This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

More on convergence of
Chorin’s projection method for incompressible Navier-Stokes equations

Masataka Maeda 111Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan. E-mail: [email protected] (This work was done when he belonged to Keio University.)    and Kohei Soga 222Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan. E-mail: [email protected]
Abstract

Kuroki and Soga [Numer. Math. 2020] proved that a version of Chorin’s fully discrete projection method, originally introduced by A. J. Chorin [Math. Comp. 1969], is unconditionally solvable and convergent within an arbitrary fixed time interval to a Leray-Hopf weak solution of the incompressible Navier-Stokes equations on a bounded domain with an arbitrary external force. This paper is a continuation of Kuroki-Soga’s work. We show time-global solvability and convergence of our scheme; L2L^{2}-error estimates for the scheme in the class of smooth exact solutions; application of the scheme to the problem with a time-periodic external force to investigate time-periodic (Leray-Hopf weak) solutions, long-time behaviors, error estimates, etc.

Keywords: fully discrete projection method; incompressible Navier-Stokes equations; Leray-Hopf weak solution; time-periodic solution; error estimate

AMS subject classifications: 35Q30; 35D30; 65M06; 65M15

1 Introduction

We consider the incompressible Navier-Stokes equations on a bounded domain of 3{\mathbb{R}}^{3}

(1.5) {vt=(v)v+Δv+fp in (0,T]×Ω or (0,)×Ω,v=0 in (0,T]×Ω or (0,)×Ω,v(0,)=v0 in Ω,v=0 on Ω,\displaystyle\left\{\begin{array}[]{lll}\,\,\,\,\,v_{t}&=&-(v\cdot\nabla)v+\Delta v+f-\nabla p\mbox{\quad in $(0,T]\times\Omega$ or $(0,\infty)\times\Omega$,}\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \nabla\cdot v&=&0\mbox{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\, in $(0,T]\times\Omega$ or $(0,\infty)\times\Omega$,}\vskip 6.0pt plus 2.0pt minus 2.0pt\\ v(0,\cdot)&=&v^{0}\mbox{\qquad\qquad\qquad\qquad\qquad\,\,\,\,\,\,\, in $\Omega$},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \,\,\,\,\,v&=&0\mbox{\qquad\qquad\qquad\qquad\qquad\,\,\,\,\,\,\,\,\, on $\partial\Omega$},\end{array}\right.
Ω3 is a bounded connected open set with a Lipschitz boundary,\displaystyle\,\,\,\,\,\,\,\,\Omega\subset{\mathbb{R}}^{3}\mbox{ is a bounded connected open set with a Lipschitz boundary,}

where v=v(t,x)v=v(t,x) is the velocity, p=p(t,x)p=p(t,x) is the pressure, f=f(t,x)f=f(t,x) is a given external force, TT is an arbitrary positive number, v0v^{0} is initial data and vt=tvv_{t}=\partial_{t}v, vxj=xjvv_{x_{j}}=\partial_{x_{j}}v, etc., stand for the partial (weak) derivatives of v(t,x)v(t,x). Let ff and v0v^{0} be arbitrarily taken as

fLloc2([0,);L2(Ω)3)v0Lσ2(Ω).\mbox{$f\in L^{2}_{\rm loc}([0,\infty);L^{2}(\Omega)^{3})$,\quad$v^{0}\in L^{2}_{\sigma}(\Omega)$}.

Here, C0r(Ω)C^{r}_{0}(\Omega) is the family of CrC^{r}-functions : Ω\Omega\to{\mathbb{R}} with a compact support; C0,σr(Ω):={vC0r(Ω)3|v=0}C^{r}_{0,\sigma}(\Omega):=\{v\in C^{r}_{0}(\Omega)^{3}\,|\,\nabla\cdot v=0\}; H01(Ω)H^{1}_{0}(\Omega) is the closure of C0(Ω)C^{\infty}_{0}(\Omega) with respect to the norm H1(Ω)\parallel\cdot\parallel_{H^{1}(\Omega)}; Lσ2(Ω)L^{2}_{\sigma}(\Omega) (resp. H0,σ1(Ω)H^{1}_{0,\sigma}(\Omega)) is the closure of C0,σ(Ω)C^{\infty}_{0,\sigma}(\Omega) with respect to the norm L2(Ω)3\parallel\cdot\parallel_{L^{2}(\Omega)^{3}} (resp. H1(Ω)3\parallel\cdot\parallel_{H^{1}(\Omega)^{3}}).

A function v=(v1,v2,v3):[0,T]×Ω3v=(v_{1},v_{2},v_{3}):[0,T]\times\Omega\to{\mathbb{R}}^{3} is called a Leray-Hopf weak solution of (1.5), if

vL([0,T];Lσ2(Ω))L2([0,T];H0,σ1(Ω)),\displaystyle v\in L^{\infty}([0,T];L^{2}_{\sigma}(\Omega))\cap L^{2}([0,T];H^{1}_{0,\sigma}(\Omega)),
(1.6) Ωv0(x)ϕ(0,x)𝑑x0TΩv(t,x)tϕ(x,t)dxdt\displaystyle-\int_{\Omega}v^{0}(x)\cdot\phi(0,x)dx-\int_{0}^{T}\int_{\Omega}v(t,x)\cdot\partial_{t}\phi(x,t)dxdt
=j=130TΩvj(t,x)xjv(t,x)ϕ(t,x)dxdt\displaystyle=-\sum_{j=1}^{3}\int_{0}^{T}\int_{\Omega}v_{j}(t,x)\partial_{x_{j}}v(t,x)\cdot\phi(t,x)dxdt
j=130TΩxjv(t,x)xjϕ(t,x)dxdt\displaystyle\quad-\sum_{j=1}^{3}\int_{0}^{T}\int_{\Omega}\partial_{x_{j}}v(t,x)\cdot\partial_{x_{j}}\phi(t,x)dxdt
+0TΩf(t,x)ϕ(t,x)𝑑x𝑑t for all ϕC0((1,T);C0,σ(Ω)),\displaystyle\quad+\int_{0}^{T}\int_{\Omega}f(t,x)\cdot\phi(t,x)dxdt\quad\mbox{ for all $\phi\in C^{\infty}_{0}((-1,T);C^{\infty}_{0,\sigma}(\Omega))$,}

where xy:=i=13xiyix\cdot y:=\sum_{i=1}^{3}x_{i}y_{i} for x,y3x,y\in{\mathbb{R}}^{3}.

A function vv belonging to L([0,);Lσ2(Ω))Lloc2([0,);H0,σ1(Ω))L^{\infty}([0,\infty);L^{2}_{\sigma}(\Omega))\cap L^{2}_{\rm loc}([0,\infty);H^{1}_{0,\sigma}(\Omega)) is called a time global Leray-Hopf weak solution of (1.5), if v|[0,T]v|_{[0,T]} satisfies (1.6) for each fixed T>0T>0.

This paper is a continuation of the work [5]. In [5], Kuroki-Soga proposed a version of Chorin’s fully discrete projection method applied to (1.5) and proved its convergence within an arbitrarily fixed time interval to a Leray-Hopf weak solution (up to a subsequence) by means of a new compactness argument (the standard Aubin-Lions-Simon approach fails). It seems that Chorin’s fully discrete projection method is no longer very popular in modern computational fluid dynamics because of its less accuracy, i.e., discretization of Ω\Omega into a uniform mesh and the Dirichlet boundary condition cause a less accurate result. However, we believe that Chorin’s fully discrete projection method can be one of strong mathematical tools to analyze the Navier-Stokes equations including complicated issues such as free boundary problems, long time behaviors, time-periodic solutions, bifurcations, etc. Unlike Galerkin type methods, the projection method solves the equations more directly, which could be an advantage for better understandings. Motivated by such an opinion, we further develop mathematical analysis of Chorin’s fully discrete projection method beyond the convergence to a Leray-Hopf weak solution of the initial boundary value problem.

In Section 2, we first formulate a version of Chorin’s fully discrete projection method and recall the results in [5]. Note that [5] deals with the one-sided difference and the discrete Helmholtz-Hodge decomposition formulated by the zero Dirichlet boundary condition for both of the divergence-free part and potential part. Here, we deal with the central difference and the discrete Helmholtz-Hodge decomposition formulated by the zero Dirichlet boundary condition for the divergence-free part and the zero mean condition for the potential part. This modification in the discrete Helmholtz-Hodge decomposition is particularly important to obtain error estimates, since the exact pressure term pp does not necessarily satisfy the zero Dirichlet boundary condition. The new result of Section 2 is the time-global solvability of our discrete problem with a fixed discretization parameter, under the assumption that the L2L^{2}-norm of the external force within [t,t+1]×Ω[t,t+1]\times\Omega is uniformly bounded for any t0t\geq 0. This result yields a sequence of step functions that is convergent locally in time to a time-global Leray-Hopf weak solution.

In Section 3, we demonstrate an error estimate for our scheme in the C3C^{3}-class. In [1], Chorin showed an L2L^{2}-error estimate of O(h2)O(h^{2}) in the C5C^{5}-class for problems with the periodic boundary conditions, where h>0h>0 and τ>0\tau>0 are the mesh size for the space variables and time variable, respectively. In the case of the zero Dirichlet boundary condition, the issue is more complicated due to the gap between the exact boundary Ω\partial\Omega and the boundary of the grid space. Semi-discrete projection methods, i.e., discrete in time with the mesh size τ>0\tau>0 and continuous in space, are free from this complication and one can do a lot also in the class of strong solutions. In fact, Rannacher [8] gave an error estimate of O(τ)O(\tau) for the Dirichlet problem. Since Chorin took the diffusive scaling condition τ=O(h2)\tau=O(h^{2}) in his fully discrete setting, the two results by Chorin and Rannacher seem to be “consistent”. We also refer to Shen [10] and the references therein for further investigation on semi-discrete projection methods. Although a fully discrete projection method applied to the Dirichlet problem is said to be less accurate, to the best of the authors’ knowledge, there is no rigorous error analysis. We will show an L2L^{2}-error estimate of O(h14)O(h^{\frac{1}{4}}) for a discrete solution and exact C3C^{3}-solution under the scaling condition τ=O(h34)\tau=O(h^{\frac{3}{4}}). Note that Chorin [1] and Temam [11] proved convergence of their schemes with the standard diffusive scaling condition, while Kuroki-Soga [5] gave scale-free results; The diffusive scaling does not yield such an error estimate in our formulation. We will see that our error bound and scaling condition arise from the discrete Helmholtz-Hodge decomposition, not from the discrete Navier-Stokes equations. Although the error estimates of O(h14)O(h^{\frac{1}{4}}) does not sound very sharp, the proof provides a new idea to estimate a remainder term on the boundary arising from “summation by parts” in the discrete problem, which is reminiscent of the construction of the trace operator. This idea would provide further applications in analysis of finite difference methods.

In Section 4, we apply our scheme to investigation of the problem with a time-periodic external force. In this problem, one of the main issues is to find a time-periodic solution with the same time-period as that of the external force. After the first attempt by Serrin [9], many results have been obtained. We refer to Kyed [4] for a nice review of the literature on time-periodic solutions to the Navier-Stokes equations. To the best of the authors’ knowledge, there is no mathematical investigation of time-periodic solutions in terms of the fully discrete projection method. We find a discrete time-periodic solution as a fixed point of the time-11 map of the discrete Navier-Stokes equations and prove convergence to a time-periodic Leray-Hopf weak solution. We also investigate long-time behaviors of discrete solutions, assuming that there exists a “small” discrete solution in the LL^{\infty}-sense. We obtain exponential contraction of any other discrete solutions. Since the rate of contraction is independent of the size of the discretization parameters, we see that similar exponential contraction holds for exact Leray-Hopf weak solutions, where we do not assume any regularity except for the LL^{\infty}-bound of a solution. This idea would provide further applications in analysis of stability of a time-periodic solution, its bifurcation, etc. of the exact problem through the discrete problem. Furthermore, we prove that any discrete solution falls into the O(h14)O(h^{\frac{1}{4}})-neighborhood of an exact time-periodic solution, provided the exact solution is of the C3C^{3}-class and “small”. These results can be seen as a version of the results by Serrin [9], Miyakawa-Teramoto [6] and Teramoto [12]. We refer also to Jauslin-Kreiss-Moser [2] and Nishida-Soga [7] for similar investigations on time-periodic entropy solutions of forced Burgers equations through finite difference methods. Finally, we point out Kagei-Nishida-Teramoto [3] for analysis on stability of stationary solutions of the incompressible Navier-Stokes equations via the corresponding artificial compressible system.

In Section 5, we briefly state results corresponding to Section 3 and 4 in the case of the periodic boundary conditions, where the diffusive scaling and the central difference play an essential role. Since the L2L^{2}-estimates can be sharpened to be O(h2)O(h^{2}), we obtain an LL^{\infty}-estimate of O(h)O(\sqrt{h}) through the inequality used by Chorin [1].

2 Construction of Leray-Hopf weak solution

We investigate a version of the scheme studied in [5] with the central difference, as well as the discrete Helmholtz-Hodge decomposition with the zero Dirichlet boundary condition for the divergence-free part and the zero mean condition for the potential part.

2.1 Calculus on grid

Let h>0h>0 be the mesh size for the space variables and consider the grid

h3:={(hz1,hz2,hz3)|z1,z2,z3}.h{\mathbb{Z}}^{3}:=\{(hz_{1},hz_{2},hz_{3})\,|\,z_{1},z_{2},z_{3}\in{\mathbb{Z}}\}.

Let e1,e2,e3e^{1},e^{2},e^{3} be the standard basis of 3{\mathbb{R}}^{3}. For Bh3B\subset h{\mathbb{Z}}^{3}, the boundary B\partial B of BB is defined as B:={xB|{x±hei}i=1,2,3B}\partial B:=\{x\in B\,|\,\{x\pm he^{i}\}_{i=1,2,3}\not\subset B\}. Let Ω\Omega be a bounded connected open subset of 3{\mathbb{R}}^{3} with a Lipschitz boundary Ω\partial\Omega. For x3x\in{\mathbb{R}}^{3} and r>0r>0, set

Cr(x)\displaystyle C_{r}(x) :=\displaystyle:= [x1r2,x1+r2]×[x2r2,x2+r2]×[x3r2,x3+r2],\displaystyle\Big{[}x_{1}-\frac{r}{2},x_{1}+\frac{r}{2}\Big{]}\times\Big{[}x_{2}-\frac{r}{2},x_{2}+\frac{r}{2}\Big{]}\times\Big{[}x_{3}-\frac{r}{2},x_{3}+\frac{r}{2}\Big{]},
Ωh\displaystyle\Omega_{h} :=\displaystyle:= {xΩh3|C4h(x)Ω}.\displaystyle\{x\in\Omega\cap h{\mathbb{Z}}^{3}\,|\,C_{4h}(x)\subset\Omega\}.

Define the discrete derivatives of a function ϕ:Ωh\phi:\Omega_{h}\to{\mathbb{R}} as follows: For each xΩhx\in\Omega_{h},

Di+ϕ(x):=ϕ(x+hei)ϕ(x)h,Diϕ(x):=ϕ(x)ϕ(xhei)h,\displaystyle D_{i}^{+}\phi(x):=\frac{\phi(x+he^{i})-\phi(x)}{h},\,\,\,D_{i}^{-}\phi(x):=\frac{\phi(x)-\phi(x-he^{i})}{h},
Diϕ(x):=ϕ(x+hei)ϕ(xhei)2h,\displaystyle D_{i}\phi(x):=\frac{\phi(x+he^{i})-\phi(x-he^{i})}{2h},
Di2ϕ(x):=ϕ(x+hei)+ϕ(xhei)2ϕ(x)h2\displaystyle D_{i}^{2}\phi(x):=\frac{\phi(x+he^{i})+\phi(x-he^{i})-2\phi(x)}{h^{2}}

where these operations work under the condition that ϕ\phi is extended to be 0 outside Ωh\Omega_{h}, i.e., ϕ(x+hei)=0\phi(x+he^{i})=0 (resp. ϕ(xhei)=0\phi(x-he^{i})=0) if x+heiΩhx+he^{i}\not\in\Omega_{h} (resp. xheiΩhx-he^{i}\not\in\Omega_{h}). For x,ydx,y\in{\mathbb{R}}^{d}, set xy:=i=1dxiyix\cdot y:=\sum_{i=1}^{d}x_{i}y_{i}, |x|:=xx|x|:=\sqrt{x\cdot x}. Define the discrete gradient of a function ϕ:Ωh\phi:\Omega_{h}\to{\mathbb{R}} and the discrete divergence of a function w=(w1,w2,w3):Ωh3w=(w_{1},w_{2},w_{3}):\Omega_{h}\to{\mathbb{R}}^{3} as

𝒟ϕ(x):=(D1ϕ(x),D2ϕ(x),D3ϕ(x)),𝒟w(x):=D1w1(x)+D2w2(x)+D3w3(x).\mathcal{D}\phi(x):=(D_{1}\phi(x),D_{2}\phi(x),D_{3}\phi(x)),\,\,\,\mathcal{D}\cdot w(x):=D_{1}w_{1}(x)+D_{2}w_{2}(x)+D_{3}w_{3}(x).

We often use discrete versions of integration by parts, “summation by parts”, where we need careful treatments of reminder terms on the boundary. For this purpose, we introduce the following notation (see with Figure 1):

Γhi+\displaystyle\Gamma_{h}^{i+} :=\displaystyle:= {xΩh|xheiΩhΩh},\displaystyle\{x\in\partial\Omega_{h}\,|\,x-he^{i}\in\Omega_{h}\setminus\partial\Omega_{h}\},
Γ~hi+\displaystyle\tilde{\Gamma}_{h}^{i+} :=\displaystyle:= {xΩh|x+heiΩh},\displaystyle\{x\in\partial\Omega_{h}\,|\,x+he^{i}\not\in\Omega_{h}\},
Γhi\displaystyle\Gamma_{h}^{i-} :=\displaystyle:= {xΩh|x+heiΩhΩh},\displaystyle\{x\in\partial\Omega_{h}\,|\,x+he^{i}\in\Omega_{h}\setminus\partial\Omega_{h}\},
Γ~hi\displaystyle\tilde{\Gamma}_{h}^{i-} :=\displaystyle:= {xΩh|xheiΩh},\displaystyle\{x\in\partial\Omega_{h}\,|\,x-he^{i}\not\in\Omega_{h}\},

e.g., if there is a sequence of points of Ωh\Omega_{h} on a line parallel to eie^{i} as shown in Figure 1, we have x+Γhi+x^{+}\in\Gamma_{h}^{i+}, x+Γ~hi+x^{+}\not\in\tilde{\Gamma}_{h}^{i+}, x~+Γhi+\tilde{x}^{+}\not\in\Gamma_{h}^{i+}, x~+Γ~hi+\tilde{x}^{+}\in\tilde{\Gamma}_{h}^{i+}, xΓhix^{-}\in\Gamma_{h}^{i-}, xΓ~hix^{-}\not\in\tilde{\Gamma}_{h}^{i-}, x~Γhi\tilde{x}^{-}\not\in\Gamma_{h}^{i-}, x~Γ~hi\tilde{x}^{-}\in\tilde{\Gamma}_{h}^{i-}.

[Uncaptioned image]

Figure 1.

Lemma 2.1.

For functions ϕ:Ωh\phi:\Omega_{h}\to{\mathbb{R}} and u:Ωh3u:\Omega_{h}\to{\mathbb{R}}^{3}, we have

xΩhu(x)𝒟ϕ(x)=xΩh(𝒟u(x))ϕ(x).\sum_{x\in\Omega_{h}}u(x)\cdot\mathcal{D}\phi(x)=-\sum_{x\in\Omega_{h}}(\mathcal{D}\cdot u(x))\phi(x).
Proof.

We may carry out xΩh\sum_{x\in\Omega_{h}} by the summation along sequences of grid points of Ωh\Omega_{h} on each line parallel to eie^{i} (i=1,2i=1,2 or 33). By shifting xx to x±heix\pm he^{i} in the summation, we obtain

xΩhu(x)𝒟ϕ(x)=i=13(xΩhui(x)ϕ(x+hei)xΩhui(x)ϕ(xhei))12h\displaystyle\sum_{x\in\Omega_{h}}u(x)\cdot\mathcal{D}\phi(x)=\sum_{i=1}^{3}\Big{(}\sum_{x\in\Omega_{h}}u_{i}(x)\phi(x+he^{i})-\sum_{x\in\Omega_{h}}u_{i}(x)\phi(x-he^{i})\Big{)}\frac{1}{2h}
=xΩh𝒟u(x)ϕ(x)+i=13(xΓ~hi+ui(x)ϕ(x+hei)\displaystyle=-\sum_{x\in\Omega_{h}}\mathcal{D}\cdot u(x)\phi(x)+\sum_{i=1}^{3}\Big{(}\sum_{x\in\tilde{\Gamma}_{h}^{i+}}u_{i}(x)\phi(x+he^{i})
xΓ~hiui(xhei)ϕ(x)xΓ~hiui(x)ϕ(xhei)+xΓ~hi+ui(x+hei)ϕ(x))12h.\displaystyle\quad-\sum_{x\in\tilde{\Gamma}_{h}^{i-}}u_{i}(x-he^{i})\phi(x)-\sum_{x\in\tilde{\Gamma}_{h}^{i-}}u_{i}(x)\phi(x-he^{i})+\sum_{x\in\tilde{\Gamma}_{h}^{i+}}u_{i}(x+he^{i})\phi(x)\Big{)}\frac{1}{2h}.

Since ϕ\phi and uu are supposed to be 0 outside Ωh\Omega_{h}, we obtain the assertion. ∎

We give two Poincaré type inequalities for functions on the grid.

Lemma 2.2 (Poincaré type inequality I).

For each function ϕ:Ωh\phi:\Omega_{h}\to{\mathbb{R}} with ϕ|Ωh=0\phi|_{\partial\Omega_{h}}=0, we have

xΩh|ϕ(x)|2A2xΩhΩh|Di+ϕ(x)|2,i=1,2,3,\displaystyle\sum_{x\in\Omega_{h}}|\phi(x)|^{2}\leq A^{2}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|D_{i}^{+}\phi(x)|^{2},\quad i=1,2,3,

where A>0A>0 is a constant depending only on the diameter of Ω\Omega.

Proof.

This is proved in [5]. ∎

The second one is for functions without the zero boundary condition, where the mean value of each function is involved in the inequality. This is essentially applied to the discrete Helmholtz-Hodge decomposition below, where we need to avoid the presence of values of the derivatives on Ωh\partial\Omega_{h} (see Theorem 2.8). Since we formulate the inequality with the central difference, we must look at the {2e1,2e2,2e3}\{2e^{1},2e^{2},2e^{3}\}-translation invariance in the grid h3h{\mathbb{Z}}^{3}: h3h{\mathbb{Z}}^{3} is divided into G1,,G8G^{1},\ldots,G^{8}, each of which is invariant under the {2e1,2e2,2e3}\{2e^{1},2e^{2},2e^{3}\}-translation, i.e., G1,,G8G^{1},\ldots,G^{8} are the sets of grid points with index ((even, even, even)), ((even, even, odd)), ((even, odd, even)), ((odd, even, even)), ((even, odd, odd)), ((odd, odd, even)), ((odd, even, odd)), ((odd, odd, odd)), respectively. Introduce the following notation:

Ωh\displaystyle\Omega_{h}^{\circ} :=\displaystyle:= {xΩhΩh|x+a1he1+a2he2+a3he3ΩhΩh,a1,a2,a3=0,1,2},\displaystyle\{x\in{\Omega_{h}\setminus\partial\Omega_{h}}\,|\,x+a^{1}he^{1}+a^{2}he^{2}+a^{3}he^{3}\in{\Omega_{h}\setminus\partial\Omega_{h}},\,\,\,a^{1},a^{2},a^{3}=0,1,2\},
Ωhj\displaystyle\Omega_{h}^{\circ j} :=\displaystyle:= ΩhGj(j=1,,8).\displaystyle\Omega_{h}^{\circ}\cap G^{j}\quad(j=1,\cdots,8).

The reason why we introduce Ωh\Omega_{h}^{\circ} is to avoid the presence of values of the derivatives on Ωh\partial\Omega_{h} in the Poincaré type inequality. For each xΩhx\in\partial\Omega_{h}, there exists ω{±ej}j=1,2,3\omega\in\{\pm e^{j}\}_{j=1,2,3} such that x+hωΩhx+h\omega\not\in\Omega_{h}; Then, C4h(x+hω)ΩC_{4h}(x+h\omega)\not\subset\Omega and there exists xΩC4h(x+hω)x^{\ast}\in\partial\Omega\cap C_{4h}(x+h\omega). Hence, we have |xx||x(x+hω)|+|(x+hω)x|(1+23)h|x^{\ast}-x|\leq|x^{\ast}-(x+h\omega)|+|(x+h\omega)-x|\leq(1+2\sqrt{3})h.

(2.1) For each xΩh, there exists xΩ such that |xx|(1+23)h.\displaystyle\mbox{For each $x\in\partial\Omega_{h}$, there exists $x^{\ast}\in\partial\Omega$ such that $|x^{\ast}-x|\leq(1+2\sqrt{3})h$}.

Similarly, for each xΩhx\in\partial\Omega_{h}^{\circ}, we have ω{±ej}j=1,2,3\omega\in\{\pm e^{j}\}_{j=1,2,3} such that x+hωΩhx+h\omega\not\in\Omega_{h}^{\circ} and ai{0,1,2}a^{i}\in\{0,1,2\} such that x+hω+i=13aiheiΩhx+h\omega+\sum_{i=1}^{3}a^{i}he^{i}\in\partial\Omega_{h}. Hence, (2.1) implies

(2.2) For each xΩh, there exists xΩ such that |xx|2(1+23)h.\displaystyle\mbox{ For each $x\in\partial\Omega_{h}^{\circ}$, there exists $x^{\ast}\in\partial\Omega$ such that $|x^{\ast}-x|\leq 2(1+2\sqrt{3})h$}.

We always assume that h>0h>0 is small enough so that Ωhj\Omega_{h}^{\circ j} is connected, i.e., for any x,x~Ωhjx,\tilde{x}\in\Omega_{h}^{\circ j}, we have ω1,ω2,,ωK{±ei}i=1,2,3\omega^{1},\omega^{2},\ldots,\omega^{K}\in\{\pm e^{i}\}_{i=1,2,3} such that x+2hω1++2hωkΩhjx+2h\omega^{1}+\cdots+2h\omega^{k}\in\Omega_{h}^{\circ j} for all kKk\leq K and x+2hω1++2hωK=x~x+2h\omega^{1}+\cdots+2h\omega^{K}=\tilde{x}.

Lemma 2.3 (Poincaré type inequality II).

For each function ϕ:Ωh\phi:\Omega_{h}\to{\mathbb{R}}, we have

j=18xΩhj|ϕ(x)[ϕ]j|2A~2xΩhΩh|𝒟ϕ(x)|2,[ϕ]j:=(Ωhj)1xΩhjϕ(x),\displaystyle\sum_{j=1}^{8}\sum_{x\in\Omega_{h}^{\circ j}}|\phi(x)-[\phi]^{j}|^{2}\leq\tilde{A}^{2}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|\mathcal{D}\phi(x)|^{2},\quad[\phi]^{j}:=(\sharp\Omega_{h}^{\circ j})^{-1}\sum_{x\in\Omega_{h}^{\circ j}}\phi(x),

where A~>0\tilde{A}>0 is a constant depending only on Ω\Omega.

Proof.

See Appendix. ∎

Next two lemmas state Lipschitz interpolation of step functions, which is used to show convergence of a step function in H1H^{1}.

Lemma 2.4.

For a function u:Ωhu:\Omega_{h}\to{\mathbb{R}} with u|Ωh=0u|_{\partial\Omega_{h}}=0 and the step function vv derived from uu as

v(x):={u(y) for xCh+(y)yΩh,0 otherwise,\displaystyle v(x):=\left\{\begin{array}[]{lll}&u(y)\mbox{\quad for $x\in{C_{h}^{+}(y)}$, $y\in\Omega_{h}$},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ &0\mbox{\quad\,\,\,\,\,\,\,\,\mbox{otherwise}},\end{array}\right.
Cr+(y):=[y1,y1+r)×[y2,y2+r)×[y3,y3+r),\displaystyle C_{r}^{+}(y):=[y_{1},y_{1}+r)\times[y_{2},y_{2}+r)\times[y_{3},y_{3}+r),

there exists a Lipschitz continuous function w:Ωw:\Omega\to{\mathbb{R}} with a compact support such that

wvL2(Ω)Khj=13Dj+uΩh,\displaystyle\parallel w-v\parallel_{L^{2}(\Omega)}\leq Kh\sum_{j=1}^{3}\parallel D_{j}^{+}u\parallel_{\Omega_{h}},
xiw(x)L2(Ω)Kj=13Dj+uΩh, i=1,2,3,\displaystyle\parallel\partial_{x_{i}}w(x)\parallel_{L^{2}(\Omega)}\leq K\sum_{j=1}^{3}\parallel D_{j}^{+}u\parallel_{\Omega_{h}},\mbox{ $i=1,2,3$},

where KK is a constant independent of uu and hh.

Proof.

This is proved in [5]. ∎

Lemma 2.5.

For a function u:Ωhu:\Omega_{h}\to{\mathbb{R}} and the step function vv derived from u|Ωhju|_{\Omega_{h}^{\circ j}} as

v(x)=u(y) for xC2h+(y)yΩhj(j=1,,8),\displaystyle v(x)=u(y)\mbox{\quad for $x\in{C_{2h}^{+}(y)}$, $y\in\Omega_{h}^{\circ j}$}\quad(j=1,\ldots,8),

there exists a Lipschitz continuous function

w:Θhj,Θhj:=yΩhjC2h+(y)w:\Theta_{h}^{j}\to{\mathbb{R}},\quad\Theta_{h}^{j}:=\bigcup_{y\in\Omega_{h}^{\circ j}}C^{+}_{2h}(y)

such that

wvL2(Θhj)2K~h𝒟uΩhΩh,\displaystyle\parallel w-v\parallel_{L^{2}(\Theta_{h}^{j})}^{2}\leq\tilde{K}h\parallel\mathcal{D}u\parallel_{\Omega_{h}\setminus\partial\Omega_{h}},
xiw(x)L2(Θhj)K~𝒟uΩhΩh, i=1,2,3,\displaystyle\parallel\partial_{x_{i}}w(x)\parallel_{L^{2}(\Theta_{h}^{j})}\leq\tilde{K}\parallel\mathcal{D}u\parallel_{\Omega_{h}\setminus\partial\Omega_{h}},\mbox{ $i=1,2,3$},

where K~\tilde{K} is a constant independent of uu and hh.

Proof.

See Appendix. ∎

2.2 Discrete Helmholtz-Hodge decomposition

Here is the discrete Helmholtz-Hodge decomposition.

Theorem 2.6.

For each function u:Ωh3u:\Omega_{h}\to{\mathbb{R}}^{3}, there exist unique functions w:Ωh3w:\Omega_{h}\to{\mathbb{R}}^{3} and ϕ:Ωh\phi:\Omega_{h}\to{\mathbb{R}} such that

𝒟w=0 on Ωh;w+𝒟ϕ=u on ΩhΩh;\displaystyle\mathcal{D}\cdot w=0\quad\mbox{ on $\Omega_{h}$};\qquad w+\mathcal{D}\phi=u\quad\mbox{ on $\Omega_{h}\setminus\partial\Omega_{h}$};
w=0 on Ωh;xΩhjϕ(x)=0(j=1,,8),\displaystyle w=0\quad\mbox{ on $\partial\Omega_{h}$};\quad\sum_{x\in\Omega_{h}^{\circ j}}\phi(x)=0\quad(j=1,\cdots,8),

where uu does not necessarily need to banish on Ωh\partial\Omega_{h}.

Proof.

We modify the proof of Theorem 2.2 of [5]. First, we note that any function w:Ωh3w:\Omega_{h}\to{\mathbb{R}}^{3} with w|Ωh=0w|_{\partial\Omega_{h}}=0 satisfies for each j=1,,8j=1,\cdots,8,

(2.4) xΩhGj𝒟w(x)=i=13xΩhGjwi(x+hei)wi(xhei)2h=0,\displaystyle\sum_{x\in\Omega_{h}\cap G^{j}}\mathcal{D}\cdot w(x)=\sum_{i=1}^{3}\sum_{x\in\Omega_{h}\cap G^{j}}\frac{w_{i}(x+he^{i})-w_{i}(x-he^{i})}{2h}=0,

due to cancelation. We label each point of ΩhΩh\Omega_{h}\setminus\partial\Omega_{h} and Ωh\partial\Omega_{h} as

ΩhΩh={x1,x2,,xa},Ωh={x¯1,x¯2,,x¯b}.\Omega_{h}\setminus\partial\Omega_{h}=\{x^{1},x^{2},\ldots,x^{a}\},\quad\partial\Omega_{h}=\{\bar{x}^{1},\bar{x}^{2},\ldots,\bar{x}^{b}\}.

Let w,ϕw,\phi be unknown functions to be determined. Introduce y4a+by\in{\mathbb{R}}^{4a+b} and α4a+b+8\alpha\in{\mathbb{R}}^{4a+b+8} as

y\displaystyle y =\displaystyle= (w1(x1),,w1(xa),w2(x1),,w2(xa),w3(x1),,w3(xa),ϕ(x1),,ϕ(xa),\displaystyle\big{(}w_{1}(x^{1}),\ldots,w_{1}(x^{a}),w_{2}(x^{1}),\ldots,w_{2}(x^{a}),w_{3}(x^{1}),\ldots,w_{3}(x^{a}),\phi(x^{1}),\ldots,\phi(x^{a}),
ϕ(x¯1),,ϕ(x¯b)),\displaystyle\phi(\bar{x}^{1}),\ldots,\phi(\bar{x}^{b})\big{)},
α\displaystyle\alpha =\displaystyle= (0,,0,u1(x1),,u1(xa),u2(x1),,u2(xa),u3(x1),,u3(xa),\displaystyle\big{(}0,\ldots,0,u_{1}(x^{1}),\ldots,u_{1}(x^{a}),u_{2}(x^{1}),\ldots,u_{2}(x^{a}),u_{3}(x^{1}),\ldots,u_{3}(x^{a}),
0,0,0,0,0,0,0,0),\displaystyle\quad 0,0,0,0,0,0,0,0\big{)},

where α\alpha has a+ba+b zero in front of u1(x1)u_{1}(x^{1}). Then, the equations 𝒟w=0\mathcal{D}\cdot w=0 on Ωh\Omega_{h} , w+𝒟ϕ=uw+\mathcal{D}\phi=u on ΩhΩh\Omega_{h}\setminus\partial\Omega_{h} with the zero mean constraint of ϕ\phi give a (4a+b+8)(4a+b+8)-system of linear equations, which is denoted by A~y=α\tilde{A}y=\alpha with a (4a+b+8)×(4a+b)(4a+b+8)\times(4a+b)-matrix A~\tilde{A}. Due to (2.4), we find eight trivial 0=00=0 from A~y=α\tilde{A}y=\alpha. Therefore, A~y=α\tilde{A}y=\alpha can be deduced to be Ay=βAy=\beta with a (4a+b)×(4a+b)(4a+b)\times(4a+b)-matrix AA and β4a+b\beta\in{\mathbb{R}}^{4a+b}. Note that AA is independent of uu, and that β=0\beta=0 if u=0u=0.

Our assertion holds, if AA is invertible. To prove invertibility of AA, we show that Ay=0Ay=0 if and only if y=0y=0. There is at least one yy satisfying Ay=0Ay=0. Then, we obtain at least one pair w,ϕw,\phi satisfying

𝒟w=0 on Ωh;w+𝒟ϕ=0 on ΩhΩh;w=0 on Ωh;\displaystyle\mathcal{D}\cdot w=0\quad\mbox{ on $\Omega_{h}$};\qquad w+\mathcal{D}\phi=0\quad\mbox{ on $\Omega_{h}\setminus\partial\Omega_{h}$};\quad w=0\quad\mbox{ on $\partial\Omega_{h}$};
(2.5) xΩhjϕ(x)=0(j=1,,8)\displaystyle\sum_{x\in\Omega_{h}^{\circ j}}\phi(x)=0\quad(j=1,\cdots,8)

By Lemma 2.1, we obtain

xΩhΩhw(x)𝒟ϕ(x)\displaystyle\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}w(x)\cdot\mathcal{D}\phi(x) =\displaystyle= xΩhw(x)𝒟ϕ(x)=xΩh(𝒟w(x))ϕ(x)=0,\displaystyle\sum_{x\in\Omega_{h}}w(x)\cdot\mathcal{D}\phi(x)=\sum_{x\in\Omega_{h}}(\mathcal{D}\cdot w(x))\phi(x)=0,
0\displaystyle 0 =\displaystyle= xΩhΩh(w(x)+𝒟ϕ(x))(w(x)+𝒟ϕ(x))\displaystyle\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}(w(x)+\mathcal{D}\phi(x))\cdot(w(x)+\mathcal{D}\phi(x))
=\displaystyle= xΩhΩh|w(x)|2+xΩhΩh|𝒟ϕ(x)|2.\displaystyle\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|w(x)|^{2}+\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|\mathcal{D}\phi(x)|^{2}.

Therefore, w=0w=0 on Ωh\Omega_{h} and 𝒟ϕ=0\mathcal{D}\phi=0 on ΩhΩh\Omega_{h}\setminus\partial\Omega_{h}. The latter equality implies that ϕ\phi is constant on ΩhGj\Omega_{h}\cap G^{j} for each j=1,,8j=1,\cdots,8, and hence (2.5) implies ϕ=0\phi=0. Thus, AA is invertible.

Suppose that there are two pairs w,ϕw,\phi and w~,ϕ~\tilde{w},\tilde{\phi} which satisfy the assertion. Then, we see that ww~w-\tilde{w}, ϕϕ~\phi-\tilde{\phi} yields the unique trivial solution of Ay=0Ay=0. Therefore, we conclude that w=w~w=\tilde{w} and ϕ=ϕ~\phi=\tilde{\phi}. ∎

Definition 2.7.

Define the discrete Helmholtz-Hodge decomposition operator PhP_{h} for each function u:Ωh3u:\Omega_{h}\to{\mathbb{R}}^{3} as

Phu:=w,w is the one obtianed in Theorem 2.6P_{h}u:=w,\,\,\,\mbox{$w$ is the one obtianed in Theorem \ref{Projection}. }
Theorem 2.8.

The following estimates hold for the decomposition u=Phu+𝒟ϕu=P_{h}u+\mathcal{D}\phi:

xΩh|Phu(x)|2xΩhΩh|u(x)|2,xΩhΩh|𝒟ϕ(x)|2xΩhΩh|u(x)|2,\displaystyle\sum_{x\in\Omega_{h}}|P_{h}u(x)|^{2}\leq\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|u(x)|^{2},\quad\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|\mathcal{D}\phi(x)|^{2}\leq\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|u(x)|^{2},
xΩh|ϕ(x)|2A~2xΩhΩh|𝒟ϕ(x)|2A~2xΩhΩh|u(x)|2,\displaystyle\sum_{x\in\Omega_{h}^{\circ}}|\phi(x)|^{2}\leq\tilde{A}^{2}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|\mathcal{D}\phi(x)|^{2}\leq\tilde{A}^{2}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|u(x)|^{2},

where A~>0\tilde{A}>0 is the constant from the discrete Poincaré type inequality II. Furthermore, if u=0u=0 on (ΩhΩh)Ωh(\Omega_{h}\setminus\Omega_{h}^{\circ})\cup\partial\Omega_{h}^{\circ}, we have

(2.6) xΩhΩh|u(x)Phu(x)|2A~2xΩh|𝒟u(x)|2.\displaystyle\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|u(x)-P_{h}u(x)|^{2}\leq\tilde{A}^{2}\sum_{x\in\Omega_{h}^{\circ}}|\mathcal{D}\cdot u(x)|^{2}.
Proof.

The assertion follows from reasoning similar to the proof of Theorem 2.3 of [5] with Lemma 2.1 and the discrete Poincaré type inequality II. For readers’ convenience, we demonstrate (2.6):

xΩhΩh|u(x)Phu(x)|2=xΩhΩh|u(x)Phu(x)|2xΩhΩh|𝒟ϕ(x)|2\displaystyle\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|u(x)-P_{h}u(x)|^{2}=\sqrt{\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|u(x)-P_{h}u(x)|^{2}}\sqrt{\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|\mathcal{D}\phi(x)|^{2}}
=xΩhΩh(u(x)Phu(x))𝒟ϕ(x)=xΩhΩhu(x)𝒟ϕ(x)\displaystyle\quad=\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}(u(x)-P_{h}u(x))\cdot\mathcal{D}\phi(x)=\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}u(x)\cdot\mathcal{D}\phi(x)
=xΩhΩh(𝒟u(x))ϕ(x)=xΩh(𝒟u(x))ϕ(x)\displaystyle\quad=-\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}(\mathcal{D}\cdot u(x))\phi(x)=-\sum_{x\in\Omega_{h}^{\circ}}(\mathcal{D}\cdot u(x))\phi(x)
xΩh|𝒟u(x)|2xΩh|ϕ(x)|2xΩh|𝒟u(x)|2A~2xΩhΩh|𝒟ϕ(x)|2.\displaystyle\quad\leq\sqrt{\sum_{x\in\Omega_{h}^{\circ}}|\mathcal{D}\cdot u(x)|^{2}}\sqrt{\sum_{x\in\Omega_{h}^{\circ}}|\phi(x)|^{2}}\leq\sqrt{\sum_{x\in\Omega_{h}^{\circ}}|\mathcal{D}\cdot u(x)|^{2}}\sqrt{\tilde{A}^{2}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|\mathcal{D}\phi(x)|^{2}}.

Note that the values of 𝒟ϕ\mathcal{D}\phi on Ωh\partial\Omega_{h} are out of control in the decomposition, which requires the discrete Poincaré type inequalities not to contain those values; We will discuss an inequality corresponding to (2.6) without the condition u=0u=0 on (ΩhΩh)Ωh(\Omega_{h}\setminus\Omega_{h}^{\circ})\cup\partial\Omega_{h}^{\circ} in Section 3.

2.3 Discrete Navier-Stokes equations

Let τ>0\tau>0 be the time-discretization parameter and let TτT_{\tau}\in{\mathbb{N}} be such that T[τTτ,τTτ+τ)T\in[\tau T_{\tau},\tau T_{\tau}+\tau). For initial data v0=(v10,v20,v30)L0,σ2(Ω)v^{0}=(v^{0}_{1},v^{0}_{2},v^{0}_{3})\in L^{2}_{0,\sigma}(\Omega) and the external force f=(f1,f2,f3)Lloc2([0,);L2(Ω)3)f=(f_{1},f_{2},f_{3})\in L^{2}_{loc}([0,\infty);L^{2}(\Omega)^{3}), introduce u~0=(u~10,u~20,u~30):Ωh3\tilde{u}^{0}=(\tilde{u}_{1}^{0},\tilde{u}_{2}^{0},\tilde{u}_{3}^{0}):\Omega_{h}\to{\mathbb{R}}^{3}, fn=(f1n,f2n,f3n):Ωh3f^{n}=(f^{n}_{1},f^{n}_{2},f^{n}_{3}):\Omega_{h}\to{\mathbb{R}}^{3}, n=0,1,n=0,1,\cdots as

u~i0(x)\displaystyle\tilde{u}^{0}_{i}(x) =\displaystyle= {h3Ch(x)vi0(y)𝑑y,xΩhΩh,0 otherwise,\displaystyle\left\{\begin{array}[]{lll}&\displaystyle h^{-3}\int_{{C_{h}(x)}}v^{0}_{i}(y)dy,\quad x\in\Omega_{h}\setminus\partial\Omega_{h},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ &0\mbox{\quad\quad\quad\,\,\,\quad\,\,\, otherwise},\end{array}\right.
fin(x)\displaystyle f^{n}_{i}(x) :=\displaystyle:= τ1h3τnτ(n+1)Ch(x)fi(t,y)𝑑y𝑑t,xΩh.\displaystyle\tau^{-1}h^{-3}\int_{\tau n}^{\tau(n+1)}\int_{{C_{h}(x)}}f_{i}(t,y)dydt,\quad x\in\Omega_{h}.

We define functions u~n+1()=(u~1n+1(),u~2n+1(),u~3n+1()):Ωh3\tilde{u}^{n+1}(\cdot)=(\tilde{u}^{n+1}_{1}(\cdot),\tilde{u}^{n+1}_{2}(\cdot),\tilde{u}_{3}^{n+1}(\cdot)):\Omega_{h}\to{\mathbb{R}}^{3}, n=0,1,,Tτ1n=0,1,\ldots,T_{\tau}-1 and un()=(u1n(),u2n(),u3n()):Ωh3u^{n}(\cdot)=(u^{n}_{1}(\cdot),u^{n}_{2}(\cdot),u_{3}^{n}(\cdot)):\Omega_{h}\to{\mathbb{R}}^{3}, n=0,1,,Tτn=0,1,\ldots,T_{\tau} in the following manner (u~0\tilde{u}^{0} is already defined above):

(2.8) u0\displaystyle u^{0} =\displaystyle= Phu~0,\displaystyle P_{h}\tilde{u}^{0},
u~n+1(x)un(x)τ\displaystyle\frac{\tilde{u}^{n+1}(x)-u^{n}(x)}{\tau} =\displaystyle= 12j=13(ujn(xhej)Dju~n+1(xhej)\displaystyle-\frac{1}{2}\sum_{j=1}^{3}\Big{(}u^{n}_{j}(x-he^{j})D_{j}\tilde{u}^{n+1}(x-he^{j})
+ujn(x+hej)Dju~n+1(x+hej))\displaystyle+u^{n}_{j}(x+he^{j})D_{j}\tilde{u}^{n+1}(x+he^{j})\Big{)}
+j=13Dj2u~n+1(x)+fn(x),xΩhΩh,\displaystyle+\sum_{j=1}^{3}D_{j}^{2}\tilde{u}^{n+1}(x)+f^{n}(x),\quad x\in\Omega_{h}\setminus\partial\Omega_{h},
(2.10) u~n+1(x)\displaystyle\tilde{u}^{n+1}(x) =\displaystyle= 0,xΩh,\displaystyle 0,\quad x\in\partial\Omega_{h},
(2.11) un+1\displaystyle u^{n+1} =\displaystyle= Phu~n+1,\displaystyle P_{h}\tilde{u}^{n+1},

where (2.8)-(2.11) are recurrence equations in the implicit form and called the discrete Navier-Stokes equations.

For functions u,w:Ωh3u,w:\Omega_{h}\to{\mathbb{R}}^{3} or {\mathbb{R}}, we define the discrete L2L^{2}-inner product and norm as

(u,v)Ωh:=xΩhu(x)w(x)h3,uΩh:=(u,u)Ωh.(u,v)_{\Omega_{h}}:=\sum_{x\in\Omega_{h}}u(x)\cdot w(x)h^{3},\quad\parallel u\parallel_{\Omega_{h}}:=\sqrt{(u,u)_{\Omega_{h}}}.

The next theorem states unconditional solvability of the implicit equations (2.8)-(2.10).

Theorem 2.9.

Suppose that un:Ωh3u^{n}:\Omega_{h}\to{\mathbb{R}}^{3} satisfies 𝒟un=0\mathcal{D}\cdot u^{n}=0 on ΩhΩh\Omega_{h}\setminus\partial\Omega_{h} and un=0u^{n}=0 on Ωh\partial\Omega_{h} for some nn. Then, the equation (2.3)-(2.10) is uniquely solvable with respect to u~n+1\tilde{u}^{n+1} for any mesh size h,τh,\tau.

Proof.

Although our proof is essentially the same as the proof of Theorem 3.1 of [5], we demonstrate some calculation. We label the elements of ΩhΩh\Omega_{h}\setminus\partial\Omega_{h} as x1,x2,,xax^{1},x^{2},\ldots,x^{a}. Introduce y,α3ay,\alpha\in{\mathbb{R}}^{3a} as

y\displaystyle y :=\displaystyle:= (u~1n+1(x1),,u~1n+1(xa),u~2n+1(x1),,u~2n+1(xa),u~3n+1(x1),,u~3n+1(xa)),\displaystyle\big{(}\tilde{u}_{1}^{n+1}(x^{1}),\ldots,\tilde{u}_{1}^{n+1}(x^{a}),\tilde{u}_{2}^{n+1}(x^{1}),\ldots,\tilde{u}_{2}^{n+1}(x^{a}),\tilde{u}_{3}^{n+1}(x^{1}),\ldots,\tilde{u}_{3}^{n+1}(x^{a})\big{)},
α\displaystyle\alpha :=\displaystyle:= (u1n(x1)+τf1n(x1),,u1n(xa)+τf1n(xa),u2n(x1)+τf2n(x1),\displaystyle\big{(}u_{1}^{n}(x^{1})+\tau f^{n}_{1}(x^{1}),\ldots,u_{1}^{n}(x^{a})+\tau f^{n}_{1}(x^{a}),u_{2}^{n}(x^{1})+\tau f^{n}_{2}(x^{1}),
,u2n(xa)+τf2n(xa),u3n(x1)+τf3n(x1),,u3n(xa)+τf3n(xa)).\displaystyle\ldots,u_{2}^{n}(x^{a})+\tau f^{n}_{2}(x^{a}),u_{3}^{n}(x^{1})+\tau f^{n}_{3}(x^{1}),\ldots,u_{3}^{n}(x^{a})+\tau f^{n}_{3}(x^{a})\big{)}.

Then, (2.3)-(2.10) are re-written as the linear equations A(un;h,τ)y=αA(u^{n};h,\tau)y=\alpha with a 3a×3a3a\times 3a-matrix A(un;h,τ)A(u^{n};h,\tau) depending on un,h,τu^{n},h,\tau.

We prove that the matrix A(un;h,τ)A(u^{n};h,\tau) is invertible if unu^{n} satisfies 𝒟un=0\mathcal{D}\cdot u^{n}=0 in ΩhΩh\Omega_{h}\setminus\partial\Omega_{h}. It is enough to check that A(un;h,τ)y~=0A(u^{n};h,\tau)\tilde{y}=0 has the unique solution y~=0\tilde{y}=0. Let y~=y0\tilde{y}=y_{0} be a solution of A(un;h,τ)y~=0A(u^{n};h,\tau)\tilde{y}=0. Then, there exists at least one function u~n+1:Ωh3\tilde{u}^{n+1}:\Omega_{h}\to{\mathbb{R}}^{3} with u~n+1|Ωh=0\tilde{u}^{n+1}|_{\partial\Omega_{h}}=0 such that

u~n+1(x)\displaystyle\tilde{u}^{n+1}(x) =\displaystyle= τ2j=13(ujn(xhej)Dju~n+1(xhej)+ujn(x+hej)Dju~n+1(x+hej))\displaystyle-\frac{\tau}{2}\sum_{j=1}^{3}\Big{(}u^{n}_{j}(x-he^{j})D_{j}\tilde{u}^{n+1}(x-he^{j})+u^{n}_{j}(x+he^{j})D_{j}\tilde{u}^{n+1}(x+he^{j})\Big{)}
+τj=13Dj2u~n+1(x),xΩhΩh.\displaystyle+\tau\sum_{j=1}^{3}D_{j}^{2}\tilde{u}^{n+1}(x),\quad x\in\Omega_{h}\setminus\partial\Omega_{h}.

Then, we have

(u~n+1,u~n+1)Ωh\displaystyle(\tilde{u}^{n+1},\tilde{u}^{n+1})_{\Omega_{h}} =\displaystyle= u~n+1Ωh2\displaystyle\parallel\tilde{u}^{n+1}\parallel_{\Omega_{h}}^{2}
=\displaystyle= τ2i,j=13xΩhΩh(ujn(xhej)Dju~in+1(xhej)\displaystyle-\frac{\tau}{2}\sum_{i,j=1}^{3}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}\Big{(}u^{n}_{j}(x-he^{j})D_{j}\tilde{u}^{n+1}_{i}(x-he^{j})
+ujn(x+hej)Dju~in+1(x+hej))u~n+1i(x)h3\displaystyle+u^{n}_{j}(x+he^{j})D_{j}\tilde{u}^{n+1}_{i}(x+he^{j})\Big{)}\tilde{u}^{n+1}_{i}(x)h^{3}
+τi,j=13xΩhΩhDj2u~in+1(x)u~in+1(x)h3.\displaystyle+\tau\sum_{i,j=1}^{3}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}D_{j}^{2}\tilde{u}_{i}^{n+1}(x)\tilde{u}_{i}^{n+1}(x)h^{3}.

The above two summations are denoted by (i), (ii), respectively. With the zero boundary condition of u~n+1\tilde{u}^{n+1}, we see that

(i)\displaystyle{\rm(i)} =\displaystyle= i,j=13xΩhΩh(ujn(xhej)u~in+1(x)u~in+1(x2hej)2h\displaystyle\sum_{i,j=1}^{3}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}\Big{(}u^{n}_{j}(x-he^{j})\frac{\tilde{u}^{n+1}_{i}(x)-\tilde{u}^{n+1}_{i}(x-2he^{j})}{2h}
+ujn(x+hej)u~in+1(x+2hej)u~in+1(x)2h)u~n+1i(x)h3\displaystyle+u^{n}_{j}(x+he^{j})\frac{\tilde{u}^{n+1}_{i}(x+2he^{j})-\tilde{u}^{n+1}_{i}(x)}{2h}\Big{)}\tilde{u}^{n+1}_{i}(x)h^{3}
=\displaystyle= i,j=13xΩhΩhujn(x+hej)ujn(xhej)2hu~in+1(x)2h3\displaystyle\sum_{i,j=1}^{3}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}-\frac{u^{n}_{j}(x+he^{j})-u^{n}_{j}(x-he^{j})}{2h}\tilde{u}^{n+1}_{i}(x)^{2}h^{3}
+i,j=13xΩh12hujn(x+hej)u~in+1(x+2hej)u~in+1(x)h3\displaystyle+\sum_{i,j=1}^{3}\sum_{x\in\Omega_{h}}\frac{1}{2h}u^{n}_{j}(x+he^{j})\tilde{u}^{n+1}_{i}(x+2he^{j})\tilde{u}^{n+1}_{i}(x)h^{3}
i,j=13xΩh12hujn(xhej)u~in+1(x2hej)u~in+1(x)h3.\displaystyle-\sum_{i,j=1}^{3}\sum_{x\in\Omega_{h}}\frac{1}{2h}u^{n}_{j}(x-he^{j})\tilde{u}^{n+1}_{i}(x-2he^{j})\tilde{u}^{n+1}_{i}(x)h^{3}.

Shifting xx to x2hejx\mp 2he^{j} in the last summation, we obtain

(i)=xΩhΩh(𝒟un(x))|u~n+1(x)|2h3.\displaystyle{\rm(i)}=-\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}\big{(}\mathcal{D}\cdot u^{n}(x)\big{)}|\tilde{u}^{n+1}(x)|^{2}h^{3}.

Similarly, we see that

(ii)\displaystyle\rm{(ii)} =\displaystyle= i,j=13xΩhΩhu~in+1(x+hej)2u~in+1(x)+u~in+1(xhej)h2u~in+1(x)h3\displaystyle\sum_{i,j=1}^{3}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}\frac{\tilde{u}_{i}^{n+1}(x+he^{j})-2\tilde{u}_{i}^{n+1}(x)+\tilde{u}_{i}^{n+1}(x-he^{j})}{h^{2}}\tilde{u}^{n+1}_{i}(x)h^{3}
=\displaystyle= i,j=13xΩhΩhu~in+1(x+hej)u~in+1(x)h2u~in+1(x)h3\displaystyle\sum_{i,j=1}^{3}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}\frac{\tilde{u}_{i}^{n+1}(x+he^{j})-\tilde{u}_{i}^{n+1}(x)}{h^{2}}\tilde{u}^{n+1}_{i}(x)h^{3}
i,j=13xΩhΩhu~in+1(x)u~in+1(xhej)h2u~in+1(x)h3\displaystyle-\sum_{i,j=1}^{3}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}\frac{\tilde{u}_{i}^{n+1}(x)-\tilde{u}_{i}^{n+1}(x-he^{j})}{h^{2}}\tilde{u}^{n+1}_{i}(x)h^{3}
=\displaystyle= i,j=13xΩhu~in+1(x+hej)u~in+1(x)h2u~in+1(x)h3\displaystyle\sum_{i,j=1}^{3}\sum_{x\in\Omega_{h}}\frac{\tilde{u}_{i}^{n+1}(x+he^{j})-\tilde{u}_{i}^{n+1}(x)}{h^{2}}\tilde{u}^{n+1}_{i}(x)h^{3}
i,j=13xΩhu~in+1(x+hej)u~in+1(x)h2u~in+1(x+hej)h3\displaystyle-\sum_{i,j=1}^{3}\sum_{x\in\Omega_{h}}\frac{\tilde{u}_{i}^{n+1}(x+he^{j})-\tilde{u}_{i}^{n+1}(x)}{h^{2}}\tilde{u}^{n+1}_{i}(x+he^{j})h^{3}
=\displaystyle= j=13Dj+u~n+1Ωh20.\displaystyle-\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{u}^{n+1}\parallel_{\Omega_{h}}^{2}\leq 0.

Hence, the discrete divergence free constraint of unu^{n} implies

u~n+1Ωh2+τj=13Dj+u~n+1Ωh2=0.\parallel\tilde{u}^{n+1}\parallel_{\Omega_{h}}^{2}+\tau\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{u}^{n+1}\parallel_{\Omega_{h}}^{2}=0.

Thus, we conclude that u~n+1=0\tilde{u}^{n+1}=0 and y0=0y_{0}=0. ∎

Theorem 2.10.

For any h,τ>0h,\tau>0, the discrete problem (2.8)-(2.11) is uniquely solvable for n=0,1,,Tτ1n=0,1,\ldots,T_{\tau}-1 with the following estimates:

(2.12) u0Ωh\displaystyle\parallel u^{0}\parallel_{\Omega_{h}} \displaystyle\leq u~0Ωhv0L2(Ω)3,\displaystyle\parallel\tilde{u}^{0}\parallel_{\Omega_{h}}\leq\parallel v^{0}\parallel_{L^{2}(\Omega)^{3}},
(2.13) m=0nfmΩh2τ\displaystyle\sum_{m=0}^{n}\parallel f^{m}\parallel_{\Omega_{h}}^{2}\tau \displaystyle\leq fL2([0,τ(n+1)];L2(Ω)3)2fL2([0,T];L2(Ω)3)2,\displaystyle\parallel f\parallel_{L^{2}([0,\tau(n+1)];L^{2}(\Omega)^{3})}^{2}\leq\parallel f\parallel_{L^{2}([0,T];L^{2}(\Omega)^{3})}^{2},
(2.14) u~n+1Ωh\displaystyle\parallel\tilde{u}^{n+1}\parallel_{\Omega_{h}} \displaystyle\leq unΩh+fnΩhτ,\displaystyle\parallel u^{n}\parallel_{\Omega_{h}}+\parallel f^{n}\parallel_{\Omega_{h}}\tau,
un+1Ωh\displaystyle\parallel u^{n+1}\parallel_{\Omega_{h}} \displaystyle\leq u0Ωh+m=0Tτ1fmΩhτ\displaystyle\parallel u^{0}\parallel_{\Omega_{h}}+\sum_{m=0}^{T_{\tau}-1}\parallel f^{m}\parallel_{\Omega_{h}}\tau
\displaystyle\leq v0L2(Ω)3+TfL2([0,T];L2(Ω)3),\displaystyle\parallel v^{0}\parallel_{L^{2}(\Omega)^{3}}+\sqrt{T}\parallel f\parallel_{L^{2}([0,T];L^{2}(\Omega)^{3})},
un+1Ωh2\displaystyle\parallel u^{n+1}\parallel_{\Omega_{h}}^{2} \displaystyle\leq u0Ωh2m=0n(j=13Dj+u~m+1Ωh2)τ\displaystyle\parallel u^{0}\parallel_{\Omega_{h}}^{2}-\sum_{m=0}^{n}\Big{(}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{u}^{m+1}\parallel_{\Omega_{h}}^{2}\Big{)}\tau
+2m=0numΩhfmΩhτ+m=0nfmΩh2τ2.\displaystyle+2\sum_{m=0}^{n}\parallel u^{m}\parallel_{\Omega_{h}}\parallel f^{m}\parallel_{\Omega_{h}}\tau+\sum_{m=0}^{n}\parallel f^{m}\parallel_{\Omega_{h}}^{2}\tau^{2}.
Proof.

We may follow the proof of Theorem 4.1 of [5]. ∎

Theorem 2.10 implies convergence of the discrete solution to a Leray-Hopf weak solution (up to a subsequence). Set δ:=(h,τ)\delta:=(h,\tau). For the solution un,u~n+1u^{n},\tilde{u}^{n+1} of (2.8)-(2.11), define the step functions uδ,u~δ,wδi:[0,T]×Ω3u_{\delta},\tilde{u}_{\delta},w^{i}_{\delta}:[0,T]\times\Omega\to{\mathbb{R}}^{3}, i=1,2,3i=1,2,3 as

(2.19) uδ(t,x)\displaystyle u_{\delta}(t,x) :=\displaystyle:= {un(y) for t[nτ,nτ+τ)xCh+(y)yΩh,0 otherwise,\displaystyle\left\{\begin{array}[]{lll}&u^{n}(y)\mbox{\quad\quad\ \,\,\,\, for $t\in[n\tau,n\tau+\tau)$, $x\in{C_{h}^{+}(y)}$, $y\in\Omega_{h}$},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ &0\mbox{\quad\quad\quad\,\,\,\quad\,\,\, otherwise},\end{array}\right.
(2.22) u~δ(t,x)\displaystyle\tilde{u}_{\delta}(t,x) :=\displaystyle:= {u~n+1(y) for t[nτ,nτ+τ)xCh+(y)yΩh,0 otherwise,\displaystyle\left\{\begin{array}[]{lll}&\tilde{u}^{n+1}(y)\mbox{\quad\quad\ for $t\in[n\tau,n\tau+\tau)$, $x\in{C_{h}^{+}(y)}$, $y\in\Omega_{h}$},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ &0\mbox{\quad\quad\quad\,\,\,\quad\,\,\, otherwise},\end{array}\right.
(2.25) wδi(t,x)\displaystyle w^{i}_{\delta}(t,x) :=\displaystyle:= {Di+u~n+1(y) for t[nτ,nτ+τ)xCh+(y)yΩh,0 otherwise,\displaystyle\left\{\begin{array}[]{lll}&D_{i}^{+}\tilde{u}^{n+1}(y)\mbox{\quad for $t\in[n\tau,n\tau+\tau)$, $x\in{C_{h}^{+}(y)}$, $y\in\Omega_{h}$},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ &0\mbox{\quad\quad\quad\quad\quad\, otherwise},\end{array}\right.

where n=0,1,,Tτ1n=0,1,\ldots,T_{\tau}-1 and the notation Ch+(y)C^{+}_{h}(y) is seen in Lemma 2.4. In the rest of our argument, the statement “there exists a sequence δ0\delta\to 0 …” means “there exists a sequence δl=(hl,τl)\delta_{l}=(h_{l},\tau_{l}) with hl,τl0h_{l},\tau_{l}\searrow 0 as ll\to\infty …”.

Theorem 2.11.

There exists a sequence δ0\delta\to 0 and a function vL2([0,T];H0,σ1(Ω))v\in L^{2}([0,T];H^{1}_{0,\sigma}(\Omega)) for which the following weak convergence holds:

(2.26) uδv in L2([0,T];L2(Ω)3) as δ0,\displaystyle u_{\delta}\rightharpoonup v\mbox{ \quad in $L^{2}([0,T];L^{2}(\Omega)^{3})$ as $\delta\to 0$},
(2.27) u~δv in L2([0,T];L2(Ω)3) as δ0,\displaystyle\tilde{u}_{\delta}\rightharpoonup v\mbox{ \quad in $L^{2}([0,T];L^{2}(\Omega)^{3})$ as $\delta\to 0$},
(2.28) wδixiv in L2([0,T];L2(Ω)3) as δ0 (i=1,2,3).\displaystyle w^{i}_{\delta}\rightharpoonup\partial_{x_{i}}v\mbox{ \quad in $L^{2}([0,T];L^{2}(\Omega)^{3})$ as $\delta\to 0$ ($i=1,2,3$)}.
Proof.

We may follow the proof of Theorem 5.1 of [5] with Theorem 2.10 and Lemma 2.4. ∎

Theorem 2.12.

Take δ=(h,τ)0\delta=(h,\tau)\to 0 under the condition h4ατh^{4-\alpha}\leq\tau, where α(0,2]\alpha\in(0,2] is any constant. Then, the sequence {u~δ}\{\tilde{u}_{\delta}\}, which satisfies (2.27), converges strongly to vv in L2([0,T];L2(Ω)3)L^{2}([0,T];L^{2}(\Omega)^{3}) as δ0\delta\to 0.

Proof.

We may follow the proofs of Lemma 6.1 and Theorem 6.2 of [5], where we slightly change QhQ_{h} in ||||||op|\!|\!|\cdot|\!|\!|_{\rm op} to be (Qhϕ)j:=ϕjh23!2ϕjxj2(Q_{h}\phi)_{j}:=\phi_{j}-\frac{h^{2}}{3!}\frac{\partial^{2}\phi_{j}}{\partial x_{j}^{2}} (note that we use the central difference for the discrete divergence). ∎

Theorem 2.13.

The limit function vv of {uδ}\{u_{\delta}\} and {u~δ}\{\tilde{u}_{\delta}\} derived under the condition h4ατh^{4-\alpha}\leq\tau with α(0,2]\alpha\in(0,2] is a Leray-Hopf weak solution of (1.5).

Proof.

We may follow the proof of Theorem 7.1 of [5]. ∎

2.4 Time-global solvability

We sharpen Theorem 2.10 by taking the dissipative effect of Dj2D_{j}^{2} into account and prove time-global solvability of the discrete Navier-Stokes equations under the assumption that there exists a constant α0\alpha\geq 0 for which the external force fLloc2([0,);L2(Ω)3)f\in L^{2}_{\rm loc}([0,\infty);L^{2}(\Omega)^{3}) satisfies

fL2([n1,n];L2(Ω)3)α for all n.\parallel f\parallel_{L^{2}([n-1,n];L^{2}(\Omega)^{3})}\leq\alpha\mbox{\quad for all $n\in{\mathbb{N}}$}.

A typical example of such ff is time-periodic one, which will be discussed in Section 4.

Take τ=1/T1\tau=1/T_{1} with T1T_{1}\in{\mathbb{N}}. Define the set U~R\tilde{U}_{R} of initial data u~0\tilde{u}^{0} as

U~R:={u~:Ωh3|u~ΩhR,u~|Ωh=0},R0,\tilde{U}_{R}:=\{\tilde{u}:\Omega_{h}\to{\mathbb{R}}^{3}\,|\,\,\,\,\parallel\tilde{u}\parallel_{\Omega_{h}}\leq R,\quad\tilde{u}|_{\partial\Omega_{h}}=0\},\quad R\geq 0,

and the constant R0(Ω,f)0R_{0}(\Omega,f)\geq 0 as

R0(Ω,f):=11eA2(1e2A22A2)12α,\displaystyle R_{0}(\Omega,f):=\frac{1}{1-e^{-A^{-2}}}\Big{(}\frac{1-e^{-2A^{-2}}}{2A^{-2}}\Big{)}^{\frac{1}{2}}\alpha,

where A>0A>0 is the constant from the discrete Poincaré type inequality I. Note that AA depends only on the diameter of Ω\Omega.

Theorem 2.14.

Let RR0(Ω,f)R\geq R_{0}(\Omega,f). Then, for each u~0U~R\tilde{u}^{0}\in\tilde{U}_{R}, the discrete Navier-Stokes equations (2.8)-(2.11) are solvable for all nn\in{\mathbb{N}} and the solution satisfies u~mT1U~R\tilde{u}^{mT_{1}}\in\tilde{U}_{R} for all mm\in{\mathbb{N}}.

Proof.

It follows from the equalities for (i), (ii) in the proof of Theorem 2.9 and the discrete Poincaré type inequality I that the inner product of (2.3) and u~n+1\tilde{u}^{n+1} yields

u~n+1Ωh\displaystyle\parallel\tilde{u}^{n+1}\parallel_{\Omega_{h}} \displaystyle\leq unΩh+fnΩhτ3(A1)2u~n+1Ωhτ.\displaystyle\parallel u^{n}\parallel_{\Omega_{h}}+\parallel f^{n}\parallel_{\Omega_{h}}\tau-3(A^{-1})^{2}\parallel\tilde{u}^{n+1}\parallel_{\Omega_{h}}\tau.

Hence, we have

u~n+1Ωh\displaystyle\parallel\tilde{u}^{n+1}\parallel_{\Omega_{h}} \displaystyle\leq 11+3(A1)2τunΩh+11+3(A1)2τfnΩhτ\displaystyle\frac{1}{1+3(A^{-1})^{2}\tau}\parallel u^{n}\parallel_{\Omega_{h}}+\frac{1}{1+3(A^{-1})^{2}\tau}\parallel f^{n}\parallel_{\Omega_{h}}\tau
\displaystyle\leq (11+3(A1)2τ)n+1u~0Ωh+m=0n(11+3(A1)2τ)n+1mfmΩhτ\displaystyle\Big{(}\frac{1}{1+3(A^{-1})^{2}\tau}\Big{)}^{n+1}\parallel\tilde{u}^{0}\parallel_{\Omega_{h}}+\sum_{m=0}^{n}\Big{(}\frac{1}{1+3(A^{-1})^{2}\tau}\Big{)}^{n+1-m}\parallel f^{m}\parallel_{\Omega_{h}}\tau
\displaystyle\leq e(A1)2(n+1)τu~0Ωh+m=0ne(A1)2(n+1m)τfmΩhτ.\displaystyle e^{-(A^{-1})^{2}(n+1)\tau}\parallel\tilde{u}^{0}\parallel_{\Omega_{h}}+\sum_{m=0}^{n}e^{-(A^{-1})^{2}(n+1-m)\tau}\parallel f^{m}\parallel_{\Omega_{h}}\tau.

Therefore, we obtain

u~T1Ωh\displaystyle\parallel\tilde{u}^{T_{1}}\parallel_{\Omega_{h}} \displaystyle\leq e(A1)2u~0Ωh+(m=0T11e2(A1)2(1mτ)τ)12(m=0T11fmΩh2τ)12\displaystyle e^{-(A^{-1})^{2}}\parallel\tilde{u}^{0}\parallel_{\Omega_{h}}+\left(\sum_{m=0}^{T_{1}-1}e^{-2(A^{-1})^{2}(1-m\tau)}\tau\right)^{\frac{1}{2}}\left(\sum_{m=0}^{T_{1}-1}\parallel f^{m}\parallel_{\Omega_{h}}^{2}\tau\right)^{\frac{1}{2}}
\displaystyle\leq e(A1)2u~0Ωh+(01e2(A1)2(1t)𝑑t)12fL2([0,1];L2(Ω)3)\displaystyle e^{-(A^{-1})^{2}}\parallel\tilde{u}^{0}\parallel_{\Omega_{h}}+\Big{(}\int_{0}^{1}e^{-2(A^{-1})^{2}(1-t)}dt\Big{)}^{\frac{1}{2}}\parallel f\parallel_{L^{2}([0,1];L^{2}(\Omega)^{3})}
\displaystyle\leq e(A1)2R+(1e2(A1)22(A1)2)12α.\displaystyle e^{-(A^{-1})^{2}}R+\Big{(}\frac{1-e^{-2(A^{-1})^{2}}}{2(A^{-1})^{2}}\Big{)}^{\frac{1}{2}}\alpha.

We see that

RR0(Ω,f)=11eA2(1e2A22A2)12α\displaystyle R\geq R_{0}(\Omega,f)=\frac{1}{1-e^{-A^{-2}}}\Big{(}\frac{1-e^{-2A^{-2}}}{2A^{-2}}\Big{)}^{\frac{1}{2}}\alpha\quad
ReA2R+(1e2A22A2)12α.\displaystyle\qquad\qquad\qquad\qquad\qquad\Leftrightarrow\quad R\geq e^{-A^{-2}}R+\Big{(}\frac{1-e^{-2A^{-2}}}{2A^{-2}}\Big{)}^{\frac{1}{2}}\alpha.

Thus, if u~0\tilde{u}^{0} satisfies u~0ΩhR\parallel\tilde{u}^{0}\parallel_{\Omega_{h}}\leq R with RR0(Ω,f)R\geq R_{0}(\Omega,f), we have u~T1U~R\tilde{u}^{T_{1}}\in\tilde{U}_{R}. We, then, repeat the same estimate to obtain u~2T1U~R\tilde{u}^{2T_{1}}\in\tilde{U}_{R}, u~3T1U~R\tilde{u}^{3T_{1}}\in\tilde{U}_{R} and so on. ∎

Theorem 2.15.

Let uδ,u~δ:[0,)×Ω3u_{\delta},\tilde{u}_{\delta}:[0,\infty)\times\Omega\to{\mathbb{R}}^{3} be the step functions derived from (2.19), (2.22) and Theorem 2.14. There exists a sequence δ0\delta\to 0 for which {u~δ}\{\tilde{u}_{\delta}\}, {uδ}\{u_{\delta}\} tend to a time-global Leray-Hopf weak solution vv in Lloc2([0,),L2(Ω)3)L_{\rm loc}^{2}([0,\infty),L^{2}(\Omega)^{3}), i.e., {u~δ|t[0,T]}\{\tilde{u}_{\delta}|_{t\in[0,T]}\} (resp. {uδ|t[0,T]}\{u_{\delta}|_{t\in[0,T]}\}) converges strongly (resp. weakly) to v|t[0,T]v|_{t\in[0,T]} in L2([0,T],L2(Ω)3)L^{2}([0,T],L^{2}(\Omega)^{3}) for any fixed T>0T>0 as δ0\delta\to 0.

Proof.

Standard Cantor’s diagonal argument yields the assertion. In fact, for each mm\in{\mathbb{N}}, Theorem 2.13 implies that there exists a sequence {δm,l}l\{\delta_{m,l}\}_{l\in{\mathbb{N}}} with δm,l0\delta_{m,l}\to 0 as ll\to\infty such that {uδm,l|t[0,m]}l\{u_{\delta_{m,l}}|_{t\in[0,m]}\}_{l\in{\mathbb{N}}}, {u~δm,l|t[0,m]}l\{\tilde{u}_{\delta_{m,l}}|_{t\in[0,m]}\}_{l\in{\mathbb{N}}} converge to a Leray-Hopf weak solution defined in [0,m]×Ω[0,m]\times\Omega. Then, we may subtract a subsequence {δm+1,l}l\{\delta_{m+1,l}\}_{l\in{\mathbb{N}}} from {δm,l}l\{\delta_{m,l}\}_{l\in{\mathbb{N}}} such that {uδm+1,l|t[0,m+1]}l\{u_{\delta_{m+1,l}}|_{t\in[0,m+1]}\}_{l\in{\mathbb{N}}}, {u~δm+1,l|t[0,m+1]}l\{\tilde{u}_{\delta_{m+1,l}}|_{t\in[0,m+1]}\}_{l\in{\mathbb{N}}} converge to a Leray-Hopf weak solution defined in [0,m+1]×Ω[0,m+1]\times\Omega. Repeating this process for m=1,2,m=1,2,\ldots and taking the sequence {δm,m}m\{\delta_{m,m}\}_{m\in{\mathbb{N}}}, we obtain our assertion. ∎

3 Error estimate in C3C^{3}-class

We give an error estimate for our projection method, supposing that the external force ff is smooth and that the limit vv of Theorem 2.13 belongs to the C3([0,T]×Ω¯)C^{3}([0,T]\times\bar{\Omega})-class with the pressure pC2([0,T]×Ω¯)p\in C^{2}([0,T]\times\bar{\Omega}). Note that a Leray-Hopf weak solution is smooth within a certain time interval, provided initial data and Ω\partial\Omega are smooth enough. The argument below itself does not require smoothness of Ω\partial\Omega, and we proceed with the Lipschitz regularity of Ω\partial\Omega (we do not discuss if there is a special situation where a Lipschitz domain Ω\Omega yields a C3([0,T]×Ω¯)C^{3}([0,T]\times\bar{\Omega})-solution).

Difficulty here is that Ωh\partial\Omega_{h} is not contained in Ω\partial\Omega; Hence, the exact solution vv does not satisfy the zero boundary condition on Ωh\partial\Omega_{h}; The calculus on Ωh\Omega_{h} applied to v|Ωhv|_{\Omega_{h}} leaves reminder terms coming from v|Ωh=O(h)v|_{\partial\Omega_{h}}=O(h). Careful estimates of such reminder terms are necessary. For this purpose, we assume that our Lipschitz domain Ω\Omega satisfies the following property:

Condition A. There exist a constant s0>0s_{0}>0 and a family {Vk}k=1,,K\{V_{k}\}_{k=1,\cdots,K} of open subset of planes in 3{\mathbb{R}}^{3} such that

  • Each VkV_{k} is contained in Ω\Omega and has a normal vector ωk{±ej}j=1,2,3\omega_{k}\in\{\pm e^{j}\}_{j=1,2,3} such that for each yVky\in V_{k},

    {y+sωk|s0}Ω=singleton={y+φk(y)ωk},\displaystyle\{y+s\omega_{k}\,|\,s\geq 0\}\cap\partial\Omega=\mbox{\rm singleton}=\{y+\varphi_{k}(y)\omega_{k}\},

    where φk(y):Vk>0\varphi_{k}(y):V_{k}\to{\mathbb{R}}_{>0} is seen as a hight function between VkV_{k} and Ω\partial\Omega,

  • φk(y)s0\varphi_{k}(y)\geq s_{0} for all 0kK0\leq k\leq K and yVky\in V_{k},

  • 0kK{y+φk(y)ωk|yVk}=Ω\displaystyle\bigcup_{0\leq k\leq K}\{y+\varphi_{k}(y)\omega_{k}\,|\,y\in V_{k}\}=\partial\Omega.

Note that Condition A is fulfilled if Ω\partial\Omega is smooth; Ω\Omega being rectangular with Ω\partial\Omega orthogonal to e1e^{1}, e2e^{2} or e3e^{3} fails to satisfy Condition A (the edge is left over in the last condition), but we may directly deal with such an Ω\Omega through the reasoning in Subsection 3.1.

Our goal is to prove the next Theorem.

Theorem 3.1.

Suppose that Condition A holds. Suppose also that (1.5) with a smooth external force ff possesses the solution (v,p)(v,p) such that vC3([0,T]×Ω¯)v\in C^{3}([0,T]\times\bar{\Omega}) and pC2([0,T]×Ω¯)p\in C^{2}([0,T]\times\bar{\Omega}). Then, the solution un,u~nu^{n},\tilde{u}^{n} to the discrete problem under the scaling condition τ=θh34\tau=\theta h^{\frac{3}{4}}, θ[θ0,θ1]\theta\in[\theta_{0},\theta_{1}] with fixed constants θ0,θ1>0\theta_{0},\theta_{1}>0 satisfies

max0nTτunv(τn,)Ωhβh14,max0nTτu~nv(τn,)Ωhβh14 as τ,h0,\max_{0\leq n\leq T_{\tau}}\parallel u^{n}-v(\tau n,\cdot)\parallel_{\Omega_{h}}\leq\beta^{\ast}h^{\frac{1}{4}},\quad\max_{0\leq n\leq T_{\tau}}\parallel\tilde{u}^{n}-v(\tau n,\cdot)\parallel_{\Omega_{h}}\leq\beta^{\ast}h^{\frac{1}{4}}\mbox{\quad as $\tau,h\to 0$},

where β>0\beta^{\ast}>0 is a constant independent of τ,h\tau,h and θ\theta.

Our strategy is the following: Let vC3([0,T]×Ω¯)v\in C^{3}([0,T]\times\bar{\Omega}), pC2([0,T]×Ω¯)p\in C^{2}([0,T]\times\bar{\Omega}) satisfy (1.5) in the sense of classical solutions. For n=0,1,,Tτn=0,1,\cdots,T_{\tau}, define

vn():=v(τn,),pn():=p(τn,).\displaystyle v^{n}(\cdot):=v(\tau n,\cdot),\quad p^{n}(\cdot):=p(\tau n,\cdot).

For each xΩhΩhx\in\Omega_{h}\setminus\partial\Omega_{h}, set

Rn(x)\displaystyle R^{n}(x) :=\displaystyle:= vn+1(x){vn(x)τ2j=13(vjn(xhej)Djvn+1(xhej)\displaystyle v^{n+1}(x)-\Big{\{}v^{n}(x)-\frac{\tau}{2}\sum_{j=1}^{3}\big{(}v^{n}_{j}(x-he^{j})D_{j}v^{n+1}(x-he^{j})
+vjn(x+hej)Djvn+1(x+hej))+τj=13Dj2vn+1(x)+τfn(x)}.\displaystyle\quad+v^{n}_{j}(x+he^{j})D_{j}v^{n+1}(x+he^{j})\big{)}+\tau\sum_{j=1}^{3}D^{2}_{j}v^{n+1}(x)+\tau f^{n}(x)\Big{\}}.

It follows from the Taylor expansion that

vn+1(x)vn(x)=τtvn(x)+O(τ2);\displaystyle v^{n+1}(x)-v^{n}(x)=\tau\partial_{t}v^{n}(x)+O(\tau^{2});
τ2j=13(vjn(xhej)Djvn+1(xhej)+vjn(x+hej)Djvn+1(x+hej))\displaystyle\frac{\tau}{2}\sum_{j=1}^{3}\big{(}v^{n}_{j}(x-he^{j})D_{j}v^{n+1}(x-he^{j})+v^{n}_{j}(x+he^{j})D_{j}v^{n+1}(x+he^{j})\big{)}
=τ2j=13(vjn(xhej)Djvn(xhej)+vjn(x+hej)Djvn(x+hej))+O(τ2)\displaystyle\quad=\frac{\tau}{2}\sum_{j=1}^{3}\big{(}v^{n}_{j}(x-he^{j})D_{j}v^{n}(x-he^{j})+v^{n}_{j}(x+he^{j})D_{j}v^{n}(x+he^{j})\big{)}+O(\tau^{2})
=τ2j=13{(vjn(x)xjvj(x)h+O(h2))(xjvn(x)12xj2vn(x)2h+O(h2))\displaystyle\quad=\frac{\tau}{2}\sum_{j=1}^{3}\Big{\{}\Big{(}v^{n}_{j}(x)-\partial_{x_{j}}v_{j}(x)h+O(h^{2})\Big{)}\Big{(}\partial_{x_{j}}v^{n}(x)-\frac{1}{2}\partial^{2}_{x_{j}}v^{n}(x)\cdot 2h+O(h^{2})\Big{)}
+(vjn(x)+xjvj(x)h+O(h2))(xjvn(x)+12xj2vn(x)2h+O(h2))}+O(τ2)\displaystyle\qquad+\Big{(}v^{n}_{j}(x)+\partial_{x_{j}}v_{j}(x)h+O(h^{2})\Big{)}\Big{(}\partial_{x_{j}}v^{n}(x)+\frac{1}{2}\partial^{2}_{x_{j}}v^{n}(x)\cdot 2h+O(h^{2})\Big{)}\Big{\}}+O(\tau^{2})
=τj=13vjn(x)xjvn(x)+O(τh2)+O(τ2);\displaystyle\quad=\tau\sum_{j=1}^{3}v_{j}^{n}(x)\partial_{x_{j}}v^{n}(x)+O(\tau h^{2})+O(\tau^{2});
τj=13Dj2vn+1(x)=τj=13Dj2vn(x)+O(τ2)=τj=13xj2vn(x)+O(τh)+O(τ2);\displaystyle\tau\sum_{j=1}^{3}D^{2}_{j}v^{n+1}(x)=\tau\sum_{j=1}^{3}D^{2}_{j}v^{n}(x)+O(\tau^{2})=\tau\sum_{j=1}^{3}\partial_{x_{j}}^{2}v^{n}(x)+O(\tau h)+O(\tau^{2});
τfn(x)=τf(τn,x)+O(τ2)+O(τh).\displaystyle\tau f^{n}(x)=\tau f(\tau n,x)+O(\tau^{2})+O(\tau h).

Hence, the exact Navier-Stokes equations imply that

Rn(x)=τpn(x)+O(τh)+O(τ2)=τ𝒟pn(x)+O(τh)+O(τ2) on ΩhΩh.\displaystyle R^{n}(x)=-\tau\nabla p^{n}(x)+O(\tau h)+O(\tau^{2})=-\tau\mathcal{D}p^{n}(x)+O(\tau h)+O(\tau^{2})\quad\mbox{ on $\Omega_{h}\setminus\partial\Omega_{h}$}.

Let un,u~n+1u^{n},\tilde{u}^{n+1} be the solution of (2.8)-(2.11) with u~0\tilde{u}^{0} given by v0=v(0,)v^{0}=v(0,\cdot). Set

bn:=unvn,b~n:=u~nvn.b^{n}:=u^{n}-v^{n},\quad\tilde{b}^{n}:=\tilde{u}^{n}-v^{n}.

Then, we have for xΩhΩhx\in\Omega_{h}\setminus\partial\Omega_{h},

(3.1) b~n+1(x)=bn(x)\displaystyle\tilde{b}^{n+1}(x)=b^{n}(x)
τ2j=13(ujn(xhej)Djb~n+1(xhej)+ujn(x+hej)Djb~n+1(x+hej))¯(i)\displaystyle\quad-\underline{\frac{\tau}{2}\sum_{j=1}^{3}\Big{(}u^{n}_{j}(x-he^{j})D_{j}\tilde{b}^{n+1}(x-he^{j})+u^{n}_{j}(x+he^{j})D_{j}\tilde{b}^{n+1}(x+he^{j})\Big{)}}_{\rm(i)}
τ2j=13(bjn(xhej)Djvn+1(xhej)+bjn(x+hej)Djvn+1(x+hej))¯(ii)\displaystyle\quad-\underline{\frac{\tau}{2}\sum_{j=1}^{3}\Big{(}b^{n}_{j}(x-he^{j})D_{j}v^{n+1}(x-he^{j})+b^{n}_{j}(x+he^{j})D_{j}v^{n+1}(x+he^{j})\Big{)}}_{\rm(ii)}
+τj=13Dj2b~n+1(x)¯(iii)Rn(x).\displaystyle\quad+\underline{\tau\sum_{j=1}^{3}D^{2}_{j}\tilde{b}^{n+1}(x)}_{\rm(iii)}-R^{n}(x).

In order to have a recurrence inequality of the norm of b~n\tilde{b}^{n} with respect to nn from (3.1), we need the estimate

bnΩhΩh\displaystyle\parallel b^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}} =\displaystyle= Ph(u~nvn)+PhvnvnΩhΩh\displaystyle\parallel P_{h}(\tilde{u}^{n}-v^{n})+P_{h}v^{n}-v^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}
\displaystyle\leq b~nΩhΩh+vnPhvnΩhΩh.\displaystyle\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+\parallel v^{n}-P_{h}v^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}.

The term vnPhvnΩhΩh\parallel v^{n}-P_{h}v^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}} must be treated as small increment of error within τ\tau even though it does not contain τ\tau; namely, we have to take τ\tau out of this term with an appropriate scaling condition.

We remark that in the rest of this section, the discrete differential operators Dj+,Dj,𝒟D_{j}^{+},D_{j},\mathcal{D} operate on vn|Ωhv^{n}|_{\Omega_{h}} and pn|Ωhp^{n}|_{\Omega_{h}} in (3.1) without the 0-extension outside Ωh\Omega_{h}, while PhP_{h} operates on vn|Ωhv^{n}|_{\Omega_{h}} with the 0-extension outside Ωh\Omega_{h}.

We will demonstrate L2L^{2}-estimates of (3.1) and (3), where we must take care of remainder terms of “summation by parts” coming from bn|Ωh=vn|Ωh0b^{n}|_{\partial\Omega_{h}}=-v^{n}|_{\partial\Omega_{h}}\neq 0 and b~n|Ωh=vn|Ωh0\tilde{b}^{n}|_{\partial\Omega_{h}}=-v^{n}|_{\partial\Omega_{h}}\neq 0. For this purpose, we prepare several lemmas below. Note that, if vv and ff have more regularity, O(τh)O(\tau h) in Rn(x)R^{n}(x) can be O(τh2)O(\tau h^{2}), which is essential in the problem with the periodic boundary conditions for a shaper error estimate (see Section 5 and [1]). In the Dirichlet problem, however, O(τh2)O(\tau h^{2}) is not necessary in Rn(x)R^{n}(x), because (3) gives lower order error.

3.1 Estimates on boundary

We show that vnPhvnΩhΩh\parallel v^{n}-P_{h}v^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}} is of O(h)O(h) at best in general. Then, we must take τ\tau out of O(h)O(h) with a scaling condition in accordance with the other remainder terms. We will see that the appropriate scaling is τ=O(h34)\tau=O(h^{\frac{3}{4}}), which implies O(h)=τO(h14)O(h)=\tau O(h^{\frac{1}{4}}). One can say that convergence rate of the fully discrete projection method with the Dirichlet boundary is governed by the estimate of vnPhvnΩhΩh\parallel v^{n}-P_{h}v^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}} in (3.1) and (3). Our argument requires several estimates on/near the boundary of Ωh\Omega_{h}, which is reminiscent of the construction of the trace operator on H1(Ω)H^{1}(\Omega).

It is useful to observe that we have a constant β>0\beta>0 such that

(Γhj±)h2,(Γ~hj±)h2,(Ωh)h2β as h0.(\sharp\Gamma_{h}^{j\pm})h^{2},(\sharp\tilde{\Gamma}_{h}^{j\pm})h^{2},(\sharp\partial\Omega_{h})h^{2}\leq\beta\mbox{\quad as $h\to 0$}.

Let χA\chi_{A} be the indicator function supported by AA. We sometimes use calculation like

(3.3) xΩh|u(x)|h3βmaxxΩh|u(x)|h,\displaystyle\sum_{x\in\partial\Omega_{h}}|u(x)|h^{3}\leq\beta\max_{x\in\partial\Omega_{h}}|u(x)|h,
(3.4) xΩh|u(x)|h3=xΩhχΩh(x)|u(x)|h3χΩhΩhuΩh=O(h12)uΩh.\displaystyle\sum_{x\in\partial\Omega_{h}}|u(x)|h^{3}=\sum_{x\in\Omega_{h}}\chi_{\partial\Omega_{h}}(x)|u(x)|h^{3}\leq\parallel\chi_{\partial\Omega_{h}}\parallel_{\Omega_{h}}\parallel u\parallel_{\Omega_{h}}=O(h^{\frac{1}{2}})\parallel u\parallel_{\Omega_{h}}.

We prepare several lemmas.

Lemma 3.2.

There exist constants a,b>0a,b>0 depending only on Ω\Omega for which each function u:Ωh3u:\Omega_{h}\to{\mathbb{R}}^{3} satisfies the estimate

uPhuΩhΩha𝒟uΩh+bmaxxB~h|u(x)|,\displaystyle\parallel u-P_{h}u\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}\leq a\parallel\mathcal{D}\cdot u\parallel_{\Omega_{h}^{\circ}}+b\max_{x\in\tilde{B}_{h}}|u(x)|,
B~h:=(ΩhΩh)Ωh (see Subsection 2.1 for the definition of Ωh).\displaystyle\tilde{B}_{h}:=(\Omega_{h}\setminus\Omega_{h}^{\circ})\cup\partial\Omega_{h}^{\circ}\mbox{\rm\quad(see Subsection 2.1 for the definition of $\Omega_{h}^{\circ}$)}.
Proof.

There exists ϕ:Ωh\phi:\Omega_{h}\to{\mathbb{R}} with the zero mean such that u=Phu+𝒟ϕu=P_{h}u+\mathcal{D}\phi on ΩhΩh\Omega_{h}\setminus\partial\Omega_{h}. We will apply the Poincaré type inequality II to ϕ\phi (that is why Ωh\Omega_{h}^{\circ} is involved). With discrete divergence free constraint of PhuP_{h}u, we have

(3.5) uPhuΩhΩh2=uPhuΩhΩh𝒟ϕΩhΩh\displaystyle\parallel u-P_{h}u\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}^{2}=\parallel u-P_{h}u\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}\parallel\mathcal{D}\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}
=xΩhΩh(u(x)Phu(x))𝒟ϕ(x)h3\displaystyle\qquad=\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}(u(x)-P_{h}u(x))\cdot\mathcal{D}\phi(x)h^{3}
=xΩhΩhu(x)𝒟ϕ(x)h3\displaystyle\qquad=\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}u(x)\cdot\mathcal{D}\phi(x)h^{3}
=x(ΩhΩh)Ωhu(x)𝒟ϕ(x)h3+xΩhu(x)𝒟ϕ(x)h3\displaystyle\qquad=\sum_{x\in(\Omega_{h}\setminus\partial\Omega_{h})\setminus\Omega_{h}^{\circ}}u(x)\cdot\mathcal{D}\phi(x)h^{3}+\sum_{x\in\Omega_{h}^{\circ}}u(x)\cdot\mathcal{D}\phi(x)h^{3}
maxB~h|u(x)|𝒟ϕΩhΩh+xΩhu(x)𝒟ϕ(x)h3.\displaystyle\qquad\leq\max_{\tilde{B}_{h}}|u(x)|\parallel\mathcal{D}\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}+\sum_{x\in\Omega_{h}^{\circ}}u(x)\cdot\mathcal{D}\phi(x)h^{3}.

Set

Γ~hj+:={xΩh|x+hejΩh,xhejΩh},\displaystyle\tilde{\Gamma}_{h}^{\circ j+}:=\{x\in\partial\Omega_{h}^{\circ}\,|\,x+he^{j}\not\in\Omega_{h}^{\circ},\,\,\,x-he^{j}\in\Omega_{h}^{\circ}\},
Γ~hj:={xΩh|xhejΩh,x+hejΩh},\displaystyle\tilde{\Gamma}_{h}^{\circ j-}:=\{x\in\partial\Omega_{h}^{\circ}\,|\,x-he^{j}\not\in\Omega_{h}^{\circ},\,\,\,x+he^{j}\in\Omega_{h}^{\circ}\},
Γ~hj:={xΩh|x±hejΩh}.\displaystyle\tilde{\Gamma}_{h}^{\circ j}:=\{x\in\partial\Omega_{h}^{\circ}\,|\,x\pm he^{j}\not\in\Omega_{h}^{\circ}\}.

With the Poincaré type inequality II, we have

(3.6) xΩhu(x)𝒟ϕ(x)h3=xΩh𝒟u(x)ϕ(x)h3\displaystyle\sum_{x\in\Omega_{h}^{\circ}}u(x)\cdot\mathcal{D}\phi(x)h^{3}=-\sum_{x\in\Omega_{h}^{\circ}}\mathcal{D}\cdot u(x)\phi(x)h^{3}
+j=13{xΓ~hj+uj(x)ϕ(x+hej)xΓ~hjuj(xhej)ϕ(x)\displaystyle\qquad+\sum_{j=1}^{3}\Big{\{}\sum_{x\in\tilde{\Gamma}_{h}^{\circ j+}}u_{j}(x)\phi(x+he^{j})-\sum_{x\in\tilde{\Gamma}_{h}^{\circ j-}}u_{j}(x-he^{j})\phi(x)
xΓ~hjuj(x)ϕ(xhej)+xΓ~hj+uj(x+hej)ϕ(x)}h32h\displaystyle\qquad\qquad-\sum_{x\in\tilde{\Gamma}_{h}^{\circ j-}}u_{j}(x)\phi(x-he^{j})+\sum_{x\in\tilde{\Gamma}_{h}^{\circ j+}}u_{j}(x+he^{j})\phi(x)\Big{\}}\frac{h^{3}}{2h}
+j=13xΓ~hjuj(x)Djϕ(x)h3\displaystyle\qquad+\sum_{j=1}^{3}\sum_{x\in\tilde{\Gamma}_{h}^{\circ j}}u_{j}(x)D_{j}\phi(x)h^{3}
𝒟uΩhϕΩh+maxB~h|u(x)|j=13{xΓ~hj+(|ϕ(x+hej)|+|ϕ(x)|)\displaystyle\leq\parallel\mathcal{D}\cdot u\parallel_{\Omega_{h}^{\circ}}\parallel\phi\parallel_{\Omega_{h}^{\circ}}+\max_{\tilde{B}_{h}}|u(x)|\sum_{j=1}^{3}\Big{\{}\sum_{x\in\tilde{\Gamma}_{h}^{\circ j+}}(|\phi(x+he^{j})|+|\phi(x)|)
+xΓ~hj(|ϕ(xhej)|+|ϕ(x)|)}h32h+3maxB~h|u(x)|βh12𝒟ϕΩhΩh\displaystyle\qquad+\sum_{x\in\tilde{\Gamma}_{h}^{\circ j-}}(|\phi(x-he^{j})|+|\phi(x)|)\Big{\}}\frac{h^{3}}{2h}+3\max_{\tilde{B}_{h}}|u(x)|\beta h^{\frac{1}{2}}\parallel\mathcal{D}\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}
A~𝒟uΩh𝒟ϕΩhΩh+3maxB~h|u(x)|βh12𝒟ϕΩhΩh+r,\displaystyle\leq\tilde{A}\parallel\mathcal{D}\cdot u\parallel_{\Omega_{h}^{\circ}}\parallel\mathcal{D}\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}+3\max_{\tilde{B}_{h}}|u(x)|\beta h^{\frac{1}{2}}\parallel\mathcal{D}\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}+r,
r=maxB~h|u(x)|j=13{xΓ~hj+(|ϕ(x+hej)|+|ϕ(x)|)+xΓ~hj(|ϕ(xhej)|+|ϕ(x)|)}h32h.\displaystyle\quad r=\max_{\tilde{B}_{h}}|u(x)|\sum_{j=1}^{3}\Big{\{}\sum_{x\in\tilde{\Gamma}_{h}^{\circ j+}}(|\phi(x+he^{j})|+|\phi(x)|)+\sum_{x\in\tilde{\Gamma}_{h}^{\circ j-}}(|\phi(x-he^{j})|+|\phi(x)|)\Big{\}}\frac{h^{3}}{2h}.

We estimate the terms in {}\{\,\,\,\} of rr, where (3.3), (3.4) are not available because ϕ\phi is not estimated in LL^{\infty} and (3.4) leaves O(h12)O(h^{-\frac{1}{2}}). Take a smooth function γ(s):[0,s0][0,1]\gamma(s):[0,s_{0}]\to[0,1] such that

γ(s)\displaystyle\gamma(s) =\displaystyle= {1,s[0,s03],0,s[2s03,s0],\displaystyle\left\{\begin{array}[]{lll}&1,\qquad s\in[0,\frac{s_{0}}{3}],\vskip 6.0pt plus 2.0pt minus 2.0pt\\ &0,\qquad s\in[\frac{2s_{0}}{3},s_{0}],\end{array}\right.

where s0s_{0} is the one in Condition A. Now we use Condition A. Since VkV_{k} (k=1,,Kk=1,\cdots,K) are open subsets of planes, we still have the statements of Condition A with {Vkε}k=1,,K\{V_{k}-\varepsilon\}_{k=1,\ldots,K} instead of {Vk}k=1,,K\{V_{k}\}_{k=1,\ldots,K} for some ε>0\varepsilon>0, where VkεV_{k}-\varepsilon stands for the set Vk{x3||xy|<ε,yVk}V_{k}\setminus\{x\in{\mathbb{R}}^{3}\,|\,|x-y|<\varepsilon,y\in\partial V_{k}\}. Define

Bkε:={y+sωk|y(Vkε),s[0,φk(y)]}.B_{k}^{\varepsilon}:=\{y+s\omega_{k}\,|\,y\in(V_{k}-\varepsilon),\,\,\,s\in[0,\varphi_{k}(y)]\}.

For hεh\ll\varepsilon, we have the following estimate: Fix ll^{\ast}\in{\mathbb{N}} such that 2lh[2s03,s0]2l^{\ast}h\in[\frac{2s_{0}}{3},s_{0}]; For each xΓ~hj+Bkεx\in\tilde{\Gamma}_{h}^{\circ j+}\cap B_{k}^{\varepsilon}, we have

ϕ(x)\displaystyle\phi(x) =\displaystyle= ϕ(x)γ(0),\displaystyle\phi(x)\gamma(0),
=\displaystyle= ϕ(x)γ(0)ϕ(x+2hωk)γ(2h)+ϕ(x+2hωk)γ(2h)ϕ(x+4hωk)γ(4h)+\displaystyle\phi(x)\gamma(0)-\phi(x+2h\omega_{k})\gamma(2h)+\phi(x+2h\omega_{k})\gamma(2h)-\phi(x+4h\omega_{k})\gamma(4h)+\cdots
+ϕ(x+2(l1)hωk)γ(2(l1)h)ϕ(x+2lhωk)γ(2h)\displaystyle+\phi(x+2(l^{\ast}-1)h\omega_{k})\gamma(2(l^{\ast}-1)h)-\phi(x+2l^{\ast}h\omega_{k})\gamma(2h)
=\displaystyle= l=1l(ϕ(x+2(l1)hωk)ϕ(x+2lhωk)2hγ(2(l1)h)\displaystyle\sum_{l=1}^{l^{\ast}}\Big{(}\frac{\phi(x+2(l-1)h\omega_{k})-\phi(x+2lh\omega_{k})}{2h}\gamma(2(l-1)h)
+ϕ(x+2lhωk)γ(2(l1)h)γ(2lh)2h)2h,\displaystyle+\phi(x+2lh\omega_{k})\frac{\gamma(2(l-1)h)-\gamma(2lh)}{2h}\Big{)}\cdot 2h,
|ϕ(x)|\displaystyle|\phi(x)| \displaystyle\leq l=1l(|𝒟ϕ(x+(2l1)hωk)|+β1|ϕ(x+2lhωk)|)2h,\displaystyle\sum_{l=1}^{l^{\ast}}\Big{(}|\mathcal{D}\phi(x+(2l-1)h\omega_{k})|+\beta_{1}|\phi(x+2lh\omega_{k})|\Big{)}\cdot 2h,

where β1=max|γ|\beta_{1}=\max|\gamma^{\prime}|. Note that x+2lhωkΩhx+2lh\omega_{k}\in\Omega_{h}^{\circ} for all l=1,,ll=1,\ldots,l^{\ast} because of VkεV_{k}-\varepsilon instead of VkV_{k}. Hence, we see that

xΓ~hj+Bkε|ϕ(x)|h32h\displaystyle\sum_{x\in\tilde{\Gamma}_{h}^{\circ j+}\cap B_{k}^{\varepsilon}}|\phi(x)|\frac{h^{3}}{2h} \displaystyle\leq xΩhΩh|𝒟ϕ(x)|h3+xΩhβ1|ϕ(x)|h3\displaystyle\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|\mathcal{D}\phi(x)|h^{3}+\sum_{x\in\Omega_{h}^{\circ}}\beta_{1}|\phi(x)|h^{3}
\displaystyle\leq β2𝒟ϕΩhΩh+β3ϕΩh\displaystyle\beta_{2}\parallel\mathcal{D}\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}+\beta_{3}\parallel\phi\parallel_{\Omega_{h}^{\circ}}
\displaystyle\leq β2𝒟ϕΩhΩh+β3A~𝒟ϕΩhΩh,\displaystyle\beta_{2}\parallel\mathcal{D}\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}+\beta_{3}\tilde{A}\parallel\mathcal{D}\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}},
xΓ~hj+|ϕ(x)|h32h\displaystyle\sum_{x\in\tilde{\Gamma}_{h}^{\circ j+}}|\phi(x)|\frac{h^{3}}{2h} \displaystyle\leq K(β2+β3A~)𝒟ϕΩhΩh.\displaystyle K(\beta_{2}+\beta_{3}\tilde{A})\parallel\mathcal{D}\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}.

For xΓ~hj+Bkεx\in\tilde{\Gamma}_{h}^{\circ j+}\cap B_{k}^{\varepsilon}, we have

xΓ~hj+|ϕ(x+hej)|h32h=xΓ~hj+|Djϕ(x)|h3+xΓ~hj+|ϕ(xhej)|h32h\displaystyle\sum_{x\in\tilde{\Gamma}_{h}^{\circ j+}}|\phi(x+he^{j})|\frac{h^{3}}{2h}=\sum_{x\in\tilde{\Gamma}_{h}^{\circ j+}}|D_{j}\phi(x)|h^{3}+\sum_{x\in\tilde{\Gamma}_{h}^{\circ j+}}|\phi(x-he^{j})|\frac{h^{3}}{2h}
βh12𝒟ϕΩhΩh+xΓ~hj+|ϕ(xhej)|h32h,xhejΩh.\displaystyle\quad\leq\beta h^{\frac{1}{2}}\parallel\mathcal{D}\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}+\sum_{x\in\tilde{\Gamma}_{h}^{\circ j+}}|\phi(x-he^{j})|\frac{h^{3}}{2h},\quad x-he^{j}\in\Omega_{h}^{\circ}.

We have the same estimate for |ϕ(xhej)||\phi(x-he^{j})|. In this way, we obtain

(3.8) rβ4maxB~h|u(x)|𝒟ϕΩhΩh\displaystyle r\leq\beta_{4}\max_{\tilde{B}_{h}}|u(x)|\parallel\mathcal{D}\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}

with some constant β4>0\beta_{4}>0. (3.5), (3.6) and (3.8) conclude the proof. ∎

Lemma 3.3.

For each function u:Ω3u:\Omega\to{\mathbb{R}}^{3} such that uC2(Ω¯)u\in C^{2}(\bar{\Omega}), u|Ω=0u|_{\partial\Omega}=0 and u=0\nabla\cdot u=0, there exists a constant β>0\beta>0 independent of hh for which we have

uPhuΩhΩhβh,\parallel u-P_{h}u\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}\leq\beta h,

where Phu=Ph(u|Ωh)P_{h}u=P_{h}(u|_{\Omega_{h}}) with the 0-extension of u|Ωhu|_{\Omega_{h}} outside Ωh\Omega_{h}.

Proof.

For each xΩhΩhx\in\Omega_{h}\setminus\partial\Omega_{h}, we have

𝒟u(x)=j=13uj(x+hej)uj(xhej)2h=u(x)+O(h)=O(h).\mathcal{D}\cdot u(x)=\sum_{j=1}^{3}\frac{u_{j}(x+he^{j})-u_{j}(x-he^{j})}{2h}=\nabla\cdot u(x)+O(h)=O(h).

It follows from (2.1) that, for each xB~hx\in\tilde{B}_{h}, we have xΩx^{\ast}\in\partial\Omega such that

|u(x)|=|u(x)u(x)|=O(h).|u(x)|=|u(x)-u(x^{\ast})|=O(h).

Lemma 3.2 yields the assertion. ∎

Lemma 3.4.

There exists a constant β>0\beta>0 depending only on Ω\Omega such that for any function ϕ:Ωh\phi:\Omega_{h}\to{\mathbb{R}} and a=±1,±2a=\pm 1,\pm 2 we have

j=13(xΓhj±|ϕ(x+ahej)|2h3)12βh12(j=13Dj+ϕΩh+ϕΩhΩh).\displaystyle\sum_{j=1}^{3}\Big{(}\sum_{x\in\Gamma_{h}^{j\pm}}|\phi(x+ahe^{j})|^{2}h^{3}\Big{)}^{\frac{1}{2}}\leq\beta h^{\frac{1}{2}}\Big{(}\sum_{j=1}^{3}\parallel D_{j}^{+}\phi\parallel_{\Omega_{h}}+\parallel\phi\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}\Big{)}.
Proof.

We deal with the case of a=2a=-2. Due to the same reasoning and notation as those of the proof of Lemma 3.2, we have for each xΓhj+Bkεx\in\Gamma_{h}^{j+}\cap B_{k}^{\varepsilon},

|ϕ(x2hej)|\displaystyle|\phi(x-2he^{j})| \displaystyle\leq l=02l1(|ϕ(x2hej+(l+1)hωk)ϕ(x2hej+lhωk)h|\displaystyle\sum_{l=0}^{2l^{\ast}-1}\Big{(}\Big{|}\frac{\phi(x-2he^{j}+(l+1)h\omega_{k})-\phi(x-2he^{j}+lh\omega_{k})}{h}\Big{|}
+β1|ϕ(x2hej+(l+1)hωk)|)h\displaystyle+\beta_{1}|\phi(x-2he^{j}+(l+1)h\omega_{k})|\Big{)}h
\displaystyle\leq β2(l=02l1|ϕ(x2hej+(l+1)hωk)ϕ(x2hej+lhωk)h|2h\displaystyle\beta_{2}\Big{(}\sum_{l=0}^{2l^{\ast}-1}\Big{|}\frac{\phi(x-2he^{j}+(l+1)h\omega_{k})-\phi(x-2he^{j}+lh\omega_{k})}{h}\Big{|}^{2}h
+l=02l1|ϕ(x2hej+(l+1)hωk)|2h)12,\displaystyle+\sum_{l=0}^{2l^{\ast}-1}|\phi(x-2he^{j}+(l+1)h\omega_{k})|^{2}h\Big{)}^{\frac{1}{2}},
|ϕ(x2hej)|2\displaystyle|\phi(x-2he^{j})|^{2} \displaystyle\leq β22l=02l1|ϕ(x2hej+(l+1)hωk)ϕ(x2hej+lhωk)h|2h\displaystyle\beta_{2}^{2}\sum_{l=0}^{2l^{\ast}-1}\Big{|}\frac{\phi(x-2he^{j}+(l+1)h\omega_{k})-\phi(x-2he^{j}+lh\omega_{k})}{h}\Big{|}^{2}h
+β22l=02l1|ϕ(x2hej+(l+1)hωk)|2h.\displaystyle+\beta_{2}^{2}\sum_{l=0}^{2l^{\ast}-1}|\phi(x-2he^{j}+(l+1)h\omega_{k})|^{2}h.

Hence we see that

xΓhj+Bkε|ϕ(x2hej)|2h3\displaystyle\sum_{x\in\Gamma_{h}^{j+}\cap B_{k}^{\varepsilon}}|\phi(x-2he^{j})|^{2}h^{3} \displaystyle\leq β22hj=13Dj+ϕΩh2+β22hϕΩhΩh2,\displaystyle\beta_{2}^{2}h\sum_{j=1}^{3}\parallel D^{+}_{j}\phi\parallel_{\Omega_{h}}^{2}+\beta_{2}^{2}h\parallel\phi\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}^{2},
xΓhj+|ϕ(x2hej)|2h3\displaystyle\sum_{x\in\Gamma_{h}^{j+}}|\phi(x-2he^{j})|^{2}h^{3} \displaystyle\leq β22hKj=13Dj+ϕΩh2+β22hKϕΩhΩh2,\displaystyle\beta_{2}^{2}hK\sum_{j=1}^{3}\parallel D^{+}_{j}\phi\parallel_{\Omega_{h}}^{2}+\beta_{2}^{2}hK\parallel\phi\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}^{2},
(xΓhj+|ϕ(x2hej)|2h3)12\displaystyle\Big{(}\sum_{x\in\Gamma_{h}^{j+}}|\phi(x-2he^{j})|^{2}h^{3}\Big{)}^{\frac{1}{2}} \displaystyle\leq β3h12(j=13Dj+ϕΩh+ϕΩhΩh).\displaystyle\beta_{3}h^{\frac{1}{2}}\Big{(}\sum_{j=1}^{3}\parallel D^{+}_{j}\phi\parallel_{\Omega_{h}}+\parallel\phi\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{)}.

The other cases are proved in the same way. ∎

3.2 Proof of Theorem 3.1

For each n0n\geq 0, we have with Lemma 3.3,

(3.9) bnΩhΩh\displaystyle\parallel b^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}} \displaystyle\leq Phb~nΩhΩh+vnPhvnΩhΩhb~nΩhΩh+βh.\displaystyle\parallel P_{h}\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+\parallel v^{n}-P_{h}v^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\leq\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+\beta h.

We take the inner product of (3.1) and b~n+1\tilde{b}^{n+1} over ΩhΩh\Omega_{h}\setminus\partial\Omega_{h}: Observe that

xΩhΩh(i)b~n+1(x)h3\displaystyle-\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}({\rm i})\cdot\tilde{b}^{n+1}(x)h^{3} =\displaystyle= τ2xΩhΩh𝒟un(x)|b~n+1(x)|2h3\displaystyle\frac{\tau}{2}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}\mathcal{D}\cdot u^{n}(x)|\tilde{b}^{n+1}(x)|^{2}h^{3}
+τ2j=13xΩhΩh12hujn(xhej)b~n+1(x2hej)b~n+1(x)h3\displaystyle+\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}\frac{1}{2h}u^{n}_{j}(x-he^{j})\tilde{b}^{n+1}(x-2he^{j})\cdot\tilde{b}^{n+1}(x)h^{3}
τ2j=13xΩhΩh12hujn(x+hej)b~n+1(x+2hej)b~n+1(x)h3\displaystyle-\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}\frac{1}{2h}u^{n}_{j}(x+he^{j})\tilde{b}^{n+1}(x+2he^{j})\cdot\tilde{b}^{n+1}(x)h^{3}
=\displaystyle= τ2xΩhΩh𝒟un(x)|b~n+1(x)|2h3\displaystyle\frac{\tau}{2}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}\mathcal{D}\cdot u^{n}(x)|\tilde{b}^{n+1}(x)|^{2}h^{3}
τ2j=13xΓhj+12hujn(xhej)b~n+1(x2hej)b~n+1(x)h3\displaystyle-\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j+}}\frac{1}{2h}u^{n}_{j}(x-he^{j})\tilde{b}^{n+1}(x-2he^{j})\cdot\tilde{b}^{n+1}(x)h^{3}
+τ2j=13xΓhj12hujn(x+hej)b~n+1(x+2hej)b~n+1(x)h3.\displaystyle+\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j-}}\frac{1}{2h}u^{n}_{j}(x+he^{j})\tilde{b}^{n+1}(x+2he^{j})\cdot\tilde{b}^{n+1}(x)h^{3}.

With the discrete divergence free constraint of unu^{n} and b~n+1(x)=vn+1(x)=O(h)\tilde{b}^{n+1}(x)=-v^{n+1}(x)=O(h) for xΓhj±x\in\Gamma_{h}^{j\pm}, we obtain

xΩhΩh(i)b~n+1(x)h3O(τ)j=13xΓhj+|ujn(xhej)b~n+1(x2hej)|h3\displaystyle-\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}({\rm i})\cdot\tilde{b}^{n+1}(x)h^{3}\leq O(\tau)\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j+}}|u^{n}_{j}(x-he^{j})\tilde{b}^{n+1}(x-2he^{j})|h^{3}
+O(τ)j=13xΓhj|ujn(x+hej)b~n+1(x+2hej)|h3\displaystyle\qquad+O(\tau)\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j-}}|u^{n}_{j}(x+he^{j})\tilde{b}^{n+1}(x+2he^{j})|h^{3}
O(τ)j=13xΓhj+|ujn(xhej)vjn(xhej)||b~n+1(x2hej)|h3\displaystyle\quad\leq O(\tau)\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j+}}|u^{n}_{j}(x-he^{j})-v^{n}_{j}(x-he^{j})||\tilde{b}^{n+1}(x-2he^{j})|h^{3}
+O(τ)j=13xΓhj+|vjn(xhej)||b~n+1(x2hej)|h3\displaystyle\qquad+O(\tau)\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j+}}|v_{j}^{n}(x-he^{j})||\tilde{b}^{n+1}(x-2he^{j})|h^{3}
+O(τ)j=13xΓhj|ujn(x+hej)vjn(x+hej)||b~n+1(x+2hej)|h3\displaystyle\qquad+O(\tau)\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j-}}|u^{n}_{j}(x+he^{j})-v^{n}_{j}(x+he^{j})||\tilde{b}^{n+1}(x+2he^{j})|h^{3}
+O(τ)j=13xΓhj|vjn(x+hej)||b~n+1(x+2hej)|h3\displaystyle\qquad+O(\tau)\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j-}}|v^{n}_{j}(x+he^{j})||\tilde{b}^{n+1}(x+2he^{j})|h^{3}
=O(τ)j=13xΓhj+|bjn(xhej)||b~n+1(x2hej)|h3\displaystyle\quad=O(\tau)\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j+}}|b^{n}_{j}(x-he^{j})||\tilde{b}^{n+1}(x-2he^{j})|h^{3}
+O(τ)j=13xΓhj|bjn(x+hej)||b~n+1(x+2hej)|h3\displaystyle\qquad+O(\tau)\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j-}}|b^{n}_{j}(x+he^{j})||\tilde{b}^{n+1}(x+2he^{j})|h^{3}
+O(τh)j=13xΓhj+|b~n+1(x2hej)|h3\displaystyle\qquad+O(\tau h)\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j+}}|\tilde{b}^{n+1}(x-2he^{j})|h^{3}
+O(τh)j=13xΓhj|b~n+1(x+2hej)|h3.\displaystyle\qquad+O(\tau h)\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j-}}|\tilde{b}^{n+1}(x+2he^{j})|h^{3}.

We estimate each term: By Lemma 3.4 and (3.9), we have

j=13xΓhj+|bjn(xhej)||b~n+1(x2hej)|h3\displaystyle\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j+}}|b^{n}_{j}(x-he^{j})||\tilde{b}^{n+1}(x-2he^{j})|h^{3}
j=13(xΓhj+|bjn(xhej)|2h3)12(xΓhj+|b~n+1(x2hej)|2h3)12\displaystyle\quad\leq\sum_{j=1}^{3}\Big{(}\sum_{x\in\Gamma_{h}^{j+}}|b^{n}_{j}(x-he^{j})|^{2}h^{3}\Big{)}^{\frac{1}{2}}\Big{(}\sum_{x\in\Gamma_{h}^{j+}}|\tilde{b}^{n+1}(x-2he^{j})|^{2}h^{3}\Big{)}^{\frac{1}{2}}
O(h12)bnΩhΩh(j=13Dj+b~n+1Ωh+b~n+1ΩhΩh)\displaystyle\quad\leq O(h^{\frac{1}{2}})\parallel b^{n}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}\Big{(}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}+\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{)}
O(h12)(b~nΩhΩh+βh)(j=13Dj+b~n+1Ωh+b~n+1ΩhΩh);\displaystyle\quad\leq O(h^{\frac{1}{2}})(\parallel\tilde{b}^{n}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}+\beta h)\Big{(}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}+\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{)};
j=13xΓhj+|b~n+1(x2hej)|h3j=13(xΓhj+h3)12(xΓhj+|b~n+1(x2hej)|2h3)12\displaystyle\sum_{j=1}^{3}\sum_{x\in\Gamma_{h}^{j+}}|\tilde{b}^{n+1}(x-2he^{j})|h^{3}\leq\sum_{j=1}^{3}\Big{(}\sum_{x\in\Gamma_{h}^{j+}}h^{3}\Big{)}^{\frac{1}{2}}\Big{(}\sum_{x\in\Gamma_{h}^{j+}}|\tilde{b}^{n+1}(x-2he^{j})|^{2}h^{3}\Big{)}^{\frac{1}{2}}
O(h12)O(h12)(j=13Dj+b~n+1Ωh+b~n+1ΩhΩh);\displaystyle\quad\leq O(h^{\frac{1}{2}})O(h^{\frac{1}{2}})\Big{(}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}+\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{)};

The other terms are also estimated in this way. Hence, we obtain

xΩhΩh(i)b~n+1(x)h3\displaystyle-\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}({\rm i})\cdot\tilde{b}^{n+1}(x)h^{3} \displaystyle\leq O(τh2)b~n+1ΩhΩh\displaystyle O(\tau h^{2})\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}
+O(τh12)b~nΩhΩhb~n+1ΩhΩh\displaystyle+O(\tau h^{\frac{1}{2}})\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}
+O(τh12)b~nΩhΩhj=13Dj+b~n+1Ωh\displaystyle+O(\tau h^{\frac{1}{2}})\parallel\tilde{b}^{n}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}
+O(τh32)j=13Dj+b~n+1Ωh.\displaystyle+O(\tau h^{\frac{3}{2}})\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}.

Since bn=vn=O(h)b^{n}=-v^{n}=O(h) outside ΩhΩh{\Omega_{h}\setminus\partial\Omega_{h}}, we have with (3.9),

(3.11) xΩhΩh(ii)b~n+1(x)h3O(τ)bnΩhb~n+1ΩhΩh\displaystyle-\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}({\rm ii})\cdot\tilde{b}^{n+1}(x)h^{3}\leq O(\tau)\parallel b^{n}\parallel_{\Omega_{h}}\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}
O(τ)(bnΩhΩh2+O(h3))12b~n+1ΩhΩh\displaystyle\qquad\leq O(\tau)\Big{(}\parallel b^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}^{2}+O(h^{3})\Big{)}^{\frac{1}{2}}\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}
O(τ)(b~nΩhΩh+βh+O(h32))b~n+1ΩhΩh\displaystyle\qquad\leq O(\tau)\Big{(}\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+\beta h+O(h^{\frac{3}{2}})\Big{)}\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}
O(τ)b~nΩhΩhb~n+1ΩhΩh+O(τh)b~n+1ΩhΩh,\displaystyle\qquad\leq O(\tau)\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+O(\tau h)\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}},

where we took max|Djvn+1|\max|D_{j}v^{n+1}| out of the inner product.

Observe that

xΩhΩh(iii)b~n+1(x)h3\displaystyle\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}({\rm iii})\cdot\tilde{b}^{n+1}(x)h^{3}
=τj=13xΩhDj2b~n+1(x)b~n+1(x)h3τj=13xΩhDj2b~n+1(x)b~n+1(x)h3\displaystyle\qquad=\tau\sum_{j=1}^{3}\sum_{x\in\Omega_{h}}D_{j}^{2}\tilde{b}^{n+1}(x)\cdot\tilde{b}^{n+1}(x)h^{3}-\tau\sum_{j=1}^{3}\sum_{x\in\partial\Omega_{h}}D_{j}^{2}\tilde{b}^{n+1}(x)\cdot\tilde{b}^{n+1}(x)h^{3}
=τj=13Dj+b~n+1Ωh2+r,\displaystyle\qquad=-\tau\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}^{2}+r,
r=τj=13xΩhDj2b~n+1(x)b~n+1(x)h3+τj=13xΓ~hj+1hDj+b~n+1(x)b~n+1(x+hej)h3\displaystyle r=-\tau\sum_{j=1}^{3}\sum_{x\in\partial\Omega_{h}}D_{j}^{2}\tilde{b}^{n+1}(x)\cdot\tilde{b}^{n+1}(x)h^{3}+\tau\sum_{j=1}^{3}\sum_{x\in\tilde{\Gamma}_{h}^{j+}}\frac{1}{h}D_{j}^{+}\tilde{b}^{n+1}(x)\cdot\tilde{b}^{n+1}(x+he^{j})h^{3}
τj=13xΓ~hj1hDj+b~n+1(xhej)b~n+1(x)h3.\displaystyle\,\,\,\,\,\quad-\tau\sum_{j=1}^{3}\sum_{x\in\tilde{\Gamma}_{h}^{j-}}\frac{1}{h}D_{j}^{+}\tilde{b}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x)h^{3}.

Since b~n+1=vn+1=O(h)\tilde{b}^{n+1}=-v^{n+1}=O(h) outside ΩhΩh{\Omega_{h}\setminus\partial\Omega_{h}}, we have

r\displaystyle r =\displaystyle= τj=13xΩhDj+b~n+1(x)Dj+b~n+1(xhej)hvn+1(x)h3\displaystyle\tau\sum_{j=1}^{3}\sum_{x\in\partial\Omega_{h}}\frac{D_{j}^{+}\tilde{b}^{n+1}(x)-D_{j}^{+}\tilde{b}^{n+1}(x-he^{j})}{h}\cdot v^{n+1}(x)h^{3}
+τj=13xΓ~hj+1hvn+1(x+hej)vn+1(x)hvn+1(x+hej)h3\displaystyle+\tau\sum_{j=1}^{3}\sum_{x\in\tilde{\Gamma}_{h}^{j+}}\frac{1}{h}\frac{v^{n+1}(x+he^{j})-v^{n+1}(x)}{h}\cdot v^{n+1}(x+he^{j})h^{3}
τj=13xΓ~hj1hvn+1(x)vn+1(xhej)hvn+1(x)h3\displaystyle-\tau\sum_{j=1}^{3}\sum_{x\in\tilde{\Gamma}_{h}^{j-}}\frac{1}{h}\frac{v^{n+1}(x)-v^{n+1}(x-he^{j})}{h}\cdot v^{n+1}(x)h^{3}
\displaystyle\leq O(τ)j=13xΩh(|Dj+b~n+1(x)|+|Dj+b~n+1(xhej)|)h3+O(τh)\displaystyle O(\tau)\sum_{j=1}^{3}\sum_{x\in\partial\Omega_{h}}(|D_{j}^{+}\tilde{b}^{n+1}(x)|+|D_{j}^{+}\tilde{b}^{n+1}(x-he^{j})|)h^{3}+O(\tau h)
\displaystyle\leq O(τ)j=13xΩh|Dj+b~n+1(x)|χΩh(x)h3\displaystyle O(\tau)\sum_{j=1}^{3}\sum_{x\in\Omega_{h}}|D_{j}^{+}\tilde{b}^{n+1}(x)|\chi_{\partial\Omega_{h}}(x)h^{3}
+O(τ)j=13xΩhhej|Dj+b~n+1(x)|χΩhhej(x)h3+O(τh)\displaystyle+O(\tau)\sum_{j=1}^{3}\sum_{x\in\Omega_{h}-he^{j}}|D_{j}^{+}\tilde{b}^{n+1}(x)|\chi_{\partial\Omega_{h}-he^{j}}(x)h^{3}+O(\tau h)
\displaystyle\leq O(τh12)j=13Dj+b~n+1Ωh+O(τh12)j=13Dj+b~n+1Ωhhej+O(τh)\displaystyle O(\tau h^{\frac{1}{2}})\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}+O(\tau h^{\frac{1}{2}})\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}-he^{j}}+O(\tau h)
\displaystyle\leq O(τh12)j=13Dj+b~n+1Ωh+O(τh),\displaystyle O(\tau h^{\frac{1}{2}})\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}+O(\tau h),

where we note that Ωhhej:={x|xhej,xΩh}\Omega_{h}-he^{j}:=\{x\,|\,x-he^{j},\,\,x\in\Omega_{h}\}, Ωhhej:={x|xhej,xΩh}\partial\Omega_{h}-he^{j}:=\{x\,|\,x-he^{j},\,\,x\in\partial\Omega_{h}\} and

(3.12) Dj+b~n+1Ωhhej=(x(Ωhhej)Ωh|Dj+b~n+1(x)|2h3+x(Ωhhej)Ωh|Dj+b~n+1(x)|2h3)12\displaystyle\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}-he^{j}}=\Big{(}\sum_{x\in(\Omega_{h}-he^{j})\cap\Omega_{h}}\!\!\!\!|D_{j}^{+}\tilde{b}^{n+1}(x)|^{2}h^{3}+\sum_{x\in(\Omega_{h}-he^{j})\setminus\Omega_{h}}\!\!\!\!|D_{j}^{+}\tilde{b}^{n+1}(x)|^{2}h^{3}\Big{)}^{\frac{1}{2}}
(Dj+b~n+1Ωh2+x(Ωhhej)ΩhO(1)h3)12(Dj+b~n+1Ωh2+O(h))12\displaystyle\qquad\leq\Big{(}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}^{2}+\sum_{x\in(\Omega_{h}-he^{j})\setminus\Omega_{h}}O(1)h^{3}\Big{)}^{\frac{1}{2}}\leq\Big{(}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}^{2}+O(h)\Big{)}^{\frac{1}{2}}
Dj+b~n+1Ωh+O(h12).\displaystyle\qquad\leq\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}+O(h^{\frac{1}{2}}).

By the discrete Poincaré type inequality I, where we note that b~n+1|Ωh0\tilde{b}^{n+1}|_{\partial\Omega_{h}}\neq 0 and the discrete Poincaré type inequality I does not work for b~n+1\tilde{b}^{n+1} itself, we have

(3.13) Dj+b~n+1ΩhDj+(b~n+1b~n+1χΩh)ΩhDj+(b~n+1χΩh)Ωh\displaystyle\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\geq\parallel D_{j}^{+}(\tilde{b}^{n+1}-\tilde{b}^{n+1}\chi_{\partial\Omega_{h}})\parallel_{\Omega_{h}}-\parallel D_{j}^{+}(\tilde{b}^{n+1}\chi_{\partial\Omega_{h}})\parallel_{\Omega_{h}}
A1b~n+1b~n+1χΩhΩhΩh2h(xΩh|b~n+1(x)|2χΩh(x)2h3)12\displaystyle\quad\geq A^{-1}\parallel\tilde{b}^{n+1}-\tilde{b}^{n+1}\chi_{\partial\Omega_{h}}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}-\frac{2}{h}\Big{(}\sum_{x\in\Omega_{h}}|\tilde{b}^{n+1}(x)|^{2}\chi_{\partial\Omega_{h}}(x)^{2}h^{3}\Big{)}^{\frac{1}{2}}
=A1b~n+1ΩhΩh2h(xΩh|vn+1(x)|2h3)12\displaystyle\quad=A^{-1}\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}-\frac{2}{h}\Big{(}\sum_{x\in\partial\Omega_{h}}|v^{n+1}(x)|^{2}h^{3}\Big{)}^{\frac{1}{2}}
=A1b~n+1ΩhΩhO(h12).\displaystyle\quad=A^{-1}\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}-O(h^{\frac{1}{2}}).

Hence, we obtain

(3.14) xΩhΩh(iii)b~n+1(x)h3τA1b~n+1ΩhΩhj=13Dj+b~n+1Ωh\displaystyle\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}({\rm iii})\cdot\tilde{b}^{n+1}(x)h^{3}\leq-\tau A^{-1}\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}
+O(τh12)j=13Dj+b~n+1Ωh+O(τh).\displaystyle\quad+O(\tau h^{\frac{1}{2}})\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}+O(\tau h).

Observe that

xΩhΩhRn(x)b~n+1(x)h3\displaystyle\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}-R^{n}(x)\cdot\tilde{b}^{n+1}(x)h^{3} \displaystyle\leq τxΩhΩh𝒟pn(x)b~n+1(x)h3\displaystyle\tau\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\mathcal{D}p^{n}(x)\cdot\tilde{b}^{n+1}(x)h^{3}
+(O(τh)+O(τ2))b~n+1ΩhΩh.\displaystyle+(O(\tau h)+O(\tau^{2}))\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}.

With (3.1), we have

τxΩhΩh𝒟pn(x)b~n+1(x)h3=τxΩhΩh𝒟pn(x){bn(x)\displaystyle\tau\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\mathcal{D}p^{n}(x)\cdot\tilde{b}^{n+1}(x)h^{3}=\tau\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\mathcal{D}p^{n}(x)\cdot\Big{\{}b^{n}(x)
τ2j=13(ujn(xhej)Dj+b~n+1(xhej)+ujn(x+hej)Dj+b~n+1(x+hej))\displaystyle\qquad\qquad-\frac{\tau}{2}\sum_{j=1}^{3}\Big{(}u^{n}_{j}(x-he^{j})D^{+}_{j}\tilde{b}^{n+1}(x-he^{j})+u^{n}_{j}(x+he^{j})D^{+}_{j}\tilde{b}^{n+1}(x+he^{j})\Big{)}
τ2j=13(bjn(xhej)Dj+vn+1(xhej)+bjn(x+hej)Dj+vn+1(x+hej))\displaystyle\qquad\qquad-\frac{\tau}{2}\sum_{j=1}^{3}\Big{(}b^{n}_{j}(x-he^{j})D^{+}_{j}v^{n+1}(x-he^{j})+b^{n}_{j}(x+he^{j})D^{+}_{j}v^{n+1}(x+he^{j})\Big{)}
+τj=13Dj2b~n+1(x)+τpn(x)+O(τh)+O(τ2)}h3.\displaystyle\qquad\qquad+\tau\sum_{j=1}^{3}D^{2}_{j}\tilde{b}^{n+1}(x)+\tau\nabla p^{n}(x)+O(\tau h)+O(\tau^{2})\Big{\}}h^{3}.

We estimate each term: Since 𝒟bn(x)=𝒟vn(x)=O(h2)\mathcal{D}\cdot b^{n}(x)=-\mathcal{D}\cdot v^{n}(x)=O(h^{2}) on Ωh\Omega_{h} and bn=vn=O(h)b^{n}=-v^{n}=O(h) on Ωh\partial\Omega_{h}, we have

τxΩhΩh𝒟pn(x)bn(x)h3=τxΩh𝒟pn(x)bn(x)h3τxΩh𝒟pn(x)bn(x)h3\displaystyle\!\!\!\!\!\!\tau\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\mathcal{D}p^{n}(x)\cdot b^{n}(x)h^{3}=\tau\sum_{x\in\Omega_{h}}\mathcal{D}p^{n}(x)\cdot b^{n}(x)h^{3}-\tau\sum_{x\in\partial\Omega_{h}}\mathcal{D}p^{n}(x)\cdot b^{n}(x)h^{3}
=τj=13xΩhpn(x)(𝒟bn(x))h3\displaystyle\quad=-\tau\sum_{j=1}^{3}\sum_{x\in\Omega_{h}}p^{n}(x)\big{(}\mathcal{D}\cdot b^{n}(x)\big{)}h^{3}
+τj=13{xΓ~hj+pn(x+hej)bjn(x)xΓ~hjpn(x)bjn(xhej)\displaystyle\qquad+\tau\sum_{j=1}^{3}\Big{\{}\sum_{x\in\tilde{\Gamma}_{h}^{j+}}p^{n}(x+he^{j})b_{j}^{n}(x)-\sum_{x\in\tilde{\Gamma}_{h}^{j-}}p^{n}(x)b_{j}^{n}(x-he^{j})
xΓ~hjpn(x)bjn(xhej)+xΓ~hj+pn(x)bjn(x+hej)}h32h+O(τh2)\displaystyle\qquad-\sum_{x\in\tilde{\Gamma}_{h}^{j-}}p^{n}(x)b_{j}^{n}(x-he^{j})+\sum_{x\in\tilde{\Gamma}_{h}^{j+}}p^{n}(x)b_{j}^{n}(x+he^{j})\Big{\}}\frac{h^{3}}{2h}+O(\tau h^{2})
=O(τh);\displaystyle\quad=O(\tau h);
τ22xΩhΩh𝒟pn(x){j=13(ujn(xhej)Dj+b~n+1(xhej)\displaystyle\!\!\!\!\!\!-\frac{\tau^{2}}{2}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\mathcal{D}p^{n}(x)\cdot\Big{\{}\sum_{j=1}^{3}\Big{(}u^{n}_{j}(x-he^{j})D^{+}_{j}\tilde{b}^{n+1}(x-he^{j})
+ujn(x+hej)Dj+b~n+1(x+hej))}h3\displaystyle\qquad+u^{n}_{j}(x+he^{j})D^{+}_{j}\tilde{b}^{n+1}(x+he^{j})\Big{)}\Big{\}}h^{3}
O(τ2)unΩhΩhj=13Dj+b~n+1Ωh=O(τ2)j=13Dj+b~n+1Ωh;\displaystyle\quad\leq O(\tau^{2})\parallel u^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}=O(\tau^{2})\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}};
τ22xΩhΩh𝒟pn(x){j=13(bjn(xhej)Dj+vn+1(xhej)\displaystyle\!\!\!\!\!\!-\frac{\tau^{2}}{2}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\mathcal{D}p^{n}(x)\cdot\Big{\{}\sum_{j=1}^{3}\Big{(}b^{n}_{j}(x-he^{j})D^{+}_{j}v^{n+1}(x-he^{j})
+bjn(x+hej)Dj+vn+1(x+hej))}h3\displaystyle\qquad+b^{n}_{j}(x+he^{j})D^{+}_{j}v^{n+1}(x+he^{j})\Big{)}\Big{\}}h^{3}
O(τ2)bnΩhO(τ2)bnΩhΩh+O(τ2h32)\displaystyle\quad\leq O(\tau^{2})\parallel b^{n}\parallel_{\Omega_{h}}\leq O(\tau^{2})\parallel b^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+O(\tau^{2}h^{\frac{3}{2}})
O(τ2)(b~nΩhΩh+βh)+O(τ2h32)O(τ2)b~nΩhΩh+O(τ2h);\displaystyle\quad\leq O(\tau^{2})(\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+\beta h)+O(\tau^{2}h^{\frac{3}{2}})\leq O(\tau^{2})\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+O(\tau^{2}h);

Since pC2p\in C^{2} and b~n+1=vn+1\tilde{b}^{n+1}=-v^{n+1} on Ωh\partial\Omega_{h}, we have with (3.12);

τ2xΩhΩh𝒟pn(x){j=13Dj2b~n+1(x)}h3\displaystyle\tau^{2}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\mathcal{D}p^{n}(x)\cdot\Big{\{}\sum_{j=1}^{3}D^{2}_{j}\tilde{b}^{n+1}(x)\Big{\}}h^{3}
τ2j=13xΩh𝒟pn(x)Dj2b~n+1(x)h3τ2j=13xΩh𝒟pn(x)Dj2b~n+1(x)h3\displaystyle\quad\leq\tau^{2}\sum_{j=1}^{3}\sum_{x\in\Omega_{h}}\mathcal{D}p^{n}(x)\cdot D^{2}_{j}\tilde{b}^{n+1}(x)h^{3}-\tau^{2}\sum_{j=1}^{3}\sum_{x\in\partial\Omega_{h}}\mathcal{D}p^{n}(x)\cdot D^{2}_{j}\tilde{b}^{n+1}(x)h^{3}
τ2j=13xΩhDj+(𝒟pn)(x)Dj+b~n+1(x)h3\displaystyle\quad\leq-\tau^{2}\sum_{j=1}^{3}\sum_{x\in\Omega_{h}}D_{j}^{+}(\mathcal{D}p^{n})(x)\cdot D^{+}_{j}\tilde{b}^{n+1}(x)h^{3}
+τ2j=13(xΓ~hj+1h𝒟pn(x+hej)Dj+b~n+1(x)xΓ~hj1h𝒟pn(x)Dj+b~n+1(xhej))h3\displaystyle\qquad+\tau^{2}\sum_{j=1}^{3}\Big{(}\sum_{x\in\tilde{\Gamma}_{h}^{j+}}\frac{1}{h}\mathcal{D}p^{n}(x+he^{j})\cdot D^{+}_{j}\tilde{b}^{n+1}(x)-\sum_{x\in\tilde{\Gamma}_{h}^{j-}}\frac{1}{h}\mathcal{D}p^{n}(x)\cdot D^{+}_{j}\tilde{b}^{n+1}(x-he^{j})\Big{)}h^{3}
τ2j=13xΩh𝒟pn(x)Dj+b~n+1(x)Dj+b~n+1(xhej)hh3\displaystyle\qquad-\tau^{2}\sum_{j=1}^{3}\sum_{x\in\partial\Omega_{h}}\mathcal{D}p^{n}(x)\cdot\frac{D^{+}_{j}\tilde{b}^{n+1}(x)-D^{+}_{j}\tilde{b}^{n+1}(x-he^{j})}{h}h^{3}
O(τ2)j=13Dj+b~n+1Ωh+O(τ2)+O(τ2h)j=13xΩhχΩh(x)|Dj+b~n+1(x)|h3\displaystyle\quad\leq O(\tau^{2})\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}+O(\tau^{2})+O(\frac{\tau^{2}}{h})\sum_{j=1}^{3}\sum_{x\in\Omega_{h}}\chi_{\partial\Omega_{h}}(x)|D_{j}^{+}\tilde{b}^{n+1}(x)|h^{3}
+O(τ2h)j=13xΩhhejχΩhhej(x)|D+jb~n+1(x)|h3\displaystyle\qquad+O(\frac{\tau^{2}}{h})\sum_{j=1}^{3}\sum_{x\in\Omega_{h}-he^{j}}\chi_{\partial\Omega_{h}-he^{j}}(x)|D^{j}_{+}\tilde{b}^{n+1}(x)|h^{3}
O(τ2h12)j=13Dj+b~n+1Ωh+O(τ2);\displaystyle\quad\leq O(\frac{\tau^{2}}{h^{\frac{1}{2}}})\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}+O(\tau^{2});
τxΩhΩh𝒟pn(x)(τpn(x)+O(τh)+O(τ2))h3O(τ2).\displaystyle\tau\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\mathcal{D}p^{n}(x)\cdot\Big{(}\tau\nabla p^{n}(x)+O(\tau h)+O(\tau^{2})\Big{)}h^{3}\leq O(\tau^{2}).

Therefore, we obtain

(3.15) xΩhΩhRn(x)b~n+1(x)h3(O(τh)+O(τ2))b~n+1ΩhΩh\displaystyle-\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}R^{n}(x)\cdot\tilde{b}^{n+1}(x)h^{3}\leq(O(\tau h)+O(\tau^{2}))\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}
+O(τ2)b~nΩhΩh+O(τ2h12)j=13Dj+b~n+1Ωh+O(τh)+O(τ2).\displaystyle\qquad+O(\tau^{2})\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+O(\frac{\tau^{2}}{h^{\frac{1}{2}}})\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}+O(\tau h)+O(\tau^{2}).

Finally, we have

(3.16) xΩhΩhbn(x)b~n+1(x)h3b~nΩhΩhb~n+1ΩhΩh+βhb~n+1ΩhΩh.\displaystyle\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}(x)\cdot\tilde{b}^{n+1}(x)h^{3}\leq\parallel\tilde{b}^{n}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}+\beta h\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}.

The estimates (3.2), (3.11), (3.14), (3.15) and (3.16) together with the scaling τ=θh34\tau=\theta h^{\frac{3}{4}} yield

(3.17) b~n+1ΩhΩh(1+O(τ))b~nΩhΩh\displaystyle\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\leq(1+O(\tau))\parallel\tilde{b}^{n}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}
+O(τ2)b~nΩhΩh+O(τh)+O(τ2)b~n+1ΩhΩh+O(h)\displaystyle\quad+\frac{O(\tau^{2})\parallel\tilde{b}^{n}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}+O(\tau h)+O(\tau^{2})}{\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}}+O(h)
τ(j=13Dj+b~n+1Ωh)(A1O(h12)b~nΩhΩh+O(h12)+O(τh12)b~n+1ΩhΩh)\displaystyle\quad-\tau\Big{(}\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\Big{)}\Big{(}A^{-1}-\frac{O(h^{\frac{1}{2}})\parallel\tilde{b}^{n}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}+O(h^{\frac{1}{2}})+O(\frac{\tau}{h^{\frac{1}{2}}})}{\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{)}
(1+β1τ)b~nΩhΩh+β2τh34b~n+1ΩhΩh+β3τh14\displaystyle\leq(1+\beta_{1}\tau)\parallel\tilde{b}^{n}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}+\frac{\beta_{2}\tau h^{\frac{3}{4}}}{\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}}+\beta_{3}\tau h^{\frac{1}{4}}
τ(j=13Dj+b~n+1Ωh)(A1β4h14b~n+1ΩhΩh),\displaystyle\quad-\tau\Big{(}\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\Big{)}\Big{(}A^{-1}-\frac{\beta_{4}h^{\frac{1}{4}}}{\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{)},

where β1\beta_{1} to β4\beta_{4} are some positive constants independent of τ,h\tau,h and θ\theta.

We show by induction,

(3.18) b~nΩhΩhη(1+2β1τ)nh14 for all 0nTτ as δ=(τ,h)0,\displaystyle\parallel\tilde{b}^{n}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}\leq\eta(1+2\beta_{1}\tau)^{n}h^{\frac{1}{4}}\mbox{\quad for all $0\leq n\leq T_{\tau}$ as $\delta=(\tau,h)\to 0$,}
η:=max{2β3β1,Aβ4}.\displaystyle\eta:=\max\Big{\{}\frac{2\beta_{3}}{\beta_{1}},A\beta_{4}\Big{\}}.

Since v0C1(Ω¯)v^{0}\in C^{1}(\bar{\Omega}) and u~0v0ΩhΩhO(h)\parallel\tilde{u}^{0}-v^{0}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\leq O(h), we have (3.18) for n=0n=0. Suppose that (3.18) holds up to some n0n\geq 0 and fails for n+1n+1. Then, (3.17) implies for sufficiently small δ\delta,

b~n+1ΩhΩh(1+β1τ)η(1+2β1τ)nh14+β2τh34η(1+2β1τ)n+1h14+β3τh14\displaystyle\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}\setminus\partial\Omega_{h}}\leq(1+\beta_{1}\tau)\eta(1+2\beta_{1}\tau)^{n}h^{\frac{1}{4}}+\frac{\beta_{2}\tau h^{\frac{3}{4}}}{\eta(1+2\beta_{1}\tau)^{n+1}h^{\frac{1}{4}}}+\beta_{3}\tau h^{\frac{1}{4}}
τ(j=13Dj+b~n+1Ωh)(A1β4h14η(1+2β1τ)n+1h14)\displaystyle\qquad-\tau\Big{(}\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\Big{)}\Big{(}A^{-1}-\frac{\beta_{4}h^{\frac{1}{4}}}{\eta(1+2\beta_{1}\tau)^{n+1}h^{\frac{1}{4}}}\Big{)}
η(1+2β1τ)n+1h14ηβ1(1+2β1τ)nτh14+β2τh12η+β3τh14\displaystyle\quad\leq\eta(1+2\beta_{1}\tau)^{n+1}h^{\frac{1}{4}}-\eta\beta_{1}(1+2\beta_{1}\tau)^{n}\tau h^{\frac{1}{4}}+\frac{\beta_{2}\tau h^{\frac{1}{2}}}{\eta}+\beta_{3}\tau h^{\frac{1}{4}}
τ(j=13Dj+b~n+1Ωh)(A1β4η)\displaystyle\qquad-\tau\Big{(}\sum_{j=1}^{3}\parallel D_{j}^{+}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\Big{)}\Big{(}A^{-1}-\frac{\beta_{4}}{\eta}\Big{)}
η(1+2β1τ)n+1h14ηβ1τh14+2β3τh14η(1+2β1τ)n+1h14,\displaystyle\quad\leq\eta(1+2\beta_{1}\tau)^{n+1}h^{\frac{1}{4}}-\eta\beta_{1}\tau h^{\frac{1}{4}}+2\beta_{3}\tau h^{\frac{1}{4}}\leq\eta(1+2\beta_{1}\tau)^{n+1}h^{\frac{1}{4}},

which is a contradiction. Hence, we necessarily have (3.18).

Note that (1+2β1τ)ne2β1nτe2β1T(1+2\beta_{1}\tau)^{n}\leq e^{2\beta_{1}n\tau}\leq e^{2\beta_{1}T} for 0nTτ0\leq n\leq T_{\tau} and b~nΩhb~nΩhΩh+O(h32)\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}\leq\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+O(h^{\frac{3}{2}}) because of b~n=v¯n=O(h)\tilde{b}^{n}=-\bar{v}^{n}=O(h) on Ωh\partial\Omega_{h}. Thus, Theorem 3.1 follows from (3.18).

4 Problem with time-periodic external force

We investigate the Navier-Stokes equations with a time-periodic external force. Suppose that the external force ff is time-periodic with the period 11, i.e.,

fLloc2([0,);L2(Ω)3),f(t,)=f(1+t,) a.e. t0.f\in L^{2}_{\rm loc}([0,\infty);L^{2}(\Omega)^{3}),\quad f(t,\cdot)=f(1+t,\cdot)\mbox{\quad a.e. $t\geq 0$}.

Take τ=1/T1\tau=1/T_{1} with T1T_{1}\in{\mathbb{N}}. Then, we may introduce the time-11 map

Φδ:u~0u~T1,δ=(h,τ)\Phi_{\delta}:\tilde{u}^{0}\mapsto\tilde{u}^{T_{1}},\quad\delta=(h,\tau)

of the discrete Navier-Stokes equations. We find a fixed point of Φδ\Phi_{\delta}, which yields a time-periodic solution of the discrete Navier-Stokes equations, i.e., a solution u¯n,u¯~n\bar{u}^{n},\tilde{\bar{u}}^{n} of (2.8)-(2.11) such that

u¯n+T1=u¯n,u¯~n+T1=u¯~n for all n0.\bar{u}^{n+T_{1}}=\bar{u}^{n},\quad\tilde{\bar{u}}^{n+T_{1}}=\tilde{\bar{u}}^{n}\mbox{ for all $n\geq 0$}.

Then, we show that u¯n,u¯~n\bar{u}^{n},\tilde{\bar{u}}^{n} tend to a time-periodic Leray-Hopf weak solution with the period 11 as δ0\delta\to 0, where v=(v1,v2,v3):[0,)×Ω3v=(v_{1},v_{2},v_{3}):[0,\infty)\times\Omega\to{\mathbb{R}}^{3} is called a time-periodic Leray-Hopf weak solution of

(4.4) {vt=(v)v+Δv+fp in (0,)×Ω,v=0 in (0,)×Ωv=0 on Ω,\displaystyle\left\{\begin{array}[]{lll}\,\,\,\,\,v_{t}&=&-(v\cdot\nabla)v+\Delta v+f-\nabla p\mbox{\quad in $(0,\infty)\times\Omega$,}\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \nabla\cdot v&=&0\mbox{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\, in $(0,\infty)\times\Omega$, \qquad\qquad\quad}\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \,\,\,\,\,v&=&0\mbox{\qquad\qquad\qquad\qquad\qquad\,\,\,\,\,\,\,\,\, on $\partial\Omega$},\end{array}\right.

with the period 11, if

vL([0,);Lσ2(Ω))Lloc2([0,);H0,σ1(Ω)),\displaystyle v\in L^{\infty}([0,\infty);L^{2}_{\sigma}(\Omega))\cap L^{2}_{\rm loc}([0,\infty);H^{1}_{0,\sigma}(\Omega)),
v(t+1,)=v(t,) a.e. t0,\displaystyle v(t+1,\cdot)=v(t,\cdot)\mbox{ a.e. $t\geq 0$},
0Ωv(t,x)tϕ(x,t)dxdt=j=130Ωvj(t,x)xjv(t,x)ϕ(t,x)dxdt\displaystyle-\int_{0}^{\infty}\int_{\Omega}v(t,x)\cdot\partial_{t}\phi(x,t)dxdt=-\sum_{j=1}^{3}\int_{0}^{\infty}\int_{\Omega}v_{j}(t,x)\partial_{x_{j}}v(t,x)\cdot\phi(t,x)dxdt
j=130Ωxjv(t,x)xjϕ(t,x)dxdt\displaystyle\quad-\sum_{j=1}^{3}\int_{0}^{\infty}\int_{\Omega}\partial_{x_{j}}v(t,x)\cdot\partial_{x_{j}}\phi(t,x)dxdt
+0Ωf(t,x)ϕ(t,x)𝑑x𝑑t for all ϕC0((0,);C0,σ(Ω)).\displaystyle\quad+\int_{0}^{\infty}\int_{\Omega}f(t,x)\cdot\phi(t,x)dxdt\quad\mbox{ for all $\phi\in C^{\infty}_{0}((0,\infty);C^{\infty}_{0,\sigma}(\Omega))$.}

We also discuss long-time behaviors of the (discrete) Navier-Stokes equations, as well as an error estimate, assuming that there exists a smooth time-periodic solution of (4.4).

4.1 Time-global solvability and time-periodic solution

Define the set U~R\tilde{U}_{R} of initial data u~0\tilde{u}^{0} of the discrete Navier-Stokes equations as

U~R:={u~:Ωh3|u~ΩhR,u~|Ωh=0},\tilde{U}_{R}:=\{\tilde{u}:\Omega_{h}\to{\mathbb{R}}^{3}\,|\,\,\,\,\parallel\tilde{u}\parallel_{\Omega_{h}}\leq R,\quad\tilde{u}|_{\partial\Omega_{h}}=0\},

and the constant R0(Ω,f)0R_{0}(\Omega,f)\geq 0 as

R0(Ω,f):=11eA2(1e2A22A2)12fL2([0,1];L2(Ω)3),\displaystyle R_{0}(\Omega,f):=\frac{1}{1-e^{-A^{-2}}}\Big{(}\frac{1-e^{-2A^{-2}}}{2A^{-2}}\Big{)}^{\frac{1}{2}}\parallel f\parallel_{L^{2}([0,1];L^{2}(\Omega)^{3})},

where A>0A>0 is the constant in the discrete Poincaré type inequality I. The next theorem is an immediate consequence of Theorem 2.14.

Theorem 4.1.

For any RR0(Ω,f)R\geq R_{0}(\Omega,f) and fixed δ=(h,τ)\delta=(h,\tau), the time-11 map Φδ\Phi_{\delta} maps U~R\tilde{U}_{R} to itself. For each u~0U~R\tilde{u}^{0}\in\tilde{U}_{R}, the discrete Navier-Stokes equations is solvable for all nn\in{\mathbb{N}} and the solution satisfies Φδm(u~0)=u~mT1U~R\Phi_{\delta}^{m}(\tilde{u}^{0})=\tilde{u}^{mT_{1}}\in\tilde{U}_{R} for all mm\in{\mathbb{N}}.

Theorem 4.2.

For any RR0(Ω,f)R\geq R_{0}(\Omega,f) and fixed δ=(h,τ)\delta=(h,\tau), the time-11 map Φδ:U~RU~R\Phi_{\delta}:\tilde{U}_{R}\to\tilde{U}_{R} possesses at least one fixed point, which yields a time-periodic solution of the discrete Navier-Stokes equations.

Proof.

Since Nh:=ΩhN_{h}:=\sharp\Omega_{h} is finite, we find a one to one onto mapping Θh:U~RBR3Nh\Theta_{h}:\tilde{U}_{R}\to B_{R}\subset{\mathbb{R}}^{3N_{h}}, i.e., we tag the points of Ωh\Omega_{h} as x1,x2,,xNhx^{1},x^{2},\ldots,x^{N_{h}} and define y=y(u):=(u(x1),u(x2),,u(xNh))3Nhy=y(u):=(u(x^{1}),u(x^{2}),\ldots,u(x^{N_{h}}))\in{\mathbb{R}}^{3N_{h}} for each uU~Ru\in\tilde{U}_{R}. Since uΩhR\parallel u\parallel_{\Omega_{h}}\leq R, the Euclidian norm of y(u)y(u) is also bounded by Rh32Rh^{-\frac{3}{2}} for each fixed hh. It is clear that U~R\tilde{U}_{R} is a convex set, and hence, BRB_{R} is a bounded convex subset of 3Nh{\mathbb{R}}^{3N_{h}}.

Since Φδ(u)\Phi_{\delta}(u) is obtained though finitely many basic arithmetic operations, Φδ\Phi_{\delta} is continuous with respect to Ωh\parallel\cdot\parallel_{\Omega_{h}}. In fact, let u~n,un\tilde{u}^{n},u^{n} and w~n,wn\tilde{w}^{n},w^{n} be solutions of the discrete Navier-Stokes equations with u~0,w~0U~R\tilde{u}^{0},\tilde{w}^{0}\in\tilde{U}_{R} and set b~n:=w~nu~n\tilde{b}^{n}:=\tilde{w}^{n}-\tilde{u}^{n}, bn:=wnunb^{n}:=w^{n}-u^{n}; It is enough to check that b~nΩh0\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}\to 0 (n=0,1,2,,T1n=0,1,2,\ldots,T_{1}), as b~0Ωh0\parallel\tilde{b}^{0}\parallel_{\Omega_{h}}\to 0 in the sense of w~0u~0\tilde{w}^{0}\to\tilde{u}^{0}; Since bnΩhb~nΩh\parallel b^{n}\parallel_{\Omega_{h}}\leq\parallel\tilde{b}^{n}\parallel_{\Omega_{h}} due to the property of PhP_{h}, we have b0Ωh0\parallel b^{0}\parallel_{\Omega_{h}}\to 0 as b~0Ωh0\parallel\tilde{b}^{0}\parallel_{\Omega_{h}}\to 0; Suppose that bnΩh0\parallel b^{n}\parallel_{\Omega_{h}}\to 0 as b~0Ωh0\parallel\tilde{b}^{0}\parallel_{\Omega_{h}}\to 0 for some n0n\geq 0; The discrete Navier-Stokes equations implies (4.6) in the proof of Theorem 4.4 below; Taking the inner product of (4.6) and b~n+1\tilde{b}^{n+1} together with the calculation for (i) and (iii) in the proof, we obtain

b~n+1Ωh\displaystyle\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}} \displaystyle\leq bnΩh+(ii)Ωh\displaystyle\parallel b^{n}\parallel_{\Omega_{h}}+\parallel{\rm(ii)}\parallel_{\Omega_{h}}
\displaystyle\leq bnΩh+τj=13maxxΩh|Dju~n+1(x)|bnΩh0 as b~0Ωh0,\displaystyle\parallel b^{n}\parallel_{\Omega_{h}}+\tau\sum_{j=1}^{3}\max_{x\in\Omega_{h}}|D_{j}\tilde{u}^{n+1}(x)|\parallel b^{n}\parallel_{\Omega_{h}}\to 0\mbox{ as $\parallel\tilde{b}^{0}\parallel_{\Omega_{h}}\to 0$,}

where we note that hh is fixed and maxxΩh|Dju~n+1(x)|\max_{x\in\Omega_{h}}|D_{j}\tilde{u}^{n+1}(x)| is bounded in the process of b~0Ωh0\parallel\tilde{b}^{0}\parallel_{\Omega_{h}}\to 0 and bn+1Ωhb~n+1Ωh\parallel b^{n+1}\parallel_{\Omega_{h}}\leq\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}}; By induction, we have our assertion.

Therefore, the map ΘhΦδΘh1:BRBR\Theta_{h}\circ\Phi_{\delta}\circ\Theta_{h}^{-1}:B_{R}\to B_{R} is continuous with respect to the Euclidian norm of 3Nh{\mathbb{R}}^{3N_{h}}. Brouwer’s fixed point theorem guarantees existence of a fixed point. ∎

4.2 Time-periodic Leray-Hopf weak solution

Let u¯~n\tilde{\bar{u}}^{n}, u¯n\bar{u}^{n} be the solution of the discrete Navier-Stokes equations with initial data equal to a fixed point of Φδ\Phi_{\delta}. Define the step functions u¯δ,u¯~δ,w¯δi:[0,)×Ω3\bar{u}_{\delta},\tilde{\bar{u}}_{\delta},\bar{w}^{i}_{\delta}:[0,\infty)\times\Omega\to{\mathbb{R}}^{3} with u¯~n,u¯n\tilde{\bar{u}}^{n},\bar{u}^{n} and Di+u¯~n+1D^{+}_{i}\tilde{\bar{u}}^{n+1} in the same way as (2.19) to (2.25). The argument on weak and strong convergence in [5] proves that u¯δ|[0,1],u¯~δ|[0,1]\bar{u}_{\delta}|_{[0,1]},\tilde{\bar{u}}_{\delta}|_{[0,1]} weakly converge to some function v¯L([0,1];Lσ2(Ω))L2([0,1];H0,σ1(Ω))\bar{v}\in L^{\infty}([0,1];L^{2}_{\sigma}(\Omega))\cap L^{2}([0,1];H^{1}_{0,\sigma}(\Omega)) and u¯~δ|[0,1]\tilde{\bar{u}}_{\delta}|_{[0,1]} strongly convergence to v¯\bar{v} in L2([0,1];L2(Ω)3)L^{2}([0,1];L^{2}(\Omega)^{3}) as δ0\delta\to 0 (up to a subsequence). Let v¯\bar{v} be periodically extended in time with the period 11, i.e., v¯L([0,);Lσ2(Ω))Lloc2([0,);H0,σ1(Ω))\bar{v}\in L^{\infty}([0,\infty);L^{2}_{\sigma}(\Omega))\cap L^{2}_{\rm loc}([0,\infty);H^{1}_{0,\sigma}(\Omega)) and v¯(t+1,)=v¯(t,)\bar{v}(t+1,\cdot)=\bar{v}(t,\cdot) for a.e. t[0,)t\in[0,\infty). Since u¯~n,u¯n\tilde{\bar{u}}^{n},\bar{u}^{n} are time-periodic with the period 11, it is clear that, for any fixed T>0T>0, u¯δ|[0,T],u¯~δ|[0,T]\bar{u}_{\delta}|_{[0,T]},\tilde{\bar{u}}_{\delta}|_{[0,T]} weakly converge to v¯|[0,T]\bar{v}|_{[0,T]} and u¯~δ|[0,T]\tilde{\bar{u}}_{\delta}|_{[0,T]} strongly convergence to v¯|[0,T]\bar{v}|_{[0,T]} in L2([0,T];L2(Ω)3)L^{2}([0,T];L^{2}(\Omega)^{3}) as δ0\delta\to 0 (the same subsequence as the above). Furthermore, v¯\bar{v} is a time-periodic Leray-Hopf weak solution of (4.4) with the period 11. By taking R=R0(Ω,f)R=R_{0}(\Omega,f) in Theorem 4.2, we find a time-periodic solution which tends to 0 as f0f\to 0. To sum up, we have

Theorem 4.3.

A time-periodic solution of the discrete Navier-Stokes equations tends to a time-periodic Leray-Hopf weak solution of (4.4) as δ0\delta\to 0 (up to a subsequence). There exists a family of time-periodic (discrete and Leray-Hopf weak) solutions which tends to 0 in the L2L^{2}-norm as fL2([0,1];L2(Ω)3)0\parallel f\parallel_{L^{2}([0,1];L^{2}(\Omega)^{3})}\to 0.

4.3 Stability of small solution

We prove that a “small” solution is exponentially stable. Suppose that there exists a small solution in the sense of LL^{\infty}, i.e., a solution u~n\tilde{u}^{n}, unu^{n} of the discrete Navier-Stokes equations (2.8)-(2.11) with u~0U~R\tilde{u}^{0}\in\tilde{U}_{R}, RR0(Ω,f)R\geq R_{0}(\Omega,f) such that

(4.5) |u~n(x)|β0:=A14 for all xΩh and n,\displaystyle|\tilde{u}^{n}(x)|\leq\beta_{0}:=\frac{A^{-1}}{4}\mbox{\quad for all $x\in\Omega_{h}$ and $n\in{\mathbb{N}}$},

where AA is the constant from the Poincaré type inequality I. We remark that it is not clear when one can find such a solution (nevertheless, one could check with a computer). Let w~n,wn\tilde{w}^{n},w^{n} be an arbitrary solution of the discrete Navier-Stokes equations with w~0U~R\tilde{w}^{0}\in\tilde{U}_{R} (w~0u~0\tilde{w}^{0}\neq\tilde{u}^{0}).

Theorem 4.4.

We have

w~nu~nΩheA22nτw~0u~0Ωh for all n{0}.\parallel\tilde{w}^{n}-\tilde{u}^{n}\parallel_{\Omega_{h}}\leq e^{-\frac{A^{-2}}{2}n\tau}\parallel\tilde{w}^{0}-\tilde{u}^{0}\parallel_{\Omega_{h}}\mbox{ for all $n\in{\mathbb{N}}\cup\{0\}$.}
Proof.

Set b~n:=w~nu~n\tilde{b}^{n}:=\tilde{w}^{n}-\tilde{u}^{n}, bn:=wnunb^{n}:=w^{n}-u^{n}. Observe that for xΩhΩhx\in{\Omega_{h}\setminus\partial\Omega_{h}},

(4.6) b~n+1(x)=bn(x)\displaystyle\tilde{b}^{n+1}(x)=b^{n}(x)
τ2j=13(wjn(xhej)Djb~n+1(xhej)+wjn(x+hej)Djb~n+1(x+hej))¯(i)\displaystyle\quad-\underline{\frac{\tau}{2}\sum_{j=1}^{3}\Big{(}w^{n}_{j}(x-he^{j})D_{j}\tilde{b}^{n+1}(x-he^{j})+w^{n}_{j}(x+he^{j})D_{j}\tilde{b}^{n+1}(x+he^{j})\Big{)}}_{\rm(i)}
τ2j=13(bjn(xhej)Dju~n+1(xhej)+bjn(x+hej)Dju~n+1(x+hej))¯(ii)\displaystyle\quad-\underline{\frac{\tau}{2}\sum_{j=1}^{3}\Big{(}b^{n}_{j}(x-he^{j})D_{j}\tilde{u}^{n+1}(x-he^{j})+b^{n}_{j}(x+he^{j})D_{j}\tilde{u}^{n+1}(x+he^{j})\Big{)}}_{\rm(ii)}
+τj=13Dj2b~n+1(x)¯(iii).\displaystyle\quad+\underline{\tau\sum_{j=1}^{3}D^{2}_{j}\tilde{b}^{n+1}(x)}_{\rm(iii)}.

Since wnw^{n} is discrete-divergence-free, we have

((i),b~n+1)Ωh=0.\displaystyle({\rm(i)},\tilde{b}^{n+1})_{\Omega_{h}}=0.

Summation by part yields

xΩhΩh(ii)b~n+1(x)h3\displaystyle-\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}({\rm ii})\cdot\tilde{b}^{n+1}(x)h^{3} =\displaystyle= τ2j=13xΩhΩh(bjn(xhej)Dju~n+1(xhej)\displaystyle-\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{(}b^{n}_{j}(x-he^{j})D_{j}\tilde{u}^{n+1}(x-he^{j})
+bjn(x+hej)Dju~n+1(x+hej))b~n+1(x)h3\displaystyle+b^{n}_{j}(x+he^{j})D_{j}\tilde{u}^{n+1}(x+he^{j})\Big{)}\cdot\tilde{b}^{n+1}(x)h^{3}
=\displaystyle= τ4hj=13xΩhΩhbjn(x)u~n+1(xhej)b~n+1(x+hej)h3¯\displaystyle\underline{\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x)\tilde{u}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x+he^{j})h^{3}}
τ4hj=13xΩhΩhbjn(x)u~n+1(x+hej)b~n+1(xhej)h3¯(a)\displaystyle\underline{-\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x)\tilde{u}^{n+1}(x+he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})h^{3}}_{\rm(a)}
+τ2xΩhΩh(j=13Djbjn(x))u~n+1(x)b~n+1(x)h3,\displaystyle+\frac{\tau}{2}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{(}\sum_{j=1}^{3}D_{j}b^{n}_{j}(x)\Big{)}\tilde{u}^{n+1}(x)\cdot\tilde{b}^{n+1}(x)h^{3},
(a)\displaystyle{\rm(a)} =\displaystyle= τ4hj=13xΩhΩh(bjn(x)u~n+1(xhej)b~n+1(x+hej)\displaystyle\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{(}b^{n}_{j}(x)\tilde{u}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x+he^{j})
bjn(x)u~n+1(xhej)b~n+1(xhej)\displaystyle-b^{n}_{j}(x)\tilde{u}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})
+bjn(x)u~n+1(xhej)b~n+1(xhej)bjn(x)u~n+1(x+hej)b~n+1(xhej))h3\displaystyle+b^{n}_{j}(x)\tilde{u}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})-b^{n}_{j}(x)\tilde{u}^{n+1}(x+he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})\Big{)}h^{3}
=\displaystyle= τ2j=13xΩhΩhbjn(x)u~n+1(xhej)Djb~n+1(x)h3\displaystyle\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x)\tilde{u}^{n+1}(x-he^{j})\cdot D_{j}\tilde{b}^{n+1}(x)h^{3}
+τ4hj=13xΩhΩh(bjn(x+hej)u~n+1(x)b~n+1(x)\displaystyle+\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{(}b^{n}_{j}(x+he^{j})\tilde{u}^{n+1}(x)\cdot\tilde{b}^{n+1}(x)
bjn(xhej)u~n+1(x)b~n+1(x2hej))h3\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad-b^{n}_{j}(x-he^{j})\tilde{u}^{n+1}(x)\cdot\tilde{b}^{n+1}(x-2he^{j})\Big{)}h^{3}
=\displaystyle= τ2j=13xΩhΩhbjn(x)u~n+1(xhej)Djb~n+1(x)h3\displaystyle\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x)\tilde{u}^{n+1}(x-he^{j})\cdot D_{j}\tilde{b}^{n+1}(x)h^{3}
+τ4hj=13xΩhΩh(bjn(x+hej)u~n+1(x)b~n+1(x)\displaystyle+\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{(}b^{n}_{j}(x+he^{j})\tilde{u}^{n+1}(x)\cdot\tilde{b}^{n+1}(x)
bjn(x+hej)u~n+1(x)b~n+1(x2hej)+bjn(x+hej)u~n+1(x)b~n+1(x2hej)\displaystyle-b^{n}_{j}(x+he^{j})\tilde{u}^{n+1}(x)\cdot\tilde{b}^{n+1}(x-2he^{j})+b^{n}_{j}(x+he^{j})\tilde{u}^{n+1}(x)\cdot\tilde{b}^{n+1}(x-2he^{j})
bjn(xhej)u~n+1(x)b~n+1(x2hej))h3\displaystyle-b^{n}_{j}(x-he^{j})\tilde{u}^{n+1}(x)\cdot\tilde{b}^{n+1}(x-2he^{j})\Big{)}h^{3}
=\displaystyle= τ2j=13xΩhΩhbjn(x)u~n+1(xhej)Djb~n+1(x)h3\displaystyle\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x)\tilde{u}^{n+1}(x-he^{j})\cdot D_{j}\tilde{b}^{n+1}(x)h^{3}
+τ2j=13xΩhΩhbjn(x+hej)u~n+1(x)Djb~n+1(xhej)h3\displaystyle+\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x+he^{j})\tilde{u}^{n+1}(x)\cdot D_{j}\tilde{b}^{n+1}(x-he^{j})h^{3}
+τ2xΩhΩh(j=13Djbjn(x))u~n+1(x)b~n+1(x2hej)h3.\displaystyle+\frac{\tau}{2}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{(}\sum_{j=1}^{3}D_{j}b^{n}_{j}(x)\Big{)}\tilde{u}^{n+1}(x)\cdot\tilde{b}^{n+1}(x-2he^{j})h^{3}.

Since bnb^{n} is discrete-divergence-free, we obtain with (4.5),

((ii),b~n+1)Ωh\displaystyle-({\rm(ii)},\tilde{b}^{n+1})_{\Omega_{h}} \displaystyle\leq τβ0bnΩhj=13Djb~n+1Ωh\displaystyle\tau\beta_{0}\parallel b^{n}\parallel_{\Omega_{h}}\sum_{j=1}^{3}\parallel D_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}
\displaystyle\leq τβ0b~nΩhj=13Dj+b~n+1Ωh.\displaystyle\tau\beta_{0}\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}.

The Poincaré type inequality I implies

((iii),b~n+1)Ωh=τj=13Dj+b~n+1Ωh2τA1j=13Dj+b~n+1Ωhb~n+1Ωh.\displaystyle({\rm(iii)},\tilde{b}^{n+1})_{\Omega_{h}}=-\tau\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel^{2}_{\Omega_{h}}\leq-\tau A^{-1}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}}.

Hence, with bnΩhb~nΩh\parallel b^{n}\parallel_{\Omega_{h}}\leq\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}, we obtain

b~n+1Ωh\displaystyle\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}} \displaystyle\leq b~nΩh+τβ0b~nΩhb~n+1Ωhj=13Djb~n+1ΩhτA1j=13Dj+b~n+1Ωh\displaystyle\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}+\tau\beta_{0}\frac{\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}}{\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}}}\sum_{j=1}^{3}\parallel D_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}-\tau A^{-1}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}
=\displaystyle= b~nΩhτj=13Dj+b~n+1Ωh(A1β0b~nΩhb~n+1Ωh).\displaystyle\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}-\tau\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\Big{(}A^{-1}-\beta_{0}\frac{\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}}{\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}}}\Big{)}.

Suppose that for n0n\geq 0,

b~n+1Ωhb~nΩh>11+τA2.\frac{\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}}}{\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}}>\frac{1}{1+\tau A^{-2}}.

Then, for any sufficiently small τ>0\tau>0, we have with the Poincaré type inequality I,

b~n+1Ωh\displaystyle\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}} \displaystyle\leq b~nΩhτj=13Dj+b~n+1Ωh{A1β0(1+τA2)}\displaystyle\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}-\tau\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\{A^{-1}-\beta_{0}(1+\tau A^{-2})\}
\displaystyle\leq b~nΩhτj=13Dj+b~n+1ΩhA12\displaystyle\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}-\tau\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\frac{A^{-1}}{2}
\displaystyle\leq b~nΩh32τA2b~n+1Ωh,\displaystyle\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}-\frac{3}{2}\tau A^{-2}\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}},

which leads to

b~n+1Ωhb~nΩh11+32τA2.\displaystyle\frac{\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}}}{\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}}\leq\frac{1}{1+\frac{3}{2}\tau A^{-2}}.

This is a contradiction. Therefore, we obtain

b~n+1Ωh11+τA2b~nΩheA22(n+1)τb~0Ωh for n=0,1,.\parallel\tilde{b}^{n+1}\parallel_{\Omega_{h}}\leq\frac{1}{1+\tau A^{-2}}\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}\leq e^{-\frac{A^{-2}}{2}(n+1)\tau}\parallel\tilde{b}^{0}\parallel_{\Omega_{h}}\mbox{ for $n=0,1,\cdots$.}

Corollary 4.5.

Suppose that the discrete Navier-Stokes equations possess a solution satisfying (4.5). Then, a time-periodic solution found in Theorem 4.2 is necessarily unique and bounded by β0\beta_{0} for all xΩhx\in\Omega_{h} and nn\in{\mathbb{N}}. Furthermore, any other solutions of the discrete Navier-Stokes equations tend to the time-periodic solution as time goes to infinity.

Proof.

In the proof of Theorem 4.4, take a time-periodic solution as w~n,wn\tilde{w}^{n},w^{n}. If there are two different time-periodic solutions, both of them must get arbitrarily close to u~n,un\tilde{u}^{n},u^{n} satisfying (4.5) as nn\to\infty, which is impossible. The other claims follow from Theorem 4.4. ∎

Suppose that there exist initial data v0Lσ2(Ω)v^{0}\in L^{2}_{\sigma}(\Omega) and a sequence δ0\delta\to 0 such that the solution u~n\tilde{u}^{n} of the discrete Navier-Stokes equations solved with v0v^{0} satisfies (4.5) for each element δ\delta of the sequence. Then, Theorem 4.3 and Corollary 4.5 imply that there exists a time-periodic Leray-Hopf weak solution that is bounded by β0\beta_{0} in the LL^{\infty}-sense. Furthermore, since the decay estimate given in Theorem 4.4 is independent of the size of δ=(τ,h)\delta=(\tau,h), we have a stability result on a “small” Leray-Hopf weak solution: Let {u~δ}\{\tilde{u}_{\delta}\} be a convergent sequence of the step functions derived from the above u~n\tilde{u}^{n}, where {u~δ}\{\tilde{u}_{\delta}\} tends to a time-global Leray-Hopf weak solution vv with initial data v0v^{0} as δ0\delta\to 0. Let ww be any time-global Leray-Hopf weak solution with initial data w0Lσ2(Ω)w^{0}\in L^{2}_{\sigma}(\Omega) that can be a limit of a sequence {w~δ}\{\tilde{w}_{\delta}\} derived from the discrete Navier-Stokes equations solved with w0w^{0}, where δ0\delta\to 0 is the same sequence as the above. Note that we do not suppose any regularity of vv except for the LL^{\infty}-bound coming from (4.5).

Theorem 4.6.

We have

wvL2([t,);L2(Ω)3)2A2eA22tw0v0L2(Ω)3 for any t>0.\parallel w-v\parallel_{L^{2}([t,\infty);L^{2}(\Omega)^{3})}\leq\frac{2}{A^{-2}}e^{-\frac{A^{-2}}{2}t}\parallel w^{0}-v^{0}\parallel_{L^{2}(\Omega)^{3}}\mbox{\quad for any $t>0$}.
Proof.

Fix an arbitrary t>0t>0. Take arbitrary small ε>0\varepsilon>0 and large T>tT>t. Since u~δ\tilde{u}_{\delta} (resp., w~δ\tilde{w}_{\delta}) strongly converges to vv (resp., ww) in L2([t,T];L2(Ω)3)\parallel\cdot\parallel_{L^{2}([t,T];L^{2}(\Omega)^{3})} as δ0\delta\to 0, we have with sufficiently small δ\delta and Theorem 4.4,

wvL2([t,T];L2(Ω)3)ww~δL2([t,T];L2(Ω)3)+w~δu~δL2([t,T];L2(Ω)3)\displaystyle\parallel w-v\parallel_{L^{2}([t,T];L^{2}(\Omega)^{3})}\leq\parallel w-\tilde{w}_{\delta}\parallel_{L^{2}([t,T];L^{2}(\Omega)^{3})}+\parallel\tilde{w}_{\delta}-\tilde{u}_{\delta}\parallel_{L^{2}([t,T];L^{2}(\Omega)^{3})}
+u~δvL2([t,T];L2(Ω)3)\displaystyle\qquad+\parallel\tilde{u}_{\delta}-v\parallel_{L^{2}([t,T];L^{2}(\Omega)^{3})}
ε+w~δ(0,)u~δ(0,)L2(Ω)3ntn<nTeA22(n+1)ττ,\displaystyle\quad\leq\varepsilon+\parallel\tilde{w}_{\delta}(0,\cdot)-\tilde{u}_{\delta}(0,\cdot)\parallel_{L^{2}(\Omega)^{3}}\sum_{n_{t}\leq n<n_{T}}e^{-\frac{A^{-2}}{2}(n+1)\tau}\tau,

where nt,nTn_{t},n_{T}\in{\mathbb{N}} are such that τntt<τnt+τ\tau n_{t}\leq t<\tau n_{t}+\tau, τnTT<τnT+τ\tau n_{T}\leq T<\tau n_{T}+\tau. Taking smaller δ\delta if necessary, we have

wvL2([t,T];L2(Ω)3)\displaystyle\parallel w-v\parallel_{L^{2}([t,T];L^{2}(\Omega)^{3})} \displaystyle\leq 2ε+w0v0L2(Ω)3tTeA22s𝑑s\displaystyle 2\varepsilon+\parallel w^{0}-v^{0}\parallel_{L^{2}(\Omega)^{3}}\int_{t}^{T}e^{-\frac{A^{-2}}{2}s}ds
\displaystyle\leq 2ε+w0v0L2(Ω)32A2eA22t.\displaystyle 2\varepsilon+\parallel w^{0}-v^{0}\parallel_{L^{2}(\Omega)^{3}}\frac{2}{A^{-2}}e^{-\frac{A^{-2}}{2}t}.

Since ε\varepsilon and TT are arbitrary, we obtain our assertion. ∎

4.4 Error estimate for time-periodic solution in C3C^{3}-class

Suppose that there exists a time-periodic (period 11) solution v¯\bar{v} of the exact Navier-Stokes equations that belongs to the C3C^{3}-class and satisfies the smallness condition

(4.7) maxxΩ,t[0,1]|v¯(t,x)|β0:=A14,\displaystyle\max_{x\in\Omega,\,\,t\in[0,1]}|\bar{v}(t,x)|\leq\beta_{0}:=\frac{A^{-1}}{4},

where AA is the constant from the Poincaré type inequality I. We take δ=(τ,h)\delta=(\tau,h) which satisfies

(4.8) τ=θh34,0<θ0θθ1,\displaystyle\tau=\theta h^{\frac{3}{4}},\quad 0<\theta_{0}\leq\theta\leq\theta_{1},

where θ1>θ0>0\theta_{1}>\theta_{0}>0 is some constant specified later. Let u~n,un\tilde{u}^{n},u^{n} be any time-global solution of the discrete Navier-Stokes equations.

Theorem 4.7.

There exist constants θ1,θ0>0\theta_{1},\theta_{0}>0 and β>0\beta>0 for which we have with each δ\delta sufficiently small,

u~nv¯(nτ,)ΩheA22nτu~0v¯(0,)Ωh+βh14 for all n{0}.\displaystyle\parallel\tilde{u}^{n}-\bar{v}(n\tau,\cdot)\parallel_{\Omega_{h}}\leq e^{-\frac{A^{-2}}{2}n\tau}\parallel\tilde{u}^{0}-\bar{v}(0,\cdot)\parallel_{\Omega_{h}}+\beta h^{\frac{1}{4}}\mbox{\quad for all $n\in{\mathbb{N}}\cup\{0\}$.}

Remark. This theorem states that any solution of the discrete Navier-Stokes equations (including time-periodic one!) falls into the O(h14)O(h^{\frac{1}{4}})-neighborhood of the exact time-periodic solution as time goes to infinity. However, it does not claim that a discrete solution tends to a time-periodic state (we do not assume the existence of a discrete solution satisfying (4.5)) and hence we do not know about the contraction stated in Theorem 4.4.

Proof.

Set v¯n():=v¯(nτ,)\bar{v}^{n}(\cdot):=\bar{v}(n\tau,\cdot), b~n:=u~nv¯n\tilde{b}^{n}:=\tilde{u}^{n}-\bar{v}^{n} and bn:=unv¯nb^{n}:=u^{n}-\bar{v}^{n}. Observe that we have for xΩhΩhx\in{\Omega_{h}\setminus\partial\Omega_{h}},

(4.9) b~n+1(x)=bn(x)\displaystyle\tilde{b}^{n+1}(x)=b^{n}(x)
τ2j=13(ujn(xhej)Djb~n+1(xhej)+ujn(x+hej)Djb~n+1(x+hej))¯(i)\displaystyle\quad-\underline{\frac{\tau}{2}\sum_{j=1}^{3}\Big{(}u^{n}_{j}(x-he^{j})D_{j}\tilde{b}^{n+1}(x-he^{j})+u^{n}_{j}(x+he^{j})D_{j}\tilde{b}^{n+1}(x+he^{j})\Big{)}}_{\rm(i)}
τ2j=13(bjn(xhej)Djv¯n+1(xhej)+bjn(x+hej)Djv¯n+1(x+hej))¯(ii)\displaystyle\quad-\underline{\frac{\tau}{2}\sum_{j=1}^{3}\Big{(}b^{n}_{j}(x-he^{j})D_{j}\bar{v}^{n+1}(x-he^{j})+b^{n}_{j}(x+he^{j})D_{j}\bar{v}^{n+1}(x+he^{j})\Big{)}}_{\rm(ii)}
+τj=13Dj2b~n+1(x)¯(iii)Rn(x).\displaystyle\quad+\underline{\tau\sum_{j=1}^{3}D^{2}_{j}\tilde{b}^{n+1}(x)}_{\rm(iii)}-R^{n}(x).

Following the estimate given in Section 3, we have (3.9), (3.2), (3.14), (3.15) and (3.16) (with v¯\bar{v} instead of vv) also for (4.9). We estimate ((ii),b~n+1)ΩhΩh-({\rm(ii)},\tilde{b}^{n+1})_{{\Omega_{h}\setminus\partial\Omega_{h}}} by taking max|v¯n+1|\max|\bar{v}^{n+1}| out of the inner product after “summation by parts”. For this purpose, observe that

xΩhΩh(ii)b~n+1(x)h3\displaystyle-\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}({\rm ii})\cdot\tilde{b}^{n+1}(x)h^{3}
=τ2xΩhΩh(j=13Djbjn(x))v¯n+1(x)b~n+1(x)h3\displaystyle\quad=\frac{\tau}{2}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{(}\sum_{j=1}^{3}D_{j}b^{n}_{j}(x)\Big{)}\bar{v}^{n+1}(x)\cdot\tilde{b}^{n+1}(x)h^{3}
+τ4hj=13xΩhΩhbjn(x)v¯n+1(xhej)b~n+1(x+hej)h3¯\displaystyle\qquad+\underline{\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x+he^{j})h^{3}}
τ4hj=13xΩhΩhbjn(x)v¯n+1(x+hej)b~n+1(xhej)h3¯(a)\displaystyle\qquad\underline{-\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x)\bar{v}^{n+1}(x+he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})h^{3}}_{\rm(a)}
+τ4hj=13xΓhjbjn(x)v¯n+1(xhej)b~n+1(x+hej)h3\displaystyle\qquad+\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j-}_{h}}b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x+he^{j})h^{3}
τ4hj=13xΓhj+bjn(xhej)v¯n+1(x2hej)b~n+1(x)h3\displaystyle\qquad-\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j+}_{h}}b^{n}_{j}(x-he^{j})\bar{v}^{n+1}(x-2he^{j})\cdot\tilde{b}^{n+1}(x)h^{3}
+τ4hj=13xΓhjbjn(x+hej)v¯n+1(x+2hej)b~n+1(x)h3\displaystyle\qquad+\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j-}_{h}}b^{n}_{j}(x+he^{j})\bar{v}^{n+1}(x+2he^{j})\cdot\tilde{b}^{n+1}(x)h^{3}
τ4hj=13xΓhj+bjn(x)v¯n+1(x+hej)b~n+1(xhej)h3.\displaystyle\qquad-\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j+}_{h}}b^{n}_{j}(x)\bar{v}^{n+1}(x+he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})h^{3}.

We have

(a)\displaystyle{\rm(a)} =\displaystyle= τ4hj=13xΩhΩh(bjn(x)v¯n+1(xhej)b~n+1(x+hej)\displaystyle\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{(}b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x+he^{j})
bjn(x)v¯n+1(xhej)b~n+1(xhej)\displaystyle-b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})
+bjn(x)v¯n+1(xhej)b~n+1(xhej)bjn(x)v¯n+1(x+hej)b~n+1(xhej))h3\displaystyle+b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})-b^{n}_{j}(x)\bar{v}^{n+1}(x+he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})\Big{)}h^{3}
=\displaystyle= τ2j=13xΩhΩhbjn(x)v¯n+1(xhej)Djb~n+1(x)h3\displaystyle\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot D_{j}\tilde{b}^{n+1}(x)h^{3}
+τ4hj=13xΩhΩh(bjn(x)v¯n+1(xhej)b~n+1(xhej)\displaystyle+\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{(}b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})
bjn(x)v¯n+1(x+hej)b~n+1(xhej))h3\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad-b^{n}_{j}(x)\bar{v}^{n+1}(x+he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})\Big{)}h^{3}
=\displaystyle= τ2j=13xΩhΩhbjn(x)v¯n+1(xhej)Djb~n+1(x)h3\displaystyle\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot D_{j}\tilde{b}^{n+1}(x)h^{3}
+τ4hj=13xΩhΩh(bjn(x+hej)v¯n+1(x)b~n+1(x)\displaystyle+\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{(}b^{n}_{j}(x+he^{j})\bar{v}^{n+1}(x)\cdot\tilde{b}^{n+1}(x)
bjn(xhej)v¯n+1(x)b~n+1(x2hej))h3\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad-b^{n}_{j}(x-he^{j})\bar{v}^{n+1}(x)\cdot\tilde{b}^{n+1}(x-2he^{j})\Big{)}h^{3}
+τ4hj=13xΓhjbjn(x+hej)v¯n+1(x)b~n+1(x)h3\displaystyle+\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j-}_{h}}b^{n}_{j}(x+he^{j})\bar{v}^{n+1}(x)\cdot\tilde{b}^{n+1}(x)h^{3}
τ4hj=13xΓhj+bjn(x)v¯n+1(xhej)b~n+1(xhej)h3\displaystyle-\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j+}_{h}}b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})h^{3}
+τ4hj=13xΓhjbjn(x)v¯n+1(x+hej)b~n+1(xhej)h3\displaystyle+\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j-}_{h}}b^{n}_{j}(x)\bar{v}^{n+1}(x+he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})h^{3}
τ4hj=13xΓhj+bjn(xhej)v¯n+1(x)b~n+1(x2hej)h3\displaystyle-\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j+}_{h}}b^{n}_{j}(x-he^{j})\bar{v}^{n+1}(x)\cdot\tilde{b}^{n+1}(x-2he^{j})h^{3}
=\displaystyle= τ2j=13xΩhΩhbjn(x)v¯n+1(xhej)Djb~n+1(x)h3\displaystyle\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot D_{j}\tilde{b}^{n+1}(x)h^{3}
+τ2j=13xΩhΩhbjn(x+hej)v¯n+1(x)Djb~n+1(xhej)h3\displaystyle+\frac{\tau}{2}\sum_{j=1}^{3}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}b^{n}_{j}(x+he^{j})\bar{v}^{n+1}(x)\cdot D_{j}\tilde{b}^{n+1}(x-he^{j})h^{3}
+τ2xΩhΩh(j=13Djbjn(x))v¯n+1(x)b~n+1(x2hej)h3\displaystyle+\frac{\tau}{2}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\Big{(}\sum_{j=1}^{3}D_{j}b^{n}_{j}(x)\Big{)}\bar{v}^{n+1}(x)\cdot\tilde{b}^{n+1}(x-2he^{j})h^{3}
+τ4hj=13xΓhjbjn(x+hej)v¯n+1(x)b~n+1(x)h3\displaystyle+\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j-}_{h}}b^{n}_{j}(x+he^{j})\bar{v}^{n+1}(x)\cdot\tilde{b}^{n+1}(x)h^{3}
τ4hj=13xΓhj+bjn(x)v¯n+1(xhej)b~n+1(xhej)h3\displaystyle-\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j+}_{h}}b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})h^{3}
+τ4hj=13xΓhjbjn(x)v¯n+1(x+hej)b~n+1(xhej)h3\displaystyle+\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j-}_{h}}b^{n}_{j}(x)\bar{v}^{n+1}(x+he^{j})\cdot\tilde{b}^{n+1}(x-he^{j})h^{3}
τ4hj=13xΓhj+bjn(xhej)v¯n+1(x)b~n+1(x2hej)h3.\displaystyle-\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j+}_{h}}b^{n}_{j}(x-he^{j})\bar{v}^{n+1}(x)\cdot\tilde{b}^{n+1}(x-2he^{j})h^{3}.

Since jDjbjn(x)=jDjujn(x)jDjv¯jn(x)=jDjv¯jn(x)=O(h2)\sum_{j}D_{j}b_{j}^{n}(x)=\sum_{j}D_{j}u_{j}^{n}(x)-\sum_{j}D_{j}\bar{v}_{j}^{n}(x)=-\sum_{j}D_{j}\bar{v}_{j}^{n}(x)=O(h^{2}), we have

τ2xΩhΩh(j=13Djbjn(x))v¯n+1(x)b~n+1(x)h3O(τh2)b~n+1ΩhΩh,\displaystyle\!\!\!\!\!\!\!\frac{\tau}{2}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\!\!\!\Big{(}\sum_{j=1}^{3}D_{j}b^{n}_{j}(x)\Big{)}\bar{v}^{n+1}(x)\cdot\tilde{b}^{n+1}(x)h^{3}\leq O(\tau h^{2})\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}},
τ2xΩhΩh(j=13Djbjn(x))v¯n+1(x)b~n+1(x2hej)h3O(τh2)b~n+1ΩhΩh+O(τh5),\displaystyle\!\!\!\!\!\!\!\frac{\tau}{2}\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}\!\!\!\Big{(}\sum_{j=1}^{3}D_{j}b^{n}_{j}(x)\Big{)}\bar{v}^{n+1}(x)\cdot\tilde{b}^{n+1}(x-2he^{j})h^{3}\leq O(\tau h^{2})\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+O(\tau h^{5}),

where O(τh5)O(\tau h^{5}) comes from the values outside Ωh\Omega_{h}. The terms with Γhj±\Gamma^{j\pm}_{h} are estimated as

τ4hj=13xΓhjbjn(x)v¯n+1(xhej)b~n+1(x+hej)h3\displaystyle\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j-}_{h}}b^{n}_{j}(x)\bar{v}^{n+1}(x-he^{j})\cdot\tilde{b}^{n+1}(x+he^{j})h^{3}
τ4hj=13xΓhj+bjn(xhej)v¯n+1(x2hej)b~n+1(x)h3\displaystyle\qquad-\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j+}_{h}}b^{n}_{j}(x-he^{j})\bar{v}^{n+1}(x-2he^{j})\cdot\tilde{b}^{n+1}(x)h^{3}
=τ4hj=13xΓhj(0v¯jn(x))v¯n+1(xhej)(u~n+1(x+hej)v¯n+1(x+hej))h3\displaystyle=\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j-}_{h}}\big{(}0-\bar{v}^{n}_{j}(x)\big{)}\bar{v}^{n+1}(x-he^{j})\cdot\big{(}\tilde{u}^{n+1}(x+he^{j})-\bar{v}^{n+1}(x+he^{j})\big{)}h^{3}
τ4hj=13xΓhj+(ujn(xhej)v¯jn(xhej))v¯n+1(x2hej)(0v¯n+1(x))h3\displaystyle\qquad-\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Gamma^{j+}_{h}}\big{(}u^{n}_{j}(x-he^{j})-\bar{v}^{n}_{j}(x-he^{j}))\bar{v}^{n+1}(x-2he^{j})\cdot\big{(}0-\bar{v}^{n+1}(x)\big{)}h^{3}
τ4hO(h)O(h)j=13xΩh|u~n+1(x+hej)χΩh(x)|h3+τ4hO(h)O(h)O(h)j=13(Γhj)h3\displaystyle\leq\frac{\tau}{4h}O(h)O(h)\sum_{j=1}^{3}\sum_{x\in\Omega_{h}}|\tilde{u}^{n+1}(x+he^{j})\chi_{\partial\Omega_{h}}(x)|h^{3}+\frac{\tau}{4h}O(h)O(h)O(h)\sum_{j=1}^{3}(\sharp\Gamma^{j-}_{h})h^{3}
+τ4hj=13xΩh|un(xhej)χΩh(x)|h3O(h)O(h)+τ4hO(h)O(h)O(h)j=13(Γhj)h3\displaystyle\qquad+\frac{\tau}{4h}\sum_{j=1}^{3}\sum_{x\in\Omega_{h}}|u^{n}(x-he^{j})\chi_{\partial\Omega_{h}}(x)|h^{3}O(h)O(h)+\frac{\tau}{4h}O(h)O(h)O(h)\sum_{j=1}^{3}(\sharp\Gamma^{j-}_{h})h^{3}
=O(τh)h12+O(τh3)=O(τh32).\displaystyle=O(\tau h)h^{\frac{1}{2}}+O(\tau h^{3})=O(\tau h^{\frac{3}{2}}).

Therefore, with (4.7) and bnΩhbnΩhΩh+O(h32)b~nΩhΩh+O(h)\parallel b^{n}\parallel_{\Omega_{h}}\leq\parallel b^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+O(h^{\frac{3}{2}})\leq\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+O(h), we obtain

xΩhΩh(ii)b~n+1(x)h3τβ0bnΩhj=13D+jb~n+1Ωh\displaystyle-\sum_{x\in{\Omega_{h}\setminus\partial\Omega_{h}}}({\rm ii})\cdot\tilde{b}^{n+1}(x)h^{3}\leq\tau\beta_{0}\parallel b^{n}\parallel_{\Omega_{h}}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}
+O(τh2)b~n+1ΩhΩh+O(τh32)\displaystyle\qquad+O(\tau h^{2})\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+O(\tau h^{\frac{3}{2}})
τβ0b~nΩhΩhj=13D+jb~n+1Ωh+O(τh)j=13D+jb~n+1Ωh\displaystyle\quad\leq\tau\beta_{0}\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}+O(\tau h)\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}
+O(τh2)b~n+1ΩhΩh+O(τh32).\displaystyle\qquad+O(\tau h^{2})\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+O(\tau h^{\frac{3}{2}}).

This estimate together with (3.2), (3.14), (3.15) (v¯\bar{v} instead of vv) and the scaling condition of δ=(τ,h)\delta=(\tau,h) lead to

(4.10) b~n+1ΩhΩh(1+β1τh12)b~nΩhΩh+τ(β2θ1h34b~n+1ΩhΩh+β3θ01h14)\displaystyle\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\leq(1+\beta_{1}\tau h^{\frac{1}{2}})\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+\tau\Big{(}\frac{\beta_{2}\theta_{1}h^{\frac{3}{4}}}{\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}}+\beta_{3}\theta_{0}^{-1}h^{\frac{1}{4}}\Big{)}
τ(j=13D+jb~n+1Ωh)(A1β0b~nΩhΩhb~n+1ΩhΩhβ4θ1h14b~n+1ΩhΩh),\displaystyle\quad-\tau\Big{(}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\Big{)}\Big{(}A^{-1}-\beta_{0}\frac{\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}}{\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}}-\frac{\beta_{4}\theta_{1}h^{\frac{1}{4}}}{\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}}\Big{)},

where β1,β2,\beta_{1},\beta_{2},\cdots are some positive constants independent of δ=(τ,h)\delta=(\tau,h), nn, θ\theta, θ0\theta_{0} and θ1\theta_{1}.

Lemma 4.8.

Suppose that

θ1>Aβ3β4,θ0=Aβ3β4θ1\theta_{1}>\sqrt{\frac{A\beta_{3}}{\beta_{4}}},\quad\theta_{0}=\frac{A\beta_{3}}{\beta_{4}\theta_{1}}

in (4.8) (the first inequality guarantees that θ0<θ1\theta_{0}<\theta_{1}). Then, we have for each sufficiently small δ\delta,

(4.11) b~nΩhΩheA22nτb~0ΩhΩh+8Aθ1β4h14 for all n{0}.\displaystyle\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}\leq e^{-\frac{A^{-2}}{2}n\tau}\parallel\tilde{b}^{0}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+8A\theta_{1}\beta_{4}h^{\frac{1}{4}}\mbox{\quad for all $n\in{\mathbb{N}}\cup\{0\}$.}
Proof.

Set η:=8Aθ1β4\eta:=8A\theta_{1}\beta_{4}. For n=0n=0, (4.11) holds. Suppose that (4.11) holds up to some nn and fails to hold for n+1n+1. Then, (4.10) implies

b~n+1ΩhΩh\displaystyle\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}} \displaystyle\leq (1+β1τh12)b~nΩhΩh+τβ2θ1h12η+τβ3θ01h14\displaystyle(1+\beta_{1}\tau h^{\frac{1}{2}})\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+\tau\frac{\beta_{2}\theta_{1}h^{\frac{1}{2}}}{\eta}+\tau\beta_{3}\theta_{0}^{-1}h^{\frac{1}{4}}
τ(j=13D+jb~n+1Ωh)(A132β0β4θ1η),\displaystyle-\tau\Big{(}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\Big{)}\Big{(}A^{-1}-\frac{3}{2}\beta_{0}-\frac{\beta_{4}\theta_{1}}{\eta}\Big{)},

where we have

A132β0β4θ1ηA12.A^{-1}-\frac{3}{2}\beta_{0}-\frac{\beta_{4}\theta_{1}}{\eta}\geq\frac{A^{-1}}{2}.

Hence, we may apply the Poincaré type inequality I with the correction (3.13) to obtain

τ(j=13D+jb~n+1Ωh)(A132β0β4θ1η)τ3A22b~n+1ΩhΩh+β5τh12.\displaystyle-\tau\Big{(}\sum_{j=1}^{3}\parallel D^{+}_{j}\tilde{b}^{n+1}\parallel_{\Omega_{h}}\Big{)}\Big{(}A^{-1}-\frac{3}{2}\beta_{0}-\frac{\beta_{4}\theta_{1}}{\eta}\Big{)}\leq-\tau\frac{3A^{-2}}{2}\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+\beta_{5}\tau h^{\frac{1}{2}}.

Therefore, we have for sufficiently small δ\delta,

b~n+1ΩhΩh\displaystyle\parallel\tilde{b}^{n+1}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}} \displaystyle\leq 1+τβ1h121+τ3A22b~nΩhΩh+τβ2θ1h12η+τβ2θ01h14+β5τh12\displaystyle\frac{1+\tau\beta_{1}h^{\frac{1}{2}}}{1+\tau\frac{3A^{-2}}{2}}\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+\tau\frac{\beta_{2}\theta_{1}h^{\frac{1}{2}}}{\eta}+\tau\beta_{2}\theta_{0}^{-1}h^{\frac{1}{4}}+\beta_{5}\tau h^{\frac{1}{2}}
\displaystyle\leq 11+τA2b~nΩhΩh+2τβ3θ01h14\displaystyle\frac{1}{1+\tau A^{-2}}\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+2\tau\beta_{3}\theta_{0}^{-1}h^{\frac{1}{4}}
\displaystyle\leq eA22τb~nΩhΩh+2τβ3θ01h14\displaystyle e^{-\frac{A^{-2}}{2}\tau}\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+2\tau\beta_{3}\theta_{0}^{-1}h^{\frac{1}{4}}
\displaystyle\leq eA22(n+1)τb~0ΩhΩh+eA22τηh14+2τβ3θ01h14\displaystyle e^{-\frac{A^{-2}}{2}(n+1)\tau}\parallel\tilde{b}^{0}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+e^{-\frac{A^{-2}}{2}\tau}\eta h^{\frac{1}{4}}+2\tau\beta_{3}\theta_{0}^{-1}h^{\frac{1}{4}}
\displaystyle\leq eA22(n+1)τb~0ΩhΩh+ηh14+(2β3θ01A24η)τh14\displaystyle e^{-\frac{A^{-2}}{2}(n+1)\tau}\parallel\tilde{b}^{0}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+\eta h^{\frac{1}{4}}+\Big{(}2\beta_{3}\theta_{0}^{-1}-\frac{A^{-2}}{4}\eta\Big{)}\tau h^{\frac{1}{4}}
=\displaystyle= eA22(n+1)τb~0ΩhΩh+ηh14,\displaystyle e^{-\frac{A^{-2}}{2}(n+1)\tau}\parallel\tilde{b}^{0}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+\eta h^{\frac{1}{4}},

which is a contradiction. ∎

Since b~n=v¯n=O(h)\tilde{b}^{n}=-\bar{v}^{n}=O(h) on Ωh\partial\Omega_{h} and b~nΩhb~nΩhΩh+O(h32)\parallel\tilde{b}^{n}\parallel_{\Omega_{h}}\leq\parallel\tilde{b}^{n}\parallel_{{\Omega_{h}\setminus\partial\Omega_{h}}}+O(h^{\frac{3}{2}}), Theorem 4.7 is an immediate consequence of Lemma 4.8. ∎

5 Problem with periodic boundary conditions

We briefly summarize results on the problems in Ω=𝕋3\Omega={\mathbb{T}}^{3}, i.e., the problems with the periodic boundary conditions. By taking h=1/Nh=1/N with NN\in{\mathbb{N}}, one can formulate the discrete Navier-Stokes equations with the periodic boundary conditions in the same way as Section 2.

Since there is no boundary of Ω=𝕋3\Omega={\mathbb{T}}^{3}, the Poincaré type inequality II is obtained in a simpler way (see [1]) and we are not bothered by the remaining terms from the boundary in the arguments corresponding to Section 3. Hence, we may optimize our error estimates by the central difference and the diffusive scaling τ=O(h2)\tau=O(h^{2}). In fact, Lemma 3.3 is improved to be

uPhuΩhO(h4)=O(τh2),uC5σ(𝕋3).\parallel u-P_{h}u\parallel_{\Omega_{h}}\leq O(h^{4})=O(\tau h^{2}),\quad u\in C^{5}_{\sigma}({\mathbb{T}}^{3}).

Furthermore, Theorem 3.1 is improved to be

u~nv(τn,)ΩhO(h2),\parallel\tilde{u}^{n}-v(\tau n,\cdot)\parallel_{\Omega_{h}}\leq O(h^{2}),

provided an exact solution vv belongs to the C5C^{5}-class. Then, using the inequality

maxΩh|u(x)|h32uΩh,\max_{\Omega_{h}}|u(x)|h^{\frac{3}{2}}\leq\parallel u\parallel_{\Omega_{h}},

we obtain the LL^{\infty}-error estimate

maxΩh|u~n(x)v(τn,x)|O(h).\max_{\Omega_{h}}|\tilde{u}^{n}(x)-v(\tau n,x)|\leq O(\sqrt{h}).

The results in Section 4 are also improved with the diffusive scaling and with a C5C^{5}-exact solution, where we need to argue with initial data with a common average over 𝕋3{\mathbb{T}}^{3} (the average of a solution is conserved both for the Navier-Stokes equations and discrete Navier-Stokes equations). In particular, Theorem 4.7 becomes

u~nv¯(nτ,)ΩheA22nτu~0v¯(0,)Ωh+βh2 for all n{0}.\displaystyle\parallel\tilde{u}^{n}-\bar{v}(n\tau,\cdot)\parallel_{\Omega_{h}}\leq e^{-\frac{A^{-2}}{2}n\tau}\parallel\tilde{u}^{0}-\bar{v}(0,\cdot)\parallel_{\Omega_{h}}+\beta h^{2}\mbox{\quad for all $n\in{\mathbb{N}}\cup\{0\}$.}

Then, we have an LL^{\infty}-estimate of b~n\tilde{b}^{n} to be O(h)O(\sqrt{h}) for all sufficiently large nn. This implies that there exists a solution of the discrete Navier-Stokes equations that satisfies (4.5), provided there exists an exact smooth time-periodic solution v¯\bar{v} that satisfies (4.7). Hence, we obtain

Theorem 5.1.

Suppose that there exists an exact time-periodic solution v¯C5([0,)×𝕋3)\bar{v}\in C^{5}([0,\infty)\times{\mathbb{T}}^{3}) satisfying (4.7). Then, a time-periodic discrete solution u¯n\bar{u}^{n}, u¯~n\tilde{\bar{u}}^{n} with the same average as v¯\bar{v} is unique and asymptotically stable within initial data with the same average. The LL^{\infty}-error between v¯(τn,)\bar{v}(\tau n,\cdot) and u¯~n\tilde{\bar{u}}^{n} is O(h)O(\sqrt{h}) for all nn.

Therefore, one can approximate a time-periodic discrete solution and exact one only by solving an initial value problem of the discrete Navier-Stokes equations for a long time.

Acknowledgement. The second author, Kohei Soga, is supported by JSPS Grant-in-aid for Young Scientists #18K13443.

Appendix Appendix

1. Proof of Lemma 2.3.

It is enough to prove that we have a constant A~>0\tilde{A}>0 depending only on Ω\Omega for which

xΩhj|ϕ(x)[ϕ]j|2A~2xΩhΩh|𝒟ϕ(x)|2\sum_{x\in\Omega_{h}^{\circ j}}|\phi(x)-[\phi]^{j}|^{2}\leq\tilde{A}^{2}\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|\mathcal{D}\phi(x)|^{2}

hold for each jj.

We first find such a constant A~=A~h\tilde{A}=\tilde{A}_{h} with fixed hh: Suppose that there is no such constant AhA_{h}. Then, for each kk\in{\mathbb{N}}, we have ϕk:Ωh\phi_{k}:\Omega_{h}\to{\mathbb{R}} such that

xΩhj|ϕk(x)[ϕk]j|2kxΩhΩh|𝒟ϕk(x)|2.\displaystyle\sum_{x\in\Omega_{h}^{\circ j}}|\phi_{k}(x)-[\phi_{k}]^{j}|^{2}\geq k\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|\mathcal{D}\phi_{k}(x)|^{2}.

We normalize ϕk\phi_{k} as

ψk(x):=ϕk(x)[ϕk]j(xΩhj|ϕk(x)[ϕk]j|2)12.\psi_{k}(x):=\frac{\phi_{k}(x)-[\phi_{k}]^{j}}{\displaystyle\Big{(}\sum_{x\in\Omega_{h}^{\circ j}}|\phi_{k}(x)-[\phi_{k}]^{j}|^{2}\Big{)}^{\frac{1}{2}}}.

Then, we see that

xΩhjψk(x)=0,xΩhj|ψk(x)|2=1,xΩhΩh|𝒟ψk(x)|2k1for all k,\displaystyle\sum_{x\in\Omega_{h}^{\circ j}}\psi_{k}(x)=0,\quad\sum_{x\in\Omega_{h}^{\circ j}}|\psi_{k}(x)|^{2}=1,\quad\sum_{x\in\Omega_{h}\setminus\partial\Omega_{h}}|\mathcal{D}\psi_{k}(x)|^{2}\leq k^{-1}\quad\mbox{for all $k$},

which implies that ψk\psi_{k} is bounded on Ωhj\Omega_{h}^{\circ j}. Furthermore, since x+heix+he^{i} belongs to ΩhΩh{\Omega_{h}\setminus\partial\Omega_{h}} for any xΩhjx\in\Omega_{h}^{\circ j}, we have for i=1,2,3i=1,2,3,

k1ΩhΩh|𝒟ψk(x)|2xΩhj|Diψk(x+hei)|2|ψk(x+2hei)ψ(x)2h| for all xΩhj,k^{-1}\geq\sum_{{\Omega_{h}\setminus\partial\Omega_{h}}}|\mathcal{D}\psi_{k}(x)|^{2}\geq\sum_{x\in\Omega_{h}^{\circ j}}|D_{i}\psi_{k}(x+he^{i})|^{2}\geq\Big{|}\frac{\psi_{k}(x+2he^{i})-\psi(x)}{2h}\Big{|}\mbox{ for all $x\in\Omega_{h}^{\circ j}$},

which implies that ψk\psi_{k} is bounded on

Bh:=Ωhj{x+2hei|xΩhj,i=1,2,3}.B_{h}:=\Omega_{h}^{\circ j}\cup\{x+2he^{i}\,|\,x\in\Omega_{h}^{\circ j},\,\,\,\,\,i=1,2,3\}.

Hence, since hh is fixed, we have a subsequence of {ψk}\{\psi_{k}\} whose restriction on BhB_{h} converges to some w:Bhw:B_{h}\to{\mathbb{R}}. We have

xΩhjw(x)=0,xΩhj|w(x)|2=1,i=13xΩhj|w(x+2hei)w(x)2h|2=0.\sum_{x\in\Omega_{h}^{\circ j}}w(x)=0,\quad\sum_{x\in\Omega_{h}^{\circ j}}|w(x)|^{2}=1,\quad\sum_{i=1}^{3}\sum_{x\in\Omega_{h}^{\circ j}}\Big{|}\frac{w(x+2he^{i})-w(x)}{2h}\Big{|}^{2}=0.

Since Ωhj\Omega_{h}^{\circ j} is connected, this is a contradiction.

We next prove that there exists A~>0\tilde{A}>0 such that A~hA~\tilde{A}_{h}\leq\tilde{A} for h0+h\to 0+. Suppose that there is no such A~\tilde{A}. Then, for each kk\in{\mathbb{N}}, we have hk>0h_{k}>0 and ϕk:Ωhk\phi_{k}:\Omega_{h_{k}}\to{\mathbb{R}} such that hk0h_{k}\to 0 as kk\to\infty and

xΩhkj|ϕk(x)[ϕk]j|2kxΩhkΩhk|𝒟ϕk(x)|2\sum_{x\in\Omega_{h_{k}}^{\circ j}}|\phi_{k}(x)-[\phi_{k}]^{j}|^{2}\geq k\sum_{x\in\Omega_{h_{k}}\setminus\partial\Omega_{h_{k}}}|\mathcal{D}\phi_{k}(x)|^{2}

We normalize ϕk\phi_{k} as

ψk(x):=ϕk(x)[ϕk]j(xΩhkj|ϕk(x)[ϕk]j|2(2hk)3)12.\psi_{k}(x):=\frac{\phi_{k}(x)-[\phi_{k}]^{j}}{\displaystyle\Big{(}\sum_{x\in\Omega_{h_{k}}^{\circ j}}|\phi_{k}(x)-[\phi_{k}]^{j}|^{2}(2h_{k})^{3}\Big{)}^{\frac{1}{2}}}.

Then, we see that

xΩhkjψk(x)(2hk)3=0,xΩhkj|ψk(x)|2(2hk)3=1,\displaystyle\sum_{x\in\Omega_{h_{k}}^{\circ j}}\psi_{k}(x)(2h_{k})^{3}=0,\quad\sum_{x\in\Omega_{h_{k}}^{\circ j}}|\psi_{k}(x)|^{2}(2h_{k})^{3}=1,
xΩhkΩhk|𝒟ψk(x)|2(2hk)3k1(2hk)3for all k.\displaystyle\sum_{x\in\Omega_{h_{k}}\setminus\partial\Omega_{h_{k}}}|\mathcal{D}\psi_{k}(x)|^{2}(2h_{k})^{3}\leq k^{-1}(2h_{k})^{3}\quad\mbox{for all $k$}.

Set

Θhk:=xΩhkj[x1,x1+2hk)×[x2,x2+2hk)×[x3,x3+2hk).\displaystyle\Theta_{h_{k}}:=\bigcup_{x\in\Omega_{h_{k}}^{\circ j}}[x_{1},x_{1}+2h_{k})\times[x_{2},x_{2}+2h_{k})\times[x_{3},x_{3}+2h_{k}).

Let w^k:Θhk3\hat{w}_{k}:\Theta_{h_{k}}\to{\mathbb{R}}^{3} be the step function defined as

w^k(x):=ψk(y) for x[y1,y1+2hk)×[y2,y2+2hk)×[y3,y3+2hk)yΩhkj.\hat{w}_{k}(x):=\psi_{k}(y)\mbox{ for $x\in[y_{1},y_{1}+2h_{k})\times[y_{2},y_{2}+2h_{k})\times[y_{3},y_{3}+2h_{k})$, $y\in\Omega_{h_{k}}^{\circ j}$}.

Let wk:Θhkw_{k}:\Theta_{h_{k}}\to{\mathbb{R}} be the Lipschitz interpolation of the step function derived from ψk|Ωhkj\psi^{k}|_{\Omega_{h_{k}}^{\circ j}} as Lemma 2.5. Then, we have

wkw^kL2(Θhk)=O(hk)k1(2hk)3,\displaystyle\parallel w_{k}-\hat{w}_{k}\parallel_{L^{2}(\Theta_{h_{k}})}=O(h_{k})k^{-1}(2h_{k})^{3},\quad
|Θhkwk(x)dx|=|Θhkwk(x)w^kdx|K~wkw^kL2(Θhk),\displaystyle\Big{|}\int_{\Theta_{h_{k}}}w_{k}(x)dx\Big{|}=\Big{|}\int_{\Theta_{h_{k}}}w_{k}(x)-\hat{w}_{k}dx\Big{|}\leq\tilde{K}\parallel w_{k}-\hat{w}_{k}\parallel_{L^{2}(\Theta_{h_{k}})},
(1.1) xiwkL2(Θhk)Kk1(2hk)3(i=1,2,3) for all k,\displaystyle\parallel\partial_{x_{i}}w_{k}\parallel_{L^{2}(\Theta_{h_{k}})}\leq Kk^{-1}(2h_{k})^{3}\quad(i=1,2,3)\quad\mbox{ for all $k$},

where K,K~>0K,\tilde{K}>0 are some constant, which leads to

(1.2) wkL2(Θhk)=1+O(hk)hkk1(2hk)3,\displaystyle\parallel w_{k}\parallel_{L^{2}(\Theta_{h_{k}})}=1+O(h_{k})h_{k}k^{-1}(2h_{k})^{3},\quad
(1.3) Θhkwk(x)dx=O(hk)k1(2hk)3.\displaystyle\int_{\Theta_{h_{k}}}w_{k}(x)dx=O(h_{k})k^{-1}(2h_{k})^{3}.

We extend wkw_{k} to be a function w¯k\bar{w}_{k} of H1(Ω)H^{1}(\Omega) with the estimates

(1.4) w¯kH1(Ω)LwkH1(Θhk),xw¯kL2(Ω)3LxwkL2(Θhk)3,\displaystyle\parallel\bar{w}_{k}\parallel_{H^{1}(\Omega)}\leq L\parallel w_{k}\parallel_{H^{1}(\Theta_{h_{k}})},\quad\parallel\partial_{x}\bar{w}_{k}\parallel_{L^{2}(\Omega)^{3}}\leq L\parallel\partial_{x}w_{k}\parallel_{L^{2}(\Theta_{h_{k}})^{3}},

where L>0L>0 is a constant independent from kk. This is possible because Ω\Omega is bounded and Lipschitz: Let Γ1,,ΓM\Gamma_{1},\ldots,\Gamma_{M} be a family of open balls covering Ω\partial\Omega such that each ΩΓm\partial\Omega\cap\Gamma_{m} is described as the graph of a Lipschitz map y3=φm(y1,y2)y_{3}=\varphi_{m}(y_{1},y_{2}), where (y1,y2,y3)(y_{1},y_{2},y_{3}) is a Cartesian coordinate pointing to e~1,e~2,e~3\tilde{e}^{1},\tilde{e}^{2},\tilde{e}^{3} in the original space spanned by {e1,e2,e3}\{e^{1},e^{2},e^{3}\} in such a way that |e~3ei||\tilde{e}^{3}\cdot e^{i}| is uniformly away from 11 for i=1,2,3i=1,2,3, and all φm\varphi_{m} (m=1,,Mm=1,\ldots,M) has a common Lipschitz constant (the coordinate (y1,y2,y3)(y_{1},y_{2},y_{3}) depends on mm); For all kk\in{\mathbb{N}} large enough, Γ1,,ΓM\Gamma_{1},\ldots,\Gamma_{M} cover also Θhk\partial\Theta_{h_{k}}, where Θhk\partial\Theta_{h_{k}} consists of 2hk2h_{k}-squares orthogonal to e1e^{1}, e2e^{2} or e3e^{3}; Each ΘhkΓm\partial\Theta_{h_{k}}\cap\Gamma_{m} is arbitrarily close to ΩΓm\partial\Omega\cap\Gamma_{m} as kk\to\infty; We see that ΘhkΓm\partial\Theta_{h_{k}}\cap\Gamma_{m} is described as the graph of a Lipschitz map y3=φ~m(y1,y2;k)y_{3}=\tilde{\varphi}_{m}(y_{1},y_{2};k); We see also that φ~m(;k)\tilde{\varphi}_{m}(\cdot;k) has a common Lipschitz constant for all mm and kk; Then, we may apply the standard extension argument for H1H^{1}-functions to obtain (1.4). Since w¯k\bar{w}_{k}, xiw¯k\partial_{x_{i}}\bar{w}_{k} are bounded in L2(Ω)L^{2}(\Omega), we have subsequences, still denoted by the same symbol, which weakly converge to some wL2(Ω)w\in L^{2}(\Omega), viL2(Ω)3v_{i}\in L^{2}(\Omega)^{3}, respectively. For each fC0(Ω)f\in C_{0}^{\infty}(\Omega), we have

Ωw(x)xif(x)dx\displaystyle\int_{\Omega}w(x)\partial_{x_{i}}f(x)dx =\displaystyle= Ω(w(x)w¯k(x))xif(x)dxΩxiw¯k(x)f(x)dx\displaystyle\int_{\Omega}(w(x)-\bar{w}_{k}(x))\partial_{x_{i}}f(x)dx-\int_{\Omega}\partial_{x_{i}}\bar{w}_{k}(x)f(x)dx
Ωvi(x)f(x)dx as k,\displaystyle\to-\int_{\Omega}v_{i}(x)f(x)dx\mbox{\quad as $k\to\infty$,}

which implies that wH1(Ω)w\in H^{1}(\Omega) with xiw=vi\partial_{x_{i}}w=v_{i}. On the other hand, the Rellich-Kondrachov theorem yields a subsequence of w¯k\bar{w}_{k}, still denoted by the same symbol, such that w¯k\bar{w}_{k} strongly converges to ww in L2(Ω)L^{2}(\Omega) as kk\to\infty. For each fC0(Ω)f\in C_{0}^{\infty}(\Omega), we have with (1.1),

Ωxiw(x)f(x)dx\displaystyle\int_{\Omega}\partial_{x_{i}}w(x)f(x)dx =\displaystyle= Ωxiw¯k(x)f(x)dx+Ω(xiw(x)xiw¯k(x))f(x)dx\displaystyle\int_{\Omega}\partial_{x_{i}}\bar{w}_{k}(x)f(x)dx+\int_{\Omega}(\partial_{x_{i}}w(x)-\partial_{x_{i}}\bar{w}_{k}(x))f(x)dx
=\displaystyle= Ωxiw¯k(x)f(x)dxΩ(w(x)w¯k(x))xif(x)dx\displaystyle\int_{\Omega}\partial_{x_{i}}\bar{w}_{k}(x)f(x)dx-\int_{\Omega}(w(x)-\bar{w}_{k}(x))\partial_{x_{i}}f(x)dx
0 as k.\displaystyle\to 0\mbox{\quad as $k\to\infty$.}

Hence, we obtain xw=0\partial_{x}w=0 a.e. in Ω\Omega, which implies that ww is constant in Ω\Omega. Since w¯kL2(Ω)wkL2(Θk)=1+O(hk)k1hk3\parallel\bar{w}_{k}\parallel_{L^{2}(\Omega)}\geq\parallel w_{k}\parallel_{L^{2}(\Theta_{k})}=1+O(h_{k})k^{-1}h_{k}^{3} due to (1.2), we see that wL2(Ω)1\parallel w\parallel_{L^{2}(\Omega)}\geq 1 and wa0w\equiv a\neq 0 in Ω\Omega. This is a contradiction, since (1.3) implies

Ωw(x)dx\displaystyle\int_{\Omega}w(x)dx =\displaystyle= Θhkw(x)dx+ameas[ΩΘhk]\displaystyle\int_{\Theta_{h_{k}}}w(x)dx+a{\rm meas}[\Omega\setminus\Theta_{h_{k}}]
=\displaystyle= Θhkwk(x)dx+Θhk(w(x)wk(x))dx+ameas[ΩΘhk]\displaystyle\int_{\Theta_{h_{k}}}w_{k}(x)dx+\int_{\Theta_{h_{k}}}(w(x)-w_{k}(x))dx+a{\rm meas}[\Omega\setminus\Theta_{h_{k}}]
0 as k.\displaystyle\to 0\mbox{\quad as $k\to\infty$.}

2. Proof of Lemma 2.5 .

For each y=(y1,y2,y3)Ωhjy=(y_{1},y_{2},y_{3})\in\Omega_{h}^{\circ j}, define the following functions:

f1(x1):[y1,y1+2h],\displaystyle f_{1}(x_{1}):[y_{1},y_{1}+2h]\to{\mathbb{R}},\quad
f1(x1):=u(y)+u(y+2he1)u(y)2h(x1y1);\displaystyle f_{1}(x_{1}):=u(y)+\frac{u(y+2he^{1})-u(y)}{2h}(x_{1}-y_{1});
f2(x1):[y1,y1+2h],\displaystyle f_{2}(x_{1}):[y_{1},y_{1}+2h]\to{\mathbb{R}},\quad
f2(x1):=u(y+2he2)+u(y+2he2+2he1)u(y+2he2)2h(x1y1);\displaystyle f_{2}(x_{1}):=u(y+2he^{2})+\frac{u(y+2he^{2}+2he_{1})-u(y+2he^{2})}{2h}(x_{1}-y_{1});
f3(x1,x2):[y1,y1+2h]×[y2,y2+2h],\displaystyle f_{3}(x_{1},x_{2}):[y_{1},y_{1}+2h]\times[y_{2},y_{2}+2h]\to{\mathbb{R}},\quad
f3(x1,x2):=f1(x1)+f2(x1)f1(x1)2h(x2y2);\displaystyle f_{3}(x_{1},x_{2}):=f_{1}(x_{1})+\frac{f_{2}(x_{1})-f_{1}(x_{1})}{2h}(x_{2}-y_{2});
g1(x1):[y1,y1+2h],\displaystyle g_{1}(x_{1}):[y_{1},y_{1}+2h]\to{\mathbb{R}},\quad
g1(x1):=u(y+2he3)+u(y+2he3+2he1)u(y+2he3)2h(x1y1);\displaystyle g_{1}(x_{1}):=u(y+2he^{3})+\frac{u(y+2he^{3}+2he^{1})-u(y+2he^{3})}{2h}(x_{1}-y_{1});
g2(x1):[y1,y1+2h],\displaystyle g_{2}(x_{1}):[y_{1},y_{1}+2h]\to{\mathbb{R}},\quad
g2(x1):=u(y+2he3+2he2)\displaystyle g_{2}(x_{1}):=u(y+2he^{3}+2he^{2})
+u(y+2he3+2he2+2he1)u(y+2he3+2he2)2h(x1y1);\displaystyle\qquad\qquad+\frac{u(y+2he^{3}+2he^{2}+2he_{1})-u(y+2he^{3}+2he^{2})}{2h}(x_{1}-y_{1});
g3(x1,x2):[y1,y1+2h]×[y2,y2+2h],\displaystyle g_{3}(x_{1},x_{2}):[y_{1},y_{1}+2h]\times[y_{2},y_{2}+2h]\to{\mathbb{R}},\quad
g3(x1,x2):=g1(x1)+g2(x1)g1(x1)2h(x2y2);\displaystyle g_{3}(x_{1},x_{2}):=g_{1}(x_{1})+\frac{g_{2}(x_{1})-g_{1}(x_{1})}{2h}(x_{2}-y_{2});
w(x1,x2,x3):C2h+(y),\displaystyle w(x_{1},x_{2},x_{3}):C_{2h}^{+}(y)\to{\mathbb{R}},
w(x1,x2,x3):=f3(x1,x2)+g3(x1,x2)f3(x1,x2)2h(x3y3)\displaystyle w(x_{1},x_{2},x_{3}):=f_{3}(x_{1},x_{2})+\frac{g_{3}(x_{1},x_{2})-f_{3}(x_{1},x_{2})}{2h}(x_{3}-y_{3})

Then, we see that

w(x1,x2,x3)=u(y)+D1u(y+he1)(x1y1)+D2u(y+he2)(x2y2)\displaystyle\!\!\!\!\!w(x_{1},x_{2},x_{3})=u(y)+D_{1}u(y+he^{1})(x_{1}-y_{1})+D_{2}u(y+he^{2})(x_{2}-y_{2})
+D3u(y+he3)(x3y3)\displaystyle\qquad+D_{3}u(y+he^{3})(x_{3}-y_{3})
+{D1u(y+2he2+he1)D1u(y+he1)}(x1y1)(x2y2)2h\displaystyle\qquad+\{D_{1}u(y+2he^{2}+he^{1})-D_{1}u(y+he^{1})\}\frac{(x_{1}-y_{1})(x_{2}-y_{2})}{2h}
+{D1u(y+2he3+he1)D1u(y+he1)}(x1y1)(x3y3)2h\displaystyle\qquad+\{D_{1}u(y+2he^{3}+he^{1})-D_{1}u(y+he^{1})\}\frac{(x_{1}-y_{1})(x_{3}-y_{3})}{2h}
+{D2u(y+2he3+he2)D2u(y+he2)}(x2y2)(x3y3)2h\displaystyle\qquad+\{D_{2}u(y+2he^{3}+he^{2})-D_{2}u(y+he^{2})\}\frac{(x_{2}-y_{2})(x_{3}-y_{3})}{2h}
+{D1u(y+2he2+2he3+he1)D1u(y+2he3+he1)\displaystyle\qquad+\{D_{1}u(y+2he^{2}+2he^{3}+he^{1})-D_{1}u(y+2he^{3}+he^{1})
D1u(y+2he2+he1)+D1u(y+he1)}(x1y1)(x2y2)(x3y3)(2h)2.\displaystyle\qquad-D_{1}u(y+2he^{2}+he^{1})+D_{1}u(y+he^{1})\}\frac{(x_{1}-y_{1})(x_{2}-y_{2})(x_{3}-y_{3})}{(2h)^{2}}.

It is clear that ww can be Lipschitz continuously connected with each other, yielding w:Θhjw:\Theta_{h}^{j}\to{\mathbb{R}} that satisfies the inequalities. ∎

References

  • [1] A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comp. 23 (1969), pp. 341-353.
  • [2] H. R. Jauslin, H. O. Kreiss and J. Moser, On the forced Burgers equation with periodic boundary conditions, Proc. Sympos. Pure Math. 65 (1999), pp. 133-153.
  • [3] Y. Kagei, T. Nishida and Y. Teramoto, On the spectrum for the artificial compressible system, J. Differential Equations 264 (2018), No. 2, pp. 897-928.
  • [4] M. Kyed, Time-Periodic Solutions to the Navier-Stokes Equations, Habilitationsschrift, TU-Darmstadt (2012).
  • [5] H. Kuroki and K. Soga, On convergence of Chorin’s projection method to a Leray-Hopf weak solution, Numer. Math. (2020). https://doi.org/10.1007/s00211-020-01144-w
  • [6] T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain, Hiroshima Math. J. 12 (1982), pp. 513-528.
  • [7] T. Nishida and K. Soga, Difference approximation to Aubry-Mather sets of the forced Burgers equation, Nonlinearity 25 (2012), 2401-2422.
  • [8] R. Rannacher, On Chorin’s projection method for the incompressible Navier-Stokes equations, Lecture Notes in Mathematics 1530, Springer, Berlin-Heidelberg (1992), pp. 167-183.
  • [9] J. Serrin, A note on the existence of periodic solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 3 (1959), pp. 120-122.
  • [10] J. Shen, On error estimates of the projection methods for the Navier-Stokes equations: Second-oder scheme, Math. Comp. 65 (1996), pp. 1039-1065.
  • [11] R. Temam, Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. (French), Arch. Rational Mech. Anal. 33 (1969), pp. 377-385.
  • [12] Y. Teramoto, On the stability of periodic solutions of the Navier-Stokes equation in a noncylindrical domain, Hiroshima Math. J. 13 (1983), pp. 607-625.