This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Monotone operator methods for a class of nonlocal multi-phase variable exponent problems

\nameMustafa Avci CONTACT M. Avci. Email: [email protected] (primary) & [email protected] Faculty of Science and Technology, Applied Mathematics, Athabasca University, AB, Canada
Abstract

In this paper, we study a class of nonlocal multi-phase variable exponent problems within the framework of a newly introduced Musielak-Orlicz Sobolev space. We consider two problems, each distinguished by the type of nonlinearity it includes. To establish the existence of at least one nontrivial solution for each problem, we employ two different monotone operator methods.

keywords:
Multi-phase operator; Nonlocal problem; Musielak-Orlicz Sobolev space; Variable exponents.
articletype: Research Paper
{amscode}

35A01; 35A15; 35D30; 35J66; 35J75

1 Introduction

In this article, we study the following nonlocal multi-phase variable exponent problem

{(ϱ𝒯(u))div(|u|p(x)2u+μ1(x)|u|q(x)2u+μ2(x)|u|r(x)2u)=f in Ω,u=0 on Ω,\begin{cases}\begin{array}[]{rlll}-\mathcal{M}(\varrho_{\mathcal{T}}(u))\mathrm{div}(|\nabla u|^{p(x)-2}\nabla u+\mu_{1}(x)|\nabla u|^{q(x)-2}\nabla u+\mu_{2}(x)|\nabla u|^{r(x)-2}\nabla u)&=f\text{ in }\Omega,\\ u&=0\text{ on }\partial\Omega,\end{array}\end{cases} (𝒫\mathcal{P})

with

ϱ𝒯(u):=Ω(|u|p(x)p(x)+μ1(x)|u|q(x)q(x)+μ2(x)|u|r(x)r(x))𝑑x,\displaystyle\varrho_{\mathcal{T}}(u):=\int_{\Omega}\left(\frac{|\nabla u|^{p(x)}}{p(x)}+\mu_{1}(x)\frac{|\nabla u|^{q(x)}}{q(x)}+\mu_{2}(x)\frac{|\nabla u|^{r(x)}}{r(x)}\right)dx,

where Ω\Omega is a bounded domain in N\mathbb{R}^{N} (N2)(N\geq 2) with Lipschitz boundary; fW01,𝒯(Ω)f\in W_{0}^{1,\mathcal{T}}(\Omega)^{*}; \mathcal{M} is a C1C^{1}-continuous nondecreasing function; p,q,rC+(Ω¯)p,q,r\in C_{+}(\overline{\Omega}) with 1<p(x)<q(x)<r(x)1<p(x)<q(x)<r(x); and 0μ1(),μ2()L(Ω)0\leq\mu_{1}(\cdot),\mu_{2}(\cdot)\in L^{\infty}(\Omega).

The operator

div(|u|p(x)2u+μ1(x)|u|q(x)2u+μ2(x)|u|r(x)2u)\mathrm{div}(|\nabla u|^{p(x)-2}\nabla u+\mu_{1}(x)|\nabla u|^{q(x)-2}\nabla u+\mu_{2}(x)|\nabla u|^{r(x)-2}\nabla u) (1)

governs anisotropic and heterogeneous diffusion and is associated with the energy functional

uΩ(|u|p(x)p(x)+μ1(x)|u|q(x)q(x)+μ2(x)|u|r(x)r(x))𝑑x,uW01,𝒯(Ω).u\to\int_{\Omega}\left(\frac{|\nabla u|^{p(x)}}{p(x)}+\mu_{1}(x)\frac{|\nabla u|^{q(x)}}{q(x)}+\mu_{2}(x)\frac{|\nabla u|^{r(x)}}{r(x)}\right)dx,\,\ u\in W_{0}^{1,\mathcal{T}}(\Omega). (2)

This operator is referred to as a ”multi-phase” operator because it encapsulates three distinct types of elliptic behavior within a unified framework. Such a structure allows the model to describe phenomena where materials or processes exhibit varying properties in different regions—for instance, materials that are harder in some areas and softer in others.

The energy functional given in (2) was first introduced in [1] for constant exponents, where the authors established regularity results for multi-phase variational problems. Later, [2] investigated Dirichlet problems driven by multi-phase operators with variable exponents, providing a priori upper bounds for weak solutions. More recently, [3] examined multi-phase operators with variable exponents, analyzing the associated Musielak-Orlicz Sobolev spaces, extending Sobolev embedding results, and establishing essential regularity properties. Additionally, they demonstrated existence and uniqueness results for Dirichlet problems involving gradient-dependent nonlinearity and derived local regularity estimates.

To provide historical context, we also discuss the development of double-phase operators associated with the energy functional

uΩ(|u|pp+μ(x)|u|qq)𝑑x.u\to\int_{\Omega}\left(\frac{|\nabla u|^{p}}{p}+\mu(x)\frac{|\nabla u|^{q}}{q}\right)dx. (3)

This type of functional was introduced in [4], and since then, numerous studies have explored its properties and applications (see, e.g., [5, 6, 7, 8, 9, 10]). The significance of this model extends across multiple disciplines, underscoring its broad applicability.

While preparing this article, we could only find the paper [11] where a Kirchhoff-type (i.e. nonlocal) problem involving a multi-phase operator with variable exponents is studied. In this paper, the author investigate a Kirchhoff-type problem involving a multi-phase operator with three variable exponents. The problem features a right-hand side comprising a Carathéodory perturbation, which is defined locally, along with a Kirchhoff term. By employing a generalized version of the symmetric mountain pass theorem and leveraging recent a priori upper bounds for multi-phase problems, the author establishes the existence of sequence of nontrivial solutions which converges to zero in the corresponding Musielak-Orlicz Sobolev space as well as in L(Ω)L^{\infty}(\Omega).

The paper is organised as follows. In Section 2, we first provide some background for the theory of variable Sobolev spaces W01,p(x)(Ω)W_{0}^{1,p(x)}(\Omega) and the Musielak-Orlicz Sobolev space W01,(Ω)W_{0}^{1,\mathcal{H}}(\Omega), and then obtain a crucial auxiliary result. In Section 3, we set up the first problem where we work with a general nonlinearity fW01,𝒯(Ω)f\in W_{0}^{1,\mathcal{T}}(\Omega)^{*}, and obtain the existence and uniqueness result for (𝒫\mathcal{P}). In Section 4, we study the second problem where we specify the nonlinearity ff as f=f(x,u,u)f=f(x,u,\nabla u), and obtain an existence result for (𝒫\mathcal{P}).

2 Mathematical Background and Auxiliary Results

We start with some basic concepts of variable Lebesgue-Sobolev spaces. For more details, and the proof of the following propositions, we refer the reader to [12, 13, 14, 15, 16].

C+(Ω¯)={hC(Ω¯), h(x)>1 for all xΩ¯}.C_{+}\left(\overline{\Omega}\right)=\left\{h\in C\left(\overline{\Omega}\right),\text{ }h\left(x\right)>1\text{ for all\ }x\in\overline{\Omega}\right\}.

For hC+(Ω¯)h\in C_{+}(\overline{\Omega}) denote

h:=minxΩ¯h(x)h(x)h+:=maxxΩ¯h(x)<.h^{-}:=\underset{x\in\overline{\Omega}}{\min}h(x)\leq h(x)\leq h^{+}:=\underset{x\in\overline{\Omega}}{\max}h(x)<\infty.

For any hC+(Ω¯)h\in C_{+}\left(\overline{\Omega}\right), we define the variable exponent Lebesgue space by

Lh(x)(Ω)={uu:Ω is measurable,Ω|u(x)|h(x)𝑑x<}.L^{h(x)}(\Omega)=\left\{u\mid u:\Omega\rightarrow\mathbb{R}\text{ is measurable},\int_{\Omega}|u(x)|^{h(x)}dx<\infty\right\}.

Then, Lh(x)(Ω)L^{h(x)}(\Omega) endowed with the norm

|u|h(x)=inf{λ>0:Ω|u(x)λ|h(x)𝑑x1},|u|_{h(x)}=\inf\left\{\lambda>0:\int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{h(x)}dx\leq 1\right\},

becomes a Banach space. The convex functional ρ:Lh(x)(Ω)\rho:L^{h(x)}(\Omega)\rightarrow\mathbb{R} defined by

ρ(u)=Ω|u(x)|h(x)𝑑x,\rho(u)=\int_{\Omega}|u(x)|^{h(x)}dx,

is called modular on Lh(x)(Ω)L^{h(x)}(\Omega).

Proposition 2.1.

If u,unLh(x)(Ω)u,u_{n}\in L^{h(x)}(\Omega), we have

  • (i)(i)

    |u|h(x)<1(=1;>1)ρ(u)<1(=1;>1);|u|_{h(x)}<1(=1;>1)\Leftrightarrow\rho(u)<1(=1;>1);

  • (ii)(ii)

    |u|h(x)>1|u|h(x)hρ(u)|u|h(x)h+|u|_{h(x)}>1\implies|u|_{h(x)}^{h^{-}}\leq\rho(u)\leq|u|_{h(x)}^{h^{+}};
    |u|h(x)1|u|h(x)h+ρ(u)|u|h(x)h;|u|_{h(x)}\leq 1\implies|u|_{h(x)}^{h^{+}}\leq\rho(u)\leq|u|_{h(x)}^{h^{-}};

  • (iii)(iii)

    limn|unu|h(x)=0limnρ(unu)=0limnρ(un)=ρ(u)\lim\limits_{n\rightarrow\infty}|u_{n}-u|_{h(x)}=0\Leftrightarrow\lim\limits_{n\rightarrow\infty}\rho(u_{n}-u)=0\Leftrightarrow\lim\limits_{n\rightarrow\infty}\rho(u_{n})=\rho(u).

Proposition 2.2.

Let h1(x)h_{1}(x) and h2(x)h_{2}(x) be measurable functions such that h1L(Ω)h_{1}\in L^{\infty}(\Omega) and 1h1(x)h2(x)1\leq h_{1}(x)h_{2}(x)\leq\infty for a.e. xΩx\in\Omega. Let uLh2(x)(Ω),u0u\in L^{h_{2}(x)}(\Omega),~{}u\neq 0. Then

  • (i)(i)

    |u|h1(x)h2(x)1 |u|h1(x)h2(x)h1+||u|h1(x)|h2(x)|u|h1(x)h2(x)h1\left|u\right|_{h_{1}(x)h_{2}(x)}\leq 1\text{\ }\Longrightarrow\left|u\right|_{h_{1}(x)h_{2}(x)}^{h_{1}^{+}}\leq\left|\left|u\right|^{h_{1}(x)}\right|_{h_{2}(x)}\leq\left|u\right|_{h_{1}(x)h_{2}(x)}^{h_{1}^{-}}

  • (ii)(ii)

    |u|h1(x)h2(x)1|u|h1(x)h2(x)h1||u|h1(x)|h2(x)|u|h1(x)h2(x)h1+\left|u\right|_{h_{1}(x)h_{2}(x)}\geq 1\ \Longrightarrow\left|u\right|_{h_{1}(x)h_{2}(x)}^{h_{1}^{-}}\leq\left|\left|u\right|^{h_{1}(x)}\right|_{h_{2}(x)}\leq\left|u\right|_{h_{1}(x)h_{2}(x)}^{h_{1}^{+}}

  • (iii)(iii)

    In particular, if h1(x)=hh_{1}(x)=h is constant then

    ||u|h|h2(x)=|u|hh2(x)h.\left|\left|u\right|^{h}\right|_{h_{2}(x)}=\left|u\right|_{hh_{2}(x)}^{h}.

The variable exponent Sobolev space W1,h(x)(Ω)W^{1,h(x)}(\Omega) is defined by

W1,h(x)(Ω)={uLp(x)(Ω):|u|Lh(x)(Ω)},W^{1,h(x)}(\Omega)=\{u\in L^{p(x)}(\Omega):|\nabla u|\in L^{h(x)}(\Omega)\},

with the norm

u1,h(x):=|u|h(x)+|u|h(x),\|u\|_{1,h(x)}:=|u|_{h(x)}+|\nabla u|_{h(x)},

for all uW1,h(x)(Ω)u\in W^{1,h(x)}(\Omega).

Proposition 2.3.

If 1<hh+<1<h^{-}\leq h^{+}<\infty, then the spaces Lh(x)(Ω)L^{h(x)}(\Omega) and W1,h(x)(Ω)W^{1,h(x)}(\Omega) are separable and reflexive Banach spaces.

The space W01,h(x)(Ω)W_{0}^{1,h(x)}(\Omega) is defined as C0(Ω)¯1,h(x)=W01,h(x)(Ω)\overline{C_{0}^{\infty}(\Omega)}^{\|\cdot\|_{1,h(x)}}=W_{0}^{1,h(x)}(\Omega), and hence, it is the smallest closed set that contains C0(Ω)C_{0}^{\infty}(\Omega). Therefore, W01,h(x)(Ω)W_{0}^{1,h(x)}(\Omega) is also a separable and reflexive Banach space due to the inclusion W01,h(x)(Ω)W1,h(x)(Ω)W_{0}^{1,h(x)}(\Omega)\subset W^{1,h(x)}(\Omega).
Note that as a consequence of Poincaré inequality, u1,h(x)\|u\|_{1,h(x)} and |u|h(x)|\nabla u|_{h(x)} are equivalent norms on W01,h(x)(Ω)W_{0}^{1,h(x)}(\Omega). Therefore, for any uW01,h(x)(Ω)u\in W_{0}^{1,h(x)}(\Omega) we can define an equivalent norm u\|u\| such that

u:=|u|h(x).\|u\|:=|\nabla u|_{h(x)}.
Proposition 2.4.

Let mC(Ω¯)m\in C(\overline{\Omega}). If 1m(x)<h(x)1\leq m(x)<h^{\ast}(x) for all xΩ¯x\in\overline{\Omega}, then the embeddings W1,h(x)(Ω)Lm(x)(Ω)W^{1,h(x)}(\Omega)\hookrightarrow L^{m(x)}(\Omega) and W01,h(x)(Ω)Lm(x)(Ω)W_{0}^{1,h(x)}(\Omega)\hookrightarrow L^{m(x)}(\Omega) are compact and continuous, where h(x)={Nh(x)Nh(x)if h(x)<N,+if h(x)N.h^{\ast}(x)=\left\{\begin{array}[]{cc}\frac{Nh(x)}{N-h(x)}&\text{if }h(x)<N,\\ +\infty&\text{if }h(x)\geq N.\end{array}\right.

In the sequel, we introduce the multi-phase operator, the Musielak–Orlicz space, and the Musielak–Orlicz Sobolev space, respectively.
We make the following assumptions.

  • (H1)(H_{1})

    p,q,r,sC+(Ω¯)p,q,r,s\in C_{+}(\overline{\Omega}) with p(x)<Np(x)<N; 1<pp(x)<q(x)<r(x)<s(x)<p(x)1<p^{-}\leq p(x)<q(x)<r(x)<s(x)<p^{*}(x); s+<p(x)s^{+}<p^{*}(x).

  • (H2)(H_{2})

    μ1(),μ2()L(Ω)\mu_{1}(\cdot),\mu_{2}(\cdot)\in L^{\infty}(\Omega) such that μ1(x)0\mu_{1}(x)\geq 0 and μ2(x)0\mu_{2}(x)\geq 0 for all xΩ¯x\in\overline{\Omega}.

Under the assumptions (H1)(H_{1}) and (H2)(H_{2}), we define the nonlinear function 𝒯:Ω×[0,][0,]\mathcal{T}:\Omega\times[0,\infty]\to[0,\infty], i.e. the multi-phase operator, by

𝒯(x,t)=tp(x)+μ1(x)tq(x)+μ2(x)tr(x)for all(x,t)Ω×[0,].\mathcal{T}(x,t)=t^{p(x)}+\mu_{1}(x)t^{q(x)}+\mu_{2}(x)t^{r(x)}\ \text{for all}\ (x,t)\in\Omega\times[0,\infty].

Then the corresponding modular ρ𝒯()\rho_{\mathcal{T}}(\cdot) is given by

ρ𝒯(u):=Ω𝒯(x,|u|)𝑑x=Ω(|u(x)|p(x)+μ1(x)|u(x)|q(x)+μ2(x)|u(x)|r(x))𝑑x.\displaystyle\rho_{\mathcal{T}}(u):=\int_{\Omega}\mathcal{T}(x,|u|)dx=\int_{\Omega}\left(|u(x)|^{p(x)}+\mu_{1}(x)|u(x)|^{q(x)}+\mu_{2}(x)|u(x)|^{r(x)}\right)dx.

The Musielak-Orlicz space L𝒯(Ω)L^{\mathcal{T}}(\Omega), is defined by

L𝒯(Ω)={u:Ωmeasurable;ρ𝒯(u)<+},L^{\mathcal{T}}(\Omega)=\left\{u:\Omega\to\mathbb{R}\,\,\text{measurable};\,\,\rho_{\mathcal{T}}(u)<+\infty\right\},

endowed with the Luxemburg norm

u𝒯:=inf{ζ>0:ρ𝒯(uζ)1}.\|u\|_{\mathcal{T}}:=\inf\left\{\zeta>0:\rho_{\mathcal{T}}\left(\frac{u}{\zeta}\right)\leq 1\right\}.

Analogous to Proposition 2.1, there are similar relationship between the modular ρ𝒯()\rho_{\mathcal{T}}(\cdot) and the norm 𝒯\|\cdot\|_{\mathcal{T}}, see [3, Proposition 3.2] for a detailed proof.

Proposition 2.5.

Assume (H1)(H_{1}) hold, and uL(Ω)u\in L^{\mathcal{H}}(\Omega). Then

  • (i)(i)

    If u0u\neq 0, then u𝒯=ζρ𝒯(uζ)=1\|u\|_{\mathcal{T}}=\zeta\Leftrightarrow\rho_{\mathcal{T}}(\frac{u}{\zeta})=1,

  • (ii)(ii)

    u𝒯<1(resp.>1,=1)ρ𝒯(uζ)<1(resp.>1,=1)\|u\|_{\mathcal{T}}<1\ (\text{resp.}\ >1,=1)\Leftrightarrow\rho_{\mathcal{T}}(\frac{u}{\zeta})<1\ (\text{resp.}\ >1,=1),

  • (iii)(iii)

    If u𝒯<1u𝒯r+ρ𝒯(u)u𝒯p\|u\|_{\mathcal{T}}<1\Rightarrow\|u\|_{\mathcal{T}}^{r^{+}}\leq\rho_{\mathcal{T}}(u)\leq\|u\|_{\mathcal{T}}^{p^{-}},

  • (iv)(iv)

    If u𝒯>1u𝒯pρ𝒯(u)u𝒯r+\|u\|_{\mathcal{T}}>1\Rightarrow\|u\|_{\mathcal{T}}^{p^{-}}\leq\rho_{\mathcal{T}}(u)\leq\|u\|_{\mathcal{T}}^{r^{+}},

  • (v)(v)

    u𝒯0ρ𝒯(u)0\|u\|_{\mathcal{T}}\to 0\Leftrightarrow\rho_{\mathcal{T}}(u)\to 0,

  • (vi)(vi)

    u𝒯+ρ𝒯(u)+\|u\|_{\mathcal{T}}\to+\infty\Leftrightarrow\rho_{\mathcal{T}}(u)\to+\infty,

  • (vii)(vii)

    u𝒯1ρ𝒯(u)1\|u\|_{\mathcal{T}}\to 1\Leftrightarrow\rho_{\mathcal{T}}(u)\to 1,

  • (viii)(viii)

    If unuu_{n}\to u in L𝒯(Ω)L^{\mathcal{T}}(\Omega), then ρ𝒯(un)ρ𝒯(u)\rho_{\mathcal{T}}(u_{n})\to\rho_{\mathcal{T}}(u).

The Musielak-Orlicz Sobolev space W1,𝒯(Ω)W^{1,\mathcal{T}}(\Omega) is defined by

W1,𝒯(Ω)={uL𝒯(Ω):|u|L(Ω)},W^{1,\mathcal{T}}(\Omega)=\left\{u\in L^{\mathcal{T}}(\Omega):|\nabla u|\in L^{\mathcal{H}}(\Omega)\right\},

and equipped with the norm

u1,𝒯:=u𝒯+u𝒯,\|u\|_{1,\mathcal{T}}:=\|\nabla u\|_{\mathcal{T}}+\|u\|_{\mathcal{T}},

where u𝒯=|u|𝒯\|\nabla u\|_{\mathcal{T}}=\|\,|\nabla u|\,\|_{\mathcal{T}}.
The space W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega) is defined as C0(Ω)¯1,𝒯=W01,𝒯(Ω)\overline{C_{0}^{\infty}(\Omega)}^{\|\cdot\|_{1,\mathcal{T}}}=W_{0}^{1,\mathcal{T}}(\Omega). Notice that L𝒯(Ω),W1,𝒯(Ω)L^{\mathcal{T}}(\Omega),W^{1,\mathcal{T}}(\Omega) and W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega) are uniformly convex and reflexive Banach spaces, and the following embeddings hold [3, Propositions 3.1, 3.3].

Proposition 2.6.

Let (H1)(H_{1}) and (H2)(H_{2}) be satisfied. Then the following embeddings hold:

  • (i)(i)

    L𝒯(Ω)Lh()(Ω),W1,𝒯(Ω)W1,h()(Ω)L^{\mathcal{T}}(\Omega)\hookrightarrow L^{h(\cdot)}(\Omega),W^{1,\mathcal{T}}(\Omega)\hookrightarrow W^{1,h(\cdot)}(\Omega), W01,𝒯(Ω)W01,h()(Ω)W_{0}^{1,\mathcal{T}}(\Omega)\hookrightarrow W_{0}^{1,h(\cdot)}(\Omega) are continuous for all hC(Ω¯)h\in C(\overline{\Omega}) with 1h(x)p(x)1\leq h(x)\leq p(x) for all xΩ¯x\in\overline{\Omega}.

  • (ii)(ii)

    W1,𝒯(Ω)Lh()(Ω)W^{1,\mathcal{T}}(\Omega)\hookrightarrow L^{h(\cdot)}(\Omega) and W01,𝒯(Ω)Lh()(Ω)W_{0}^{1,\mathcal{T}}(\Omega)\hookrightarrow L^{h(\cdot)}(\Omega) are compact for all hC(Ω¯)h\in C(\overline{\Omega}) with 1h(x)<p(x)1\leq h(x)<p^{*}(x) for all xΩ¯x\in\overline{\Omega}.

As a conclusion of Proposition 2.6:
We have the continuous embedding W01,𝒯(Ω)Lh()(Ω)W_{0}^{1,\mathcal{T}}(\Omega)\hookrightarrow L^{h(\cdot)}(\Omega), and there is a constant c𝒯c_{\mathcal{T}} such that

uh()c𝒯u1,𝒯,0.\|u\|_{h(\cdot)}\leq c_{\mathcal{T}}\|u\|_{1,\mathcal{T},0}.

As well, W01,(Ω)W_{0}^{1,\mathcal{H}}(\Omega) is compactly embedded in L(Ω)L^{\mathcal{H}}(\Omega).
Thus, W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega) can be equipped with the equivalent norm

u1,𝒯,0:=u𝒯.\|u\|_{1,\mathcal{T},0}:=\|\nabla u\|_{\mathcal{T}}.

We lastly introduce the seminormed spaces

Lμ1q()(Ω)={u:Ωmeasurable;Ωμ1(x)|u|q(x)𝑑x<+},L^{q(\cdot)}_{\mu_{1}}(\Omega)=\left\{u:\Omega\to\mathbb{R}\,\,\text{measurable};\,\,\int_{\Omega}\mu_{1}(x)|u|^{q(x)}dx<+\infty\right\},

and

Lμ2r()(Ω)={u:Ωmeasurable;Ωμ2(x)|u|r(x)𝑑x<+},L^{r(\cdot)}_{\mu_{2}}(\Omega)=\left\{u:\Omega\to\mathbb{R}\,\,\text{measurable};\,\,\int_{\Omega}\mu_{2}(x)|u|^{r(x)}dx<+\infty\right\},

which are endow with the seminorms

|u|q(),μ1=inf{ς1>0:Ωμ1(x)(|u|ς1)q(x)𝑑x1},|u|_{q(\cdot),\mu_{1}}=\inf\left\{\varsigma_{1}>0:\int_{\Omega}\mu_{1}(x)\left(\frac{|u|}{\varsigma_{1}}\right)^{q(x)}dx\leq 1\right\},

and

|u|r(),μ2=inf{ς2>0:Ωμ2(x)(|u|ς2)r(x)𝑑x1},|u|_{r(\cdot),\mu_{2}}=\inf\left\{\varsigma_{2}>0:\int_{\Omega}\mu_{2}(x)\left(\frac{|u|}{\varsigma_{2}}\right)^{r(x)}dx\leq 1\right\},

respectively. We have L𝒯(Ω)Lμ1q()(Ω)L^{\mathcal{T}}(\Omega)\hookrightarrow L^{q(\cdot)}_{\mu_{1}}(\Omega) and L𝒯(Ω)Lμ2r()(Ω)L^{\mathcal{T}}(\Omega)\hookrightarrow L^{r(\cdot)}_{\mu_{2}}(\Omega) continuously [3, Proposition 3.3].

Proposition 2.7.

For the convex functional

ϱ𝒯(u)=Ω(|u|p(x)p(x)+μ1(x)|u|q(x)q(x)+μ2(x)|u|r(x)r(x))𝑑x,\varrho_{\mathcal{T}}(u)=\int_{\Omega}\left(\frac{|\nabla u|^{p(x)}}{p(x)}+\mu_{1}(x)\frac{|\nabla u|^{q(x)}}{q(x)}+\mu_{2}(x)\frac{|\nabla u|^{r(x)}}{r(x)}\right)dx,

we have the following [3]:

  • (i)(i)

    ϱ𝒯C1(W01,𝒯(Ω),)\varrho_{\mathcal{T}}\in C^{1}(W_{0}^{1,\mathcal{T}}(\Omega),\mathbb{R}) with the derivative

    ϱ𝒯(u),φ=Ω(|u|p(x)2u+μ1(x)|u|q(x)2u+μ2(x)|u|r(x)2u)φdx,\langle\varrho^{\prime}_{\mathcal{T}}(u),\varphi\rangle=\int_{\Omega}(|\nabla u|^{p(x)-2}\nabla u+\mu_{1}(x)|\nabla u|^{q(x)-2}\nabla u+\mu_{2}(x)|\nabla u|^{r(x)-2}\nabla u)\cdot\nabla\varphi dx,

    for all u,φW01,𝒯(Ω)u,\varphi\in W_{0}^{1,\mathcal{T}}(\Omega), where ,\langle\cdot,\cdot\rangle is the dual pairing between W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega) and its dual W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega)^{*};

  • (ii)(ii)

    ϱ𝒯\varrho^{\prime}_{\mathcal{T}} satisfies the (S+)(S_{+})-property, i.e.

    unu in W01,𝒯(Ω)u_{n}\rightharpoonup u\text{ in }W_{0}^{1,\mathcal{T}}(\Omega) (4)

    and

    lim supnϱ𝒯(un),unu0\limsup_{n\rightarrow\infty}\langle\varrho^{\prime}_{\mathcal{T}}(u_{n}),u_{n}-u\rangle\leq 0 (5)

    imply

    unu in W01,𝒯(Ω).u_{n}\to u\text{ in }W_{0}^{1,\mathcal{T}}(\Omega). (6)
Remark 1.

Notice that by Propositions 2.5 and the equivalency of the norms u1,𝒯,0\|u\|_{1,\mathcal{T},0} and u𝒯\|\nabla u\|_{\mathcal{T}}, we have the relations:

1r+u1,𝒯,0p1r+ρ𝒯(u)ϱ𝒯(u)1pρ𝒯(u)1pu1,𝒯,0r+ if u1,𝒯,0>1,\frac{1}{r^{+}}\|u\|^{p^{-}}_{1,\mathcal{T},0}\leq\frac{1}{r^{+}}\rho_{\mathcal{T}}(\nabla u)\leq\varrho_{\mathcal{T}}(u)\leq\frac{1}{p^{-}}\rho_{\mathcal{T}}(\nabla u)\leq\frac{1}{p^{-}}\|u\|^{r^{+}}_{1,\mathcal{T},0}\text{ if }\|u\|_{1,\mathcal{T},0}>1, (7)
1r+u1,𝒯,0r+1r+ρ𝒯(u)ϱ𝒯(u)1pρ𝒯(u)1pu1,𝒯,0p if u1,𝒯,01.\frac{1}{r^{+}}\|u\|^{r^{+}}_{1,\mathcal{T},0}\leq\frac{1}{r^{+}}\rho_{\mathcal{T}}(\nabla u)\leq\varrho_{\mathcal{T}}(u)\leq\frac{1}{p^{-}}\rho_{\mathcal{T}}(\nabla u)\leq\frac{1}{p^{-}}\|u\|^{p^{-}}_{1,\mathcal{T},0}\text{ if }\|u\|_{1,\mathcal{T},0}\leq 1. (8)
0<ϱ𝒯(u),u=ρ𝒯(u),0<\langle\varrho^{\prime}_{\mathcal{T}}(u),u\rangle=\rho_{\mathcal{T}}(\nabla u), (9)
0<pρ𝒯(u)ρ𝒯(u),ur+ρ𝒯(u).0<p^{-}\rho_{\mathcal{T}}(\nabla u)\leq\langle\rho^{\prime}_{\mathcal{T}}(\nabla u),\nabla u\rangle\leq r^{+}\rho_{\mathcal{T}}(\nabla u). (10)

The following result is obtained by the author in his recently submitted paper, which is still under review. However, since it plays a crucial part to obtain the main regularity results of the present paper, we provide its proof for the convenience of the reader.

Proposition 2.8.

Let x,yNx,y\in\mathbb{R}^{N} and let |||\cdot| be the Euclidean norm in N\mathbb{R}^{N}. Then for any 1p<1\leq p<\infty and the real parameters a,b>0a,b>0 it holds

|a|x|p2xb|y|p2y|(a+|ab|)||x|p2x|y|p2y|+|ab|.|a|x|^{p-2}x-b|y|^{p-2}y|\leq\left(a+|a-b|\right)||x|^{p-2}x-|y|^{p-2}y|+|a-b|. (11)
Proof.

If a=ba=b, then there is nothing to do. So, we assume that aba\neq b.
Put

Λ(x,y)=|a|x|p2xb|y|p2y|||x|p2x|y|p2y|.\Lambda(x,y)=\frac{|a|x|^{p-2}x-b|y|^{p-2}y|}{||x|^{p-2}x-|y|^{p-2}y|}. (12)

Notice that Λ\Lambda is invariant by any orthogonal transformation TT; that is, Λ(Tx,Ty)=Λ(x,y)\Lambda(Tx,Ty)=\Lambda(x,y) for all x,yNx,y\in\mathbb{R}^{N}. Thus, using this argument and the homogeneity of Λ\Lambda, we can let x=|x|e1x=|x|e_{1} and assume that x=e1x=e_{1}. Thus, it is enough to work with the function

Λ(e1,y)=|ae1b|y|p2y||e1|y|p2y|.\Lambda(e_{1},y)=\frac{|ae_{1}-b|y|^{p-2}y|}{|e_{1}-|y|^{p-2}y|}. (13)

First we get

|ae1b|y|p2y|\displaystyle|ae_{1}-b|y|^{p-2}y| =a|e1ba|y|p2y|=a|(e1|y|p2y)+(1ba)|y|p2y|\displaystyle=a\bigg{|}e_{1}-\frac{b}{a}|y|^{p-2}y\bigg{|}=a\bigg{|}(e_{1}-|y|^{p-2}y)+\left(1-\frac{b}{a}\right)|y|^{p-2}y\bigg{|}
a|e1|y|p2y|+|ab|||y|p2y|\displaystyle\leq a|e_{1}-|y|^{p-2}y|+|a-b|||y|^{p-2}y|
a|e1|y|p2y|+|ab|(|e1|y|p2y|+|e1|)\displaystyle\leq a|e_{1}-|y|^{p-2}y|+|a-b|\left(|e_{1}-|y|^{p-2}y|+|e_{1}|\right)
a|e1|y|p2y|+|ab||e1|y|p2y|+|ab|\displaystyle\leq a|e_{1}-|y|^{p-2}y|+|a-b||e_{1}-|y|^{p-2}y|+|a-b|
|e1|y|p2y|(a+|ab|)+|ab|.\displaystyle\leq|e_{1}-|y|^{p-2}y|\left(a+|a-b|\right)+|a-b|. (14)

Then using this in (13) we obtain

Λ(e1,y)\displaystyle\Lambda(e_{1},y) |e1|y|p2y|(a+|ab|)+|ab||e1|y|p2y|\displaystyle\leq\frac{|e_{1}-|y|^{p-2}y|\left(a+|a-b|\right)+|a-b|}{|e_{1}-|y|^{p-2}y|}
a+|ab|+|ab||e1|y|p2y|,\displaystyle\leq a+|a-b|+\frac{|a-b|}{|e_{1}-|y|^{p-2}y|}, (15)

from which (11) follows. ∎

3 The first problem

Definition 3.1.

A function uW01,𝒯(Ω)u\in W_{0}^{1,\mathcal{T}}(\Omega) is called a weak solution to problem (𝒫\mathcal{P}) if for all test function φW01,𝒯(Ω)\varphi\in W_{0}^{1,\mathcal{T}}(\Omega) it holds

(ϱ𝒯(u))ϱ𝒯(u),φ=Ωfφ𝑑x.\displaystyle\mathcal{M}(\varrho_{\mathcal{T}}(u))\langle\varrho^{\prime}_{\mathcal{T}}(u),\varphi\rangle=\int_{\Omega}f\varphi dx. (16)

Let us define the functional 𝒢:W01,(Ω)\mathcal{G}:W_{0}^{1,\mathcal{H}}(\Omega)\rightarrow\mathbb{R} as

𝒢(u):=^(ϱ𝒯(u))=0ϱ𝒯(u)(s)𝑑s.\mathcal{G}(u):=\mathcal{\widehat{M}}(\varrho_{\mathcal{T}}(u))=\int_{0}^{\varrho_{\mathcal{T}}(u)}\mathcal{M}(s)ds. (17)

Therefore, we can define the operator :W01,𝒯(Ω)W01,𝒯(Ω)\mathcal{H}:W_{0}^{1,\mathcal{T}}(\Omega)\rightarrow W_{0}^{1,\mathcal{T}}(\Omega)^{*} by

(u),φ=f,φ, for all u,φW01,𝒯(Ω),\langle\mathcal{H}(u),\varphi\rangle=\langle f,\varphi\rangle,\,\,\mbox{ for all }u,\varphi\in W_{0}^{1,\mathcal{T}}(\Omega), (18)

where (u)=𝒢(u)\mathcal{H}(u)=\mathcal{G}^{\prime}(u). As it is well-know from the theory of monotone operators [17], due to (16) and (18), one way to show that uW01,𝒯(Ω)u\in W_{0}^{1,\mathcal{T}}(\Omega) is a solution to problem (𝒫\mathcal{P}) for all test functions φW01,𝒯(Ω)\varphi\in W_{0}^{1,\mathcal{T}}(\Omega) is to solve the operator equation

u=f.\mathcal{H}u=f. (19)

We employ the following well-known result from nonlinear monotone operator theory (see, e.g., [17] for further details).

Lemma 3.2.

[18, 19] Let XX be a reflexive real Banach space. Let A:XXA:X\rightarrow X^{*} be an (nonlinear) operator satisfying the following:

  • (i)(i)

    AA is coercive.

  • (ii)(ii)

    AA is hemicontinuous; that is, AA is directionally weakly continuous, iff the function

    Φ(θ)=A(u+θw),v\Phi(\theta)=\langle A(u+\theta w),v\rangle

    is continuous in θ\theta on [0,1][0,1] for every u,w,vXu,w,v\in X.

  • (iii)(iii)

    AA is monotone on the space XX; that is, for all u,vXu,v\in X we have

    A(u)A(v),uv0.\langle A\left(u\right)-A\left(v\right),u-v\rangle\geq 0. (20)

Then equation

Au=gAu=g (21)

has at least one nontrivial solution uXu\in X for every gXg\in X^{*}. If, moreover, the inequality (20) is strict for all u,vXu,v\in X , uvu\neq v, then the equation (21) has precisely one solution uXu\in X for every gXg\in X^{*}.

The following is the first main result.

Theorem 3.3.

Assume that the hypotheses (H1)(H2)(H_{1})-(H_{2}) are satisfied. Additionally, assume that the function \mathcal{M} satisfies the following:

  • (M)(M)

    :(0,)[m0,)\mathcal{M}:(0,\infty)\to[m_{0},\infty) is a C1C^{1}-continuous nondecreasing function such that

    m0(t)κtγ1,m_{0}\leq\mathcal{M}(t)\leq\kappa t^{\gamma-1}, (22)

    where m0,κ,γm_{0},\kappa,\gamma are positive real parameters with γ>1\gamma>1.

Then for given any fW01,𝒯(Ω)f\in W_{0}^{1,\mathcal{T}}(\Omega)^{*}, the operator equation (19) has a unique nontrivial solution uW01,𝒯(Ω)u\in W_{0}^{1,\mathcal{T}}(\Omega) which in turn becomes a nontrivial weak solution to problem (𝒫\mathcal{P}).

Lemma 3.4.

\mathcal{H} is coercive.

Proof.

Using (M)(M) and Remark 1 it reads

(u),u=(ϱ𝒯(u))ρ𝒯(u)m0r+u1,𝒯,0p.\langle\mathcal{H}(u),u\rangle=\mathcal{M}(\varrho_{\mathcal{T}}(u))\rho_{\mathcal{T}}(\nabla u)\geq\frac{m_{0}}{r^{+}}\|u\|_{1,\mathcal{T},0}^{p^{-}}. (23)

Hence, (u),uu1,𝒯,0+\frac{\langle\mathcal{H}(u),u\rangle}{\|u\|_{1,\mathcal{T},0}}\to+\infty as u1,𝒯,0\|u\|_{1,\mathcal{T},0}\to\infty since p>1p^{-}>1, which implies that \mathcal{H} is coercive.

Lemma 3.5.

\mathcal{H} is hemicontinuous.

Proof.

Next, we show that operator \mathcal{H} is hemicontinuous. Then

|Φ(θ1)Φ(θ2)|=|(u+θ1v)(u+θ2v),φ|\displaystyle|\Phi(\theta_{1})-\Phi(\theta_{2})|=|\langle\mathcal{H}(u+\theta_{1}v)-\mathcal{H}(u+\theta_{2}v),\varphi\rangle|
Ω|θ1|(u+θ1v)|p(x)2(u+θ1v)θ2|(u+θ2v)|p(x)2(u+θ2v)||φ|𝑑x\displaystyle\leq\int_{\Omega}\bigg{|}\mathcal{M}_{\theta_{1}}|\nabla(u+\theta_{1}v)|^{p(x)-2}\nabla(u+\theta_{1}v)-\mathcal{M}_{\theta_{2}}|\nabla(u+\theta_{2}v)|^{p(x)-2}\nabla(u+\theta_{2}v)\bigg{|}|\nabla\varphi|dx
+Ωμ1(x)|θ1|(u+θ1v)|q(x)2(u+θ1v)θ2|(u+θ2v)|q(x)2(u+θ2v)||φ|𝑑x\displaystyle+\int_{\Omega}\mu_{1}(x)\bigg{|}\mathcal{M}_{\theta_{1}}|\nabla(u+\theta_{1}v)|^{q(x)-2}\nabla(u+\theta_{1}v)-\mathcal{M}_{\theta_{2}}|\nabla(u+\theta_{2}v)|^{q(x)-2}\nabla(u+\theta_{2}v)\bigg{|}|\nabla\varphi|dx
+Ωμ2(x)|θ1|(u+θ1v)|r(x)2(u+θ1v)θ2|(u+θ2v)|r(x)2(u+θ2v)||φ|𝑑x.\displaystyle+\int_{\Omega}\mu_{2}(x)\bigg{|}\mathcal{M}_{\theta_{1}}|\nabla(u+\theta_{1}v)|^{r(x)-2}\nabla(u+\theta_{1}v)-\mathcal{M}_{\theta_{2}}|\nabla(u+\theta_{2}v)|^{r(x)-2}\nabla(u+\theta_{2}v)\bigg{|}|\nabla\varphi|dx. (24)

where we let θ1=(ϱ𝒯(u+θ1v))\mathcal{M}_{\theta_{1}}=\mathcal{M}(\varrho_{\mathcal{T}}(u+\theta_{1}v)) and θ2=(ϱ𝒯(u+θ2v))\mathcal{M}_{\theta_{2}}=\mathcal{M}(\varrho_{\mathcal{T}}(u+\theta_{2}v)) for the sake of simplicity. Using Proposition 2.8, it reads

|Φ(θ1)Φ(θ2)|\displaystyle|\Phi(\theta_{1})-\Phi(\theta_{2})|
Ω{||(u+θ1v)|p(x)2(u+θ1v)|(u+θ2v)|p(x)2(u+θ2v)|\displaystyle\leq\int_{\Omega}\left\{||\nabla(u+\theta_{1}v)|^{p(x)-2}\nabla(u+\theta_{1}v)-|(u+\theta_{2}v)|^{p(x)-2}\nabla(u+\theta_{2}v)|\right.
×(Kθ1θ2+θ1)+Kθ1θ2}|φ|dx\displaystyle\left.\times(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})+K^{\theta_{2}}_{\theta_{1}}\right\}|\nabla\varphi|dx
+Ωμ1(x){||(u+θ1v)|q(x)2(u+θ1v)|(u+θ2v)|q(x)2(u+θ2v)|\displaystyle+\int_{\Omega}\mu_{1}(x)\left\{||\nabla(u+\theta_{1}v)|^{q(x)-2}\nabla(u+\theta_{1}v)-|(u+\theta_{2}v)|^{q(x)-2}\nabla(u+\theta_{2}v)|\right.
×(Kθ1θ2+θ1)+Kθ1θ2}|φ|dx\displaystyle\left.\times(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})+K^{\theta_{2}}_{\theta_{1}}\right\}|\nabla\varphi|dx
+Ωμ2(x){||(u+θ1v)|r(x)2(u+θ1v)|(u+θ2v)|r(x)2(u+θ2v)|\displaystyle+\int_{\Omega}\mu_{2}(x)\left\{||\nabla(u+\theta_{1}v)|^{r(x)-2}\nabla(u+\theta_{1}v)-|(u+\theta_{2}v)|^{r(x)-2}\nabla(u+\theta_{2}v)|\right.
×(Kθ1θ2+θ1)+Kθ1θ2}|φ|dx\displaystyle\left.\times(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})+K^{\theta_{2}}_{\theta_{1}}\right\}|\nabla\varphi|dx
(Kθ1θ2+θ1)Ω||(u+θ1v)|p(x)2(u+θ1v)|(u+θ1v)|p(x)2(u+θ1v)||v|𝑑x\displaystyle\leq(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})\int_{\Omega}||\nabla(u+\theta_{1}v)|^{p(x)-2}\nabla(u+\theta_{1}v)-|\nabla(u+\theta_{1}v)|^{p(x)-2}\nabla(u+\theta_{1}v)||\nabla v|dx
+(Kθ1θ2+θ1)Ωμ1(x)||(u+θ1v)|q(x)2un|(u+θ1v)|q(x)2(u+θ1v)||v|𝑑x\displaystyle+(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})\int_{\Omega}\mu_{1}(x)||\nabla(u+\theta_{1}v)|^{q(x)-2}\nabla u_{n}-|\nabla(u+\theta_{1}v)|^{q(x)-2}\nabla(u+\theta_{1}v)||\nabla v|dx
+(Kθ1θ2+θ1)Ωμ2(x)||(u+θ1v)|r(x)2un|(u+θ1v)|r(x)2(u+θ1v)||v|𝑑x\displaystyle+(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})\int_{\Omega}\mu_{2}(x)||\nabla(u+\theta_{1}v)|^{r(x)-2}\nabla u_{n}-|\nabla(u+\theta_{1}v)|^{r(x)-2}\nabla(u+\theta_{1}v)||\nabla v|dx
+3Kθ1θ2Ω|φ|𝑑x,\displaystyle+3K^{\theta_{2}}_{\theta_{1}}\int_{\Omega}|\nabla\varphi|dx, (25)

where Kθ1θ2=|θ1θ2|K^{\theta_{2}}_{\theta_{1}}=|\mathcal{M}_{\theta_{1}}-\mathcal{M}_{\theta_{2}}|.
Recall the following inequality [20]: for any 1<m<1<m<\infty, there is a constant cm>0c_{m}>0 such that

(|a|m2a|b|m2b)cm|ab|(|a|+|b|)m2,a,bN.(|a|^{m-2}a-|b|^{m-2}b)\leq c_{m}|a-b|(|a|+|b|)^{m-2},\quad\forall a,b\in\mathbb{R}^{N}. (26)

Therefore,

|Φ(θ1)Φ(θ2)|\displaystyle|\Phi(\theta_{1})-\Phi(\theta_{2})|
2p+1|θ1θ2|(Kθ1θ2+θ1)Ω(|(u+θ1v)|p(x)2+|(u+θ2v)|p(x)2)|v||φ|𝑑x\displaystyle\leq 2^{p^{+}-1}|\theta_{1}-\theta_{2}|(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})\int_{\Omega}\left(|\nabla(u+\theta_{1}v)|^{p(x)-2}+|\nabla(u+\theta_{2}v)|^{p(x)-2}\right)|\nabla v||\nabla\varphi|dx
+2q+1|θ1θ2|(Kθ1θ2+θ1)Ωμ1(x)(|(u+θ1v)|q(x)2+|(u+θ2v)|q(x)2)|v||φ|𝑑x\displaystyle+2^{q^{+}-1}|\theta_{1}-\theta_{2}|(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})\int_{\Omega}\mu_{1}(x)\left(|\nabla(u+\theta_{1}v)|^{q(x)-2}+|\nabla(u+\theta_{2}v)|^{q(x)-2}\right)|\nabla v||\nabla\varphi|dx
+2r+1|θ1θ2|(Kθ1θ2+θ1)Ωμ2(x)(|(u+θ1v)|r(x)2+|(u+θ2v)|r(x)2)|v||φ|𝑑x\displaystyle+2^{r^{+}-1}|\theta_{1}-\theta_{2}|(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})\int_{\Omega}\mu_{2}(x)\left(|\nabla(u+\theta_{1}v)|^{r(x)-2}+|\nabla(u+\theta_{2}v)|^{r(x)-2}\right)|\nabla v||\nabla\varphi|dx
+3Kθ1θ2Ω|φ|𝑑x.\displaystyle+3K^{\theta_{2}}_{\theta_{1}}\int_{\Omega}|\nabla\varphi|dx. (27)

Note that since θ1,θ2[0,1]\theta_{1},\theta_{2}\in[0,1], we have |(u+θ1v)||u|+|v||\nabla(u+\theta_{1}v)|\leq|\nabla u|+|\nabla v|, |(u+θ2v)||u|+|v||\nabla(u+\theta_{2}v)|\leq|\nabla u|+|\nabla v|, and the fact |v||u|+|v||\nabla v|\leq|\nabla u|+|\nabla v|. Therefore, applying these and letting |u|+|v|=ξ|\nabla u|+|\nabla v|=\xi in the lines above, and using the Hölder inequality, Proposition 2.2, and the necessary embeddings from Proposition 2.6 leads to

|Φ(θ1)Φ(θ2)|\displaystyle|\Phi(\theta_{1})-\Phi(\theta_{2})|
2p+|θ1θ2|(Kθ1θ2+θ1)Ω|ξ|p(x)2|ξ||φ|𝑑x\displaystyle\leq 2^{p^{+}}|\theta_{1}-\theta_{2}|(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})\int_{\Omega}|\xi|^{p(x)-2}|\xi||\nabla\varphi|dx
+2q+|θ1θ2|(Kθ1θ2+θ1)Ωμ1(x)|ξ|q(x)2|ξ|φ|dx\displaystyle+2^{q^{+}}|\theta_{1}-\theta_{2}|(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})\int_{\Omega}\mu_{1}(x)|\xi|^{q(x)-2}|\xi|\nabla\varphi|dx
+2r+|θ1θ2|(Kθ1θ2+θ1)Ωμ2(x)|ξ|r(x)2|ξ|φ|dx+3Kθ1θ2Ω|φ|dx\displaystyle+2^{r^{+}}|\theta_{1}-\theta_{2}|(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})\int_{\Omega}\mu_{2}(x)|\xi|^{r(x)-2}|\xi|\nabla\varphi|dx+3K^{\theta_{2}}_{\theta_{1}}\int_{\Omega}|\nabla\varphi|dx
2r+|θ1θ2|(Kθ1θ2+θ1)\displaystyle\leq 2^{r^{+}}|\theta_{1}-\theta_{2}|(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})
×(|ξ|p(x)p+1|φ|p(x)+|μ1||ξ|q(x)q+1|φ|q(x)+|μ2||ξ|r(x)r+1|φ|r(x)+3)\displaystyle\times\left(|\xi|_{p(x)}^{p^{+}-1}|\nabla\varphi|_{p(x)}+|\mu_{1}|_{\infty}|\xi|_{q(x)}^{q^{+}-1}|\nabla\varphi|_{q(x)}+|\mu_{2}|_{\infty}|\xi|_{r(x)}^{r^{+}-1}|\nabla\varphi|_{r(x)}+3\right)
2r++1|θ1θ2|(Kθ1θ2+θ1)(ξ1,𝒯,0p+1+|μ1|ξ1,𝒯,0q+1+|μ2|ξ1,𝒯,0r+1+3)φ1,𝒯,0\displaystyle\leq 2^{r^{+}+1}|\theta_{1}-\theta_{2}|(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})\left(\|\xi\|_{1,\mathcal{T},0}^{p^{+}-1}+|\mu_{1}|_{\infty}\|\xi\|_{1,\mathcal{T},0}^{q^{+}-1}+|\mu_{2}|_{\infty}\|\xi\|_{1,\mathcal{T},0}^{r^{+}-1}+3\right)\|\varphi\|_{1,\mathcal{T},0} (28)

Notice that by (M)(M) and Proposition 2.7, we have
Kθ1θ2=|θ1θ2|0K^{\theta_{2}}_{\theta_{1}}=|\mathcal{M}_{\theta_{1}}-\mathcal{M}_{\theta_{2}}|\to 0, and θ1θ2[m0,)\mathcal{M}_{\theta_{1}}\to\mathcal{M}_{\theta_{2}}\in[m_{0},\infty) as θ1θ2\theta_{1}\rightarrow\theta_{2}.
Therefore, |θ1θ2|(Kθ1θ2+θ1)0|\theta_{1}-\theta_{2}|(K^{\theta_{2}}_{\theta_{1}}+\mathcal{M}_{\theta_{1}})\to 0 as θ1θ2\theta_{1}\rightarrow\theta_{2}. In conclusion, we have

|Φ(θ1)Φ(θ2)|=|(u+θ1v)(u+θ2v),φ|0 as θ1θ2,|\Phi(\theta_{1})-\Phi(\theta_{2})|=|\langle\mathcal{H}(u+\theta_{1}v)-\mathcal{H}(u+\theta_{2}v),\varphi\rangle|\rightarrow 0\,\,\text{ as }\theta_{1}\rightarrow\theta_{2},

which implies that \mathcal{H} is hemicontinuous. ∎

Lemma 3.6.

\mathcal{H} is strictly monotone.

Proof.

Now, we show that \mathcal{H} is strictly monotone. To do so, we argue similarly to [21]. Let u,vW01,𝒯(Ω)u,v\in W_{0}^{1,\mathcal{T}}(\Omega) with uvu\neq v. Without loss of generality, we can assume that ϱ𝒯(u)ϱ𝒯(v)\varrho_{\mathcal{T}}(u)\geq\varrho_{\mathcal{T}}(v). Then, (ϱ𝒯(u))(ϱ𝒯(v))\mathcal{M}(\varrho_{\mathcal{T}}(u))\geq\mathcal{M}(\varrho_{\mathcal{T}}(v)) due to (M)(M) and Proposition 2.7.
Noticing that uv21(|u|2+|v|2)\nabla u\cdot\nabla v\leq 2^{-1}(|\nabla u|^{2}+|\nabla v|^{2}), we obtain

ϱ𝒯(u),uv\displaystyle\langle\varrho_{\mathcal{T}}^{\prime}(u),u-v\rangle
=Ω(|u|p(x)2u+μ1(x)|u|q(x)2u+μ2(x)|u|r(x)2u)(uv)dx\displaystyle=\int_{\Omega}(|\nabla u|^{p(x)-2}\nabla u+\mu_{1}(x)|\nabla u|^{q(x)-2}\nabla u+\mu_{2}(x)|\nabla u|^{r(x)-2}\nabla u)\cdot\nabla(u-v)dx
=Ω{|u|p(x)+μ1(x)|u|q(x)+μ2(x)|u|r(x)\displaystyle=\int_{\Omega}\left\{|\nabla u|^{p(x)}+\mu_{1}(x)|\nabla u|^{q(x)}+\mu_{2}(x)|\nabla u|^{r(x)}\right.
(|u|p(x)2+μ1(x)|u|q(x)2+μ2(x)|u|r(x)2)uv}dx\displaystyle\left.-(|\nabla u|^{p(x)-2}+\mu_{1}(x)|\nabla u|^{q(x)-2}+\mu_{2}(x)|\nabla u|^{r(x)-2})\nabla u\cdot\nabla v\right\}dx
21Ω(|u|p(x)2+μ1(x)|u|q(x)2+μ2(x)|u|r(x)2)(|u|2|v|2)𝑑x,\displaystyle\geq 2^{-1}\int_{\Omega}(|\nabla u|^{p(x)-2}+\mu_{1}(x)|\nabla u|^{q(x)-2}+\mu_{2}(x)|\nabla u|^{r(x)-2})(|\nabla u|^{2}-|\nabla v|^{2})dx, (29)

and similarly

ϱ𝒯(v),vu\displaystyle\langle\varrho_{\mathcal{T}}^{\prime}(v),v-u\rangle
=Ω(|v|p(x)2v+μ1(x)|v|q(x)2v+μ2(x)|v|r(x)2v)(vu)dx\displaystyle=\int_{\Omega}(|\nabla v|^{p(x)-2}\nabla v+\mu_{1}(x)|\nabla v|^{q(x)-2}\nabla v+\mu_{2}(x)|\nabla v|^{r(x)-2}\nabla v)\cdot\nabla(v-u)dx
=Ω{|v|p(x)+μ1(x)|v|q(x)+μ2(x)|v|r(x)\displaystyle=\int_{\Omega}\left\{|\nabla v|^{p(x)}+\mu_{1}(x)|\nabla v|^{q(x)}+\mu_{2}(x)|\nabla v|^{r(x)}\right.
(|v|p(x)2+μ1(x)|v|q(x)2+μ2(x)|v|r(x)2)uv}dx\displaystyle\left.-(|\nabla v|^{p(x)-2}+\mu_{1}(x)|\nabla v|^{q(x)-2}+\mu_{2}(x)|\nabla v|^{r(x)-2})\nabla u\cdot\nabla v\right\}dx
21Ω(|v|p(x)2+μ1(x)|v|q(x)2+μ2(x)|v|r(x)2)(|v|2|u|2)𝑑x,\displaystyle\geq 2^{-1}\int_{\Omega}(|\nabla v|^{p(x)-2}+\mu_{1}(x)|\nabla v|^{q(x)-2}+\mu_{2}(x)|\nabla v|^{r(x)-2})(|\nabla v|^{2}-|\nabla u|^{2})dx, (30)

Next, we partition Ω\Omega into Ω={xΩ:|u||v|}\Omega_{\geq}=\{x\in\Omega:|\nabla u|\geq|\nabla v|\} and Ω<={xΩ:|u|<|v|}\Omega_{<}=\{x\in\Omega:|\nabla u|<|\nabla v|\}.
Hence, using (3), (3) and (M)(M), we can write

I(u):\displaystyle I_{\geq}(u): =(ϱ𝒯(u))ϱ(u),uv\displaystyle=\mathcal{M}(\varrho_{\mathcal{T}}(u))\langle\varrho_{\mathcal{H}}^{\prime}(u),u-v\rangle
=(ϱ𝒯(u))Ω{|u|p(x)+μ1(x)|u|q(x)+μ2(x)|u|r(x)\displaystyle=\mathcal{M}(\varrho_{\mathcal{T}}(u))\int_{\Omega}\left\{|\nabla u|^{p(x)}+\mu_{1}(x)|\nabla u|^{q(x)}+\mu_{2}(x)|\nabla u|^{r(x)}\right.
(|u|p(x)2+μ1(x)|u|q(x)2+μ2(x)|u|r(x)2)uv}dx\displaystyle\left.-(|\nabla u|^{p(x)-2}+\mu_{1}(x)|\nabla u|^{q(x)-2}+\mu_{2}(x)|\nabla u|^{r(x)-2})\nabla u\cdot\nabla v\right\}dx
ϱ(u)2Ω(|u|p(x)2+μ1(x)|u|q(x)2+μ2(x)|u|r(x)2)(|u|2|v|2)𝑑x\displaystyle\geq\frac{\mathcal{M}_{\varrho}(u)}{2}\int_{\Omega_{\geq}}(|\nabla u|^{p(x)-2}+\mu_{1}(x)|\nabla u|^{q(x)-2}+\mu_{2}(x)|\nabla u|^{r(x)-2})(|\nabla u|^{2}-|\nabla v|^{2})dx
(ϱ𝒯(v))2Ω(|v|p(x)2+μ1(x)|v|q(x)2+μ2(x)|v|r(x)2)(|u|2|v|2)𝑑x\displaystyle-\frac{\mathcal{M}(\varrho_{\mathcal{T}}(v))}{2}\int_{\Omega_{\geq}}(|\nabla v|^{p(x)-2}+\mu_{1}(x)|\nabla v|^{q(x)-2}+\mu_{2}(x)|\nabla v|^{r(x)-2})(|\nabla u|^{2}-|\nabla v|^{2})dx
(ϱ𝒯(v))2Ω{(|u|p(x)2+μ1(x)|u|q(x)2+μ2(x)|u|r(x)2)\displaystyle\geq\frac{\mathcal{M}(\varrho_{\mathcal{T}}(v))}{2}\int_{\Omega_{\geq}}\left\{(|\nabla u|^{p(x)-2}+\mu_{1}(x)|\nabla u|^{q(x)-2}+\mu_{2}(x)|\nabla u|^{r(x)-2})\right.
(|v|p(x)2+μ1(x)|v|q(x)2+μ2(x)|v|r(x)2)}(|u|2|v|2)dx\displaystyle\left.-(|\nabla v|^{p(x)-2}+\mu_{1}(x)|\nabla v|^{q(x)-2}+\mu_{2}(x)|\nabla v|^{r(x)-2})\right\}(|\nabla u|^{2}-|\nabla v|^{2})dx
m02Ω{(|u|p(x)2+μ1(x)|u|q(x)2+μ2(x)|u|r(x)2)\displaystyle\geq\frac{m_{0}}{2}\int_{\Omega_{\geq}}\left\{(|\nabla u|^{p(x)-2}+\mu_{1}(x)|\nabla u|^{q(x)-2}+\mu_{2}(x)|\nabla u|^{r(x)-2})\right.
(|v|p(x)2+μ1(x)|v|q(x)2+μ2(x)|v|r(x)2)}(|u|2|v|2)dx\displaystyle\left.-(|\nabla v|^{p(x)-2}+\mu_{1}(x)|\nabla v|^{q(x)-2}+\mu_{2}(x)|\nabla v|^{r(x)-2})\right\}(|\nabla u|^{2}-|\nabla v|^{2})dx
0,\displaystyle\geq 0, (31)

and in a similar fashion

I<(v):\displaystyle I_{<}(v): =(ϱ𝒯(v))ϱ(v),vu\displaystyle=\mathcal{M}(\varrho_{\mathcal{T}}(v))\langle\varrho_{\mathcal{H}}^{\prime}(v),v-u\rangle
=(ϱ𝒯(v))Ω<{|v|p(x)+μ1(x)|v|q(x)+μ2(x)|v|r(x)\displaystyle=\mathcal{M}(\varrho_{\mathcal{T}}(v))\int_{\Omega_{<}}\left\{|\nabla v|^{p(x)}+\mu_{1}(x)|\nabla v|^{q(x)}+\mu_{2}(x)|\nabla v|^{r(x)}\right.
(|v|p(x)2+μ1(x)|v|q(x)2+μ2(x)|v|r(x)2)uv}dx\displaystyle\left.-(|\nabla v|^{p(x)-2}+\mu_{1}(x)|\nabla v|^{q(x)-2}+\mu_{2}(x)|\nabla v|^{r(x)-2})\nabla u\cdot\nabla v\right\}dx
m02Ω<{(|u|p(x)2+μ(x)1|v|q(x)2+μ(x)2|v|r(x)2)\displaystyle\geq\frac{m_{0}}{2}\int_{\Omega_{<}}\left\{(|\nabla u|^{p(x)-2}+\mu(x)_{1}|\nabla v|^{q(x)-2}+\mu(x)_{2}|\nabla v|^{r(x)-2})\right.
(|v|p(x)2+μ1(x)|v|q(x)2+μ2(x)|v|r(x)2)}(|u|2|v|2)dx\displaystyle\left.-(|\nabla v|^{p(x)-2}+\mu_{1}(x)|\nabla v|^{q(x)-2}+\mu_{2}(x)|\nabla v|^{r(x)-2})\right\}(|\nabla u|^{2}-|\nabla v|^{2})dx
0.\displaystyle\geq 0. (32)

Note that

(u)(v),uv=(u),uv+(v),vu=I(u)+I<(v)0.\displaystyle\langle\mathcal{H}(u)-\mathcal{H}(v),u-v\rangle=\langle\mathcal{H}(u),u-v\rangle+\langle\mathcal{H}(v),v-u\rangle=I_{\geq}(u)+I_{<}(v)\geq 0. (33)

However, we must discard the case of (u)(v),uv=0\langle\mathcal{H}(u)-\mathcal{H}(v),u-v\rangle=0 since this would eventually imply that xiu=xiv\partial_{x_{i}}u=\partial_{x_{i}}v for i=1,2,,Ni=1,2,...,N, which would contradict the assumption that uvu\neq v in W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega). Thus,

(u)(v),uv>0.\displaystyle\langle\mathcal{H}(u)-\mathcal{H}(v),u-v\rangle>0. (34)

Proof of Theorem 3.3.

Thanks to Lemmas 3.4-3.6, the operator equation (19) has a unique nontrivial solution uW01,𝒯(Ω)u\in W_{0}^{1,\mathcal{T}}(\Omega), which is a nontrivial weak solution to problem (𝒫\mathcal{P}). ∎

4 The second problem

In this section we specify the nonlinearity as f=f(x,u,u)f=f(x,u,\nabla u) and show that the problem (𝒫\mathcal{P}) has a nontrivial weak solution in W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega).

Definition 4.1.

A function uW01,𝒯(Ω)u\in W_{0}^{1,\mathcal{T}}(\Omega) is called a weak solution to problem (𝒫\mathcal{P}) if for all test function φW01,𝒯(Ω)\varphi\in W_{0}^{1,\mathcal{T}}(\Omega) it holds

(ϱ𝒯(u))ϱ𝒯(u),φ=Ωf(x,u,u)φ𝑑x.\displaystyle\mathcal{M}(\varrho_{\mathcal{T}}(u))\langle\varrho^{\prime}_{\mathcal{T}}(u),\varphi\rangle=\int_{\Omega}f(x,u,\nabla u)\varphi dx. (35)

Let us define the operator :W01,(Ω)W01,𝒯(Ω)\mathcal{F}:W_{0}^{1,\mathcal{H}}(\Omega)\rightarrow W_{0}^{1,\mathcal{T}}(\Omega)^{*} as

(u),φ:=Ωf(x,u,u)φ𝑑x.\langle\mathcal{F}(u),\varphi\rangle:=\int_{\Omega}f(x,u,\nabla u)\varphi dx. (36)

Therefore, we can define the operator 𝒜:W01,𝒯(Ω)W01,𝒯(Ω)\mathcal{A}:W_{0}^{1,\mathcal{T}}(\Omega)\rightarrow W_{0}^{1,\mathcal{T}}(\Omega)^{*} by

𝒜(u),φ:=(u),φ(u),φ, for all u,φW01,𝒯(Ω).\langle\mathcal{A}(u),\varphi\rangle:=\langle\mathcal{H}(u),\varphi\rangle-\langle\mathcal{F}(u),\varphi\rangle,\,\,\mbox{ for all }u,\varphi\in W_{0}^{1,\mathcal{T}}(\Omega). (37)

As with the first problem, we shall solve the operator equation

𝒜u=uu=0,\mathcal{A}u=\mathcal{H}u-\mathcal{F}u=0, (38)

to obtain a nontrivial weak solution to problem (𝒫\mathcal{P}).

For the nonlinearity ff, we assume:

  • (f1)(f_{1})

    f:Ω××Nf:\Omega\times\mathbb{R}\times\mathbb{R}^{N}\to\mathbb{R} is a Carathéodory function such that f(,0,0)0f(\cdot,0,0)\neq 0.

  • (f2)(f_{2})

    There exists gLs(x)(Ω)g\in L^{s^{\prime}(x)}(\Omega) and constants a1,a2>0a_{1},a_{2}>0 satisfying

    |f(x,t,η)|g(x)+a1|t|s(x)1+a2|η|p(x)s(x)1s(x),|f(x,t,\eta)|\leq g(x)+a_{1}|t|^{s(x)-1}+a_{2}|\eta|^{p(x)\frac{s(x)-1}{s(x)}},

    for all (t,η)×N(t,\eta)\in\mathbb{R}\times\mathbb{R}^{N} and for a.a. xΩx\in\Omega, where sC+(Ω¯)s\in C_{+}(\overline{\Omega}) such that s(x):=s(x)s(x)1s^{\prime}(x):=\frac{s(x)}{s(x)-1} and s(x)<p(x)s(x)<p^{*}(x).

  • (f3)(f_{3})

    There exist hLp(x)(Ω)h\in L^{p^{\prime}(x)}(\Omega), β1Lr(x)r(x)α(Ω)\beta_{1}\in L^{\frac{r(x)}{r(x)-\alpha^{-}}}(\Omega) and β1Lr(x)r(x)α(x)(Ω)\beta_{1}\in L^{\frac{r(x)}{r(x)-\alpha(x)}}(\Omega) satisfying

    lim sup|η|+f(x,t,η)h(x)+β1(x)|t|α1+β2(x)|η|α(x)1λ,\limsup_{|\eta|\to+\infty}\frac{f(x,t,\eta)}{h(x)+\beta_{1}(x)|t|^{\alpha^{-}-1}+\beta_{2}(x)|\eta|^{\alpha(x)-1}}\leq\lambda,

    for all (t,η)×N(t,\eta)\in\mathbb{R}\times\mathbb{R}^{N} and for a.a. xΩx\in\Omega, where αC+(Ω¯)\alpha\in C_{+}(\overline{\Omega}) such that α+<p\alpha^{+}<p^{-}, and λ>0\lambda>0 is a parameter.

Example 4.2.

Let’s define the function f^:Ω××N\hat{f}:\Omega\times\mathbb{R}\times\mathbb{R}^{N}\to\mathbb{R} as follows:

f^(x,t,η)=g^(x)sin(t+1)+a^1|t|s(x)1e|t|+a^2|η|p(x)1ln(1+|η|),\hat{f}(x,t,\eta)=\hat{g}(x)\sin(t+1)+\hat{a}_{1}|t|^{s(x)-1}e^{-|t|}+\hat{a}_{2}|\eta|^{p(x)-1}\ln(1+|\eta|),

where g^Ls(x)(Ω)\hat{g}\in L^{s^{*}(x)}(\Omega), a^1,a^2>0\hat{a}_{1},\hat{a}_{2}>0 are positive constants. Then f^\hat{f} satisfies hypotheses (f1)(f3)(f_{1})-(f_{3}).

We employ the following result (see, e.g., [17, 22]).

Lemma 4.3.

Let XX be a reflexive real Banach space. Let A:XXA:X\rightarrow X^{*} be a pseudomonotone, bounded, and coercive operator, and BXB\in X^{*}. Then, a solution of the equation Au=BAu=B exists.

The following is the second main result.

Theorem 4.4.

Assume the assumptions (M)(M) and (f1)(f_{1})-(f3)(f_{3}) are satisfied. Then the operator equation (38) has at least one nontrivial solution uW01,𝒯(Ω)u\in W_{0}^{1,\mathcal{T}}(\Omega) which in turn becomes a nontrivial weak solution to problem (𝒫\mathcal{P}).

Lemma 4.5.

𝒜\mathcal{A} is coercive.

Proof.

Since the coercivity of \mathcal{H} is shown in Lemma 3.4, we proceed with \mathcal{F}.
Without loosing generality, we may assume that |u|>k0|\nabla u|>k_{0} for some constant k01k_{0}\geq 1, and hence u1,𝒯,0>1\|u\|_{1,\mathcal{T},0}>1. Indeed, if we recall that u1,𝒯,0=|u|𝒯\|u\|_{1,\mathcal{T},0}=\||\nabla u|\|_{\mathcal{T}}, and take into account the monotonicity of convex modular ρ𝒯\rho_{\mathcal{T}} and Remark 1, we can conclude that u1,𝒯,0(ρ𝒯(u))1/r+>1\|u\|_{1,\mathcal{T},0}\geq(\rho_{\mathcal{T}}(\nabla u))^{1/r^{+}}>1. Therefore, from (f3)(f_{3}), we have

|f(x,u,u)|λ(|h|+|β1||u|α1+|β2||u|α(x)1).|f(x,u,\nabla u)|\leq\lambda\left(|h|+|\beta_{1}||u|^{\alpha^{-}-1}+|\beta_{2}||\nabla u|^{\alpha(x)-1}\right). (39)

Using Hölder inequality (see [23, Proposition 2.3]), Proposition 2.2 and invoking the necessary embeddings, we get

(u),u\displaystyle\langle\mathcal{F}(u),u\rangle Ωλ(|h||u|+|β1||u|α1|u|+|β2||u|α(x)1|u|)𝑑x\displaystyle\leq\int_{\Omega}\lambda\left(|h||u|+|\beta_{1}||u|^{\alpha^{-}-1}|u|+|\beta_{2}||\nabla u|^{\alpha(x)-1}|u|\right)dx
λ(|h|p|u|p(x)+|β1|r(x)r(x)α||u|α1|r(x)α1|u|r(x)\displaystyle\leq\lambda\left(|h|_{p^{\prime}}|u|_{p(x)}+|\beta_{1}|_{\frac{r(x)}{r(x)-\alpha^{-}}}||u|^{\alpha^{-}-1}|_{\frac{r(x)}{\alpha^{-}-1}}|u|_{r(x)}\right.
+|β2|r(x)r(x)α(x)||u|α(x)1|r(x)α(x)1|u|r(x))\displaystyle\left.+|\beta_{2}|_{\frac{r(x)}{r(x)-\alpha(x)}}||\nabla u|^{\alpha(x)-1}|_{\frac{r(x)}{\alpha(x)-1}}|u|_{r(x)}\right)
λ(c1u1,𝒯,0α++c2u1,𝒯,0α+c3u1,𝒯,0),\displaystyle\leq\lambda\left(c_{1}\|u\|^{\alpha^{+}}_{1,\mathcal{T},0}+c_{2}\|u\|^{\alpha^{-}}_{1,\mathcal{T},0}+c_{3}\|u\|_{1,\mathcal{T},0}\right), (40)

and hence

(u),uu1,𝒯,0λ(c1u1,𝒯,0α+1+c2u1,𝒯,0α1+c3).\frac{\langle\mathcal{F}(u),u\rangle}{\|u\|_{1,\mathcal{T},0}}\leq\lambda\left(c_{1}\|u\|^{\alpha^{+}-1}_{1,\mathcal{T},0}+c_{2}\|u\|^{\alpha^{-}-1}_{1,\mathcal{T},0}+c_{3}\right). (41)

From Lemma 3.4, we have

(u),uu1,𝒯,0m0r+u1,𝒯,0p1.\frac{\langle\mathcal{H}(u),u\rangle}{\|u\|_{1,\mathcal{T},0}}\geq\frac{m_{0}}{r^{+}}\|u\|_{1,\mathcal{T},0}^{p^{-}-1}. (42)

Then from (41) and (42), we have

𝒜(u),uu1,𝒯,0\displaystyle\frac{\langle\mathcal{A}(u),u\rangle}{\|u\|_{1,\mathcal{T},0}} (u),uu1,𝒯,0(u),uu1,𝒯,0\displaystyle\geq\frac{\langle\mathcal{H}(u),u\rangle}{\|u\|_{1,\mathcal{T},0}}-\frac{\langle\mathcal{F}(u),u\rangle}{\|u\|_{1,\mathcal{T},0}}
m0r+u1,𝒯,0p1λ(c1u1,,0α+1+c2u1,,0α1+c3),\displaystyle\geq\frac{m_{0}}{r^{+}}\|u\|_{1,\mathcal{T},0}^{p^{-}-1}-\lambda\left(c_{1}\|u\|^{\alpha^{+}-1}_{1,\mathcal{H},0}+c_{2}\|u\|^{\alpha^{-}-1}_{1,\mathcal{H},0}+c_{3}\right), (43)

hence

limu1,𝒯,0𝒜(u),uu1,𝒯,0=+.\displaystyle\lim_{\|u\|_{1,\mathcal{T},0}\to\infty}\frac{\langle\mathcal{A}(u),u\rangle}{\|u\|_{1,\mathcal{T},0}}=+\infty. (44)

Lemma 4.6.

\mathcal{H} is continuous and bounded.

Proof.

Recall that (u),φ=(ϱ𝒯(u))ϱ𝒯(u),φ\langle\mathcal{H}(u),\varphi\rangle=\mathcal{M}(\varrho_{\mathcal{T}}(u))\langle\varrho^{\prime}_{\mathcal{T}}(u),\varphi\rangle. By (M)(M), \mathcal{M} is continuous. Additionally, from [3, Propositions 4.4-4.5], ϱ𝒯C1(W01,𝒯(Ω),)\varrho_{\mathcal{T}}\in C^{1}(W_{0}^{1,\mathcal{T}}(\Omega),\mathbb{R}) with the Gateaux derivative of ϱ𝒯\varrho^{\prime}_{\mathcal{T}}. Therefore, as a composition function, (ϱ𝒯())\mathcal{M}(\varrho_{\mathcal{T}}(\cdot)) is continuous. Now, we will show that \mathcal{H} is continuous. To this end, for a sequence (un)W01,𝒯(Ω)(u_{n})\subset W_{0}^{1,\mathcal{T}}(\Omega) assume that unuW01,𝒯(Ω)u_{n}\to u\in W_{0}^{1,\mathcal{T}}(\Omega). Then using Proposition 2.8, we have

|(un)(u),v|\displaystyle|\langle\mathcal{H}(u_{n})-\mathcal{H}(u),v\rangle|
Ω|un|un|p(x)2unu|u|p(x)2u||v|𝑑x\displaystyle\leq\int_{\Omega}\bigg{|}\mathcal{M}_{u_{n}}|\nabla u_{n}|^{p(x)-2}\nabla u_{n}-\mathcal{M}_{u}|\nabla u|^{p(x)-2}\nabla u\bigg{|}|\nabla v|dx
+Ωμ1(x)|un|un|q(x)2unu|u|q(x)2u||v|𝑑x\displaystyle+\int_{\Omega}\mu_{1}(x)\bigg{|}\mathcal{M}_{u_{n}}|\nabla u_{n}|^{q(x)-2}\nabla u_{n}-\mathcal{M}_{u}|\nabla u|^{q(x)-2}\nabla u\bigg{|}|\nabla v|dx
+Ωμ2(x)|un|un|r(x)2unu|u|r(x)2u||v|𝑑x\displaystyle+\int_{\Omega}\mu_{2}(x)\bigg{|}\mathcal{M}_{u_{n}}|\nabla u_{n}|^{r(x)-2}\nabla u_{n}-\mathcal{M}_{u}|\nabla u|^{r(x)-2}\nabla u\bigg{|}|\nabla v|dx
Ω{||un|p(x)2un|u|p(x)2u|×(Kunu+un)+Kunu}|v|𝑑x\displaystyle\leq\int_{\Omega}\left\{||\nabla u_{n}|^{p(x)-2}\nabla u_{n}-|\nabla u|^{p(x)-2}\nabla u|\times(K^{u}_{u_{n}}+\mathcal{M}_{u_{n}})+K^{u}_{u_{n}}\right\}|\nabla v|dx
+Ωμ1(x){||un|q(x)2un|u|q(x)2u|×(Kunu+un)+Kunu}|v|𝑑x\displaystyle+\int_{\Omega}\mu_{1}(x)\left\{||\nabla u_{n}|^{q(x)-2}\nabla u_{n}-|\nabla u|^{q(x)-2}\nabla u|\times(K^{u}_{u_{n}}+\mathcal{M}_{u_{n}})+K^{u}_{u_{n}}\right\}|\nabla v|dx
+Ωμ2(x){||un|r(x)2un|u|r(x)2u|×(Kunu+un)+Kunu}|v|𝑑x\displaystyle+\int_{\Omega}\mu_{2}(x)\left\{||\nabla u_{n}|^{r(x)-2}\nabla u_{n}-|\nabla u|^{r(x)-2}\nabla u|\times(K^{u}_{u_{n}}+\mathcal{M}_{u_{n}})+K^{u}_{u_{n}}\right\}|\nabla v|dx
(Kunu+un)Ω||un|p(x)2un|u|p(x)2u||v|dx+KunuΩ|v|𝑑x\displaystyle\leq(K^{u}_{u_{n}}+\mathcal{M}_{u_{n}})\int_{\Omega}||\nabla u_{n}|^{p(x)-2}\nabla u_{n}-|\nabla u|^{p(x)-2}\nabla u||\nabla v|dx+K^{u}_{u_{n}}\int_{\Omega}|\nabla v|dx
+(Kunu+un)Ωμ1(x)||un|q(x)2un|u|q(x)2u||v|dx+KunuΩ|v|𝑑x\displaystyle+(K^{u}_{u_{n}}+\mathcal{M}_{u_{n}})\int_{\Omega}\mu_{1}(x)||\nabla u_{n}|^{q(x)-2}\nabla u_{n}-|\nabla u|^{q(x)-2}\nabla u||\nabla v|dx+K^{u}_{u_{n}}\int_{\Omega}|\nabla v|dx
+(Kunu+un)Ωμ2(x)||un|r(x)2un|u|r(x)2u||v|dx+KunuΩ|v|𝑑x,\displaystyle+(K^{u}_{u_{n}}+\mathcal{M}_{u_{n}})\int_{\Omega}\mu_{2}(x)||\nabla u_{n}|^{r(x)-2}\nabla u_{n}-|\nabla u|^{r(x)-2}\nabla u||\nabla v|dx+K^{u}_{u_{n}}\int_{\Omega}|\nabla v|dx, (45)

where we let un=(ϱ𝒯(un))\mathcal{M}_{u_{n}}=\mathcal{M}(\varrho_{\mathcal{T}}(u_{n})), u=(ϱ𝒯(u))\mathcal{M}_{u}=\mathcal{M}(\varrho_{\mathcal{T}}(u)), and Kunu=|unu|K^{u}_{u_{n}}=|\mathcal{M}_{u_{n}}-\mathcal{M}_{u}|. Now, if we apply Hölder’s inequality and consider the embeddings L𝒯(Ω)Lμ1q(x)(Ω)L^{\mathcal{T}}(\Omega)\hookrightarrow L^{q(x)}_{\mu_{1}}(\Omega), L𝒯(Ω)Lμ2r(x)(Ω)L^{\mathcal{T}}(\Omega)\hookrightarrow L^{r(x)}_{\mu_{2}}(\Omega), and Propositions 2.5 and 2.6, it reads

|(un)(u),v|\displaystyle|\langle\mathcal{H}(u_{n})-\mathcal{H}(u),v\rangle|
(Kunu+un)|un|p(x)2un|u|p(x)2up(x)p(x)1|v|p(x)+Kunu|Ω||v|p(x)\displaystyle\leq(K^{u}_{u_{n}}+\mathcal{M}_{u_{n}})\bigg{|}||\nabla u_{n}|^{p(x)-2}\nabla u_{n}-|\nabla u|^{p(x)-2}\nabla u|\bigg{|}_{\frac{p(x)}{p(x)-1}}|\nabla v|_{p(x)}+K^{u}_{u_{n}}|\Omega||\nabla v|_{p(x)}
+(Kunu+un)|μ1(x)q(x)1q(x)||un|q(x)2un|u|q(x)2u||q(x)q(x)1|μ1(x)1q(x)|v||q(x)\displaystyle+(K^{u}_{u_{n}}+\mathcal{M}_{u_{n}})\bigg{|}\mu_{1}(x)^{\frac{q(x)-1}{q(x)}}||\nabla u_{n}|^{q(x)-2}\nabla u_{n}-|\nabla u|^{q(x)-2}\nabla u|\bigg{|}_{\frac{q(x)}{q(x)-1}}|\mu_{1}(x)^{\frac{1}{q(x)}}|\nabla v||_{q(x)}
+Kunu|Ω||v|p(x)\displaystyle+K^{u}_{u_{n}}|\Omega||\nabla v|_{p(x)}
+(Kunu+un)|μ2(x)r(x)1r(x)||un|r(x)2un|u|r(x)2u||r(x)r(x)1|μ2(x)1r(x)|v||r(x)\displaystyle+(K^{u}_{u_{n}}+\mathcal{M}_{u_{n}})\bigg{|}\mu_{2}(x)^{\frac{r(x)-1}{r(x)}}||\nabla u_{n}|^{r(x)-2}\nabla u_{n}-|\nabla u|^{r(x)-2}\nabla u|\bigg{|}_{\frac{r(x)}{r(x)-1}}|\mu_{2}(x)^{\frac{1}{r(x)}}|\nabla v||_{r(x)}
+Kunu|Ω||v|p(x),\displaystyle+K^{u}_{u_{n}}|\Omega||\nabla v|_{p(x)}, (46)

and therefore

(un)(u)W01,𝒯(Ω)=supvW01,𝒯(Ω),v1,𝒯,01|(un)(u),v|0.\displaystyle\|\mathcal{H}(u_{n})-\mathcal{H}(u)\|_{W_{0}^{1,\mathcal{T}}(\Omega)^{*}}=\sup_{v\in W_{0}^{1,\mathcal{T}}(\Omega),\|v\|_{1,\mathcal{T},0}\leq 1}|\langle\mathcal{H}(u_{n})-\mathcal{H}(u),v\rangle|\to 0. (47)

Hence, \mathcal{H} is continuous on W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega).
Note that the result (47) follows from the following reasoning:
Since unuu_{n}\to u in W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega), the embeddings

L𝒯(Ω)Lμ1q(x)(Ω),L𝒯(Ω)Lμ2r(x)(Ω),W01,𝒯(Ω)L𝒯(Ω), and W01,𝒯(Ω)Lp(x)(Ω)L^{\mathcal{T}}(\Omega)\hookrightarrow L^{q(x)}_{\mu_{1}}(\Omega),L^{\mathcal{T}}(\Omega)\hookrightarrow L^{r(x)}_{\mu_{2}}(\Omega),W_{0}^{1,\mathcal{T}}(\Omega)\hookrightarrow L^{\mathcal{T}}(\Omega),\text{ and }W_{0}^{1,\mathcal{T}}(\Omega)\hookrightarrow L^{p(x)}(\Omega)

ensure that

limnΩ|un|p(x)dx=Ω|u|p(x)dx,\lim_{n\to\infty}\int_{\Omega}|\nabla u_{n}|^{p(x)}dx=\int_{\Omega}|\nabla u|^{p(x)}dx, (48)
limnΩμ1(x)|un|q(x)dx=Ωμ1(x)|u|q(x)dx,\lim_{n\to\infty}\int_{\Omega}\mu_{1}(x)|\nabla u_{n}|^{q(x)}dx=\int_{\Omega}\mu_{1}(x)|\nabla u|^{q(x)}dx, (49)

and

limnΩμ2(x)|un|r(x)dx=Ωμ2(x)|u|r(x)dx.\lim_{n\to\infty}\int_{\Omega}\mu_{2}(x)|\nabla u_{n}|^{r(x)}dx=\int_{\Omega}\mu_{2}(x)|\nabla u|^{r(x)}dx. (50)

By Vitali’s Theorem (see [24, Theorem 4.5.4] or [25, Theorem 8]), equations (48)-(50) imply that |un||u||\nabla u_{n}|\to|\nabla u|, μ1(x)1q(x)|un|μ1(x)1q(x)|u|\mu_{1}(x)^{\frac{1}{q(x)}}|\nabla u_{n}|\to\mu_{1}(x)^{\frac{1}{q(x)}}|\nabla u|, and μ2(x)1r(x)|un|μ2(x)1r(x)|u|\mu_{2}(x)^{\frac{1}{r(x)}}|\nabla u_{n}|\to\mu_{2}(x)^{\frac{1}{r(x)}}|\nabla u| in measure in Ω\Omega. Moreover, the sequences {|un|p(x)}\{|\nabla u_{n}|^{p(x)}\}, {μ1(x)|un|q(x)}\{\mu_{1}(x)|\nabla u_{n}|^{q(x)}\}, and {μ2(x)|un|r(x)}\{\mu_{2}(x)|\nabla u_{n}|^{r(x)}\} are uniformly integrable over Ω\Omega. Now, consider the inequalities

||un|p(x)2un|u|p(x)2u|p(x)p(x)12p+p11(|un|p(x)+|u|p(x)),||\nabla u_{n}|^{p(x)-2}\nabla u_{n}-|\nabla u|^{p(x)-2}\nabla u|^{\frac{p(x)}{p(x)-1}}\leq 2^{\frac{p^{+}}{p^{-}-1}-1}(|\nabla u_{n}|^{p(x)}+|\nabla u|^{p(x)}), (51)

and

μ1(x)||un|q(x)2un|u|q(x)2u|q(x)q(x)12q+q11μ1(x)(|un|q(x)+|u|q(x)),\mu_{1}(x)||\nabla u_{n}|^{q(x)-2}\nabla u_{n}-|\nabla u|^{q(x)-2}\nabla u|^{\frac{q(x)}{q(x)-1}}\leq 2^{\frac{q^{+}}{q^{-}-1}-1}\mu_{1}(x)(|\nabla u_{n}|^{q(x)}+|\nabla u|^{q(x)}), (52)

and

μ2(x)||un|r(x)2un|u|r(x)2u|r(x)r(x)12r+r11μ2(x)(|un|r(x)+|u|r(x)).\mu_{2}(x)||\nabla u_{n}|^{r(x)-2}\nabla u_{n}-|\nabla u|^{r(x)-2}\nabla u|^{\frac{r(x)}{r(x)-1}}\leq 2^{\frac{r^{+}}{r^{-}-1}-1}\mu_{2}(x)(|\nabla u_{n}|^{r(x)}+|\nabla u|^{r(x)}). (53)

As a consequence, the families

{||un|p(x)2un|u|p(x)2u|p(x)p(x)1},\bigg{\{}||\nabla u_{n}|^{p(x)-2}\nabla u_{n}-|\nabla u|^{p(x)-2}\nabla u|^{\frac{p(x)}{p(x)-1}}\bigg{\}}, (54)
{μ1(x)||un|q(x)2un|u|q(x)2u|q(x)q(x)1},\bigg{\{}\mu_{1}(x)||\nabla u_{n}|^{q(x)-2}\nabla u_{n}-|\nabla u|^{q(x)-2}\nabla u|^{\frac{q(x)}{q(x)-1}}\bigg{\}}, (55)

and

{μ2(x)||un|r(x)2un|u|r(x)2u|r(x)r(x)1}\bigg{\{}\mu_{2}(x)||\nabla u_{n}|^{r(x)-2}\nabla u_{n}-|\nabla u|^{r(x)-2}\nabla u|^{\frac{r(x)}{r(x)-1}}\bigg{\}} (56)

are uniformly integrable over Ω\Omega. Applying Vitali’s Theorem again, we deduce that |u|p(x)2u|\nabla u|^{p(x)-2}\nabla u, μ1(x)|u|q(x)2u\mu_{1}(x)|\nabla u|^{q(x)-2}\nabla u and μ2(x)|u|r(x)2u\mu_{2}(x)|\nabla u|^{r(x)-2}\nabla u are integrable, and

|||un|p(x)2un|u|p(x)2u||p(x)p(x)10,\bigg{|}||\nabla u_{n}|^{p(x)-2}\nabla u_{n}-|\nabla u|^{p(x)-2}\nabla u|\bigg{|}_{\frac{p(x)}{p(x)-1}}\to 0, (57)
|μ1(x)q(x)1q(x)||un|q(x)2un|u|q(x)2u||q(x)q(x)10,\bigg{|}\mu_{1}(x)^{\frac{q(x)-1}{q(x)}}||\nabla u_{n}|^{q(x)-2}\nabla u_{n}-|\nabla u|^{q(x)-2}\nabla u|\bigg{|}_{\frac{q(x)}{q(x)-1}}\to 0, (58)

and

|μ2(x)r(x)1r(x)||un|r(x)2un|u|r(x)2u||r(x)r(x)10.\bigg{|}\mu_{2}(x)^{\frac{r(x)-1}{r(x)}}||\nabla u_{n}|^{r(x)-2}\nabla u_{n}-|\nabla u|^{r(x)-2}\nabla u|\bigg{|}_{\frac{r(x)}{r(x)-1}}\to 0. (59)

Finally, by assumption (M)(M) and Proposition 2.7, we have
Kuun=|unu|0K^{u}_{u_{n}}=|\mathcal{M}_{u_{n}}-\mathcal{M}_{u}|\to 0, and unu[m0,)\mathcal{M}_{u_{n}}\to\mathcal{M}_{u}\in[m_{0},\infty) as nn\to\infty. Therefore, the result (47) follows.
Now, we verify that \mathcal{H} is bounded. We argue similarly to [3, Propositions 4.5].
Letting u,vW01,𝒯(Ω){0}u,v\in W_{0}^{1,\mathcal{T}}(\Omega)\setminus\{0\}, using (M)(M), Remark 1 and Young’s inequality, we obtain

min{1vp1𝒯,1vr+1𝒯}(u),vv𝒯\displaystyle\min\bigg{\{}\frac{1}{\|\nabla v\|^{p^{-}-1}_{\mathcal{T}}},\frac{1}{\|\nabla v\|^{r^{+}-1}_{\mathcal{T}}}\bigg{\}}\bigg{\langle}\mathcal{H}(u),\frac{v}{\|\nabla v\|_{\mathcal{T}}}\bigg{\rangle}
κργ1𝒯(u)Ω(|uu𝒯|p(x)1|v|v𝒯\displaystyle\leq\kappa\rho^{\gamma-1}_{\mathcal{T}}(\nabla u)\int_{\Omega}\left(\bigg{|}\frac{\nabla u}{\|\nabla u\|_{\mathcal{T}}}\bigg{|}^{p(x)-1}\frac{|\nabla v|}{\|\nabla v\|_{\mathcal{T}}}\right.
+μ1(x)q(x)1q(x)|uu𝒯|q(x)1μ1(x)1q(x)|v|v𝒯\displaystyle\left.+\mu_{1}(x)^{\frac{q(x)-1}{q(x)}}\bigg{|}\frac{\nabla u}{\|\nabla u\|_{\mathcal{T}}}\bigg{|}^{q(x)-1}\mu_{1}(x)^{\frac{1}{q(x)}}\frac{|\nabla v|}{\|\nabla v\|_{\mathcal{T}}}\right.
+μ2(x)r(x)1r(x)|uu𝒯|r(x)1μ2(x)1r(x)|v|v𝒯)dx\displaystyle\left.+\mu_{2}(x)^{\frac{r(x)-1}{r(x)}}\bigg{|}\frac{\nabla u}{\|\nabla u\|_{\mathcal{T}}}\bigg{|}^{r(x)-1}\mu_{2}(x)^{\frac{1}{r(x)}}\frac{|\nabla v|}{\|\nabla v\|_{\mathcal{T}}}\right)dx
κργ1𝒯(u)Ω(p+1p|uu𝒯|p(x)+1pvv𝒯|p(x)\displaystyle\leq\kappa\rho^{\gamma-1}_{\mathcal{T}}(\nabla u)\int_{\Omega}\left(\frac{p^{+}-1}{p^{-}}\bigg{|}\frac{\nabla u}{\|\nabla u\|_{\mathcal{T}}}\bigg{|}^{p(x)}+\frac{1}{p^{-}}\frac{\nabla v}{\|\nabla v\|_{\mathcal{T}}}\bigg{|}^{p(x)}\right.
+μ1(x)(q+1)q|uu𝒯|q(x)μ1(x)q|vv𝒯|q(x)\displaystyle\left.+\frac{\mu_{1}(x)(q^{+}-1)}{q^{-}}\bigg{|}\frac{\nabla u}{\|\nabla u\|_{\mathcal{T}}}\bigg{|}^{q(x)}\frac{\mu_{1}(x)}{q^{-}}\bigg{|}\frac{\nabla v}{\|\nabla v\|_{\mathcal{T}}}\bigg{|}^{q(x)}\right.
+μ2(x)(r+1)r|uu𝒯|r(x)μ2(x)r|vv𝒯|r(x))dx\displaystyle\left.+\frac{\mu_{2}(x)(r^{+}-1)}{r^{-}}\bigg{|}\frac{\nabla u}{\|\nabla u\|_{\mathcal{T}}}\bigg{|}^{r(x)}\frac{\mu_{2}(x)}{r^{-}}\bigg{|}\frac{\nabla v}{\|\nabla v\|_{\mathcal{T}}}\bigg{|}^{r(x)}\right)dx
κργ1𝒯(u)(r+1pρ𝒯(uu𝒯)+1pρ𝒯(vv𝒯))\displaystyle\leq\kappa\rho^{\gamma-1}_{\mathcal{T}}(\nabla u)\left(\frac{r^{+}-1}{p^{-}}\rho_{\mathcal{T}}\left(\frac{\nabla u}{\|\nabla u\|_{\mathcal{T}}}\right)+\frac{1}{p^{-}}\rho_{\mathcal{T}}\left(\frac{\nabla v}{\|\nabla v\|_{\mathcal{T}}}\right)\right)
κr+pu(γ1)τ𝒯,\displaystyle\leq\frac{\kappa r^{+}}{p^{-}}\|\nabla u\|^{(\gamma-1)\tau}_{\mathcal{T}}, (60)

where τ=max{r+,p}\tau=\max\{r^{+},p^{-}\}. Therefore,

(u)W01,𝒯(Ω)\displaystyle\|\mathcal{H}(u)\|_{W_{0}^{1,\mathcal{T}}(\Omega)^{*}} =supvW01,𝒯(Ω){0}(u),vv𝒯κr+pu(γ1)τ𝒯max{up1𝒯,ur+1𝒯},\displaystyle=\sup_{v\in W_{0}^{1,\mathcal{T}}(\Omega)\setminus\{0\}}\frac{\langle\mathcal{H}(u),v\rangle}{\|\nabla v\|_{\mathcal{T}}}\leq\frac{\kappa r^{+}}{p^{-}}\|\nabla u\|^{(\gamma-1)\tau}_{\mathcal{T}}\max\{\|\nabla u\|^{p^{-}-1}_{\mathcal{T}},\|\nabla u\|^{r^{+}-1}_{\mathcal{T}}\}, (61)

which concludes that \mathcal{H} is bounded. ∎

Lemma 4.7.

\mathcal{F} is continuous and bounded.

Proof.

Define the operator f:W01,𝒯(Ω)Ls(x)(Ω)\mathcal{B}_{f}:W_{0}^{1,\mathcal{T}}(\Omega)\rightarrow L^{s^{\prime}(x)}(\Omega) by

f(u)=f(x,u,u).\mathcal{B}_{f}(u)=f(x,u,\nabla u). (62)

First we show that f\mathcal{B}_{f} is bounded in Ls(x)(Ω)L^{s^{\prime}(x)}(\Omega). Then, for any uu satisfying u1,𝒯,01\|u\|_{1,\mathcal{T},0}\leq 1, employing assumption (f2)(f_{2}) along with the embeddings L𝒯(Ω)Ls(x)(Ω)L^{\mathcal{T}}(\Omega)\hookrightarrow L^{s(x)}(\Omega) and W01,𝒯(Ω)L𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega)\hookrightarrow L^{\mathcal{T}}(\Omega), we obtain

Ω|f(u)|s(x)dx\displaystyle\int_{\Omega}|\mathcal{B}_{f}(u)|^{s^{\prime}(x)}dx =Ω|f(x,u,u)|s(x)dx\displaystyle=\int_{\Omega}|f(x,u,\nabla u)|^{s^{\prime}(x)}dx
Ω|g(x)+a1|u|s(x)1+a2|u|p(x)s(x)1s(x)|s(x)dx\displaystyle\leq\int_{\Omega}|g(x)+a_{1}|u|^{s(x)-1}+a_{2}|\nabla u|^{p(x)\frac{s(x)-1}{s(x)}}|^{s^{\prime}(x)}dx
cΩ(|g(x)|s(x)+|u|s(x)+|u|p(x))dx\displaystyle\leq c\int_{\Omega}\left(|g(x)|^{s^{\prime}(x)}+|u|^{s(x)}+|\nabla u|^{p(x)}\right)dx
cΩ(|g(x)|s(x)+|u|s(x)+(|u|p(x)+μ1(x)|u|q(x)+μ2(x)|u|r(x)))dx\displaystyle\leq c\int_{\Omega}\left(|g(x)|^{s^{\prime}(x)}+|u|^{s(x)}+(|\nabla u|^{p(x)}+\mu_{1}(x)|\nabla u|^{q(x)}+\mu_{2}(x)|\nabla u|^{r(x)})\right)dx
cu1,𝒯,0.\displaystyle\leq c\|u\|_{1,\mathcal{T},0}. (63)

Now, let unuu_{n}\to u in W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega). Thus, we have unu\nabla u_{n}\to\nabla u in Ls(x)(Ω)NL^{s(x)}(\Omega)^{N}. This ensures the existence of a subsequence, still denoted by (un)(u_{n}), and functions ω1(x)Ls(x)(Ω)\omega_{1}(x)\in L^{s(x)}(\Omega) and ω2(x)Ls(x)(Ω)N\omega_{2}(x)\in L^{s(x)}(\Omega)^{N} satisfying:

  • un(x)u(x)u_{n}(x)\to u(x) and un(x)u(x)\nabla u_{n}(x)\to\nabla u(x) almost everywhere in Ω\Omega,

  • |un(x)|ω1(x)|u_{n}(x)|\leq\omega_{1}(x) and |un(x)||ω2(x)||\nabla u_{n}(x)|\leq|\omega_{2}(x)| almost everywhere in Ω\Omega for all nn.

By assumption (f1)(f_{1}), the function ff is continuous in its second and third arguments, leading to

f(x,un(x),un(x))f(x,u(x),u(x)) a.e. in Ω as n.f(x,u_{n}(x),\nabla u_{n}(x))\to f(x,u(x),\nabla u(x))\text{ a.e. in }\Omega\text{ as }n\to\infty. (64)

Moreover, utilizing the previous bounds and assumption (f2)(f_{2}), we obtain

|f(x,un(x),un(x))|\displaystyle|f(x,u_{n}(x),\nabla u_{n}(x))| g(x)+a1|ω1(x)|s(x)1+a2|ω2(x)|p(x)s(x)1s(x).\displaystyle\leq g(x)+a_{1}|\omega_{1}(x)|^{s(x)-1}+a_{2}|\omega_{2}(x)|^{p(x)\frac{s(x)-1}{s(x)}}. (65)

By Hölder’s inequality and Proposition 2.2, we establish

Ωa1|ω1|s(x)1dxc||ω1|s(x)1|s(x)s(x)1|𝟏|s(x)c|ω1|s+1s(x),\int_{\Omega}a_{1}|\omega_{1}|^{s(x)-1}dx\leq c||\omega_{1}|^{s(x)-1}|_{\frac{s(x)}{s(x)-1}}|\mathbf{1}|_{s(x)}\leq c|\omega_{1}|^{s^{+}-1}_{s(x)}, (66)

and

Ωa2|ω2|p(x)s(x)1s(x)dxc||ω2|p(x)s(x)1s(x)|s(x)s(x)1|𝟏|s(x)c|ω2|p+p(x).\int_{\Omega}a_{2}|\omega_{2}|^{p(x)\frac{s(x)-1}{s(x)}}dx\leq c||\omega_{2}|^{p(x)\frac{s(x)-1}{s(x)}}|_{\frac{s(x)}{s(x)-1}}|\mathbf{1}|_{s(x)}\leq c|\omega_{2}|^{p^{+}}_{p(x)}. (67)

Since the embeddings L𝒯(Ω)Ls(x)(Ω)L^{\mathcal{T}}(\Omega)\hookrightarrow L^{s(x)}(\Omega), W01,𝒯(Ω)W01,p(x)(Ω)W_{0}^{1,\mathcal{T}}(\Omega)\hookrightarrow W_{0}^{1,p(x)}(\Omega), and W01,𝒯(Ω)L𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega)\hookrightarrow L^{\mathcal{T}}(\Omega) ensure that the right-hand side of (65) is integrable, we apply the Lebesgue dominated convergence theorem (see, e.g., [25]) together with (64) to conclude that

f(x,un,un)f(x,u,u) in L1(Ω).f(x,u_{n},\nabla u_{n})\to f(x,u,\nabla u)\text{ in }L^{1}(\Omega). (68)

Thus, we obtain

limnΩ|f(un)f(u)|s(x)dx=0,\displaystyle\lim_{n\to\infty}\int_{\Omega}|\mathcal{B}_{f}(u_{n})-\mathcal{B}_{f}(u)|^{s^{\prime}(x)}dx=0, (69)

which, by Proposition 2.1, implies that f\mathcal{B}_{f} is continuous in Ls(x)(Ω)L^{s^{\prime}(x)}(\Omega). Finally, since the embedding operator i:Ls(x)(Ω)W01,𝒯(Ω)i^{*}:L^{s^{\prime}(x)}(\Omega)\to W_{0}^{1,\mathcal{T}}(\Omega)^{*} is continuous, defining =if\mathcal{F}=i^{*}\circ\mathcal{B}_{f} gives :W01,𝒯(Ω)W01,𝒯(Ω)\mathcal{F}:W_{0}^{1,\mathcal{T}}(\Omega)\rightarrow W_{0}^{1,\mathcal{T}}(\Omega)^{*} as a continuous and bounded operator. ∎

Lemma 4.8.

𝒜\mathcal{A} is pseudomonotone, i.e. for a sequence (un)W01,𝒯(Ω)(u_{n})\subset W_{0}^{1,\mathcal{T}}(\Omega),

unuW01,𝒯(Ω)u_{n}\rightharpoonup u\in W_{0}^{1,\mathcal{T}}(\Omega) (70)

and

lim supn𝒜(un),unu0\limsup_{n\rightarrow\infty}\langle\mathcal{A}(u_{n}),u_{n}-u\rangle\leq 0 (71)

imply

lim infn𝒜(un),unv𝒜(u),uv,vW01,𝒯(Ω).\liminf_{n\rightarrow\infty}\langle\mathcal{A}(u_{n}),u_{n}-v\rangle\geq\langle\mathcal{A}(u),u-v\rangle,\quad\forall v\in W_{0}^{1,\mathcal{T}}(\Omega). (72)
Proof.

As a consequence of Lemmas 4.6 and 4.7, 𝒜\mathcal{A} is continuous and bounded. Since 𝒜\mathcal{A} is bounded, we use an equivalent definition of pseudomonotonicity (see, e.g.,[26]) as follows:

unuW01,𝒯(Ω) and lim supn𝒜(un),unu0u_{n}\rightharpoonup u\in W_{0}^{1,\mathcal{T}}(\Omega)\text{ and }\limsup_{n\rightarrow\infty}\langle\mathcal{A}(u_{n}),u_{n}-u\rangle\leq 0

imply

𝒜(un)𝒜(u) and 𝒜(un),un𝒜(u),u.\mathcal{A}(u_{n})\rightharpoonup\mathcal{A}(u)\text{ and }\langle\mathcal{A}(u_{n}),u_{n}\rangle\rightarrow\langle\mathcal{A}(u),u\rangle.

To this end, let (un)W01,𝒯(Ω)(u_{n})\subset W_{0}^{1,\mathcal{T}}(\Omega) with

unuW01,𝒯(Ω) and lim supn𝒜(un),unu0.u_{n}\rightharpoonup u\in W_{0}^{1,\mathcal{T}}(\Omega)\text{ and }\limsup_{n\rightarrow\infty}\langle\mathcal{A}(u_{n}),u_{n}-u\rangle\leq 0. (73)

By the weak convergence of (un)(u_{n}) in W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega), (un)(u_{n}) is 1,𝒯,0\|\cdot\|_{1,\mathcal{T},0}-bounded. Thus, considering the compact embedding W01,𝒯(Ω)Ls(x)(Ω)W_{0}^{1,\mathcal{T}}(\Omega)\hookrightarrow L^{s(x)}(\Omega), and the boundedness of f\mathcal{B}_{f}, it reads

|Ωf(x,un,un)(unu)dx|\displaystyle\bigg{|}\int_{\Omega}f(x,u_{n},\nabla u_{n})(u_{n}-u)dx\bigg{|} c|f(un)|s(x)1s(x)|unu|s(x)\displaystyle\leq c|\mathcal{B}_{f}(u_{n})|_{\frac{s(x)-1}{s(x)}}|u_{n}-u|_{s(x)}
csupn|f(un)|s(x)1s(x)|unu|s(x)0as n,\displaystyle\leq c\sup_{n\in\mathbb{N}}|\mathcal{B}_{f}(u_{n})|_{\frac{s(x)-1}{s(x)}}|u_{n}-u|_{s(x)}\to 0\quad\text{as }n\to\infty, (74)

which means

limnΩf(x,un,un)(unu)dx=0.\lim_{n\to\infty}\int_{\Omega}f(x,u_{n},\nabla u_{n})(u_{n}-u)dx=0. (75)

Furthermore, by taking the limit in the weak formulation of (35) while substituting uu with unu_{n} and φ\varphi with unuu_{n}-u, and considering (M)(M), we arrive at

lim supn(un),unu=lim supn𝒜(un),unu0.\limsup_{n\rightarrow\infty}\langle\mathcal{H}(u_{n}),u_{n}-u\rangle=\limsup_{n\rightarrow\infty}\langle\mathcal{A}(u_{n}),u_{n}-u\rangle\leq 0. (76)

This, by Proposition 2.7, means that \mathcal{H} satisfies the (S+)(S_{+})-property. Moreover, by (73) and (76), it reads unuu_{n}\to u in W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega). Finally, considering that 𝒜\mathcal{A} is continuous and bounded, we obtain 𝒜(un)𝒜(u)\mathcal{A}(u_{n})\to\mathcal{A}(u) in W01,𝒯(Ω)W_{0}^{1,\mathcal{T}}(\Omega)^{*}, from which we conclude that 𝒜\mathcal{A} is pseudomonotone. ∎

Proof of Theorem 4.4.

Since 𝒜\mathcal{A} is a pseudomonotone, bounded, and coercive operator, it is surjective. This result ensures the existence of a function uW01,𝒯(Ω)u\in W_{0}^{1,\mathcal{T}}(\Omega) such that 𝒜u=uu=0\mathcal{A}u=\mathcal{H}u-\mathcal{F}u=0. On the other hand, by the definition of 𝒜\mathcal{A} and the assumptions (M)(M), (f1)(f_{1}), uu is a nontrivial weak solution of problem (𝒫\mathcal{P}). ∎

Conflict of Interest

The author declared that he has no conflict of interest.

Data Availability

No data is used to conduct this research.

Funding

This work was supported by Athabasca University Research Incentive Account [140111 RIA].

ORCID

https://orcid.org/0000-0002-6001-627X

References

  • [1] De Filippis C, Oh J. Regularity for multi-phase variational problems. Journal of Differential Equations. 2019;267(3):1631–1670.
  • [2] Vetro F. A priori upper bounds and extremal weak solutions for multi-phase problems with variable exponents. Discrete and Continuous Dynamical Systems-S. 2024;:0–0.
  • [3] Dai G, Vetro F. Regularity and uniqueness to multi-phase problem with variable exponent. arXiv preprint arXiv:240714123. 2024;.
  • [4] Zhikov VV. Averaging of functionals of the calculus of variations and elasticity theory. Mathematics of the USSR-Izvestiya. 1987;29(1):33.
  • [5] Baroni P, Colombo M, Mingione G. Harnack inequalities for double phase functionals. Nonlinear Analysis: Theory, Methods & Applications. 2015;121:206–222.
  • [6] Baroni P, Colombo M, Mingione G. Regularity for general functionals with double phase. Calculus of Variations and Partial Differential Equations. 2018;57:1–48.
  • [7] Colombo M, Mingione G, et al. Bounded minimisers of double phase variational integrals. Arch Ration Mech Anal. 2015;218(1):219–273.
  • [8] Colombo M, Mingione G. Regularity for double phase variational problems. Archive for Rational Mechanics and Analysis. 2015;215:443–496.
  • [9] Marcellini P. Regularity and existence of solutions of elliptic equations with p, q-growth conditions. Journal of Differential Equations. 1991;90(1):1–30.
  • [10] Marcellini P. Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Archive for Rational Mechanics and Analysis. 1989;105:267–284.
  • [11] Vetro F. Multiplicity of solutions for a kirchhoff multi-phase problem with variable exponents. Acta Applicandae Mathematicae. 2025;195(1):5.
  • [12] Cruz-Uribe DV, Fiorenza A. Variable lebesgue spaces: Foundations and harmonic analysis. Springer Science & Business Media; 2013.
  • [13] Diening L, Harjulehto P, Hästö P, et al. Lebesgue and sobolev spaces with variable exponents. Springer; 2011.
  • [14] Edmunds D, Rákosník J. Sobolev embeddings with variable exponent. Studia Mathematica. 2000;3(143):267–293.
  • [15] Fan X, Zhao D. On the spaces Lp(x)(Ω)L^{p(x)}(\Omega) and Wm,p(x)(Ω)W^{m,p(x)}(\Omega). Journal of mathematical analysis and applications. 2001;263(2):424–446.
  • [16] Radulescu VD, Repovs DD. Partial differential equations with variable exponents: variational methods and qualitative analysis. Vol. 9. CRC press; 2015.
  • [17] Zeidler E. Nonlinear functional analysis and its applications: Ii/b: Nonlinear monotone operators. Springer Science & Business Media; 2013.
  • [18] Browder FE. Nonlinear elliptic boundary value problems. Bulletin of the American Mathematical Society. 1963;69(6):862–874.
  • [19] Minty GJ. On a monotonicity method for the solution of nonlinear equations in banach spaces. Proceedings of the National Academy of Sciences. 1963;50(6):1038–1041.
  • [20] Chipot M. Elliptic equations: an introductory course. Springer Science & Business Media; 2009.
  • [21] Massar M. Existence results for an anisotropic variable exponent kirchhoff-type problem. Complex Variables and Elliptic Equations. 2024;69(2):234–251.
  • [22] Papageorgiou NS, Winkert P. Applied nonlinear functional analysis: An introduction. Walter de Gruyter GmbH & Co KG; 2018.
  • [23] Avci M. A topological result for a class of anisotropic difference equations. Annals of the University of Craiova-Mathematics and Computer Science Series. 2019;46(2):328–343.
  • [24] Bogachev V. Measure theory springer ; 2007.
  • [25] Royden H, Fitzpatrick PM. Real analysis. China Machine Press; 2010.
  • [26] Crespo-Blanco Á, Gasiński L, Harjulehto P, et al. A new class of double phase variable exponent problems: Existence and uniqueness. Journal of Differential Equations. 2022;323:182–228.