This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Corresponding author: [email protected]

Monolayer V2MX4: A New Family of Quantum Anomalous Hall Insulators

Yadong Jiang State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China    Huan Wang State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China    Kejie Bao State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China    Zhaochen Liu State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China    Jing Wang State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China Institute for Nanoelectronic Devices and Quantum Computing, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China Hefei National Laboratory, Hefei 230088, China
Abstract

We theoretically propose that the van der Waals layered ternary transition metal chalcogenide V2MX4 (M=M= W, Mo; X=X= S, Se) is a new family of quantum anomalous Hall insulators with sizable bulk gap and Chern number 𝒞=1\mathcal{C}=-1. The large topological gap originates from the deep band inversion between spin up bands contributed by dxz,dyzd_{xz},d_{yz} orbitals of V and spin down band from dz2d_{z^{2}} orbital of MM at Fermi level. Remarkably, the Curie temperature of monolayer V2MX4 is predicted to be much higher than that of monolayer MnBi2Te4. Furthermore, the thickness dependence of the Chern number for few multilayers shows interesting oscillating behavior. The general physics from the dd-orbitals here applies to a large class of ternary transition metal chalcogenide such as Ti2WX4X_{4} with the space group PP-42m42m. These interesting predictions, if realized experimentally, could greatly promote the research and application of topological quantum physics.

Introduction. The discovery of the quantum anomalous Hall (QAH) effect set a remarkable example for understanding topological states of quantum matter in condensed matter physics and material science Hasan and Kane (2010); Qi and Zhang (2011); Tokura et al. (2019); Wang and Zhang (2017); Bernevig et al. (2022); Chang et al. (2023). Such a state is characterized by a topologically nontrivial insulating bulk with a finite Chern number 𝒞\mathcal{C} Thouless et al. (1982); Haldane (1988) but gapless chiral edge states, which is promising for the realization of dissipationless electronic devices Zhang and Zhang (2012); Wang et al. (2013) and topological computation Qi et al. (2010); Wang et al. (2015a); Lian et al. (2018). The QAH effect has been observed first in magnetically doped topological insulators (TI) Chang et al. (2013, 2015); Mogi et al. (2015); Bestwick et al. (2015); Watanabe et al. (2019), and subsequently in the intrinsic magnetic TI MnBi2Te4 Deng et al. (2020), in the moiré graphene Serlin et al. (2020) and moiré transition metal dichalcogenide Li et al. (2021), but only at low temperature (below 55 K). Such low critical temperature is a weighty obstacle for practical applications, for example the quantum resistance standard Okazaki et al. (2022). Seeking new QAH insulator materials You et al. (2019); Sun et al. (2020a); Li et al. (2020); Xuan et al. (2022); Sun et al. (2020b); Li et al. (2022); Jiang et al. (2023) with preferably large bulk gaps has become an important goal in topological material research.

Physically, the basic mechanism for the QAH effect is band inversion of the spin polarized bands Liu et al. (2008), where both the spin-orbit coupling (SOC) and ferromagnetism are sufficiently strong. From the materials perspective, strong SOC prefers heavy elements, while the ferromagnetism favors transition metal elements preferably with 3dd electrons. Thus the challenge in searching for large-gap QAH insulator materials is to synergize the seemingly conflicting requirement of SOC and ferromagnetism. Indeed, the inhomogeneities in magnetic TI Yu et al. (2010); Wang et al. (2015b); Zhang et al. (2019); Li et al. (2019); Otrokov et al. (2019) from magnetic dopants Chong et al. (2020) and defects Garnica et al. (2022) drastically suppress the exchange gap by several order of magnitude, which fundamentally limits the exactly quantized anomalous Hall effect to very low temperatures. Therefore, finding stoichiometric 2D magnetic materials for QAH effect preferably in monolayer with versatile tunability is highly desired.

Refer to caption
Figure 1: (a),(b) Atomic structure of monolayer V2MX4 from top and side views. The Wyckoff positions 1a1a and 2e2e are displayed (notation adopted from Bilbao Crystallographic Server Aroyo et al. (2006); Kirov et al. (2006); Perez-Mato et al. (2011); Kruthoff et al. (2017); Vergniory et al. (2017); Elcoro et al. (2017); Bradlyn et al. (2017)). The magnetic ground state of the 2D materials class is FM along zz direction with spin magnetic moment 2.6μB2.6\mu_{B} per V atom. The key symmetry operations of PP-42m42m include S4zS_{4z}, C2xC_{2x} and C2zC_{2z} rotations, where S4zC4zS_{4z}\equiv\mathcal{I}C_{4z} and \mathcal{I} is inversion symmetry. (c) Brillouin zone. (d) Crystal field splitting and schematic diagram of the FM kinetic exchange coupling between the V atoms.

Here we predict a series of large-gap QAH insulators in monolayer V2MX4 (M=M= W, Mo; X=X= S, Se), based on density functional theory (DFT) calculations and tight-binding model. The Vienna ab initio simulation package Kresse and Furthmüller (1996) is employed by using the Perdew-Burke-Ernzerhof Perdew et al. (1996) generalized-gradient approximation. We perform DFT+Hubbard\text{DFT}+\text{Hubbard} UU calculations Dudarev et al. (1998). The predicted topology was further verified by Heyd-Scuseria-Ernzerhof (HSE) hybrid functional with band gap listed in Table 1 Krukau et al. (2006). These materials have the ferromagnetic (FM) ground state with Chern number 𝒞=1\mathcal{C}=-1 and extraordinarily large bulk gaps (0.2\sim 0.2 eV). We find the large topological gap originates from the deep band inversion between V dxz,dyzd_{xz},d_{yz} orbitals and MM dz2d_{z^{2}} orbital. The rich choice of candidate materials in Table 1 indicates that the physics here is generic with the space group PP-42m42m.

Structure and magnetic properties. The monolayer V2MX4 has a tetragonal lattice with the space group PP-42m42m (No. 111). As shown in Fig. 1(a), each primitive cell includes three (i.e., one VM2{}_{2}M and two X2X_{2}) atomic layers, where each V or MM atom is surrounded by four XX atoms forming a distorted edge-sharing tetrahedron. These QAH materials are obtained from high-throughput screening of insulating V2MX4 with MM from group 5 and 6, and XX from group 16. Their lattice constants are listed in Table 1. The dynamical and thermal stability of monolayer V2MX4 are confirmed by first-principles phonon and molecular dynamics calculations sup , respectively. We will mainly discuss V2WS4 with similar results for other materials in this class. In reality, CuMX42{}_{2}\textit{MX}_{4} and AgMX42{}_{2}\textit{MX}_{4} with the same structure have been experimentally synthesized Crossland et al. (2005); Gan and Schwingenschlögl (2014); Hu et al. (2016); Zhan et al. (2018); Wu et al. (2019); Lin et al. (2019), which implies high probability to fabricate V2MX4. Meanwhile, the van der Waals nature of these materials implies the experimental feasibility to exfoliate monolayer from bulk sample.

Table 1: Lattice constant; Magnetocrystalline anisotropy energy (MAE) per unit cell EMAEE_{\text{MAE}}, defined as the total energy difference between in-plane and out-of-plane spin configurations; Curie temperature TcT_{c} from Monte Carlo simulations; Band gap EgE_{g} by using HSE method.
Materials aa (Å) TcT_{c} (K) EMAEE_{\rm{MAE}} (meV) EgE_{g} (meV)
V2WS4 5.74 470 12.1 279
V2WSe4 5.82 440 13.2 258
V2MoS4 5.72 310 2.0 115
V2MoSe4 5.83 284 2.2 70
Ti2WS4 5.75 240 10.7 259
Ti2WSe4 5.79 210 13.7 275
Refer to caption
Figure 2: Electronic structures and topological properties of monolayer V2WS4, V2MoS4 and Ti2WS4. (a)-(c) V2WS4, (d)-(f) V2MoS4, (g)-(i) Ti2WS4, The band structure with SOC; topological edge states (ES) calculated along xx axis; and anomalous Hall conductance σxy\sigma_{xy} as a function of Fermi energy, respectively. The shaded regions in (a),(d),(g) denote the topological gap.

First-principles calculations show VM2X4{}_{2}MX_{4} listed in Table 1 have strong FM ground state with an out-of-plane easy axis sup . The underlying mechanism of FM can be elucidated from orbital occupation. The magnetic moments are mainly provided by V (2.6μB\approx 2.6\mu_{B}) rather than W (0.4μB\approx 0.4\mu_{B}). The fractional magnetic moment is due to band inversion between V dxz,yzd_{xz,yz} orbitals and W dz2d_{z^{2}} orbital (Fig. 3(a)). Thus the magnetism is from V atoms. The tetrahedral crystal field splits V 3d3d orbitals into doublet eg(dx2y2,dz2)e_{g}(d_{x^{2}-y^{2}},d_{z^{2}}) and triplet t2g(dxy,dxz,dyz)t_{2g}(d_{xy},d_{xz},d_{yz}) orbitals (Fig. 1(d)). The energy of ege_{g} stays lower with respect to t2gt_{2g}, because the latter point towards the negatively charged ligands. Thus each V atom is in the eg2t2g1e^{2}_{g}t_{2g}^{1} configuration with the magnetic moment of 3μB3\mu_{B} according to the Hund’s rule, which is close to the DFT calculations. The FM exchange coupling between neighboring V atoms is strongly enhanced by Hund’s rule interaction due to empty t2gt_{2g} orbitals Khomskii (2004). Furthermore, the predicted Curie temperature for monolayer V2MX4 is much higher than that of MnBi2Te4.

Electronic structures. Fig. 2(a) and Fig. 3(a) display the electronic structure of monolayer V2WS4 with and without SOC, respectively. There are two band inversions between different spin polarized bands, both of which are further gapped by SOC. Specifically, one is near the Fermi energy EFE_{F} between spin up bands contributed by dxy,dyzd_{xy},d_{yz} orbitals of V and spin down band by dz2d_{z^{2}} orbital of W, the other is about 0.70.7 eV below EFE_{F} between V dxy,dyzd_{xy},d_{yz} spin up bands and W dx2y2d_{x^{2}-y^{2}} spin down band. There also exists a spin polarized quadratic band touching at Γ\Gamma point from dxy,dyzd_{xy},d_{yz} orbitals of V above EFE_{F}, with the nontrivial gap opened by SOC Wang and Wang (2021). The anomalous Hall conductance σxy\sigma_{xy} versus EFE_{F} is calculated in Fig. 2(c), which displays a quantized value of e2/h-e^{2}/h near both EFE_{F} and EF0.7E_{F}-0.7 eV. This indicates the topological nontrivial bands with 𝒞=1\mathcal{C}=-1 below EF0.7E_{F}-0.7 eV, which is consistent with single chiral edge states dispersing within the bulk gap as in the edge local density of states (Fig. 2(b)). Interestingly, there also exists an occupied 2nd chiral edge state which is 0.70.7 eV below EFE_{F}, which can be measured by scanning tunneling microscope. By replacing W by the same group element Mo, V2MoS4 monolayer has similar band structure and same topological properties as shown in Fig. 2(d)-2(f). The topological gap of monolayer V2WX4X_{4} is larger than that of V2MoX4X_{4}, which is due to enhanced SOC from heavier elements and deeper band inversion.

Refer to caption
Figure 3: (a) The dd-orbitals projection band structures without SOC of monolayer V2WS4, only those bands which is related to band inversion are shown. (b) The band structure for FM along zz- and xx-axis of V2WS4 with SOC. (c) Energy and momentum dependence of the edge local density of state along yy-axis under FM-xx state of V2WS4. (d) Dependence of bulk gap along the high symmetry line and 𝒞\mathcal{C} on the spin orientation quantified by a polar angle θ\theta, where θ=0,π/2,π\theta=0,\pi/2,\pi denote the +z,+x,z+z,+x,-z directions, respectively.

The topological gap strongly depends on spin orientations. Fig. 3(b) shows the band structure for the in-plane ferromagnetism along xx-axis. The symmetries of the system reduces to C2xC_{2x} and C2z𝒯C_{2z}\mathcal{T}, where 𝒯\mathcal{T} is time-reversal. One can see the gap along Γ\Gamma-Y decreases but not closes, for there is no symmetry to guarantee a gapless point. Along the high symmetry lines, there is a small negative indirect gap between valence top along Γ\Gamma-Y and conduction bottom along Γ\Gamma-M. The Chern number of valence bands are calculated to be 𝒞=0\mathcal{C}=0, which is guaranteed by C2z𝒯C_{2z}\mathcal{T}. Similar to 𝒯\mathcal{IT}, σxy\sigma_{xy} is odd under C2z𝒯C_{2z}\mathcal{T} in 2D materials, which ensures 𝒞=0\mathcal{C}=0 when ferromagnetism is completely along any in-plane direction. This is consistent with the edge local density of state calculation in Fig. 3(c), where there is no chiral edge state. The FM-xx state is trivial without any kinds of topology, which is checked by the band representation of C2xC_{2x} (i.e., symmetry indicator). Then by varying the spin orientation from +z+z to +x+x, then to z-z axis, the band gap monotonically decreases to close, and negative then reopens, which is accompanied by the topological phase transitions from 𝒞=1\mathcal{C}=-1 to 𝒞=0\mathcal{C}=0 and then to 𝒞=1\mathcal{C}=1 in Fig. 3(d). The gap varies approximately in relation as EgScos(θ+θ0)SzE_{g}\propto S\cos(\theta+\theta_{0})\approx\langle S_{z}\rangle, with θ00.1\theta_{0}\approx 0.1 sup . This simply means the topologically nontrivial gap is opened by SOC related to Sz\langle S_{z}\rangle component, while the trivial gap is associated with Sx\langle S_{x}\rangle component.

The intimate relationship between band gap and spin orientation implies that the electronic structure is renormalized by magnon excitations. In FM-zz ground state, the magnons contribution to magnetization is Sz=Sd2𝐤nB(ϵ𝐤)/(2π)2\langle S_{z}\rangle=S-\int d^{2}\mathbf{k}n_{B}(\epsilon_{\mathbf{k}})/(2\pi)^{2}, where nB(ϵ𝐤)1/[exp(ϵ𝐤/kBT)1]n_{B}(\epsilon_{\mathbf{k}})\equiv 1/[\exp(\epsilon_{\mathbf{k}}/k_{B}T)-1] is the Bose distribution, ϵ𝐤\epsilon_{\mathbf{k}} is magnon dispersion. Taking V2WS4 as an example, S=3/2S=3/2 and the magnon gap is estimated to be 5.345.34 meV. Thus when T<58T<58 K, the magnon is absent; when T200T\lesssim 200 K, the reduction in Sz\langle S_{z}\rangle from magnon excitation is less than 6%6\% compared to Sz=3/2\langle S_{z}\rangle=3/2 sup . Therefore, the large topological gap of ground state still holds in the presence of magnon excitation. It is worth mentioning that when temperature is close to TcT_{c}, the significant thermal spin fluctuation will decrease Sz\langle S_{z}\rangle and topological gap dramatically.

Tight-binding model and origin of topology. To reveal the origin of 𝒞=1\mathcal{C}=-1 topology in the electronic structure, we perform the symmetry analysis of the band irreducible representation and construct a tight-binding model to recover the essential topological physics. The first and second band inversions occur at Γ\Gamma and M point, respectively. Naively, one may simply count the angular momentum difference locally at the band inversion point to be the Chern number change as in the conventional ss-pp band inversion. However, this is incorrect due to band inversion from the opposite spin polarization here. For example, at M point for second band inversion, only spin contributes to the angular momentum difference, which implies the lowest band (dx2y2d^{\downarrow}_{x^{2}-y^{2}} from W) should have 𝒞=1\mathcal{C}=1, this is contrary to the first principles calculations of 𝒞=1\mathcal{C}=-1.

Then we construct a concrete tight-binding model including dxz,dyzd^{\uparrow}_{xz},d^{\uparrow}_{yz} of V and dz2,dx2y2d_{z^{2}}^{\downarrow},d_{x^{2}-y^{2}}^{\downarrow} of W to decipher the origin of topology. There are two V in an unit cell, and dxz,dyzd_{xz},d_{yz} orbitals of each V are non-degenerate. However, dxzd_{xz} of one V and dyzd_{yz} of the other V are degenerate, which are related to each other by S4zS_{4z}. Therefore, for the low energy physics, we only need to consider dxz,dyzd^{\uparrow}_{xz},d^{\uparrow}_{yz} from two V, respectively and dz2,dx2y2d_{z^{2}}^{\downarrow},d_{x^{2}-y^{2}}^{\downarrow} of W, namely a four orbitals model. The Hamiltonian is obtained by considering the nearest-neighbor and next-nearest-neighbor hopping with SOC included, where the explicit forms are in Supplementary Materials sup . As shown in Fig. 4(a) and 4(b), the band structure and the corresponding irreducible representations of high symmetry points (listed in Table 2) in DFT calculation (Fig. 2(a) and Fig. 3(a)) are rebuilt in our tight-binding model.

Refer to caption
Figure 4: (a),(b) The dd-orbitals projection band structure of the tight-binding model with and without SOC. The irreducible representation at high-symmetry points of the Brillouin zone boundary and the orbital compositions (color of the bands) are consistent with that in Fig. 3(a). (c)-(e), The Wilson loop for the lowest one, two and three bands in (b), respectively. (f) Eigenvalues of S4zS_{4z} at Γ\Gamma and M points and C2zC_{2z} at X point of bands A and B. Chern number 𝒞\mathcal{C} are calculated by Eq. (1).

The symmetry generators of space group PP-42m42m are S4zS_{4z}, C2zC_{2z} and C2xC_{2x}. For tight-binding model of V2MX4, \mathcal{I} can be viewed as C2zC_{2z} due to lacking of zz direction. Then S4zS_{4z} becomes C4z3C^{3}_{4z}, namely, the system is effectively C4zC_{4z} invariant. The Chern number of band in a S4S_{4} invariant system is shown to be Fang et al. (2012); sup ,

i𝒞=joccupied(1)Fξj(Γ)ξj(M)ζj(X).i^{\mathcal{C}}=\prod\limits_{j\in\text{occupied}}(-1)^{F}\xi_{j}(\Gamma)\xi_{j}(M)\zeta_{j}(X). (1)

Here F=1F=1 for spinful case. ξj(k)\xi_{j}(k) is the eigenvalue of S4zS_{4z} at the S4zS_{4z}-invariant Γ\Gamma and M points of the jj-th band, ζj(k)\zeta_{j}(k) is the eigenvalue of C2zC_{2z} at the C2zC_{2z}-invariant X point on the jj-th band. Now the band topology can be diagnosed by the symmetry information listed in Table 2. The eigenvalues and Chern numbers for lowest (A) and second lowest band (B) are calculated in Fig. 4(f). All of these are consistent with the Wilson loop calculations for the lowest one and two bands shown in Fig. 4(c) and 4(d). The quadratic band touching at Γ5\Gamma_{5} is from degenerate dxz,dyzd_{xz},d_{yz}, which have an effective angular momentum z=±1\ell_{z}=\pm 1, and SOC opens a topologically nontrivial gap Wang and Wang (2021). Thus the Chern number summation of lowest three bands is only determined by the sign of SOC. As shown in Fig. 4(e), the total Chern number of the lowest three bands is 𝒞=1\mathcal{C}=-1, namely, both bands B and C have 𝒞=0\mathcal{C}=0, and the only nontrivial 𝒞=1\mathcal{C}=-1 is carried by band A, which is consistent with first principles calculations. If we artificially reverse the sign of SOC, then the Chern number of the lowest three bands are (𝒞A,𝒞B,𝒞C)=(1,0,2)(\mathcal{C}_{A},\mathcal{C}_{B},\mathcal{C}_{C})=(-1,0,2). Now we fully understand that the topology in this system is not only from gapping the degenerate dxz,dyzd_{xz},d_{yz} orbitals of V by SOC, but also the band inversions from them and W dz2d_{z^{2}} and dx2y2d_{x^{2}-y^{2}}.

Here we analyze the origin of the large topological gap. The topological gap is from SOC term as λso𝐬=λso(+s+s+)/2+λsozsz\lambda_{\text{so}}\bm{\ell}\cdot\mathbf{s}=\lambda_{\text{so}}(\ell_{+}s_{-}+\ell_{-}s_{+})/2+\lambda_{\text{so}}\ell_{z}s_{z}, where λso\lambda_{\text{so}} is atomic SOC strength. The nontrivial gap is opened by combining the first term with orbital hopping and hybridization. For spin polarized band inversion in QAH, two bands are inverted at certain high-symmetry point in the Brillouin zone, and topological gap EgE_{g} opens at a finite wave vector δk\delta k away from the band inversion point due to orbital hybridization with EgλδkE_{g}\propto\lambda^{\prime}\delta k, where λ\lambda^{\prime} is the hybridization strength. For spin polarized band inversion with same spin such as MnBi2Te4 Zhang et al. (2019); Li et al. (2019), λλso2\lambda^{\prime}\propto\lambda_{\text{so}}^{2}, namely second-order process. In V2MX4, the band inversion are between opposite spin polarized bands, λλso\lambda^{\prime}\propto\lambda_{\text{so}}, thus a lower-order process with greater strength in gap opening. Meanwhile, these materials have deep band inversion with large δk\delta k. Therefore, both λ\lambda^{\prime} and δk\delta k are enhanced in V2MX4 and lead to large topological gap.

Table 2: Partial elementary band representations without time-reversal symmetry for space group PP-42m42m.
Γ\Gamma XX MM
dz2d_{z^{2}}@1a Γ1(1)\Gamma_{1}(1) X1(1)X_{1}(1) M1(1)M_{1}(1)
dx2y2d_{x^{2}-y^{2}}@1a Γ3(1)\Gamma_{3}(1) X1(1)X_{1}(1) M3(1)M_{3}(1)
dxz,yzd_{xz,yz}@2e Γ5(2)\Gamma_{5}(2) X3(1)X4(1)X_{3}(1)\oplus X_{4}(1) M2(1)M4(1)M_{2}(1)\oplus M_{4}(1)

Material generalization. The key for the 𝒞=1\mathcal{C}=-1 phase here is rooted in the spin polarized quadratic band touching of dxz,dyzd_{xz},d_{yz} orbitals at Γ\Gamma point, where S4zS_{4z} ensures their degeneracy. With SOC and certain orbital occupations, QAH phase can be realized. In fact, the model and analysis from dd orbitals above are quite general, and also apply to monolayer Ti2WX4 (X=X= S, Se) with the same lattice structure of PP-42m42m symmetry and similar dd-orbital projected band structure and irreducible representations sup . Ti2WX4 has the FM ground state, and the magnetism is from Ti atom. Interestingly, the bandwidth of dz2d_{z^{2}} orbital is much narrower than that of dxz,dyzd_{xz},d_{yz} orbitals in Ti. Each Ti atom is in the eg1t2g1e_{g}^{1}t_{2g}^{1} configuration with the magnetic moment close to 2μB2\mu_{B} according to the Hund’s rule. The ege_{g}-t2gt_{2g} kinetic exchange leads to strong ferromagnetism Jiang et al. (2023). Meanwhile, similar two band inversions occur between dxy,dyzd^{\uparrow}_{xy},d^{\uparrow}_{yz} bands of Ti and dz2d^{\downarrow}_{z^{2}} band of W first at EFE_{F}, and dx2y2d^{\downarrow}_{x^{2}-y^{2}} band of W then below EFE_{F}. By adding SOC, the nontrivial topology from quadratic band touching of dxz,dyzd_{xz},d_{yz} at Γ\Gamma is now transmitted to the bands below EFE_{F}, leading to the 𝒞=1\mathcal{C}=-1 QAH phase (Fig. 2(g)-(i)). We point out that Ti dd-orbitals contribute both of topology and magnetism, nevertheless the physics is quite different from KTiSb class of compounds, where the topology is from band inversion from dxz,dyzd_{xz},d_{yz} and dz2d_{z^{2}} at MM point Jiang et al. (2023).

Discussions. The topological band structures in these materials have interesting thickness dependence. Bilayer V2WS4 has AA or AB stacking. The magnetic ground state is AA-type AFM with the out-of-plane easy axis in AB stacking, which is FM within each layer but AFM between the adjacent layer. The t2gt_{2g}-t2gt_{2g} exchange of V atoms between neighbor layers via pp orbitals of ligand is AFM due to Goodenough-Kanamori-Anderson rule Khomskii (2004). The system has a full band gap and gapped helical edge state, namely 𝒞=0\mathcal{C}=0, which can be simply viewed as stacking of two QAH with opposite Chern number along zz-axis. The FM-zz state of bilayer also has a full gap but with 𝒞=2\mathcal{C}=-2. We further calculate the trilayer case and obtain AFM ground state with an uncompensated FM layer along zz axis, and the system is a 𝒞=1\mathcal{C}=-1 QAH insulator sup . Therefore, we expect 𝒞\mathcal{C} will oscillate between 1-1 and 0 depending on odd and even layers of multilayer, as long as it has a full band gap.

The quantized σxy\sigma_{xy} and vanishing longitudinal conductivity of QAH insulator imply a quantized Kerr/Faraday rotation Ikebe et al. (2010); Shimano et al. (2013), when the frequency satisfies ωEg/\omega\ll E_{g}/\hbar. However, such a quantized magnetooptical effect has not been achieved in existing QAH systems yet due to the small band gap Okada et al. (2016); Mogi et al. (2022). Here the topologically nontrivial Chern bands in V2MX4 lies far below and above EFE_{F}, which provides an intriguing but rare platform for exploring giant Kerr rotation from the optical transitions between Chern bands, even possibly in the optical frequency range.

In summary, our work uncover large gap 𝒞=1\mathcal{C}=-1 QAH phase with interesting interplay between magnetism and topology solely from dd orbitals, which applies to a large class of ternary chalcogenide in space group PP-42m42m. The rich choice of candidate materials indicate the physics is quite general. We hope the theoretical work here could aid the search for new QAH insulators in transition metal compounds.

Acknowledgements.
Acknowledgment. This work is supported by the National Key Research Program of China under Grant No. 2019YFA0308404, the Natural Science Foundation of China through Grants No. 12350404 and No. 12174066, the Innovation Program for Quantum Science and Technology through Grant No. 2021ZD0302600, the Science and Technology Commission of Shanghai Municipality under Grants No. 23JC1400600 and No. 20JC1415900, Shanghai Municipal Science and Technology Major Project under Grant No. 2019SHZDZX01. Y.J. and H.W. contributed equally to this work.

References

  • Hasan and Kane (2010) M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
  • Qi and Zhang (2011) Xiao-Liang Qi and Shou-Cheng Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
  • Tokura et al. (2019) Yoshinori Tokura, Kenji Yasuda,  and Atsushi Tsukazaki, “Magnetic topological insulators,” Nature Rev. Phys. 1, 126–143 (2019).
  • Wang and Zhang (2017) Jing Wang and Shou-Cheng Zhang, “Topological states of condensed matter,” Nature Mat. 16, 1062–1067 (2017).
  • Bernevig et al. (2022) B. Andrei Bernevig, Claudia Felser,  and Haim Beidenkopf, “Progress and prospects in magnetic topological materials,” Nature 603, 41–51 (2022).
  • Chang et al. (2023) Cui-Zu Chang, Chao-Xing Liu,  and Allan H. MacDonald, “Colloquium: Quantum anomalous hall effect,” Rev. Mod. Phys. 95, 011002 (2023).
  • Thouless et al. (1982) D. J. Thouless, M. Kohmoto, M. P. Nightingale,  and M. den Nijs, “Quantized hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49, 405–408 (1982).
  • Haldane (1988) F. D. M. Haldane, “Model for a quantum hall effect without landau levels: Condensed-matter realization of the ”parity anomaly”,” Phys. Rev. Lett. 61, 2015–2018 (1988).
  • Zhang and Zhang (2012) Xiao Zhang and Shou-Cheng Zhang, “Chiral interconnects based on topological insulators,” Proc. SPIE Micro- and Nanotechnology Sensors, Systems, and Applications IV 8373, 837309 (2012).
  • Wang et al. (2013) Jing Wang, Biao Lian, Haijun Zhang, Yong Xu,  and Shou-Cheng Zhang, “Quantum anomalous hall effect with higher plateaus,” Phys. Rev. Lett. 111, 136801 (2013).
  • Qi et al. (2010) Xiao-Liang Qi, Taylor L. Hughes,  and Shou-Cheng Zhang, “Chiral topological superconductor from the quantum hall state,” Phys. Rev. B 82, 184516 (2010).
  • Wang et al. (2015a) Jing Wang, Quan Zhou, Biao Lian,  and Shou-Cheng Zhang, “Chiral topological superconductor and half-integer conductance plateau from quantum anomalous hall plateau transition,” Phys. Rev. B 92, 064520 (2015a).
  • Lian et al. (2018) Biao Lian, Xiao-Qi Sun, Abolhassan Vaezi, Xiao-Liang Qi,  and Shou-Cheng Zhang, “Topological quantum computation based on chiral majorana fermions,” Proc. Natl. Acad. Sci. USA 115, 10938–10942 (2018).
  • Chang et al. (2013) Cui-Zu Chang, Jinsong Zhang, Xiao Feng, Jie Shen, Zuocheng Zhang, Minghua Guo, Kang Li, Yunbo Ou, Pang Wei, Li-Li Wang, Zhong-Qing Ji, Yang Feng, Shuaihua Ji, Xi Chen, Jinfeng Jia, Xi Dai, Zhong Fang, Shou-Cheng Zhang, Ke He, Yayu Wang, Li Lu, Xu-Cun Ma,  and Qi-Kun Xue, “Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator,” Science 340, 167–170 (2013).
  • Chang et al. (2015) Cui-Zu Chang, Weiwei Zhao, Duk Y. Kim, Haijun Zhang, Badih A. Assaf, Don Heiman, Shou-Cheng Zhang, Chaoxing Liu, Moses H. W. Chan,  and Jagadeesh S. Moodera, “High-precision realization of robust quantum anomalous hall state in a hard ferromagnetic topological insulator,” Nature Mater. 14, 473 (2015).
  • Mogi et al. (2015) M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K. S. Takahashi, M. Kawasaki,  and Y. Tokura, “Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous hall effect,” Appl. Phys. Lett. 107, 182401 (2015).
  • Bestwick et al. (2015) A. J. Bestwick, E. J. Fox, Xufeng Kou, Lei Pan, Kang L. Wang,  and D. Goldhaber-Gordon, “Precise quantization of the anomalous hall effect near zero magnetic field,” Phys. Rev. Lett. 114, 187201 (2015).
  • Watanabe et al. (2019) R. Watanabe, R. Yoshimi, M. Kawamura, M. Mogi, A. Tsukazaki, X. Z. Yu, K. Nakajima, K. S. Takahashi, M. Kawasaki,  and Y. Tokura, “Quantum anomalous hall effect driven by magnetic proximity coupling in all-telluride based heterostructure,” Appl. Phys. Lett. 115, 102403 (2019).
  • Deng et al. (2020) Yujun Deng, Yijun Yu, Meng Zhu Shi, Zhongxun Guo, Zihan Xu, Jing Wang, Xian Hui Chen,  and Yuanbo Zhang, “Quantum anomalous hall effect in intrinsic magnetic topological insulator mnbi2te4,” Science 367, 895–900 (2020).
  • Serlin et al. (2020) M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents,  and A. F. Young, “Intrinsic quantized anomalous hall effect in a moiré heterostructure,” Science 367, 900–903 (2020).
  • Li et al. (2021) Tingxin Li, Shengwei Jiang, Bowen Shen, Yang Zhang, Lizhong Li, Zui Tao, Trithep Devakul, Kenji Watanabe, Takashi Taniguchi, Liang Fu, Jie Shan,  and Kin Fai Mak, “Quantum anomalous hall effect from intertwined moiré bands,” Nature 600, 641–646 (2021).
  • Okazaki et al. (2022) Yuma Okazaki, Takehiko Oe, Minoru Kawamura, Ryutaro Yoshimi, Shuji Nakamura, Shintaro Takada, Masataka Mogi, Kei S. Takahashi, Atsushi Tsukazaki, Masashi Kawasaki, Yoshinori Tokura,  and Nobu-Hisa Kaneko, “Quantum anomalous hall effect with a permanent magnet defines a quantum resistance standard,” Nature Phys. 18, 25–29 (2022).
  • You et al. (2019) Jing-Yang You, Zhen Zhang, Bo Gu,  and Gang Su, “Two-dimensional room-temperature ferromagnetic semiconductors with quantum anomalous hall effect,” Phys. Rev. Applied 12, 024063 (2019).
  • Sun et al. (2020a) Jiaxiang Sun, Xin Zhong, Wenwen Cui, Jingming Shi, Jian Hao, Meiling Xu,  and Yinwei Li, “The intrinsic magnetism, quantum anomalous hall effect and curie temperature in 2d transition metal trihalides,” Phys. Chem. Chem. Phys. 22, 2429–2436 (2020a).
  • Li et al. (2020) Yang Li, Jiaheng Li, Yang Li, Meng Ye, Fawei Zheng, Zetao Zhang, Jingheng Fu, Wenhui Duan,  and Yong Xu, “High-temperature quantum anomalous hall insulators in lithium-decorated iron-based superconductor materials,” Phys. Rev. Lett. 125, 086401 (2020).
  • Xuan et al. (2022) X. Xuan, Z. Zhang, C. Chen,  and W. Guo, “Robust quantum anomalous hall states in monolayer and few-layer tite,” Nano Lett. 22, 5379–5384 (2022).
  • Sun et al. (2020b) Qilong Sun, Yandong Ma,  and Nicholas Kioussis, “Two-dimensional dirac spin-gapless semiconductors with tunable perpendicular magnetic anisotropy and a robust quantum anomalous hall effect,” Mater. Horiz 7, 2071–2077 (2020b).
  • Li et al. (2022) Zeyu Li, Yulei Han,  and Zhenhua Qiao, “Chern number tunable quantum anomalous hall effect in monolayer transitional metal oxides via manipulating magnetization orientation,” Phys. Rev. Lett. 129, 036801 (2022).
  • Jiang et al. (2023) Yadong Jiang, Huan Wang,  and Jing Wang, “Large-gap quantum anomalous hall insulators in the aTixa\mathrm{Ti}x (a=Ka=\mathrm{K}, rb, sr; xx=sb, bi, sn) class of compounds,” Phys. Rev. B 108, 165122 (2023).
  • Liu et al. (2008) Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang,  and Shou-Cheng Zhang, “Quantum anomalous hall effect in Hg1yMnyTe\mathrm{Hg}_{1-y}\mathrm{Mn}_{y}\mathrm{Te} quantum wells,” Phys. Rev. Lett. 101, 146802 (2008).
  • Yu et al. (2010) Rui Yu, Wei Zhang, Hai-Jun Zhang, Shou-Cheng Zhang, Xi Dai,  and Zhong Fang, “Quantized Anomalous Hall Effect in Magnetic Topological Insulators,” Science 329, 61–64 (2010).
  • Wang et al. (2015b) Jing Wang, Biao Lian,  and Shou-Cheng Zhang, “Quantum anomalous hall effect in magnetic topological insulators,” Phys. Scr. T164, 014003 (2015b).
  • Zhang et al. (2019) Dongqin Zhang, Minji Shi, Tongshuai Zhu, Dingyu Xing, Haijun Zhang,  and Jing Wang, “Topological axion states in the magnetic insulator mnbi2te4{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4} with the quantized magnetoelectric effect,” Phys. Rev. Lett. 122, 206401 (2019).
  • Li et al. (2019) Jiaheng Li, Yang Li, Shiqiao Du, Zun Wang, Bing-Lin Gu, Shou-Cheng Zhang, Ke He, Wenhui Duan,  and Yong Xu, “Intrinsic magnetic topological insulators in van der waals layered mnbi2te4-family materials,” Sci. Adv. 5, eaaw5685 (2019).
  • Otrokov et al. (2019) M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Yu. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau,  and E. V. Chulkov, “Unique thickness-dependent properties of the van der waals interlayer antiferromagnet mnbi2te4{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4} films,” Phys. Rev. Lett. 122, 107202 (2019).
  • Chong et al. (2020) Yi Xue Chong, Xiaolong Liu, Rahul Sharma, Andrey Kostin, Genda Gu, K. Fujita, J. C. Séamus Davis,  and Peter O. Sprau, “Severe dirac mass gap suppression in sb2te3-based quantum anomalous hall materials,” Nano Lett. 20, 8001–8007 (2020).
  • Garnica et al. (2022) M. Garnica, M. M. Otrokov, P. Casado Aguilar, I. I. Klimovskikh, D. Estyunin, Z. S. Aliev, I. R. Amiraslanov, N. A. Abdullayev, V. N. Zverev, M. B. Babanly, N. T. Mamedov, A. M. Shikin, A. Arnau, A. L. Vázquez de Parga, E. V. Chulkov,  and R. Miranda, “Native point defects and their implications for the dirac point gap at mnbi2te4(0001),” npj Quantum Mater. 7, 7 (2022).
  • Aroyo et al. (2006) M I Aroyo, J M Perezmato, C Capillas, E Kroumova, Svetoslav Ivantchev, G Madariaga, A Kirov,  and Hans Wondratschek, “Bilbao crystallographic server: I. databases and crystallographic computing programs,” Z. Krist. 221, 15–27 (2006).
  • Kirov et al. (2006) Asen Kirov, Cesar Capillas, J Perez-Mato,  and Hans Wondratschek, “Bilbao crystallographic server. ii. representations of crystallographic point groups and space groups,” Acta Cryst. 62, 115–28 (2006).
  • Perez-Mato et al. (2011) J. Perez-Mato, D Orobengoa, Emre Tasci, Gemma De la Flor Martin,  and A Kirov, “Crystallography online: Bilbao crystallographic server,” Bulg. Chem. Commun. 43, 183–197 (2011).
  • Kruthoff et al. (2017) Jorrit Kruthoff, Jan de Boer, Jasper van Wezel, Charles L. Kane,  and Robert-Jan Slager, “Topological classification of crystalline insulators through band structure combinatorics,” Phys. Rev. X 7, 041069 (2017).
  • Vergniory et al. (2017) M. G. Vergniory, L. Elcoro, Zhijun Wang, Jennifer Cano, C. Felser, M. I. Aroyo, B. Andrei Bernevig,  and Barry Bradlyn, “Graph theory data for topological quantum chemistry,” Phys. Rev. E 96, 023310 (2017).
  • Elcoro et al. (2017) L. Elcoro, Barry Bradlyn, Z. Wang, M. G. Vergniory, Jennifer Cano, C. Felser, B. Bernevig, D. Orobengoa, G. D. L. Flor,  and M. Aroyo, “Double crystallographic groups and their representations on the bilbao crystallographic server,” J. Appl. Crystallogr 50, 1457 (2017).
  • Bradlyn et al. (2017) Barry Bradlyn, L Elcoro, Jennifer Cano, MG Vergniory, Zhijun Wang, C Felser, MI Aroyo,  and B Andrei Bernevig, “Topological quantum chemistry,” Nature 547, 298 (2017).
  • Kresse and Furthmüller (1996) G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
  • Perdew et al. (1996) John P. Perdew, Kieron Burke,  and Matthias Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
  • Dudarev et al. (1998) S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys,  and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An lsda+u study,” Phys. Rev. B 57, 1505–1509 (1998).
  • Krukau et al. (2006) Aliaksandr V. Krukau, Oleg A. Vydrov, Artur F. Izmaylov,  and Gustavo E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys 125, 224106 (2006).
  • (49) See Supplementary Material at [url], for technical details on methods of first-principles calculation, stability and magnetic ground state, electronic structure and orbital projection, Ti2MoX4 and V2TaX4 family, bilayer and trilayer V2WS4, and theory, which includes Refs. Blöchl (1994); Grimme et al. (2010); Mostofi et al. (2008); Wu et al. (2018); Gao et al. (2021); Togo and Tanaka (2015); Nosé (1984, 1991); Hoover (1985); He et al. (2021); Ozaki (2003); Ozaki and Kino (2004, 2005); Holstein and Primakoff (1940); Li (2019); Sui et al. (2020); Mellaerts et al. (2021).
  • Crossland et al. (2005) Clare J. Crossland, Peter J. Hickey,  and John S. O. Evans, “The synthesis and characterisation of cu2mx4 (m = w or mo; x = s, se or s/se) materials prepared by a solvothermal method,” J. Mater. Chem. 15, 3452–3458 (2005).
  • Gan and Schwingenschlögl (2014) Li-Yong Gan and Udo Schwingenschlögl, “Two-dimensional square ternary cu2mx4 (mm = mo, w; xx = s, se) monolayers and nanoribbons predicted from density functional theory,” Phys. Rev. B 89, 125423 (2014).
  • Hu et al. (2016) Xin Hu, Wei Shao, Xudong Hang, Xiaodong Zhang, Wenguang Zhu,  and Yi Xie, “Superior electrical conductivity in hydrogenated layered ternary chalcogenide nanosheets for flexible all-solid-state supercapacitors,” Angew. Chem. Int. Ed. 55, 5733–5738 (2016).
  • Zhan et al. (2018) Fengping Zhan, Qinghua Wang, Yibing Li, Xin Bo, Qingxiang Wang, Fei Gao,  and Chuan Zhao, “Low-temperature synthesis of cuboid silver tetrathiotungstate (ag2ws4) as electrocatalyst for hydrogen evolution reaction,” Inorg. Chem. 57, 5791–5800 (2018).
  • Wu et al. (2019) Qian Wu, Yandong Ma, Rui Peng, Baibiao Huang,  and Ying Dai, “Single-layer cu2ws4 with promising electrocatalytic activity toward hydrogen evolution reaction,” ACS Appl. Mater. Interfaces 11, 45818–45824 (2019).
  • Lin et al. (2019) Yunxiang Lin, Shuangming Chen, Ke Zhang,  and Li Song, “Recent advance of ternary layered cu2mx4 (m=mo, w; x=s, se) nanomaterials for photocatalysis,” Solar RRL 3, 1800320 (2019).
  • Khomskii (2004) Daniel I. Khomskii, Transition Metal Compounds (Cambridge University Press, 2004).
  • Wang and Wang (2021) Huan Wang and Jing Wang, “Topological bands in two-dimensional orbital-active bipartite lattices,” Phys. Rev. B 103, L081109 (2021).
  • Fang et al. (2012) Chen Fang, Matthew J. Gilbert,  and B. Andrei Bernevig, “Bulk topological invariants in noninteracting point group symmetric insulators,” Phys. Rev. B 86, 115112 (2012).
  • Ikebe et al. (2010) Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki,  and R. Shimano, “Optical hall effect in the integer quantum hall regime,” Phys. Rev. Lett. 104, 256802 (2010).
  • Shimano et al. (2013) R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto,  and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nature Commun. 4, 1841 (2013).
  • Okada et al. (2016) Ken N. Okada, Youtarou Takahashi, Masataka Mogi, Ryutaro Yoshimi, Atsushi Tsukazaki, Kei S. Takahashi, Naoki Ogawa, Masashi Kawasaki,  and Yoshinori Tokura, “Terahertz spectroscopy on faraday and kerr rotations in a quantum anomalous hall state,” Nature Commun. 7, 12245 (2016).
  • Mogi et al. (2022) M. Mogi, Y. Okamura, M. Kawamura, R. Yoshimi, K. Yasuda, A. Tsukazaki, K. S. Takahashi, T. Morimoto, N. Nagaosa, M. Kawasaki, Y. Takahashi,  and Y. Tokura, “Experimental signature of the parity anomaly in a semi-magnetic topological insulator,” Nature Phys. 18, 390–394 (2022).
  • Blöchl (1994) P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).
  • Grimme et al. (2010) Stefan Grimme, Jens Antony, Stephan Ehrlich,  and Helge Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu,” J. Chem. Phys. 132, 154104 (2010).
  • Mostofi et al. (2008) A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,  and N. Marzari, “wannier90: A tool for obtaining maximally-localised wannier functions,” Comput. Phys. Commun. 178, 685–699 (2008).
  • Wu et al. (2018) Q. Wu, S. Zhang, H.-F. Song, M. Troyer,  and A. A. Soluyanov, “Wanniertools: An open-source software package for novel topological materials,” Comput. Phys. Commun. 224, 405–416 (2018).
  • Gao et al. (2021) Jiacheng Gao, Quansheng Wu, Clas Persson,  and Zhijun Wang, “Irvsp: To obtain irreducible representations of electronic states in the vasp,” Comput. Phys. Commun. 261, 107760 (2021).
  • Togo and Tanaka (2015) Atsushi Togo and Isao Tanaka, “First principles phonon calculations in materials science,” Scr. Mater. 108, 1–5 (2015).
  • Nosé (1984) Shuichi Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511–519 (1984).
  • Nosé (1991) Shuichi Nosé, “Constant Temperature Molecular Dynamics Methods,” Prog. Theor. Phys. Supp. 103, 1–46 (1991).
  • Hoover (1985) William G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695–1697 (1985).
  • He et al. (2021) Xu He, Nicole Helbig, Matthieu J. Verstraete,  and Eric Bousquet, “Tb2j: A python package for computing magnetic interaction parameters,” Comput. Phys. Commun. 264, 107938 (2021).
  • Ozaki (2003) T. Ozaki, “Variationally optimized atomic orbitals for large-scale electronic structures,” Phys. Rev. B 67, 155108 (2003).
  • Ozaki and Kino (2004) T. Ozaki and H. Kino, “Numerical atomic basis orbitals from h to kr,” Phys. Rev. B 69, 195113 (2004).
  • Ozaki and Kino (2005) T. Ozaki and H. Kino, “Efficient projector expansion for the ab initio lcao method,” Phys. Rev. B 72, 045121 (2005).
  • Holstein and Primakoff (1940) T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Phys. Rev. 58, 1098–1113 (1940).
  • Li (2019) Ping Li, “Prediction of intrinsic two dimensional ferromagnetism realized quantum anomalous hall effect,” Phys. Chem. Chem. Phys. 21, 6712–6717 (2019).
  • Sui et al. (2020) Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia,  and Gang Li, “Model hamiltonian for the quantum anomalous hall state in iron-halogenide,” Chin. Phys. Lett. 37, 097301 (2020).
  • Mellaerts et al. (2021) S. Mellaerts, R. Meng, V. Afanasiev, J. W. Seo, M. Houssa,  and J.-P. Locquet, “Quarter-filled kane-mele hubbard model: Dirac half metals,” Phys. Rev. B 103, 155159 (2021).