\sin^{2}2\xi)\Big{]}\,.\end{split} (C2)
T(1)θ2=4α22cos2ξ(cos2θ1sin2ξ+sin2θ1(1+4γ^12cos2ξsin4ξsin2θ2))+8α2α4cos2ξsin2ξ(cosθ1cosθ2γ^1γ^2sin2θ1sin2θ2sin22ξ)4α42sin2ξ(cos2θ2cos2ξ+sin2θ2(1+4γ^2sin2θ1sin2ξcos4ξ))8α2α6sin2ξcos2ξ(2cosθ1+γ^1γ^3sin2θ1sin2θ2sin22ξ)+8α4α6sin2ξcos2ξ(2cosθ2γ^2γ^3sin2θ1sin2θ2sin22ξ)α62sin22ξ(4+γ^32sin2θ1sin2θ2sin22ξ).\displaystyle\begin{split}T^{(1)}_{\theta_{2}}&=-4\alpha_{2}^{2}\cos^{2}\xi\Big{(}\cos^{2}\theta_{1}\sin^{2}\xi+\sin^{2}\theta_{1}\quantity(1+4\hat{\gamma}_{1}^{2}\cos^{2}\xi\sin^{4}\xi\sin^{2}\theta_{2})\Big{)}+8\alpha_{2}\alpha_{4}\\ &\quad\cos^{2}\xi\sin^{2}\xi\quantity(\cos\theta_{1}\cos\theta_{2}-\hat{\gamma}_{1}\hat{\gamma}_{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}2\xi)-4\alpha_{4}^{2}\sin^{2}\xi\Big{(}\cos^{2}\theta_{2}\cos^{2}\xi\\ &\quad+\sin^{2}\theta_{2}\quantity(1+4\hat{\gamma}_{2}\sin^{2}\theta_{1}\sin^{2}\xi\cos^{4}\xi)\Big{)}-8\alpha_{2}\alpha_{6}\sin^{2}\xi\cos^{2}\xi\Big{(}2\cos\theta_{1}+\hat{\gamma}_{1}\hat{\gamma}_{3}\sin^{2}\theta_{1}\\ &\quad\sin^{2}\theta_{2}\sin^{2}2\xi\Big{)}+8\alpha_{4}\alpha_{6}\sin^{2}\xi\cos^{2}\xi\quantity(2\cos\theta_{2}-\hat{\gamma}_{2}\hat{\gamma}_{3}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}2\xi)\\ &\quad-\alpha_{6}^{2}\sin^{2}2\xi\quantity(4+\hat{\gamma}_{3}^{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}2\xi)\,.\end{split} (C3)
T(2)θ2=(γ^12α22+2γ^1γ^3α2α6+γ^32α62)sin2θ1sin2θ2sin42ξ2α2α4sin22ξsinθ2×(cosθ1+2γ^1γ^2sin22ξsin2θ1cosθ2)4α42sin2θ2sin4ξ(1+4γ^22sin2θ1cos4ξ)2α4α6sin22ξ(2sinθ2+γ^2γ^3sin2θ1sin2θ2sin22ξ).\displaystyle\begin{split}T^{(2)}_{\theta_{2}}&=-\quantity(\hat{\gamma}_{1}^{2}\alpha_{2}^{2}+2\hat{\gamma}_{1}\hat{\gamma}_{3}\alpha_{2}\alpha_{6}+\hat{\gamma}_{3}^{2}\alpha_{6}^{2})\,\sin^{2}\theta_{1}\sin 2\theta_{2}\sin^{4}2\xi-2\alpha_{2}\alpha_{4}\sin^{2}2\xi\sin\theta_{2}\\ &\quad\times\quantity(\cos\theta_{1}+2\hat{\gamma}_{1}\hat{\gamma}_{2}\sin^{2}2\xi\sin^{2}\theta_{1}\cos\theta_{2})-4\alpha_{4}^{2}\sin 2\theta_{2}\sin^{4}\xi\quantity(1+4\hat{\gamma}_{2}^{2}\sin^{2}\theta_{1}\cos^{4}\xi)\\ &\quad-2\alpha_{4}\alpha_{6}\sin^{2}2\xi\quantity(2\sin\theta_{2}+\hat{\gamma}_{2}\hat{\gamma}_{3}\sin^{2}\theta_{1}\sin 2\theta_{2}\sin^{2}2\xi)\,.\end{split} (C4)
T(1)ξ=(γ^12α22+2γ^1γ^2α2α4+γ^22α42+γ^32α62+2γ^1γ^3α2α6+2γ^2γ^3α4α6)sin2θ1sin2θ2sin42ξ4α22sin2θ1cos2ξ4α42sin2θ2sin2ξ+sin22ξ(4α62α22cos2θ1α42cos2θ2+2α2α4cosθ1cosθ24α2α6cosθ1+4α4α6cosθ2).\displaystyle\begin{split}T^{(1)}_{\xi}&=-\quantity(\hat{\gamma}_{1}^{2}\alpha_{2}^{2}+2\hat{\gamma}_{1}\hat{\gamma}_{2}\alpha_{2}\alpha_{4}+\hat{\gamma}_{2}^{2}\alpha_{4}^{2}+\hat{\gamma}_{3}^{2}\alpha_{6}^{2}+2\hat{\gamma}_{1}\hat{\gamma}_{3}\alpha_{2}\alpha_{6}+2\hat{\gamma}_{2}\hat{\gamma}_{3}\alpha_{4}\alpha_{6})\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{4}2\xi\\ &\quad-4\alpha_{2}^{2}\sin^{2}\theta_{1}\cos^{2}\xi-4\alpha_{4}^{2}\sin^{2}\theta_{2}\sin^{2}\xi+\sin^{2}2\xi\Big{(}-4\alpha_{6}^{2}-\alpha_{2}^{2}\cos^{2}\theta_{1}-\alpha_{4}^{2}\cos^{2}\theta_{2}\\ &\quad+2\alpha_{2}\alpha_{4}\cos\theta_{1}\cos\theta_{2}-4\alpha_{2}\alpha_{6}\cos\theta_{1}+4\alpha_{4}\alpha_{6}\cos\theta_{2}\Big{)}\,.\end{split} (C5)
T(2)ξ=2(α22(32γ^12sin3ξcos3ξcos2ξsin2θ1sin2θ22sin2θ1sin2ξ+cos2θ1sin4ξ)+2α2sin4ξ[α4(cosθ1cosθ2+2γ^1γ^2sin2θ1sin2θ2sin22ξ)+2α6(cosθ1+γ^1γ^3sin2θ1sin2θ2sin22ξ)]+2sin2ξ[α42(cos2θ2cos2ξ+sin2θ2×(1+2γ^22sin22ξcos2ξsin2θ1))4α4α6cos2ξ(cosθ2γ^2γ^3sin2θ1sin2θ2sin22ξ)+2α62cos2ξ(2+γ^32sin2θ1sin2θ2sin22ξ)]).\displaystyle\begin{split}T^{(2)}_{\xi}&=-2\Big{(}\alpha_{2}^{2}\quantity(32\hat{\gamma}_{1}^{2}\sin^{3}\xi\cos^{3}\xi\cos 2\xi\sin^{2}\theta_{1}\sin^{2}\theta_{2}-2\sin^{2}\theta_{1}\sin 2\xi+\cos^{2}\theta_{1}\sin 4\xi)\\ &\quad+2\alpha_{2}\sin 4\xi\Big{[}\alpha_{4}\quantity(-\cos\theta_{1}\cos\theta_{2}+2\hat{\gamma}_{1}\hat{\gamma}_{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}2\xi)\\ &\quad+2\alpha_{6}\quantity(\cos\theta_{1}+\hat{\gamma}_{1}\hat{\gamma}_{3}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}2\xi)\Big{]}+2\sin 2\xi\Big{[}\alpha_{4}^{2}\Big{(}\cos^{2}\theta_{2}\cos 2\xi+\sin^{2}\theta_{2}\\ &\quad\times\quantity(1+2\hat{\gamma}_{2}^{2}\sin^{2}2\xi\cos 2\xi\sin^{2}\theta_{1})\Big{)}-4\alpha_{4}\alpha_{6}\cos 2\xi\quantity(\cos\theta_{2}-\hat{\gamma}_{2}\hat{\gamma}_{3}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}2\xi)\\ &\quad+2\alpha_{6}^{2}\cos 2\xi\quantity(2+\hat{\gamma}_{3}^{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}2\xi)\Big{]}\Big{)}\,.\end{split} (C6)

Appendix D Detailed expressions of 𝒩3\mathcal{N}_{3} and 𝒩4\mathcal{N}_{4} in (110c), (110d)

The expression for 𝒩3\mathcal{N}_{3} in (110c) is given by

𝒩3=1𝒟1264𝒟22+32𝒟14𝒟1+5𝒟32,\displaystyle\mathcal{N}_{3}=-\frac{\mathcal{M}_{1}}{\mathcal{D}_{1}}-\frac{\mathcal{M}_{2}}{64\mathcal{D}_{2}^{2}}+\frac{\mathcal{M}_{3}}{2\mathcal{D}_{1}}-\frac{\mathcal{M}_{4}}{\mathcal{D}_{1}}+\frac{\mathcal{M}_{5}}{\mathcal{D}_{3}^{2}}\,, (D1)

where

1\displaystyle\mathcal{M}_{1} =μ1cos4ξsinθ1(82+2μ2+4μ3+2μ1cosθ1+μ1cos(θ12ξ)\displaystyle=\mu_{1}\cos^{4}\xi\sin\theta_{1}\bigg{(}-8\sqrt{2}+2\mu_{2}+4\mu_{3}+2\mu_{1}\cos\theta_{1}+\mu_{1}\cos(\theta_{1}-2\xi)
+82cos(2ξ)2μ2cos(2ξ)4μ3cos(2ξ)+μ1cos(θ1+2ξ))\displaystyle+8\sqrt{2}\cos(2\xi)-2\mu_{2}\cos(2\xi)-4\mu_{3}\cos(2\xi)+\mu_{1}\cos(\theta_{1}+2\xi)\bigg{)}
×(μ12sin2θ1+(μ2+2μ3μ1cosθ1)2sin2ξ),\displaystyle\times\bigg{(}\mu_{1}^{2}\sin^{2}\theta_{1}+(\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1})^{2}\sin^{2}\xi\bigg{)}\,,
𝒟1\displaystyle\mathcal{D}_{1} =16+cos2ξ[μ12sin2θ1+(μ222μ1(μ2+2μ3)cosθ1+μ21cos2θ1)sin2ξ]+μ3(μ2\displaystyle=16+\cos^{2}\xi\bigg{[}\mu_{1}^{2}\sin^{2}\theta_{1}+\bigg{(}\mu_{2}^{2}-2\mu_{1}(\mu_{2}+2\mu_{3})\cos\theta_{1}+\mu^{2}_{1}\cos^{2}\theta_{1}\bigg{)}\sin^{2}\xi\bigg{]}+\mu_{3}(\mu_{2}
+μ3)sin2(2ξ),\displaystyle+\mu_{3})\sin^{2}(2\xi)\,,
2\displaystyle\mathcal{M}_{2} =μ1csc4ξ((2(μ2+2μ3)sinθ1+μ1cot2ξsin(2θ1))(256E+4μ12cos2ξsin2θ1\displaystyle=\mu_{1}\csc^{4}\xi\bigg{(}\big{(}2\big{(}\mu_{2}+2\mu_{3}\big{)}\sin\theta_{1}+\mu_{1}\cot^{2}\xi\sin(2\theta_{1})\big{)}\big{(}256E+4\mu_{1}^{2}\cos^{2}\xi\sin^{2}\theta_{1}
+(μ2+2μ3μ1cosθ1)(82+μ2+2μ3μ1cosθ1)sin2(2ξ))2),\displaystyle+\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\big{(}-8\sqrt{2}+\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}(2\xi)\big{)}^{2}\bigg{)}\,,
𝒟2=(μ2+2μ3μ1cosθ1)2cos2ξ+16csc2ξ+μ12cot2ξsin2θ1,\displaystyle\mathcal{D}_{2}=\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}^{2}\cos^{2}\xi+16\csc^{2}\xi+\mu_{1}^{2}\cot^{2}\xi\sin^{2}\theta_{1}\,,
3\displaystyle\mathcal{M}_{3} =μ1cos2ξ(82+2μ2+4μ3+2μ1cosθ1+μ1cos(θ12ξ)+82cos(2ξ)\displaystyle=\mu_{1}\cos^{2}\xi\bigg{(}-8\sqrt{2}+2\mu_{2}+4\mu_{3}+2\mu_{1}\cos\theta_{1}+\mu_{1}\cos(\theta_{1}-2\xi)+8\sqrt{2}\cos(2\xi)
2μ2cos(2ξ)4μ3cos(2ξ)+μ1cos(θ1+2ξ))sinθ1(128E\displaystyle-2\mu_{2}\cos(2\xi)-4\mu_{3}\cos(2\xi)+\mu_{1}\cos(\theta_{1}+2\xi)\bigg{)}\sin\theta_{1}\bigg{(}128E
+2μ12cos2ξ(sin2θ1+cos2θ1sin2ξ)12((82μ22μ3)(μ2+2μ3)\displaystyle+2\mu_{1}^{2}\cos^{2}\xi\big{(}\sin^{2}\theta_{1}+\cos^{2}\theta_{1}\sin^{2}\xi\big{)}-\frac{1}{2}\big{(}\big{(}8\sqrt{2}-\mu_{2}-2\mu_{3}\big{)}(\mu_{2}+2\mu_{3})
+2μ1(42+μ2+2μ3)cosθ1)sin2(2ξ)),\displaystyle+2\mu_{1}\big{(}-4\sqrt{2}+\mu_{2}+2\mu_{3}\big{)}\cos\theta_{1}\big{)}\sin^{2}(2\xi)\bigg{)}\,,
4=\displaystyle\mathcal{M}_{4}= μ1cos2ξ(μ1cos2ξsin(2θ1)+2(μ2+2μ3)sinθ1sin2ξ)×(128E\displaystyle\mu_{1}\cos^{2}\xi\bigg{(}\mu_{1}\cos^{2}\xi\sin(2\theta_{1})+2(\mu_{2}+2\mu_{3})\sin\theta_{1}\sin^{2}\xi\bigg{)}\times\bigg{(}128E
+2μ12cos2ξ(sin2θ1+cos2θ1sin2ξ)12((82μ22μ3)(μ2+2μ3)\displaystyle+2\mu_{1}^{2}\cos^{2}\xi\big{(}\sin^{2}\theta_{1}+\cos^{2}\theta_{1}\sin^{2}\xi\big{)}-\frac{1}{2}\big{(}\big{(}8\sqrt{2}-\mu_{2}-2\mu_{3}\big{)}(\mu_{2}+2\mu_{3})
+2μ1(42+μ2+2μ3)cosθ1)sin2(2ξ)),\displaystyle+2\mu_{1}\big{(}-4\sqrt{2}+\mu_{2}+2\mu_{3}\big{)}\cos\theta_{1}\big{)}\sin^{2}(2\xi)\bigg{)}\,,
5\displaystyle\mathcal{M}_{5} =μ1cos4ξ(μ2+2μ3+μ1cosθ1cot2ξ)(μ12cot2ξ2μ1(μ2+2μ3)cotθ1cscθ1\displaystyle=\mu_{1}\cos^{4}\xi\big{(}\mu_{2}+2\mu_{3}+\mu_{1}\cos\theta_{1}\cot^{2}\xi\big{)}\bigg{(}\mu_{1}^{2}\cot^{2}\xi-2\mu_{1}(\mu_{2}+2\mu_{3})\cot\theta_{1}\csc\theta_{1}
+(μ2+2μ3)2csc2θ1+μ12csc2ξ)sinθ1(4μ12cos2ξ+μ12cot2θ1sin2(2ξ)\displaystyle+\big{(}\mu_{2}+2\mu_{3}\big{)}^{2}\csc^{2}\theta_{1}+\mu_{1}^{2}\csc^{2}\xi\bigg{)}\sin\theta_{1}\bigg{(}4\mu_{1}^{2}\cos^{2}\xi+\mu_{1}^{2}\cot^{2}\theta_{1}\sin^{2}(2\xi)
+2μ1(42μ22μ3)cotθ1cscθ1sin2(2ξ)+csc2θ1(256E\displaystyle+2\mu_{1}\big{(}4\sqrt{2}-\mu_{2}-2\mu_{3}\big{)}\cot\theta_{1}\csc\theta_{1}\sin^{2}(2\xi)+\csc^{2}\theta_{1}\big{(}256E
(82μ22μ3)(μ2+2μ3)sin2(2ξ))),\displaystyle-\big{(}8\sqrt{2}-\mu_{2}-2\mu_{3}\big{)}(\mu_{2}+2\mu_{3})\sin^{2}(2\xi)\big{)}\bigg{)}\,,
𝒟3=μ12cot2ξ+(μ2+2μ3μ1cosθ1)2cos2ξcsc2θ1+16csc2θ1csc2ξ.\displaystyle\mathcal{D}_{3}=\mu_{1}^{2}\cot^{2}\xi+\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}^{2}\cos^{2}\xi\csc^{2}\theta_{1}+16\csc^{2}\theta_{1}\csc^{2}\xi\,.

The expression for 𝒩4\mathcal{N}_{4} in (110d) is given by

𝒩4=62𝒟2+7𝒟1+8𝒟129𝒟1210𝒟1+211𝒟1,\displaystyle\mathcal{N}_{4}=\frac{\mathcal{M}_{6}}{2\mathcal{D}_{2}}+\frac{\mathcal{M}_{7}}{\mathcal{D}_{1}}+\frac{\mathcal{M}_{8}}{\mathcal{D}_{1}^{2}}-\frac{\mathcal{M}_{9}}{\mathcal{D}_{1}^{2}}-\frac{\mathcal{M}_{10}}{\mathcal{D}_{1}}+\frac{2\mathcal{M}_{11}}{\mathcal{D}_{1}}\,, (D2)

where

6\displaystyle\mathcal{M}_{6} =16sin2θ1sin(2ξ)(μ2+2μ3μ1cosθ1)2csc2ξ((μ2+2μ3μ1cosθ1)(82+μ2\displaystyle=16\sin^{2}\theta_{1}\sin(2\xi)\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}^{2}\csc^{2}\xi\bigg{(}\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\big{(}-8\sqrt{2}+\mu_{2}
+2μ3μ1cosθ1)cos2ξ+64Ecsc2ξ+μ12cot2ξsin2θ1)sin3(2ξ),\displaystyle+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\cos^{2}\xi+64E\csc^{2}\xi+\mu_{1}^{2}\cot^{2}\xi\sin^{2}\theta_{1}\bigg{)}\sin^{3}(2\xi)\,,
7\displaystyle\mathcal{M}_{7} =(μ12sin2θ1+(μ2+2μ3μ1cosθ1)2sin2ξ)sin(2ξ)(128E\displaystyle=\bigg{(}\mu_{1}^{2}\sin^{2}\theta_{1}+\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}^{2}\sin^{2}\xi\bigg{)}\sin(2\xi)\bigg{(}128E
+2μ12cos2ξ(sin2θ1+cos2θ1sin2ξ)12((82μ22μ3)(μ2+2μ3)\displaystyle+2\mu_{1}^{2}\cos^{2}\xi\big{(}\sin^{2}\theta_{1}+\cos^{2}\theta_{1}\sin^{2}\xi\big{)}-\frac{1}{2}\big{(}\big{(}8\sqrt{2}-\mu_{2}-2\mu_{3}\big{)}(\mu_{2}+2\mu_{3})
+2μ1(42+μ2+2μ3)cosθ1)sin2(2ξ)),\displaystyle+2\mu_{1}\big{(}-4\sqrt{2}+\mu_{2}+2\mu_{3}\big{)}\cos\theta_{1}\big{)}\sin^{2}(2\xi)\bigg{)}\,,
8\displaystyle\mathcal{M}_{8} =2μ32sin(4ξ)+(2cos2ξ(μ12sin2θ1+(μ2+2μ3μ1cosθ1)2sin2(ξ)))\displaystyle=2\mu_{3}^{2}\sin(4\xi)+\bigg{(}2\cos^{2}\xi\big{(}\mu_{1}^{2}\sin^{2}\theta_{1}+\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}^{2}\sin^{2}(\xi)\big{)}\bigg{)}
×(64E+cos2ξ(μ12sin2θ1+(μ2μ1cosθ1)(μ2+4μ3μ1cosθ1)sin2ξ)+μ32sin2(2ξ)\displaystyle\times\bigg{(}64E+\cos^{2}\xi\big{(}\mu_{1}^{2}\sin^{2}\theta_{1}+\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}\xi\big{)}+\mu_{3}^{2}\sin^{2}(2\xi)
22(μ2+2μ3μ1cosθ1)sin2(2ξ))(2(μ2μ1cosθ1)(μ2+4μ3μ1cosθ1)cos3ξsinξ\displaystyle-2\sqrt{2}\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}(2\xi)\bigg{)}\bigg{(}2\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\cos^{3}\xi\sin\xi
2cosξsinξ(μ12sin2θ1+(μ2μ1cosθ1)×(μ2+4μ3μ1cosθ1)sin2ξ)+2μ32sin(4ξ)),\displaystyle-2\cos\xi\sin\xi\big{(}\mu_{1}^{2}\sin^{2}\theta_{1}+\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\times\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}\xi\big{)}+2\mu_{3}^{2}\sin(4\xi)\bigg{)}\,,
9\displaystyle\mathcal{M}_{9} =(64E+cos2ξ(μ12sin2θ1+(μ2μ1cosθ1)(μ2+4μ3μ1cosθ1)sin2ξ)+μ32sin2(2ξ)\displaystyle=\bigg{(}64E+\cos^{2}\xi\big{(}\mu_{1}^{2}\sin^{2}\theta_{1}+\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}\xi\big{)}+\mu_{3}^{2}\sin^{2}(2\xi)
22(μ2+2μ3μ1cosθ1)sin2(2ξ))2(2(μ2μ1cosθ1)(μ2+4μ3μ1cosθ1)cos3ξsinξ\displaystyle-2\sqrt{2}\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}(2\xi)\bigg{)}^{2}\bigg{(}2\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\cos^{3}\xi\sin\xi
2cosξsinξ(μ12sin2θ1+(μ2μ1cosθ1)×(μ2+4μ3μ1cosθ1)sin2ξ)+2μ32sin(4ξ)),\displaystyle-2\cos\xi\sin\xi\big{(}\mu_{1}^{2}\sin^{2}\theta_{1}+\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\times\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}\xi\big{)}+2\mu_{3}^{2}\sin(4\xi)\bigg{)}\,,
10\displaystyle\mathcal{M}_{10} =(2cos2ξ(μ12sin2θ1+(μ2+2μ3μ1cosθ1)2sin2ξ))\displaystyle=\bigg{(}2\cos^{2}\xi\big{(}\mu_{1}^{2}\sin^{2}\theta_{1}+\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}^{2}\sin^{2}\xi\big{)}\bigg{)}
(2(μ2μ1cosθ1)(μ2+4μ3μ1cosθ1)cos3ξsinξ\displaystyle\bigg{(}2\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\cos^{3}\xi\sin\xi
2cosξsinξ(μ12sin2θ1+(μ2μ1cosθ1)×(μ2+4μ3μ1cosθ1)sin2ξ)\displaystyle-2\cos\xi\sin\xi\big{(}\mu_{1}^{2}\sin^{2}\theta_{1}+\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\times\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}\xi\big{)}
+2μ32sin(4ξ)42(μ2+2μ3μ1cosθ1)sin(4ξ)),\displaystyle+2\mu_{3}^{2}\sin(4\xi)-4\sqrt{2}\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin(4\xi)\bigg{)}\,,
11\displaystyle\mathcal{M}_{11} =(64E+cos2ξ(μ12sin2θ1+(μ2μ1cosθ1)(μ2+4μ3μ1cosθ1)sin2ξ)+μ32sin2(2ξ)\displaystyle=\bigg{(}64E+\cos^{2}\xi\big{(}\mu_{1}^{2}\sin^{2}\theta_{1}+\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}\xi\big{)}+\mu_{3}^{2}\sin^{2}(2\xi)
22(μ2+2μ3μ1cosθ1)sin2(2ξ))(2(μ2μ1cosθ1)(μ2+4μ3μ1cosθ1)cos3ξsinξ\displaystyle-2\sqrt{2}\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}(2\xi)\bigg{)}\bigg{(}2\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\cos^{3}\xi\sin\xi
2cosξsinξ(μ12sin2θ1+(μ2μ1cosθ1)×(μ2+4μ3μ1cosθ1)sin2ξ)+2μ32sin(4ξ)\displaystyle-2\cos\xi\sin\xi\big{(}\mu_{1}^{2}\sin^{2}\theta_{1}+\big{(}\mu_{2}-\mu_{1}\cos\theta_{1}\big{)}\times\big{(}\mu_{2}+4\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin^{2}\xi\big{)}+2\mu_{3}^{2}\sin(4\xi)
42(μ2+2μ3μ1cosθ1)sin(4ξ)).\displaystyle-4\sqrt{2}\big{(}\mu_{2}+2\mu_{3}-\mu_{1}\cos\theta_{1}\big{)}\sin(4\xi)\bigg{)}\,.

References

  • [1] L. A. Pando Zayas and C. A. Terrero-Escalante, “Chaos in the Gauge / Gravity Correspondence,” JHEP 1009, 094 (2010) doi:10.1007/JHEP09(2010)094 [arXiv:1007.0277 [hep-th]].
  • [2] P. Basu, D. Das and A. Ghosh, “Integrability Lost,” Phys. Lett. B 699, 388 (2011) doi:10.1016/j.physletb.2011.04.027 [arXiv:1103.4101 [hep-th]].
  • [3] P. Basu and L. A. Pando Zayas, “Chaos rules out integrability of strings on AdS5×T1,1AdS_{5}\times T^{1,1}” Phys. Lett. B 700, 243 (2011) doi:10.1016/j.physletb.2011.04.063 [arXiv:1103.4107 [hep-th]].
  • [4] J. J. Kovacic, “An algorithm for solving second order linear homogeneous differential equations,” J.Symb.Comput. 2 (1986) 3 .
  • [5] B. D. Saunders, “An implementation of Kovacic’s algorithm for solving second order linear homogeneous differential equations,” in: The Proceedings of the 4th ACM Symposium on Symbolic and Algebraic Computation, SYMSAC’81, August 5–7, Snowbird, USA, 1981.
  • [6] J. Kovacic, “Picard-Vessiot Theory, Algebraic Groups and Group Schemes,” Department of Mathematics, the City College of the City University of New York, 2005, https://ksda.ccny.cuny.edu/PostedPapers/pv093005.pdf
  • [7] P. Basu and L. A. Pando Zayas, “Analytic Non-integrability in String Theory,” Phys. Rev. D 84 (2011), 046006 doi:10.1103/PhysRevD.84.046006 [arXiv:1105.2540 [hep-th]].
  • [8] P. Basu, D. Das, A. Ghosh and L. A. Pando Zayas, “Chaos around Holographic Regge Trajectories,” JHEP 1205, 077 (2012) doi:10.1007/JHEP05(2012)077 [arXiv:1201.5634 [hep-th]].
  • [9] L. A. Pando Zayas and D. Reichmann, “A String Theory Explanation for Quantum Chaos in the Hadronic Spectrum,” JHEP 1304, 083 (2013) doi:10.1007/JHEP04(2013)083 [arXiv:1209.5902 [hep-th]].
  • [10] P. Basu and A. Ghosh, “Confining Backgrounds and Quantum Chaos in Holography,” Phys. Lett. B 729, 50 (2014) doi:10.1016/j.physletb.2013.12.052 [arXiv:1304.6348[hep-th]].
  • [11] P. Basu, P. Chaturvedi and P. Samantray, “Chaotic dynamics of strings in charged black hole backgrounds,” Phys. Rev. D 95, no.6, 066014 (2017) doi:10.1103/PhysRevD.95.066014 [arXiv:1607.04466 [hep-th]].
  • [12] K. L. Panigrahi and M. Samal, “Chaos in classical string dynamics in γ^\hat{\gamma} deformed AdS5×T1,1AdS_{5}\times T^{1,1},” Phys. Lett. B 761, 475-481 (2016) doi:10.1016/j.physletb.2016.08.021 [arXiv:1605.05638 [hep-th]].
  • [13] D. Giataganas, L. A. Pando Zayas and K. Zoubos, “On Marginal Deformations and Non-Integrability,” JHEP 1401, 129 (2014) doi:10.1007/JHEP01(2014)129 [arXiv:1311.3241 [hep-th]].
  • [14] T. Ishii, S. Kushiro and K. Yoshida, “Chaotic string dynamics in deformed T1,1,” JHEP 05, 158 (2021) doi:10.1007/JHEP05(2021)158 [arXiv:2103.12416 [hep-th]].
  • [15] D. Giataganas and K. Zoubos, “Non-integrability and Chaos with Unquenched Flavor,” JHEP 10, 042 (2017) doi:10.1007/JHEP10(2017)042 [arXiv:1707.04033 [hep-th]].
  • [16] D. Roychowdhury, “Analytic integrability for strings on η\eta and λ\lambda deformed backgrounds,” JHEP 10 (2017), 056 doi:10.1007/JHEP10(2017)056 [arXiv:1707.07172 [hep-th]].
  • [17] C. Núñez, J. M. Penín, D. Roychowdhury and J. Van Gorsel, “The non-Integrability of Strings in Massive Type IIA and their Holographic duals,” JHEP 06 (2018), 078 doi:10.1007/JHEP06(2018)078 [arXiv:1802.04269 [hep-th]].
  • [18] C. Núñez, D. Roychowdhury and D. C. Thompson, “Integrability and non-integrability in 𝒩=2\mathcal{N}=2 SCFTs and their holographic backgrounds,” JHEP 07 (2018), 044 doi:10.1007/JHEP07(2018)044 [arXiv:1804.08621 [hep-th]].
  • [19] A. Banerjee and A. Bhattacharyya, “Probing analytical and numerical integrability: the curious case of (AdS5×S5{}_{5}\times S^{5})η,” JHEP 11 (2018), 124 doi:10.1007/JHEP11(2018)124 [arXiv:1806.10924 [hep-th]].
  • [20] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998), 231-252 doi:10.1023/A:1026654312961 [arXiv:hep-th/9711200 [hep-th]].
  • [21] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998), 253-291 doi:10.4310/ATMP.1998.v2.n2.a2 [arXiv:hep-th/9802150 [hep-th]].
  • [22] L. Wulff, “Condition on Ramond-Ramond fluxes for factorization of worldsheet scattering in anti–de Sitter space,” Phys. Rev. D 96, no.10, 101901 (2017) doi:10.1103/PhysRevD.96.101901 [arXiv:1708.09673 [hep-th]].
  • [23] L. Wulff, “Classifying integrable symmetric space strings via factorized scattering,” JHEP 02, 106 (2018) doi:10.1007/JHEP02(2018)106 [arXiv:1711.00296 [hep-th]].
  • [24] L. Wulff, “Constraining integrable AdS/CFT with factorized scattering,” JHEP 04, 133 (2019) doi:10.1007/JHEP04(2019)133 [arXiv:1903.08660 [hep-th]].
  • [25] D. Giataganas, “Analytic nonintegrability and S-matrix factorization,” Phys. Rev. D 104, no.6, 066017 (2021) doi:10.1103/PhysRevD.104.066017 [arXiv:1909.02577 [hep-th]].
  • [26] I. Bena, J. Polchinski and R. Roiban, “Hidden symmetries of the AdS5×S5AdS_{5}\times S^{5} superstring,” Phys. Rev. D 69 (2004), 046002 doi:10.1103/PhysRevD.69.046002 [arXiv:hep-th/0305116 [hep-th]].
  • [27] G. Arutyunov and S. Frolov, “Superstrings on AdS4×CP3AdS_{4}\times CP^{3} as a Coset Sigma-model,” JHEP 09, 129 (2008) doi:10.1088/1126-6708/2008/09/129 [arXiv:0806.4940 [hep-th]].
  • [28] B. Stefanski, jr, “Green-Schwarz action for Type IIA strings on AdS4×CP3AdS_{4}\times CP^{3},” Nucl. Phys. B 808, 80-87 (2009) doi:10.1016/j.nuclphysb.2008.09.015 [arXiv:0806.4948 [hep-th]].
  • [29] D. Sorokin and L. Wulff, “Evidence for the classical integrability of the complete AdS4×CP3AdS_{4}\times CP^{3} superstring,” JHEP 11 (2010), 143 doi:10.1007/JHEP11(2010)143 [arXiv:1009.3498 [hep-th]].
  • [30] K. Zarembo, “Strings on Semisymmetric Superspaces,” JHEP 05 (2010), 002 doi:10.1007/JHEP05(2010)002 [arXiv:1003.0465 [hep-th]].
  • [31] O. Lunin and J. M. Maldacena, “Deforming field theories with U(1) x U(1) global symmetry and their gravity duals,” JHEP 05, 033 (2005) doi:10.1088/1126-6708/2005/05/033 [arXiv:hep-th/0502086 [hep-th]].
  • [32] S. A. Frolov, R. Roiban and A. A. Tseytlin, “Gauge-string duality for superconformal deformations of N=4 super Yang-Mills theory,” JHEP 07 (2005), 045 doi:10.1088/1126-6708/2005/07/045 [arXiv:hep-th/0503192 [hep-th]].
  • [33] S. Frolov, “Lax pair for strings in Lunin-Maldacena background,” JHEP 05 (2005), 069 doi:10.1088/1126-6708/2005/05/069 [arXiv:hep-th/0503201 [hep-th]].
  • [34] D. Giataganas, L. A. Pando Zayas and K. Zoubos, “On Marginal Deformations and Non-Integrability,” JHEP 01 (2014), 129 doi:10.1007/JHEP01(2014)129 [arXiv:1311.3241 [hep-th]].
  • [35] C. Klimcik, “Yang-Baxter sigma models and dS/AdS T duality,” JHEP 12, 051 (2002) doi:10.1088/1126-6708/2002/12/051 [arXiv:hep-th/0210095 [hep-th]].
  • [36] C. Klimcik, “On integrability of the Yang-Baxter sigma-model,” J. Math. Phys. 50, 043508 (2009) doi:10.1063/1.3116242 [arXiv:0802.3518 [hep-th]].
  • [37] F. Delduc, M. Magro and B. Vicedo, “On classical qq-deformations of integrable sigma-models,” JHEP 11, 192 (2013) doi:10.1007/JHEP11(2013)192 [arXiv:1308.3581 [hep-th]].
  • [38] F. Delduc, M. Magro and B. Vicedo, “An integrable deformation of the AdS5×S5AdS_{5}\times S^{5} superstring action,” Phys. Rev. Lett. 112, no.5, 051601 (2014) doi:10.1103/PhysRevLett.112.051601 [arXiv:1309.5850 [hep-th]].
  • [39] F. Delduc, M. Magro and B. Vicedo, “Derivation of the action and symmetries of the qq-deformed AdS5×S5AdS_{5}\times S^{5} superstring,” JHEP 10, 132 (2014) doi:10.1007/JHEP10(2014)132 [arXiv:1406.6286 [hep-th]].
  • [40] G. Arutyunov, R. Borsato and S. Frolov, “S-matrix for strings on η\eta-deformed AdS5 x S5,” JHEP 04, 002 (2014) doi:10.1007/JHEP04(2014)002 [arXiv:1312.3542 [hep-th]].
  • [41] G. Arutyunov, R. Borsato and S. Frolov, “Puzzles of η\eta-deformed AdS5×{}_{5}\times S5,” JHEP 12, 049 (2015) doi:10.1007/JHEP12(2015)049 [arXiv:1507.04239 [hep-th]].
  • [42] G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A. A. Tseytlin, “Scale invariance of the η\eta-deformed AdS5×S5AdS_{5}\times S^{5} superstring, T-duality and modified type II equations,” Nucl. Phys. B 903, 262-303 (2016) doi:10.1016/j.nuclphysb.2015.12.012 [arXiv:1511.05795 [hep-th]].
  • [43] B. Hoare and F. K. Seibold, “Supergravity backgrounds of the η\eta-deformed AdS2×S2×T6{}_{2}\times S^{2}\times T^{6} and AdS5×S5{}_{5}\times S^{5} superstrings,” JHEP 01, 125 (2019) doi:10.1007/JHEP01(2019)125 [arXiv:1811.07841 [hep-th]].
  • [44] I. Kawaguchi, T. Matsumoto and K. Yoshida, “Jordanian deformations of the AdS5xS5AdS_{5}xS^{5} superstring,” JHEP 04, 153 (2014) doi:10.1007/JHEP04(2014)153 [arXiv:1401.4855 [hep-th]].
  • [45] T. Matsumoto and K. Yoshida, “Lunin-Maldacena backgrounds from the classical Yang-Baxter equation - towards the gravity/CYBE correspondence,” JHEP 06, 135 (2014) doi:10.1007/JHEP06(2014)135 [arXiv:1404.1838 [hep-th]].
  • [46] G. Linardopoulos, “String integrability of the ABJM defect,” JHEP 06, 033 (2022) doi:10.1007/JHEP06(2022)033 [arXiv:2202.06824 [hep-th]].
  • [47] T. Matsumoto and K. Yoshida, “Schrödinger geometries arising from Yang-Baxter deformations,” JHEP 04, 180 (2015) doi:10.1007/JHEP04(2015)180 [arXiv:1502.00740 [hep-th]].
  • [48] R. Negrón and V. O. Rivelles, “Yang-Baxter deformations of the AdS4×3AdS_{4}\times\mathbb{CP}^{3} superstring sigma model,” JHEP 11, 043 (2018) doi:10.1007/JHEP11(2018)043 [arXiv:1809.01174 [hep-th]].
  • [49] L. Rado, V. O. Rivelles and R. Sánchez, “String backgrounds of the Yang-Baxter deformed AdS4×3AdS_{4}\times\mathbb{CP}^{3} superstring,” JHEP 01, 056 (2021) doi:10.1007/JHEP01(2021)056 [arXiv:2009.04397 [hep-th]].
  • [50] L. Rado, V. O. Rivelles and R. Sánchez, “Bosonic η\eta-deformations of non-integrable backgrounds,” JHEP 03, 094 (2022) doi:10.1007/JHEP03(2022)094 [arXiv:2111.13169 [hep-th]].
  • [51] L. Rado, V. O. Rivelles and R. Sánchez, “Bosonic η\eta-deformed AdS4×3AdS_{4}\times\mathbb{CP}^{3} Background,” JHEP 10, 115 (2021) doi:10.1007/JHEP10(2021)115 [arXiv:2105.07545 [hep-th]].
  • [52] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 10, 091 (2008) doi:10.1088/1126-6708/2008/10/091 [arXiv:0806.1218 [hep-th]].
  • [53] T. Matsumoto and K. Yoshida, “Yang–Baxter sigma models based on the CYBE,” Nucl. Phys. B 893 (2015), 287-304 doi:10.1016/j.nuclphysb.2015.02.009 [arXiv:1501.03665 [hep-th]].
  • [54] T. Matsumoto and K. Yoshida, “Integrable deformations of the AdS5×S5{}_{5}\times S^{5} superstring and the classical Yang-Baxter equation Towards-Towards thethe gravity/CYBEgravity/CYBE correspondencecorrespondence-,” J. Phys. Conf. Ser. 563, no.1, 012020 (2014) doi:10.1088/1742-6596/563/1/012020 [arXiv:1410.0575 [hep-th]].
  • [55] D. Orlando, S. Reffert, J. i. Sakamoto and K. Yoshida, “Generalized type IIB supergravity equations and non-Abelian classical r-matrices,” J. Phys. A 49, no.44, 445403 (2016) doi:10.1088/1751-8113/49/44/445403 [arXiv:1607.00795 [hep-th]].
  • [56] E. Imeroni, “On deformed gauge theories and their string/M-theory duals,” JHEP 10, 026 (2008) doi:10.1088/1126-6708/2008/10/026 [arXiv:0808.1271 [hep-th]].
  • [57] J. Polchinski, “String theory. Vol. 1: An introduction to the bosonic string,” Cambridge University Press, 2007, ISBN 978-0-511-25227-3, 978-0-521-67227-6, 978-0-521-63303-1 doi:10.1017/CBO9780511816079