This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

More on stubs in open string field theory

Martin Schnabl and Georg Stettinger
Abstract

We continue our analysis of open string field theory based on AA_{\infty}-algebras obtained from Witten’s theory by attaching stubs to the elementary vertex. Classical solutions of the new theory can be obtained from known analytic solutions in Witten’s theory by applying a cohomomorphism. In a previous work two such cohomomorphisms were found, one non-cyclic, obtained from the homological perturbation lemma and another one by geometric methods. Here we show that to first order in the stub length the two resulting maps are related by a combination of a gauge transformation and a term vanishing on-shell. We also extend our construction to more general gauges and explicitly calculate the first few orders of the new AA_{\infty}-algebra solutions in the sliver frame.

CEICO, Institute of Physics of the Czech Academy of Sciences,

Na Slovance 2, 182 00 Prague 8, Czech Republic

1 Introduction and motivation

Open string field theory (OSFT) as introduced in [22] is described by the action

S(Ψ)=12ω(Ψ,QΨ)+13ω(Ψ,m2(Ψ,Ψ))S\left(\Psi\right)=\frac{1}{2}\omega\left(\Psi,Q\Psi\right)+\frac{1}{3}\omega\left(\Psi,m_{2}\left(\Psi,\Psi\right)\right) (1.1)

where QQ is the BRST-operator, m2m_{2} is the Witten star product and ω\omega is the BPZ-product. Due to the simplicity of the action, a lot of analytical methods have been developed [6] which enabled the discovery of classical analytical solutions, most importantly the tachyon vacuum [18]. Despite those successes, it is as well of interest to analyze modifications of the theory. For once, we would like to have a formulation of OSFT which structure is closer to that of closed string field theory (CSFT): In this way we can not only gain more insight into the more complicated CSFT, but also get a step closer to explicitly formulating a combined open-closed SFT [24]. Moreover, we expect certain singular behaviour of the Witten theory, for instance concerning identity based solutions [1, 6], to be ameliorated in a modified version.

In [19] a specific modification of OSFT is discussed where stubs are attached to the Witten three-vertex111Stubs in open and closed string field theories have been introduced by Zwiebach [23, 24] and further studied in [12, 20]. Toy models for stubs were considered in [2]. More recent works which deal with stubs include [3, 7]. , i. e.

m2(,)M2(,)=eλL0m2(eλL0,eλL0).m_{2}\left(\cdot,\cdot\right)\rightarrow M_{2}\left(\cdot,\cdot\right)=e^{-\lambda L_{0}}m_{2}\left(e^{-\lambda L_{0}}\cdot,e^{-\lambda L_{0}}\cdot\right). (1.2)

This new product is not associative, which makes it necessary to introduce infinitely many higher products MnM_{n} for n3n\geq 3 to ensure gauge invariance of the action. Those higher products are however only unique up to a gauge choice. The whole set Q,M2,M3,Q,\,M_{2},\,M_{3},... then forms a cyclic AA_{\infty}-algebra. Explicitly, the higher products were constructed using a slightly generalized version of homotopy transfer resulting in the following definition: MnM_{n} is equal to the sum of all distinct, rooted, full planar binary trees with nn leaves such that every leaf represents one input and the root is the output. With every leaf there is one factor of i=eλL0i=e^{-\lambda L_{0}} associated, with every node the product m2m_{2}, with every internal line the homotopy hh, which in Siegel gauge takes the form h=e2λL01L0b0h=\frac{e^{-2\lambda L_{0}}-1}{L_{0}}b_{0} and with the root p=eλL0p=e^{-\lambda L_{0}}. So for instance,

M3(Ψ1,Ψ2,Ψ3)=\displaystyle M_{3}\left(\Psi_{1,}\Psi_{2},\Psi_{3}\right)= eλL0m2(eλL0Ψ1,e2λL01L0b0m2(eλL0Ψ2,eλL0Ψ3))\displaystyle\,e^{-\lambda L_{0}}m_{2}\left(e^{-\lambda L_{0}}\Psi_{1},\frac{e^{-2\lambda L_{0}}-1}{L_{0}}b_{0}m_{2}\left(e^{-\lambda L_{0}}\Psi_{2},e^{-\lambda L_{0}}\Psi_{3}\right)\right)
+eλL0m2(e2λL01L0b0m2(eλL0Ψ1,eλL0Ψ2),eλL0Ψ3).\displaystyle\,+\,e^{-\lambda L_{0}}m_{2}\left(\frac{e^{-2\lambda L_{0}}-1}{L_{0}}b_{0}m_{2}\left(e^{-\lambda L_{0}}\Psi_{1},e^{-\lambda L_{0}}\Psi_{2}\right),e^{-\lambda L_{0}}\Psi_{3}\right). (1.3)

The higher vertices have a nice geometric interpretation: They consist of all the string Feynman diagrams where the propagator is replaced by an integral over strips of the form

h=02λ𝑑tetL0b0=e2λL01L0b0.h=-\int_{0}^{2\lambda}dt\,e^{-tL_{0}}b_{0}=\frac{e^{-2\lambda L_{0}}-1}{L_{0}}b_{0}. (1.4)

Comparing with the standard Schwinger representation of the propagator

0𝑑tetL0b0=b0L0-\int_{0}^{\infty}dt\,e^{-tL_{0}}b_{0}=-\frac{b_{0}}{L_{0}} (1.5)

one sees that the vertices cover exactly those Riemann surfaces which are missed by the ordinary Feynman diagrams after the inclusion of stubs. This ensures that all Feynman diagrams including the new higher elementary vertices generate a full single cover of the moduli space of bordered Riemann surfaces.

Now the main interest in this stubbed theory lies in studying its classical solutions and how to obtain them from solutions of the standard Witten theory. Defining

𝐦=𝐐+𝐦𝟐,𝐌=𝐐+𝐌𝟐+𝐌𝟑+\mathbf{m}=\mathbf{Q}+\mathbf{m_{2}},\,\,\,\,\,\,\,\,\,\,\,\,\,\mathbf{M}=\mathbf{Q}+\mathbf{M_{2}}+\mathbf{M_{3}}+... (1.6)

as the coderivations encoding the DGA of Witten theory and the AA_{\infty}-algebra of the stubbed theory, respectively, the equations of motion can be written concisely as

𝐦11Ψ=0,𝐌11Ψ=0.\mathbf{m}\frac{1}{1-\Psi}=0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\mathbf{M}\frac{1}{1-\Psi^{\prime}}=0. (1.7)

In [19], two cohomomorphisms 𝐏\mathbf{P} and 𝐅\mathbf{F} were introduced and discussed in detail, both having the property of mapping solutions of one theory to solutions of the other. 𝐏\mathbf{P} is a non-linear map derived via the homological perturbation lemma and explicitly given up to quadratic order by

π1𝐏11Ψ=eλL0Ψ+eλL0m2(Ψ,e2λL01L0b0Ψ)+eλL0m2(e2λL01L0b0Ψ,e2λL0Ψ)+𝒪(Ψ3).\pi_{1}\mathbf{P}\frac{1}{1-\Psi}=e^{-\lambda L_{0}}\Psi+e^{-\lambda L_{0}}m_{2}\left(\Psi,\frac{e^{-2\lambda L_{0}}-1}{L_{0}}b_{0}\Psi\right)+e^{-\lambda L_{0}}m_{2}\left(\frac{e^{-2\lambda L_{0}}-1}{L_{0}}b_{0}\Psi,e^{-2\lambda L_{0}}\Psi\right)+\mathcal{O}\left(\Psi^{3}\right). (1.8)

Now 𝐏\mathbf{P} obeys the chain map relation

𝐌𝐏=𝐏𝐦,\mathbf{MP}=\mathbf{Pm}, (1.9)

i. e. 𝐏\mathbf{P} intertwines between the two algebras. As a result, it maps solutions of Witten theory to solutions of the stubbed theory,

𝐌11π1𝐏11Ψ=0if𝐦11Ψ=0,\mathbf{M}\frac{1}{1-\pi_{1}\mathbf{P}\frac{1}{1-\Psi}}=0\,\,\,\text{if}\,\,\,\mathbf{m}\frac{1}{1-\Psi}=0, (1.10)

where the relation (A.14) was used. In contrast, 𝐅\mathbf{F} was derived by geometrical methods and reads

π1𝐅11Ψ=\displaystyle\pi_{1}\mathbf{F}\frac{1}{1-\Psi^{\prime}}= Ψ+0λdt(etL0m2(etL0b0Ψ,etL0Ψ)+etL0m2(etL0Ψ,etL0b0Ψ)\displaystyle\,\Psi^{\prime}+\int_{0}^{\lambda}dt\,\,(e^{-tL_{0}}m_{2}\left(e^{-tL_{0}}b_{0}\Psi^{\prime},e^{-tL_{0}}\Psi^{\prime}\right)+e^{-tL_{0}}m_{2}\left(e^{-tL_{0}}\Psi^{\prime},e^{-tL_{0}}b_{0}\Psi^{\prime}\right)
etL0b0m2(etL0Ψ,etL0Ψ))+𝒪(Ψ3).\displaystyle\,-e^{-tL_{0}}b_{0}m_{2}\left(e^{-tL_{0}}\Psi^{\prime},e^{-tL_{0}}\Psi^{\prime}\right))+\mathcal{O}\left(\Psi^{\prime 3}\right). (1.11)

It fulfills the opposite intertwining relation

𝐅𝐌=𝐦𝐅\mathbf{FM}=\mathbf{mF} (1.12)

which gives rise to

𝐦11π1𝐅11Ψ=0if 𝐌11Ψ=0\mathbf{m}\frac{1}{1-\pi_{1}\mathbf{F}\frac{1}{1-\Psi^{\prime}}}=0\,\,\,\text{if\,\,\,}\mathbf{M}\frac{1}{1-\Psi^{\prime}}=0 (1.13)

hence it maps solutions of the stubbed theory to solutions of the cubic theory. 222The fact that they are naturally defined in the opposite direction stems from the manifestly different derivation, see [19].

A fundamental difference between the two occurs by examining the action. Since the Witten action can be written as [21] 333Here, Ψ(t)\Psi\left(t\right) is a smooth interpolation with the properties Ψ(0)=0\Psi\left(0\right)=0 and Ψ(1)=Ψ.\Psi\left(1\right)=\Psi.

S(Ψ)=01𝑑tω(π1𝒕11Ψ(t),π1𝐦11Ψ(t))S\left(\Psi\right)=\int_{0}^{1}dt\,\omega\left(\pi_{1}\boldsymbol{\partial_{t}}\frac{1}{1-\Psi\left(t\right)},\pi_{1}\mathbf{m}\frac{1}{1-\Psi\left(t\right)}\right) (1.14)

we would expect the stubbed action to read

S(Ψ)=01𝑑tω(π1𝒕11Ψ(t),π1𝐌11Ψ(t))S^{\prime}\left(\Psi\right)=\int_{0}^{1}dt\,\omega\left(\pi_{1}\boldsymbol{\partial_{t}}\frac{1}{1-\Psi\left(t\right)},\pi_{1}\mathbf{M}\frac{1}{1-\Psi\left(t\right)}\right) (1.15)

and indeed, SS^{\prime} is generated by the cohomomorphism 𝐅\mathbf{F} via the relation

S(Ψ)=S(π1𝐅11Ψ).S^{\prime}\left(\Psi\right)=S\left(\pi_{1}\mathbf{F}\frac{1}{1-\Psi}\right). (1.16)

On the contrary we get

S(π1𝐏𝟏11Ψ)=01dtω(π1𝐏𝟏𝒕11Ψ(t),π1𝐏𝟏𝐌11Ψ(t))=:S~(Ψ),S\left(\pi_{1}\mathbf{P^{-1}}\frac{1}{1-\Psi}\right)=\int_{0}^{1}dt\,\omega\left(\pi_{1}\mathbf{P^{-1}}\boldsymbol{\partial_{t}}\frac{1}{1-\Psi\left(t\right)},\pi_{1}\mathbf{P^{-1}M}\frac{1}{1-\Psi\left(t\right)}\right)=:\tilde{S}\left(\Psi\right), (1.17)

where S~\tilde{S} leads to the same equations of motion as SS^{\prime} but takes a significantly different form. The reason is that 𝐏\mathbf{P} (and so also 𝐏𝟏\mathbf{P^{-1}}) is not a cyclic cohomomorphism with respect to ω\omega, hence it does not obey

ω(𝐏,𝐏)=ω(,).\omega\left(\mathbf{P}\cdot,\mathbf{P}\cdot\right)=\omega\left(\cdot,\cdot\right). (1.18)

We can also form the combined transformation 𝐓=:𝐅𝐏\mathbf{T}=:\mathbf{FP} which obeys

𝐓𝐦=𝐦𝐓\mathbf{Tm}=\mathbf{mT} (1.19)

and is therefore a symmetry of the Witten equations of motion. However, it manifestly changes the action such that it cannot be a symmetry of the full quantum theory, it rather behaves like some generalized symmetry. Those rather surprising facts raise some interesting questions:

  1. 1.

    How are the two actions physically related? And connected to that

  2. 2.

    what is the physical meaning of the combined transformation 𝐓\mathbf{T}?

  3. 3.

    Is there a more general family of actions which leads to the expected equations of motion?

Moreover, most of the known analytic solutions are formulated in the sliver frame, so to study those explicitly in the stubbed theory we have to ask:

  1. 1.

    Can the whole construction of the higher products and the cohomomorphisms be generalized to the sliver frame?

  2. 2.

    How will explicit solutions of the stubbed theory look like?

  3. 3.

    Can we infer some general structure of Maurer-Cartan elements of AA_{\infty}-algebras?

Those questions shall be addressed and answered within this work.

2 Systematic analysis of the intertwining cohomomorphism

The purpose of this section is to gain a better understanding of the cohomomorphisms 𝐏\mathbf{P} and 𝐅\mathbf{F}. Therefore we find a general strategy how to obtain intertwining cohomomorphisms and then analyze 𝐏\mathbf{P} and 𝐅\mathbf{F} from this perspective. We are looking for a non-linear field redefinition444Field redefinitions have been studied using cohomomorphisms already in the context of open superstring field theory with the goal of relating the Berkovits theory to the Munich construction, see [8, 4, 5]). In our work we use them to find the field redefinition between the stubbed theory and Witten theory. of the form

ΨΨ=A1(Ψ)+A2(Ψ,Ψ)+A3(Ψ,Ψ,Ψ)+\Psi\rightarrow\Psi^{\prime}=A_{1}\left(\Psi\right)+A_{2}\left(\Psi,\Psi\right)+A_{3}\left(\Psi,\Psi,\Psi\right)+... (2.1)

with AnA_{n} being a collection of multi-linear maps which ensures that Ψ\Psi^{\prime} is a classical solution of the stubbed theory as long as Ψ\Psi is a solution of Witten theory, i. e.

𝐌11Ψ=0if𝐦11Ψ=0.\mathbf{M}\frac{1}{1-\Psi^{\prime}}=0\,\,\,\,\,\,\,\text{if}\,\,\,\,\,\,\,\mathbf{m}\frac{1}{1-\Psi}=0. (2.2)

Since in the tensor algebra formalism finite transformations are encoded in cohomomorphisms555For a short summary of the tensor algebra formalism see Appendix A., it is natural to package the AnA_{n} into a cohomorphism 𝐀\mathbf{A} in the standard way s. t.

Ψ=π1𝐀11Ψ.\Psi^{\prime}=\pi_{1}\mathbf{A}\frac{1}{1-\Psi}. (2.3)

Now applying (A.14)

𝐌11Ψ=𝐌11π1𝐀11Ψ=𝐌𝐀11Ψ\mathbf{M}\frac{1}{1-\Psi^{\prime}}=\mathbf{M}\frac{1}{1-\pi_{1}\mathbf{A}\frac{1}{1-\Psi}}=\mathbf{MA}\frac{1}{1-\Psi} (2.4)

naively suggests to solve for 𝐌𝐀=𝐦\mathbf{MA}=\mathbf{m}, but that is in general not possible since a coderivation composed with a cohomomorphism does not yield a coderivation. However, the combination 𝐀𝟏𝐌𝐀\mathbf{A^{-1}MA} is always a coderivation and solving

𝐀𝟏𝐌𝐀=𝐦or𝐌𝐀=𝐀𝐦\mathbf{A^{-1}MA}=\mathbf{m}\,\,\,\,\,\,\,\text{or}\,\,\,\,\,\,\mathbf{MA}=\mathbf{Am} (2.5)

still implies (2.2), hence this is the fundamental relation we will try to solve. In the context of homotopy transfer it appeared as the chain map relation and simply states that 𝐀\mathbf{A} acts as an intertwiner between the two coderivations which define the algebras. It is easy to see that the set of all intertwiners forms a vector space.

2.1 Infinitesimal treatment

The object 𝐌(λ)\mathbf{M}\left(\lambda\right) is in fact a continuous family of coderivations parametrized by the stub length λ[0,)\lambda\in[0,\infty), obeying 𝐌(0)=𝐦.\mathbf{M}\left(0\right)=\mathbf{m}. Similarly, 𝐀(λ1,λ2)\mathbf{A}\left(\lambda_{1},\lambda_{2}\right) is a continuous family with 𝐀(λ1,λ2)=𝟏\mathbf{A}\left(\lambda_{1},\lambda_{2}\right)=\mathbf{\mathbf{1}} for λ1=λ2\lambda_{1}=\lambda_{2}, hence we can write (2.5) more generally as

𝐌(λ2)𝐀(λ1,λ2)=𝐀(λ1,λ2)𝐌(λ1).\mathbf{M}\left(\lambda_{2}\right)\mathbf{A}\left(\lambda_{1},\lambda_{2}\right)=\mathbf{A}\left(\lambda_{1},\lambda_{2}\right)\mathbf{\mathbf{M}}\left(\lambda_{1}\right). (2.6)

Suppose we want to know the infinitesimal cohomomorphism which takes us from any fixed λ\lambda to λ+δλ:\lambda+\delta\lambda: It will take the form 𝐀(λ,λ+δλ)=𝟏+δλ𝐚(λ)+𝒪(δλ2)\mathbf{A}\left(\lambda,\lambda+\delta\lambda\right)=\mathbf{\mathbf{1}}+\delta\lambda\mathbf{a}\left(\lambda\right)+\mathcal{O}\left(\delta\lambda^{2}\right) with 𝐚(λ)\mathbf{a}\left(\lambda\right) some coderivation. Plugging into (2.6) straightforwardly yields

[𝐚(λ),𝐌(λ)]=ddλ𝐌(λ).\left[\mathbf{a}\left(\lambda\right),\mathbf{M}\left(\lambda\right)\right]=\frac{d}{d\lambda}\mathbf{M}\left(\lambda\right). (2.7)

Since this is an equation of coderivations, it is sufficient to examine the projection to one output. Choosing λ=0\lambda=0, (2.7) acting on nn inputs becomes

n=1:π1[𝐚𝟏(𝟎),𝐐]π1=𝟎\displaystyle n=1:\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\pi_{1}\left[\mathbf{a_{1}\left(0\right),Q}\right]\pi_{1}=\mathbf{0} (2.8)
n=2:π1([𝐚𝟏(𝟎),𝐦𝟐]+[𝐚𝟐(𝟎),𝐐])π2=π1(𝐋𝟎𝐦𝟐𝐦𝟐𝐋𝟎)π2\displaystyle n=2:\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\pi_{1}\mathbf{\left(\left[\mathbf{a_{1}}\left(0\right),m_{2}\right]+\left[a_{2}\left(0\right),\mathbf{Q}\right]\right)}\pi_{2}=\pi_{1}\left(\mathbf{-L_{0}m_{2}-m_{2}\mathbf{L_{0}}}\right)\pi_{2} (2.9)
n=3:π1([𝐚𝟐(𝟎),𝐦𝟐]+[𝐚𝟑(𝟎),𝐐])π3=2π1𝐦𝟐(𝐛𝟎𝐦𝟐)π3\displaystyle n=3:\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\pi_{1}\mathbf{\left(\left[\mathbf{a_{2}}\left(0\right),\mathbf{m_{2}}\right]+\left[a_{3}\left(0\right),\mathbf{Q}\right]\right)}\pi_{3}=-2\pi_{1}\mathbf{m_{2}\left(b_{0}\mathbf{m_{2}}\right)}\pi_{3} (2.10)
n4:π1([𝐚𝐧𝟏(𝟎),𝐦𝟐]+[𝐚𝐧(𝟎),𝐐])πn=𝟎\displaystyle n\geq 4:\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\pi_{1}\left(\mathbf{\left[\mathbf{a_{n-1}}\left(0\right),\mathbf{m_{2}}\right]+\left[\mathbf{a_{n}}\left(0\right),\mathbf{Q}\right]}\right)\pi_{n}=\mathbf{0} (2.11)

where 𝐋𝟎\mathbf{L_{0}} and 𝐛𝟎\mathbf{b_{0}} are the coderivations associated to L0L_{0} and b0b_{0}, see (A.6). At λ=0\lambda=0, ddλMn(λ)\frac{d}{d\lambda}M_{n}\left(\lambda\right) vanishes for n4n\geq 4 since it contains n2n-2 factors of hh, which are of order λ\lambda. It is straightforward to write down those equations for any finite λ.\lambda.

2.2 Finite transformation

To find the finite intertwiner 𝐀(λ)\mathbf{A}\left(\lambda\right), we first need to solve (2.7) for all λ\lambda, which results in

[𝐚1(λ),𝐌n(λ)]+[𝐚2(λ),𝐌n1(λ)]++[𝐚n(λ),𝐐]=ddλ𝐌n(λ).\left[\mathbf{a}_{1}\left(\lambda\right),\mathbf{M}_{n}\left(\lambda\right)\right]+\left[\mathbf{a}_{2}\left(\lambda\right),\mathbf{M}_{n-1}\left(\lambda\right)\right]+...+\left[\mathbf{a}_{n}\left(\lambda\right),\mathbf{Q}\right]=\frac{d}{d\lambda}\mathbf{M}_{n}\left(\lambda\right). (2.12)

for all nn. This equation has a structural resemblance of the parallel transport equation in gauge theories [13]. If we have some matter field ψ(xμ)\psi\left(x^{\mu}\right) defined along some curve γ\gamma in spacetime parametrized by tt and some gauge connection BμB_{\mu}, then we say that ψ\psi is parallel transported along γ\gamma if it fulfills

dψ(γ(t))dt=dxμdtBμψ(γ(t)).\frac{d\psi\left(\gamma\left(t\right)\right)}{dt}=-\frac{dx^{\mu}}{dt}B_{\mu}\psi\left(\gamma\left(t\right)\right). (2.13)

The solution is given by the path-ordered exponential

ψ(γ(t))=𝒫e0t𝑑sBμdxμdsψ(γ(0)).\psi\left(\gamma\left(t\right)\right)=\mathcal{P}e^{-\int_{0}^{t}ds\,B_{\mu}\frac{dx^{\mu}}{ds}}\psi\left(\gamma\left(0\right)\right). (2.14)

In our case the “connection” 𝐚(λ)\mathbf{a}\left(\lambda\right) acts on 𝐌\mathbf{M} via a commutator. This implies that after integration the path-ordered exponential has to act in the adjoint way, i. e.

𝐌(λ)=𝒫e0λ𝑑t𝐚(t)𝐦𝒫e0λ𝑑t𝐚(t),\mathbf{M}\left(\lambda\right)=\mathcal{P}e^{\int_{0}^{\lambda}dt\,\mathbf{a}\left(t\right)}\mathbf{m}\mathcal{P}e^{-\int_{0}^{\lambda}dt\,\mathbf{a}\left(t\right)}, (2.15)

hence we can identify the finite cohomomorphism as

𝐀(λ)=𝒫e0λ𝑑t𝐚(t).\mathbf{A}\left(\lambda\right)=\mathcal{P}e^{\int_{0}^{\lambda}dt\,\mathbf{a}\left(t\right)}. (2.16)

By expanding the exponential we can write the new solution666We thank Jakub Vošmera for useful discussions and suggestions on that. as

π1𝐀11Ψ=\displaystyle\pi_{1}\mathbf{A}\frac{1}{1-\Psi}= Ψ+0λ𝑑ta1tΨ+0λ𝑑ta2t(Ψ,Ψ)+0λ𝑑ta3t(Ψ,Ψ,Ψ)+0λ𝑑ta1t(0t𝑑sa1sΨ)\displaystyle\,\Psi+\int_{0}^{\lambda}dt\,\,a_{1}^{t}\Psi+\int_{0}^{\lambda}dt\,\,a_{2}^{t}\left(\Psi,\Psi\right)+\int_{0}^{\lambda}dt\,\,a_{3}^{t}\left(\Psi,\Psi,\Psi\right)+\int_{0}^{\lambda}dt\,\,a_{1}^{t}\left(\int_{0}^{t}ds\,\,a_{1}^{s}\Psi\right)
+0λ𝑑ta1t(0t𝑑sa2s(Ψ,Ψ))+0λ𝑑ta2t((0t𝑑sa1sΨ),Ψ)\displaystyle\,+\int_{0}^{\lambda}dt\,\,a_{1}^{t}\left(\int_{0}^{t}ds\,\,a_{2}^{s}\left(\Psi,\Psi\right)\right)+\int_{0}^{\lambda}dt\,\,a_{2}^{t}\left(\left(\int_{0}^{t}ds\,\,a_{1}^{s}\Psi\right),\Psi\right)
+0λ𝑑ta2t(Ψ,(0t𝑑sa1sΨ))+0λ𝑑ta3t((0t𝑑sa1sΨ),Ψ,Ψ)\displaystyle\,+\int_{0}^{\lambda}dt\,\,a_{2}^{t}\left(\Psi,\left(\int_{0}^{t}ds\,\,a_{1}^{s}\Psi\right)\right)+\int_{0}^{\lambda}dt\,\,a_{3}^{t}\left(\left(\int_{0}^{t}ds\,\,a_{1}^{s}\Psi\right),\Psi,\Psi\right)
+0λ𝑑ta3t(Ψ,(0t𝑑sa1sΨ),Ψ)+0λ𝑑ta3t(Ψ,Ψ,(0t𝑑sa1sΨ))\displaystyle\,+\int_{0}^{\lambda}dt\,\,a_{3}^{t}\left(\Psi,\left(\int_{0}^{t}ds\,\,a_{1}^{s}\Psi\right),\Psi\right)+\int_{0}^{\lambda}dt\,\,a_{3}^{t}\left(\Psi,\Psi,\left(\int_{0}^{t}ds\,\,a_{1}^{s}\Psi\right)\right)
+0λ𝑑ta1t(0t𝑑sa3s(Ψ,Ψ,Ψ))+0λ𝑑ta2t(0t𝑑sa2s(Ψ,Ψ),Ψ)\displaystyle\,+\int_{0}^{\lambda}dt\,\,a_{1}^{t}\left(\int_{0}^{t}ds\,\,a_{3}^{s}\left(\Psi,\Psi,\Psi\right)\right)+\int_{0}^{\lambda}dt\,\,a_{2}^{t}\left(\int_{0}^{t}ds\,\,a_{2}^{s}\left(\Psi,\Psi\right),\Psi\right)
+0λ𝑑ta2t(Ψ,0t𝑑sa2s(Ψ,Ψ))+𝒪(Ψ4)+𝒪(λ3).\displaystyle\,+\int_{0}^{\lambda}dt\,\,a_{2}^{t}\left(\Psi,\int_{0}^{t}ds\,\,a_{2}^{s}\left(\Psi,\Psi\right)\right)+\mathcal{O}\left(\Psi^{\otimes 4}\right)+\mathcal{O}\left(\lambda^{3}\right). (2.17)

To lighten the notation we have denoted the tt-dependence of a(t)a\left(t\right) by a corresponding superscript. In general it is non-trivial to solve the integrals explicitly, the only cohomomorphism we have available in integrated form is 𝐏\mathbf{P}, which was constructed in a manifestly finite way by the homological perturbation lemma.

2.3 The cyclic cohomomorphism 𝐅\mathbf{F}

It is instructive to check the linearized equations explicitly for the two known cohomomorphisms 𝐅\mathbf{F} and 𝐏\mathbf{P}. 𝐅\mathbf{F} was already derived in the infinitesimal form (see [19]) which is given by

fn(λ)=π(𝐛𝟎𝐌𝐧(λ)+𝐌𝐧(λ)𝐛𝟎)πnf_{n}\left(\lambda\right)=\pi\left(\mathbf{-b_{0}M_{n}\left(\lambda\right)+M_{n}\left(\lambda\right)\mathbf{b_{0}}}\right)\pi_{n} (2.18)

for n2n\geq 2 and f1=0f_{1}=0 (here 𝐛𝟎\mathbf{b_{0}} is the coderivation associated to b0b_{0}). To be consistent with the previous analysis we have to consider 𝐅𝟏\mathbf{F^{-1}} instead of 𝐅\mathbf{F} though, but on the infinitesimal level this will result only in an overall sign change. By expanding around λ=0\lambda=0 we see that only f2f_{2} is non-vanishing and the relevant equations become777In the following [,]\left[\cdot,\cdot\right] will always denote a commutator and {,}\left\{\cdot,\cdot\right\} will always denote an anticommutator, regardless of the Grassmannality of the entries.

π1[𝐐,𝐟𝟐(0)]π2=π1([𝐐,𝐛𝟎𝐦𝟐]+[𝐐,𝐦𝟐𝐛𝟎])π2=π1(𝐋𝟎𝐦𝟐𝐦𝟐𝐋𝟎)π2,\pi_{1}\left[\mathbf{Q},\mathbf{f_{2}}\left(0\right)\right]\pi_{2}=\,\pi_{1}\mathbf{\left(-\left[\mathbf{Q},b_{0}m_{2}\right]+\left[\mathbf{Q},m_{2}\mathbf{b_{0}}\right]\right)}\pi_{2}=\pi_{1}\mathbf{\left(-L_{0}m_{2}-m_{2}\mathbf{L_{0}}\right)}\pi_{2}, (2.19)
π1[𝐦𝟐,𝐟𝟐(0)]\displaystyle\pi_{1}\left[\mathbf{m_{2}},\mathbf{f_{2}}\left(0\right)\right] π3=π1(𝐦𝟐(𝐛𝟎𝐦𝟐)+𝐛𝟎𝐦𝟐𝐦𝟐+𝐦𝟐(𝐦𝟐𝐛𝟎)𝐦𝟐𝐛𝟎𝐦𝟐)π3=2π1𝐦𝟐(𝐛𝟎𝐦𝟐)π3.\displaystyle\pi_{3}=\,\pi_{1}\left(\mathbf{-m_{2}\left(b_{0}\mathbf{m_{2}}\right)+b_{0}m_{2}\mathbf{m_{2}}+m_{2}\left(\mathbf{m_{2}}\mathbf{b_{0}}\right)-m_{2}\mathbf{b_{0}m_{2}}}\right)\pi_{3}=-2\pi_{1}\mathbf{m_{2}\left(b_{0}\mathbf{m_{2}}\right)}\pi_{3}. (2.20)

The first equation follows in a simple way from {Q,b0}=L0\left\{Q,b_{0}\right\}=L_{0} and the Leibniz rule {𝐐,𝐦𝟐}=0\left\{\mathbf{Q},\mathbf{m_{2}}\right\}=0, whereas the second one uses associativity {𝐦𝟐,𝐦𝟐}=0\left\{\mathbf{m_{2}},\mathbf{m_{2}}\right\}=0 and follows after expanding all the coderivations. 888When two coderivations appear in parentheses it means that the first one always has to act on the output of the second one, see Appendix. The finite form of 𝐅\mathbf{F} is then given according to (2.17) by

π1𝐅11Ψ\displaystyle\pi_{1}\mathbf{F}\frac{1}{1-\Psi^{\prime}} =Ψ+0λdt(etL0m2(etL0b0Ψ,etL0Ψ)+etL0m2(etL0Ψ,etL0b0Ψ)\displaystyle=\,\Psi^{\prime}+\int_{0}^{\lambda}dt\,\,\Big{(}e^{-tL_{0}}m_{2}\left(e^{-tL_{0}}b_{0}\Psi^{\prime},e^{-tL_{0}}\Psi^{\prime}\right)+e^{-tL_{0}}m_{2}\left(e^{-tL_{0}}\Psi^{\prime},e^{-tL_{0}}b_{0}\Psi^{\prime}\right)
etL0b0m2(etL0Ψ,etL0Ψ))+𝒪(Ψ3).\displaystyle\,\,\,\,\,\,-e^{-tL_{0}}b_{0}m_{2}\left(e^{-tL_{0}}\Psi^{\prime},e^{-tL_{0}}\Psi^{\prime}\right)\Big{)}+\mathcal{O}\left(\Psi^{\prime 3}\right). (2.21)

2.4 The non-cyclic cohomomorphism 𝐏\mathbf{P}

In [19], 𝐏\mathbf{P} was derived from the homological perturbation lemma as

𝐏=𝐩(𝟏𝐦𝟐𝐡)𝟏\mathbf{P}=\mathbf{p\left(1-m_{2}h\right)^{-1}} (2.22)

and given explicitly as a finite transformation which reads to the first few orders

P1\displaystyle P_{1}\, =p\displaystyle=p
P2\displaystyle P_{2}\, =pm2(,h)+pm2(h,ip)\displaystyle=pm_{2}\left(\cdot,h\cdot\right)+pm_{2}\left(h\cdot,ip\cdot\right)
P3\displaystyle P_{3}\, =pm2(,hm2(,h))+pm2(,hm2(h,ip))+pm2(h,hm2(ip,ip))+pm2(hm2(,h),ip)\displaystyle=pm_{2}\left(\cdot,hm_{2}\left(\cdot,h\cdot\right)\right)+pm_{2}\left(\cdot,hm_{2}\left(h\cdot,ip\cdot\right)\right)+pm_{2}\left(h\cdot,hm_{2}\left(ip\cdot,ip\cdot\right)\right)+pm_{2}\left(hm_{2}\left(\cdot,h\cdot\right),ip\cdot\right)
+pm2(hm2(h,ip),ip)+pm2(h,ipm2(,h))+pm2(h,ipm2(h,ip)).\displaystyle\,\,\,\,\,\,+pm_{2}\left(hm_{2}\left(h\cdot,ip\cdot\right),ip\cdot\right)+pm_{2}\left(h\cdot,ipm_{2}\left(\cdot,h\cdot\right)\right)+pm_{2}\left(h\cdot,ipm_{2}\left(h\cdot,ip\cdot\right)\right)...\,\,\,\,\,\,. (2.23)

Here, the individual maps are given by

i=p=eλL0,h=e2λL01L0b0.i=p=e^{-\lambda L_{0}},\,\,\,\,\,\,\,\,\,\,h=\frac{e^{-2\lambda L_{0}}-1}{L_{0}}b_{0}. (2.24)

As it was argued and proven in [19, 3], 𝐏\mathbf{P} obeys the chain map relation 𝐌𝐏=𝐏𝐦\mathbf{MP}=\mathbf{Pm} provided one assumes the side conditions h2=hi=ph=0h^{2}=hi=ph=0 as well as pi=1pi=1. In practice this means that in the expansion of 𝐏\mathbf{P} every pipi appearing should be replaced by unity and every term containing one of the side conditions should be set to zero.

We are now interested in the infinitesimal form of 𝐏\mathbf{P}, i. e. taking the “path-ordered logarithm”. Expanding around λ=0\lambda=0 as 𝐏=𝟏+δλ𝐠\mathbf{P}=\mathbf{1}+\delta\lambda\mathbf{g} yields

g1\displaystyle g_{1}\, =L0\displaystyle=-L_{0}
g2\displaystyle g_{2}\, =2π1𝐦𝟐𝐛𝟎π2\displaystyle=-2\pi_{1}\mathbf{m_{2}\mathbf{b_{0}}}\pi_{2}
gn3\displaystyle g_{n\geq 3}\, =0\displaystyle=0 (2.25)

and the relevant equations become

π1[𝐠𝟏,𝐐]π1=π1[𝐋𝟎,𝐐]π1=0\pi_{1}\mathbf{\left[g_{1},Q\right]}\pi_{1}=-\pi_{1}\mathbf{\left[L_{0},Q\right]}\pi_{1}=0 (2.26)
π1([𝐠𝟏,𝐦𝟐]+[𝐠𝟐,𝐐])π2=π1([𝐋𝟎,𝐦𝟐]+2[𝐦𝟐𝐛𝟎,𝐐])π2=π1{𝐋𝟎,𝐦𝟐}π2\pi_{1}\left(\mathbf{\left[\mathbf{g_{1}},m_{2}\right]+\left[g_{2},\mathbf{Q}\right]}\right)\pi_{2}=-\pi_{1}\left(\left[\mathbf{\mathbf{L_{0}},m_{2}}\right]+2\left[\mathbf{m_{2}\mathbf{b_{0}},\mathbf{Q}}\right]\right)\pi_{2}=\pi_{1}\left\{\mathbf{\mathbf{L_{0}},m_{2}}\right\}\pi_{2} (2.27)
π1([𝐠𝟐,𝐦𝟐]+[𝐠𝟑,𝐐])π3=2π1[(𝐦𝟐𝐛𝟎),𝐦𝟐]π3=2π1𝐦𝟐(𝐛𝟎𝐦𝟐)π3.\pi_{1}\left(\left[\mathbf{g_{2}},\mathbf{m_{2}}\right]+\left[\mathbf{g_{3},}\mathbf{Q}\right]\right)\pi_{3}=-2\pi_{1}\left[\mathbf{\left(m_{2}b_{0}\right)},\mathbf{m_{2}}\right]\pi_{3}=-2\pi_{1}\mathbf{m_{2}}\left(\mathbf{b_{0}m_{2}}\right)\pi_{3}. (2.28)

Again, all of them can be checked straightforwardly by using the well-known commutation relations of the operators that occur. However, we will now use the structure of 𝐟\mathbf{f} and 𝐠\mathbf{g} to determine a more general family of solutions of (2.7). It is worth pointing out that although 𝐅\mathbf{F} and 𝐏\mathbf{P} look quite similar when expanded around λ=0\lambda=0, their finite versions are fundamentally different: While we have 𝐏\mathbf{P} available explicitly, 𝐅\mathbf{F} is only known as a path-ordered exponential. In fact, both expressions are given as expansions in the tensor algebra but to calculate the action of 𝐅\mathbf{F} we need an extra expansion in the number of integrals.

2.5 The symmetry map 𝐓\mathbf{T}

At this point it is actually an interesting task to examine the combined map 𝐓=𝐅𝐏\mathbf{T=FP} in more detail. We know from 𝐌𝐏=𝐏𝐦\mathbf{MP}=\mathbf{Pm} and 𝐌𝐅𝟏=𝐅𝟏𝐦\mathbf{MF^{-1}}=\mathbf{F^{-1}m} that

𝐓𝐦=𝐦𝐓\mathbf{Tm=mT} (2.29)

holds, hence 𝐓\mathbf{T} commutes with the equations of motion of the Witten theory. This is the generic condition for a symmetry of the equations of motion, however, 𝐓\mathbf{T} does not preserve the action, which manifestly changes (see (1.17)). Hence it cannot generate a gauge symmetry but rather some kind of generalized symmetry that we will work out now. It is useful to linearize 𝐓\mathbf{T} around λ=0\lambda=0: If 𝐓=𝟏+δλ𝐭\mathbf{T}=\mathbf{1}+\delta\lambda\mathbf{t} then 𝐭\mathbf{t} is given by

t1\displaystyle t_{1}\, =g1f1=L0\displaystyle=g_{1}-f_{1}=-L_{0}
t2\displaystyle t_{2}\, =g2f2=π1{𝐛𝟎,𝐦𝟐}π2\displaystyle=g_{2}-f_{2}=-\pi_{1}\mathbf{\left\{\mathbf{b_{0}},m_{2}\right\}}\pi_{2}
tn3\displaystyle t_{n\geq 3}\, =0\displaystyle=0 (2.30)

and it induces the transformation

ΨΨδλ(L0Ψ+b0m2(Ψ,Ψ)+m2(b0Ψ,Ψ)+m2(Ψ,b0Ψ)).\Psi\rightarrow\Psi-\delta\lambda\left(L_{0}\Psi+b_{0}m_{2}\left(\Psi,\Psi\right)+m_{2}\left(b_{0}\Psi,\Psi\right)+m_{2}\left(\Psi,b_{0}\Psi\right)\right). (2.31)

Let us define a gauge parameter Λ=b0Ψ\Lambda=b_{0}\Psi, then (2.31) can be rewritten as

ΨΨδλ(QΛ+m2(Λ,Ψ)+m2(Ψ,Λ)+b0(QΨ+m2(Ψ,Ψ))).\Psi\rightarrow\Psi-\delta\lambda\left(Q\Lambda+m_{2}\left(\Lambda,\Psi\right)+m_{2}\left(\Psi,\Lambda\right)+b_{0}\left(Q\Psi+m_{2}\left(\Psi,\Psi\right)\right)\right). (2.32)

We see that the transformation we get is a combination of an infinitesimal gauge transformation and a term being proportional to the equations of motion. While the gauge transformation part was expected in a symmetry of the equations of motion, the other part is more interesting and more unconventional. It is this part which is responsible for the change of the off-shell action, however it is also clear that the value of the on-shell action is preserved. This was already conjectured in [19], since this value has physical significance and we did not expect to find a physically distinct solution by applying 𝐓.\mathbf{T}.

Extending our analysis to higher orders in λ\lambda quickly becomes cumbersome and we leave this problem for the future. In principle it is possible that the flow of 𝐓(λ)\mathbf{T}\left(\lambda\right) leaves the gauge orbit for a finite λ\lambda, although we do not expect this for physical reasons, see [19].

2.6 More general solution for the intertwiner

Given 𝐌(λ)\mathbf{M}\left(\lambda\right), the most general solution of (2.5) is actually hard to describe explicitly. However, we will now construct a more general family of intertwiners that includes 𝐅𝟏\mathbf{F^{-1}}, which was found already. The equations (2.12) are linear in 𝐚\mathbf{a} with an inhomogeneity so once we found a solution we can add an arbitrary solution of the homogenous equation

[𝐚1(λ),𝐌n(λ)]+[𝐚2(λ),𝐌n1(λ)]++[𝐚n(λ),𝐐]=0.\left[\mathbf{a}_{1}\left(\lambda\right),\mathbf{M}_{n}\left(\lambda\right)\right]+\left[\mathbf{a}_{2}\left(\lambda\right),\mathbf{M}_{n-1}\left(\lambda\right)\right]+...+\left[\mathbf{a}_{n}\left(\lambda\right),\mathbf{Q}\right]=0. (2.33)

This is the infinitesimal form of

𝐀𝐌=𝐌𝐀,\mathbf{AM}=\mathbf{MA}, (2.34)

the equation for the symmetry discussed in section 2.5. For n=1n=1, it reduces to

[a1,Q]=0\left[a_{1},Q\right]=0 (2.35)

which is solved by various operators. The simplest example are arbitrary linear combinations of arbitrary products of Virasoro operators. Another example would be a1()=m2(Φ,)a_{1}\left(\cdot\right)=m_{2}\left(\Phi,\cdot\right) where Φ\Phi is any QQ-closed string field of ghost number zero. For simplicity we will focus just on linear combinations of Virasoros. Motivated by the form of (2.30) we make the ansatz

a1=kvkLk,an2=kvkπ1{𝐛𝐤,𝐌𝐧}πn.a_{1}=\sum_{k}v_{k}L_{k},\,\,\,\,\,\,\,\,\,a_{n\geq 2}=\sum_{k}v_{k}\pi_{1}\mathbf{\left\{\mathbf{b_{k}},M_{n}\right\}}\pi_{n}. (2.36)

This can be directly inserted into (2.33) acting on nn elements:

kvkπ1([𝐋𝐤,𝐌𝐧]+i=2n1[(𝐛𝐤𝐌𝐢),𝐌𝐧+𝟏𝐢]+[(𝐌𝐢𝐛𝐤),𝐌𝐧+𝟏𝐢]+[(𝐛𝐤𝐌𝐧),𝐐]+[(𝐌𝐧𝐛𝐤),𝐐])πn\displaystyle\sum_{k}v_{k}\pi_{1}\left(\left[\mathbf{\mathbf{L_{k}},M_{n}}\right]+\sum_{i=2}^{n-1}\mathbf{\left[\left(b_{k}\mathbf{M_{i}}\right),\mathbf{M_{n+1-i}}\right]+\left[\mathbf{\left(M_{i}b_{k}\right)},\mathbf{M_{n+1-i}}\right]+\left[\left(b_{k}M_{n}\right),\mathbf{Q}\right]+\left[\mathbf{\left(M_{n}b_{k}\right)},\mathbf{Q}\right]}\right)\pi_{n}
=\displaystyle=\, kvkπ1(𝐋𝐤𝐌𝐧𝐌𝐧𝐋𝐤+i=2n1𝐛𝐤𝐌𝐢𝐌𝐧+𝟏𝐢𝐌𝐧+𝟏𝐢(𝐛𝐤𝐌𝐢)+𝐌𝐢𝐛𝐤𝐌𝐧+𝟏𝐢)πn\displaystyle\sum_{k}v_{k}\pi_{1}\left(\mathbf{L_{k}M_{n}-M_{n}\mathbf{L_{k}}}+\sum_{i=2}^{n-1}\mathbf{b_{k}\mathbf{M_{i}}\mathbf{M_{n+1-i}}-\mathbf{M_{n+1-i}}\left(b_{k}\mathbf{M_{i}}\right)+\mathbf{M_{i}b_{k}}\mathbf{M_{n+1-i}}}\right)\pi_{n}
kvkπ1(𝐌𝐧+𝟏𝐢(𝐌𝐢𝐛𝐤)+𝐛𝐤𝐌𝐧𝐐𝐐𝐛𝐤𝐌𝐧+𝐌𝐧𝐛𝐤𝐐𝐐𝐌𝐧𝐛𝐤)πn\displaystyle-\sum_{k}v_{k}\pi_{1}\left(\mathbf{M_{n+1-i}}\left(\mathbf{M_{i}b_{k}}\right)+\mathbf{b_{k}M_{n}\mathbf{Q}-Qb_{k}M_{n}+M_{n}\mathbf{b_{k}}\mathbf{Q}-QM_{n}\mathbf{b_{k}}}\right)\pi_{n}
=\displaystyle=\, kvkπ1(𝐛𝐤𝐐𝐌𝐧𝐌𝐧𝐐𝐛𝐤+i=2n1𝐛𝐤𝐌𝐢𝐌𝐧+𝟏𝐢𝐌𝐧+𝟏𝐢(𝐛𝐤𝐌𝐢))πn\displaystyle\sum_{k}v_{k}\pi_{1}\left(\mathbf{b_{k}QM_{n}-M_{n}\mathbf{Qb_{k}}}+\sum_{i=2}^{n-1}\mathbf{b_{k}\mathbf{M_{i}}\mathbf{M_{n+1-i}}-\mathbf{M_{n+1-i}}\left(b_{k}\mathbf{M_{i}}\right)}\right)\pi_{n}
+kvkπ1(𝐌𝐢𝐛𝐤𝐌𝐧+𝟏𝐢𝐌𝐧+𝟏𝐢(𝐌𝐢𝐛𝐤)+𝐛𝐤𝐌𝐧𝐐𝐐𝐌𝐧𝐛𝐤)πn.\displaystyle+\sum_{k}v_{k}\pi_{1}\left(\mathbf{M_{i}b_{k}}\mathbf{M_{n+1-i}}-\mathbf{M_{n+1-i}}\left(\mathbf{M_{i}b_{k}}\right)+\mathbf{b_{k}M_{n}\mathbf{Q}-QM_{n}\mathbf{b_{k}}}\right)\pi_{n}. (2.37)

Using the AA_{\infty}-relation

{𝐌𝐧,𝐐}+i=2n1𝐌𝐢𝐌𝐧+𝟏𝐢=0\left\{\mathbf{M_{n}},\mathbf{Q}\right\}+\sum_{i=2}^{n-1}\mathbf{M_{i}}\mathbf{M_{n+1-i}}=0 (2.38)

this expression can be shown to vanish, which proves our ansatz to be correct.

We can also show that our solution for 𝐚\mathbf{a} is again a combination of a gauge transformation and field redefinition proportional to the equations of motion: If we define analogously to section 2.5

Λ=kvkbkΨ\Lambda=\sum_{k}v_{k}b_{k}\Psi (2.39)

then we have

π1𝐚11Ψ\displaystyle\pi_{1}\mathbf{a}\frac{1}{1-\Psi}\, =QΛ+n=2Mn(Λ,Ψn1)+Mn(Ψ,Λ,Ψn2)++Mn(Ψn1,Λ)\displaystyle=Q\Lambda+\sum_{n=2}^{\infty}M_{n}\left(\Lambda,\Psi^{\otimes n-1}\right)+M_{n}\left(\Psi,\Lambda,\Psi^{\otimes n-2}\right)+...+M_{n}\left(\Psi^{\otimes n-1},\Lambda\right)
+kvkbk(QΨ+n=2Mn(Ψn)).\displaystyle+\sum_{k}v_{k}b_{k}\left(Q\Psi+\sum_{n=2}^{\infty}M_{n}\left(\Psi^{\otimes n}\right)\right). (2.40)

To sum up, the family

a1=kvkLk,an2=kπ1((vk+δ0k)𝐛𝐤𝐌𝐧+(vkδ0k)𝐌𝐧𝐛𝐤)πna_{1}=\sum_{k}v_{k}L_{k},\,\,\,\,\,\,\,\,\,a_{n\geq 2}=\sum_{k}\pi_{1}\left(\left(v_{k}+\delta_{0k}\right)\mathbf{b_{k}M_{n}}+\left(v_{k}-\delta_{0k}\right)\mathbf{M_{n}\mathbf{b_{k}}}\right)\pi_{n} (2.41)

provides an infinitesimal intertwiner for all possible vkv_{k} where vk=0v_{k}=0 corresponds to 𝐅𝟏\mathbf{F^{-1}}.

2.7 Cyclicity and invariance of the action

In this section we shall analyze under which conditions the transformation 𝐀\mathbf{A} generates the expected AA_{\infty}-action SS^{\prime} (1.15). For that, 𝐀\mathbf{A} not only needs to be an intertwiner but also be compatible with the symplectic form ω\omega, i. e. the last equation in

S(Ψ)\displaystyle S\left(\Psi\right)\, =01𝑑tω(π1𝒕11Ψ(t),π1𝐦11Ψ(t))\displaystyle=\int_{0}^{1}dt\,\omega\left(\pi_{1}\boldsymbol{\partial_{t}}\frac{1}{1-\Psi\left(t\right)},\pi_{1}\mathbf{m}\frac{1}{1-\Psi\left(t\right)}\right)
=01𝑑tω(π1𝒕(𝐀𝟏𝐀11Ψ(t)),π1𝐀𝟏𝐌𝐀11Ψ(t))\displaystyle=\int_{0}^{1}dt\,\omega\left(\pi_{1}\boldsymbol{\partial_{t}}\left(\mathbf{A^{-1}A}\frac{1}{1-\Psi\left(t\right)}\right),\pi_{1}\mathbf{A^{-1}MA}\frac{1}{1-\Psi\left(t\right)}\right)
=01𝑑tω(π1𝒕𝐀𝟏11π1𝐀11Ψ(t),π1𝐀𝟏𝐌11π1𝐀11Ψ(t))\displaystyle=\int_{0}^{1}dt\,\omega\left(\pi_{1}\boldsymbol{\partial_{t}}\mathbf{A^{-1}}\frac{1}{1-\pi_{1}\mathbf{A}\frac{1}{1-\Psi\left(t\right)}},\pi_{1}\mathbf{A^{-1}M}\frac{1}{1-\pi_{1}\mathbf{A}\frac{1}{1-\Psi\left(t\right)}}\right)
=01𝑑tω(π1𝐀𝟏𝒕11Ψ(t),π1𝐀𝟏𝐌11Ψ(t))\displaystyle=\int_{0}^{1}dt\,\omega\left(\pi_{1}\mathbf{A^{-1}}\boldsymbol{\partial_{t}}\frac{1}{1-\Psi^{\prime}\left(t\right)},\pi_{1}\mathbf{A^{-1}M}\frac{1}{1-\Psi^{\prime}\left(t\right)}\right)
=01𝑑tω(π1𝒕11Ψ(t),π1𝐌11Ψ(t))=S(Ψ)\displaystyle=\int_{0}^{1}dt\,\omega\left(\pi_{1}\boldsymbol{\partial_{t}}\frac{1}{1-\Psi^{\prime}\left(t\right)},\pi_{1}\mathbf{M}\frac{1}{1-\Psi^{\prime}\left(t\right)}\right)=S^{\prime}\left(\Psi\right) (2.42)

needs to be true. Note that t\partial_{t} and 𝐀\mathbf{A} commute since 𝐀\mathbf{A} does not depend on tt.

Cyclicity of a cohomomorphism is actually a delicate question: In [21] it is stated as the condition

ω(𝐀,𝐀)=ω(,)\omega\left(\mathbf{A}\cdot,\mathbf{A}\cdot\right)=\omega\left(\cdot,\cdot\right) (2.43)

but one has to be precise on what type of elements it is supposed to act. It is quite clear that the relation is too restrictive to act on arbitrary elements: One would get

ω(A1(Ψ1)+A2(Ψ1,Ψ2)+A3(Ψ1,Ψ2,Ψ3)+,A1(ϕ1)+A2(ϕ1,ϕ2)+A3(ϕ1,ϕ2,ϕ3)+)\displaystyle\,\omega\left(A_{1}\left(\Psi_{1}\right)+A_{2}\left(\Psi_{1},\Psi_{2}\right)+A_{3}\left(\Psi_{1},\Psi_{2},\Psi_{3}\right)+\cdots,A_{1}\left(\phi_{1}\right)+A_{2}\left(\phi_{1},\phi_{2}\right)+A_{3}\left(\phi_{1},\phi_{2},\phi_{3}\right)+\cdots\right)
=\displaystyle= ω(Ψ1,ϕ1)\displaystyle\,\omega\left(\Psi_{1},\phi_{1}\right) (2.44)

which would imply (at least in the case where A1A_{1} is invertible, which is equivalent to 𝐀\mathbf{A} being invertible) that every output of An2A_{n\geq 2} is orthogonal to any possible Ψ.\Psi. Since ω\omega is non-degenerate, we would conclude that the An2A_{n\geq 2} all have to be identically zero, which is not what we want. Even if we only allow group-like inputs, i. e. elements of the form 11Ψ\frac{1}{1-\Psi}, the same argument shows that the two inputs have to be identical. By looking at (1.14) however we see that we need a generalization of that by allowing coderivations to act on the group-like inputs. The equation

ω(π1(𝐀𝟏𝐝𝟏(Ψ)+𝐀𝟐𝐝𝟏(Ψ2)+𝐀𝟏𝐝𝟐(Ψ2)+),\displaystyle\omega\Big{(}\pi_{1}\left(\mathbf{A_{1}d_{1}}\left(\Psi\right)+\mathbf{A_{2}}\mathbf{d_{1}}\left(\Psi^{\otimes 2}\right)+\mathbf{A_{1}d_{2}}\left(\Psi^{\otimes 2}\right)+\cdots\right),
π1(𝐀𝟏𝐝𝟏(Ψ)+𝐀𝟐𝐝𝟏(Ψ2)+𝐀𝟏𝐝𝟐(Ψ2)+))\displaystyle\,\,\,\,\,\,\,\,\,\pi_{1}\left(\mathbf{A_{1}d^{\prime}_{1}}\left(\Psi\right)+\mathbf{A_{2}}\mathbf{d^{\prime}_{1}}\left(\Psi^{\otimes 2}\right)+\mathbf{A_{1}d^{\prime}_{2}}\left(\Psi^{\otimes 2}\right)+\cdots\right)\Big{)}
=\displaystyle= ω(π1𝐝11Ψ,π1𝐝11Ψ)\displaystyle\,\omega\left(\pi_{1}\mathbf{d}\frac{1}{1-\Psi},\pi_{1}\mathbf{d}^{\prime}\frac{1}{1-\Psi}\right) (2.45)

actually makes sense also for non-trivial An2A_{n\geq 2} because we can have

ω(A1π1𝐝11Ψ,A1π1𝐝11Ψ)=ω(π1𝐝11Ψ,π1𝐝11Ψ)\omega\left(A_{1}\pi_{1}\mathbf{d}\frac{1}{1-\Psi},A_{1}\pi_{1}\mathbf{d}^{\prime}\frac{1}{1-\Psi}\right)=\omega\left(\pi_{1}\mathbf{d}\frac{1}{1-\Psi},\pi_{1}\mathbf{d}^{\prime}\frac{1}{1-\Psi}\right) (2.46)

while the higher terms of a given order in Ψ\Psi cancel each other, even if 𝐝𝐝.\mathbf{d}\neq\mathbf{d^{\prime}}. For an infinitesimal 𝐀=𝟏+ϵ𝐚+𝒪(ϵ2)\mathbf{A}=\mathbf{1}+\epsilon\mathbf{a}+\mathcal{O}\left(\epsilon^{2}\right) it boils down to the condition that 𝐚\mathbf{a} is cyclic coderivation. To sum up, we define a cohomomorphism 𝐀\mathbf{A} to be cyclic with respect to ω\omega if

ω(π1𝐀𝐝11Ψ,π1𝐀𝐝11Ψ)=ω(π1𝐝11Ψ,π1𝐝11Ψ)\omega\left(\pi_{1}\mathbf{Ad}\frac{1}{1-\Psi},\pi_{1}\mathbf{Ad}^{\prime}\frac{1}{1-\Psi}\right)=\omega\left(\pi_{1}\mathbf{d}\frac{1}{1-\Psi},\pi_{1}\mathbf{d}^{\prime}\frac{1}{1-\Psi}\right) (2.47)

for arbitrary 𝐝\mathbf{d}, 𝐝\mathbf{d^{\prime}} and Ψ\Psi.

With this definition we can immediately analyze the cyclicity properties of 𝐅𝟏\mathbf{F^{-1}} and 𝐏\mathbf{P}: With the infinitesimal 𝐟\mathbf{f} given by (2.18) we get

ω(Ψ1,fn(Ψ2,,Ψn+1))\displaystyle\omega\left(\Psi_{1},f_{n}\left(\Psi_{2},...,\Psi_{n+1}\right)\right)\, =ω(Ψ1,b0Mn(Ψ2,,Ψn+1))+ω(Ψ1,Mn(𝐛𝟎(Ψ2,,Ψn+1)))\displaystyle=-\omega\left(\Psi_{1},b_{0}M_{n}\left(\Psi_{2},...,\Psi_{n+1}\right)\right)+\omega\left(\Psi_{1},M_{n}\left(\mathbf{b_{0}}\left(\Psi_{2},...,\Psi_{n+1}\right)\right)\right)
=ω(b0Ψ1,Mn(Ψ2,,Ψn+1))ω(Mn(Ψ1,𝐛𝟎(Ψ2,,Ψn)),Ψn+1)\displaystyle=-\omega\left(b_{0}\Psi_{1},M_{n}\left(\Psi_{2},...,\Psi_{n+1}\right)\right)-\omega\left(M_{n}\left(\Psi_{1},\mathbf{b_{0}}\left(\Psi_{2},...,\Psi_{n}\right)\right),\Psi_{n+1}\right)
ω(Mn(Ψ1,,Ψn),b0Ψn+1)\displaystyle\,\,\,\,\,\,\,\,\,\,-\omega\left(M_{n}\left(\Psi_{1},...,\Psi_{n}\right),b_{0}\Psi_{n+1}\right)
=ω(Mn(b0Ψ1,Ψ2,,Ψn),Ψn+1)ω(Mn(Ψ1,𝐛𝟎(Ψ2,,Ψn)),Ψn+1)\displaystyle=-\omega\left(M_{n}\left(b_{0}\Psi_{1},\Psi_{2},...,\Psi_{n}\right),\Psi_{n+1}\right)-\omega\left(M_{n}\left(\Psi_{1},\mathbf{b_{0}}\left(\Psi_{2},...,\Psi_{n}\right)\right),\Psi_{n+1}\right)
+ω(b0Mn(Ψ1,,Ψn),Ψn+1)\displaystyle\,\,\,\,\,\,\,\,\,\,\,+\omega\left(b_{0}M_{n}\left(\Psi_{1},...,\Psi_{n}\right),\Psi_{n+1}\right)
=ω(Mn𝐛𝟎(Ψ1,Ψ2,,Ψn),Ψn+1)+ω(b0Mn(Ψ1,,Ψn),Ψn+1)\displaystyle=-\omega\left(M_{n}\mathbf{b_{0}}\left(\Psi_{1},\Psi_{2},...,\Psi_{n}\right),\Psi_{n+1}\right)+\omega\left(b_{0}M_{n}\left(\Psi_{1},...,\Psi_{n}\right),\Psi_{n+1}\right)
=ω(fn(Ψ1,,Ψn)Ψn+1),\displaystyle=-\omega\left(f_{n}\left(\Psi_{1},...,\Psi_{n}\right)\Psi_{n+1}\right), (2.48)

hence 𝐟\mathbf{f} is cyclic and so is the finite version

𝐅𝟏=𝒫e0λ𝑑t𝐟(t).\mathbf{F^{-1}}=\mathcal{P}e^{\int_{0}^{\lambda}dt\,\mathbf{f}\left(t\right)}. (2.49)

In contrast, for 𝐏\mathbf{P} we already see at first order that f1=L0f_{1}^{\prime}=-L_{0} is not cyclic because the sign does not match:

ω(Ψ1,L0Ψ2)=ω(L0Ψ1,Ψ2).-\omega\left(\Psi_{1},L_{0}\Psi_{2}\right)=-\omega\left(L_{0}\Psi_{1},\Psi_{2}\right). (2.50)

This implies that P1=eλL0P_{1}=e^{-\lambda L_{0}} is not “unitary” with respect to the BPZ-product as it would be required for a cyclic cohomomorphism.

From the results of section 2.6 we also deduce that 𝐅𝟏\mathbf{F^{-1}} is not unique as a cyclic intertwiner: Taking a BPZ-odd choice for a1a_{1} in (2.41), i. e. demanding vk=(1)kvkv_{k}=-\left(-1\right)^{k}v_{-k} leads to a cyclic coderivation and in turn to a cyclic cohomomorphism by a similar argument as in (2.48).

3 Generalized stubs

We now want to go a step further and allow for more general stub operators, especially non-BPZ-even ones. The motivation behind that is that we want to apply our construction to explicit analytic solutions of OSFT. While it is in principle straightforward to do that, we face a technical problem: The most important solutions, like for instance the tachyon vacuum ([18, 9]), are formulated in the sliver frame in terms of the KBcKBc-algebra. The action of ii, pp and hh would take us outside the KBcKBc-algebra and is therefore impractical for actual calculations. It would be much more natural to use the sliver frame analogue of the stub operator, i. e. replace eλL0e^{-\lambda L_{0}} by eλ0e^{-\lambda\mathcal{\mathcal{L}}_{0}}. We will first discuss general aspects of non-BPZ-even stub operators and provide a careful treatment of the operator eλ0e^{-\lambda\mathcal{\mathcal{L}}_{0}} in section 3.4.

3.1 Algebraic aspects

Let us consider a generalized stub operator of the form

eλvkLk=:eλLe^{-\lambda\sum v_{k}L_{k}}=:e^{-\lambda L} (3.1)

with some real coefficients vkv_{k}. An important example is given by the family

L=Lt=L0+2k=1(1)k+14k21e2tkL2kL=L_{t}=L_{0}+2\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k+1}}{4k^{2}-1}e^{-2tk}L_{2k} (3.2)

which interpolates between the Siegel gauge and sliver gauge stub: For t=0t=0 we get 0\mathcal{\mathcal{L}}_{0}, whereas in the limit of tt\rightarrow\infty we recover L0L_{0}. The most important new algebraic aspect is that eλLe^{-\lambda L} is not BPZ-even since in general LLL^{*}\neq L. Hence, the naive choice p=i=eλLp=i=e^{-\lambda L} would not result in cyclic products, we need to define

p=eλLp=e^{-\lambda L^{*}} (3.3)

instead. While this small change seems innocuous at first sight, it also affects the Hodge-Kodaira relation and therefore our possible choices of hh, which we use to construct the higher vertices.

To motivate our general construction of hh let us first consider the special case of L=0L=\mathcal{\mathcal{L}}_{0}, postponing the discussion of potential geometrical subtleties to section 3.4. The right-hand side of

hQ+Qh=ip1hQ+Qh=ip-1 (3.4)

evaluates to

eλ0eλ01=e(eλ1)(0+0)1e^{-\lambda\mathcal{\mathcal{L}}_{0}}e^{-\lambda\mathcal{\mathcal{L}}_{0}^{*}}-1=e^{\left(e^{-\lambda}-1\right)\left(\mathcal{\mathcal{L}}_{0}+\mathcal{L}_{0}^{*}\right)}-1 (3.5)

using the algebraic relations [18]

x0y0=(11+xyx)0(11+yxy)0,x0x0=e(11x)(0+0).x^{\mathcal{L}_{0}}y^{\mathcal{L}_{0}^{*}}=\left(\frac{1}{1+\frac{x}{y}-x}\right)^{\mathcal{L}_{0}^{*}}\left(\frac{1}{1+\frac{y}{x}-y}\right)^{\mathcal{L}_{0}},\,\,\,\,\,\,\,\,\,\,\,x^{\mathcal{L}_{0}^{*}}x^{\mathcal{L}_{0}}=e^{\left(1-\frac{1}{x}\right)\left(\mathcal{\mathcal{L}}_{0}+\mathcal{L}_{0}^{*}\right)}. (3.6)

A natural choice for hh would now be

h^0=e(eλ1)(0+0)1(0+0)(0+0)=01eλ𝑑t(0+0)et(0+0).h_{\hat{\mathcal{B}}_{0}}=\frac{e^{\left(e^{-\lambda}-1\right)\left(\mathcal{\mathcal{L}}_{0}+\mathcal{L}_{0}^{*}\right)}-1}{\left(\mathcal{\mathcal{L}}_{0}+\mathcal{L}_{0}^{*}\right)}\left(\mathcal{\mathcal{B}}_{0}+\mathcal{B}_{0}^{*}\right)=-\int_{0}^{1-e^{-\lambda}}dt\,\left(\mathcal{\mathcal{B}}_{0}+\mathcal{B}_{0}^{*}\right)e^{-t\left(\mathcal{\mathcal{L}}_{0}+\mathcal{L}_{0}^{*}\right)}. (3.7)

This expression is manifestly non-singular: If 0+0\mathcal{\mathcal{L}}_{0}+\mathcal{L}_{0}^{*} yields zero on some state (which would for example formally the case for the sliver state) then no pole is produced. It corresponds to the propagator in ^0\hat{\mathcal{B}}_{0}-gauge

0𝑑t(0+0)et(0+0)=0+00+0^0^0.-\int_{0}^{\infty}dt\,\left(\mathcal{\mathcal{B}}_{0}+\mathcal{B}_{0}^{*}\right)e^{-t\left(\mathcal{\mathcal{L}}_{0}+\mathcal{L}_{0}^{*}\right)}=-\frac{\mathcal{\mathcal{B}}_{0}+\mathcal{B}_{0}^{*}}{\mathcal{\mathcal{L}}_{0}+\mathcal{L}_{0}^{*}}\equiv-\frac{\hat{\mathcal{B}}_{0}}{\hat{\mathcal{L}}_{0}}. (3.8)

From an algebraic perspective, this propagator is quite convenient and leads to a simple set of vertices.

The solution for h^0h_{\hat{\mathcal{B}}_{0}} relied heavily on the special algebraic properties of 0\mathcal{\mathcal{L}}_{0} and 0\mathcal{L}_{0}^{*}. To find a solution for a generic LL, most importantly LtL_{t} defined above, we can take

hB^=0λ𝑑tetL(B+B)etLh_{\hat{B}}=-\int_{0}^{\lambda}dt\,e^{-tL}\left(B+B^{*}\right)e^{-tL^{*}} (3.9)

with BB defined as

B=𝑘vkBk.B=\underset{k}{\sum}v_{k}B_{k}. (3.10)

For L=0L=\mathcal{\mathcal{L}}_{0} and B=0B=\mathcal{\mathcal{B}}_{0} it reduces to (3.7). Plugging into the Hodge-Kodaira relation and using {Q,B}=L\left\{Q,B\right\}=L we get

QhB^+hB^Q=0λ𝑑tetL(L+L)etL=0λ𝑑tddt(etLetL)=eλLeλL1=ip1Qh_{\hat{B}}+h_{\hat{B}}Q=-\int_{0}^{\lambda}dt\,e^{-tL}\left(L+L^{*}\right)e^{-tL^{*}}=\int_{0}^{\lambda}dt\,\frac{d}{dt}\left(e^{-tL}e^{-tL^{*}}\right)=e^{-\lambda L}e^{-\lambda L^{*}}-1=ip-1 (3.11)

as desired. Hence we succeeded to find a well-defined solution for the homotopy for any generalized stub eλLe^{-\lambda L}.

3.2 Geometric aspects

As we discussed in [19] already, we have to ensure that the Feynman diagrams constructed out of the vertices and the propagator provide a full single cover of the moduli space of bordered punctured Riemann surfaces. This implies that the higher elementary vertices must include precisely those surfaces which are missed after attaching the stubs. What changes compared to [19] is that eλLe^{-\lambda L} is not the time evolution operator in radial quantization anymore and induces a non-trivial distortion of the worldsheet surface [10].

We have seen above that every choice of stub operator eλLe^{-\lambda L} is naturally associated to a gauge condition given by

BΨ=0.B\Psi=0. (3.12)

However, the homotopy hB^h_{\hat{B}} we constructed in (3.9) is part of the propagator in B^\hat{B}-gauge, i. e. where the gauge condition

(B+B)Ψ=0\left(B+B^{*}\right)\Psi=0 (3.13)

is imposed. We could ask now if there is also a choice for hh that corresponds to BB-gauge directly. After all, analytic solutions have been found in 0\mathcal{\mathcal{B}}_{0}-gauge, not ^0\hat{\mathcal{B}}_{0}-gauge, where they become singular. Hence an hh that corresponds to sliver gauge (i. e. 0Ψ=0\mathcal{\mathcal{B}}_{0}\Psi=0) would seem more natural. To answer that, we will use some geometric input from computing amplitudes in general linear BB-gauges.

In [10] a condition on B=𝑘vkBkB=\underset{k}{\sum}v_{k}B_{k} was given that ensures that all tree level amplitudes can be computed unambiguously. In terms of the vector field v(ξ)=𝑘vkξk+1v\left(\xi\right)=\underset{k}{\sum}v_{k}\xi^{k+1} this condition reads

Re(ξ¯v(ξ))>0forξ=1.\text{Re}\left(\overline{\xi}v\left(\xi\right)\right)>0\,\,\,\,\,\,\,\,\,\text{for}\,\,\,\,\,\,\,\,\,\mid\xi\mid=1. (3.14)

It is for example obeyed for the family

Bt=:etL00etL0=b0+2k=1(1)k+14k21e2tkb2kB_{t}=:e^{tL_{0}}\mathcal{B}_{0}e^{-tL_{0}}=b_{0}+2\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k+1}}{4k^{2}-1}e^{-2tk}b_{2k} (3.15)

associated to the interpolation (3.2) as long as tt is strictly greater than zero. This means that for sliver gauge the condition is marginally violated, see section 3.4. For this section we will assume that (3.14) holds for our choice of vkv_{k}. The propagator in a general BB-gauge was derived in [10] to be

BLQBLon odd ghost number states, BLQBLon even ghost number states,-\frac{B^{*}}{L^{*}}Q\frac{B}{L}\,\,\,\,\text{on odd ghost number states,\,\,\,\,\,}-\frac{B}{L}Q\frac{B^{*}}{L^{*}}\,\,\,\,\text{on even ghost number states}, (3.16)

so it contains two Schwinger parameters instead of one. The result is an infinite overcounting of the moduli space, every surface is now additionally integrated over from zero to infinity. The reason why the theory is still unitary and produces the right values for amplitudes is the presence of QQ in the propagator, which cancels the overcounting.

To derive the correct form of hBh_{B} in BB-gauge let us analyze the on-shell four-amplitude in Witten theory as well as in the stubbed theory. In Witten theory there is no elementary 4-vertex and the whole amplitude is given by the Feynman region:

𝒜4=ω(Ψ1,m2(Ψ2,BLQBLm2(Ψ3,Ψ4)))+perm.\mathcal{A}_{4}=-\omega\left(\Psi_{1},m_{2}\left(\Psi_{2},\frac{B}{L}Q\frac{B^{*}}{L^{*}}m_{2}\left(\Psi_{3},\Psi_{4}\right)\right)\right)+\text{perm.} (3.17)

Here, perm. stands for the t-channel contribution obtained by a cyclic permutation where BLQBLm2\frac{B}{L}Q\frac{B^{*}}{L^{*}}m_{2} acts on Ψ2\Psi_{2} and Ψ3\Psi_{3}. In the stubbed theory we have to sum the Feynman region and the vertex region:

𝒜4=ω(Ψ1,M2(Ψ2,BLQBLM2(Ψ3,Ψ4)))+perm.+ω(Ψ1,M3(Ψ2,Ψ3,Ψ4)),\mathcal{A}_{4}=-\omega\left(\Psi_{1},M_{2}\left(\Psi_{2},\frac{B}{L}Q\frac{B^{*}}{L^{*}}M_{2}\left(\Psi_{3},\Psi_{4}\right)\right)\right)+\text{perm.}+\omega\left(\Psi_{1},M_{3}\left(\Psi_{2},\Psi_{3},\Psi_{4}\right)\right), (3.18)

where

M3(,,)=eλLm2(eλL,hBm2(eλL,eλL))+eλLm2(hBm2(eλL,eλL),eλL).M_{3}\left(\cdot,\cdot,\cdot\right)=\,e^{-\lambda L^{*}}m_{2}\left(e^{-\lambda L}\cdot,h_{B}m_{2}\left(e^{-\lambda L}\cdot,e^{-\lambda L}\cdot\right)\right)\,+\,e^{-\lambda L^{*}}m_{2}\left(h_{B}m_{2}\left(e^{-\lambda L}\cdot,e^{-\lambda L}\cdot\right),e^{-\lambda L}\cdot\right). (3.19)

If we only focus on the s-channel (including the part of M3M_{3} that “extends” to the s-channel) the expression becomes

𝒜4s=\displaystyle\mathcal{A}_{4s}=-\, ω(Ψ1,eλLm2(eλLΨ2,eλLBLQBLeλLm2(eλLΨ3,eλLΨ4)))\displaystyle\omega\left(\Psi_{1},e^{-\lambda L^{*}}m_{2}\left(e^{-\lambda L}\Psi_{2},e^{-\lambda L}\frac{B}{L}Q\frac{B^{*}}{L^{*}}e^{-\lambda L^{*}}m_{2}\left(e^{-\lambda L}\Psi_{3},e^{-\lambda L}\Psi_{4}\right)\right)\right)
+ω(eλLΨ1,m2(eλLΨ2,hBm2(eλLΨ3,eλLΨ4)))\displaystyle+\omega\left(e^{-\lambda L}\Psi_{1},m_{2}\left(e^{-\lambda L}\Psi_{2},h_{B}m_{2}\left(e^{-\lambda L}\Psi_{3},e^{-\lambda L}\Psi_{4}\right)\right)\right) (3.20)

Since we take the external states to be on-shell, the stub operators acting directly on Ψi\Psi_{i} do not matter and we get

𝒜4s=ω(Ψ1,m2(Ψ2,eλLBLQBLeλLm2(Ψ3,Ψ4)))+ω(Ψ1,m2(Ψ2,hBm2(Ψ3,Ψ4))).\displaystyle\mathcal{A}_{4s}=-\omega\left(\Psi_{1},m_{2}\left(\Psi_{2},e^{-\lambda L}\frac{B}{L}Q\frac{B^{*}}{L^{*}}e^{-\lambda L^{*}}m_{2}\left(\Psi_{3},\Psi_{4}\right)\right)\right)+\omega\left(\Psi_{1},m_{2}\left(\Psi_{2},h_{B}m_{2}\left(\Psi_{3},\Psi_{4}\right)\right)\right). (3.21)

Comparing with (3.17) would give us hBh_{B} when acting on a ghost number two state as

eλLBLQBLeλLBLQBL\displaystyle e^{-\lambda L}\frac{B}{L}Q\frac{B^{*}}{L^{*}}e^{-\lambda L^{*}}-\frac{B}{L}Q\frac{B^{*}}{L^{*}} (3.22)

up to QQ-exact terms. The sliver gauge propagator was dependent on the ghost number of the input; if we demand that this property should also hold for the homotopy we arrive at

hB=(eλLBLQBLeλLBLQBL)P++(eλLBLQBLeλLBLQBL)P,h_{B}=\left(e^{-\lambda L}\frac{B}{L}Q\frac{B^{*}}{L^{*}}e^{-\lambda L^{*}}-\frac{B}{L}Q\frac{B^{*}}{L^{*}}\right)P_{+}+\left(e^{-\lambda L}\frac{B^{*}}{L^{*}}Q\frac{B}{L}e^{-\lambda L^{*}}-\frac{B^{*}}{L^{*}}Q\frac{B}{L}\right)P_{-}, (3.23)

where P+P_{+} (PP_{-}) is the projector on states of even (odd) ghost number. Now we can verify that hBh_{B} also obeys the Hodge-Kodaira relation (3.4). Note that the dependence on the ghost number is crucial for that to work. We point out that this construction of hBh_{B} was purely governed by the consistency of the on-shell amplitudes. We see that it is natural for hBh_{B} to be in the same gauge as the propagator which is used to compute amplitudes. An interesting point is that (3.23) can contain poles if LL or LL^{*} give zero on some state, in contrast to h^0h_{\hat{\mathcal{B}}_{0}} (3.7). This is particularly important in the sliver frame limit and will be discussed in section 3.4.

To sum up, we are now able to construct the higher products in exactly the same way as in [19] but with i=eλLi=e^{-\lambda L}, p=eλLp=e^{-\lambda L^{*}} and hh equal to (3.23) or (3.9), depending on the purposes.

3.3 Intertwining cohomomorphisms

Let us see now what changes regarding the intertwiners if we are working with generalized stubs. Actually the construction of 𝐏\mathbf{P} is very simple: One can just use the modified homotopy transfer formula of [19] and replace ii, pp and hh by their generalized counterparts defined above. The only necessary algebraic ingredients were the chain map relations Qi=iQQi=iQ, Qp=pQQp=pQ as well as (3.4), which we have shown to be true. Hence we conclude that 𝐏\mathbf{P} constructed this way obeys the perturbed chain map relation

𝐏𝐦=𝐌𝐏\mathbf{Pm}=\mathbf{MP} (3.24)

as desired.

To find a cyclic intertwiner that also preserves the form of the action is a bit more involved: Motivated by the explicit form of 𝐟(λ)\mathbf{f\left(\lambda\right)} in the standard frame we propose the following ansatz:

f1=0andfn(λ)=π1(𝐗𝐌𝐧(λ)𝐌𝐧(λ)𝐗)πnf_{1}=0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{and}\,\,\,\,\,\,\,\,\,\,\,\,\,f_{n}\left(\lambda\right)=\pi_{1}\left(\mathbf{X^{*}M_{n}\left(\lambda\right)-M_{n}\left(\lambda\right)}\mathbf{X}\right)\pi_{n} (3.25)

Cyclicity then follows automatically by (2.48) with XX replacing b0b_{0}. Looking at equations (2.19), (2.20) in combination with (2.7) we can deduce the following conditions on XX:

{Q,X}\displaystyle\left\{Q,X\right\} =L,\displaystyle\,=L, (3.26)
X+X\displaystyle X+X^{*} =ddλhλ=0\displaystyle\,=-\frac{d}{d\lambda}h\mid_{\lambda=0} (3.27)

In B^\hat{B}-gauge it is actually simple because

ddλhB^λ=0=B^-\frac{d}{d\lambda}h_{\hat{B}}\mid_{\lambda=0}=\hat{B} (3.28)

and the natural choice X=X=BB provides a solution.

For BB- gauge the situation is slightly more complicated, we get

ddλhBλ=0=(BQBL+BLQB)P++(LBLQBL+BLQBLL)P.-\frac{d}{d\lambda}h_{B}\mid_{\lambda=0}=\left(BQ\frac{B^{*}}{L^{*}}+\frac{B}{L}QB^{*}\right)P_{+}+\left(L\frac{B^{*}}{L^{*}}Q\frac{B}{L}+\frac{B^{*}}{L^{*}}Q\frac{B}{L}L^{*}\right)P_{-}. (3.29)

To solve both conditions we can define

X=BQBLP++LBLQBLP.X=BQ\frac{B^{*}}{L^{*}}P_{+}+L\frac{B^{*}}{L^{*}}Q\frac{B}{L}P_{-}. (3.30)

To prove that our ansatz is indeed correct we need to insert into (2.12):

π1([𝐗𝐌𝐧,𝐐][𝐌𝐧𝐗,𝐐]+i=2n1[(𝐗𝐌𝐧+𝟏𝐢),𝐌𝐢][𝐌𝐧+𝟏𝐢𝐗,𝐌𝐢])πn=ddλMn\pi_{1}\left(\mathbf{\left[X^{*}M_{n},\mathbf{Q}\right]-\left[M_{n}\mathbf{X},\mathbf{Q}\right]}+\sum_{i=2}^{n-1}\left[\left(\mathbf{X^{*}}\mathbf{M_{n+1-i}}\right),\mathbf{M_{i}}\right]-\left[\mathbf{M_{n+1-i}X},\mathbf{M_{i}}\right]\right)\pi_{n}=\frac{d}{d\lambda}M_{n} (3.31)

The r. h. s. consists of two parts: One where the derivative acts on the stubs and one where it acts on the homotopy. The action on the stubs just brings down a factor of L-L or L-L^{*} whereas the second part consists of all tree diagrams with one internal line replaced by ddλhB(λ)\frac{d}{d\lambda}h_{B}\left(\lambda\right). The replaced line divides the tree into two subtrees with ii and n+1in+1-i leaves, respectively. The sum of those subtrees form the products MiM_{i} and Mn+1iM_{n+1-i} again such that we can write

ddλMn=π1(𝐋𝐌𝐧𝐌𝐧𝐋i=2n1𝐌𝐧+𝟏𝐢,((𝐗+𝐗)𝐌𝐢))πn.\frac{d}{d\lambda}M_{n}=\pi_{1}\left(\mathbf{-L^{*}M_{n}-M_{n}\boldsymbol{L}}-\sum_{i=2}^{n-1}\mathbf{M_{n+1-i}},\left(\left(\mathbf{X+X^{*}}\right)\mathbf{M_{i}}\right)\right)\pi_{n}. (3.32)

Indeed, the leaf of Mn+1iM_{n+1-i} and the root of MiM_{i} combine to give

eλL(XX)eλL=eλLddλhBλ=0eλL=ddλhB(λ)e^{-\lambda L}\left(-X-X^{*}\right)e^{-\lambda L^{*}}=e^{-\lambda L}\frac{d}{d\lambda}h_{B}\mid_{\lambda=0}e^{-\lambda L^{*}}=\frac{d}{d\lambda}h_{B}\left(\lambda\right) (3.33)

as desired. We can now manipulate the l. h. s. using the AA_{\infty}-relation

{𝐌𝐧,𝐐}+i=2n1𝐌𝐧+𝟏𝐢𝐌𝐢=0\left\{\mathbf{M_{n}},\mathbf{Q}\right\}+\sum_{i=2}^{n-1}\mathbf{M_{n+1-i}}\mathbf{M_{i}}=0 (3.34)

and get

π1(𝐗{𝐌𝐧,𝐐}{𝐐,𝐗}𝐌𝐧𝐌𝐧{𝐗,𝐐}+{𝐌𝐧,𝐐}𝐗\displaystyle\pi_{1}\Big{(}\mathbf{X^{*}\left\{M_{n},\mathbf{Q}\right\}-\left\{Q,X^{*}\right\}M_{n}-M_{n}\left\{\mathbf{X},\mathbf{Q}\right\}+\left\{M_{n},\mathbf{Q}\right\}\mathbf{X}}
+\displaystyle+\,\, i=2n1𝐗𝐌𝐧+𝟏𝐢𝐌𝐢𝐌𝐢(𝐗𝐌𝐧+𝟏𝐢)𝐌𝐧+𝟏𝐢𝐗𝐌𝐢+𝐌𝐢(𝐌𝐧+𝟏𝐢𝐗))πn\displaystyle\sum_{i=2}^{n-1}\mathbf{X^{*}\mathbf{M_{n+1-i}}\mathbf{M_{i}}-\mathbf{M_{i}}\left(X^{*}\mathbf{M_{n+1-i}}\right)}-\mathbf{M_{n+1-i}X}\mathbf{M_{i}}+\mathbf{M_{i}\left(M_{n+1-i}X\right)\Big{)}}\pi_{n}
=\displaystyle=\,\, π1(𝐋𝐌𝐧𝐌𝐧𝐋i=2n1𝐌𝐧+𝟏𝐢,((𝐗+𝐗)𝐌𝐢))πn\displaystyle\pi_{1}\left(\mathbf{-L^{*}M_{n}-M_{n}L}-\sum_{i=2}^{n-1}\mathbf{M_{n+1-i}},\left(\left(\mathbf{X+X^{*}}\right)\mathbf{M_{i}}\right)\right)\pi_{n} (3.35)

and hence exactly the r. h. s. The finite cohomomorphism can now be computed again as the path-ordered exponential:999Observe that 𝐅\mathbf{F} is now defined for simplicity in the same direction as 𝐏\mathbf{P}, so it corresponds to 𝐅𝟏\mathbf{F^{-1}} in [19].

𝐅=𝒫e0λ𝑑t𝐟(t).\mathbf{F}=\mathcal{P}e^{\int_{0}^{\lambda}dt\,\mathbf{f}\left(t\right)}. (3.36)

3.4 The sliver frame limit

As already stated above, the sliver gauge condition marginally violates the regularity condition (3.14) which has the following geometric reason: The stub operator eλLt,e^{-\lambda L_{t}}, which is also used in the Schwinger representation of the propagator, does not attach just a rectangular strip, but a more general surface to the world sheet. For t=0t=0 this distortion of the strip becomes singular in the sense that the string midpoint is pushed to an infinite distance. This means that every stub eλ0e^{-\lambda\mathcal{L}_{0}} independently of λ\lambda covers an infinitely long region on the Riemann surface. The same problem also concerns the operator eλ(0+0)e^{-\lambda\left(\mathcal{\mathcal{L}}_{0}+\mathcal{L}_{0}^{*}\right)}. This raises the question of potential singularities and it also makes it less obvious which region of moduli space will be covered by the higher vertices. Moreover, there is also a caveat related to the Schwinger representation: Since naively one would expect

1Lt=limΛ0Λ𝑑tetLt=limΛ1Lt(1eΛLt),\frac{1}{L_{t}}=\underset{\Lambda\rightarrow\infty}{\text{lim}}\int_{0}^{\Lambda}dt\,e^{-tL_{t}}=\underset{\Lambda\rightarrow\infty}{\text{lim}}\frac{1}{L_{t}}\left(1-e^{-\Lambda L_{t}}\right), (3.37)

we must ensure that the second term gives zero contribution, i. e. it must produce a surface on the boundary of the moduli space. It has been shown that this is the case for tt strictly bigger than zero but not for t=0t=0 [10].

There are indeed singularities showing up in the sliver frame limit: If we look at the homotopy h0h_{\mathcal{B}_{0}}(3.23) it takes the form

h0=(eλ000Q00eλ000Q00)P++(eλ000Q00eλ000Q00)P.h_{\mathcal{B}_{0}}=\left(e^{-\lambda\mathcal{L}_{0}}\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}Q\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}e^{-\lambda\mathcal{L}_{0}^{*}}-\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}Q\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}\right)P_{+}+\left(e^{-\lambda\mathcal{L}_{0}}\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}Q\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}e^{-\lambda\mathcal{L}_{0}^{*}}-\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}Q\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}\right)P_{-}. (3.38)

Within the KBcKBc-algebra there exist a couple of states on which this expression is singular: While at ghost number zero there are no singularities showing up, at ghost number one we have eK2cKeK2e^{-\frac{K}{2}}cKe^{-\frac{K}{2}}, eK2KceK2e^{-\frac{K}{2}}Kce^{-\frac{K}{2}}, eK2cKBceK2e^{-\frac{K}{2}}cKBce^{-\frac{K}{2}} and eK2ceK2e^{-\frac{K}{2}}ce^{-\frac{K}{2}} and at ghost number two eK2cKcKeK2e^{-\frac{K}{2}}cKcKe^{-\frac{K}{2}} and eK2KcKceK2e^{-\frac{K}{2}}KcKce^{-\frac{K}{2}} (and linear combinations thereof). The appearance of the zero-momentum tachyon in this list might seem surprising since it has 0\mathcal{L}_{0}-eigenvalue minus one, but the operator eλ0e^{-\lambda\mathcal{L}_{0}^{*}} creates a level zero state out of it, see section 4.1. One should notice that for the ghost number two states, it is not 10\frac{1}{\mathcal{L}_{0}^{*}} but 10\frac{1}{\mathcal{L}_{0}} on the left side of the expression which creates the singularity. We can increase the range of definition of h0h_{\mathcal{B}_{0}} to all QQ-closed states, which includes eK2cKBceK2e^{-\frac{K}{2}}cKBce^{-\frac{K}{2}}, eK2cKcKeK2e^{-\frac{K}{2}}cKcKe^{-\frac{K}{2}} and eK2KcKceK2e^{-\frac{K}{2}}KcKce^{-\frac{K}{2}} by the following trick: We rewrite the sliver gauge propagator as

00Q00P(1Q00)^0^0(100Q)P\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}Q\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}P_{-}\cong\left(1-Q\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}\right)\frac{\hat{\mathcal{B}}_{0}}{\hat{\mathcal{L}}_{0}}\left(1-\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}Q\right)P_{-} (3.39)

and likewise for even ghost numbers. This expression is manifestly BPZ-even and produces well-defined results on all QQ-closed states while being equivalent to the original version on all non-problematic states101010A nice side effect is that in this way we can construct an interpolation between h0h_{\mathcal{B}_{0}} and h^0h_{\hat{\mathcal{B}}_{0}}: If we define hint(α)=(1αQ00)^0^0(1α00Q)P+(1αQ00)^0^0(1α00Q)P+h_{int}\left(\alpha\right)=\left(1-\alpha Q\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}\right)\frac{\hat{\mathcal{B}}_{0}}{\hat{\mathcal{L}}_{0}}\left(1-\alpha\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}Q\right)P_{-}+\left(1-\alpha Q\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}\right)\frac{\hat{\mathcal{B}}_{0}}{\hat{\mathcal{L}}_{0}}\left(1-\alpha\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}Q\right)P_{+} then hint(0)=h^0h_{int}\left(0\right)=h_{\hat{\mathcal{B}}_{0}} and hint(1)=h0h_{int}\left(1\right)=h_{\mathcal{B}_{0}}.. Now the only true and non-curable singularities essentially occur at the states eK2cKeK2e^{-\frac{K}{2}}cKe^{-\frac{K}{2}}, eK2KceK2e^{-\frac{K}{2}}Kce^{-\frac{K}{2}} and eK2ceK2.e^{-\frac{K}{2}}ce^{-\frac{K}{2}}.

They are however not a consequence of adding stubs, they stem from the fact that the sliver gauge propagator itself has poles on those states. The difference is that now a part of these pole contributions is moved to the internal vertices and hence also creates singularities in the equations of motion. Our strategy for making sense of the stubbed theory in the sliver frame and for computing analytic solutions will be to use the interpolating stub eλLte^{-\lambda L_{t}} and understand it in the limit t0t\rightarrow 0. This means for the geometric interpretation, 0\mathcal{L}_{0} (0)\left(\mathcal{B}_{0}\right) should be replaced by LtL_{t} (Bt)\left(B_{t}\right) in every expression while in the end we let tt go to zero. From an algebraic point of view, this is unproblematic for the h^0h_{\mathcal{\hat{B}}_{0}}-vertices, where no poles appear. The h0h_{\mathcal{B}_{0}}-vertices that were motivated from the calculations of amplitudes are also fine as long as they are restricted to on-shell states because typical representatives of the cohomology do not include the above-mentioned problematic KBcKBc-states. It would be interesting if the range of definition of h0h_{\mathcal{B}_{0}} can be extended to the full Hilbert space by including suitable projectors and treat the problematic states separately. We will leave this problem for future work and in this paper just analyze the singularities that appear case by case. Moreover, so far it has not been proven in general that all amplitudes can be defined consistently in sliver gauge and a full proof of this statement lies beyond the scope of this paper as well, some useful references include [11, 16].

To proceed, we now want to give an argument why the inclusion of higher vertices is necessary from a geometrical viewpoint, directly in the sliver frame. Let us once again consider the s-channel contribution to the on-shell four-point amplitude:

𝒜4s=ω(Ψ1,m2(Ψ2,eλ000Q00eλ0m2(Ψ3,Ψ4))).\mathcal{A}_{4s}=-\omega\left(\Psi_{1},m_{2}\left(\Psi_{2},e^{-\lambda\mathcal{L}_{0}}\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}Q\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}e^{-\lambda\mathcal{L}_{0}^{*}}m_{2}\left(\Psi_{3},\Psi_{4}\right)\right)\right). (3.40)

Using Schwinger parameters we can write that as

𝒜4s=0𝑑t0𝑑sω(m2(Ψ1,Ψ2),e(λ+t)00Q0e(λ+s)0m2(Ψ3,Ψ4)).\mathcal{A}_{4s}=\int_{0}^{\infty}dt\int_{0}^{\infty}ds\,\omega\left(m_{2}\left(\Psi_{1},\Psi_{2}\right),e^{-\left(\lambda+t\right)\mathcal{L}_{0}}\mathcal{B}_{0}Q\mathcal{B}_{0}^{*}e^{-\left(\lambda+s\right)\mathcal{L}_{0}^{*}}m_{2}\left(\Psi_{3},\Psi_{4}\right)\right). (3.41)

Now we use the fact that QQ annihilates the on-shell states Ψ3\Psi_{3} and Ψ4\Psi_{4} and get

𝒜4s=0𝑑t0𝑑sω(m2(Ψ1,Ψ2),e(λ+t)000e(λ+s)0m2(Ψ3,Ψ4)).\mathcal{A}_{4s}=\int_{0}^{\infty}dt\int_{0}^{\infty}ds\,\omega\left(m_{2}\left(\Psi_{1},\Psi_{2}\right),e^{-\left(\lambda+t\right)\mathcal{L}_{0}}\mathcal{B}_{0}\mathcal{L}_{0}^{*}e^{-\left(\lambda+s\right)\mathcal{L}_{0}^{*}}m_{2}\left(\Psi_{3},\Psi_{4}\right)\right). (3.42)

We see that the 0\mathcal{L}_{0}^{*}-insertion can be written as a derivative which localizes the ss-integral:

𝒜4s=limΛ0𝑑tω(m2(Ψ1,Ψ2),e(λ+t)00(eλ0e(λ+Λ)0)m2(Ψ3,Ψ4)).\mathcal{A}_{4s}=\underset{\Lambda\rightarrow\infty}{\text{lim}}\int_{0}^{\infty}dt\,\omega\left(m_{2}\left(\Psi_{1},\Psi_{2}\right),e^{-\left(\lambda+t\right)\mathcal{L}_{0}}\mathcal{B}_{0}\left(e^{-\lambda\mathcal{L}_{0}^{*}}-e^{-\left(\lambda+\Lambda\right)\mathcal{L}_{0}^{*}}\right)m_{2}\left(\Psi_{3},\Psi_{4}\right)\right). (3.43)

As mentioned already, the cut-off term containing eΛ0e^{-\Lambda\mathcal{L}_{0}^{*}} is not guaranteed to yield a vanishing contribution but we will first of all focus on the first term. The next step is to use the state-operator correspondence and write the star product in the form outlined in [18, 17]:

Ψ1(0)|0Ψ2(0)|0=(89)h1+h2eln230Ψ1(13)Ψ2(13)|0,\Psi_{1}\left(0\right)\Ket{0}*\Psi_{2}\left(0\right)\Ket{0}=\left(\frac{8}{9}\right)^{h_{1}+h_{2}}e^{\text{ln}\frac{2}{3}\mathcal{L}_{0}^{*}}\Psi_{1}\left(\frac{1}{\sqrt{3}}\right)\Psi_{2}\left(-\frac{1}{\sqrt{3}}\right)\Ket{0}, (3.44)

where the hih_{i} are the conformal weights of the primary fields Ψi\Psi_{i}. Since we take our external states to be on-shell, we can omit the prefactor and get for the first term

𝒜4s(1)=0𝑑t0|Ψ2(3)Ψ1(3)e(λ+tln23)00e(λln23)0Ψ3(13)Ψ4(13)|0.\mathcal{A}_{4s}^{\left(1\right)}=\int_{0}^{\infty}dt\,\Bra{0}\Psi_{2}\left(\sqrt{3}\right)\Psi_{1}\left(-\sqrt{3}\right)e^{-\left(\lambda+t-\text{ln}\frac{2}{3}\right)\mathcal{L}_{0}}\mathcal{B}_{0}e^{-\left(\lambda-\text{ln}\frac{2}{3}\right)\mathcal{L}_{0}^{*}}\Psi_{3}\left(\frac{1}{\sqrt{3}}\right)\Psi_{4}\left(-\frac{1}{\sqrt{3}}\right)\Ket{0}. (3.45)

To commute the two exponentials we can use the formula (3.6) and arrive at

𝒜4s(1)=0𝑑t0|Ψ2(3)Ψ1(3)0(11+et23eλt)0(11+et23eλ)0Ψ3(13)Ψ4(13)|0.\mathcal{A}_{4s}^{\left(1\right)}=\int_{0}^{\infty}dt\,\Bra{0}\Psi_{2}\left(\sqrt{3}\right)\Psi_{1}\left(-\sqrt{3}\right)\mathcal{B}_{0}\left(\frac{1}{1+e^{-t}-\frac{2}{3}e^{-\lambda-t}}\right)^{\mathcal{L}_{0}^{*}}\left(\frac{1}{1+e^{t}-\frac{2}{3}e^{-\lambda}}\right)^{\mathcal{L}_{0}}\Psi_{3}\left(\frac{1}{\sqrt{3}}\right)\Psi_{4}\left(-\frac{1}{\sqrt{3}}\right)\Ket{0}. (3.46)

The operator x0x^{\mathcal{L}_{0}} is the scaling operator in the sliver frame and acts on the upper-half-plane coordinates as ztan(xarctanz)z\rightarrow\text{tan}\left(x\,\text{arctan}z\right). Similarly, the 0\mathcal{L}_{0}^{*}-exponential can be made acting to the left where it transforms the coordinates as zcot(xarctan1z)z\rightarrow\text{cot}\left(x\,\text{arctan}\frac{1}{z}\right). The scaling of the operators can be omitted again and we get

𝒜4s(1)=0𝑑t\displaystyle\mathcal{A}_{4s}^{\left(1\right)}=\int_{0}^{\infty}dt\,\, 0|Ψ2(cot(π61+et23eλt))Ψ1(cot(π61+et23eλt))\displaystyle\Bra{0}\Psi_{2}\left(\text{cot}\left(\frac{\frac{\pi}{6}}{1+e^{-t}-\frac{2}{3}e^{-\lambda-t}}\right)\right)\Psi_{1}\left(\text{cot}\left(-\frac{\frac{\pi}{6}}{1+e^{-t}-\frac{2}{3}e^{-\lambda-t}}\right)\right)
0Ψ3(tan(π61+et23eλ))Ψ4(tan(π61+et23eλ))|0.\displaystyle\mathcal{B}_{0}\Psi_{3}\left(\text{tan}\left(\frac{\frac{\pi}{6}}{1+e^{t}-\frac{2}{3}e^{-\lambda}}\right)\right)\Psi_{4}\left(\text{tan}\left(-\frac{\frac{\pi}{6}}{1+e^{t}-\frac{2}{3}e^{-\lambda}}\right)\right)\Ket{0}. (3.47)

This is our final expression for the ss-channel contribution in terms of a four-point function dependent on one real modulus tt. This four-point function is some function of the cross-ratio of the insertion points given by

cs=(z1z2)(z3z4)(z1z3)(z2z4)=4cot(π61+et23eλt)tan(π61+et23eλ)(cot(π61+et23eλt)+tan(π61+et23eλ))2.c_{s}=\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}=4\frac{\text{cot}\left(\frac{\frac{\pi}{6}}{1+e^{-t}-\frac{2}{3}e^{-\lambda-t}}\right)\text{tan}\left(\frac{\frac{\pi}{6}}{1+e^{t}-\frac{2}{3}e^{-\lambda}}\right)}{\left(\text{cot}\left(\frac{\frac{\pi}{6}}{1+e^{-t}-\frac{2}{3}e^{-\lambda-t}}\right)+\text{tan}\left(\frac{\frac{\pi}{6}}{1+e^{t}-\frac{2}{3}e^{-\lambda}}\right)\right)^{2}}. (3.48)

csc_{s} is a useful parameter of the moduli space of four-punctured disks so by analyzing its range we can see which portion of the moduli space is covered [14].

Let us first consider Witten theory with λ=0\lambda=0: cs(t)c_{s}\left(t\right) is now a monotonically decreasing function with cs(0)=12c_{s}\left(0\right)=\frac{1}{2} and limtcs(t)=0\underset{t\rightarrow\infty}{\text{lim}}c_{s}\left(t\right)=0. This is an expected result: We consider just one specific ordering of the operators here and choosing the standard locations 0, 11 and \infty for three of them, csc_{s} is just given by the second location z2z_{2} and should therefore lie between 0 and 11 . Hence the portion of the moduli space we expect to be covered is the unit interval and the s-channel covers half of it. The t-channel contribution can be simply found by a cyclic permutation zizi+1z_{i}\rightarrow z_{i+1} modulo 44 and we get

ct=(z2z3)(z4z1)(z2z4)(z3z1)=1csc_{t}=\frac{\left(z_{2}-z_{3}\right)\left(z_{4}-z_{1}\right)}{\left(z_{2}-z_{4}\right)\left(z_{3}-z_{1}\right)}=1-c_{s} (3.49)

so indeed the other half of the unit interval is covered.

Now let us see what happens if we add stubs: For λ>0\lambda>0, cs(t)c_{s}\left(t\right) is still a monotonically decreasing function with limtcs(t)=0\underset{t\rightarrow\infty}{\text{lim}}c_{s}\left(t\right)=0 but cs(0)<12c_{s}\left(0\right)<\frac{1}{2}. This means that the interval (cs(0),1cs(0))\left(c_{s}\left(0\right),1-c_{s}\left(0\right)\right) is not covered by the Feynman diagrams and adding higher vertices is necessary also from a geometrical point of view. We can see that more explictly by setting tt to zero in (3.48) to get

cs(t=0)=sin2(eλ13eλπ2)c_{s}\left(t=0\right)=\text{sin}^{2}\left(\frac{e^{\lambda}}{1-3e^{\lambda}}\frac{\pi}{2}\right) (3.50)

This function is monotically decreasing, which means the uncovered region gets bigger as the stub length is increased. An interesting point is that in the limit of infinitely long stubs we get cs(t=0)=14c_{s}\left(t=0\right)=\frac{1}{4}, hence the Feynman region covers precisely half of the moduli space.

Finally we want to analyze the cut-off term of the Schwinger parametrization given by

𝒜4s(2)=limΛ0𝑑tω(m2(Ψ1,Ψ2),e(λ+t)00e(λ+Λ)0m2(Ψ3,Ψ4)).\mathcal{A}_{4s}^{\left(2\right)}=-\underset{\Lambda\rightarrow\infty}{\text{lim}}\int_{0}^{\infty}dt\,\omega\left(m_{2}\left(\Psi_{1},\Psi_{2}\right),e^{-\left(\lambda+t\right)\mathcal{L}_{0}}\mathcal{B}_{0}e^{-\left(\lambda+\Lambda\right)\mathcal{L}_{0}^{*}}m_{2}\left(\Psi_{3},\Psi_{4}\right)\right). (3.51)

Going through the same steps as before we can calculate the cross-ratio and get

cs=4cot(π61+et+Λ23eλt)tan(π61+etΛ23eλΛ)(cot(π61+et+Λ23eλt)+tan(π61+etΛ23eλΛ))2.c_{s}=4\frac{\text{cot}\left(\frac{\frac{\pi}{6}}{1+e^{-t+\Lambda}-\frac{2}{3}e^{-\lambda-t}}\right)\text{tan}\left(\frac{\frac{\pi}{6}}{1+e^{t-\Lambda}-\frac{2}{3}e^{-\lambda-\Lambda}}\right)}{\left(\text{cot}\left(\frac{\frac{\pi}{6}}{1+e^{-t+\Lambda}-\frac{2}{3}e^{-\lambda-t}}\right)+\text{tan}\left(\frac{\frac{\pi}{6}}{1+e^{t-\Lambda}-\frac{2}{3}e^{-\lambda-\Lambda}}\right)\right)^{2}}. (3.52)

In the limit of Λ\Lambda\rightarrow\infty we have cs0c_{s}\rightarrow 0, hence the cut-off term indeed yields a contribution only at the boundary of the moduli space, as expected.

4 The tachyon vacuum in the stubbed theory

In this section we want to apply the cohomomorphisms we found on the most important classical solution of Witten theory, namely the tachyon vacuum. It is explicitly given by [18, 6]

ΨTV=eK2cKB1eKceK2\Psi_{TV}=e^{-\frac{K}{2}}c\frac{KB}{1-e^{-K}}ce^{-\frac{K}{2}} (4.1)

with the elements of the KBcKBc-algebra defined for instance in [6, 15]. It obeys the sliver gauge condition

0ΨTV=0,\mathcal{B}_{0}\Psi_{TV}=0, (4.2)

hence we want to use the associated stub operator eλ0e^{-\lambda\mathcal{L}_{0}}.

4.1 Action of 𝐏\mathbf{P}

We now want to apply 𝐏\mathbf{P} onto ΨTV\Psi_{TV} since it is the only cohomomorphism we have available in closed form. The linear term is just eλ0ΨTVe^{-\lambda\mathcal{L}_{0}^{*}}\Psi_{TV}, which can be computed by expanding ΨTV\Psi_{TV} in formal eigenstates of 0\mathcal{L}_{0}^{*} (see Appendix B). The resulting general formula is

eλ0(eαKf(K,B,c)eαK)=e((α+12)eλ12)Kf(eλK,eλB,eλc)e((α+12)eλ12)Ke^{-\lambda\mathcal{L}_{0}^{*}}\left(e^{-\alpha K}f\left(K,B,c\right)e^{-\alpha K}\right)=e^{-\left(\left(\alpha+\frac{1}{2}\right)e^{\lambda}-\frac{1}{2}\right)K}f\left(e^{\lambda}K,e^{\lambda}B,e^{-\lambda}c\right)e^{-\left(\left(\alpha+\frac{1}{2}\right)e^{\lambda}-\frac{1}{2}\right)K} (4.3)

from which

eλ0ΨTV\displaystyle e^{-\lambda\mathcal{L}_{0}^{*}}\Psi_{TV}\, =eK(eλ12)cKB1eeλKceK(eλ12)\displaystyle=e^{-K\left(e^{\lambda}-\frac{1}{2}\right)}c\frac{KB}{1-e^{-e^{\lambda}K}}ce^{-K\left(e^{\lambda}-\frac{1}{2}\right)} (4.4)

follows.

To calculate the quadratic terms we first need to compute hΨTVh\Psi_{TV}. Here a major difference to the standard frame occurs because suppose we have a solution in Siegel gauge and apply

h=e2λL01L0b0,h=\frac{e^{-2\lambda L_{0}}-1}{L_{0}}b_{0}, (4.5)

the result vanishes and hence the new solution is just given by the linear term only. It is of course tempting to use our result for hh in sliver gauge and apply it to ΨTV\Psi_{TV} which results in

h0ΨTV=(eλ000Q00eλ000Q00)ΨTV.h_{\mathcal{B}_{0}}\Psi_{TV}=\left(e^{-\lambda\mathcal{L}_{0}}\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}Q\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}e^{-\lambda\mathcal{L}_{0}^{*}}-\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}Q\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}\right)\Psi_{TV}. (4.6)

However, as we have seen in the last section, the equations of motion using h0h_{\mathcal{B}_{0}}exhibit singularities on certain states including the zero-momentum tachyon eK2ceK2e^{-\frac{K}{2}}ce^{-\frac{K}{2}}, so it is not clear if we will end up with a well-defined solution. Actually, h0ΨTVh_{\mathcal{B}_{0}}\Psi_{TV} is ill-defined as can be shown as follows: We will focus on the first term here, the second term is dealt with in section 4.2.

The action of 0\mathcal{B}_{0} can be determined by the formula

0(eK2ΨeK2)=eK2BΨeK2\mathcal{B}_{0}\left(e^{-\frac{K}{2}}\Psi e^{-\frac{K}{2}}\right)=e^{-\frac{K}{2}}B^{-}\Psi e^{-\frac{K}{2}} (4.7)

where B=12(00)B^{-}=\frac{1}{2}\left(\mathcal{B}_{0}-\mathcal{B}_{0}^{*}\right) acts as a star algebra derivative and obeys

BK=B,BB=0,Bc=0,B^{-}K=B,\,\,\,\,\,\,\,\,\,\,\,\,\,B^{-}B=0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,B^{-}c=0, (4.8)

the result is

0eλ0ΨTV=(1eλ)eK(eλ12)[KB1eeλK,c]eK(eλ12).\mathcal{B}_{0}e^{-\lambda\mathcal{L}_{0}^{*}}\Psi_{TV}=\left(1-e^{\lambda}\right)e^{-K\left(e^{\lambda}-\frac{1}{2}\right)}\left[\frac{KB}{1-e^{-e^{\lambda}K}},c\right]e^{-K\left(e^{\lambda}-\frac{1}{2}\right)}. (4.9)

To apply 10\frac{1}{\mathcal{L}_{0}} it is convenient to use the Schwinger representation

10=0𝑑tet0\frac{1}{\mathcal{L}_{0}}=\int_{0}^{\infty}dt\,\,e^{-t\mathcal{L}_{0}} (4.10)

and use an expansion in eigenstates of 0\mathcal{L}_{0} (see Appendix B). The calculation is then analogous to (4.4) and results in

00eλ0ΨTV=0𝑑t(eteλt)eK(eλtet+12)[KB1eeλtK,c]eK(eλtet+12)\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}e^{-\lambda\mathcal{L}_{0}^{*}}\Psi_{TV}=\int_{0}^{\infty}dt\,\left(e^{-t}-e^{\lambda-t}\right)e^{-K\left(e^{\lambda-t}-e^{-t}+\frac{1}{2}\right)}\left[\frac{KB}{1-e^{-e^{\lambda-t}K}},c\right]e^{-K\left(e^{\lambda-t}-e^{-t}+\frac{1}{2}\right)} (4.11)

This Schwinger integral is actually divergent: If we expand the integrand for large tt we get

0𝑑t(eλ1)eK2[B,c]eK2\int_{0}^{\infty}dt\,\left(e^{-\lambda}-1\right)e^{-\frac{K}{2}}\left[B,c\right]e^{-\frac{K}{2}} (4.12)

which is an infinite integral over an expression independent of t.t. The problem can also be seen from (4.9) already: If we look at the 0\mathcal{L}_{0}-level expansion, we see that the expression contains the term

(eλ1)eK2[B,c]eK2\left(e^{-\lambda}-1\right)e^{-\frac{K}{2}}\left[B,c\right]e^{-\frac{K}{2}} (4.13)

which has 0\mathcal{L}_{0}-eigenvalue zero and applying 10\frac{1}{\mathcal{L}_{0}} is ill-defined. It is straightforward to show that the situation does not improve by applying all the other operators in (4.6), especially since the divergence is not QQ-closed: By isolating

(h0ΨTV)div=eλ000Q10(eλ1)eK2[B,c]eK2\left(h_{\mathcal{B}_{0}}\Psi_{TV}\right)_{div}=e^{-\lambda\mathcal{L}_{0}}\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}Q\frac{1}{0}\left(e^{-\lambda}-1\right)e^{-\frac{K}{2}}\left[B,c\right]e^{-\frac{K}{2}} (4.14)

and directly applying QQ we get

Q(h0ΨTV)div=eλ010(eλ1)eK2Q[B,c]eK2=20(eλ1)eK2cKBceK20.Q\left(h_{\mathcal{B}_{0}}\Psi_{TV}\right)_{div}=e^{-\lambda\mathcal{L}_{0}}\frac{1}{0}\left(e^{-\lambda}-1\right)e^{-\frac{K}{2}}Q\left[B,c\right]e^{-\frac{K}{2}}=\frac{2}{0}\left(e^{-\lambda}-1\right)e^{-\frac{K}{2}}cKBce^{-\frac{K}{2}}\neq 0. (4.15)

To get rid of the singularity we will instead use the vertices constructed from h^0h_{\hat{\mathcal{B}}_{0}} in 0^\hat{\mathcal{B}_{0}}-gauge (3.7) given by

h^0=e(eλ1)0^10^0^=01eλ𝑑tet0^0^.h_{\hat{\mathcal{B}}_{0}}=\frac{e^{\left(e^{-\lambda}-1\right)\hat{\mathcal{\mathcal{L}}_{0}}}-1}{\hat{\mathcal{\mathcal{L}}_{0}}}\hat{\mathcal{\mathcal{B}}_{0}}=-\int_{0}^{1-e^{-\lambda}}dt\,e^{-t\hat{\mathcal{\mathcal{L}}_{0}}}\hat{\mathcal{\mathcal{B}}_{0}}. (4.16)

First we use the formula

0^Ψ=BΨ+()gh(Ψ)ΨB\hat{\mathcal{\mathcal{B}}_{0}}\Psi=B\Psi+\left(-\right)^{\text{gh}\left(\Psi\right)}\Psi B (4.17)

to write

0^ΨTV=eK2[KB1eK,c]eK2.\hat{\mathcal{\mathcal{B}}_{0}}\Psi_{TV}=e^{-\frac{K}{2}}\left[\frac{KB}{1-e^{-K}},c\right]e^{-\frac{K}{2}}. (4.18)

Then we exponentiate the well-known relation

0^Ψ=KΨ+ΨK\hat{\mathcal{\mathcal{L}}_{0}}\Psi=K\Psi+\Psi K (4.19)

to get

et0^Ψ=etKΨetK,e^{-t\hat{\mathcal{\mathcal{L}}_{0}}}\Psi=e^{-tK}\Psi e^{-tK}, (4.20)

now the total action of hh becomes

h^0ΨTV=01eλ𝑑teK(t+12)[KB1eK,c]eK(t+12).h_{\hat{\mathcal{B}}_{0}}\Psi_{TV}=-\int_{0}^{1-e^{-\lambda}}dt\,e^{-K\left(t+\frac{1}{2}\right)}\left[\frac{KB}{1-e^{-K}},c\right]e^{-K\left(t+\frac{1}{2}\right)}. (4.21)

As a second intermediate result we compute ipΨTVip\Psi_{TV} using (3.5) and (4.20):

eλ0eλ0ΨTV=eK(32eλ)cKB1eKceK(32eλ).e^{-\lambda\mathcal{L}_{0}}e^{-\lambda\mathcal{L}_{0}^{*}}\Psi_{TV}=e^{-K\left(\frac{3}{2}-e^{-\lambda}\right)}c\frac{KB}{1-e^{-K}}ce^{-K\left(\frac{3}{2}-e^{-\lambda}\right)}. (4.22)

Combining the results and applying the projection operator eλ0e^{-\lambda\mathcal{L}_{0}^{*}} once more yields the full quadratic part of the solution according to (2.23):

pm2(ΨTV,h^0ΨTV)+pm2(h^0ΨTV,ipΨTV)\displaystyle pm_{2}\left(\Psi_{TV},h_{\hat{\mathcal{B}}_{0}}\Psi_{TV}\right)+pm_{2}\left(h_{\hat{\mathcal{B}}_{0}}\Psi_{TV},ip\Psi_{TV}\right)
=\displaystyle=\, 01eλdteλ(eK(eλ12)cK2B(1eeλK)2eK(eλt+eλ)ceK(eλ+eλt12)\displaystyle\int_{0}^{1-e^{-\lambda}}dt\,e^{\lambda}(-e^{-K\left(e^{\lambda}-\frac{1}{2}\right)}c\frac{K^{2}B}{\left(1-e^{-e^{\lambda}K}\right)^{2}}e^{-K\left(e^{\lambda}t+e^{\lambda}\right)}ce^{-K\left(e^{\lambda}+e^{\lambda}t-\frac{1}{2}\right)} (4.23)
+eK(eλ12)cKB1eeλKcK1eeλKeK(2eλt+2eλ12)\displaystyle+e^{-K\left(e^{\lambda}-\frac{1}{2}\right)}c\frac{KB}{1-e^{-e^{\lambda}K}}c\frac{K}{1-e^{-e^{\lambda}K}}e^{-K\left(2e^{\lambda}t+2e^{\lambda}-\frac{1}{2}\right)}
eK(eλ12)cKB1eeλKeK(eλt+eλ)cK1eeλKeK(eλ+eλt12)\displaystyle-e^{-K\left(e^{\lambda}-\frac{1}{2}\right)}c\frac{KB}{1-e^{-e^{\lambda}K}}e^{-K\left(e^{\lambda}t+e^{\lambda}\right)}c\frac{K}{1-e^{-e^{\lambda}K}}e^{-K\left(e^{\lambda}+e^{\lambda}t-\frac{1}{2}\right)}
+eK(eλ+eλt12)K1eeλKeK(eλt+2eλ1)cKB1eeλKeK(2eλ32)\displaystyle+e^{-K\left(e^{\lambda}+e^{\lambda}t-\frac{1}{2}\right)}\frac{K}{1-e^{-e^{\lambda}K}}e^{-K\left(e^{\lambda}t+2e^{\lambda}-1\right)}c\frac{KB}{1-e^{-e^{\lambda}K}}e^{-K\left(2e^{\lambda}-\frac{3}{2}\right)}
eK(eλ+eλt12)K1eeλKceK(eλt+2eλ1)KB1eeλKceK(2eλ32)\displaystyle-e^{-K\left(e^{\lambda}+e^{\lambda}t-\frac{1}{2}\right)}\frac{K}{1-e^{-e^{\lambda}K}}ce^{-K\left(e^{\lambda}t+2e^{\lambda}-1\right)}\frac{KB}{1-e^{-e^{\lambda}K}}ce^{-K\left(2e^{\lambda}-\frac{3}{2}\right)}
eK(eλ+eλt12)cK2B(1eeλK)2eK(eλt+2eλ1)ceK(2eλ32)).\displaystyle-e^{-K\left(e^{\lambda}+e^{\lambda}t-\frac{1}{2}\right)}c\frac{K^{2}B}{\left(1-e^{-e^{\lambda}K}\right)^{2}}e^{-K\left(e^{\lambda}t+2e^{\lambda}-1\right)}ce^{-K\left(2e^{\lambda}-\frac{3}{2}\right)}). (4.24)

This expression is well-defined since (3.7) has no poles. An interesting point is that it fails to be twist symmetric, so we conclude that the application of 𝐏\mathbf{P} in general breaks twist symmetry.

4.2 A simpler stubbed theory?

Since the last result is quite complicated already at quadratic order in ΨTV\Psi_{TV}, one might ask if there exists a stubbed theory with simpler solutions. For example one may try the following: Let us replace 0\mathcal{L}_{0} by 0\mathcal{L}_{0}^{*} in every formula, i. e. switch the operators ii and pp such that the new product becomes

M2(,)=eλ0(eλ0,eλ0)M_{2}\left(\cdot,\cdot\right)=e^{-\lambda\mathcal{L}_{0}}\left(e^{-\lambda\mathcal{L}_{0}^{*}}\cdot,e^{-\lambda\mathcal{L}_{0}^{*}}\cdot\right) (4.25)

This choice is less natural than the original one since in the three vertex only 0\mathcal{L}_{0}^{*}s would appear instead of the scaling operator 0\mathcal{L}_{0}. However, the homotopy in sliver gauge would become

h0=(eλ000Q00eλ000Q00)P++(eλ000Q00eλ000Q00)Ph^{\prime}_{\mathcal{B}_{0}}=\left(e^{-\lambda\mathcal{L}_{0}^{*}}\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}Q\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}e^{-\lambda\mathcal{L}_{0}}-\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}Q\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}\right)P_{+}+\left(e^{-\lambda\mathcal{L}_{0}^{*}}\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}Q\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}e^{-\lambda\mathcal{L}_{0}}-\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}Q\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}\right)P_{-} (4.26)

so one would naively assume

h0ΨTV=0h^{\prime}_{\mathcal{B}_{0}}\Psi_{TV}=0 (4.27)

because of the gauge condition. However, there is an important caveat here: ΨTV\Psi_{TV} contains the ghost number one state 12eK2cKBceK2-\frac{1}{2}e^{-\frac{K}{2}}cKBce^{-\frac{K}{2}} which is annihilated by 0\mathcal{B}_{0} and 0\mathcal{L}_{0}, so the result is ambiguous. To make sense of it it is useful to write

eK2cKBceK2=Q(eK2BceK2)e^{-\frac{K}{2}}cKBce^{-\frac{K}{2}}=Q\left(e^{-\frac{K}{2}}Bce^{-\frac{K}{2}}\right) (4.28)

and use (3.39) such that we arrive at

h0ΨTV=12(1eλ0)00eK2cKBceK2.h^{\prime}_{\mathcal{B}_{0}}\Psi_{TV}=\frac{1}{2}\left(1-e^{-\lambda\mathcal{L}_{0}^{*}}\right)\frac{\mathcal{B}_{0}^{*}}{\mathcal{L}_{0}^{*}}e^{-\frac{K}{2}}cKBce^{-\frac{K}{2}}. (4.29)

This result is also compatible with the Hodge-Kodaira relation (3.4). Using the same techniques as above we compute

h0ΨTV=120λ𝑑teteK(et12)[KB,c]eK(et12)h^{\prime}_{\mathcal{B}_{0}}\Psi_{TV}=\frac{1}{2}\int_{0}^{\lambda}dt\,e^{t}e^{-K\left(e^{t}-\frac{1}{2}\right)}\left[KB,c\right]e^{-K\left(e^{t}-\frac{1}{2}\right)} (4.30)

and obtain to quadratic order in ΨTV\Psi_{TV}

π1𝐏11ΨTV\displaystyle\pi_{1}\mathbf{P}\frac{1}{1-\Psi_{TV}} =eK2cKB1eeλKceK2\displaystyle=e^{-\frac{K}{2}}c\frac{KB}{1-e^{-e^{-\lambda}K}}ce^{-\frac{K}{2}}
+120λdtetλ(eK2cKB1eKeetλK{c,K}eK(etλeλ+12)\displaystyle\,\,\,+\frac{1}{2}\int_{0}^{\lambda}dt\,e^{t-\lambda}\big{(}e^{-\frac{K}{2}}c\frac{KB}{1-e^{-K}}e^{-e^{t-\lambda}K}\left\{c,K\right\}e^{-K\left(e^{t-\lambda}-e^{-\lambda}+\frac{1}{2}\right)}
eK2cKB1eKcKeK(2etλeλ+12)\displaystyle\,\,\,-e^{-\frac{K}{2}}c\frac{KB}{1-e^{-K}}cKe^{-K\left(2e^{t-\lambda}-e^{-\lambda}+\frac{1}{2}\right)}
+eK(etλeλ+12){c,K}eK(etλ+eλe2λ)KB1eKceK(12+eλe2λ)\displaystyle\,\,\,+e^{-K\left(e^{t-\lambda}-e^{-\lambda}+\frac{1}{2}\right)}\left\{c,K\right\}e^{-K\left(e^{t-\lambda}+e^{-\lambda}-e^{-2\lambda}\right)}\frac{KB}{1-e^{-K}}ce^{-K\left(\frac{1}{2}+e^{-\lambda}-e^{-2\lambda}\right)}
e(2etλ+12e2λ)KcKB1eKceK(12+eλe2λ))+\displaystyle\,\,\,-e^{-\left(2e^{t-\lambda}+\frac{1}{2}-e^{-2\lambda}\right)}Kc\frac{KB}{1-e^{-K}}ce^{-K\left(\frac{1}{2}+e^{-\lambda}-e^{-2\lambda}\right)}\big{)}+\cdots (4.31)

This result is indeed a bit simpler than (4.24) but also here no obvious simplification is visible.

4.3 Action of 𝐅\mathbf{F}

We can also ask what happens if we use the cyclic cohomomorphism (3.25) where the operator XX was defined in (3.30) and apply it on ΨTV\Psi_{TV}:

π1𝐅11ΨTV=π1𝒫exp(0λ𝑑t(n=2π1(𝐗𝐌𝐧(λ)𝐌𝐧(λ)𝐗)πn))11ΨTV.\pi_{1}\mathbf{F}\frac{1}{1-\Psi_{TV}}=\pi_{1}\mathcal{P}\text{exp}\left(\int_{0}^{\lambda}dt\,\left(\sum_{n=2}^{\infty}\pi_{1}\left(\mathbf{X^{*}M_{n}\left(\lambda\right)-M_{n}\left(\lambda\right)}\mathbf{X}\right)\pi_{n}\right)\right)\frac{1}{1-\Psi_{TV}}. (4.32)

At this stage the result is not very satisfying, but we can analyze it for an infinitesimal λ1\lambda\ll 1: The sum collapses then to the n=2n=2 term and yields

π1𝐅11ΨTV=ΨTV+λ(Xm2(ΨTV2)m2(XΨTV,ΨTV)m2(ΨTV,XΨTV))+𝒪(λ2).\pi_{1}\mathbf{F}\frac{1}{1-\Psi_{TV}}=\Psi_{TV}+\lambda\left(X^{*}m_{2}\left(\Psi_{TV}^{\otimes 2}\right)-m_{2}\left(X\Psi_{TV},\Psi_{TV}\right)-m_{2}\left(\Psi_{TV},X\Psi_{TV}\right)\right)+\mathcal{O}\left(\lambda^{2}\right). (4.33)

Let us again first try to use h0h_{\mathcal{B}_{0}} for the vertices: The first becomes explicitly

Xm2(ΨTV,ΨTV)=00Q0m2(ΨTV,ΨTV).X^{*}m_{2}\left(\Psi_{TV},\Psi_{TV}\right)=\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}Q\mathcal{B}_{0}^{*}m_{2}\left(\Psi_{TV},\Psi_{TV}\right). (4.34)

Using the equations motion for ΨTV\Psi_{TV} we can write this as

00Q0QΨTV=00Q0ΨTV.-\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}Q\mathcal{B}_{0}^{*}Q\Psi_{TV}=-\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}}Q\mathcal{L}_{0}^{*}\Psi_{TV}. (4.35)

The action of 0\mathcal{L}_{0}^{*} is straightforward to calculate using (B.5), the result is

0ΨTV={K,eK2cKB1eKceK2}eK2ceKK2B(1eK)2ceK2\mathcal{L}_{0}^{*}\Psi_{TV}=\left\{K,e^{-\frac{K}{2}}c\frac{KB}{1-e^{-K}}ce^{-\frac{K}{2}}\right\}-e^{-\frac{K}{2}}c\frac{e^{-K}K^{2}B}{\left(1-e^{-K}\right)^{2}}ce^{-\frac{K}{2}} (4.36)

Applying QQ yields

Q0ΨTV=\displaystyle Q\mathcal{L}_{0}^{*}\Psi_{TV}= {K,eK2cKcKB1eKceK2}+{K,eK2cKB1eKcKceK2}\displaystyle\,\left\{K,e^{-\frac{K}{2}}cKc\frac{KB}{1-e^{-K}}ce^{-\frac{K}{2}}\right\}+\left\{K,e^{-\frac{K}{2}}c\frac{KB}{1-e^{-K}}cKce^{-\frac{K}{2}}\right\}
{K,eK2cK21eKceK2}eK2cKceKK2B(1eK)2ceK2\displaystyle\,-\left\{K,e^{-\frac{K}{2}}c\frac{K^{2}}{1-e^{-K}}ce^{-\frac{K}{2}}\right\}-e^{-\frac{K}{2}}cKc\frac{e^{-K}K^{2}B}{\left(1-e^{-K}\right)^{2}}ce^{-\frac{K}{2}}
+eK2ceKK3(1eK)2ceK2eK2ceKK2B(1eK)2cKceK2.\displaystyle\,+e^{-\frac{K}{2}}c\frac{e^{-K}K^{3}}{\left(1-e^{-K}\right)^{2}}ce^{-\frac{K}{2}}-e^{-\frac{K}{2}}c\frac{e^{-K}K^{2}B}{\left(1-e^{-K}\right)^{2}}cKce^{-\frac{K}{2}}. (4.37)

To check if we can apply 00\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}} we have to isolate the level zero contribution in the 0\mathcal{L}_{0}-expansion. It is given by

Q0ΨTV0=0=eK2cKcKeK2+eK2KcKceK2Q\mathcal{L}_{0}^{*}\Psi_{TV}\mid_{\mathcal{L}_{0}=0}=e^{-\frac{K}{2}}cKcKe^{-\frac{K}{2}}+e^{-\frac{K}{2}}KcKce^{-\frac{K}{2}} (4.38)

This state is non-vanishing and not annihilated by 0\mathcal{B}_{0}, so the application of 00\frac{\mathcal{B}_{0}}{\mathcal{L}_{0}} leads again to an ill-defined result as anticipated.

Hence, to get something well-defined, we should use h^0h_{\hat{\mathcal{B}}_{0}} which leads to

XΨTV=0ΨTV=0X\Psi_{TV}=\mathcal{B}_{0}\Psi_{TV}=0 (4.39)

because of the gauge condition, so we arrive at

π1𝐅11ΨTV=ΨTV+λ0m2(ΨTV2)+𝒪(λ2).\pi_{1}\mathbf{F}\frac{1}{1-\Psi_{TV}}=\Psi_{TV}+\lambda\mathcal{B}_{0}^{*}m_{2}\left(\Psi_{TV}^{\otimes 2}\right)+\mathcal{O}\left(\lambda^{2}\right). (4.40)

This can be calculated explicitly using the same methods as in the previous section:

0m2(ΨTV2)=\displaystyle\mathcal{B}_{0}^{*}m_{2}\left(\Psi_{TV}^{\otimes 2}\right)= 0(eK2cKB1eKceKcKB1eKceK2)\displaystyle\,\mathcal{B}_{0}^{*}\left(e^{-\frac{K}{2}}c\frac{KB}{1-e^{-K}}ce^{-K}c\frac{KB}{1-e^{-K}}ce^{-\frac{K}{2}}\right)
=\displaystyle= eK2KB1eKceKcKB1eKceK2+eK2cKB1eKceKcKB1eKeK2\displaystyle\,e^{-\frac{K}{2}}\frac{KB}{1-e^{-K}}ce^{-K}c\frac{KB}{1-e^{-K}}ce^{-\frac{K}{2}}+e^{-\frac{K}{2}}c\frac{KB}{1-e^{-K}}ce^{-K}c\frac{KB}{1-e^{-K}}e^{-\frac{K}{2}}
+eK2cKB1eKeKcKB1eKceK2\displaystyle\,+e^{-\frac{K}{2}}c\frac{KB}{1-e^{-K}}e^{-K}c\frac{KB}{1-e^{-K}}ce^{-\frac{K}{2}}
=\displaystyle= eK2{KB1eKcKeK1,c}eK2+eK2cK2BeK+eK2ceK2\displaystyle\,e^{-\frac{K}{2}}\left\{\frac{KB}{1-e^{-K}}c\frac{K}{e^{K}-1},c\right\}e^{-\frac{K}{2}}+e^{-\frac{K}{2}}c\frac{K^{2}B}{e^{K}+e^{-K}-2}ce^{-\frac{K}{2}}
eK2{KBeK1cK1eK,c}eK2.\displaystyle-e^{-\frac{K}{2}}\left\{\frac{KB}{e^{K}-1}c\frac{K}{1-e^{-K}},c\right\}e^{-\frac{K}{2}}. (4.41)

In the end we get

π1𝐅11ΨTV=\displaystyle\pi_{1}\mathbf{F}\frac{1}{1-\Psi_{TV}}=\, eK2cKB1eKceK2\displaystyle e^{-\frac{K}{2}}c\frac{KB}{1-e^{-K}}ce^{-\frac{K}{2}}
+\displaystyle+\, λ(eK2{KB1eKcKeK1,c}eK2+eK2cK2BeK+eK2ceK2\displaystyle\lambda\,\big{(}e^{-\frac{K}{2}}\left\{\frac{KB}{1-e^{-K}}c\frac{K}{e^{K}-1},c\right\}e^{-\frac{K}{2}}+e^{-\frac{K}{2}}c\frac{K^{2}B}{e^{K}+e^{-K}-2}ce^{-\frac{K}{2}}
eK2{KBeK1cK1eK,c}eK2)\displaystyle-e^{-\frac{K}{2}}\left\{\frac{KB}{e^{K}-1}c\frac{K}{1-e^{-K}},c\right\}e^{-\frac{K}{2}}\big{)}
+\displaystyle+\, 𝒪(λ2).\displaystyle\mathcal{O}\left(\lambda^{2}\right). (4.42)

In contrast to our result for π1𝐏11ΨTV\pi_{1}\mathbf{P}\frac{1}{1-\Psi_{TV}}, this expression is twist symmetric and from the discussion in section 2.5 we also deduce that it is gauge equivalent to (4.24) to first order in λ.\lambda. Indeed, comparing the infinitesimal actions of 𝐏\mathbf{P} and 𝐅\mathbf{F}

π1𝐏11ΨTV\displaystyle\pi_{1}\mathbf{P}\frac{1}{1-\Psi_{TV}}\, =ΨTVδλ0ΨTVδλ(m2(XΨTV,ΨTV)+m2(ΨTV,XΨTV))\displaystyle=\Psi_{TV}-\delta\lambda\mathcal{L}_{0}^{*}\Psi_{TV}-\delta\lambda\left(m_{2}\left(X^{*}\Psi_{TV},\Psi_{TV}\right)+m_{2}\left(\Psi_{TV},X^{*}\Psi_{TV}\right)\right) (4.43)
π1𝐅11ΨTV\displaystyle\pi_{1}\mathbf{F}\frac{1}{1-\Psi_{TV}}\, =ΨTV+δλXm2(ΨTV,ΨTV)\displaystyle=\Psi_{TV}+\delta\lambda X^{*}m_{2}\left(\Psi_{TV},\Psi_{TV}\right) (4.44)

one sees that with the definition Λ=:XΨTV\Lambda=:X^{*}\Psi_{TV} the difference can be written as

ΔΨTV=δλ(QΛ+m2(Λ,ΨTV)+m2(ΨTV,Λ)+X(QΨTV+m2(ΨTV,ΨTV))).\Delta\Psi_{TV}=\delta\lambda\left(Q\Lambda+m_{2}\left(\Lambda,\Psi_{TV}\right)+m_{2}\left(\Psi_{TV},\Lambda\right)+X^{*}\left(Q\Psi_{TV}+m_{2}\left(\Psi_{TV},\Psi_{TV}\right)\right)\right). (4.45)

Since ΨTV\Psi_{TV} obeys the original Witten’s equation of motion, ΔΨTV\Delta\Psi_{TV} is just a gauge transformation.

5 Conclusion and outlook

In this paper we addressed and answered some pending questions concerning stubs in open string field theory and moreover generalized the whole framework to more general gauges. We systematically constructed a family of cohomomorphisms which map the Witten theory to the stubbed theory, including the two maps 𝐅𝟏\mathbf{F^{-1}} and 𝐏\mathbf{P} already found in [19]. To first order in λ\lambda, the difference between two such maps always consists of a gauge transformation and a part proportional to the equations of motion, according to the conjecture of [19] that the on-shell value of the action is independent of the cohomomorphism. When moving to a different coordinate frame we encountered some algebraic constraints on the homotopy operator to get consistent and well-defined results. We have shown that there is a solution for h0h_{\mathcal{B}_{0}} under the assumption that perturbation theory in the sliver frame is geometrically consistent. While for on-shell amplitudes this operator h0h_{\mathcal{B}_{0}} is well-dedfined, it exhibits singular behaviour on some off-shell states in the Hilbert space. We concluded therefore that for the calculation of classical solutions we should rather pick the 0^\hat{\mathcal{\mathcal{B}}_{0}}-gauge for the homotopy. This we could explicitly verify by computing the tachyon vacuum in the stubbed theory up to second order. In a separate calculation we also argued from a geometrical viewpoint why the inclusion of higher vertices in the sliver frame is necessary.

At this time it is not clear yet if those explicit expressions can indeed lead us to more general properties of AA_{\infty}-solutions or even solutions of CSFT but it is certainly a possible direction for further research. Especially the relation to [12], where the closed string cohomology was identified in a purely open string setup, is for sure worth to investigate. Another promising path to follow is the connection to [3], where stubs in OSFT are represented through an auxiliary field. It would be interesting if this formalism can be generalized to the sliver frame as well and what the auxiliary field would look like for specific classical solutions. In this context one could also make the role of twist symmetry more precise and analyze under which conditions it can be preserved. Finally, it would be worth to explicitly explore if the stubbed theory solves issues with singularities, for instance concerning identity-based solutions like Ψ=c(1K)\Psi=c\left(1-K\right) [1, 6].

Acknowledgements

We thank Ted Erler, Jakub Vošmera, Martin Markl, Harold Erbin and Atakan Firat for useful discussions. Our work has been funded by the Grant Agency of Czech Republic under the grant EXPRO 20-25775X.

Appendix A Tensor coalgebras

The tensor coalgebra TVTV associated to a (graded) vector space VV is defined as the Fock space

V0+V1+V2+V^{\otimes 0}+V^{\otimes 1}+V^{\otimes 2}+... (A.1)

together with the comultiplication Δ:TVTVTV\Delta:\,\,TV\rightarrow TV\otimes^{\prime}TV given by

Δ(v1vn)=k=0n(v1vk)(vk+1vn)\Delta\left(v_{1}\otimes...\otimes v_{n}\right)=\sum_{k=0}^{n}\left(v_{1}\otimes...\otimes v_{k}\right)\otimes^{\prime}\left(v_{k+1}\otimes...\otimes v_{n}\right) (A.2)

on homogeneous elements and extended by linearity. Here the viv_{i} are elements of VV and \otimes^{\prime} denotes the tensor product arising from a comultiplication, in contrast to the usual \otimes. We define the projection operator πn:TVTV\pi_{n}:\,\,TV\rightarrow TV to project any element on its nnth tensor power component,

πnTV=Vn.\pi_{n}TV=V^{\otimes n}. (A.3)

A linear map 𝐝:TVTV\mathbf{d}:\,\,TV\rightarrow TV is called a coderivation if it satisfies the co-Leibniz rule:

Δ𝐝=(𝐝𝟏+𝟏𝐝)Δ.\Delta\mathbf{d}=\left(\mathbf{d}\otimes^{\prime}\mathbf{1}+\mathbf{1}\otimes^{\prime}\mathbf{d}\right)\Delta. (A.4)

Linear combinations of coderivations are again coderivations as well as their graded commutator

[𝐝1,𝐝2]=𝐝1𝐝2(1)deg(𝐝1)deg(𝐝2)𝐝2𝐝1.\left[\mathbf{d}_{1},\mathbf{d}_{2}\right]=\mathbf{d}_{1}\mathbf{d}_{2}-\left(-1\right)^{deg\left(\mathbf{d}_{1}\right)deg\left(\mathbf{d}_{2}\right)}\mathbf{d}_{2}\mathbf{d}_{1}. (A.5)

The product 𝐝1𝐝2\mathbf{d}_{1}\mathbf{d}_{2} is associative but in general not a coderivation. For any mm-linear map dm:VmVd_{m}:\,\,V^{\otimes m}\rightarrow V one can construct an associated coderivation by the formula

𝐝𝐦=n=mk=0nm1kdm1nkm.\mathbf{d_{m}}=\underset{n=m}{\overset{\infty}{\sum}}\underset{k=0}{\overset{n-m}{\sum}}1^{\otimes k}\otimes d_{m}\otimes 1^{\otimes n-k-m}. (A.6)

The co-Leibniz rule guarantees that any coderivation is a sum of terms of this form for different mm. Given two coderivations of this form, we use the notation (𝐝1𝐝2)\left(\mathbf{d}_{1}\mathbf{d}_{2}\right) to denote the subset of terms where d1md_{1m} acts on the output of d2md_{2m^{\prime}}. The individual mm-products can be recovered from a general coderivation as

dm=π1𝐝πm.d_{m}=\pi_{1}\mathbf{d}\pi_{m}. (A.7)

If an odd coderivation 𝐝\mathbf{d} obeys

𝐝2=0\mathbf{d}^{2}=0 (A.8)

then its components dmd_{m} can be regarded as products of an AA_{\infty}-algebra.

A linear map 𝐟\mathbf{f} is called a cohomomorphism if it fulfills

Δ𝐟=(𝐟𝐟)Δ.\Delta\mathbf{f}=\left(\mathbf{f}\otimes^{\prime}\mathbf{f}\right)\Delta. (A.9)

Linear combinations and products of cohomomorphisms are again cohomomorphisms. Given a family of mm-products fmf_{m} one can construct a unique cohomomorphism via

𝐟=j=1k=1m1++mj=kfm1fmj.\mathbf{f}=\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}\sum_{m_{1}+...+m_{j}=k}f_{m_{1}}\otimes...\otimes f_{m_{j}}. (A.10)

Again, the individual products can be recovered from 𝐟\mathbf{f} as

fm=π1𝐟πm.f_{m}=\pi_{1}\mathbf{f}\pi_{m}. (A.11)

Of special importance are elements of TVTV of the form

1+v+vv+vvv+=:11v1+v+v\otimes v+v\otimes v\otimes v+...=:\frac{1}{1-v} (A.12)

for some vV.v\in V. They fulfill the following useful properties:

π1𝐟11v=m=1fm(vm),\pi_{1}\mathbf{f}\frac{1}{1-v}=\sum_{m=1}^{\infty}f_{m}\left(v^{\otimes m}\right), (A.13)
𝐟11v=11π1𝐟11v\mathbf{f}\frac{1}{1-v}=\frac{1}{1-\pi_{1}\mathbf{f}\frac{1}{1-v}} (A.14)

for any cohomomorphism 𝐟.\mathbf{f}.

A bilinear map ω|\Bra{\omega}: TV×TVTV\times TV\rightarrow\mathbb{C} is called a symplectic form if it satisfies

ω|(v1v2)=:ω(v1,v2)=(1)deg(v1)deg(v2)ω(v2,v1).\Bra{\omega}\left(v_{1}\otimes v_{2}\right)=:\omega\left(v_{1},v_{2}\right)=-\left(-1\right)^{deg\left(v_{1}\right)deg\left(v_{2}\right)}\omega\left(v_{2},v_{1}\right). (A.15)

A multilinear product mkm_{k} is called cyclic with respect to ω\omega if it fulfills

ω(v1,mk(v2,,vk+1))=(1)deg(v1)deg(mk)ω(mk(v1,,vk),vk+1).\omega\left(v_{1},m_{k}\left(v_{2},...,v_{k+1}\right)\right)=-\left(-1\right)^{deg\left(v_{1}\right)deg\left(m_{k}\right)}\omega\left(m_{k}\left(v_{1},...,v_{k}\right),v_{k+1}\right). (A.16)

A coderivation 𝐝\mathbf{d} is cyclic if all of its components dm=π1𝐝πmd_{m}=\pi_{1}\mathbf{d}\pi_{m} are cyclic or equivalently

ω|π2𝐝=0.\Bra{\omega}\pi_{2}\mathbf{d}=0. (A.17)

Given two symplectic forms ω|\Bra{\omega}, ω|\Bra{\omega^{\prime}}, a cohomomorphism 𝐟\mathbf{f} is cyclic 111111See section 2.7 for a more careful treatment. if

ω|π2𝐟=ω|π2.\Bra{\omega^{\prime}}\pi_{2}\mathbf{f}=\Bra{\omega}\pi_{2}. (A.18)

Appendix B Eigenstates of 0\mathcal{L}_{0} and 0\mathcal{L}_{0}^{*}

The operator 0\mathcal{L}_{0} obeys the familiar relation [6]

0(eK2XeK2)=eK212XeK2\mathcal{L}_{0}\left(e^{-\frac{K}{2}}Xe^{-\frac{K}{2}}\right)=e^{-\frac{K}{2}}\frac{1}{2}\mathcal{L}^{-}Xe^{-\frac{K}{2}} (B.1)

where =\mathcal{L}^{-}=00\mathcal{L}_{0}-\mathcal{L}_{0}^{*} and XX is typically an element of the KBcKBc-algebra. \mathcal{L}^{-} acts as a derivation of the star algebra and fulfills

12K=K,12B=B,12c=c\frac{1}{2}\mathcal{L}^{-}K=K,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2}\mathcal{L}^{-}B=B,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2}\mathcal{L}^{-}c=-c (B.2)

so we can deduce that states of the form

eK2KmcKneK2oreK2KmcKnBcKreK2e^{-\frac{K}{2}}K^{m}cK^{n}e^{-\frac{K}{2}}\,\,\,\,\,\,\text{or}\,\,\,\,\,e^{-\frac{K}{2}}K^{m}cK^{n}BcK^{r}e^{-\frac{K}{2}} (B.3)

are eigenstates of 0\mathcal{L}_{0} with eigenvalue m+n1m+n-1 or m+n+r1m+n+r-1, respectively.

To find the eigenstates of 0\mathcal{L}_{0}^{*} we notice that equation (B.1) can be alternatively written as

0X=12X+12(KX+XK),\mathcal{L}_{0}X=\frac{1}{2}\mathcal{L}^{-}X+\frac{1}{2}\left(KX+XK\right), (B.4)

since the anticommutator with KK cancels the terms coming from the action of 12\frac{1}{2}\mathcal{L}^{-} on the security strips eK2e^{-\frac{K}{2}}. Now writing

0X=12X12(KX+XK)-\mathcal{L}_{0}^{*}X=\frac{1}{2}\mathcal{L}^{-}X-\frac{1}{2}\left(KX+XK\right) (B.5)

we see that the sign of KK in the security strips has to change. Indeed, by a straightforward calculation one can show that

eK2KmcKneK2oreK2KmcKnBcKreK2e^{\frac{K}{2}}K^{m}cK^{n}e^{\frac{K}{2}}\,\,\,\,\,\,\text{or}\,\,\,\,\,e^{\frac{K}{2}}K^{m}cK^{n}BcK^{r}e^{\frac{K}{2}} (B.6)

are formal eigenstates of 0\mathcal{L}_{0}^{*} with eigenvalue mn+1-m-n+1 or mnr+1-m-n-r+1, respectively. They are in fact ill-defined due to the appearance of inverse wedge states. However, we can still use them as a formal device to determine the action of 0\mathcal{L}_{0}^{*} on the string fields in question and get a well-defined final result. So for example the tachyon vacuum can be expanded as

ΨTV=m,n,r=0(1)m+n+rBnm!n!r!(eK2KmcBKncKreK2).\Psi_{TV}=\sum_{m,n,r=0}^{\infty}\frac{\left(-1\right)^{m+n+r}B_{n}}{m!n!r!}\left(e^{\frac{K}{2}}K^{m}cBK^{n}cK^{r}e^{\frac{K}{2}}\right). (B.7)

We can derive the two useful formulas

eλ0(eαKf(K,B,c)eαK)=e((α12)eλ+12)Kf(eλK,eλB,eλc)e((α12)eλ+12)Ke^{-\lambda\mathcal{L}_{0}}\left(e^{-\alpha K}f\left(K,B,c\right)e^{-\alpha K}\right)=e^{-\left(\left(\alpha-\frac{1}{2}\right)e^{-\lambda}+\frac{1}{2}\right)K}f\left(e^{-\lambda}K,e^{-\lambda}B,e^{\lambda}c\right)e^{-\left(\left(\alpha-\frac{1}{2}\right)e^{-\lambda}+\frac{1}{2}\right)K} (B.8)
eλ0(eαKf(K,B,c)eαK)=e((α+12)eλ12)Kf(eλK,eλB,eλc)e((α+12)eλ12)Ke^{-\lambda\mathcal{L}_{0}^{*}}\left(e^{-\alpha K}f\left(K,B,c\right)e^{-\alpha K}\right)=e^{-\left(\left(\alpha+\frac{1}{2}\right)e^{\lambda}-\frac{1}{2}\right)K}f\left(e^{\lambda}K,e^{\lambda}B,e^{-\lambda}c\right)e^{-\left(\left(\alpha+\frac{1}{2}\right)e^{\lambda}-\frac{1}{2}\right)K} (B.9)

As a crosscheck we can verify the algebra

[0,0]=0+0\left[\mathcal{L}_{0},\mathcal{L}_{0}^{*}\right]=\mathcal{L}_{0}+\mathcal{L}_{0}^{*} (B.10)

by acting on an arbitrary function of KK and using the eigenstates:

0F(K)=0eK2nfnKneK2=nnfnKneK\mathcal{L}_{0}^{*}F\left(K\right)=\mathcal{L}_{0}^{*}e^{\frac{K}{2}}\sum_{n}f_{n}K^{n}e^{\frac{K}{2}}=-\sum_{n}nf_{n}K^{n}e^{K} (B.11)

if F(K)F\left(K\right) is expanded as F(K)=nfnKneKF\left(K\right)=\sum_{n}f_{n}K^{n}e^{K}. On the other hand,

0F(K)=12F(K)+KF(K)=K(F(K)+F(K))=2nfnKn+1eK+nnfnKneK.\mathcal{L}_{0}F\left(K\right)=\frac{1}{2}\mathcal{L}^{-}F\left(K\right)+KF\left(K\right)=K\left(F\left(K\right)+F^{\prime}\left(K\right)\right)=2\sum_{n}f_{n}K^{n+1}e^{K}+\sum_{n}nf_{n}K^{n}e^{K}. (B.12)

Proceeding in the same way yields

00F(K)=0nnfnKneK=nn2fnKneK2nnfnKn+1eK\mathcal{L}_{0}\mathcal{L}_{0}^{*}F\left(K\right)=-\mathcal{L}_{0}\sum_{n}nf_{n}K^{n}e^{K}=-\sum_{n}n^{2}f_{n}K^{n}e^{K}-2\sum_{n}nf_{n}K^{n+1}e^{K} (B.13)
00F(K)=2n(n+1)fnKn+1eKnn2fnKneK.\mathcal{L}_{0}^{*}\mathcal{L}_{0}F\left(K\right)=-2\sum_{n}\left(n+1\right)f_{n}K^{n+1}e^{K}-\sum_{n}n^{2}f_{n}K^{n}e^{K}. (B.14)

Now one can straightforwardly see that

[0,0]F(K)=2nfnKn+1eK=0F(K)+0F(K)\left[\mathcal{L}_{0},\mathcal{L}_{0}^{*}\right]F\left(K\right)=2\sum_{n}f_{n}K^{n+1}e^{K}=\mathcal{L}_{0}F\left(K\right)+\mathcal{L}_{0}^{*}F\left(K\right) (B.15)

as expected. An alternative way to show that is to use the fact that on functions of KK, 0\mathcal{L}_{0} and 0\mathcal{L}_{0}^{*} can be represented as KddK+KK\frac{d}{dK}+K and KddK+K-K\frac{d}{dK}+K respectively, and use

[KddK+K,KddK+K]=2K.\left[K\frac{d}{dK}+K,-K\frac{d}{dK}+K\right]=2K. (B.16)

References

  • [1] E. Aldo Arroyo. Generating Erler-Schnabl-type Solution for Tachyon Vacuum in Cubic Superstring Field Theory. J. Phys. A, 43:445403, 2010.
  • [2] Christoph Chiaffrino and Ivo Sachs. QFT with stubs. JHEP, 06:120, 2022.
  • [3] Harold Erbin and Atakan Hilmi Fırat. Open string stub as an auxiliary string field. 8 2023.
  • [4] Theodore Erler. Relating Berkovits and A superstring field theories; small Hilbert space perspective. JHEP, 10:157, 2015.
  • [5] Theodore Erler. Relating Berkovits and AA_{\infty} superstring field theories; large Hilbert space perspective. JHEP, 02:121, 2016.
  • [6] Theodore Erler. Four lectures on analytic solutions in open string field theory. Phys. Rept., 980:1–95, 2022.
  • [7] Theodore Erler and Atakan Hilmi Fırat. Wilsonian effective potentials and closed string field theory. 11 2023.
  • [8] Theodore Erler, Yuji Okawa, and Tomoyuki Takezaki. AA_{\infty} structure from the Berkovits formulation of open superstring field theory. 5 2015.
  • [9] Theodore Erler and Martin Schnabl. A Simple Analytic Solution for Tachyon Condensation. JHEP, 10:066, 2009.
  • [10] Michael Kiermaier, Ashoke Sen, and Barton Zwiebach. Linear b-Gauges for Open String Fields. JHEP, 03:050, 2008.
  • [11] Michael Kiermaier and Barton Zwiebach. One-Loop Riemann Surfaces in Schnabl Gauge. JHEP, 07:063, 2008.
  • [12] Nicolas Moeller and Ivo Sachs. Closed String Cohomology in Open String Field Theory. JHEP, 07:022, 2011.
  • [13] M. Nakahara. Geometry, topology and physics. 2003.
  • [14] Kantaro Ohmori and Yuji Okawa. Open superstring field theory based on the supermoduli space. JHEP, 04:035, 2018.
  • [15] Yuji Okawa. Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field theory. JHEP, 04:055, 2006.
  • [16] Leonardo Rastelli and Barton Zwiebach. The Off-shell Veneziano amplitude in Schnabl gauge. JHEP, 01:018, 2008.
  • [17] Martin Schnabl. Wedge states in string field theory. JHEP, 01:004, 2003.
  • [18] Martin Schnabl. Analytic solution for tachyon condensation in open string field theory. Adv. Theor. Math. Phys., 10(4):433–501, 2006.
  • [19] Martin Schnabl and Georg Stettinger. Open string field theory with stubs. JHEP, 07:032, 2023.
  • [20] Tomoyuki Takezaki. Open superstring field theory including the Ramond sector based on the supermoduli space. 1 2019.
  • [21] Jakub Vošmera. Selected topics in string field theory and physics of D-branes. PhD thesis, Charles U., Prague (main), 2020.
  • [22] Edward Witten. Noncommutative Geometry and String Field Theory. Nucl. Phys. B, 268:253–294, 1986.
  • [23] Barton Zwiebach. Closed string field theory: Quantum action and the B-V master equation. Nucl. Phys. B, 390:33–152, 1993.
  • [24] Barton Zwiebach. Oriented open - closed string theory revisited. Annals Phys., 267:193–248, 1998.