This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Moments and One level density of sextic Hecke LL-functions

Peng Gao and Liangyi Zhao
Abstract.

Let ω=exp(2πi/3)\omega=\exp(2\pi i/3). In this paper, we study moments of central values of sextic Hecke LL-functions of (ω)\mathbb{Q}(\omega) and one level density result for the low-lying zeros of sextic Hecke LL-functions of (ω)\mathbb{Q}(\omega). As a corollary, we deduce that, assuming GRH, at least 2/452/45 of the members of the sextic family do not vanish at s=1/2s=1/2.

Mathematics Subject Classification (2010): 11L05, 11L40, 11M06, 11M41, 11M50, 11R16

Keywords: Hecke LL-functions, low-lying zeros, one level density, sextic Hecke characters

1. Introduction

Due to important arithmetic information encoded by the central values of LL-functions, their possible zeros there have been investigated extensively. In general, one expects an LL-function to be non-vanishing at the central point unless there is a good reason for it. This can be further expounded by instancing an LL-function attached to an elliptic curve of positive rank in view of the Birch-Swinnerton-Dyer conjecture or an LL-function whose functional equation has the sign of 1-1. In the classical case of Dirichlet LL-functions, it is conjectured by S. Chowla [chow] that L(1/2,χ)0L(1/2,\chi)\neq 0 for every primitive Dirichlet character χ\chi.

There are two methods of studying these potential central zeros of LL-functions. One typical approach to achieve the non-vanishing result is to study the moments of a family of LL-functions. In this way, H. Iwaniec and P. Sarnak [I&S] showed that L(1/2,χ)0L(1/2,\chi)\neq 0 for at least 1/31/3 of the primitive Dirichlet characters χmodq\chi\mod{q}. M. Jutilia [Jutila] showed that that there are X/logX\gg X/\log X fundamental discriminants dd with |d|<X|d|<X such that L(1/2,χd)0L(1/2,\chi_{d})\neq 0. This result is improved by K. Soundararajan [sound1], who showed that L(1/2,χ8d)0L(1/2,\chi_{8d})\neq 0 for at least 87.5%87.5\% of the real characters χ8d\chi_{8d}. For the family of LL-functions of primitive cubic Dirichlet characters, S. Baier and M. P. Young [B&Y] showed that for any ε>0\varepsilon>0, there are X6/7ε\gg X^{6/7-\varepsilon} primitive cubic Dirichlet characters χ\chi with conductor X\leq X such that L(1/2,χ)0L(1/2,\chi)\neq 0.

The result of Baier and Young [B&Y] is similar to another one of W. Luo [Luo], who studied moments of the family of L(1/2,χ)L(1/2,\chi) associated to cubic Hecke characters χ\chi with square-free modulus in (ω)\mathbb{Q}(\omega) with ω=exp(2πi/3)\omega=\exp\left(2\pi i/3\right) and derived a non-vanishing result for this family. A more general result for the first moment of central LL-values associated to the nn-th order Hecke characters of any number field containing the nn-th root of unity was obtained by S. Friedberg, J. Hoffstein and D. Lieman [FHL]. Corresponding non-vanishing results were obtained by V. Blomer, L. Goldmakher and B. Louvel in [BGL].

In [G&Zhao1, G&Zhao20], the authors studied moments of L(1/2,χ)L(1/2,\chi) for families of quadratic and quartic Hecke characters in (i)\mathbb{Q}(i) and (ω)\mathbb{Q}(\omega). In this paper, we first extend our studies above to the family of LL-functions associated to sextic Hecke characters in (ω)\mathbb{Q}(\omega). We have

Theorem 1.1.

Let W:(0,)W:(0,\infty)\rightarrow\mathbb{R} be a smooth, compactly supported function. For yy\rightarrow\infty and any ε>0\varepsilon>0,

c1mod36L(12,χc)W(N(c)y)=AW^(1)y+O(y67+ε),\displaystyle\sideset{}{{}^{*}}{\sum}_{c\equiv 1\bmod{36}}L\left(\frac{1}{2},\chi_{c}\right)W\left(\frac{N(c)}{y}\right)=A\widehat{W}(1)y+O(y^{\frac{6}{7}+\varepsilon}),

where χc=(c)6\chi_{c}=\left(\frac{\cdot}{c}\right)_{6} is the sextic residue symbol in (ω)\mathbb{Q}(\omega) (defined in Section 2.1)

W^(1)=0W(x)dx.\displaystyle\widehat{W}(1)=\int\limits^{\infty}_{0}W(x)\ \mathrm{d}x.

Moreover, AA is an explicit constant given in (3.2) and \sum^{*} denotes summation over squarefree elements of [ω]\mathbb{Z}[\omega].

We note here that for c=1c=1, χc\chi_{c} is the principal character instead of a sextic one. It follows from [BGL, Corollary 1.4] that

c1mod36|L(12,χc)|2W(N(c)y)εy1+ε,\displaystyle\sideset{}{{}^{*}}{\sum}_{c\equiv 1\bmod{36}}\left|L\left(\frac{1}{2},\chi_{c}\right)\right|^{2}W\left(\frac{N(c)}{y}\right)\ll_{\varepsilon}y^{1+\varepsilon},

From this and Theorem 1.1, we readily deduce, via a standard argument (see [Luo]), the following

Corollary 1.2.

For yy\rightarrow\infty and any ε>0\varepsilon>0, we have

#{c[ω]:c1(mod36),csquare-free,N(c)y,L(12,χc)0}εy1ε.\#\left\{c\in\mathbb{Z}[\omega]:c\equiv 1\pmod{36},c\;\mbox{square-free},\;N(c)\leq y,\;L\left(\frac{1}{2},\chi_{c}\right)\neq 0\right\}\gg_{\varepsilon}y^{1-\varepsilon}.

The main different feature of Theorem 1.1 and the result in [FHL] is that moment of our study is over square-free integers. Our proof of Theorem 1.1 is similar to that of the main result in [Luo], but our choice of the smooth weight follows the treatment in [B&Y].

The other approach, alluded to earlier, towards establishing the non-vanishing result is via the study of the nn-level densities of low-lying zeros of families of LL-functions. The density conjecture of N. Katz and P. Sarnak [KS1, K&S] suggests that the distribution of zeros near 1/21/2 of a family of LL-functions is the same as that of eigenvalues near 11 of a corresponding classical compact group. For the family of quadratic Dirichlet LL-functions, the density conjecture implies that L(1/2,χ)0L(1/2,\chi)\neq 0 for almost all such χ\chi. Assuming GRH, A. E. Özlük and C. Snyder [O&S] computed the one level density for this family to show that L(1/2,χd)0L(1/2,\chi_{d})\neq 0 for at least 15/1615/16 of the fundamental discriminants |d|X|d|\leq X. Following the computations carried out in [B&F, ILS], one can improve this percentage to (19cot(1/4))/16(19-\cot(1/4))/16.

Our next result is on the one level density of low-lying zeros of a family of sextic Hecke LL-functions in (ω)\mathbb{Q}(\omega). In [Gu], A. M. Güloğlu studied the one level density of the low-lying zeros of a family of cubic Hecke LL-functions in (ω)\mathbb{Q}(\omega). The result was extended by C. David and A. M. Güloğlu in [DG] to hold for test functions whose Fourier transforms are supported in (13/11,13/11)(-13/11,13/11). This allows them to deduce that at least 2/132/13 of the corresponding LL-functions do not vanish at the central point under GRH.

Our result here is motivated by the above-mentioned works. To state it, we first need to set some notations. Let

C(X)={c[ω]:(c,6)=1,csquarefree,XN(c)2X}.C(X)=\{c\in\mathbb{Z}[\omega]:(c,6)=1,\;c\;\mbox{squarefree},\;X\leq N(c)\leq 2X\}.

We shall define in Section 2.1 the primitive quadratic Kronecker symbol χ(72c)\chi^{(72c)} for cC(X)c\in C(X). We denote the non-trivial zeroes of the Hecke LL-function L(s,χ(72c))L(s,\chi^{(72c)}) by 1/2+iγχ(72c),j1/2+i\gamma_{\chi^{(72c)},j}. Without assuming GRH, we order them as

γχ(72c),2γχ(72c),1<0γχ(72c),1γχ(72c),2.\ldots\leq\Re\gamma_{\chi^{(72c)},-2}\leq\Re\gamma_{\chi^{(72c)},-1}<0\leq\Re\gamma_{\chi^{(72c)},1}\leq\Re\gamma_{\chi^{(72c)},2}\leq\ldots.

We set

γ~χ(72c),j=γχ(72c),j2πlogX\displaystyle\tilde{\gamma}_{\chi^{(72c)},j}=\frac{\gamma_{\chi^{(72c)},j}}{2\pi}\log X

and define for an even Schwartz class function ϕ\phi,

S(χ(72c),ϕ)=jϕ(γ~χ(72c),j).S(\chi^{(72c)},\phi)=\sum_{j}\phi(\tilde{\gamma}_{\chi^{(72c)},j}).

We further let ΦX(t)\Phi_{X}(t) be a non-negative smooth function supported on (1,2)(1,2), satisfying ΦX(t)=1\Phi_{X}(t)=1 for t(1+1/U,21/U)t\in(1+1/U,2-1/U) with U=loglogXU=\log\log X and such that ΦX(j)(t)jUj\Phi^{(j)}_{X}(t)\ll_{j}U^{j} for all integers j0j\geq 0. We refer the reader to [Tu, Chapter 13] for the construction of such functions. Our result is as follows:

Theorem 1.3.

Suppose that GRH is true for the Hecke LL-functions L(x,χ(72c))L(x,\chi^{(72c)}) discussed above. Let ϕ(x)\phi(x) be an even Schwartz function whose Fourier transform ϕ^(u)\hat{\phi}(u) has compact support in (45/43,45/43)(-45/43,45/43), then

(1.1) limX+1#C(X)(c,6)=1S(χ(72c),ϕ)ΦX(N(c)X)=ϕ(x)dx.\displaystyle\lim_{X\rightarrow+\infty}\frac{1}{\#C(X)}\sideset{}{{}^{*}}{\sum}_{(c,6)=1}S(\chi^{(72c)},\phi)\Phi_{X}\left(\frac{N(c)}{X}\right)=\int\limits_{\mathbb{R}}\phi(x)\mathrm{d}x.

Here, as earlier, the “*” on the sum over cc means that the sum is restricted to squarefree elements cc of [ω]\mathbb{Z}[\omega] .

The left-hand side of (1.1) represents the one level density of low-lying zeros of the sextic family of Hecke LL-functions in (ω)\mathbb{Q}(\omega). On the other hand, the right-hand side of (1.1) shows that, in connection with the random matrix theory (see the discussions in [G&Zhao2]), the family of sextic Hecke LL-functions of (ω)\mathbb{Q}(\omega) is a unitary family.

Using the argument in the proof of [G&Zhao4, Corollary 1.4], we deduce readily a non-vanishing result for the family of sextic Hecke LL-functions under our consideration.

Corollary 1.4.

Suppose that GRH is true for the Hecke LL-functions L(x,χ(72c))L(x,\chi^{(72c)}) and that 1/21/2 is a zero of L(s,χ(72c))L\left(s,\chi^{(72c)}\right) of order nc0n_{c}\geq 0. As XX\to\infty,

(c,6)=1ncΦX(N(c)X)(4345+o(1))#C(X).\sideset{}{{}^{*}}{\sum}_{(c,6)=1}n_{c}\Phi_{X}\left(\frac{N(c)}{X}\right)\leq\left(\frac{43}{45}+o(1)\right)\#C(X).

Moreover, as XX\to\infty

#{cC(X):L(12,χ(72c))0}(245+o(1))#C(X).\#\{c\in C(X):L\left(\frac{1}{2},\chi^{(72c)}\right)\neq 0\}\geq\left(\frac{2}{45}+o(1)\right)\#C(X).

We note that, analogue to the situation in (ω)\mathbb{Q}(\omega), the authors previously studied in [G&Zhao4, G&Zhao9] the one level densities of the low-lying zeros of families of quadratic Hecke LL-functions in all imaginary quadratic number fields of class number one as well as a family of quartic Hecke LL-functions in (i)\mathbb{Q}(i). Our proof of Theorem 1.3 is similar to those in [Gu, DG] and [G&Zhao4]. A two dimensional Poisson summation over (ω)\mathbb{Z}(\omega) is used to treat the character sums over the primes, then we use essentially a result derived from the theorem of S. J. Patterson in [P] to estimate certain sextic Gauss sums at the primes.

1.5. Notations

The following notations and conventions are used throughout the paper.
We write Φ(t)\Phi(t) for ΦX(t)\Phi_{X}(t).
e(z)=exp(2πiz)=e2πize(z)=\exp(2\pi iz)=e^{2\pi iz}.
f=O(g)f=O(g) or fgf\ll g means |f|cg|f|\leq cg for some unspecified positive constant cc.
f=o(g)f=o(g) means limxf(x)/g(x)=0\lim_{x\to\infty}f(x)/g(x)=0.
μ[ω]\mu_{[\omega]} denotes the Möbius function on [ω]\mathbb{Z}[\omega].
ζ(ω)(s)\zeta_{\mathbb{Q}(\omega)}(s) stands for the Dedekind zeta function of (ω)\mathbb{Q}(\omega).

2. Preliminaries

2.1. Residue symbols and Kronecker symbol

It is well-known that K=(ω)K=\mathbb{Q}(\omega) has class number 11. For j=2,3,6j=2,3,6, the symbol (n)j(\frac{\cdot}{n})_{j} is the quadratic (j=2j=2), cubic (j=3j=3) and sextic (j=6j=6) residue symbol in the ring of integers 𝒪K=[ω]\mathcal{O}_{K}=\mathbb{Z}[\omega]. For a prime ϖ[ω],(ϖ,j)=1\varpi\in\mathbb{Z}[\omega],(\varpi,j)=1, we define for a[ω]a\in\mathbb{Z}[\omega], (a,ϖ)=1(a,\varpi)=1 by (aϖ)ja(N(ϖ)1)/j(modϖ)\left(\frac{a}{\varpi}\right)_{j}\equiv a^{(N(\varpi)-1)/j}\pmod{\varpi}, with (aϖ)j<(ω)6/j>\left(\frac{a}{\varpi}\right)_{j}\in<(-\omega)^{6/j}>, the cyclic group of order jj generated by (ω)6/j(-\omega)^{6/j}. When ϖ|a\varpi|a, we define (aϖ)j=0\left(\frac{a}{\varpi}\right)_{j}=0. Then these symbols can be extended to any composite nn with (N(n),j)=1(N(n),j)=1 multiplicatively. We further define (n)j=1\left(\frac{\cdot}{n}\right)_{j}=1 when nn is a unit in [ω]\mathbb{Z}[\omega]. We note that we have (n)62=(n)3,(n)63=(n)2\left(\frac{\cdot}{n}\right)^{2}_{6}=\left(\frac{\cdot}{n}\right)_{3},\left(\frac{\cdot}{n}\right)^{3}_{6}=\left(\frac{\cdot}{n}\right)_{2} whenever (n)6\left(\frac{\cdot}{n}\right)_{6} is defined.

We say that n=a+bωn=a+b\omega in [ω]\mathbb{Z}[\omega] is primary if n±1(mod3)n\equiv\pm 1\pmod{3}, which is equivalent to a0(mod3)a\not\equiv 0\pmod{3}, and b0(mod3)b\equiv 0\pmod{3} (see [B&Y, p. 209]).

Recall that (see [B&Y, p. 883]) the following cubic reciprocity law holds for two co-prime primary n,mn,m :

(nm)3=(mn)3.\displaystyle\left(\frac{n}{m}\right)_{3}=\left(\frac{m}{n}\right)_{3}.

We also have the following supplementary laws for a primary n=a+bω,n1(mod3)n=a+b\omega,n\equiv 1\pmod{3} (see [Lemmermeyer, Theorem 7.8]),

(2.1) (ωn)3=ω(1ab)/3and(1ωn)3=ω(a1)/3.\displaystyle\left(\frac{\omega}{n}\right)_{3}=\omega^{(1-a-b)/3}\qquad\mbox{and}\qquad\left(\frac{1-\omega}{n}\right)_{3}=\omega^{(a-1)/3}.

Following the notations in [Lemmermeyer, Section 7.3], we say that any primary n=a+bω[ω]n=a+b\omega\in\mathbb{Z}[\omega], with (n,6)=1(n,6)=1 is EE-primary if

a+b1(mod4),if2|b,\displaystyle a+b\equiv 1\pmod{4},\quad\text{if}\quad 2|b,
b1(mod4),if2|a,\displaystyle b\equiv 1\pmod{4},\quad\text{if}\quad 2|a,
a3(mod4),if2ab.\displaystyle a\equiv 3\pmod{4},\quad\text{if}\quad 2\nmid ab.

It follows from [Lemmermeyer, Lemma 7.9] that nn is EE-primary if and only if n3=c+dωn^{3}=c+d\omega with c,dc,d\in\mathbb{Z} such that 6|d6|d and c+d1(mod4)c+d\equiv 1\pmod{4}. This implies that products of EE-primary numbers are again EE-primary. Note that in [ω]\mathbb{Z}[\omega], every ideal co-prime to 66 has a unique EE-primary generator. Furthermore, the following sextic reciprocity law holds for two EE-primary, co-prime numbers n,m[ω]n,m\in\mathbb{Z}[\omega] :

(nm)6=(mn)6(1)((N(n)1)/2)((N(m)1)/2).\displaystyle\left(\frac{n}{m}\right)_{6}=\left(\frac{m}{n}\right)_{6}(-1)^{((N(n)-1)/2)((N(m)-1)/2)}.

We also have the following supplementary laws for an EE-primary n=a+bωn=a+b\omega with (n,6)=1(n,6)=1 (see [Lemmermeyer, Theorem 7.10]):

(2.2) (ωn)6=(ω)(N(n)1)/6,(1ωn)2=(a3)and(2n)2=(2N(n)),\displaystyle\left(\frac{-\omega}{n}\right)_{6}=(-\omega)^{(N(n)-1)/6},\qquad\left(\frac{1-\omega}{n}\right)_{2}=\left(\frac{a}{3}\right)_{\mathbb{Z}}\qquad\mbox{and}\qquad\hskip 7.22743pt\left(\frac{2}{n}\right)_{2}=\left(\frac{2}{N(n)}\right)_{\mathbb{Z}},

where ()\left(\frac{\cdot}{\cdot}\right)_{\mathbb{Z}} denotes the Jacobi symbol in \mathbb{Z}.

The above discussions allow us to define a sextic Dirichlet character χ(72c)(mod72c)\chi^{(72c)}\pmod{72c} for any element c𝒪K,(c,6)=1c\in\mathcal{O}_{K},(c,6)=1, such that for any n(𝒪K/72c𝒪K)n\in(\mathcal{O}_{K}/72c\mathcal{O}_{K})^{*},

χ(72c)(n)=(72cn)6.\displaystyle\chi^{(72c)}(n)=\left(\frac{72c}{n}\right)_{6}.

One deduces from (2.1), (2.2) and the sextic reciprocity that χ(72c)(n)=1\chi^{(72c)}(n)=1 when n1(mod72c)n\equiv 1\pmod{72c}. It follows from this that χ(72c)(n)\chi^{(72c)}(n) is well-defined. As χ(72c)(n)\chi^{(72c)}(n) is clearly multiplicative, of order 66 and trivial on units, it can be regarded as a sextic Hecke character modulo 72c72c of trivial infinite type. We write χ(72c)\chi^{(72c)} for this Hecke character as well and we call it the Kronecker symbol. Furthermore, if cc is square-free, χ(72c)\chi^{(72c)} is non-principal and primitive. To see this, we write c=ucϖ1ϖkc=u_{c}\cdot\varpi_{1}\cdots\varpi_{k} with a unit ucu_{c} and primes ϖj\varpi_{j}. Suppose χ(72c)\chi^{(72c)} is induced by some χ\chi modulo cc^{\prime} with ϖjc\varpi_{j}\nmid c^{\prime}, then by the Chinese Remainder Theorem, there exists an nn such that n1(mod72c/ϖj)n\equiv 1\pmod{72c/\varpi_{j}} and (ϖjn)61\left(\frac{\varpi_{j}}{n}\right)_{6}\neq 1. It follows from this that χ(n)=1\chi(n)=1 but χ(72c)(n)1\chi^{(72c)}(n)\neq 1, a contradiction. Thus, χ(72c)\chi^{(72c)} can only be possibly induced by some χ\chi modulo 36c36c or modulo 8(1ω)3c8(1-\omega)^{3}c. Suppose it is induced by some χ\chi modulo 36c36c, then by the Chinese Remainder Theorem, there exists an nn such that n1(mod9c)n\equiv 1\pmod{9c} and n1+4ω(mod8)n\equiv 1+4\omega\pmod{8}, then we have χ(n)=1\chi(n)=1 but χ(72c)(n)=(2n)21\chi^{(72c)}(n)=\left(\frac{2}{n}\right)_{2}\neq 1 by (2.2), a contradiction. Suppose it is induced by some χ\chi modulo 8(1ω)3c8(1-\omega)^{3}c, then by the Chinese Remainder Theorem, there exists an nn such that n1(mod8c)n\equiv 1\pmod{8c} and n1+3(1ω)(mod9)n\equiv 1+3(1-\omega)\pmod{9}, then we have χ(n)=1\chi(n)=1 but

χ(72c)(n)=(ω(1ω)n)311\chi^{(72c)}(n)=\left(\frac{\omega(1-\omega)}{n}\right)^{-1}_{3}\neq 1

by (2.1) (note that we have 3=ω2(1ω)23=-\omega^{2}(1-\omega)^{2}), a contradiction. This implies that χ(72c)\chi^{(72c)} is primitive. This also shows that χ(72c)\chi^{(-72c)} is non-principal.

2.2. Gauss sums

Suppose that n[ω]n\in\mathbb{Z}[\omega] with (n,6)=1(n,6)=1. For j=2,3,6j=2,3,6, the quadratic (j=2j=2), cubic (j=3j=3) and sextic (j=6j=6) Gauss sum is defined by

gj(n)=x(modn)(xn)je~(xn),g_{j}(n)=\sum_{x\negthickspace\negthickspace\negthickspace\pmod{n}}\left(\frac{x}{n}\right)_{j}\widetilde{e}\left(\frac{x}{n}\right),

where e~(z)=e((zz¯)/3)\widetilde{e}(z)=e\left((z-\overline{z})/\sqrt{-3}\right).

We can infer from its definition that gj(1)=1g_{j}(1)=1. Moreover, the following well-known relation (see [P, p. 195]) holds for all nn:

(2.3) |gj(n)|\displaystyle|g_{j}(n)| ={N(n)if n is square-free,0otherwise.\displaystyle=\begin{cases}\sqrt{N(n)}\qquad&\text{if $n$ is square-free},\\ 0\qquad&\text{otherwise}.\end{cases}

More generally, for any n,r[ω]n,r\in\mathbb{Z}[\omega], with (n,6)=1(n,6)=1, we set

gj(r,n)=xmodn(xn)6e~(rxn).\displaystyle g_{j}(r,n)=\sum_{x\bmod{n}}\left(\frac{x}{n}\right)_{6}\widetilde{e}\left(\frac{rx}{n}\right).

We need the following properties of gj(r,n)g_{j}(r,n):

Lemma 2.3.

For j=2,3,6j=2,3,6, any prime ϖ\varpi satisfying (ϖ,6)=1(\varpi,6)=1, we have

(2.4) gj(rs,n)\displaystyle g_{j}(rs,n) =(sn)¯jg(r,n),(s,n)=1,\displaystyle=\overline{\left(\frac{s}{n}\right)}_{j}g(r,n),\quad(s,n)=1,
(2.5) gj(r,n1n2)\displaystyle g_{j}(r,n_{1}n_{2}) =(n2n1)j(n1n2)jgj(r,n1)gj(r,n2),(n1,n2)=1,\displaystyle=\left(\frac{n_{2}}{n_{1}}\right)_{j}\left(\frac{n_{1}}{n_{2}}\right)_{j}g_{j}(r,n_{1})g_{j}(r,n_{2}),\quad(n_{1},n_{2})=1,
(2.6) g6(ϖk,ϖl)\displaystyle g_{6}(\varpi^{k},\varpi^{l}) ={N(ϖ)kg6(ϖ)ifl=k+1,k0(mod6),N(ϖ)kg3(ϖ)ifl=k+1,k1(mod6),N(ϖ)kg2(ϖ)ifl=k+1,k2(mod6),N(ϖ)k(1ϖ)3g3¯(ϖ)ifl=k+1,k3(mod6),N(ϖ)k(1ϖ)6g6¯(ϖ)ifl=k+1,k4(mod6),N(ϖ)k,ifl=k+1,k5(mod6),φ(ϖl)=#([ω]/(ϖl))ifkl,l0(mod6),0otherwise.\displaystyle=\begin{cases}N(\varpi)^{k}g_{6}(\varpi)\qquad&\text{if}\qquad l=k+1,k\equiv 0\pmod{6},\\ N(\varpi)^{k}g_{3}(\varpi)\qquad&\text{if}\qquad l=k+1,k\equiv 1\pmod{6},\\ N(\varpi)^{k}g_{2}(\varpi)\qquad&\text{if}\qquad l=k+1,k\equiv 2\pmod{6},\\ N(\varpi)^{k}\left(\frac{-1}{\varpi}\right)_{3}\overline{g_{3}}(\varpi)\qquad&\text{if}\qquad l=k+1,k\equiv 3\pmod{6},\\ N(\varpi)^{k}\left(\frac{-1}{\varpi}\right)_{6}\overline{g_{6}}(\varpi)\qquad&\text{if}\qquad l=k+1,k\equiv 4\pmod{6},\\ -N(\varpi)^{k},\qquad&\text{if}\qquad l=k+1,k\equiv 5\pmod{6},\\ \varphi(\varpi^{l})=\#(\mathbb{Z}[\omega]/(\varpi^{l}))^{*}\qquad&\text{if}\qquad k\geq l,l\equiv 0\pmod{6},\\ 0\qquad&\text{otherwise}.\end{cases}
Proof.

Both (2.4) and (2.5) follow easily from the definition. For (2.6), the case lkl\leq k is easily verified. If l>kl>k, then

(2.7) amodϖl(aϖl)6e~(ϖkaϖl)\displaystyle\sum_{a\bmod{\varpi^{l}}}\left(\frac{a}{\varpi^{l}}\right)_{6}\widetilde{e}\left(\frac{\varpi^{k}a}{\varpi^{l}}\right) =bmodϖ(bϖl)6cmodϖl1e~(cϖ+bϖlk)\displaystyle=\sum_{b\bmod\varpi}\left(\frac{b}{\varpi^{l}}\right)_{6}\sum_{c\bmod{\varpi^{l-1}}}\widetilde{e}\left(\frac{c\varpi+b}{\varpi^{l-k}}\right)
=bmodϖ(bϖl)6e~(bϖlk)cmodϖl1e~(cϖϖlk).\displaystyle=\sum_{b\bmod\varpi}\left(\frac{b}{\varpi^{l}}\right)_{6}\widetilde{e}\left(\frac{b}{\varpi^{l-k}}\right)\sum_{c\bmod{\varpi^{l-1}}}\widetilde{e}\left(\frac{c\varpi}{\varpi^{l-k}}\right).

If lk+2l\geq k+2, we write c=c1ϖlk1+c2c=c_{1}\varpi^{l-k-1}+c_{2} where c1c_{1} varies over a set of representatives in [ω](modϖk)\mathbb{Z}[\omega]\pmod{\varpi^{k}} and c2c_{2} varies over a set of representatives in [ω](modϖlk1)\mathbb{Z}[\omega]\pmod{\varpi^{l-k-1}} to see that

cmodϖl1e~(cϖlk1)=N(ϖk)c2modϖlk1e~(c2ϖlk1)=0,\displaystyle\sum_{c\bmod{\varpi^{l-1}}}\widetilde{e}\left(\frac{c}{\varpi^{l-k-1}}\right)=N(\varpi^{k})\sum_{c_{2}\bmod{\varpi^{l-k-1}}}\widetilde{e}\left(\frac{c_{2}}{\varpi^{l-k-1}}\right)=0,

where the last equality follows from [He, Lemma, p. 197]. This proves the last case when lk+2l\geq k+2.

It thus remains to deal with the case in which l=k+1l=k+1. In this case, the right-hand side expression of (2.7) is

N(ϖ)l1bmodϖ(bϖl)6e~(bϖ).\displaystyle N(\varpi)^{l-1}\sum_{b\bmod\varpi}\left(\frac{b}{\varpi^{l}}\right)_{6}\widetilde{e}\left(\frac{b}{\varpi}\right).

The expressions in (2.6) for g6(ϖk,ϖl)g_{6}(\varpi^{k},\varpi^{l}) follow from this, taking into account the definitions of gj(ϖ)g_{j}(\varpi) for j=2,3j=2,3 and 66. This completes the proof of the lemma. ∎

2.4. The approximate functional equation

Let c𝒪K,c1(mod36)c\in\mathcal{O}_{K},c\equiv 1\pmod{36} be square-free. It follows from (2.2) that χc=(c)6\chi_{c}=\left(\frac{\cdot}{c}\right)_{6} is trivial on units, it can be regarded as a primitive Hecke character (modc)\pmod{c} of trivial infinite type. The Hecke LL-function associated with χc\chi_{c} is defined for (s)>1\Re(s)>1 by

L(s,χc)=0𝒜𝒪Kχc(𝒜)(N(𝒜))s,L(s,\chi_{c})=\sum_{0\neq\mathcal{A}\subset\mathcal{O}_{K}}\chi_{c}(\mathcal{A})(N(\mathcal{A}))^{-s},

where 𝒜\mathcal{A} runs over all non-zero integral ideals in KK and N(𝒜)N(\mathcal{A}) is the norm of 𝒜\mathcal{A}. As shown by E. Hecke, L(s,χc)L(s,\chi_{c}) admits analytic continuation to an entire function and satisfies a functional equation. We refer the reader to [Gu, Luo, G&Zhao1, G&Zhao20] for a more detailed discussion of these Hecke characters and LL-functions.

Let G(s)G(s) be any even function which is holomorphic and bounded in the strip 4<(s)<4-4<\Re(s)<4 satisfying G(0)=1G(0)=1. We have the following expression for L(1/2+it,χc)L(1/2+it,\chi_{c}) for tt\in\mathbb{R} (see [G&Zhao20, Section 2.4]):

(2.8) L(12+it,χc)=0𝒜𝒪Kχc(𝒜)N(𝒜)1/2+itVt(2πN(𝒜)x)+g6(c)N(c)1/2((2π)2|Dk|N(c))itΓ(1/2it)Γ(1/2+it)0𝒜𝒪Kχ¯c(𝒜)N(𝒜)1/2itVt(2πN(𝒜)x|DK|N(c)),\begin{split}L\left(\frac{1}{2}+it,\chi_{c}\right)=\sum_{0\neq\mathcal{A}\subset\mathcal{O}_{K}}&\frac{\chi_{c}(\mathcal{A})}{N(\mathcal{A})^{1/2+it}}V_{t}\left(\frac{2\pi N(\mathcal{A})}{x}\right)\\ &+\frac{g_{6}(c)}{N(c)^{1/2}}\left(\frac{(2\pi)^{2}}{|D_{k}|N(c)}\right)^{it}\frac{\Gamma(1/2-it)}{\Gamma(1/2+it)}\sum_{0\neq\mathcal{A}\subset\mathcal{O}_{K}}\frac{\overline{\chi}_{c}(\mathcal{A})}{N(\mathcal{A})^{1/2-it}}V_{-t}\left(\frac{2\pi N(\mathcal{A})x}{|D_{K}|N(c)}\right),\end{split}

where g6(c)g_{6}(c) is the Gauss sum defined in Section 2.1, DK=3D_{K}=-3 is the discriminant of KK and

Vt(ξ)=12πi(2)Γ(s+1/2+it)Γ(1/2+it)G(s)ξssds.\displaystyle V_{t}\left(\xi\right)=\frac{1}{2\pi i}\int\limits\limits_{(2)}\frac{\Gamma(s+1/2+it)}{\Gamma(1/2+it)}G(s)\frac{\xi^{-s}}{s}\ \mathrm{d}s.

We write VV for V0V_{0} and note that for a suitable G(s)G(s) (for example G(s)=es2G(s)=e^{s^{2}}), we have for any c>0c>0 (see [HIEK, Proposition 5.4]):

Vt(ξ)(1+ξ1+|t|)c.\displaystyle V_{t}\left(\xi\right)\ll\left(1+\frac{\xi}{1+|t|}\right)^{-c}.

On the other hand, when G(s)=1G(s)=1, we have (see [sound1, Lemma 2.1]) for the jj-th derivative of V(ξ)V(\xi),

(2.9) V(ξ)=1+O(ξ1/2ϵ)for 0<ξ<1andV(j)(ξ)=O(eξ)forξ>0,j0.V\left(\xi\right)=1+O(\xi^{1/2-\epsilon})\;\mbox{for}\;0<\xi<1\quad\mbox{and}\quad V^{(j)}\left(\xi\right)=O(e^{-\xi})\;\mbox{for}\;\xi>0,\;j\geq 0.

2.5. Analytic behavior of Dirichlet series associated with sextic Gauss sums

For any Hecke character χ(mod36)\chi\pmod{36} of trivial infinite type, we let

(2.10) h(r,s;χ)=(n,r)=1n E-primaryχ(n)g6(r,n)N(n)s.\displaystyle h(r,s;\chi)=\sum_{\begin{subarray}{c}(n,r)=1\\ n\text{ $E$-primary}\end{subarray}}\frac{\chi(n)g_{6}(r,n)}{N(n)^{s}}.

The following lemma gives the analytic behavior of h(r,s;χ)h(r,s;\chi) on (s)>1\Re(s)>1.

Lemma 2.6.

Let rr be EE-primary. The function h(r,s;χ)h(r,s;\chi) has meromorphic continuation to the complex plane. It is holomorphic in the region σ=(s)>1\sigma=\Re(s)>1 except possibly for a pole at s=7/6s=7/6. For any ε>0\varepsilon>0, letting σ1=3/2+ε\sigma_{1}=3/2+\varepsilon, then for σ1σσ11/2\sigma_{1}\geq\sigma\geq\sigma_{1}-1/2, |s7/6|>1/12|s-7/6|>1/12 and we have

h(r,s;χ)N(r)(σ1σ+ε)/2(1+t2)5(σ1σ+ε)/2,h(r,s;\chi)\ll N(r)^{(\sigma_{1}-\sigma+\varepsilon)/2}(1+t^{2})^{5(\sigma_{1}-\sigma+\varepsilon)/2},

where t=(s)t=\Im(s). Moreover, the residue satisfies the bound

Ress=7/6h(r,s;χ)N(r)1/6+ε.\text{Res}_{s=7/6}h(r,s;\chi)\ll N(r)^{1/6+\varepsilon}.

Lemma 2.6 is shown in the same manner as that of [G&Zhao1, Lemma 2.5]. We use Lemma 2.7 to remove the condition (n,r)=1(n,r)=1 in (2.10), and the result of Lemma 2.6 then follows from the proof of the Lemma on [P, p. 200], taking into account the observation from (2.6) that |g6(ϖk,ϖl)|N(ϖ)k+1/2|g_{6}(\varpi^{k},\varpi^{l})|\leq N(\varpi)^{k+1/2} when k<lk<l for any EE-primary prime ϖ\varpi.

To state the next lemma, we define for a,c[ω],(ac,6)=1a,c\in\mathbb{Z}[\omega],(ac,6)=1,

ψa(c)=(1)((N(a)1)/2)((N(c)1)/2)=((1)((N(a)1)/2)c)63.\displaystyle\psi_{a}(c)=(-1)^{((N(a)-1)/2)((N(c)-1)/2)}=\left(\frac{(-1)^{((N(a)-1)/2)}}{c}\right)^{3}_{6}.

It is easy to see that ψa(c)\psi_{a}(c) is a Hecke character (mod36)\pmod{36} of trivial infinite type.

Furthermore, for any square-free a[ω]a\in\mathbb{Z}[\omega], we let {ϖ1,,ϖk}\{\varpi_{1},\cdots,\varpi_{k}\} be the set of distinct EE-primary prime divisors of aa and we define for 1j41\leq j\leq 4,

Pj(a)=i=1k((a/l=1iϖl)jϖij+1)6¯,Ψj(a)=i=1k1ψl=1iϖlj+1(ϖi+1),\displaystyle P_{j}(a)=\prod^{k}_{i=1}\overline{\left(\frac{(a/\prod^{i}_{l=1}\varpi_{l})^{j}}{\varpi^{j+1}_{i}}\right)_{6}},\quad\Psi_{j}(a)=\prod^{k-1}_{i=1}\psi_{\prod^{i}_{l=1}\varpi^{j+1}_{l}}(\varpi_{i+1}),

where we set the empty product to be 11. In particular, we have Pj(a)=1P_{j}(a)=1 when aa is a unit and Ψj(a)=1\Psi_{j}(a)=1 when aa is a unit or a prime. As (ϖ2jϖ1j+1)6=(ϖ2ϖ1)6j(j+1)\left(\frac{\varpi^{j}_{2}}{\varpi^{j+1}_{1}}\right)_{6}=\left(\frac{\varpi_{2}}{\varpi_{1}}\right)^{j(j+1)}_{6} for two distinct EE-primary primes ϖ1,ϖ2\varpi_{1},\varpi_{2}, one checks easily by induction on the number of prime divisors of aa and the sextic reciprocity that Pj(a)P_{j}(a) is independent of the order of {ϖ1,,ϖk}\{\varpi_{1},\cdots,\varpi_{k}\} when j3j\neq 3. Similarly, as (ϖ1ϖ2)3=(ϖ2ϖ1)3,ψϖ1(ϖ2)=ψϖ2(ϖ1)\left(\frac{\varpi_{1}}{\varpi_{2}}\right)_{3}=\left(\frac{\varpi_{2}}{\varpi_{1}}\right)_{3},\psi_{\varpi_{1}}(\varpi_{2})=\psi_{\varpi_{2}}(\varpi_{1}), P3(a)P_{3}(a) and Ψj(a),1j4\Psi_{j}(a),1\leq j\leq 4 are also independent of the order of {ϖ1,,ϖk}\{\varpi_{1},\cdots,\varpi_{k}\}.

Now we have

Lemma 2.7.

Let (rfα,6)=1(rf\alpha,6)=1. Suppose f,αf,\alpha are square-free and (r,f)=1(r,f)=1, and set

h(r,f,s;χ)=(n,rf)=1χ(n)g6(r,n)N(n)s,hα(r,s;χ)=(n,α)=1χ(n)g6(r,n)N(n)s.h(r,f,s;\chi)=\sum_{(n,rf)=1}\frac{\chi(n)g_{6}(r,n)}{N(n)^{s}},\quad h_{\alpha}(r,s;\chi)=\sum_{(n,\alpha)=1}\frac{\chi(n)g_{6}(r,n)}{N(n)^{s}}.

Furthermore suppose r=r1r22r33r44r55r66,r=r1r22r33r44r55r=r_{1}r^{2}_{2}r^{3}_{3}r^{4}_{4}r^{5}_{5}r^{6}_{6},r^{*}=r_{1}r^{2}_{2}r^{3}_{3}r^{4}_{4}r^{5}_{5} where r1r2r3r4r5r_{1}r_{2}r_{3}r_{4}r_{5} is square-free, and let r6r^{*}_{6} be the product of primes dividing r6r_{6}. Let 1j41\leq j\leq 4 and

hi=1j1ri(r,s;χ)\displaystyle h^{*}_{\prod^{j-1}_{i=1}r_{i}}(r^{*},s;\chi)
=\displaystyle= a|rja E-primaryμ[ω](a)χ(a)j+1N(a)(j+1)s(r/ajaj+1)6¯Pj(a)Ψj(a)(ϖ|aϖ E-primaryg6(ϖj,ϖj+1))\displaystyle\sum_{\begin{subarray}{c}a|r_{j}\\ a\text{ $E$-primary}\end{subarray}}\mu_{[\omega]}(a)\chi(a)^{j+1}N(a)^{-(j+1)s}\overline{\left(\frac{r^{*}/a^{j}}{a^{j+1}}\right)_{6}}P_{j}(a)\Psi_{j}(a)\left(\prod_{\begin{subarray}{c}\varpi|a\\ \varpi\text{ $E$-primary}\end{subarray}}g_{6}(\varpi^{j},\varpi^{j+1})\right)
×hi=1j1ri(ra42j,s;ψaj+1χ),\displaystyle\hskip 144.54pt\times h_{\prod^{j-1}_{i=1}r_{i}}(r^{*}a^{4-2j},s;\psi_{a^{j+1}}\chi),

where the empty product is understood to be 11. Then

(2.11) h(r,f,s;χ)=a|fμ[ω](a)χ(a)g6(r,a)N(a)sh(a2r,s;ψaχ),h(r1r22r33r44r55r66,s;χ)=h(r,r6,s;χ),h(r,s;χ)=ϖ|r5ϖ E-primary(1χ(ϖ)6N(ϖ)56s)1hr1r2r3r4(r,s;χ),hi=1jri(r,s;χ)=ϖ|rjϖ E-primary(1ψϖj+1(ϖ5j)χ(ϖ)6N(ϖ)6sg6(ϖj,ϖj+1)g6(ϖ4j,ϖ5j))1hi=1j1ri(r,s;χ).\displaystyle\begin{split}h(r,f,s;\chi)=&\sum_{a|f}\frac{\mu_{[\omega]}(a)\chi(a)g_{6}(r,a)}{N(a)^{s}}h(a^{2}r,s;\psi_{a}\chi),\\ h(r_{1}r^{2}_{2}r^{3}_{3}r^{4}_{4}r^{5}_{5}r^{6}_{6},s;\chi)=&h(r^{*},r^{*}_{6},s;\chi),\\ h(r^{*},s;\chi)=&\prod_{\begin{subarray}{c}\varpi|r_{5}\\ \varpi\text{ $E$-primary}\end{subarray}}(1-\chi(\varpi)^{6}N(\varpi)^{5-6s})^{-1}h_{r_{1}r_{2}r_{3}r_{4}}(r^{*},s;\chi),\\ h_{\prod^{j}_{i=1}r_{i}}(r^{*},s;\chi)&\\ =&\prod_{\begin{subarray}{c}\varpi|r_{j}\\ \varpi\text{ $E$-primary}\end{subarray}}\left(1-\psi_{\varpi^{j+1}}(\varpi^{5-j})\chi(\varpi)^{6}N(\varpi)^{-6s}g_{6}(\varpi^{j},\varpi^{j+1})g_{6}(\varpi^{4-j},\varpi^{5-j})\right)^{-1}h^{*}_{\prod^{j-1}_{i=1}r_{i}}(r^{*},s;\chi).\end{split}
Proof.

As the proof is similar to that of [B&Y, Lemma 3.6], we only give the proof for the last equality given in (2.11) here. To prove this, we let a=i=15aii[ω]a=\prod^{5}_{i=1}a^{i}_{i}\in\mathbb{Z}[\omega] and let ϖ\varpi be an EE-primary prime in [ω]\mathbb{Z}[\omega] such that aϖa^{*}\varpi is square-free, where a=i=15aia^{*}=\prod^{5}_{i=1}a_{i}. Then

haϖ(aϖj,s;χ)\displaystyle h_{a^{*}\varpi}(a\varpi^{j},s;\chi) =(n,aϖ)=1χ(n)g6(aϖj,n)N(n)s\displaystyle=\sum_{(n,a^{*}\varpi)=1}\frac{\chi(n)g_{6}(a\varpi^{j},n)}{N(n)^{s}}
=(n,a)=1χ(n)g6(aϖj,n)N(n)s(n,a)=1ϖ|nχ(n)g6(aϖj,n)N(n)s.\displaystyle=\sum_{(n,a^{*})=1}\frac{\chi(n)g_{6}(a\varpi^{j},n)}{N(n)^{s}}-\sum_{\begin{subarray}{c}(n,a^{*})=1\\ \varpi|n\end{subarray}}\frac{\chi(n)g_{6}(a\varpi^{j},n)}{N(n)^{s}}.

Writing in the latter sum n=ϖhnn=\varpi^{h}n^{\prime} with (n,ϖ)=1(n^{\prime},\varpi)=1, then (2.5) gives that

g6(aϖj,ϖhn)=(ϖhn)6(nϖh)6g6(aϖj,ϖh)g6(aϖj,n).\displaystyle g_{6}(a\varpi^{j},\varpi^{h}n^{\prime})=\left(\frac{\varpi^{h}}{n^{\prime}}\right)_{6}\left(\frac{n^{\prime}}{\varpi^{h}}\right)_{6}g_{6}(a\varpi^{j},\varpi^{h})g_{6}(a\varpi^{j},n^{\prime}).

Using (2.4) and (2.6) we see that g6(aϖj,ϖh)=0g_{6}(a\varpi^{j},\varpi^{h})=0 unless h=j+1h=j+1, in which case we deduce from sextic reciprocity and (2.4) that

g6(aϖj,ϖj+1n)=g6(ϖj,ϖj+1)(aϖj+1)6¯ψϖj+1(n)g6(aϖ4j,n).\displaystyle g_{6}(a\varpi^{j},\varpi^{j+1}n^{\prime})=g_{6}(\varpi^{j},\varpi^{j+1})\overline{\left(\frac{a}{\varpi^{j+1}}\right)_{6}}\psi_{\varpi^{j+1}}(n^{\prime})g_{6}(a\varpi^{4-j},n^{\prime}).

This implies that

(2.12) haϖ(aϖj,s;χ)=ha(aϖj,s;χ)χ(ϖj+1)N(ϖ)(j+1)sg6(ϖj,ϖj+1)(aϖj+1)6¯haϖ(aϖ4j,s;ψϖj+1χ).\begin{split}h_{a^{*}\varpi}&(a\varpi^{j},s;\chi)\\ &=h_{a^{*}}(a\varpi^{j},s;\chi)-\chi(\varpi^{j+1})N(\varpi)^{-(j+1)s}g_{6}(\varpi^{j},\varpi^{j+1})\overline{\left(\frac{a}{\varpi^{j+1}}\right)_{6}}h_{a^{*}\varpi}(a\varpi^{4-j},s;\psi_{\varpi^{j+1}}\chi).\end{split}

On the other hand,

haϖ(rϖ4j,s;ψϖj+1χ)\displaystyle h_{a^{*}\varpi}(r^{*}\varpi^{4-j},s;\psi_{\varpi^{j+1}}\chi) =(n,aϖ)=1ψϖj+1(n)χ(n)g6(aϖ4j,n)N(n)s\displaystyle=\sum_{(n,a^{*}\varpi)=1}\frac{\psi_{\varpi^{j+1}}(n)\chi(n)g_{6}(a\varpi^{4-j},n)}{N(n)^{s}}
=(n,a)=1ψϖj+1(n)χ(n)g6(aϖ4j,n)N(n)s(n,a)=1ϖ|nψϖj+1(n)χ(n)g6(aϖ4j,n)N(n)s.\displaystyle=\sum_{(n,a^{*})=1}\frac{\psi_{\varpi^{j+1}}(n)\chi(n)g_{6}(a\varpi^{4-j},n)}{N(n)^{s}}-\sum_{\begin{subarray}{c}(n,a^{*})=1\\ \varpi|n\end{subarray}}\frac{\psi_{\varpi^{j+1}}(n)\chi(n)g_{6}(a\varpi^{4-j},n)}{N(n)^{s}}.

Again, writing in the latter sum n=ϖhnn=\varpi^{h}n^{\prime} with (n,ϖ)=1(n^{\prime},\varpi)=1, then (2.5) yields that

g6(aϖ4j,ϖhn)=(ϖhn)6(nϖh)6g6(aϖ4j,ϖh)g6(aϖ4j,n).\displaystyle g_{6}(a\varpi^{4-j},\varpi^{h}n^{\prime})=\left(\frac{\varpi^{h}}{n^{\prime}}\right)_{6}\left(\frac{n^{\prime}}{\varpi^{h}}\right)_{6}g_{6}(a\varpi^{4-j},\varpi^{h})g_{6}(a\varpi^{4-j},n^{\prime}).

Using the same treatment as earlier, (2.4) and (2.6) imply that g(aϖ4j,ϖh)=0g(a\varpi^{4-j},\varpi^{h})=0 unless h=5jh=5-j. Then in that case the sextic reciprocity, together with (2.4), yields that

g6(aϖ4j,ϖ5jn)=g6(ϖ4j,ϖ5j)(aϖ5j)6¯ψϖ5j(n)g6(aϖj,n).\displaystyle g_{6}(a\varpi^{4-j},\varpi^{5-j}n^{\prime})=g_{6}(\varpi^{4-j},\varpi^{5-j})\overline{\left(\frac{a}{\varpi^{5-j}}\right)_{6}}\psi_{\varpi^{5-j}}(n^{\prime})g_{6}(a\varpi^{j},n^{\prime}).

This implies that

haϖ(aϖ4j,s;ψϖj+1χ)=ha(aϖ4j,s;ψϖj+1χ)ψϖj+1(ϖ5j)χ(ϖ5j)N(ϖ)(5j)sg6(ϖ4j,ϖ5j)(aϖ5j)6¯haϖ(aϖj,s;χ),\begin{split}h_{a^{*}\varpi}&(a\varpi^{4-j},s;\psi_{\varpi^{j+1}}\chi)\\ &=h_{a^{*}}(a\varpi^{4-j},s;\psi_{\varpi^{j+1}}\chi)-\psi_{\varpi^{j+1}}(\varpi^{5-j})\chi(\varpi^{5-j})N(\varpi)^{-(5-j)s}g_{6}(\varpi^{4-j},\varpi^{5-j})\overline{\left(\frac{a}{\varpi^{5-j}}\right)_{6}}h_{a^{*}\varpi}(a\varpi^{j},s;\chi),\end{split}

as one checks easily that ψϖj+1ψϖ5j\psi_{\varpi^{j+1}}\psi_{\varpi^{5-j}} is principal.

Combining (2.12) and (2.5), we get

haϖ\displaystyle h_{a^{*}\varpi} (aϖj,s;χ)=(1ψϖj+1(ϖ5j)χ(ϖ)6N(ϖ)6sg6(ϖj,ϖj+1)g6(ϖ4j,ϖ5j))1(ha(aϖj,s;χ)\displaystyle(a\varpi^{j},s;\chi)=(1-\psi_{\varpi^{j+1}}(\varpi^{5-j})\chi(\varpi)^{6}N(\varpi)^{-6s}g_{6}(\varpi^{j},\varpi^{j+1})g_{6}(\varpi^{4-j},\varpi^{5-j}))^{-1}(h_{a^{*}}(a\varpi^{j},s;\chi)
χ(ϖj+1)N(ϖ)(j+1)sg6(ϖj,ϖj+1)(aϖj+1)6¯ha(aϖ4j,s;ψϖj+1χ)).\displaystyle\hskip 108.405pt-\chi(\varpi^{j+1})N(\varpi)^{-(j+1)s}g_{6}(\varpi^{j},\varpi^{j+1})\overline{\left(\frac{a}{\varpi^{j+1}}\right)_{6}}h_{a^{*}}(a\varpi^{4-j},s;\psi_{\varpi^{j+1}}\chi)).

Note that when j3j\neq 3, we have (ϖ4jϖj+1)6=1\left(\frac{\varpi^{\prime 4-j}}{\varpi^{j+1}}\right)_{6}=1 for two distinct primes ϖ,ϖ\varpi,\varpi^{\prime} as (4j)(j+1)0(mod6)(4-j)(j+1)\equiv 0\pmod{6}. When j=3j=3, we have (aϖ4)6=1\left(\frac{a}{\varpi^{4}}\right)_{6}=1 when aa is a cube. These observations together with an induction argument on the number of prime divisors of aja_{j} leads to the last equality given in (2.11). ∎

2.8. The large sieve with sextic symbols

One important input of this paper is the following large sieve inequality for sextic Hecke characters. The study of the large sieve inequality for characters of a fixed order has a long history. We refer the reader to [DRHB, DRHB1, G&Zhao, B&Y, BGL].

Lemma 2.9.

[BGL, Theorem 1.3] Let M,NM,N be positive integers, and (an)(a_{n}) be an arbitrary sequence of complex numbers, where nn runs over [ω]\mathbb{Z}[\omega]. Then we have

m[ω]N(m)M|n[ω]N(n)Nan(nm)6|2ε(M+N+(MN)2/3)(MN)εN(n)N|an|2,\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}m\in\mathbb{Z}[\omega]\\ N(m)\leq M\end{subarray}}\left|\ \sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}n\in\mathbb{Z}[\omega]\\ N(n)\leq N\end{subarray}}a_{n}\left(\frac{n}{m}\right)_{6}\right|^{2}\ll_{\varepsilon}(M+N+(MN)^{2/3})(MN)^{\varepsilon}\sum_{N(n)\leq N}|a_{n}|^{2},

for any ε>0\varepsilon>0, where the asterisks indicate that mm and nn run over square-free EE-primary elements of [ω]\mathbb{Z}[\omega] and (m)6\left(\frac{\cdot}{m}\right)_{6} is the sextic residue symbol.

2.10. Poisson Summation

The proof of Theorem 1.3 requires the following Poisson summation formula.

Proposition 2.11.

Let n[ω]n\in\mathbb{Z}[\omega] be EE-primary and (n)6\left(\frac{\cdot}{n}\right)_{6} be the sextic residue symbol (modn)\pmod{n}. For any Schwartz class function Φ\Phi, we have

c[ω](c,6)=1(cn)6Φ(N(c)X)=(m)m|6μ[ω](m)(mn)6XN(m)N(n)k[ω]g6(k,n)Φ~(N(k)XN(m)N(n)),\displaystyle\sum_{\begin{subarray}{c}c\in\mathbb{Z}[\omega]\\ (c,6)=1\end{subarray}}\left(\frac{c}{n}\right)_{6}\Phi\left(\frac{N(c)}{X}\right)=\sum_{\begin{subarray}{c}(m)\\ m|6\end{subarray}}\mu_{[\omega]}(m)\left(\frac{m}{n}\right)_{6}\frac{X}{N(m)N(n)}\sum_{k\in\mathbb{Z}[\omega]}g_{6}(k,n)\widetilde{\Phi}\left(\sqrt{\frac{N(k)X}{N(m)N(n)}}\right),

where

Φ~(t)\displaystyle\widetilde{\Phi}(t) =Φ(N(x+yω))e~(t(x+yω))dxdy,t0.\displaystyle=\int\limits^{\infty}_{-\infty}\int\limits^{\infty}_{-\infty}\Phi(N(x+y\omega))\widetilde{e}\left(-t(x+y\omega)\right)\mathrm{d}x\mathrm{d}y,\quad t\geq 0.

The above result is an easy consequence of a variation of [G&Zhao2019, Lemma 2.6], we omit its proof here. When Φ(t)\Phi(t) is the one given in Theorem 1.3, we have the following estimations for Φ~\widetilde{\Phi} and its derivatives [G&Zhao9, (2-15)]: Φ~(t)\widetilde{\Phi}(t)\in\mathbb{R} for any t0t\geq 0 and

(2.13) Φ~(μ)(t)jmin{1,Uj1tj}\displaystyle\widetilde{\Phi}^{(\mu)}(t)\ll_{j}\min\{1,U^{j-1}t^{-j}\}

for all integers μ0\mu\geq 0, j1j\geq 1 and all t>0t>0.

3. Proof of Theorem  1.1

We derive readily from (2.8), the approximate functional equation, with G(s)=1G(s)=1, t=0t=0 and x=3N(c)/zx=3N(c)/z that

c1mod36L(12,χc)W(N(c)y)=M1+M2,\displaystyle\sideset{}{{}^{*}}{\sum}_{c\equiv 1\bmod{36}}L\left(\frac{1}{2},\chi_{c}\right)W\left(\frac{N(c)}{y}\right)=M_{1}+M_{2},

where

M1\displaystyle M_{1} =c1mod360𝒜OKχc(𝒜)N(𝒜)1/2V(2πN(𝒜)z3N(c))W(N(c)y),and\displaystyle=\sideset{}{{}^{*}}{\sum}_{c\equiv 1\bmod{36}}\ \sum_{0\neq\mathcal{A}\subset O_{K}}\frac{\chi_{c}(\mathcal{A})}{N(\mathcal{A})^{1/2}}V\left(\frac{2\pi N(\mathcal{A})z}{3N(c)}\right)W\left(\frac{N(c)}{y}\right),\quad\mbox{and}
M2\displaystyle M_{2} =c1mod36g6(c)N(c)1/20𝒜OKχc¯(𝒜)N(𝒜)1/2V(2πN(𝒜)z)W(N(c)y).\displaystyle=\sideset{}{{}^{*}}{\sum}_{c\equiv 1\bmod{36}}\ \frac{g_{6}(c)}{N(c)^{1/2}}\sum_{0\neq\mathcal{A}\subset O_{K}}\frac{\overline{\chi_{c}}(\mathcal{A})}{N(\mathcal{A})^{1/2}}V\left(\frac{2\pi N(\mathcal{A})}{z}\right)W\left(\frac{N(c)}{y}\right).

3.1. Evaluating M1M_{1}, the main term

Since any integral non-zero ideal 𝒜\mathcal{A} in [ω]\mathbb{Z}[\omega] has a unique generator 2r1(1ω)r2a2^{r_{1}}(1-\omega)^{r_{2}}a, with r1r_{1}, r2r_{2}\in\mathbb{Z}, r1r_{1}, r20r_{2}\geq 0 and an EE-primary a[ω]a\in\mathbb{Z}[\omega], it follows from (2.1) and (2.2) that χc(2)=χc(1ω)=1\chi_{c}(2)=\chi_{c}(1-\omega)=1, which implies that χc(𝒜)=χc(a)\chi_{c}(\mathcal{A})=\chi_{c}(a).

We now define for aa being EE-primary, (c,6)=1(c,6)=1,

χ(a)(c)=(ac)6.\displaystyle\chi^{(a)}(c)=\left(\frac{a}{c}\right)_{6}.

Similar to our discussions in Section 2, one can check easily that χ(a)\chi^{(a)} is a Hecke character modulo 36a36a of trivial infinite type.

The above discussions allow us to recast M1M_{1} as

M1=r1,r20a E-primary12r13r2/2N(a)1/2M(r,a),M_{1}=\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\\ a\text{ $E$-primary}\end{subarray}}\frac{1}{2^{r_{1}}3^{r_{2}/2}N(a)^{1/2}}M(r,a),

where

M(r,a)=c1mod36χ(a)(c)V(π22r1+13r21N(a)zyyN(c))W(N(c)y).M(r,a)=\sideset{}{{}^{*}}{\sum}_{c\equiv 1\bmod{36}}\chi^{(a)}(c)V\left(\frac{\pi 2^{2r_{1}+1}3^{r_{2}-1}N(a)z}{y}\frac{y}{N(c)}\right)W\left(\frac{N(c)}{y}\right).

Now we use Möbius inversion to detect the square-free condition of cc, getting

M(r,a)=l E-primaryμ[ω](l)χ(a)(l2)M(l,r,a),M(r,a)=\sum_{\begin{subarray}{c}l\text{ $E$-primary}\end{subarray}}\mu_{[\omega]}(l)\chi^{(a)}(l^{2})M(l,r,a),

with

M(l,r,a)=cl21mod36c E-primaryχ(a)(c)V(π22r1+13r21N(a)zyyN(cl2))W(N(cl2)y).M(l,r,a)=\sum_{\begin{subarray}{c}cl^{2}\equiv 1\bmod{36}\\ c\text{ $E$-primary}\end{subarray}}\chi^{(a)}(c)V\left(\frac{\pi 2^{2r_{1}+1}3^{r_{2}-1}N(a)z}{y}\frac{y}{N(cl^{2})}\right)W\left(\frac{N(cl^{2})}{y}\right).

By Mellin inversion, we have

V(π22r1+13r21N(a)zyyN(cl2))W(N(cl2)y)=12πi(2)(yN(cl2))sf^(s)ds,V\left(\frac{\pi 2^{2r_{1}+1}3^{r_{2}-1}N(a)z}{y}\frac{y}{N(cl^{2})}\right)W\left(\frac{N(cl^{2})}{y}\right)=\frac{1}{2\pi i}\int\limits_{(2)}\left(\frac{y}{N(cl^{2})}\right)^{s}\hat{f}(s)\ \mathrm{d}s,

where

f^(s)=0V(π22r1+13r21N(a)zxy)W(x)xs1dx.\displaystyle\hat{f}(s)=\int\limits^{\infty}_{0}V\left(\frac{\pi 2^{2r_{1}+1}3^{r_{2}-1}N(a)z}{xy}\right)W(x)x^{s-1}\mathrm{d}x.

Integrating by parts together with (2.9) shows f^(s)\hat{f}(s) is a function satisfying the bound

(3.1) f^(s)(1+|s|)E(1+22r1+13r21N(a)zy)E,\displaystyle\hat{f}(s)\ll(1+|s|)^{-E}\left(1+\frac{2^{2r_{1}+1}3^{r_{2}-1}N(a)z}{y}\right)^{-E},

for all (s)>0\Re(s)>0 and any integer E>0E>0.

With this notation, we have

M(l,r,a)=12πi(2)f^(s)(yN(l2))scl21mod36c E-primaryχ(a)(c)N(c)sds.\displaystyle M(l,r,a)=\frac{1}{2\pi i}\int\limits_{(2)}\hat{f}(s)\left(\frac{y}{N(l^{2})}\right)^{s}\sum_{\begin{subarray}{c}cl^{2}\equiv 1\bmod{36}\\ c\text{ $E$-primary}\end{subarray}}\frac{\chi^{(a)}(c)}{N(c)^{s}}\mathrm{d}s.

Recall that for any cc, the ray class group h(c)h_{(c)} is defined to be I(c)/P(c)I_{(c)}/P_{(c)}, where I(c)={𝒜I:(𝒜,(c))=1}I_{(c)}=\{\mathcal{A}\in I:(\mathcal{A},(c))=1\} and P(c)={(a)P:a1(modc)}P_{(c)}=\{(a)\in P:a\equiv 1\pmod{c}\} with II and PP denoting the group of fractional ideals in KK and the subgroup of principal ideals, respectively. We now use the ray class characters to detect the condition that cl21(mod36)cl^{2}\equiv 1\pmod{36}, getting

M(l,r,a)=1#h(36)ψmod36ψ(l2)2πi(2)f^(s)(yN(l2))sL(s,ψχ(a))ds,\displaystyle M(l,r,a)=\frac{1}{\#h_{(36)}}\sum_{\psi\bmod{36}}\frac{\psi(l^{2})}{2\pi i}\int\limits\limits_{(2)}\hat{f}(s)\left(\frac{y}{N(l^{2})}\right)^{s}L(s,\psi\chi^{(a)})\mathrm{d}s,

where ψ\psi runs over all ray class characters (mod36)\pmod{36}, #h(36)=108\#h_{(36)}=108 and

L(s,ψχ(a))=𝒜0ψ(𝒜)χ(a)(𝒜)N(𝒜)s.\displaystyle L(s,\psi\chi^{(a)})=\sum_{\mathcal{A}\neq 0}\frac{\psi(\mathcal{A})\chi^{(a)}(\mathcal{A})}{N(\mathcal{A})^{s}}.

We compute M1M_{1} by shifting the contour to the half line. If ψχ(a)\psi\chi^{(a)} is principal, the Hecke LL-function has a pole at s=1s=1. We set M0M_{0} to be the contribution to M1M_{1} of these residues, and M1M^{\prime}_{1} to be the remainder.

We first evaluate M0M_{0}. Note that ψχ(a)\psi\chi^{(a)} is principal if and only if both ψ\psi and χ(a)\chi^{(a)} are principal. Hence aa must be a sixth power. We denote ψ0\psi_{0} for the principal ray class character (mod36)\pmod{36}. Then we have

L(s,ψ0χ(a6))=ζ(ω)(s)(ϖ)|(6a)(1N(ϖ)s).\displaystyle L\left(s,\psi_{0}\chi^{(a^{6})}\right)=\zeta_{\mathbb{Q}(\omega)}(s)\prod_{(\varpi)|(6a)}\left(1-N(\varpi)^{-s}\right).

Let c0=3π/9c_{0}=\sqrt{3}\pi/9, the residue of ζ(ω)(s)\zeta_{\mathbb{Q}(\omega)}(s) at s=1s=1. Then we have

M0\displaystyle M_{0} =y#h(36)r1,r20a E-primaryf^(1)2r13r2/2N(a)3Ress=1L(s,ψ0χ(a6))l E-primaryμ[ω](l)χ(a6)(l2)N(l2)\displaystyle=\frac{y}{\#h_{(36)}}\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\\ a\text{ $E$-primary}\end{subarray}}\frac{\hat{f}(1)}{2^{r_{1}}3^{r_{2}/2}N(a)^{3}}\text{Res}_{s=1}L\left(s,\psi_{0}\chi^{(a^{6})}\right)\sum_{\begin{subarray}{c}l\text{ $E$-primary}\end{subarray}}\frac{\mu_{[\omega]}(l)\chi^{(a^{6})}(l^{2})}{N(l^{2})}
=c0y#h(36)ζ(ω)(2)r1,r20a E-primaryf^(1)2r13r2/2N(a)3(ϖ)|(6a)(1N(ϖ)1)(ϖ)|(6a)(1N(ϖ)2)1\displaystyle=\frac{c_{0}y}{\#h_{(36)}\zeta_{\mathbb{Q}(\omega)}(2)}\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\\ a\text{ $E$-primary}\end{subarray}}\frac{\hat{f}(1)}{2^{r_{1}}3^{r_{2}/2}N(a)^{3}}\prod_{(\varpi)|(6a)}\left(1-N(\varpi)^{-1}\right)\prod_{(\varpi)|(6a)}\left(1-N(\varpi)^{-2}\right)^{-1}
=c0y#h(36)ζ(ω)(2)r1,r20a E-primaryf^(1)2r13r2/2N(a)3(ϖ)|(6a)(1+N(ϖ)1)1.\displaystyle=\frac{c_{0}y}{\#h_{(36)}\zeta_{\mathbb{Q}(\omega)}(2)}\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\\ a\text{ $E$-primary}\end{subarray}}\frac{\hat{f}(1)}{2^{r_{1}}3^{r_{2}/2}N(a)^{3}}\prod_{(\varpi)|(6a)}\left(1+N(\varpi)^{-1}\right)^{-1}.

Set

Z(u)=r1,r20a E-primary1πu2r1+(2r1+1)u3r2/2+(r21)uN(a)3+6u(ϖ)|(6a)(1+N(ϖ)1)1,Z(u)=\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\\ a\text{ $E$-primary}\end{subarray}}\frac{1}{\pi^{u}2^{r_{1}+(2r_{1}+1)u}3^{r_{2}/2+(r_{2}-1)u}N(a)^{3+6u}}\prod_{(\varpi)|(6a)}\left(1+N(\varpi)^{-1}\right)^{-1},

which is holomorphic and bounded for (u)1/3+δ>1/3\Re(u)\geq-1/3+\delta>-1/3.

Note that using the Mellin convolution formula shows

f^(1)\displaystyle\widehat{f}(1)
=\displaystyle= 0V(π22r1+13r21N(a)6zxy)W(x)dx=12πi(1)(yπ22r1+13r21N(a)6z)sW^(1+s)G(s)sΓ(s+1/2)Γ(1/2)ds,\displaystyle\int\limits^{\infty}_{0}V\left(\frac{\pi 2^{2r_{1}+1}3^{r_{2}-1}N(a)^{6}z}{xy}\right)W(x)\mathrm{d}x=\frac{1}{2\pi i}\int\limits_{(1)}\left(\frac{y}{\pi 2^{2r_{1}+1}3^{r_{2}-1}N(a)^{6}z}\right)^{s}\widehat{W}(1+s)\frac{G(s)}{s}\frac{\Gamma(s+1/2)}{\Gamma(1/2)}\mathrm{d}s,

where

W^(s)=0W(x)xs1𝑑x.\widehat{W}(s)=\int\limits_{0}^{\infty}W(x)x^{s-1}dx.

Then

M0=c0y#h(36)ζ(ω)(2)12πi(1)(yz)sZ(s)W^(1+s)G(s)sΓ(s+1/2)Γ(1/2)ds.M_{0}=\frac{c_{0}y}{\#h_{(36)}\zeta_{\mathbb{Q}(\omega)}(2)}\frac{1}{2\pi i}\int\limits_{(1)}\left(\frac{y}{z}\right)^{s}Z(s)\widehat{W}(1+s)\frac{G(s)}{s}\frac{\Gamma(s+1/2)}{\Gamma(1/2)}\mathrm{d}s.

We move the contour of integration to 1/3+ε-1/3+\varepsilon, crossing a pole at s=0s=0 only. The new contour contributes O((y/z)1/3+εy)O(\left(y/z\right)^{-1/3+\varepsilon}y), while the pole at s=0s=0 gives

(3.2) AyW^(1),whereA=c0#h(36)ζ(ω)(2)Z(0).Ay\widehat{W}(1),\quad\text{where}\quad A=\frac{c_{0}}{\#h_{(36)}\zeta_{\mathbb{Q}(\omega)}(2)}Z(0).

Note that Z(u)Z(u) converges absolutely at u=0u=0 so it is easy to express Z(0)Z(0) explicitly as an Euler product, if desired. We then conclude that

(3.3) M0=AyW^(1)+O((yz)1/3+εy).\displaystyle M_{0}=Ay\widehat{W}(1)+O\left(\left(\frac{y}{z}\right)^{-1/3+\varepsilon}y\right).

3.2. Estimating M1M_{1}^{\prime}, the remainder term

To deal with M1M^{\prime}_{1}, we bound everything by absolute values and use (3.1) to get that for any E>0E>0,

(3.4) M1y1/2N(l)y1N(l)ψmod36r1,r20a E-primary12r13r2/2N(a)1/2(1+22r1+13r21N(a)zy)E×|L(12+it,ψχ(a))|(1+|t|)Edt.\begin{split}M^{\prime}_{1}\ll y^{1/2}\sum_{N(l)\ll\sqrt{y}}\frac{1}{N(l)}&\sum_{\psi\bmod{36}}\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\\ a\text{ $E$-primary}\end{subarray}}\frac{1}{2^{r_{1}}3^{r_{2}/2}N(a)^{1/2}}\left(1+\frac{2^{2r_{1}+1}3^{r_{2}-1}N(a)z}{y}\right)^{-E}\\ &\times\int\limits^{\infty}_{-\infty}\left|L\left(\frac{1}{2}+it,\psi\chi^{(a)}\right)\right|(1+|t|)^{-E}\mathrm{d}t.\end{split}

We now need the following estimation to bound the sum over aa:

(3.5) N(a)Na E-primaryN(a)1/2|L(12+it,ψχ(a))|(N(1+|t|))1/2+ϵ.\displaystyle\sum_{\begin{subarray}{c}N(a)\leq N\\ a\text{ $E$-primary}\end{subarray}}N(a)^{-1/2}\left|L\left(\frac{1}{2}+it,\psi\chi^{(a)}\right)\right|\ll(N(1+|t|))^{1/2+\epsilon}.

The proof of (3.5) is similar to that of [B&Y, (39)] and we will give a sketch of the arguments. We factor aa as a1a22a33a44a55a66a_{1}a_{2}^{2}a_{3}^{3}a_{4}^{4}a^{5}_{5}a^{6}_{6} where a1a2a3a4a5a_{1}a_{2}a_{3}a_{4}a_{5} is square-free. Then ψχ(a)\psi\chi^{(a)} equals ψχ(a1)(χ(a2))2(χ(a3))3(χ(a4)¯)2χ(a5)¯\psi\chi^{(a_{1})}(\chi^{(a_{2})})^{2}(\chi^{(a_{3})})^{3}(\overline{\chi^{(a_{4})}})^{2}\overline{\chi^{(a_{5})}} times a principal character. Here (χ(a2))2(\chi^{(a_{2})})^{2} (respectively (χ(a4)¯)2(\overline{\chi^{(a_{4})}})^{2}) can be regarded as a cubic Hecke character (mod36a2)\pmod{36a_{2}} (respectively (mod36a4)\pmod{36a_{4}}) of trivial infinite type and (χ(a3))3(\chi^{(a_{3})})^{3} can be regarded as a quadratic Hecke character (mod36a3)\pmod{36a_{3}} of trivial infinite type. For each fixed ai,2i5a_{i},2\leq i\leq 5, it suffices to show that

(3.6) N(a1)N1(a1,a2a3a4a5)=1|L(1/2+it,ψχ(a1)(χ(a2))2(χ(a3))3(χ(a4)¯)2χ(a5)¯)|2N11+εN(a2a3a4a5)1/2+ε(1+|t|)1+ε,\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}N(a_{1})\leq N_{1}\\ (a_{1},a_{2}a_{3}a_{4}a_{5})=1\end{subarray}}|L(1/2+it,\psi\chi^{(a_{1})}(\chi^{(a_{2})})^{2}(\chi^{(a_{3})})^{3}(\overline{\chi^{(a_{4})}})^{2}\overline{\chi^{(a_{5})}})|^{2}\ll N_{1}^{1+\varepsilon}N(a_{2}a_{3}a_{4}a_{5})^{1/2+\varepsilon}(1+|t|)^{1+\varepsilon},

where the asterisk indicates that a1a_{1} runs over EE-primary square-free elements of [ω]\mathbb{Z}[\omega]. With this bound and the convergence of the sums over a2,a3,a4,a5,a6a_{2},a_{3},a_{4},a_{5},a_{6}, a use of Cauchy’s inequality gives (3.5).

Note that as a1a2a3a4a5a_{1}a_{2}a_{3}a_{4}a_{5} is square-free, the character χ(a1)(χ(a2))2(χ(a3))3(χ(a4)¯)2χ(a5)¯\chi^{(a_{1})}(\chi^{(a_{2})})^{2}(\chi^{(a_{3})})^{3}(\overline{\chi^{(a_{4})}})^{2}\overline{\chi^{(a_{5})}} is primitive with conductor ff satisfying

a1a2a3a4a5(6,a1a2a3a4a5)|fandf|36a1a2a3a4a5.\displaystyle\frac{a_{1}a_{2}a_{3}a_{4}a_{5}}{(6,a_{1}a_{2}a_{3}a_{4}a_{5})}|f\quad\mbox{and}\quad f|36a_{1}a_{2}a_{3}a_{4}a_{5}.

We may now further assume that ψχ(a1)(χ(a2))2(χ(a3))3(χ(a4)¯)2χ(a5)¯\psi\chi^{(a_{1})}(\chi^{(a_{2})})^{2}(\chi^{(a_{3})})^{3}(\overline{\chi^{(a_{4})}})^{2}\overline{\chi^{(a_{5})}} is primitive. Thus the Hecke LL-function

L(s,ψχ(a1)(χ(a2))2(χ(a3))3(χ(a4)¯)2χ(a5)¯),L(s,\psi\chi^{(a_{1})}(\chi^{(a_{2})})^{2}(\chi^{(a_{3})})^{3}(\overline{\chi^{(a_{4})}})^{2}\overline{\chi^{(a_{5})}}),

viewed as a degree two LL-function over \mathbb{Q}, has analytic conductor N1N(a2a3a4a5)(1+t2)\ll N_{1}N(a_{2}a_{3}a_{4}a_{5})(1+t^{2}).

We then apply the approximate functional equation (2.8) with G(s)=es2G(s)=e^{s^{2}} for Hecke LL-functions, removing the weight using the Mellin transform to reduce the problem of estimating (3.6) to bounding

N(a1)N1|N(n)Qn1 E-primaryψχ(a1)(χ(a2))2(χ(a3))3(χ(a4)¯)2χ(a5)¯(n)N(n)1/2+it|2.\sideset{}{{}^{*}}{\sum}_{N(a_{1})\leq N_{1}}\left|\sum_{\begin{subarray}{c}N(n)\ll Q\\ n_{1}\text{ $E$-primary}\end{subarray}}\frac{\psi\chi^{(a_{1})}(\chi^{(a_{2})})^{2}(\chi^{(a_{3})})^{3}(\overline{\chi^{(a_{4})}})^{2}\overline{\chi^{(a_{5})}}(n)}{N(n)^{1/2+it}}\right|^{2}.

Moreover, by [HIEK, Proposition 5.4], we may truncate the sum over nn so that Q(N1N(a2a3a4a5)(1+t2))1/2+εQ\ll(N_{1}N(a_{2}a_{3}a_{4}a_{5})(1+t^{2}))^{1/2+\varepsilon} with a negligibly small error.

In the inner sum above, writing n=n1n22n=n_{1}n^{2}_{2} with n1n_{1}, n2n_{2} EE-primary, n1n_{1} square-free and using the Cauchy-Schwarz inequality, it is enough to estimate

N(a1)N1|N(n1)Qn E-primaryψχ(a1)(χ(a2))2(χ(a3))3(χ(a4)¯)2χ(a5)¯(n1)N(n1)1/2+it|2\sideset{}{{}^{*}}{\sum}_{N(a_{1})\leq N_{1}}\left|\ \sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}N(n_{1})\ll Q\\ n\text{ $E$-primary}\end{subarray}}\frac{\psi\chi^{(a_{1})}(\chi^{(a_{2})})^{2}(\chi^{(a_{3})})^{3}(\overline{\chi^{(a_{4})}})^{2}\overline{\chi^{(a_{5})}}(n_{1})}{N(n_{1})^{1/2+it}}\right|^{2}

where the asterisk in the inner sum above indicates that n1n_{1} runs over square-free elements of [ω]\mathbb{Z}[\omega]. The bound from Lemma 2.9 then gives the desired estimate for (3.6).

We note that we may truncate the sums over r1,r2,ar_{1},r_{2},a so that 22r1+13r21N(a)zy1+ε2^{2r_{1}+1}3^{r_{2}-1}N(a)z\ll y^{1+\varepsilon} in (3.4) with a negligibly small error. We now apply (3.5) with N=y1+ε(22r1+13r21N(a)z)1N=y^{1+\varepsilon}(2^{2r_{1}+1}3^{r_{2}-1}N(a)z)^{-1} (we may assume that yy is large enough) and treat all the sums trivially to see that

(3.7) M1y1/2(yz)1/2+ϵ.\displaystyle M^{\prime}_{1}\ll y^{1/2}\left(\frac{y}{z}\right)^{1/2+\epsilon}.

3.3. Estimating M2M_{2}

From the discussions at the beginning of Section 3.1, we have

M2\displaystyle M_{2} =r1,r20a E-primary12r13r2/2N(a)1/2V(π22r1+13r2N(a)z)c1mod36g6(c)χc¯(a)N(c)1/2W(N(c)y).\displaystyle=\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\\ a\text{ $E$-primary}\end{subarray}}\frac{1}{2^{r_{1}}3^{r_{2}/2}N(a)^{1/2}}V\left(\frac{\pi 2^{2r_{1}+1}3^{r_{2}}N(a)}{z}\right)\sum_{c\equiv 1\bmod{36}}\ \frac{g_{6}(c)\overline{\chi_{c}}(a)}{N(c)^{1/2}}W\left(\frac{N(c)}{y}\right).

Note that we can drop the restriction in sum over cc above, as it follows from (2.3) that g6(c)=0g_{6}(c)=0 unless cc is square-free.

We further use the ray class characters to detect the condition that c1(mod36)c\equiv 1\pmod{36} to obtain

M2\displaystyle M_{2} =1#h(36)r1,r20a E-primary12r13r2/2N(a)1/2V(π22r1+13r2N(a)z)ψmod36H(a,ψ,y),\displaystyle=\frac{1}{\#h_{(36)}}\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\\ a\text{ $E$-primary}\end{subarray}}\frac{1}{2^{r_{1}}3^{r_{2}/2}N(a)^{1/2}}V\left(\frac{\pi 2^{2r_{1}+1}3^{r_{2}}N(a)}{z}\right)\sum_{\psi\bmod{36}}H(a,\psi,y),

where

H(a,ψ,y)=c E-primaryψ(c)g6(c)χc¯(a)N(c)1/2W(N(c)y).H(a,\psi,y)=\sum_{c\text{ $E$-primary}}\ \frac{\psi(c)g_{6}(c)\overline{\chi_{c}}(a)}{N(c)^{1/2}}W\left(\frac{N(c)}{y}\right).

We estimate HH with the following:

Lemma 3.4.

For any EE-primary aa and any ray class character ψ(mod36)\psi\pmod{36}, we have

H(a,ψ,y)y1/2+εN(a)1/4+y2/3N(a)1/6+ε.H(a,\psi,y)\ll y^{1/2+\varepsilon}N(a)^{1/4}+y^{2/3}N(a)^{1/6+\varepsilon}.
Proof.

Note that the identity (2.4) implies g6(c)χc¯(a)=g6(a,c)g_{6}(c)\overline{\chi_{c}}(a)=g_{6}(a,c) for (a,c)=1(a,c)=1. Introducing the Mellin transform of ww, we get

(3.8) H(a,ψ,y)=12πi(2)W^(s)ysh(a,12+s;ψ)ds.H(a,\psi,y)=\frac{1}{2\pi i}\int\limits_{(2)}\widehat{W}(s)y^{s}h\left(a,\frac{1}{2}+s;\psi\right)\mathrm{d}s.

We move the line of integration in (3.8) to (s)=12+ε\Re(s)=\frac{1}{2}+\varepsilon, crossing a pole at s=2/3s=2/3, which contributes by Lemma 2.6

y2/3N(a)1/6+ε.\ll y^{2/3}N(a)^{1/6+\varepsilon}.

The main contribution comes from the new line of integration, which by Lemma 2.6 again gives

y1/2+εN(a)1/4.\ll y^{1/2+\varepsilon}N(a)^{1/4}.

This completes the proof of Lemma 3.4. ∎

Now, to estimate M2M_{2}, we note that we may truncate the sums over r1,r2,ar_{1},r_{2},a so that 22r1+13r21N(a)z1+ε2^{2r_{1}+1}3^{r_{2}-1}N(a)\ll z^{1+\varepsilon} with a negligibly small error. By summing trivially over r1,r2,ar_{1},r_{2},a, one easily deduces that

(3.9) M2y1/2+εz3/4+ε+y2/3z2/3+ε.M_{2}\ll y^{1/2+\varepsilon}z^{3/4+\varepsilon}+y^{2/3}z^{2/3+\varepsilon}.

3.5. Conclusion

Combining (3.9) with (3.3) and (3.7), we obtain

M=cyW^(1)+O(y1/2(yz)1/2+ϵ+y1/2+εz3/4+ε+y2/3z2/3+ε).M=cy\widehat{W}(1)+O\left(y^{1/2}\left(\frac{y}{z}\right)^{1/2+\epsilon}+y^{1/2+\varepsilon}z^{3/4+\varepsilon}+y^{2/3}z^{2/3+\varepsilon}\right).

Setting z=y2/7z=y^{2/7}, the proof of Theorem 1.1 is completed.

4. Proof of Theorem 1.3

The proof of Theorem 1.3 is similar to that of [G&Zhao4, Theorem 1.3] and [G&Zhao9, Theorem 1.1]. First, as in [G&Zhao20, Section 3.1], we can show that #C(X)cX\#C(X)\sim cX for some constant cc as XX\rightarrow\infty. Next, we take Z=log5XZ=\log^{5}X and write μ[ω]2(c)=MZ(c)+RZ(c)\mu_{[\omega]}^{2}(c)=M_{Z}(c)+R_{Z}(c) where

MZ(c)=(l),l2|cN(l)Zμ[ω](l)andRZ(c)=(l),l2|cN(l)>Zμ[ω](l).M_{Z}(c)=\sum_{\begin{subarray}{c}(l),\ l^{2}|c\\ N(l)\leq Z\end{subarray}}\mu_{[\omega]}(l)\;\quad\mbox{and}\;\quad R_{Z}(c)=\sum_{\begin{subarray}{c}(l),\ l^{2}|c\\ N(l)>Z\end{subarray}}\mu_{[\omega]}(l).

We shall write Φ(t)\Phi(t) for ΦX(t)\Phi_{X}(t) throughout. We define S(X,Y;ϕ^,Φ)=SM(X,Y;ϕ^,Φ)+SR(X,Y;ϕ^,Φ)S(X,Y;\hat{\phi},\Phi)=S_{M}(X,Y;\hat{\phi},\Phi)+S_{R}(X,Y;\hat{\phi},\Phi) with

SM(X,Y;ϕ^,Φ)=(c,6)=1MZ(c)N(ϖ)Yϖ E-primarylogN(ϖ)N(ϖ)(72cϖ)ϕ^(logN(ϖ)logX)Φ(N(c)X),S_{M}(X,Y;\hat{\phi},\Phi)=\sum_{(c,6)=1}M_{Z}(c)\sum_{\begin{subarray}{c}N(\varpi)\leq Y\\ \varpi\text{ $E$-primary}\end{subarray}}\frac{\log N(\varpi)}{\sqrt{N(\varpi)}}\left(\frac{72c}{\varpi}\right)\hat{\phi}\left(\frac{\log N(\varpi)}{\log X}\right)\Phi\left(\frac{N(c)}{X}\right),

and

SR(X,Y;ϕ^,Φ)=(c,6)=1RZ(c)N(ϖ)Yϖ E-primarylogN(ϖ)N(ϖ)(72cϖ)ϕ^(logN(ϖ)logX)Φ(N(c)X).S_{R}(X,Y;\hat{\phi},\Phi)=\sum_{(c,6)=1}R_{Z}(c)\sum_{\begin{subarray}{c}N(\varpi)\leq Y\\ \varpi\text{ $E$-primary}\end{subarray}}\frac{\log N(\varpi)}{\sqrt{N(\varpi)}}\left(\frac{72c}{\varpi}\right)\hat{\phi}\left(\frac{\log N(\varpi)}{\log X}\right)\Phi\left(\frac{N(c)}{X}\right).

Here ϕ^(u)\hat{\phi}(u) is smooth and has its support in the interval (45/43+ε,45/43ε)(-45/43+\varepsilon,45/43-\varepsilon) for some 0<ε<10<\varepsilon<1. To emphasize this condition, we shall set Y=X45/43εY=X^{45/43-\varepsilon} and write the condition N(ϖ)YN(\varpi)\leq Y explicitly throughout this section .

Analogue to what is shown in the proof of [G&Zhao4, Theorem 1.2], we see that in order to establish Theorem 1.3, it suffices to show that

limXS(X,Y;ϕ^,Φ)XlogX=0.\displaystyle\lim_{X\rightarrow\infty}\frac{S(X,Y;\hat{\phi},\Phi)}{X\log X}=0.

Using standard techniques (see [G&Zhao4, Section 3.3]), we have that

(4.1) SR(X,Y;ϕ^,Φ)=o(XlogX),asX.S_{R}(X,Y;\hat{\phi},\Phi)=o(X\log X),\quad\mbox{as}\quad X\rightarrow\infty.

Indeed, with the truth of GRH, the inner-most sum of SR(X,Y;ϕ^,Φ)S_{R}(X,Y;\hat{\phi},\Phi), a character sum over primes, can be bounded very sharply (see [G&Zhao4, Lemma 2.5]) and we immediately get the estimate in (4.1).

To bound SM(X,Y;ϕ^,Φ)S_{M}(X,Y;\hat{\phi},\Phi), we rewrite it as

SM\displaystyle S_{M} (X,Y;ϕ^,Φ)\displaystyle(X,Y;\hat{\phi},\Phi)
=\displaystyle= N(ϖ)Yϖ E-primarylogN(ϖ)N(ϖ)(72ϖ)6ϕ^(logN(ϖ)logX)N(l)Zl E-primaryμ[ω](l)(l2ϖ)6c[ω](c,6)=1(cϖ)6Φ(N(cl2)X).\displaystyle\sum_{\begin{subarray}{c}N(\varpi)\leq Y\\ \varpi\text{ $E$-primary}\end{subarray}}\frac{\log N(\varpi)}{\sqrt{N(\varpi)}}\left(\frac{72}{\varpi}\right)_{6}\hat{\phi}\left(\frac{\log N(\varpi)}{\log X}\right)\sum_{\begin{subarray}{c}N(l)\leq Z\\ l\text{ $E$-primary}\end{subarray}}\mu_{[\omega]}(l)\left(\frac{l^{2}}{\varpi}\right)_{6}\sum_{\begin{subarray}{c}c\in\mathbb{Z}[\omega]\\ (c,6)=1\end{subarray}}\left(\frac{c}{\varpi}\right)_{6}\Phi\left(\frac{N(cl^{2})}{X}\right).

Applying Lemma 2.11 and noting that Lemma 2.3 gives

g6(k,ϖ)=(kϖ)¯6g6(ϖ),\displaystyle g_{6}(k,\varpi)=\overline{\left(\frac{k}{\varpi}\right)}_{6}g_{6}(\varpi),

we can recast SM(X,Y;ϕ^,Φ)S_{M}(X,Y;\hat{\phi},\Phi) further as

(4.2) SM(X,Y;ϕ^,Φ)=XN(l)Zl E-primaryμ[ω](l)N(l2)(m)m|6μ[ω](m)N(m)×k[ω]k0N(ϖ)Yϖ E-primarylogN(ϖ)N(ϖ)3/2(725km5l4ϖ)¯6g6(ϖ)ϕ^(logN(ϖ)logX)Φ~(N(k)XN(ml2ϖ)).\begin{split}S_{M}(X,Y;\hat{\phi},\Phi)=&X\sum_{\begin{subarray}{c}N(l)\leq Z\\ l\text{ $E$-primary}\end{subarray}}\frac{\mu_{[\omega]}(l)}{N(l^{2})}\sum_{\begin{subarray}{c}(m)\\ m|6\end{subarray}}\frac{\mu_{[\omega]}(m)}{N(m)}\\ &\hskip 28.45274pt\times\sum_{\begin{subarray}{c}k\in\mathbb{Z}[\omega]\\ k\neq 0\end{subarray}}\sum_{\begin{subarray}{c}N(\varpi)\leq Y\\ \varpi\text{ $E$-primary}\end{subarray}}\frac{\log N(\varpi)}{N(\varpi)^{3/2}}\overline{\left(\frac{72^{5}km^{5}l^{4}}{\varpi}\right)}_{6}g_{6}(\varpi)\hat{\phi}\left(\frac{\log N(\varpi)}{\log X}\right)\widetilde{\Phi}\left(\sqrt{\frac{N(k)X}{N(ml^{2}\varpi)}}\right).\end{split}

In essentially the same manner (with some minor modifications) as in the proof of [G&Zhao4, Lemma 4.2], we derive from Lemma 2.6 the following:

Lemma 4.1.

Let (b,6)=1(b,6)=1. For any d[ω]d\in\mathbb{Z}[\omega], we have

N(c)xc E-primaryc0modb(dc)¯6g6(c)N(c)1/2=O(N(d)1/6+εN(b)εx2/3+ε+N(d)1/14N(b)4/7x6/7+ε).\displaystyle\sum_{\begin{subarray}{c}N(c)\leq x\\ c\text{ $E$-primary}\\ c\equiv 0\bmod{b}\end{subarray}}\overline{\left(\frac{d}{c}\right)}_{6}g_{6}(c)N(c)^{-1/2}=O\left(N(d)^{1/6+\varepsilon}N(b)^{\varepsilon}x^{2/3+\varepsilon}+N(d)^{1/14}N(b)^{-4/7}x^{6/7+\varepsilon}\right).

Using Lemma 4.1 instead of Proposition 1 of [P, p. 198] in the sieve identity in Section 4 of [P] and noting that in our case Proposition 2 on [P, p. 206] is still valid, we obtain that (taking u3=X/u1,u1=X10/(5n+2R)N(b)5/(5n+2R)u_{3}=X/u_{1},u_{1}=X^{10/(5n+2R)}N(b)^{-5/(5n+2R)} as in [P] and noting that we have n=6,R=7n=6,R=7 in our case)

E(x;m,k,l):=N(ϖ)xϖ E-primary(725km5l4ϖ)¯6g6(ϖ)Λ(ϖ)N(ϖ)xε(N(km5l4)7/132x59/66+N(km5l4)1/44+εx11/22).\displaystyle E(x;m,k,l):=\sum_{\begin{subarray}{c}N(\varpi)\leq x\\ \varpi\text{ $E$-primary}\end{subarray}}\overline{\left(\frac{72^{5}km^{5}l^{4}}{\varpi}\right)}_{6}\frac{g_{6}(\varpi)\Lambda(\varpi)}{\sqrt{N(\varpi)}}\ll x^{\varepsilon}\left(N(km^{5}l^{4})^{7/132}x^{59/66}+N(km^{5}l^{4})^{1/44+\varepsilon}x^{1-1/22}\right).

It follows from this, (2.13) and partial summation that

k[ω]k0N(ϖ)Yϖ E-primary\displaystyle\sum_{\begin{subarray}{c}k\in\mathbb{Z}[\omega]\\ k\neq 0\end{subarray}}\sum_{\begin{subarray}{c}N(\varpi)\leq Y\\ \varpi\text{ $E$-primary}\end{subarray}} logN(ϖ)N(ϖ)3/2(725km5l4ϖ)¯6g6(ϖ)ϕ^(logN(ϖ)logX)Φ~(N(k)XN(ml2ϖ))\displaystyle\frac{\log N(\varpi)}{N(\varpi)^{3/2}}\overline{\left(\frac{72^{5}km^{5}l^{4}}{\varpi}\right)}_{6}g_{6}(\varpi)\hat{\phi}\left(\frac{\log N(\varpi)}{\log X}\right)\widetilde{\Phi}\left(\sqrt{\frac{N(k)X}{N(ml^{2}\varpi)}}\right)
\displaystyle\ll N(m5l4)7/132+εN(ml2)139/132+εY125/132+ϵU3X139/132+N(m5l4)1/44+εN(ml2)45/44+εY43/44+ϵU3X45/44.\displaystyle\frac{N(m^{5}l^{4})^{7/132+\varepsilon}N(ml^{2})^{139/132+\varepsilon}Y^{125/132+\epsilon}U^{3}}{X^{139/132}}+\frac{N(m^{5}l^{4})^{1/44+\varepsilon}N(ml^{2})^{45/44+\varepsilon}Y^{43/44+\epsilon}U^{3}}{X^{45/44}}.

We then conclude from (4.1) and (4.2) that

S(X,Y;ϕ^,Φ)=o(XlogX),asX.S(X,Y;{\hat{\phi}},\Phi)=o\left(X\log X\right),\quad\mbox{as}\quad X\to\infty.

mindful of U=loglogXU=\log\log X, Z=log5XZ=\log^{5}X. This completes the proof of Theorem 1.3.

Acknowledgments. P. G. is supported in part by NSFC grant 11871082 and L. Z. by the FRG grant PS43707 at the University of New South Wales (UNSW). The authors would like to thank the anonymous referee for his/her careful reading of the paper and many helpful comments.

References

School of Mathematical Sciences School of Mathematics and Statistics
Beihang University University of New South Wales
Beijing 100191 China Sydney NSW 2052 Australia
Email: [email protected] Email: [email protected]