This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

MogaNet: Multi-order Gated Aggregation Network

Siyuan Li1,2   Zedong Wang1∗  Zicheng Liu1,2  Cheng Tan1,2  Haitao Lin1,2  Di Wu1,2 
Zhiyuan Chen1,2  Jiangbin Zheng1,2  Stan Z. Li1†
1
AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou, China
2Zhejiang University, College of Computer Science and Technology, Hangzhou, China
Equal contribution.   Corrsponding author.
Abstract

By contextualizing the kernel as global as possible, Modern ConvNets have shown great potential in computer vision tasks. However, recent progress on multi-order game-theoretic interaction within deep neural networks (DNNs) reveals the representation bottleneck of modern ConvNets, where the expressive interactions have not been effectively encoded with the increased kernel size. To tackle this challenge, we propose a new family of modern ConvNets, dubbed MogaNet, for discriminative visual representation learning in pure ConvNet-based models with favorable complexity-performance trade-offs. MogaNet encapsulates conceptually simple yet effective convolutions and gated aggregation into a compact module, where discriminative features are efficiently gathered and contextualized adaptively. MogaNet exhibits great scalability, impressive efficiency of parameters, and competitive performance compared to state-of-the-art ViTs and ConvNets on ImageNet and various downstream vision benchmarks, including COCO object detection, ADE20K semantic segmentation, 2D&3D human pose estimation, and video prediction. Notably, MogaNet hits 80.0% and 87.8% accuracy with 5.2M and 181M parameters on ImageNet-1K, outperforming ParC-Net and ConvNeXt-L, while saving 59% FLOPs and 17M parameters, respectively. The source code is available at https://github.com/Westlake-AI/MogaNet.

1 Introduction

Refer to caption
Figure 1: Performance on ImageNet-1K validation set at 2242224^{2} resolutions. MogaNet outperforms Transformers (DeiT(Touvron et al., 2021a) and Swin (Liu et al., 2021)), ConvNets (RegNetY (Radosavovic et al., 2020) and ConvNeXt (Liu et al., 2022b)), and hybrid models (CoAtNet (Dai et al., 2021)) across all scales.

By relaxing local inductive bias, Vision Transformers (ViTs) (Dosovitskiy et al., 2021; Liu et al., 2021) have rapidly challenged the long dominance of Convolutional Neural Networks (ConvNets) (Ren et al., 2015; He et al., 2016; Kirillov et al., 2019) for visual recognition. It is commonly conjectured that such superiority of ViT stems from its self-attention operation (Bahdanau et al., 2015; Vaswani et al., 2017), which facilitates the global-range feature interaction. From a practical standpoint, however, the quadratic complexity within self-attention prohibitively restricts its computational efficiency (Wang et al., 2021a; Hua et al., 2022) and applications to high-resolution fine-grained scenarios (Zhu et al., 2021; Jiang et al., 2021a; Liu et al., 2022a). Additionally, the dearth of local bias induces the detriment of neighborhood correlations (Pinto et al., 2022).

To resolve this problem, endeavors have been made by reintroducing locality priors (Wu et al., 2021a; Dai et al., 2021; Han et al., 2021a; Li et al., 2022a; Chen et al., 2022) and pyramid-like hierarchical layouts (Liu et al., 2021; Fan et al., 2021; Wang et al., 2021b) to ViTs, albeit at the expense of model generalizability and expressivity. Meanwhile, further explorations toward ViTs (Tolstikhin et al., 2021; Raghu et al., 2021; Yu et al., 2022) have triggered the resurgence of modern ConvNets (Liu et al., 2022b; Ding et al., 2022b). With advanced training setup and ViT-style framework design, ConvNets can readily deliver competitive performance w.r.t. well-tuned ViTs across a wide range of vision benchmarks (Wightman et al., 2021; Pinto et al., 2022). Essentially, most of the modern ConvNets aim to perform feature extraction in a local-global blended fashion by contextualizing the convolutional kernel or the perception module as global as possible.

Despite their superior performance, recent progress on multi-order game-theoretic interaction within DNNs (Ancona et al., 2019b; Zhang et al., 2020; Cheng et al., 2021) unravels that the representation capacity of modern ConvNets has not been exploited well. Holistically, low-order interactions tend to model relatively simple and common local visual concepts, which are of poor expressivity and are incapable of capturing high-level semantic patterns. In comparison, the high-order ones represent the complex concepts of absolute global scope yet are vulnerable to attacks and with poor generalizability. Deng et al. (2022) first shows that modern networks are implicitly prone to encoding extremely low- or high-order interactions rather than the empirically proved more discriminative middle ones. Attempts have been made to tackle this issue from the perspective of loss function (Deng et al., 2022) and modeling contextual relations (Wu et al., 2022a; Li et al., 2023). This unveils the serious challenge but also the great potential for modern ConvNet architecture design.

To this end, we present a new ConvNet architecture named Multi-order gated aggregation Network (MogaNet) to achieve adaptive context extraction and further pursue more discriminative and efficient visual representation learning first under the guidance of interaction within modern ConvNets. In MogaNet, we encapsulate both locality perception and gated context aggregation into a compact spatial aggregation block, where features encoded by the inherent overlooked interactions are forced to congregated and contextualized efficiently in parallel. From the channel perspective, as existing methods are prone to huge channel-wise information redundancy (Raghu et al., 2021; Hua et al., 2022), we design a conceptually simple yet effective channel aggregation block to adaptively force the network to encode expressive interactions that would have originally been ignored. Intuitively, it performs channel-wise reallocation to the input, which outperforms prevalent counterparts (e.g., SE (Hu et al., 2018), RepMLP (Ding et al., 2022a)) with more favorable computational overhead.

Extensive experiments demonstrate the consistent efficiency of model parameters and competitive performance of MogaNet at different model scales on various vision tasks, including image classification, object detection, semantic segmentation, instance segmentation, pose estimation, etc. As shown in Fig. 1, MogaNet achieves 83.4% and 87.8% top-1 accuracy with 25M and 181M parameters, which exhibits favorable computational overhead compared with existing lightweight models. MogaNet-T attains 80.0% accuracy on ImageNet-1K, outperforming the state-of-the-art ParC-Net-S (Zhang et al., 2022b) by 1.0% with 2.04G lower FLOPs. MogaNet also shows great performance gain on various downstream tasks, e.g., surpassing Swin-L (Liu et al., 2021) by 2.3% APb on COCO detection with fewer parameters and computational budget. It is surprising that the parameter efficiency of MogaNet exceeds our expectations. This is probably owing to the network encodes more discriminative middle-order interactions, which maximizes the usage of model parameters.

2 Related Work

2.1 Vision Transformers

Since the success of Transformer (Vaswani et al., 2017) in natural language processing (Devlin et al., 2018), ViT has been proposed (Dosovitskiy et al., 2021) and attained impressive results on ImageNet (Deng et al., 2009). Yet, compared to ConvNets, ViTs are over-parameterized and rely on large-scale pre-training (Bao et al., 2022; He et al., 2022; Li et al., 2023). Targeting this problem, one branch of researchers presents lightweight ViTs (Xiao et al., 2021; Mehta & Rastegari, 2022; Li et al., 2022c; Chen et al., 2023) with efficient attentions (Wang et al., 2021a). Meanwhile, the incorporation of self-attention and convolution as a hybrid backbone has been studied (Guo et al., 2022; Wu et al., 2021a; Dai et al., 2021; d’Ascoli et al., 2021; Li et al., 2022a; Pan et al., 2022b; Si et al., 2022) for imparting locality priors to ViTs. By introducing local inductive bias (Zhu et al., 2021; Chen et al., 2021; Jiang et al., 2021a; Arnab et al., 2021), advanced training strategies (Touvron et al., 2021a; Yuan et al., 2021a; Touvron et al., 2022) or extra knowledge (Jiang et al., 2021b; Lin et al., 2022; Wu et al., 2022c), ViTs can achieve superior performance and have been extended to various vision areas. MetaFormer (Yu et al., 2022) considerably influenced the roadmap of deep architecture design, where all ViTs (Trockman & Kolter, 2022; Wang et al., 2022a) can be classified by the token-mixing strategy, such as relative position encoding (Wu et al., 2021b), local window shifting (Liu et al., 2021) and MLP layer (Tolstikhin et al., 2021), etc.

Refer to caption
Figure 2: MogaNet architecture with four stages. Similar to (Liu et al., 2021; 2022b), MogaNet uses hierarchical architecture of 4 stages. Each stage ii consists of an embedding stem and NiN_{i} Moga Blocks, which contain spatial aggregation blocks and channel aggregation blocks.

2.2 Post-ViT Modern ConvNets

Taking the merits of ViT-style framework design (Yu et al., 2022), modern ConvNets (Liu et al., 2022b; 2023; Rao et al., 2022; Yang et al., 2022) show superior performance with large kernel depth-wise convolutions (Han et al., 2021b) for global perception (view Appendix E for detail backgrounds). It primarily comprises three components: (i) embedding stem, (ii) spatial mixing block, and (iii) channel mixing block. Embedding stem downsamples the input to reduce redundancies and computational overload. We assume the input feature XX is in the shape C×H×W\mathbb{R}^{C\times H\times W}, we have:

Z=Stem(X),Z=\mathrm{Stem}(X),\vspace{-0.40em} (1)

where ZZ is downsampled features, e.g.,. Then, the feature flows to a stack of residual blocks. In each stage, the network modules can be decoupled into two separate functional components, SMixer()\mathrm{SMixer}(\cdot) and CMixer()\mathrm{CMixer}(\cdot) for spatial-wise and channel-wise information propagation,

Y=X+SMixer(Norm(X)),Y=X+\mathrm{SMixer}\big{(}\mathrm{Norm}(X)\big{)},\vspace{-0.50em} (2)
Z=Y+CMixer(Norm(Y)),Z=Y+\mathrm{CMixer}\big{(}\mathrm{Norm}(Y)\big{)},\vspace{-0.20em} (3)

where Norm()\mathrm{Norm}(\cdot) denotes a normalization layer, e.g., BatchNorm (Ioffe & Szegedy, 2015a) (BN). SMixer()\mathrm{SMixer}(\cdot) can be various spatial operations (e.g., self-attention, convolution), while CMixer()\mathrm{CMixer}(\cdot) is usually achieved by channel MLP with inverted bottleneck (Sandler et al., 2018) and expand ratio rr. Notably, we abstract context aggregation in modern ConvNets as a series of operations that can adaptively aggregate contextual information while suppressing trivial redundancies in spatial mixing block SMixer()\mathrm{SMixer}(\cdot) between two embedded features:

O=𝒮(ϕ(X),𝒢ψ(X)),O=\mathcal{S}\big{(}\mathcal{F}_{\phi}(X),\mathcal{G}_{\psi}(X)\big{)},\vspace{-0.40em} (4)

where ϕ()\mathcal{F}_{\phi}(\cdot) and 𝒢ψ()\mathcal{G}_{\psi}(\cdot) are the aggregation and context branches with parameters ϕ\phi and ψ\psi. Context aggregation models the importance of each position on XX by the aggregation branch ϕ(X)\mathcal{F}_{\phi}(X) and reweights the embedded feature from the context branch 𝒢ψ(X)\mathcal{G}_{\psi}(X) by operation 𝒮(,)\mathcal{S}(\cdot,\cdot).

3 Multi-order Game-theoretic Interaction for Deep Architecture Design

Representation Bottleneck of DNNs

Recent studies toward the generalizability (Geirhos et al., 2019; Ancona et al., 2019a; Tuli et al., 2021; Geirhos et al., 2021) and robustness (Naseer et al., 2021; Zhou et al., 2022; Park & Kim, 2022) of DNNs delivers a new perspective to improve deep architectures. Apart from them, the investigation of multi-order game-theoretic interaction unveils the representation bottleneck of DNNs. Methodologically, multi-order interactions between two input variables represent marginal contribution brought by collaborations among these two and other involved contextual variables, where the order indicates the number of contextual variables within the collaboration. Formally, it can be explained by mm-th order game-theoretic interaction I(m)(i,j)I^{(m)}(i,j) and mm-order interaction strength J(m)J^{(m)}, as defined in (Zhang et al., 2020; Deng et al., 2022). Considering the image with nn patches in total, I(m)(i,j)I^{(m)}(i,j) measures the average interaction complexity between the patch pair i,ji,j over all contexts consisting of mm patches, where 0mn20\leq m\leq n-2 and the order mm reflects the scale of the context involved in the game-theoretic interactions between pixels ii and jj. Normalized by the average of interaction strength, the relative interaction strength J(m)J^{(m)} with m(0,1)m\in(0,1) measures the complexity of interactions encoded in DNNs. Notably, low-order interactions tend to encode common or widely-shared local texture, and the high-order ones are inclined to forcibly memorize the pattern of rare outliers (Deng et al., 2022; Cheng et al., 2021). As shown in Fig. 3, existing DNNs are implicitly prone to excessively low- or high-order interactions while suppressing the most expressive and versatile middle-order ones (Deng et al., 2022; Cheng et al., 2021). Refer to Appendix B.1 for definitions and more details.

Refer to caption
Figure 3: Distributions of the interaction strength J(m)J^{(m)} for Transformers and ConvNets on ImageNet-1K with 2242224^{2} resolutions and nn = 14×1414\times 14.

Multi-order Interaction for Architecture Design

Existing deep architecture design is usually derived from intuitive insights, lacking hierarchical theoretic guidance. Multi-order interaction can serve as a reference that fits well with the already gained insights on computer vision and further guides the ongoing quest. For instance, the extremely high-order interactions encoded in ViTs (e.g., DeiT in Fig. 3) may stem from its adaptive global-range self-attention mechanism. Its superior robustness can be attributed to its excessive low-order interactions, representing common and widely shared local patterns. However, the absence of locality priors still leaves ViTs lacking middle-order interactions, which cannot be replaced by the low-order ones. As for modern ConvNets (e.g., SLaK in Fig. 3), despite the 51×5151\times 51 kernel size, it still fails to encode enough expressive interactions (view more results in Appendix B.1). Likewise, we argue that such dilemma may be attributed to the inappropriate composition of convolutional locality priors and global context injections (Treisman & Gelade, 1980; Tuli et al., 2021; Li et al., 2023). A naive combination of self-attention or convolutions can be intrinsically prone to the strong bias of global shape (Geirhos et al., 2021; Ding et al., 2022b) or local texture (Hermann et al., 2020), infusing extreme-order interaction preference to models. In MogaNet, we aim to provide an architecture that can adaptively force the network to encode expressive interactions that would have otherwise been ignored inherently.

Refer to caption
(a) Moga()\mathrm{Moga}(\cdot) Block
Refer to caption
(b) CA()\mathrm{CA}(\cdot) Block
Refer to caption
(c)
Figure 4: (a) Structure of spatial aggregation block Moga()\mathrm{Moga}(\cdot). (b) Structure of channel aggregation block. (c) Analysis of channel MLP and the channel aggregation module. Based on MogaNet-S, performances and model sizes of the raw channel MLP, MLP with SE block, and the channel aggregation is compared with the MLP ratio of {2,4,6,8}\{2,4,6,8\} on ImageNet-1K.

4 Methodology

4.1 Overview of MogaNet

Built upon modern ConvNets, we design a four-stage MogaNet architecture as illustrated in Fig. 2. For stage ii, the input image or feature is first fed into an embedding stem to regulate the resolutions and embed into CiC_{i} dimensions. Assuming the input image in H×WH\times W resolutions, features of the four stages are in H4×W4\frac{H}{4}\times\frac{W}{4}, H8×W8\frac{H}{8}\times\frac{W}{8}, H16×W16\frac{H}{16}\times\frac{W}{16}, and H32×W32\frac{H}{32}\times\frac{W}{32} resolutions respectively. Then, the embedded feature flows into NiN_{i} Moga Blocks, consisting of spatial and channel aggregation blocks (in Sec. 4.2 and 4.3), for further context aggregation. After the final output, GAP and a linear layer are added for classification tasks. As for dense prediction tasks (He et al., 2017; Xiao et al., 2018b), the output from four stages can be used through neck modules (Lin et al., 2017a; Kirillov et al., 2019).

4.2 Multi-order Spatial Gated Aggregation

As discussed in Sec. 3, DNNs with the incompatible composition of locality perception and context aggregation can be implicitly prone to extreme-order game-theoretic interaction strengths while suppressing the more robust and expressive middle-order ones (Li et al., 2022a; Pinto et al., 2022; Deng et al., 2022). As shown in Fig. 5, the primary obstacle pertains to how to force the network to encode the originally ignored expressive interactions and informative features. We first suppose that the essential adaptive nature of attention in ViTs has not been well leveraged and grafted into ConvNets. Thus, we propose spatial aggregation (SA) block as an instantiation of SMixer()\mathrm{SMixer}(\cdot) to learn representations of multi-order interactions in a unified design, as shown in Fig. 4a, consisting of two cascaded components. We instantiate Eq. (2) as:

Z=X+Moga(FD(Norm(X))),Z=X+\mathrm{Moga}\Big{(}\mathrm{FD}\big{(}\mathrm{Norm}(X)\big{)}\Big{)},\vspace{-0.40em} (5)

where FD()\mathrm{FD}(\cdot) indicates a feature decomposition module (FD) and Moga()\mathrm{Moga}(\cdot) denotes a multi-order gated aggregation module comprising the gating ϕ()\mathcal{F}_{\phi}(\cdot) and context branch 𝒢ψ()\mathcal{G}_{\psi}(\cdot).

Refer to caption
Figure 5: Grad-CAM visualization of ablations. 1: 0: 0 and 0: 0: 1 denote only using ClC_{l} or ChC_{h} for Multi-order DWConv Layers in SA block. The models encoded extremely low- (ClC_{l}) or high- (ChC_{h}) order interactions are sensitive to similar regional textures (1: 0: 0) or excessive discriminative parts (0: 0: 1), not localizing precise semantic parts. Gating effectively eliminates the disturbing contextual noise (\\backslashwo Gating).

Modules Top-1 Params. FLOPs
Acc (%) (M) (G)
Baseline 76.6 4.75 1.01
SMixer +Gating branch 77.3 5.09 1.07
+DW7×7\mathrm{DW}_{7\times 7} 77.5 5.14 1.09
+Multi-order DW()\mathrm{DW}(\cdot) 78.0 5.17 1.10
+FD()\mathrm{FD(\cdot)} 78.3 5.18 1.10
CMixer +SE module 78.6 5.29 1.14
+CA()\mathrm{CA}(\cdot) 79.0 5.20 1.10
Table 1: Ablation of designed modules on ImageNet-1K. The baseline uses the non-linear projection and DW5×5\mathrm{DW}_{5\times 5} as SMixer()\mathrm{SMixer}(\cdot) and the vanilla MLP as CMixer()\mathrm{CMixer}(\cdot).

Context Extraction.

As a pure ConvNet structure, we extract multi-order features with both static and adaptive locality perceptions. There are two complementary counterparts, fine-grained local texture (low-order) and complex global shape (middle-order), which are instantiated by Conv1×1()\mathrm{Conv}_{1\times 1}(\cdot) and GAP()\mathrm{GAP}(\cdot) respectively. To force the network against its implicitly inclined interaction strengths, we design FD()\mathrm{FD}(\cdot) to adaptively exclude the trivial (overlooked) interactions, defined as:

Y\displaystyle Y =Conv1×1(X),\displaystyle=\mathrm{Conv}_{1\times 1}(X), (6)
Z\displaystyle Z =GELU(Y+γs(YGAP(Y))),\displaystyle=\mathrm{GELU}\Big{(}Y+\gamma_{s}\odot\big{(}Y-\mathrm{GAP}(Y)\big{)}\Big{)},\vspace{-1.5em} (7)

where γsC×1{\gamma}_{s}\in\mathbb{R}^{C\times 1} denotes a scaling factor initialized as zeros. By re-weighting the complementary interaction component YGAP(Y)Y-\mathrm{GAP}(Y), FD()\mathrm{FD}(\cdot) also increases spatial feature diversities (Park & Kim, 2022; Wang et al., 2022b). Then, we ensemble depth-wise convolutions (DWConv) to encode multi-order features in the context branch of Moga()\mathrm{Moga}(\cdot). Unlike previous works that simply combine DWConv with self-attentions to model local and global interactions (Zhang et al., 2022b; Pan et al., 2022a; Si et al., 2022; Rao et al., 2022) , we employ three different DWConv layers with dilation ratios d{1,2,3}d\in\{1,2,3\} in parallel to capture low, middle, and high-order interactions: given the input feature XC×HWX\in\mathbb{R}^{C\times HW}, DW5×5,d=1\mathrm{DW}_{5\times 5,d=1} is first applied for low-order features; then, the output is factorized into XlCl×HW{X}_{l}\in\mathbb{R}^{C_{l}\times HW}, XmCm×HW{X}_{m}\in\mathbb{R}^{C_{m}\times HW}, and XhCh×HW{X}_{h}\in\mathbb{R}^{C_{h}\times HW} along the channel dimension, where Cl+Cm+Ch=CC_{l}+C_{m}+C_{h}=C; afterward, Xm{X}_{m} and Xh{X}_{h} are assigned to DW5×5,d=2\mathrm{DW}_{5\times 5,d=2} and DW7×7,d=3\mathrm{DW}_{7\times 7,d=3}, respectively, while Xl{X}_{l} serves as identical mapping; finally, the output of Xl{X}_{l}, Xm{X}_{m}, and Xh{X}_{h} are concatenated to form multi-order contexts, YC=Concat(Yl,1:Cl,Ym,Yh)Y_{C}=\mathrm{Concat}(Y_{l,1:C_{l}},Y_{m},Y_{h}). Notice that the proposed FD()\mathrm{FD}(\cdot) and multi-order DWConv layers only require a little extra computational overhead and parameters in comparison to DW7×7\mathrm{DW}_{7\times 7} used in ConvNeXt (Liu et al., 2022b), e.g., +multi-order and +FD()\mathrm{FD}(\cdot) increase 0.04M parameters and 0.01G FLOPS over DW7×7\mathrm{DW}_{7\times 7} as shown in Table 1.

Gated Aggregation.

To adaptively aggregate the extracted feature from the context branch, we employ SiLU (Elfwing et al., 2018) activation in the gating branch, i.e., xSigmoid(x)x\cdot\mathrm{Sigmoid}(x), which has been well-acknowledged as an advanced version of Sigmoid activation. As illustrated in Appendix C.1, we empirically show that SiLU in MogaNet exhibits both the gating effects as Sigmoid and the stable training property. Taking the output from FD()\mathrm{FD}(\cdot) as the input, we instantiate Eq. (4):

Z\displaystyle Z =SiLU(Conv1×1(X))ϕSiLU(Conv1×1(YC))𝒢ψ,\displaystyle=\underbrace{\mathrm{SiLU}\big{(}\mathrm{Conv}_{1\times 1}(X)\big{)}}_{\mathcal{F}_{\phi}}\odot\underbrace{\mathrm{SiLU}\big{(}\mathrm{Conv}_{1\times 1}(Y_{C})\big{)}}_{\mathcal{G}_{\psi}},\vspace{-1.25em} (8)

With the proposed SA blocks, MogaNet captures more middle-order interactions, as validated in Fig. 3. The SA block produces discriminative multi-order representations with similar parameters and FLOPs as DW7×7\mathrm{DW}_{7\times 7} in ConvNeXt, which is well beyond the reach of existing methods without the cost-consuming self-attentions.

Refer to caption
Figure 6: Channel energy ranks and channel saliency maps (CSM) (Kong et al., 2022) with or without our CA block based on MogaNet-S. The energy reflects the importance of the channel, while the highlighted regions of CSMs are the activated spatial features of each channel.

4.3 Multi-order Channel Reallocation

Prevalent architectures, as illustrated in Sec. 2, perform channel-mixing CMixer()\mathrm{CMixer}(\cdot) mainly by two linear projections, e.g., 2-layer channel-wise MLP (Dosovitskiy et al., 2021; Liu et al., 2021; Tolstikhin et al., 2021) with a expand ratio rr or the MLP with a 3×33\times 3 DWConv in between (Wang et al., 2022c; Pan et al., 2022b; a). Due to the information redundancy cross channels (Woo et al., 2018; Cao et al., 2019; Tan & Le, 2019; Wang et al., 2020), vanilla MLP requires a number of parameters (rr default to 4 or 8) to achieve expected performance, showing low computational efficiency as plotted in Fig. 4c. To address this issue, most current methods directly insert a channel enhancement module, e.g., SE module (Hu et al., 2018), into MLP. Unlike these designs requiring additional MLP bottleneck, motivated by FD()\mathrm{FD}(\cdot), we introduce a lightweight channel aggregation module CA()\mathrm{CA}(\cdot) to adaptive reallocate channel-wise features in high-dimensional hidden spaces and further extend it to a channel aggregation (CA) block. As shown in Fig. 4b, we rewrite Eq. (3) for our CA block as:

Y\displaystyle Y =GELU(DW3×3(Conv1×1(Norm(X)))),\displaystyle=\mathrm{GELU}\Big{(}\mathrm{DW_{3\times 3}}\big{(}\mathrm{Conv_{1\times 1}}(\mathrm{Norm}(X))\big{)}\Big{)}, (9)
Z\displaystyle Z =Conv1×1(CA(Y))+X.\displaystyle=\mathrm{Conv_{1\times 1}}\big{(}\mathrm{CA}(Y)\big{)}+X.

Concretely, CA()\mathrm{CA}(\cdot) is implemented by a channel-reducing projection Wr:C×HW1×HWW_{r}:\mathbb{R}^{C\times HW}\rightarrow\mathbb{R}^{1\times HW} and GELU to gather and reallocate channel-wise information:

CA(X)=X+γc(XGELU(XWr)),\mathrm{CA}(X)=X+\gamma_{c}\odot\big{(}X-\mathrm{GELU}(XW_{r})\big{)},\vspace{-0.4em} (10)

where γc\gamma_{c} is the channel-wise scaling factor initialized as zeros. It reallocates the channel-wise feature with the complementary interactions (XGELU(XWr))(X-\mathrm{GELU}(XW_{r})). As shown in Fig. 7, CA()\mathrm{CA}(\cdot) enhances originally overlooked game-theoretic interactions. Fig. 4c and Fig. 6 verify the effectiveness of CA()\mathrm{CA}(\cdot) compared with vanilla MLP and MLP with SE module in channel-wise effiency and representation ability. Despite some improvements to the baseline, the MLP w/w/ SE module still requires large MLP ratios (e.g., rr = 6) to achieve expected performance while bringing extra parameters and overhead. Yet, our CA()\mathrm{CA}(\cdot) with rr = 4 brings 0.6% gain over the baseline at a small extra cost (0.04M extra parameters & 0.01G FLOPs) while achieving the same performance as the baseline with rr = 8.

4.4 Implementation Details

Following the network design style of ConvNets (Liu et al., 2022b), we scale up MogaNet for six model sizes (X-Tiny, Tiny, Small, Base, Large, and X-Large) via stacking the different number of spatial and channel aggregation blocks at each stage, which has similar numbers of parameters as RegNet (Radosavovic et al., 2020) variants. Network configurations and hyper-parameters are detailed in Table A1. FLOPs and throughputs are analyzed in Appendix C.3. We set the channels of the multi-order DWConv layers to Cl:C_{l}: Cm:C_{m}: ChC_{h} = 1:3:4 (see Appendix C.2). Similar to (Touvron et al., 2021c; Li et al., 2022a; c), the first embedding stem in MogaNet is designed as two stacked 3×\times3 convolution layers with the stride of 2 while adopting the single-layer version for embedding stems in other three stages. We select GELU (Hendrycks & Gimpel, 2016) as the common activation function and only use SiLU in the Moga module as Eq. (8).

Architecture Date Type Image Param. FLOPs Top-1
Size (M) (G) Acc (%)
ResNet-18 CVPR’2016 C 2242224^{2} 11.7 1.80 71.5
ShuffleNetV2 2×2\times ECCV’2018 C 2242224^{2} 5.5 0.60 75.4
EfficientNet-B0 ICML’2019 C 2242224^{2} 5.3 0.39 77.1
RegNetY-800MF CVPR’2020 C 2242224^{2} 6.3 0.80 76.3
DeiT-T ICML’2021 T 2242224^{2} 5.7 1.08 74.1
PVT-T ICCV’2021 T 2242224^{2} 13.2 1.60 75.1
T2T-ViT-7 ICCV’2021 T 2242224^{2} 4.3 1.20 71.7
ViT-C NIPS’2021 T 2242224^{2} 4.6 1.10 75.3
SReT-TDistill ECCV’2022 T 2242224^{2} 4.8 1.10 77.6
PiT-Ti ICCV’2021 H 2242224^{2} 4.9 0.70 74.6
LeViT-S ICCV’2021 H 2242224^{2} 7.8 0.31 76.6
CoaT-Lite-T ICCV’2021 H 2242224^{2} 5.7 1.60 77.5
Swin-1G ICCV’2021 H 2242224^{2} 7.3 1.00 77.3
MobileViT-S ICLR’2022 H 2562256^{2} 5.6 4.02 78.4
MobileFormer-294M CVPR’2022 H 2242224^{2} 11.4 0.59 77.9
ConvNext-XT CVPR’2022 C 2242224^{2} 7.4 0.60 77.5
VAN-B0 CVMJ’2023 C 2242224^{2} 4.1 0.88 75.4
ParC-Net-S ECCV’2022 C 2562256^{2} 5.0 3.48 78.6
MogaNet-XT Ours C 2562256^{2} 3.0 1.04 77.2
MogaNet-T Ours C 2242224^{2} 5.2 1.10 79.0
MogaNet-T§ Ours C 2562256^{2} 5.2 1.44 80.0
Table 2: IN-1K classification with lightweight models. §\S denotes the refined training scheme.
Architecture Date Type Image Param. FLOPs Top-1
Size (M) (G) Acc (%)
Deit-S ICML’2021 T 2242224^{2} 22 4.6 79.8
Swin-T ICCV’2021 T 2242224^{2} 28 4.5 81.3
CSWin-T CVPR’2022 T 2242224^{2} 23 4.3 82.8
LITV2-S NIPS’2022 T 2242224^{2} 28 3.7 82.0
CoaT-S ICCV’2021 H 2242224^{2} 22 12.6 82.1
CoAtNet-0 NIPS’2021 H 2242224^{2} 25 4.2 82.7
UniFormer-S ICLR’2022 H 2242224^{2} 22 3.6 82.9
RegNetY-4GF CVPR’2020 C 2242224^{2} 21 4.0 81.5
ConvNeXt-T CVPR’2022 C 2242224^{2} 29 4.5 82.1
SLaK-T ICLR’2023 C 2242224^{2} 30 5.0 82.5
HorNet-T7×7 NIPS’2022 C 2242224^{2} 22 4.0 82.8
MogaNet-S Ours C 2242224^{2} 25 5.0 83.4
Swin-S ICCV’2021 T 2242224^{2} 50 8.7 83.0
Focal-S NIPS’2021 T 2242224^{2} 51 9.1 83.6
CSWin-S CVPR’2022 T 2242224^{2} 35 6.9 83.6
LITV2-M NIPS’2022 T 2242224^{2} 49 7.5 83.3
CoaT-M ICCV’2021 H 2242224^{2} 45 9.8 83.6
CoAtNet-1 NIPS’2021 H 2242224^{2} 42 8.4 83.3
UniFormer-B ICLR’2022 H 2242224^{2} 50 8.3 83.9
FAN-B-Hybrid ICML’2022 H 2242224^{2} 50 11.3 83.9
EfficientNet-B6 ICML’2019 C 5282528^{2} 43 19.0 84.0
RegNetY-8GF CVPR’2020 C 2242224^{2} 39 8.1 82.2
ConvNeXt-S CVPR’2022 C 2242224^{2} 50 8.7 83.1
FocalNet-S (LRF) NIPS’2022 C 2242224^{2} 50 8.7 83.5
HorNet-S7×7 NIPS’2022 C 2242224^{2} 50 8.8 84.0
SLaK-S ICLR’2023 C 2242224^{2} 55 9.8 83.8
MogaNet-B Ours C 2242224^{2} 44 9.9 84.3
DeiT-B ICML’2021 T 2242224^{2} 86 17.5 81.8
Swin-B ICCV’2021 T 2242224^{2} 89 15.4 83.5
Focal-B NIPS’2021 T 2242224^{2} 90 16.4 84.0
CSWin-B CVPR’2022 T 2242224^{2} 78 15.0 84.2
DeiT III-B ECCV’2022 T 2242224^{2} 87 18.0 83.8
BoTNet-T7 CVPR’2021 H 2562256^{2} 79 19.3 84.2
CoAtNet-2 NIPS’2021 H 2242224^{2} 75 15.7 84.1
FAN-B-Hybrid ICML’2022 H 2242224^{2} 77 16.9 84.3
RegNetY-16GF CVPR’2020 C 2242224^{2} 84 16.0 82.9
ConvNeXt-B CVPR’2022 C 2242224^{2} 89 15.4 83.8
RepLKNet-31B CVPR’2022 C 2242224^{2} 79 15.3 83.5
FocalNet-B (LRF) NIPS’2022 C 2242224^{2} 89 15.4 83.9
HorNet-B7×7 NIPS’2022 C 2242224^{2} 87 15.6 84.3
SLaK-B ICLR’2023 C 2242224^{2} 95 17.1 84.0
MogaNet-L Ours C 2242224^{2} 83 15.9 84.7
Swin-L ICCV’2021 T 3842384^{2} 197 104 87.3
DeiT III-L ECCV’2022 T 3842384^{2} 304 191 87.7
CoAtNet-3 NIPS’2021 H 3842384^{2} 168 107 87.6
RepLKNet-31L CVPR’2022 C 3842384^{2} 172 96 86.6
ConvNeXt-L CVPR’2022 C 2242224^{2} 198 34.4 84.3
ConvNeXt-L CVPR’2022 C 3842384^{2} 198 101 87.5
ConvNeXt-XL CVPR’2022 C 3842384^{2} 350 179 87.8
HorNet-L NIPS’2022 C 3842384^{2} 202 102 87.7
MogaNet-XL Ours C 2242224^{2} 181 34.5 85.1
MogaNet-XL Ours C 3842384^{2} 181 102 87.8
Table 3: IN-1K classification performance with scaling-up models. denotes the model is pre-trained on IN-21K and fine-tuned on IN-1K.
Architecture Data Method Param. FLOPs APb APm
(M) (G) (%) (%)
ResNet-101 CVPR’2016 RetinaNet 57 315 38.5 -
PVT-S ICCV’2021 RetinaNet 34 226 40.4 -
CMT-S CVPR’2022 RetinaNet 45 231 44.3 -
MogaNet-S Ours RetinaNet 35 253 45.8 -
RegNet-1.6G CVPR’2020 Mask R-CNN 29 204 38.9 35.7
PVT-T ICCV’2021 Mask R-CNN 33 208 36.7 35.1
MogaNet-T Ours Mask R-CNN 25 192 42.6 39.1
Swin-T ICCV’2021 Mask R-CNN 48 264 42.2 39.1
Uniformer-S ICLR’2022 Mask R-CNN 41 269 45.6 41.6
ConvNeXt-T CVPR’2022 Mask R-CNN 48 262 44.2 40.1
PVTV2-B2 CVMJ’2022 Mask R-CNN 45 309 45.3 41.2
LITV2-S NIPS’2022 Mask R-CNN 47 261 44.9 40.8
FocalNet-T NIPS’2022 Mask R-CNN 49 267 45.9 41.3
MogaNet-S Ours Mask R-CNN 45 272 46.7 42.2
Swin-S ICCV’2021 Mask R-CNN 69 354 44.8 40.9
Focal-S NIPS’2021 Mask R-CNN 71 401 47.4 42.8
ConvNeXt-S CVPR’2022 Mask R-CNN 70 348 45.4 41.8
HorNet-B7×7 NIPS’2022 Mask R-CNN 68 322 47.4 42.3
MogaNet-B Ours Mask R-CNN 63 373 47.9 43.2
Swin-L ICCV’2021 Cascade Mask 253 1382 53.9 46.7
ConvNeXt-L CVPR’2022 Cascade Mask 255 1354 54.8 47.6
RepLKNet-31L CVPR’2022 Cascade Mask 229 1321 53.9 46.5
HorNet-L NIPS’2022 Cascade Mask 259 1399 56.0 48.6
MogaNet-XL Ours Cascade Mask 238 1355 56.2 48.8
Table 4: COCO object detection and instance segmentation with RetinaNet (1×1\times), Mask R-CNN (1×1\times), and Cascade Mask R-CNN (multi-scale 3×3\times). indicates IN-21K pre-trained models. The FLOPs are measured at 800×1280800\times 1280.
Method Architecture Date Crop Param. FLOPs mIoUss
size (M) (G) (%)
PVT-S ICCV’2021 5122 28 161 39.8
Semantic Twins-S NIPS’2021 5122 28 162 44.3
FPN Swin-T ICCV’2021 5122 32 182 41.5
(80K) Uniformer-S ICLR’2022 5122 25 247 46.6
LITV2-S NIPS’2022 5122 31 179 44.3
VAN-B2 CVMJ’2023 5122 30 164 46.7
MogaNet-S Ours 5122 29 189 47.7
DeiT-S ICML’2021 5122 52 1099 44.0
Swin-T ICCV’2021 5122 60 945 46.1
ConvNeXt-T CVPR’2022 5122 60 939 46.7
UniFormer-S ICLR’2022 5122 52 1008 47.6
HorNet-T7×7 NIPS’2022 5122 52 926 48.1
MogaNet-S Ours 5122 55 946 49.2
Swin-S ICCV’2021 5122 81 1038 48.1
ConvNeXt-S CVPR’2022 5122 82 1027 48.7
UperNet SLaK-S ICLR’2023 5122 91 1028 49.4
(160K) MogaNet-B Ours 5122 74 1050 50.1
Swin-B ICCV’2021 5122 121 1188 49.7
ConvNeXt-B CVPR’2022 5122 122 1170 49.1
RepLKNet-31B CVPR’2022 5122 112 1170 49.9
SLaK-B ICLR’2023 5122 135 1185 50.2
MogaNet-L Ours 5122 113 1176 50.9
Swin-L ICCV’2021 6402 234 2468 52.1
ConvNeXt-L CVPR’2022 6402 245 2458 53.7
RepLKNet-31L CVPR’2022 6402 207 2404 52.4
MogaNet-XL Ours 6402 214 2451 54.0
Table 5: ADE20K semantic segmentation with semantic FPN (80K) and UperNet (160K). indicates using IN-21K pre-trained models. The FLOPs are measured at 512×2048512\times 2048 or 640×2560640\times 2560.
Architecture Date Crop Param. FLOPs AP AP50 AP75 AR
size (M) (G) (%) (%) (%) (%)
RSN-18 ECCV’2020 256×192256\times 192 9.1 2.3 70.4 88.7 77.9 77.1
MogaNet-T Ours 256×192256\times 192 8.1 2.2 73.2 90.1 81.0 78.8
HRNet-W32 CVPR’2019 256×192256\times 192 28.5 7.1 74.4 90.5 81.9 78.9
Swin-T ICCV’2021 256×192256\times 192 32.8 6.1 72.4 90.1 80.6 78.2
PVTV2-B2 CVML’2022 256×192256\times 192 29.1 4.3 73.7 90.5 81.2 79.1
Uniformer-S ICLR’2022 256×192256\times 192 25.2 4.7 74.0 90.3 82.2 79.5
ConvNeXt-T CVPR’2022 256×192256\times 192 33.1 5.5 73.2 90.0 80.9 78.8
MogaNet-S Ours 256×192256\times 192 29.0 6.0 74.9 90.7 82.8 80.1
Uniformer-S ICLR’2022 384×288384\times 288 25.2 11.1 75.9 90.6 83.4 81.4
ConvNeXt-T CVPR’2022 384×288384\times 288 33.1 33.1 75.3 90.4 82.1 80.5
MogaNet-S Ours 384×288384\times 288 29.0 13.5 76.4 91.0 83.3 81.4
HRNet-W48 CVPR’2019 384×288384\times 288 63.6 32.9 76.3 90.8 82.0 81.2
Swin-L ICCV’2021 384×288384\times 288 203.4 86.9 76.3 91.2 83.0 814
Uniformer-B ICLR’2022 384×288384\times 288 53.5 14.8 76.7 90.8 84.0 81.4
MogaNet-B Ours 384×288384\times 288 47.4 24.4 77.3 91.4 84.0 82.2
Table 6: COCO 2D human pose estimation with Top-Down SimpleBaseline. The FLOPs are measured at 256×192256\times 192 or 384×288384\times 288.

5 Experiments

To impartially evaluate and compare MogaNet with the leading network architectures, we conduct extensive experiments across various popular vision tasks, including image classification, object detection, instance and semantic segmentation, 2D and 3D pose estimation, and video prediction. The experiments are implemented with PyTorch and run on NVIDIA A100 GPUs.

5.1 ImageNet Classification

Settings.

For classification experiments on ImageNet (Deng et al., 2009), we train our MogaNet following the standard procedure (Touvron et al., 2021a; Liu et al., 2021) on ImageNet-1K (IN-1K) for a fair comparison, training 300 epochs with AdamW (Loshchilov & Hutter, 2019) optimizer, a basic learning rate of 1×1031\times 10^{-3}, and a cosine scheduler (Loshchilov & Hutter, 2016). To explore the large model capacities, we pre-trained MogaNet-XL on ImageNet-21K (IN-21K) for 90 epochs and then fine-tuned 30 epochs on IN-1K following (Liu et al., 2022b). Appendix A.2 and D.1 provide implementation details and more results. We compare three classical architectures: Pure ConvNets (C), Transformers (T), and Hybrid model (H) with both self-attention and convolution operations.

Results.

With regard to the lightweight models, Table 2 shows that MogaNet-XT/T significantly outperforms existing lightweight architectures with a more efficient usage of parameters and FLOPs. MogaNet-T achieves 79.0% top-1 accuracy, which improves models with \sim5M parameters by at least 1.1 at 2242224^{2} resolutions. Using 2562256^{2} resolutions, MogaNet-T outperforms the current SOTA ParC-Net-S by 1.0 while achieving 80.0% top-1 accuracy with the refined settings. Even with only 3M parameters, MogaNet-XT still surpasses models with around 4M parameters, e.g., +4.6 over T2T-ViT-7. Particularly, MogaNet-T§ achieves 80.0% top-1 accuracy using 2562256^{2} resolutions and the refined training settings (detailed in Appendix C.5). As for scaling up models in Table 3, MogaNet shows superior or comparable performances to SOTA architectures with similar parameters and computational costs. For example, MogaNet-S achieves 83.4% top-1 accuracy, outperforming Swin-T and ConvNeXt-T with a clear margin of 2.1 and 1.2. MogaNet-B/L also improves recently proposed ConvNets with fewer parameters, e.g., +0.3/0.4 and +0.5/0.7 points over HorNet-S/B and SLaK-S/B. When pre-trained on IN-21K, MogaNet-XL is boosted to 87.8% top-1 accuracy with 181M parameters, saving 169M compared to ConvNeXt-XL. Noticeably, MogaNet-XL can achieve 85.1% at 2242224^{2} resolutions without pre-training and improves ConvNeXt-L by 0.8, indicating MogaNets are easier to converge than existing models (also verified in Appendix D.1).

5.2 Dense Prediction Tasks

Object detection and segmentation on COCO.

We evaluate MogaNet for object detection and instance segmentation tasks on COCO (Lin et al., 2014) with RetinaNet (Lin et al., 2017b), Mask-RCNN (He et al., 2017), and Cascade Mask R-CNN (Cai & Vasconcelos, 2019) as detectors. Following the training and evaluation settings in (Liu et al., 2021; 2022b), we fine-tune the models by the AdamW optimizer for 1×1\times and 3×3\times training schedule on COCO train2017 and evaluate on COCO val2017, implemented on MMDetection (Chen et al., 2019) codebase. The box mAP (APb) and mask mAP (APm) are adopted as metrics. Refer Appendix A.3 and D.2 for detailed settings and full results. Table 4 shows that detectors with MogaNet variants significantly outperform previous backbones. It is worth noticing that Mask R-CNN with MogaNet-T achieves 42.6 APb, outperforming Swin-T by 0.4 with 48% and 27% fewer parameters and FLOPs. Using advanced training setting and IN-21K pre-trained weights, Cascade Mask R-CNN with MogaNet-XL achieves 56.2 APb, +1.4 and +2.3 over ConvNeXt-L and RepLKNet-31L.

Semantic segmentation on ADE20K.

We also evaluate MogaNet for semantic segmentation tasks on ADE20K (Zhou et al., 2018) with Semantic FPN (Kirillov et al., 2019) and UperNet (Xiao et al., 2018b) following (Liu et al., 2021; Yu et al., 2022), implemented on MMSegmentation (Contributors, 2020b) codebase. The performance is measured by single-scale mIoU. Initialized by IN-1K or IN-21K pre-trained weights, Semantic FPN and UperNet are fine-tuned for 80K and 160K iterations by the AdamW optimizer. See Appendix A.4 and D.3 for detailed settings and full results. In Table 5, Semantic FPN with MogaNet-S consistently outperforms Swin-T and Uniformer-S by 6.2 and 1.1 points; UperNet with MogaNet-S/B/L improves ConvNeXt-T/S/B by 2.5/1.4/1.8 points. Using higher resolutions and IN-21K pre-training, MogaNet-XL achieves 54.0 SS mIoU, surpassing ConvNeXt-L and RepLKNet-31L by 0.3 and 1.6.

2D and 3D Human Pose Estimation.

We evaluate MogaNet on 2D and 3D human pose estimation tasks. As for 2D key points estimation on COCO, we conduct evaluations with SimpleBaseline (Xiao et al., 2018a) following (Wang et al., 2021b; Li et al., 2022a), which fine-tunes the model for 210 epoch by Adam optimizer (Kingma & Ba, 2014). Table 6 shows that MogaNet variants yield at least 0.9 AP improvements for 256×192256\times 192 input, e.g., +2.5 and +1.2 over Swin-T and PVTV2-B2 by MogaNet-S. Using 384×288384\times 288 input, MogaNet-B outperforms Swin-L and Uniformer-B by 1.0 and 0.6 AP with fewer parameters. As for 3D face/hand surface reconstruction tasks on Stirling/ESRC 3D (Feng et al., 2018) and FreiHAND (Zimmermann et al., 2019) datasets, we benchmark backbones with ExPose (Choutas et al., 2020), which fine-tunes the model for 100 epoch by Adam optimizer. 3DRMSE and Mean Per-Joint Position Error (PA-MPJPE) are the metrics. In Table 7, MogaNet-S shows the lowest errors compared to Transformers and ConvNets. We provide detailed implementations and results for 2D and 3D pose estimation tasks in Appendix D.4 and D.5.

Architecture 3D Face 3D Hand Video Prediction
#P. FLOPs 3DRMSE #P. FLOPs PA-MPJPE #P. FLOPs MSE SSIM
(M) (G) \downarrow (M) (G) (mm)\downarrow (M) (G) \downarrow (%)\uparrow
DeiT-S 25 6.6 2.52 25 4.8 7.86 46 16.9 35.2 91.4
Swin-T 30 6.1 2.45 30 4.6 6.97 46 16.4 29.7 93.3
ConvNeXt-T 30 5.8 2.34 30 4.5 6.46 37 14.1 26.9 94.0
HorNet-T 25 5.6 2.39 25 4.3 6.23 46 16.3 29.6 93.3
MogaNet-S 27 6.5 2.24 27 5.0 6.08 47 16.5 25.6 94.3
Table 7: 3D human pose estimation and video prediction with ExPose and SimVP on Stirling/ESRC 3D, FreiHAND, and MMNIST datasets. FLOPs of the face and hand tasks are measured at 3×25623\times 256^{2} and 3×22423\times 224^{2} while using 10 frames at 1×6421\times 64^{2} resolutions for video prediction.

Video Prediction.

We further objectively evaluate MogaNet for unsupervised video prediction tasks with SimVP (Gao et al., 2022) on MMNIST (Srivastava et al., 2015), where the model predicts the successive 10 frames with the given 10 frames as the input. We train the model for 200 epochs from scratch by the Adam optimizer and are evaluated by MSE and Structural Similarity Index (SSIM). Table 7 shows that SimVP with MogaNet blocks improves the baseline by 6.58 MSE and outperforms ConvNeXt and HorNet by 1.37 and 4.07 MSE. Appendix A.7 and D.6 show more experiment settings and results.

Modules Top-1
Acc (%)
ConvNeXt-T 82.1
Baseline 82.2
Moga Block 83.4
FD()-\mathrm{FD}(\cdot) 83.2
-Multi-DW()\mathrm{DW}(\cdot) 83.1
Moga()-\mathrm{Moga}(\cdot) 82.7
CA()-\mathrm{CA}(\cdot) 82.9
Refer to caption
Figure 7: Ablation of proposed modules on IN-1K Left: the table ablates MogaNet modules by removing each of them based on the baseline of MogaNet-S. Right: the figure plots distributions of interaction strength J(m)J^{(m)}, which verifies that Moga()\mathrm{Moga}(\cdot) and CA()\mathrm{CA}(\cdot) both contributes to learning multi-order interactions and better performance.
Refer to caption
Figure 8: Grad-CAM activation maps on IN-1K. MogaNet exhibits similar activation maps as attention architectures (Swin), which are located on the semantic targets. Unlike previous ConvNets that might activate some irrelevant regions, activation maps of MogaNet are more semantically gathered. See more results in Appendix B.2.

5.3 Ablation and Analysis

We first ablate the spatial aggregation module and the channel aggregation module CA()(\cdot) in Table 1 and Fig. 7 (left). The spatial modules include FD()(\cdot) and Moga()(\cdot), containing the gating branch and the context branch with multi-order DWConv layers Multi-DW()(\cdot). We found that all proposed modules yield improvements with favorable costs. Appendix C provides more ablation studies. Furthermore, we empirically show design modules can learn more middle-order interactions in Fig. 7 (right) and visualize class activation maps (CAM) by Grad-CAM (Selvaraju et al., 2017) compared to existing models in Fig. 8.

6 Conclusion

In this paper, we introduce a new modern ConvNet architecture named MogaNet through the lens of multi-order game-theoretic interaction. Built upon the modern ConvNet framework, we present a compact Moga Block and channel aggregation module to force the network to emphasize the expressive but inherently overlooked interactions across spatial and channel spaces. Extensive experiments demonstrate the consistent superiority of MogaNet in terms of both accuracy and computational efficiency compared to popular ConvNets, ViTs, and hybrid architectures on various vision benchmarks. We hope our work can prompt people to perceive the importance of multi-order interaction in representation learning and to facilitate the development of efficient deep architecture design.

Acknowledgement

This work was supported by the National Key R&D Program of China (No. 2022ZD0115100), the National Natural Science Foundation of China Project (No. U21A20427), and Project (No. WU2022A009) from the Center of Synthetic Biology and Integrated Bioengineering of Westlake University. This work was done when Zedong Wang and Zhiyuan Chen interned at Westlake University. We thank the AI Station of Westlake University for the support of GPUs. We also thank Mengzhao Chen, Zhangyang Gao, Jianzhu Guo, Fang Wu, and all anonymous reviewers for polishing the writing of the manuscript.

References

  • Ancona et al. (2019a) Marco Ancona, Cengiz Oztireli, and Markus Gross. Explaining deep neural networks with a polynomial time algorithm for shapley value approximation. In International Conference on Machine Learning (ICML), pp. 272–281. PMLR, 2019a.
  • Ancona et al. (2019b) Marco Ancona, Cengiz Oztireli, and Markus Gross. Explaining deep neural networks with a polynomial time algorithm for shapley value approximation. In International Conference on Machine Learning (ICML), pp. 272–281, 2019b.
  • Arnab et al. (2021) Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video vision transformer. In International Conference on Computer Vision (ICCV), 2021.
  • Ba et al. (2016) Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv, abs/1607.06450, 2016.
  • Bahdanau et al. (2015) Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In International Conference on Learning Representations (ICLR), 2015.
  • Bao et al. (2022) Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. In International Conference on Learning Representations (ICLR), 2022.
  • Brock et al. (2021a) Andrew Brock, Soham De, and Samuel L. Smith. Characterizing signal propagation to close the performance gap in unnormalized resnets. In International Conference on Learning Representations (ICLR), 2021a.
  • Brock et al. (2021b) Andrew Brock, Soham De, Samuel L. Smith, and Karen Simonyan. High-performance large-scale image recognition without normalization. ArXiv, abs/2102.06171, 2021b.
  • Brown et al. (2020) Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 2020.
  • Cai & Vasconcelos (2019) Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High-quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. ISSN 1939-3539.
  • Cao et al. (2019) Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han Hu. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In International Conference on Computer Vision Workshop (ICCVW), pp.  1971–1980, 2019.
  • Carion et al. (2020) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision (ECCV), 2020.
  • Caron et al. (2021) Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In International Conference on Computer Vision (ICCV), 2021.
  • Chen et al. (2021) Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
  • Chen et al. (2019) Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark. https://github.com/open-mmlab/mmdetection, 2019.
  • Chen et al. (2023) Mengzhao Chen, Mingbao Lin, Ke Li, Yunhang Shen, Yongjian Wu, Fei Chao, and Rongrong Ji. Cf-vit: A general coarse-to-fine method for vision transformer. In AAAI Conference on Artificial Intelligence (AAAI), 2023.
  • Chen et al. (2022) Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu. Mobile-former: Bridging mobilenet and transformer. In Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  • Cheng et al. (2021) Xu Cheng, Chuntung Chu, Yi Zheng, Jie Ren, and Quanshi Zhang. A game-theoretic taxonomy of visual concepts in dnns. arXiv preprint arXiv:2106.10938, 2021.
  • Choutas et al. (2020) Vasileios Choutas, Georgios Pavlakos, Timo Bolkart, Dimitrios Tzionas, and Michael J. Black. Monocular expressive body regression through body-driven attention. In European Conference on Computer Vision (ECCV), pp. 20–40, 2020.
  • Chu et al. (2021) Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
  • Contributors (2021) MMHuman3D Contributors. Openmmlab 3d human parametric model toolbox and benchmark. https://github.com/open-mmlab/mmhuman3d, 2021.
  • Contributors (2020a) MMPose Contributors. Openmmlab pose estimation toolbox and benchmark. https://github.com/open-mmlab/mmpose, 2020a.
  • Contributors (2020b) MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox and benchmark. https://github.com/open-mmlab/mmsegmentation, 2020b.
  • Cubuk et al. (2020) Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  702–703, 2020.
  • Cubuk et al. (2019) Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. Autoaugment: Learning augmentation strategies from data. Conference on Computer Vision and Pattern Recognition (CVPR), pp.  113–123, 2019.
  • Dai et al. (2017) Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convolutional networks. In International Conference on Computer Vision (ICCV), pp. 764–773, 2017.
  • Dai et al. (2021) Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and attention for all data sizes. Advances in Neural Information Processing Systems (NeurIPS), 34:3965–3977, 2021.
  • d’Ascoli et al. (2021) Stéphane d’Ascoli, Hugo Touvron, Matthew Leavitt, Ari Morcos, Giulio Biroli, and Levent Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. arXiv preprint arXiv:2103.10697, 2021.
  • Deng et al. (2022) Huiqi Deng, Qihan Ren, Xu Chen, Hao Zhang, Jie Ren, and Quanshi Zhang. Discovering and explaining the representation bottleneck of dnns. In International Conference on Learning Representations (ICLR), 2022.
  • Deng et al. (2009) Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image database. In Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
  • Devlin et al. (2018) Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805, 2018.
  • Ding et al. (2022a) Xiaohan Ding, Honghao Chen, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Repmlpnet: Hierarchical vision mlp with re-parameterized locality. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.  578–587, 2022a.
  • Ding et al. (2022b) Xiaohan Ding, X. Zhang, Yi Zhou, Jungong Han, Guiguang Ding, and Jian Sun. Scaling up your kernels to 31x31: Revisiting large kernel design in cnns. In Conference on Computer Vision and Pattern Recognition (CVPR), 2022b.
  • Dosovitskiy et al. (2021) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning Representations (ICLR), 2021.
  • Elfwing et al. (2018) Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.
  • Fan et al. (2021) Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and Christoph Feichtenhofer. Multiscale vision transformers. In International Conference on Computer Vision (ICCV), pp. 6824–6835, 2021.
  • Feng et al. (2018) Zhen-Hua Feng, Patrik Huber, Josef Kittler, Peter Hancock, Xiao-Jun Wu, Qijun Zhao, Paul Koppen, and Matthias Rätsch. Evaluation of dense 3d reconstruction from 2d face images in the wild. In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp.  780–786. IEEE, 2018.
  • Gao et al. (2022) Zhangyang Gao, Cheng Tan, Lirong Wu, and Stan Z. Li. Simvp: Simpler yet better video prediction. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  3170–3180, June 2022.
  • Geirhos et al. (2019) Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix Wichmann, and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. In International Conference on Learning Representations (ICLR), 2019.
  • Geirhos et al. (2021) Robert Geirhos, Kantharaju Narayanappa, Benjamin Mitzkus, Tizian Thieringer, Matthias Bethge, Felix A Wichmann, and Wieland Brendel. Partial success in closing the gap between human and machine vision. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
  • Graham et al. (2021) Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. In International Conference on Computer Vision (ICCV), pp. 12259–12269, 2021.
  • Grill et al. (2020) Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. In Advances in Neural Information Processing Systems (NeurIPS), 2020.
  • Guo et al. (2022) Jianyuan Guo, Kai Han, Han Wu, Chang Xu, Yehui Tang, Chunjing Xu, and Yunhe Wang. Cmt: Convolutional neural networks meet vision transformers. In Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  • Guo et al. (2023) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, and Shi-Min Hu. Visual attention network. Computational Visual Media (CVMJ), pp.  733––752, 2023.
  • Han et al. (2021a) Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in transformer. Advances in Neural Information Processing Systems (NeurIPS), 34:15908–15919, 2021a.
  • Han et al. (2021b) Qi Han, Zejia Fan, Qi Dai, Lei Sun, Ming-Ming Cheng, Jiaying Liu, and Jingdong Wang. Demystifying local vision transformer: Sparse connectivity, weight sharing, and dynamic weight. arXiv:2106.04263, 2021b.
  • He et al. (2016) Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  770–778, 2016.
  • He et al. (2017) Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In International Conference on Computer Vision (ICCV), 2017.
  • He et al. (2022) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  • Hendrycks & Gimpel (2016) Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error linear units. arXiv preprint arXiv:1606.08415, 2016.
  • Hermann et al. (2020) Katherine Hermann, Ting Chen, and Simon Kornblith. The origins and prevalence of texture bias in convolutional neural networks. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp.  19000–19015, 2020.
  • Hoffer et al. (2017) Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generalization gap in large batch training of neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2017.
  • Hoffer et al. (2020) Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry. Augment your batch: Improving generalization through instance repetition. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  8126–8135, 2020.
  • Hou et al. (2022) Qibin Hou, Cheng Lu, Mingg-Ming Cheng, and Jiashi Feng. Conv2former: A simple transformer-style convnet for visual recognition. ArXiv, abs/2211.11943, 2022.
  • Howard et al. (2019) Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In International Conference on Computer Vision (ICCV), pp. 1314–1324, 2019.
  • Howard et al. (2017) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. ArXiv, abs/1704.04861, 2017.
  • Hu et al. (2018) Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  7132–7141, 2018.
  • Hua et al. (2022) Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le. Transformer quality in linear time. In International Conference on Machine Learning (ICML), 2022.
  • Huang et al. (2016) Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic depth. In European Conference on Computer Vision (ECCV), 2016.
  • Ioffe & Szegedy (2015a) Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning (ICML), pp. 448–456. PMLR, 2015a.
  • Ioffe & Szegedy (2015b) Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Advances in Neural Information Processing Systems (NeurIPS), 2015b.
  • Jiang et al. (2021a) Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two pure transformers can make one strong gan, and that can scale up. In Advances in Neural Information Processing Systems (NeurIPS), 2021a.
  • Jiang et al. (2021b) Zihang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun Shi, Xiaojie Jin, Anran Wang, and Jiashi Feng. All tokens matter: Token labeling for training better vision transformers. In Advances in Neural Information Processing Systems (NeurIPS), 2021b.
  • Karras et al. (2019) Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  4401–4410, 2019.
  • Kingma & Ba (2014) Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference on Learning Representations (ICLR), 2014.
  • Kirchmeyer & Deng (2023) Alexandre Kirchmeyer and Jia Deng. Convolutional networks with oriented 1d kernels. In International Conference on Computer Vision (ICCV), 2023.
  • Kirillov et al. (2019) Alexander Kirillov, Ross B. Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  6392–6401, 2019.
  • Kong et al. (2022) Xiangtao Kong, Xina Liu, Jinjin Gu, Y. Qiao, and Chao Dong. Reflash dropout in image super-resolution. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  5992–6002, 2022.
  • Krizhevsky et al. (2012) Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60:84 – 90, 2012.
  • LeCun et al. (1998) Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
  • Li et al. (2022a) Kunchang Li, Yali Wang, Junhao Zhang, Peng Gao, Guanglu Song, Yu Liu, Hongsheng Li, and Yu Qiao. Uniformer: Unifying convolution and self-attention for visual recognition. In International Conference on Learning Representations (ICLR), 2022a.
  • Li et al. (2021) Siyuan Li, Zicheng Liu, Zedong Wang, Di Wu, Zihan Liu, and Stan Z. Li. Boosting discriminative visual representation learning with scenario-agnostic mixup. ArXiv, abs/2111.15454, 2021.
  • Li et al. (2022b) Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, and Stan Z. Li. Openmixup: Open mixup toolbox and benchmark for visual representation learning. https://github.com/Westlake-AI/openmixup, 2022b.
  • Li et al. (2023) Siyuan Li, Di Wu, Fang Wu, Zelin Zang, and Stan.Z.Li. Architecture-agnostic masked image modeling - from vit back to cnn. In International Conference on Machine Learning (ICML), 2023.
  • Li et al. (2022c) Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evangelidis, S. Tulyakov, Yanzhi Wang, and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. In Advances in Neural Information Processing Systems (NeurIPS), 2022c.
  • Lin et al. (2022) Mingbao Lin, Mengzhao Chen, Yu xin Zhang, Ke Li, Yunhang Shen, Chunhua Shen, and Rongrong Ji. Super vision transformer. ArXiv, abs/2205.11397, 2022.
  • Lin et al. (2014) Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European Conference on Computer Vision (ECCV), pp. 740–755. Springer, 2014.
  • Lin et al. (2017a) Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Belongie. Feature pyramid networks for object detection. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  936–944, 2017a.
  • Lin et al. (2017b) Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In International Conference on Computer Vision (ICCV), 2017b.
  • Liu et al. (2023) S. Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Boqian Wu, Mykola Pechenizkiy, Decebal Constantin Mocanu, and Zhangyang Wang. More convnets in the 2020s: Scaling up kernels beyond 51x51 using sparsity. In International Conference on Learning Representations (ICLR), 2023.
  • Liu et al. (2021) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In International Conference on Computer Vision (ICCV), 2021.
  • Liu et al. (2022a) Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin transformer. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  3192–3201, 2022a.
  • Liu et al. (2022b) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  11976–11986, 2022b.
  • Liu et al. (2022c) Zicheng Liu, Siyuan Li, Ge Wang, Cheng Tan, Lirong Wu, and Stan Z. Li. Decoupled mixup for data-efficient learning. ArXiv, abs/2203.10761, 2022c.
  • Liu et al. (2022d) Zicheng Liu, Siyuan Li, Di Wu, Zhiyuan Chen, Lirong Wu, Jianzhu Guo, and Stan Z. Li. Automix: Unveiling the power of mixup for stronger classifiers. In European Conference on Computer Vision (ECCV), 2022d.
  • Loshchilov & Hutter (2016) Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983, 2016.
  • Loshchilov & Hutter (2019) Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on Learning Representations (ICLR), 2019.
  • Luo et al. (2016) Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S. Zemel. Understanding the effective receptive field in deep convolutional neural networks. ArXiv, abs/1701.04128, 2016.
  • Ma et al. (2018) Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In European Conference on Computer Vision (ECCV), pp. 116–131, 2018.
  • Mehta & Rastegari (2022) Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer. In International Conference on Learning Representations (ICLR), 2022.
  • Naseer et al. (2021) Muhammad Muzammal Naseer, Kanchana Ranasinghe, Salman H Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. Intriguing properties of vision transformers. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
  • Pan et al. (2022a) Zizheng Pan, Jianfei Cai, and Bohan Zhuang. Fast vision transformers with hilo attention. In Advances in Neural Information Processing Systems (NeurIPS), 2022a.
  • Pan et al. (2022b) Zizheng Pan, Bohan Zhuang, Haoyu He, Jing Liu, and Jianfei Cai. Less is more: Pay less attention in vision transformers. In AAAI Conference on Artificial Intelligence (AAAI), 2022b.
  • Park & Kim (2022) Namuk Park and Songkuk Kim. How do vision transformers work? In International Conference on Learning Representations (ICLR), 2022.
  • Parmar et al. (2018) Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Image transformer. In International Conference on Machine Learning (ICML), 2018.
  • Pinto et al. (2022) Francesco Pinto, Philip HS Torr, and Puneet K Dokania. An impartial take to the cnn vs transformer robustness contest. European Conference on Computer Vision (ECCV), 2022.
  • Polyak & Juditsky (1992) Boris Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging. Siam Journal on Control and Optimization, 30:838–855, 1992.
  • Radosavovic et al. (2020) Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, and Piotr Dollár. Designing network design spaces. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10425–10433, 2020.
  • Raghu et al. (2021) Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy. Do vision transformers see like convolutional neural networks? Advances in Neural Information Processing Systems (NeurIPS), 34:12116–12128, 2021.
  • Rao et al. (2022) Yongming Rao, Wenliang Zhao, Yansong Tang, Jie Zhou, Ser Nam Lim, and Jiwen Lu. Hornet: Efficient high-order spatial interactions with recursive gated convolutions. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
  • Ren et al. (2015) Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 39:1137–1149, 2015.
  • Sandler et al. (2018) Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  4510–4520, 2018.
  • Selvaraju et al. (2017) Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  618–626, 2017.
  • Shazeer (2020) Noam M. Shazeer. Glu variants improve transformer. ArXiv, abs/2002.05202, 2020.
  • Si et al. (2022) Chenyang Si, Weihao Yu, Pan Zhou, Yichen Zhou, Xinchao Wang, and Shuicheng Yan. Inception transformer. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
  • Simonyan & Zisserman (2014) Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
  • Srivastava et al. (2015) Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video representations using LSTMs. In International Conference on Machine Learning (ICML), 2015.
  • Szegedy et al. (2015) Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  1–9, 2015.
  • Szegedy et al. (2016) Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2818–2826, 2016.
  • Tan et al. (2023) Cheng Tan, Siyuan Li, Zhangyang Gao, Wenfei Guan, Zedong Wang, Zicheng Liu, Lirong Wu, and Stan Z Li. Openstl: A comprehensive benchmark of spatio-temporal predictive learning. In Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.
  • Tan & Le (2019) Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (ICML), pp. 6105–6114. PMLR, 2019.
  • Tan & Le (2021) Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training. In International conference on machine learning (ICML), 2021.
  • Tolstikhin et al. (2021) Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
  • Touvron et al. (2021a) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve Jegou. Training data-efficient image transformers & distillation through attention. In International Conference on Machine Learning (ICML), pp. 10347–10357, 2021a.
  • Touvron et al. (2021b) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & distillation through attention. In International Conference on Machine Learning (ICML), 2021b.
  • Touvron et al. (2021c) Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Piotr Bojanowski, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, and Herv’e J’egou. Augmenting convolutional networks with attention-based aggregation. arXiv preprint arXiv:2112.13692, 2021c.
  • Touvron et al. (2022) Hugo Touvron, Matthieu Cord, and Herv’e J’egou. Deit iii: Revenge of the vit. In European Conference on Computer Vision (ECCV), 2022.
  • Treisman & Gelade (1980) Anne M Treisman and Garry Gelade. A feature-integration theory of attention. Cognitive psychology, 12(1):97–136, 1980.
  • Trockman & Kolter (2022) Asher Trockman and J. Zico Kolter. Patches are all you need? ArXiv, abs/2201.09792, 2022.
  • Tuli et al. (2021) Shikhar Tuli, Ishita Dasgupta, Erin Grant, and Thomas L. Griffiths. Are convolutional neural networks or transformers more like human vision? ArXiv, abs/2105.07197, 2021.
  • Vaswani et al. (2017) Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems (NeurIPS), 2017.
  • Wang et al. (2022a) Guangting Wang, Yucheng Zhao, Chuanxin Tang, Chong Luo, and Wenjun Zeng. When shift operation meets vision transformer: An extremely simple alternative to attention mechanism. In AAAI Conference on Artificial Intelligence (AAAI), 2022a.
  • Wang et al. (2020) Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X. Yu. Orthogonal convolutional neural networks. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  11502–11512, 2020.
  • Wang et al. (2022b) Peihao Wang, Wenqing Zheng, Tianlong Chen, and Zhangyang Wang. Anti-oversmoothing in deep vision transformers via the fourier domain analysis: From theory to practice. International Conference on Learning Representations (ICLR), 2022b.
  • Wang et al. (2019) Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S. Chao. Learning deep transformer models for machine translation. In Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
  • Wang et al. (2021a) Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear complexity. In Advances in Neural Information Processing Systems (NeurIPS), 2021a.
  • Wang et al. (2021b) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In International Conference on Computer Vision (ICCV), pp. 548–558, 2021b.
  • Wang et al. (2022c) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pvtv2: Improved baselines with pyramid vision transformer. Computational Visual Media (CVMJ), 2022c.
  • Wang et al. (2018) Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  7794–7803, 2018.
  • Wightman et al. (2021) Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training procedure in timm. https://github.com/huggingface/pytorch-image-models, 2021.
  • Woo et al. (2018) Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In-So Kweon. Cbam: Convolutional block attention module. In European Conference on Computer Vision (ECCV), 2018.
  • Woo et al. (2023) Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In-So Kweon, and Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
  • Wu et al. (2022a) Fang Wu, Siyuan Li, Lirong Wu, Stan Z. Li, Dragomir R. Radev, and Qian Zhang. Discovering the representation bottleneck of graph neural networks from multi-order interactions. ArXiv, abs/2205.07266, 2022a. URL https://api.semanticscholar.org/CorpusID:248811221.
  • Wu et al. (2021a) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing convolutions to vision transformers. International Conference on Computer Vision (ICCV), 2021a.
  • Wu et al. (2022b) Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing transformers with conservation flows. In International Conference on Machine Learning (ICML), 2022b.
  • Wu et al. (2021b) Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and Hongyang Chao. Rethinking and improving relative position encoding for vision transformer. In International Conference on Computer Vision (ICCV), pp. 10033–10041, 2021b.
  • Wu et al. (2022c) Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Tinyvit: Fast pretraining distillation for small vision transformers. In European conference on computer vision (ECCV), 2022c.
  • Wu & Johnson (2021) Yuxin Wu and Justin Johnson. Rethinking ”batch” in batchnorm. ArXiv, abs/2105.07576, 2021.
  • Xiao et al. (2018a) Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking. In European Conference on Computer Vision (ECCV), 2018a.
  • Xiao et al. (2018b) Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for scene understanding. In European Conference on Computer Vision (ECCV). Springer, 2018b.
  • Xiao et al. (2021) Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollár, and Ross B. Girshick. Early convolutions help transformers see better. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
  • Xie et al. (2017) Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  1492–1500, 2017.
  • Yang et al. (2022) Jianwei Yang, Chunyuan Li, Xiyang Dai, and Jianfeng Gao. Focal modulation networks. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
  • Yin et al. (2022) Hongxu Yin, Arash Vahdat, Jose M. Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit: Adaptive tokens for efficient vision transformer. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10799–10808, 2022.
  • You et al. (2020) Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training BERT in 76 minutes. In International Conference on Learning Representations (ICLR), 2020.
  • Yu et al. (2022) Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer is actually what you need for vision. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10819–10829, 2022.
  • Yuan et al. (2021a) Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. In International Conference on Computer Vision (ICCV), 2021a.
  • Yuan et al. (2021b) Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis E. H. Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. International Conference on Computer Vision (ICCV), pp. 538–547, 2021b.
  • Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In International Conference on Computer Vision (ICCV), pp. 6023–6032, 2019.
  • Zagoruyko & Komodakis (2016) Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British Machine Vision Conference (BMVC), 2016.
  • Zhang et al. (2022a) Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2736–2746, 2022a.
  • Zhang et al. (2020) Hao Zhang, Sen Li, Yinchao Ma, Mingjie Li, Yichen Xie, and Quanshi Zhang. Interpreting and boosting dropout from a game-theoretic view. arXiv preprint arXiv:2009.11729, 2020.
  • Zhang et al. (2022b) Haokui Zhang, Wenze Hu, and Xiaoyu Wang. Edgeformer: Improving light-weight convnets by learning from vision transformers. In European Conference on Computer Vision (ECCV), 2022b.
  • Zhang et al. (2018) Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. In International Conference on Learning Representations (ICLR), 2018.
  • Zhong et al. (2020) Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation. In AAAI Conference on Artificial Intelligence (AAAI), pp. 13001–13008, 2020.
  • Zhou et al. (2018) Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic understanding of scenes through the ade20k dataset. International Journal of Computer Vision (IJCV), 127:302–321, 2018.
  • Zhou et al. (2022) Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Anima Anandkumar, Jiashi Feng, and José Manuel Álvarez. Understanding the robustness in vision transformers. In International Conference on Machine Learning (ICML), 2022.
  • Zhou et al. (2021) Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot: Image bert pre-training with online tokenizer. arXiv preprint arXiv:2111.07832, 2021.
  • Zhu et al. (2021) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable transformers for end-to-end object detection. In International Conference on Learning Representations (ICLR), 2021.
  • Zimmermann et al. (2019) Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan Russell, Max Argus, and Thomas Brox. Freihand: A dataset for markerless capture of hand pose and shape from single rgb images. In International Conference on Computer Vision (ICCV), pp. 813–822, 2019.

Appendix A Implementation Details

A.1 Architecture Details

Refer to caption
Figure A1: Modern ConvNet architecture. It has 4 stages in hierarchical, and ii-th stage contains an embedding stem and NiN_{i} blocks of SMixer()\mathrm{SMixer}(\cdot) and CMixer()\mathrm{CMixer}(\cdot) with PreNorm (Wang et al., 2019) and identical connection (He et al., 2016). The features within the ii-th stage are in the same shape, except that CMixer()\mathrm{CMixer}(\cdot) will increase the dimension to rCirC_{i} with an expand ratio rr as an inverted bottleneck (Sandler et al., 2018).

The detailed architecture specifications of MogaNet are shown in Table A1 and Fig. 2, where an input image of 2242224^{2} resolutions is assumed for all architectures. We rescale the groups of embedding dimensions the number of Moga Blocks for each stage corresponding to different models of varying magnitudes: i) MogaNet-X-Tiny and MogaNet-Tiny with embedding dimensions of {32,64,96,192}\{32,64,96,192\} and {32,64,128,256}\{32,64,128,256\} exhibit competitive parameter numbers and computational overload as recently proposed light-weight architectures (Mehta & Rastegari, 2022; Chen et al., 2022; Zhang et al., 2022b); ii) MogaNet-Small adopts embedding dimensions of {64,128,320,512}\{64,128,320,512\} in comparison to other prevailing small-scale architectures (Liu et al., 2021; 2022b); iii) MogaNet-Base with embedding dimensions of {64,160,320,512}\{64,160,320,512\} in comparison to medium size architectures; iv) MogaNet-Large with embedding dimensions of {64,160,320,640}\{64,160,320,640\} is designed for large-scale computer vision tasks. v) MogaNet-X-Large with embedding dimensions of {96,192,480,960}\{96,192,480,960\} is a scaling-up version (around 200M parameters) for large-scale tasks. The FLOPs are measured for image classification on ImageNet (Deng et al., 2009) at resolution 2242224^{2}, where a global average pooling (GAP) layer is applied to the output feature map of the last stage, followed by a linear classifier.

Stage Output Layer MogaNet
Size Settings XTiny Tiny Small Base Large XLarge
S1 H×W4×4\frac{H\times W}{4\times 4} Stem
Conv3×3,stride2,C/2\rm{Conv}_{3\times 3},~{}\rm{stride}~{}2,C/2
Conv3×3,stride2,C\rm{Conv}_{3\times 3},~{}\rm{stride}~{}2,C
Embed. Dim. 32 32 64 64 64 96
# Moga Block 3 3 2 4 4 6
MLP Ratio 8
S2 H×W8×8\frac{H\times W}{8\times 8} Stem Conv3×3,stride2\rm{Conv}_{3\times 3},\rm{stride}~{}2
Embed. Dim. 64 64 128 160 160 192
# Moga Block 3 3 3 6 6 6
MLP Ratio 8
S3 H×W16×16\frac{H\times W}{16\times 16} Stem Conv3×3,stride2\rm{Conv}_{3\times 3},~{}\rm{stride}~{}2
Embed. Dim. 96 128 320 320 320 480
# Moga Block 10 12 12 22 44 44
MLP Ratio 4
S4 H×W32×32\frac{H\times W}{32\times 32} Stem Conv3×3,stride2\rm{Conv}_{3\times 3},~{}\rm{stride}~{}2
Embed. Dim. 192 256 512 512 640 960
# Moga Block 2 2 2 3 4 4
MLP Ratio 4
Classifier Global Average Pooling, Linear
Parameters (M) 2.97 5.20 25.3 43.8 82.5 180.8
FLOPs (G) 0.80 1.10 4.97 9.93 15.9 34.5
Table A1: Architecture configurations of MogaNet variants.
Configuration DeiT RSB MogaNet
A2 XT T S B L XL
Input resolution 2242 2242 2242
Epochs 300 300 300
Batch size 1024 2048 1024
Optimizer AdamW LAMB AdamW
AdamW (β1,β2)(\beta_{1},\beta_{2}) 0.9,0.9990.9,0.999 - 0.9,0.9990.9,0.999
Learning rate 0.001 0.005 0.001
Learning rate decay Cosine Cosine Cosine
Weight decay 0.05 0.02 0.03 0.04 0.05 0.05 0.05 0.05
Warmup epochs 5 5 5
Label smoothing ϵ\epsilon 0.1 0.1 0.1
Stochastic Depth 0.05 0.1 0.1 0.2 0.3 0.4
Rand Augment 9/0.5 7/0.5 7/0.5 7/0.5 9/0.5 9/0.5 9/0.5 9/0.5
Repeated Augment
Mixup α\alpha 0.8 0.1 0.1 0.1 0.8 0.8 0.8 0.8
CutMix α\alpha 1.0 1.0 1.0
Erasing prob. 0.25 0.25
ColorJitter 0.4 0.4 0.4 0.4
Gradient Clipping
EMA decay
Test crop ratio 0.875 0.95 0.90
Table A2: Hyper-parameters for ImageNet-1K training of DeiT, RSB A2, and MogaNet. We use a similar setting as RSB for XL and T versions of MogaNet and DeiT for the other versions.
Configuration IN-21K PT IN-1K FT
S B L XL S B L XL
Input resolution 2242 3842
Epochs 90 30
Batch size 1024 512
Optimizer AdamW AdamW
AdamW (β1,β2)(\beta_{1},\beta_{2}) 0.9,0.9990.9,0.999 0.9,0.9990.9,0.999
Learning rate 1×1031\times 10^{-3} 5×1055\times 10^{-5}
Learning rate decay Cosine Cosine
Weight decay 0.05 0.05
Warmup epochs 5 0
Label smoothing ϵ\epsilon 0.2 0.1 0.1 0.2 0.2
Stochastic Depth 0 0.1 0.1 0.1 0.4 0.6 0.7 0.8
Rand Augment 9/0.5 9/0.5
Repeated Augment
Mixup α\alpha 0.8
CutMix α\alpha 1.0
Erasing prob. 0.25 0.25
ColorJitter 0.4 0.4
Gradient Clipping
EMA decay
Test crop ratio 0.90 1.0
Table A3: Detailed training recipe for ImageNet-21K pre-training (IN-21K PT) and ImageNet-1K fine-tuning (IN-1K FT) in high resolutions for MogaNet.

A.2 Experimental Settings for ImageNet

We conduct image classification experiments on ImageNet (Deng et al., 2009) datasets. All experiments are implemented on OpenMixup (Li et al., 2022b) and timm (Wightman et al., 2021) codebases running on 8 NVIDIA A100 GPUs. View more results in Appendix D.1.

ImageNet-1K.

We perform regular ImageNet-1K training mostly following the training settings of DeiT (Touvron et al., 2021a) and RSB A2 (Wightman et al., 2021) in Table A2, which are widely adopted for Transformer and ConvNet architectures. For all models, the default input image resolution is 2242224^{2} for training from scratch. We adopt 2562256^{2} resolutions for lightweight experiments according to MobileViT (Mehta & Rastegari, 2022). Taking training settings for the model with 25M or more parameters as the default, we train all MogaNet models for 300 epochs by AdamW (Loshchilov & Hutter, 2019) optimizer using a batch size of 1024, a basic learning rate of 1×1031\times 10^{-3}, a weight decay of 0.05, and a Cosine learning rate scheduler (Loshchilov & Hutter, 2016) with 5 epochs of linear warmup (Devlin et al., 2018). As for augmentation and regularization techniques, we adopt most of the data augmentation and regularization strategies applied in DeiT training settings, including Random Resized Crop (RRC) and Horizontal flip (Szegedy et al., 2015), RandAugment (Cubuk et al., 2020), Mixup (Zhang et al., 2018), CutMix (Yun et al., 2019), random erasing (Zhong et al., 2020), ColorJitter (He et al., 2016), stochastic depth (Huang et al., 2016), and label smoothing (Szegedy et al., 2016). Similar to ConvNeXt (Liu et al., 2022b), we do not apply Repeated augmentation (Hoffer et al., 2020) and gradient clipping, which are designed for Transformers but do not enhance the performances of ConvNets while using Exponential Moving Average (EMA) (Polyak & Juditsky, 1992) with the decay rate of 0.9999 by default. We also remove additional augmentation strategies (Cubuk et al., 2019; Liu et al., 2022d; Li et al., 2021; Liu et al., 2022c), e.g., PCA lighting (Krizhevsky et al., 2012) and AutoAugment (Cubuk et al., 2019). Since lightweight architectures (3\sim10M parameters) tend to get under-fitted with strong augmentations and regularization, we adjust the training configurations for MogaNet-XT/T following (Mehta & Rastegari, 2022; Chen et al., 2022; Zhang et al., 2022b), including employing the weight decay of 0.03 and 0.04, Mixup with α\alpha of 0.1, and RandAugment of 7/0.57/0.5 for MogaNet-XT/T. Since EMA is proposed to stabilize the training process of large models, we also remove it for MogaNet-XT/T as a fair comparison. An increasing degree of stochastic depth path augmentation is employed for larger models. In evaluation, the top-1 accuracy using a single crop with a test crop ratio of 0.9 is reported as (Yuan et al., 2021b; Yu et al., 2022; Guo et al., 2023).

ImageNet-21K.

Following ConvNeXt, we further provide the training recipe for ImageNet-21K (Deng et al., 2009) pre-training and ImageNet-1K fine-tuning with high resolutions in Table A3. EMA is removed in pre-training, while CutMix and Mixup are removed for fine-tuning.

A.3 Object Detection and Segmentation on COCO

Following Swin (Liu et al., 2021) and PoolFormer (Yu et al., 2022), we evaluate objection detection and instance segmentation tasks on COCO (Lin et al., 2014) benchmark, which include 118K training images (train2017) and 5K validation images (val2017). We adopt RetinaNet (Lin et al., 2017b), Mask R-CNN (He et al., 2017), and Cascade Mask R-CNN (Cai & Vasconcelos, 2019) as the standard detectors and use ImageNet-1K pre-trained weights as the initialization of the backbones. As for RetinaNet and Mask R-CNN, we employ AdamW (Loshchilov & Hutter, 2019) optimizer for training 1×1\times scheduler (12 epochs) with a basic learning rate of 1×1041\times 10^{-4} and a batch size of 16. As for Cascade Mask R-CNN, the 3×3\times training scheduler and multi-scale training resolutions (MS) are adopted. The pre-trained weights on ImageNet-1K and ImageNet-21K are used accordingly to initialize backbones. The shorter side of training images is resized to 800 pixels, and the longer side is resized to not more than 1333 pixels. We calculate the FLOPs of compared models at 800×1280800\times 1280 resolutions. Experiments of COCO detection are implemented on MMDetection (Chen et al., 2019) codebase and run on 8 NVIDIA A100 GPUs. View detailed results in Appendix D.2.

A.4 Semantic Segmentation on ADE20K

We evaluate semantic segmentation on ADE20K (Zhou et al., 2018) benchmark, which contains 20K training images and 2K validation images, covering 150 fine-grained semantic categories. We first adopt Semantic FPN (Kirillov et al., 2019) following PoolFormer (Yu et al., 2022) and Uniformer (Li et al., 2022a), which train models for 80K iterations by AdamW (Loshchilov & Hutter, 2019) optimizer with a basic learning rate of 2×1042\times 10^{-4}, a batch size of 16, and a poly learning rate scheduler. Then, we utilize UperNet (Xiao et al., 2018b) following Swin (Liu et al., 2021), which employs AdamW optimizer using a basic learning rate of 6×1056\times 10^{-5}, a weight decay of 0.01, a poly scheduler with a linear warmup of 1,500 iterations. We use ImageNet-1K and ImageNet-21K pre-trained weights to initialize the backbones accordingly. The training images are resized to 5122512^{2} resolutions, and the shorter side of testing images is resized to 512 pixels. We calculate the FLOPs of models at 800×2048800\times 2048 resolutions. Experiments of ADE20K segmentation are implemented on MMSegmentation (Contributors, 2020b) codebase and run on 8 NVIDIA A100 GPUs. View full comparison results in Appendix D.3.

A.5 2D Human Pose Estimation on COCO

We evaluate 2D human keypoints estimation tasks on COCO (Lin et al., 2014) benchmark based on Top-Down SimpleBaseline (Xiao et al., 2018a) (adding a Top-Down estimation head after the backbone) following PVT (Wang et al., 2021b) and UniFormer (Li et al., 2022a). We fine-tune all models for 210 epochs with Adam optimizer (Kingma & Ba, 2014) using a basic learning rate selected in {1×103,5×1041\times 10^{-3},5\times 10^{-4}}, a multi-step learning rate scheduler decay at 170 and 200 epochs. ImageNet-1K pre-trained weights are used as the initialization of the backbones. The training and testing images are resized to 256×192256\times 192 or 384×288384\times 288 resolutions, and the FLOPs of models are calculated at both resolutions. COCO pose estimation experiments are implemented on MMPose (Contributors, 2020a) codebase and run on 8 NVIDIA A100 GPUs. View full experiment results in Appendix D.4.

A.6 3D Human Pose Estimation

We evaluate MogaNet and popular architectures with 3D human pose estimation tasks with a single monocular image based on ExPose (Choutas et al., 2020). We first benchmark widely-used ConvNets with the 3D face mesh surface estimation task based on ExPose. All models are trained for 100 epochs on Flickr-Faces-HQ Dataset (FFHQ) (Karras et al., 2019) and tested on Stirling/ESRC 3D dataset (Feng et al., 2018), which consists of facial RGB images with ground-truth 3D face scans. 3D Root Mean Square Error (3DRMSE) measures errors between the predicted and ground-truth face scans. Following ExPose, the Adam optimizer is employed with a batch size of 256, a basic learning rate selected in {2×104,1×1042\times 10^{-4},1\times 10^{-4}}, a multi-step learning rate scheduler decay at 60 and 100 epochs. ImageNet-1K pre-trained weights are adopted as the backbone initialization. The training and testing images are resized to 256×256256\times 256 resolutions. Then, we evaluate ConvNets with the hand 3D pose estimation tasks. FreiHAND dataset (Zimmermann et al., 2019), which contains multi-view RGB hand images, 3D MANO hand pose, and shape annotations, is adopted for training and testing. Mean Per-Joint Position Error (PA-MPJPE) is used to evaluate 3D skeletons. Notice that a “PA” prefix denotes that the metric measures error after solving rotation, scaling, and translation transforms using Procrustes Alignment. Refer to ExPose for more implementation details. All models use the same training settings as the 3D face task, and the training and testing resolutions are 224×224224\times 224. Experiments of 3D pose estimation are implemented on MMHuman3D (Contributors, 2021) codebase and run on 4 NVIDIA A100 GPUs. View full results in Appendix D.5.

A.7 Video Prediction on Moving MNIST

We evaluate various Metaformer architectures (Yu et al., 2022) and MogaNet with video prediction tasks on Moving MNIST (MMNIST) (Lin et al., 2014) based on SimVP (Gao et al., 2022). Notice that the hidden translator of SimVP is a 2D network module to learn spatio-temporal representation, which any 2D architecture can replace. Therefore, we can benchmark various architectures based on the SimVP framework. In MMNIST (Srivastava et al., 2015), each video is randomly generated with 20 frames containing two digits in 64×6464\times 64 resolutions, and the model takes 10 frames as the input to predict the next 10 frames. Video predictions are evaluated by Mean Square Error (MSE), Mean Absolute Error (MAE), and Structural Similarity Index (SSIM). All models are trained on MMNIST from scratch for 200 or 2000 epochs with Adam optimizer, a batch size of 16, a OneCycle learning rate scheduler, an initial learning rate selected in {1×102,5×103,1×103,5×1041\times 10^{-2},5\times 10^{-3},1\times 10^{-3},5\times 10^{-4}}. Experiments of video prediction are implemented on OpenSTL111https://github.com/chengtan9907/OpenSTL codebase (Tan et al., 2023) and run on a single NVIDIA Tesla V100 GPU. View full benchmark results in Appendix D.6.

Appendix B Empirical Experiment Results

B.1 Representation Bottleneck of DNNs from the View of Multi-order Interaction

Multi-order game-theoretic interaction.

In Sec. 3, we interpret the learned representation of DNNs through the lens of multi-order game-theoretic interaction (Zhang et al., 2020; Deng et al., 2022), which disentangles inter-variable communication effects in a DNN into diverse game-theoretic components of different interaction orders. The order here denotes the scale of context involved in the whole computation process of game-theoretic interaction.

For computer vision, the mm-th order interaction I(m)(i,j)I^{(m)}(i,j) measures the average game-theoretic interaction effects between image patches ii and jj on all mm image patch contexts. Take face recognition as an example, we can consider patches ii and jj as two eyes on this face. Besides, we regard other mm visible image patches included on the face. The interaction effect and contribution between the eye’s patches ii and jj toward the task depend on such mm visible patches as the context, which is measured as the aforementioned I(m)(i,j)I^{(m)}(i,j). If I(m)(i,j)>0I^{(m)}(i,j)>0 , patches ii and jj show a positive effect under mm context. Accordingly, if I(m)(i,j)<0I^{(m)}(i,j)<0, we considerii and jj have a negative effect under mm context. More importantly, interactions of low-order mainly reflect widely-shared local texture and common visual concepts. The middle-order interactions are primarily responsible for encoding discriminative high-level representations. However, the high-order ones are inclined to let DNNs memorize the pattern of rare outliers and large-scale shape with intensive global interactions, which can presumably over-fit our deep models (Deng et al., 2022; Cheng et al., 2021). Consequently, the occurrence of excessively low- or high-order game-theoretic interaction in a deep architecture may therefore be undesirable.

Formally, given an input image xx with a set of nn patches N={1,,n}N=\{1,\dots,n\} (e.g., an image with nn pixels in total), the multi-order interaction I(m)(i,j)I^{(m)}(i,j) can be calculated as:

I(m)(i,j)=𝔼SN{i,j},|S|=m[Δf(i,j,S)],\displaystyle I^{(m)}(i,j)=\mathbb{E}_{S\subseteq N\setminus\{i,j\},|S|=m}[\Delta f(i,j,S)], (11)

where Δf(i,j,S)=f(S{i,j})f(S{i})f(S{j})+f(S)\Delta f(i,j,S)=f(S\cup\{i,j\})-f(S\cup\{i\})-f(S\cup\{j\})+f(S). f(S)f(S) indicates the score of output with patches in NSN\setminus S kept unchanged but replaced with the baseline value (Ancona et al., 2019a), For example, a low-order interaction (e.g., m=0.05nm=0.05n) means the relatively simple collaboration between variables i,ji,j under a small range of context, while a high-order interaction (e.g., m=0.95nm=0.95n) corresponds to the complex collaboration under a large range of context. Then, we can measure the overall interaction complexity of deep neural networks (DNNs) by the relative interaction strength J(m)J^{(m)} of the encoded mm-th order interaction:

J(m)=𝔼xΩ𝔼i,j|I(m)(i,j|x)|𝔼m𝔼xΩ𝔼i,j|I(m)(i,j|x)|,\displaystyle J^{(m)}=\frac{\mathbb{E}_{x\in\Omega}\mathbb{E}_{i,j}|I^{(m)}(i,j|x)|}{\mathbb{E}_{m^{{}^{\prime}}}\mathbb{E}_{x\in\Omega}\mathbb{E}_{i,j}|I^{(m^{{}^{\prime}})}(i,j|x)|}, (12)

where Ω\Omega is the set of all samples and 0mn20\leq m\geq n-2. Note that J(m)J^{(m)} is the average interaction strength over all possible patch pairs of the input samples and indicates the distribution (area under curve sums up to one) of the order of interactions of DNNs. In Fig. A2, we calculate the interaction strength J(m)J^{(m)} with Eq. 12 for the models trained on ImageNet-1K using the official implementation222https://github.com/Nebularaid2000/bottleneck provided by (Deng et al., 2022). Specially, we use the image of 224×224224\times 224 resolution as the input and calculate J(m)J^{(m)} on 14×1414\times 14 grids, i.e., n=14×14n=14\times 14. And we set the model output as f(xS)=logP(y^=y|xS)1P(y^=y|xS)f(x_{S})=\log\frac{P(\hat{y}=y|x_{S})}{1-P(\hat{y}=y|x_{S})} given the masked sample xSx_{S}, where yy denotes the ground-truth label and P(y^=y|xS)P(\hat{y}=y|x_{S}) denotes the probability of classifying the masked sample xSx_{S} to the true category. Fig. A2a and Fig. A2b compare existing ConvNets with large kernels or gating designs and demonstrate that MogaNet can model middle-order interactions better to learn more informative representations.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure A2: Distributions of the interaction strength J(m)J^{(m)} for (a) ConvNets with different convolution kernel sizes, (b) ConvNets with gating aggregations, and (c) Transformers on ImageNet-1K with 2242224^{2} resolutions. Middle-order strengths mean the middle-complex interaction, where a medium number of patches (e.g., 0.2\sim0.8n) participate.

Relationship of explaining works of ViTs.

Since the thriving of ViTs in a wide range of computer vision tasks, recent studies mainly investigate the why ViTs work from two directions: (a) Evaluation of robustness against noises finds that self-attentions (Naseer et al., 2021; Park & Kim, 2022; Zhou et al., 2021; Li et al., 2023) or gating mechanisms (Zhou et al., 2022) in ViTs are more robust than classical convolutional operations (Simonyan & Zisserman, 2014; Szegedy et al., 2016). For example, ViTs can still recognize the target object with large occlusion ratios (e.g., only 10\sim20% visible patches) or corruption noises. This phenomenon might stem from the inherent redundancy of images and the competition property of self-attention mechanisms (Wang et al., 2021a; Wu et al., 2022b). Several recently proposed works (Yin et al., 2022; Graham et al., 2021) show that ViTs can work with some essential tokens (e.g., 5\sim50%) that are selected according to the complexity of input images by dynamic sampling strategies, which also utilize the feature selection properties of self-attentions. From the perspective of multi-order interactions, convolutions with local inductive bias (using small kernel sizes) prefer low-order interactions, while self-attentions without any inductive bias tend to learn low-order and high-order interactions. (b) Evaluation of out-of-distribution samples reveals that both self-attention mechanisms and depth-wise convolution (DWConv) with large kernel designs share similar shape-bias tendency as human vision (Tuli et al., 2021; Geirhos et al., 2021; Ding et al., 2022b), while canonical ConvNets (using convolutions with small kernel sizes) exhibit strong bias on local texture (Geirhos et al., 2019; Hermann et al., 2020). Current works (Ding et al., 2022b) attribute shape or texture-bias tendency to the receptive field of self-attention or convolution operations, i.e., an operation with the larger receptive field or more long-range dependency is more likely to be shape-bias. However, there are still gaps between shape-bias operations and human vision. Human brains (Treisman & Gelade, 1980; Deng et al., 2022) attain visual patterns and clues and conduct middle-complexity interactions to recognize objects, while a self-attention or convolution operation can only encode global or local features to conduct high or low-complexity interactions. As the existing design of DNNs only stacks regionality perception or context aggregation operations in a cascaded way, it is inevitable to encounter the representation bottleneck.

B.2 Visualization of CAM

We further visualize more examples of Grad-CAM (Selvaraju et al., 2017) activation maps of MogaNet-S in comparison to Transformers, including DeiT-S (Touvron et al., 2021a), T2T-ViT-S (Yuan et al., 2021b), Twins-S (Chu et al., 2021), and Swin (Liu et al., 2021), and ConvNets, including ResNet-50 (He et al., 2016) and ConvNeXt-T (Liu et al., 2022b), on ImageNet-1K in Fig. A4. Due to the self-attention mechanism, the pure Transformers architectures (DeiT-S and T2T-ViT-S) show more refined activation maps than ConvNets, but they also activate some irrelevant parts. Combined with the design of local windows, local attention architectures (Twins-S and Swin-T) can locate the full semantic objects. Results of previous ConvNets can roughly localize the semantic target but might contain some background regions. The activation parts of our proposed MogaNet-S are more similar to local attention architectures than previous ConvNets, which are more gathered on the semantic objects.

Appendix C More Ablation and Analysis Results

In addition to Sec. 5.3, we further conduct more ablation and analysis of our proposed MogaNet on ImageNet-1K. We adopt the same experimental settings as Sec. 1.

C.1 Ablation of Activation Functions

We conduct the ablation of activation functions used in the proposed multi-order gated aggregation module on ImageNet-1K. Table A4 shows that using SiLU (Elfwing et al., 2018) activation for both branches achieves the best performance. Similar results were also found in Transformers, e.g., GLU variants with SiLU or GELU (Hendrycks & Gimpel, 2016) yield better performances than using Sigmoid or Tanh activation functions (Shazeer, 2020; Hua et al., 2022). We assume that SiLU is the most suitable activation because it owns both the property of Sigmoid (gating effects) and GELU (training friendly), which is defined as xSigmoid(x)x\cdot\mathrm{Sigmoid}(x).

Top-1 Context branch
Acc (%) None GELU SiLU
None 76.3 76.7 76.7
Gating Sigmoid 76.8 77.0 76.9
branch GELU 76.7 76.8 77.0
SiLU 76.9 77.1 77.2
Table A4: Ablation of various activation functions for the gating and context branches in the proposed Moga()\mathrm{Moga}(\cdot) module, which SiLU achieves the best performance in two branches.

Modules Top-1 Params. FLOPs
Acc (%) (M) (G)
Baseline (+Gating branch) 77.2 5.09 1.070
DW7×7\mathrm{DW}_{7\times 7} 77.4 5.14 1.094
DW5×5,d=1+DW7×7,d=3\mathrm{DW}_{5\times 5,d=1}+\mathrm{DW}_{7\times 7,d=3} 77.5 5.15 1.112
DW5×5,d=1+DW5×5,d=2+DW7×7,d=3\mathrm{DW}_{5\times 5,d=1}+\mathrm{DW}_{5\times 5,d=2}+\mathrm{DW}_{7\times 7,d=3} 77.5 5.17 1.185
+Multi-order, Cl:Cm:Ch=1:0:3C_{l}:C_{m}:C_{h}=1:0:3 77.5 5.17 1.099
+Multi-order, Cl:Cm:Ch=0:1:1C_{l}:C_{m}:C_{h}=0:1:1 77.6 5.17 1.103
+Multi-order, Cl:Cm:Ch=1:6:9C_{l}:C_{m}:C_{h}=1:6:9 77.7 5.17 1.104
+Multi-order, Cl:Cm:Ch=1:3:4C_{l}:C_{m}:C_{h}=1:3:4 77.8 5.17 1.102
Table A5: Ablation of multi-order DWConv layers in the proposed Moga()\mathrm{Moga}(\cdot). The baseline adopts the MogaNet framework using the non-linear projection, DW5×5\mathrm{DW}_{5\times 5}, and the SiLU gating branch as SMixer()\mathrm{SMixer}(\cdot) and using the vanilla MLP as CMixer()\mathrm{CMixer}(\cdot).

C.2 Ablation of Multi-order DWConv Layers

In addition to Sec. 4.2 and Sec. 5.3, we also analyze the multi-order depth-wise convolution (DWConv) layers as the static regionality perception in the multi-order aggregation module Moga()\mathrm{Moga}(\cdot) on ImageNet-1K. As shown in Table A5, we analyze the channel configuration of three parallel dilated DWConv layers: DW5×5,d=1\mathrm{DW}_{5\times 5,d=1}, DW5×5,d=2\mathrm{DW}_{5\times 5,d=2}, and DW7×7,d=3\mathrm{DW}_{7\times 7,d=3} with the channels of ClC_{l}, CmC_{m}, ChC_{h}. we first compare the performance of serial DWConv layers (e.g., DW5×5,d=1\mathrm{DW}_{5\times 5,d=1}+DW7×7,d=3\mathrm{DW}_{7\times 7,d=3}) and parallel DWConv layers. We find that the parallel design can achieve the same performance with fewer computational overloads because the DWConv kernel is equally applied to all channels. When we adopt three DWConv layers, the proposed parallel design reduces Cl+ChC_{l}+C_{h} and Cl+CmC_{l}+C_{m} times computations of DW5×5,d=2\mathrm{DW}_{5\times 5,d=2} and DW5×5,d=2\mathrm{DW}_{5\times 5,d=2} in comparison to the serial stack of these DWConv layers. Then, we empirically explore the optimal configuration of the three channels. We find that Cl:C_{l}: Cm:C_{m}: ChC_{h} = 1: 3: 4 yields the best performance, which well balances the small, medium, and large DWConv kernels to learn low, middle, and high-order contextual representations. We calculate and discuss the FLOPs of the proposed three DWConv layers in the next subsection to verify the efficiency. Similar conclusions are also found in relevant designs (Pan et al., 2022a; Si et al., 2022; Rao et al., 2022), where global context aggregations take the majority (e.g., 1234\frac{1}{2}\sim\frac{3}{4} channels or context components). We also verify the parallel design with the optimal configuration based on MogaNet-S/B. Therefore, we can conclude that our proposed multi-order DWConv layers can efficiently learn multi-order contextual information for the context branch of Moga()\mathrm{Moga}(\cdot).

C.3 FLOPs and Throughputs of MogaNet

FLOPs of Multi-order Gated Aggregation Module

We divide the computation of the proposed multi-order gated aggregation module into two parts of convolution operations and calculate the FLOPs for each part.

  • Conv1×\times1. The FLOPs of 1×\times1 convolution operation ϕgate\phi_{\rm gate} , ϕcontext\phi_{\rm context} and ϕout\phi_{\rm out} can be derived as:

    FLOPs(ϕgate)\displaystyle\mathrm{FLOPs}(\phi_{\rm gate}) =2HWC2,\displaystyle=2HWC^{2}, (13)
    FLOPs(ϕcontext)\displaystyle\mathrm{FLOPs}(\phi_{\rm context}) =2HWC2,\displaystyle=2HWC^{2},
    FLOPs(ϕout)\displaystyle\mathrm{FLOPs}(\phi_{\rm out}) =2HWC2.\displaystyle=2HWC^{2}.\vspace{-0.50em}
  • Depth-wise convolution. We consider the depth-wise convolution (DW\mathrm{DW}) with dilation ratio dd. The DW\mathrm{DW}Conv is performed for the input XX, where XHW×CinX\in\mathbb{R}^{HW\times C_{in}}. Therefore, the FLOPs for all DW\mathrm{DW} in Moga module are:

    FLOPs(DW5×5,d=1)\displaystyle\mathrm{FLOPs}(\mathrm{DW}_{5\times 5,d=1}) =2HWCinK5×52,\displaystyle=2HWC_{in}K_{5\times 5}^{2}, (14)
    FLOPs(DW5×5,d=2)\displaystyle\mathrm{FLOPs}(\mathrm{DW}_{5\times 5,d=2}) =34HWCinK5×52,\displaystyle=\frac{3}{4}HWC_{in}K_{5\times 5}^{2},
    FLOPs(DW7×7,d=3)\displaystyle\mathrm{FLOPs}(\mathrm{DW}_{7\times 7,d=3}) =HWCinK7×72.\displaystyle=HWC_{in}K_{7\times 7}^{2}.\vspace{-0.50em}

Overall, the total FLOPs of our Moga module can be derived as follows:

FLOPs(Moga)\displaystyle\mathrm{FLOPs}(\mathrm{Moga}) =2HWCin[118K5×52+12K7×72+3Cin]\displaystyle=2HWC_{in}\left[\frac{11}{8}K_{5\times 5}^{2}+\frac{1}{2}K_{7\times 7}^{2}+3C_{in}\right] (15)
=HWCin[4714+6Cin].\displaystyle=HWC_{in}\left[\frac{471}{4}+6C_{in}\right].\vspace{-0.5em}
Refer to caption
Figure A3: Accuracy-throughput diagram of models on ImageNet-1K measured on an NVIDIA V100 GPU.

Throughput of MogaNet

We further analyze throughputs of MogaNet variants on ImageNet-1K. As shown in Fig. A3, MogaNet has similar throughputs as Swin Transformer while producing better performances than Swin and ConvNet. Since we add channel splitting and GAP operations in MogaNet, the throughput of ConvNeXt exceeds MogaNet to some extent.

Refer to caption
Figure A4: Visualization of Grad-CAM activation maps of the models trained on ImageNet-1K.

C.4 Ablation of Normalization Layers

For most ConvNets, BatchNorm (Ioffe & Szegedy, 2015b) (BN) is considered an essential component to improve the convergence speed and prevent overfitting. However, BN might cause some instability (Wu & Johnson, 2021) or harm the final performance of models (Brock et al., 2021a; b). Some recently proposed ConvNets (Liu et al., 2022b; Guo et al., 2023) replace BN by LayerNorm (Ba et al., 2016) (LN), which has been widely used in Transformers (Dosovitskiy et al., 2021) and Metaformer architectures (Yu et al., 2022), achieving relatively good performances in various scenarios. Here, we conduct an ablation of normalization (Norm) layers in MogaNet on ImageNet-1K, as shown in Table A6. As discussed in ConvNeXt (Liu et al., 2022b), the Norm layers used in each block (within) and after each stage (after) have different effects. Thus we study them separately. Table A6 shows that using BN in both places yields better performance than using LN (after) and BN (within), except MogaNet-T with 2242224^{2} resolutions, while using LN in both places performs the worst. Consequently, we use BN as the default Norm layers in our proposed MogaNet for two reasons: (i) With pure convolution operators, the rule of combining convolution operations with BN within each stage is still useful for modern ConvNets. (ii) Although using LN after each stage might help stabilize the training process of Transformers and hybrid models and might sometimes bring good performance for ConvNets, adopting BN after each stage in pure convolution models still yields better performance. Moreover, we replace BN with precise BN (Wu & Johnson, 2021) (pBN), which is an optimal alternative normalization strategy to BN. We find slight performance improvements (around 0.1%), especially when MogaNet-S/B adopts the EMA strategy (by default), indicating that we can further improve MogaNet with advanced BN. As discussed in ConvNeXt, EMA might severely hurt the performances of models with BN. This phenomenon might be caused by the unstable and inaccurate BN statistics estimated by EMA in the vanilla BN with large models, which will deteriorate when using another EMA of model parameters. We solve this dilemma by exponentially increasing the EMA decay from 0.9 to 0.9999 during training as momentum-based contrastive learning methods (Caron et al., 2021; Bao et al., 2022), e.g., BYOL (Grill et al., 2020). It can also be tackled by advanced BN variants (Hoffer et al., 2017; Wu & Johnson, 2021).

Norm (after) Input LN LN BN pBN
Norm (within) size LN BN BN pBN
MogaNet-T 2242 78.4 79.1 79.0 79.1
MogaNet-T 2562 78.8 79.4 79.6 79.6
MogaNet-S 2242 82.5 83.2 83.3 83.3
MogaNet-S (EMA) 2242 82.7 83.2 83.3 83.4
MogaNet-B 2242 83.4 83.9 84.1 84.2
MogaNet-B (EMA) 2242 83.7 83.8 84.3 84.4
Table A6: Ablation of normalization layers in MogaNet.

C.5 Refined Training Settings for Lightweight Models

To explore the full power of lightweight models of our MogaNet, we refined the basic training settings for MogaNet-XT/T according to RSB A2 (Wightman et al., 2021) and DeiT-III (Touvron et al., 2022). Compared to the default setting as provided in Table A2, we only adjust the learning rate and the augmentation strategies for faster convergence while keeping other settings unchanged. As shown in Table A7, MogaNet-XT/T gain +0.4\sim0.6% when use the large learning rate of 2×1032\times 10^{-3} and 3-Augment (Touvron et al., 2022) without complex designs. Based on the advanced setting, MogaNet with 2242224^{2} input resolutions yields significant performance improvements against previous methods, e.g., MogaNet-T gains +3.5% over DeiT-T (Touvron et al., 2021a) and +1.2% over Parc-Net-S (Zhang et al., 2022b). Especially, MogaNet-T with 2562256^{2} resolutions achieves top-1 accuracy of 80.0%, outperforming DeiT-S of 79.8% reported in the original paper, while MogaNet-XT with 2242224^{2} resolutions outperforms DeiT-T under the refined training scheme by 1.2% with only 3M parameters.

Architecture Input Learning Warmup Rand 3-Augment EMA Top-1
size rate epochs Augment Acc (%)
DeiT-T 2242224^{2} 1×1031\times 10^{-3} 5 9/0.5 72.2
DeiT-T 2242224^{2} 2×1032\times 10^{-3} 20 75.9
ParC-Net-S 2562256^{2} 1×1031\times 10^{-3} 5 9/0.5 78.6
ParC-Net-S 2562256^{2} 2×1032\times 10^{-3} 20 78.8
MogaNet-XT 2242224^{2} 1×1031\times 10^{-3} 5 7/0.5 76.5
MogaNet-XT 2242224^{2} 2×1032\times 10^{-3} 20 77.1
MogaNet-XT 2562256^{2} 1×1031\times 10^{-3} 5 7/0.5 77.2
MogaNet-XT 2562256^{2} 2×1032\times 10^{-3} 20 77.6
MogaNet-T 2242224^{2} 1×1031\times 10^{-3} 5 7/0.5 79.0
MogaNet-T 2242224^{2} 2×1032\times 10^{-3} 20 79.4
MogaNet-T 2562256^{2} 1×1031\times 10^{-3} 5 7/0.5 79.6
MogaNet-T 2562256^{2} 2×1032\times 10^{-3} 20 80.0
Table A7: Advanced training recipes for Lightweight models of MogaNet on ImageNet-1K.
Architecture Type #P. FLOPs RetinaNet 1×1\times
(M) (G) AP AP50 AP75 APS APM APL
RegNet-800M C 17 168 35.6 54.7 37.7 19.7 390 47.8
PVTV2-B0 T 13 160 37.1 57.2 39.2 23.4 40.4 49.2
MogaNet-XT C 12 167 39.7 60.0 42.4 23.8 43.6 51.7
ResNet-18 C 21 189 31.8 49.6 33.6 16.3 34.3 43.2
RegNet-1.6G C 20 185 37.4 56.8 39.8 22.4 41.1 49.2
RegNet-3.2G C 26 218 39.0 58.4 41.9 22.6 43.5 50.8
PVT-T T 23 183 36.7 56.9 38.9 22.6 38.8 50.0
PoolFormer-S12 T 22 207 36.2 56.2 38.2 20.8 39.1 48.0
PVTV2-B1 T 24 187 41.1 61.4 43.8 26.0 44.6 54.6
MogaNet-T C 14 173 41.4 61.5 44.4 25.1 45.7 53.6
ResNet-50 C 37 239 36.3 55.3 38.6 19.3 40.0 48.8
Swin-T T 38 245 41.8 62.6 44.7 25.2 45.8 54.7
PVT-S T 34 226 40.4 61.3 43.0 25.0 42.9 55.7
Twins-SVT-S T 34 209 42.3 63.4 45.2 26.0 45.5 56.5
Focal-T T 39 265 43.7 - - - - -
PoolFormer-S36 T 41 272 39.5 60.5 41.8 22.5 42.9 52.4
PVTV2-B2 T 35 281 44.6 65.7 47.6 28.6 48.5 59.2
CMT-S H 45 231 44.3 65.5 47.5 27.1 48.3 59.1
MogaNet-S C 35 253 45.8 66.6 49.0 29.1 50.1 59.8
ResNet-101 C 57 315 38.5 57.8 41.2 21.4 42.6 51.1
PVT-M T 54 258 41.9 63.1 44.3 25.0 44.9 57.6
Focal-S T 62 367 45.6 - - - - -
PVTV2-B3 T 55 263 46.0 67.0 49.5 28.2 50.0 61.3
PVTV2-B4 T 73 315 46.3 67.0 49.6 29.0 50.1 62.7
MogaNet-B C 54 355 47.7 68.9 51.0 30.5 52.2 61.7
ResNeXt-101-64 C 95 473 41.0 60.9 44.0 23.9 45.2 54.0
PVTV2-B5 T 92 335 46.1 66.6 49.5 27.8 50.2 62.0
MogaNet-L C 92 477 48.7 69.5 52.6 31.5 53.4 62.7
Table A8: Object detection with RetinaNet (1×1\times training schedule) on COCO val2017. The FLOPs are measured at resolution 800×1280800\times 1280.

Appendix D More Comparison Experiments

D.1 Fast Training on ImageNet-1K

In addition to Sec. 5.1, we further provide comparison results for 100 and 300 epochs training on ImageNet-1K. As for 100-epoch training, we adopt the original RSB A3 (Wightman et al., 2021) setting for all methods, which adopts LAMB (You et al., 2020) optimizer and a small training resolution of 1602160^{2}. We search the basic learning in {0.006,0.0080.006,0.008} for all architectures and adopt the gradient clipping for Transformer-based networks. As for 300-epoch training, we report results of RSB A2 (Wightman et al., 2021) for classical CNN or the original setting for Transformers or modern ConvNets. In Table A15, when compared with models of similar parameter size, our proposed MogaNet-XT/T/S/B achieves the best performance in both 100 and 300 epochs training. Results of 100-epoch training show that MogaNet has a faster convergence speed than previous architectures of various types. For example, MogaNet-T outperforms EfficientNet-B0 and DeiT-T by 2.4% and 8.7%, MogaNet-S outperforms Swin-T by 3.4%, and MogaNet-B outperforms Swin-S by 2.0%. Notice that ConvNeXt variants have a great convergence speed, e.g., ConvNeXt-S achieves 81.7% surpassing Swin-S by 1.5 and recently proposed ConvNet HorNet-S7×7 by 0.5 with similar parameters. But our proposed MogaNet convergences faster than ConvNet, e.g., MogaNet-S outperforms ConvNeXt-T by 2.3% with similar parameters while MogaNet-B/L reaching competitive performances as ConvNeXt-B/L with only 44\sim50% parameters.

Architecture Type #P. FLOPs Mask R-CNN 1×1\times
(M) (G) APb APb50{}_{50}^{b} APb75{}_{75}^{b} APm APm50{}_{50}^{m} APm75{}_{75}^{m}
RegNet-800M C 27 187 37.5 57.9 41.1 34.3 56.0 36.8
MogaNet-XT C 23 185 40.7 62.3 44.4 37.6 59.6 40.2
ResNet-18 C 31 207 34.0 54.0 36.7 31.2 51.0 32.7
RegNet-1.6G C 29 204 38.9 60.5 43.1 35.7 57.4 38.9
PVT-T T 33 208 36.7 59.2 39.3 35.1 56.7 37.3
PoolFormer-S12 T 32 207 37.3 59.0 40.1 34.6 55.8 36.9
MogaNet-T C 25 192 42.6 64.0 46.4 39.1 61.3 42.0
ResNet-50 C 44 260 38.0 58.6 41.4 34.4 55.1 36.7
RegNet-6.4G C 45 307 41.1 62.3 45.2 37.1 59.2 39.6
PVT-S T 44 245 40.4 62.9 43.8 37.8 60.1 40.3
Swin-T T 48 264 42.2 64.6 46.2 39.1 61.6 42.0
MViT-T T 46 326 45.9 68.7 50.5 42.1 66.0 45.4
PoolFormer-S36 T 32 207 41.0 63.1 44.8 37.7 60.1 40.0
Focal-T T 49 291 44.8 67.7 49.2 41.0 64.7 44.2
PVTV2-B2 T 45 309 45.3 67.1 49.6 41.2 64.2 44.4
LITV2-S T 47 261 44.9 67.0 49.5 40.8 63.8 44.2
CMT-S H 45 249 44.6 66.8 48.9 40.7 63.9 43.4
Conformer-S/16 H 58 341 43.6 65.6 47.7 39.7 62.6 42.5
Uniformer-S H 41 269 45.6 68.1 49.7 41.6 64.8 45.0
ConvNeXt-T C 48 262 44.2 66.6 48.3 40.1 63.3 42.8
FocalNet-T (SRF) C 49 267 45.9 68.3 50.1 41.3 65.0 44.3
FocalNet-T (LRF) C 49 268 46.1 68.2 50.6 41.5 65.1 44.5
MogaNet-S C 45 272 46.7 68.0 51.3 42.2 65.4 45.5
ResNet-101 C 63 336 40.4 61.1 44.2 36.4 57.7 38.8
RegNet-12G C 64 423 42.2 63.7 46.1 38.0 60.5 40.5
PVT-M T 64 302 42.0 64.4 45.6 39.0 61.6 42.1
Swin-S T 69 354 44.8 66.6 48.9 40.9 63.4 44.2
Focal-S T 71 401 47.4 69.8 51.9 42.8 66.6 46.1
PVTV2-B3 T 65 397 47.0 68.1 51.7 42.5 65.7 45.7
LITV2-M T 68 315 46.5 68.0 50.9 42.0 65.1 45.0
UniFormer-B H 69 399 47.4 69.7 52.1 43.1 66.0 46.5
ConvNeXt-S C 70 348 45.4 67.9 50.0 41.8 65.2 45.1
MogaNet-B C 63 373 47.9 70.0 52.7 43.2 67.0 46.6
Swin-B T 107 496 46.9 69.6 51.2 42.3 65.9 45.6
PVTV2-B5 T 102 557 47.4 68.6 51.9 42.5 65.7 46.0
ConvNeXt-B C 108 486 47.0 69.4 51.7 42.7 66.3 46.0
FocalNet-B (SRF) C 109 496 48.8 70.7 53.5 43.3 67.5 46.5
MogaNet-L C 102 495 49.4 70.7 54.1 44.1 68.1 47.6
Table A9: Object detection and instance segmentation with Mask R-CNN (1×1\times training schedule) on COCO val2017. The FLOPs are measured at resolution 800×1280800\times 1280.
Architecture Type #P. FLOPs Cascade Mask R-CNN +MS 3×3\times
(M) (G) APbb APb50{}_{50}^{b} APb75{}_{75}^{b} APm APm50{}_{50}^{m} APm75{}_{75}^{m}
ResNet-50 C 77 739 46.3 64.3 50.5 40.1 61.7 43.4
Swin-T T 86 745 50.4 69.2 54.7 43.7 66.6 47.3
Focal-T T 87 770 51.5 70.6 55.9 - - -
ConvNeXt-T C 86 741 50.4 69.1 54.8 43.7 66.5 47.3
FocalNet-T (SRF) C 86 746 51.5 70.1 55.8 44.6 67.7 48.4
MogaNet-S C 78 750 51.6 70.8 56.3 45.1 68.7 48.8
ResNet-101-32 C 96 819 48.1 66.5 52.4 41.6 63.9 45.2
Swin-S T 107 838 51.9 70.7 56.3 45.0 68.2 48.8
ConvNeXt-S C 108 827 51.9 70.8 56.5 45.0 68.4 49.1
MogaNet-B C 101 851 52.6 72.0 57.3 46.0 69.6 49.7
Swin-B T 145 982 51.9 70.5 56.4 45.0 68.1 48.9
ConvNeXt-B C 146 964 52.7 71.3 57.2 45.6 68.9 49.5
MogaNet-L C 140 974 53.3 71.8 57.8 46.1 69.2 49.8
Swin-L T 253 1382 53.9 72.4 58.8 46.7 70.1 50.8
ConvNeXt-L C 255 1354 54.8 73.8 59.8 47.6 71.3 51.7
ConvNeXt-XL C 407 1898 55.2 74.2 59.9 47.7 71.6 52.2
RepLKNet-31L C 229 1321 53.9 72.5 58.6 46.5 70.0 50.6
HorNet-L C 259 1399 56.0 - - 48.6 - -
MogaNet-XL C 238 1355 56.2 75.0 61.2 48.8 72.6 53.3
Table A10: Object detection and instance segmentation with Cascade Mask R-CNN (3×3\times training schedule) with multi-scaling training (MS) on COCO val2017. denotes the model is pre-trained on ImageNet-21K. The FLOPs are measured at resolution 800×1280800\times 1280.

D.2 Detection and Segmentation Results on COCO

In addition to Sec. 5.2, we provide full results of object detection and instance segmentation tasks with RetinaNet, Mask R-CNN, and Cascade Mask R-CNN on COCO. As shown in Table A8 and Table A9, RetinaNet or Mask R-CNN with MogaNet variants outperforms existing models when training 1×1\times schedule. For example, RetinaNet with MogaNet-T/S/B/L achieve 45.8/47.7/48.7 APb, outperforming PVT-T/S/M and PVTV2-B1/B2/B3/B5 by 4.7/4.6/5.8 and 0.3/1.2/1.7/2.6 APb; Nask R-CNN with MogaNet-S/B/L achieve 46.7/47.9/49.4 APb, exceeding Swin-T/S/B and ConvNeXt-T/S/B by 4.5/3.1/2.5 and 2.5/2.5/2.4 with similar parameters and computational overloads. Noticeably, MogaNet-XT/T can achieve better detection results with fewer parameters and lower FLOPs than lightweight architectures, while MogaNet-T even surpasses some Transformers like Swin-S and PVT-S. For example, Mask R-CNN with MogaNet-T improves Swin-T by 0.4 APb and outperforms PVT-S by 1.3 APm using only around 2/3 parameters. As shown in Table A10, Cascade Mask R-CNN with MogaNet variants still achieves the state-of-the-art detection and segmentation results when training 3×3\times schedule with multi-scaling (MS) and advanced augmentations. For example, MogaNet-L/XL yield 53.3/56.2 APb and 46.1/48.8 APm, which improves Swin-B/L and ConvNeXt-B/L by 1.4/2.3 and 0.6/1.4 APb with similar parameters and FLOPS.

D.3 Sementic Segmentation Results on ADE20K

In addition to Sec. 5.2, we provide comprehensive comparison results of semantic segmentation based on UperNet on ADE20K. As shown in Table A11, UperNet with MogaNet produces state-of-the-art performances in a wide range of parameter scales compared to famous Transformer, hybrid, and convolution models. As for the lightweight models, MogaNet-XT/T significantly improves ResNet-18/50 with fewer parameters and FLOPs budgets. As for medium-scaling models, MogaNet-S/B achieves 49.2/50.1 mIoUss, which outperforms the recently proposed ConvNets, e.g., +1.1 over HorNet-T using similar parameters and +0.7 over SLaK-S using 17M fewer parameters. As for large models, MogaNet-L/XL surpass Swin-B/L and ConvNeXt-B/L by 1.2/1.9 and 1.8/0.3 mIoUss while using fewer parameters.

Architecture Date Type Crop Param. FLOPs mIoUss
size (M) (G) (%)
ResNet-18 CVPR’2016 C 5122 41 885 39.2
MogaNet-XT Ours C 5122 30 856 42.2
ResNet-50 CVPR’2016 C 5122 67 952 42.1
MogaNet-T Ours C 5122 33 862 43.7
DeiT-S ICML’2021 T 5122 52 1099 44.0
Swin-T ICCV’2021 T 5122 60 945 46.1
TwinsP-S NIPS’2021 T 5122 55 919 46.2
Twins-S NIPS’2021 T 5122 54 901 46.2
Focal-T NIPS’2021 T 5122 62 998 45.8
Uniformer-Sh32 ICLR’2022 H 5122 52 955 47.0
UniFormer-S ICLR’2022 H 5122 52 1008 47.6
ConvNeXt-T CVPR’2022 C 5122 60 939 46.7
FocalNet-T (SRF) NIPS’2022 C 5122 61 944 46.5
HorNet-T7×7 NIPS’2022 C 5122 52 926 48.1
MogaNet-S Ours C 5122 55 946 49.2
Swin-S ICCV’2021 T 5122 81 1038 48.1
Twins-B NIPS’2021 T 5122 89 1020 47.7
Focal-S NIPS’2021 T 5122 85 1130 48.0
Uniformer-Bh32 ICLR’2022 H 5122 80 1106 49.5
ConvNeXt-S CVPR’2022 C 5122 82 1027 48.7
FocalNet-S (SRF) NIPS’2022 C 5122 83 1035 49.3
SLaK-S ICLR’2023 C 5122 91 1028 49.4
MogaNet-B Ours C 5122 74 1050 50.1
Swin-B ICCV’2021 T 5122 121 1188 49.7
Focal-B NIPS’2021 T 5122 126 1354 49.0
ConvNeXt-B CVPR’2022 C 5122 122 1170 49.1
RepLKNet-31B CVPR’2022 C 5122 112 1170 49.9
FocalNet-B (SRF) NIPS’2022 C 5122 124 1180 50.2
SLaK-B ICLR’2023 C 5122 135 1185 50.2
MogaNet-L Ours C 5122 113 1176 50.9
Swin-L ICCV’2021 T 6402 234 2468 52.1
ConvNeXt-L CVPR’2022 C 6402 245 2458 53.7
RepLKNet-31L CVPR’2022 C 6402 207 2404 52.4
MogaNet-XL Ours C 6402 214 2451 54.0
Table A11: Semantic segmentation with UperNet (160K) on ADE20K validation set. indicates using IN-21K pre-trained models. The FLOPs are measured at 512×2048512\times 2048 or 640×2560640\times 2560 resolutions.
Architecture Hand Face
Type #P. FLOPs PA-MPJPE #P. FLOPs 3DRMSE
(M) (G) (mm)\downarrow (M) (G) \downarrow
MobileNetV2 C 4.8 0.3 8.33 4.9 0.4 2.64
ResNet-18 C 13.0 1.8 7.51 13.1 2.4 2.40
MogaNet-T C 6.5 1.1 6.82 6.6 1.5 2.36
ResNet-50 C 26.9 4.1 6.85 27.0 5.4 2.48
ResNet-101 C 45.9 7.9 6.44 46.0 10.3 2.47
DeiT-S T 23.4 4.3 7.86 23.5 5.5 2.52
Swin-T T 30.2 4.6 6.97 30.3 6.1 2.45
Swin-S T 51.0 13.8 6.50 50.9 8.5 2.48
ConvNeXt-T C 29.9 4.5 6.18 30.0 5.8 2.34
ConvNeXt-S C 51.5 8.7 6.04 51.6 11.4 2.27
HorNet-T C 23.7 4.3 6.46 23.8 5.6 2.39
MogaNet-S C 26.6 5.0 6.08 26.7 6.5 2.24
Table A12: 3D human pose estimation with ExPose on FFHQ and FreiHAND datasets. The face and hand tasks use pre-vertex and pre-joint errors as the metric. The FLOPs of the face and hand tasks are measured with input images at 2562256^{2} and 2242224^{2} resolutions.

D.4 2D Human Pose Estimation Results on COCO

In addition to Sec. 5.2, we provide comprehensive experiment results of 2D human key points estimation based on Top-Down SimpleBaseline on COCO. As shown in Table A13, MogaNet variants achieve competitive or state-of-the-art performances compared to popular architectures with two types of resolutions. As for lightweight models, MogaNet-XT/T significantly improves the performances of existing models while using similar parameters and FLOPs. Meanwhile, MogaNet-S/B also produces 74.9/75.3 and 76.4/77.3 AP using 256×192256\times 192 and 384×288384\times 288 resolutions, outperforming Swin-B/L by 2.0/1.0 and 1.5/1.0 AP with nearly half of the parameters and computation budgets.

Architecture Type Crop #P. FLOPs AP AP50 AP75 AR
size (M) (G) (%) (%) (%) (%)
MobileNetV2 C 256×192256\times 192 10 1.6 64.6 87.4 72.3 70.7
ShuffleNetV2 2×2\times C 256×192256\times 192 8 1.4 59.9 85.4 66.3 66.4
MogaNet-XT C 256×192256\times 192 6 1.8 72.1 89.7 80.1 77.7
RSN-18 C 256×192256\times 192 9 2.3 70.4 88.7 77.9 77.1
MogaNet-T C 256×192256\times 192 8 2.2 73.2 90.1 81.0 78.8
ResNet-50 C 256×192256\times 192 34 5.5 72.1 89.9 80.2 77.6
HRNet-W32 C 256×192256\times 192 29 7.1 74.4 90.5 81.9 78.9
Swin-T T 256×192256\times 192 33 6.1 72.4 90.1 80.6 78.2
PVT-S T 256×192256\times 192 28 4.1 71.4 89.6 79.4 77.3
PVTV2-B2 T 256×192256\times 192 29 4.3 73.7 90.5 81.2 79.1
Uniformer-S H 256×192256\times 192 25 4.7 74.0 90.3 82.2 79.5
ConvNeXt-T C 256×192256\times 192 33 5.5 73.2 90.0 80.9 78.8
MogaNet-S C 256×192256\times 192 29 6.0 74.9 90.7 82.8 80.1
ResNet-101 C 256×192256\times 192 53 12.4 71.4 89.3 79.3 77.1
ResNet-152 C 256×192256\times 192 69 15.7 72.0 89.3 79.8 77.8
HRNet-W48 C 256×192256\times 192 64 14.6 75.1 90.6 82.2 80.4
Swin-B T 256×192256\times 192 93 18.6 72.9 89.9 80.8 78.6
Swin-L T 256×192256\times 192 203 40.3 74.3 90.6 82.1 79.8
Uniformer-B H 256×192256\times 192 54 9.2 75.0 90.6 83.0 80.4
ConvNeXt-S C 256×192256\times 192 55 9.7 73.7 90.3 81.9 79.3
ConvNeXt-B C 256×192256\times 192 94 16.4 74.0 90.7 82.1 79.5
MogaNet-B C 256×192256\times 192 47 10.9 75.3 90.9 83.3 80.7
MobileNetV2 C 384×288384\times 288 10 3.6 67.3 87.9 74.3 72.9
ShuffleNetV2 2×2\times C 384×288384\times 288 8 3.1 63.6 86.5 70.5 69.7
MogaNet-XT C 384×288384\times 288 6 4.2 74.7 90.1 81.3 79.9
RSN-18 C 384×288384\times 288 9 5.1 72.1 89.5 79.8 78.6
MogaNet-T C 384×288384\times 288 8 4.9 75.7 90.6 82.6 80.9
HRNet-W32 C 384×288384\times 288 29 16.0 75.8 90.6 82.7 81.0
Uniformer-S H 384×288384\times 288 25 11.1 75.9 90.6 83.4 81.4
ConvNeXt-T C 384×288384\times 288 33 33.1 75.3 90.4 82.1 80.5
MogaNet-S C 384×288384\times 288 29 13.5 76.4 91.0 83.3 81.4
ResNet-152 C 384×288384\times 288 69 35.6 74.3 89.6 81.1 79.7
HRNet-W48 C 384×288384\times 288 64 32.9 76.3 90.8 82.0 81.2
Swin-B T 384×288384\times 288 93 39.2 74.9 90.5 81.8 80.3
Swin-L T 384×288384\times 288 203 86.9 76.3 91.2 83.0 814
HRFormer-B T 384×288384\times 288 54 30.7 77.2 91.0 83.6 82.0
ConvNeXt-S C 384×288384\times 288 55 21.8 75.8 90.7 83.1 81.0
ConvNeXt-B C 384×288384\times 288 94 36.6 75.9 90.6 83.1 81.1
Uniformer-B C 384×288384\times 288 54 14.8 76.7 90.8 84.0 81.4
MogaNet-B C 384×288384\times 288 47 24.4 77.3 91.4 84.0 82.2
Table A13: 2D human pose estimation with Top-Down SimpleBaseline on COCO val2017. The FLOPs are measured at 256×192256\times 192 or 384×288384\times 288 resolutions.

D.5 3D Human Pose Estimation Results

In addition to Sec. 5.2, we evaluate popular ConvNets and MogaNet for 3D human pose estimation tasks based on ExPose (Choutas et al., 2020). As shown in Table A12, MogaNet achieves lower regression errors with efficient usage of parameters and computational overheads. Compared to lightweight architectures, MogaNet-T achieves 6.82 MPJPE and 2.36 3DRMSE on hand and face reconstruction tasks, improving ResNet-18 and MobileNetV2 1×1\times by 1.29/0.04 and 1.51/0.28. Compared to models around 25\sim50M parameters, MogaNet-S surpasses ResNet-101 and ConvNeXt-T, achieving competitive results as ConvNeXt-S with relatively smaller parameters and FLOPs (e.g., 27M/6.5G vs 52M/11.4G on FFHP). Notice that some backbones with more parameters produce worse results than their lightweight variants on the face estimation tasks (e.g., ResNet-50 and Swin-S), while MogaNet-S still yields the better performance of 2.24 3DRMSE.

D.6 Video Prediction Results on Moving MNIST

In addition to Sec. 5.2, We verify video prediction performances of various architectures by replacing the hidden translator in SimVP with the architecture blocks. All models use the same number of network blocks and have similar parameters and FLOPs. As shown in Table A14, Compared to Transformer-based and Metaformer-based architectures, pure ConvNets usually achieve lower prediction errors. When training 200 epochs, it is worth noticing that using MogaNet blocks in SimVP significantly improves the SimVP baseline by 6.58/13.86 MSE/MAE and outperforms ConvNeXt and HorNet by 1.37 and 4.07 MSE. MogaNet also holds the best performances in the extended 2000-epoch training setting.

Architecture #P. FLOPs FPS 200 epochs 2000 epochs
(M) (G) (s) MSE\downarrow MAE\downarrow SSIM\uparrow MSE\downarrow MAE\downarrow SSIM\uparrow
ViT 46.1 16.9 290 35.15 95.87 0.9139 19.74 61.65 0.9539
Swin 46.1 16.4 294 29.70 84.05 0.9331 19.11 59.84 0.9584
Uniformer 44.8 16.5 296 30.38 85.87 0.9308 18.01 57.52 0.9609
MLP-Mixer 38.2 14.7 334 29.52 83.36 0.9338 18.85 59.86 0.9589
ConvMixer 3.9 5.5 658 32.09 88.93 0.9259 22.30 67.37 0.9507
Poolformer 37.1 14.1 341 31.79 88.48 0.9271 20.96 64.31 0.9539
SimVP 58.0 19.4 209 32.15 89.05 0.9268 21.15 64.15 0.9536
ConvNeXt 37.3 14.1 344 26.94 77.23 0.9397 17.58 55.76 0.9617
VAN 44.5 16.0 288 26.10 76.11 0.9417 16.21 53.57 0.9646
HorNet 45.7 16.3 287 29.64 83.26 0.9331 17.40 55.70 0.9624
MogaNet 46.8 16.5 255 25.57 75.19 0.9429 15.67 51.84 0.9661
Table A14: Video prediction with SimVP on Moving MNIST. The FLOPs and FPS are measured at the input tensor of 10×1×64×6410\times 1\times 64\times 64 on an NVIDIA Tesla V100 GPU.
Architecture Date Type Param. 100-epoch 300-epoch
(M) Train Test Acc (%) Train Test Acc (%)
ResNet-18 (He et al., 2016) CVPR’2016 C 12 1602 2242 68.2 2242 2242 70.6
ResNet-34 (He et al., 2016) CVPR’2016 C 22 1602 2242 73.0 2242 2242 75.5
ResNet-50 (He et al., 2016) CVPR’2016 C 26 1602 2242 78.1 2242 2242 79.8
ResNet-101 (He et al., 2016) CVPR’2016 C 45 1602 2242 79.9 2242 2242 81.3
ResNet-152 (He et al., 2016) CVPR’2016 C 60 1602 2242 80.7 2242 2242 82.0
ResNet-200 (He et al., 2016) CVPR’2016 C 65 1602 2242 80.9 2242 2242 82.1
ResNeXt-50 (Xie et al., 2017) CVPR’2017 C 25 1602 2242 79.2 2242 2242 80.4
SE-ResNet-50 (Hu et al., 2018) CVPR’2018 C 28 1602 2242 77.0 2242 2242 80.1
EfficientNet-B0 (Tan & Le, 2019) ICML’2019 C 5 1602 2242 73.0 2242 2242 77.1
EfficientNet-B1 (Tan & Le, 2019) ICML’2019 C 8 1602 2242 74.9 2402 2402 79.4
EfficientNet-B2 (Tan & Le, 2019) ICML’2019 C 9 1922 2562 77.5 2602 2602 80.1
EfficientNet-B3 (Tan & Le, 2019) ICML’2019 C 12 2242 2882 79.2 3002 3002 81.4
EfficientNet-B4 (Tan & Le, 2019) ICML’2019 C 19 3202 3802 81.2 3802 3802 82.4
RegNetY-800MF (Radosavovic et al., 2020) CVPR’2020 C 6 1602 2242 73.8 2242 2242 76.3
RegNetY-4GF (Radosavovic et al., 2020) CVPR’2020 C 21 1602 2242 79.0 2242 2242 79.4
RegNetY-8GF (Radosavovic et al., 2020) CVPR’2020 C 39 1602 2242 81.1 2242 2242 79.9
RegNetY-16GF (Radosavovic et al., 2020) CVPR’2020 C 84 1602 2242 81.7 2242 2242 80.4
EfficientNetV2-rw-S (Tan & Le, 2021) ICML’2021 C 24 2242 2882 80.9 2882 3842 82.9
EfficientNetV2-rw-M (Tan & Le, 2021) ICML’2021 C 53 2562 3842 82.3 3202 3842 81.9
ViT-T (Dosovitskiy et al., 2021) ICLR’2021 T 6 1602 2242 66.7 2242 2242 72.2
ViT-S (Dosovitskiy et al., 2021) ICLR’2021 T 22 1602 2242 73.8 2242 2242 79.8
ViT-B (Dosovitskiy et al., 2021) ICLR’2021 T 86 1602 2242 76.0 2242 2242 81.8
PVT-T (Wang et al., 2021b) ICCV’2021 T 13 1602 2242 71.5 2242 2242 75.1
PVT-S (Wang et al., 2021b) ICCV’2021 T 25 1602 2242 72.1 2242 2242 79.8
Swin-T (Liu et al., 2021) ICCV’2021 T 28 1602 2242 77.7 2242 2242 81.3
Swin-S (Liu et al., 2021) ICCV’2021 T 50 1602 2242 80.2 2242 2242 83.0
Swin-S (Liu et al., 2021) ICCV’2021 T 50 1602 2242 80.5 2242 2242 83.5
LITV2-T (Pan et al., 2022a) NIPS’2022 T 28 1602 2242 79.7 2242 2242 82.0
LITV2-M (Pan et al., 2022a) NIPS’2022 T 49 1602 2242 80.5 2242 2242 83.3
LITV2-B (Pan et al., 2022a) NIPS’2022 T 87 1602 2242 81.3 2242 2242 83.6
ConvMixer-768-d32 (Trockman & Kolter, 2022) arXiv’2022 T 21 1602 2242 77.6 2242 2242 80.2
PoolFormer-S12 (Yu et al., 2022) CVPR’2022 T 12 1602 2242 69.3 2242 2242 77.2
PoolFormer-S24 (Yu et al., 2022) CVPR’2022 T 21 1602 2242 74.1 2242 2242 80.3
PoolFormer-S36 (Yu et al., 2022) CVPR’2022 T 31 1602 2242 74.6 2242 2242 81.4
PoolFormer-M36 (Yu et al., 2022) CVPR’2022 T 56 1602 2242 80.7 2242 2242 82.1
PoolFormer-M48 (Yu et al., 2022) CVPR’2022 T 73 1602 2242 81.2 2242 2242 82.5
ConvNeXt-T (Liu et al., 2022b) CVPR’2022 C 29 1602 2242 78.8 2242 2242 82.1
ConvNeXt-S (Liu et al., 2022b) CVPR’2022 C 50 1602 2242 81.7 2242 2242 83.1
ConvNeXt-B (Liu et al., 2022b) CVPR’2022 C 89 1602 2242 82.1 2242 2242 83.8
ConvNeXt-L (Liu et al., 2022b) CVPR’2022 C 189 1602 2242 82.8 2242 2242 84.3
ConvNeXt-XL (Liu et al., 2022b) CVPR’2022 C 350 1602 2242 82.9 2242 2242 84.5
HorNet-T7×7 (Rao et al., 2022) NIPS’2022 C 22 1602 2242 80.1 2242 2242 82.8
HorNet-S7×7 (Rao et al., 2022) NIPS’2022 C 50 1602 2242 81.2 2242 2242 84.0
VAN-B0 (Guo et al., 2023) CVMJ’2023 C 4 1602 2242 72.6 2242 2242 75.8
VAN-B2 (Guo et al., 2023) CVMJ’2023 C 27 1602 2242 81.0 2242 2242 82.8
VAN-B3 (Guo et al., 2023) CVMJ’2023 C 45 1602 2242 81.9 2242 2242 83.9
MogaNet-XT Ours C 3 1602 2242 72.8 2242 2242 76.5
MogaNet-T Ours C 5 1602 2242 75.4 2242 2242 79.0
MogaNet-S Ours C 25 1602 2242 81.1 2242 2242 83.4
MogaNet-B Ours C 44 1602 2242 82.2 2242 2242 84.3
MogaNet-L Ours C 83 1602 2242 83.2 2242 2242 84.7
Table A15: ImageNet-1K classification performance of tiny to medium size models (5\sim50M) training 100 and 300 epochs. RSB A3 (Wightman et al., 2021) setting is used for 100-epoch training of all methods. As for 300-epoch results, the RSB A2 (Wightman et al., 2021) setting is used for ResNet, ResNeXt, SE-ResNet, EfficientNet, and EfficientNetV2 as reproduced in timm (Wightman et al., 2021), while other methods adopt settings in their original paper.

Appendix E Extensive Related Work

Convolutional Neural Networks

ConvNets (LeCun et al., 1998; Krizhevsky et al., 2012; He et al., 2016) have dominated a wide range of computer vision (CV) tasks for decades. VGG (Simonyan & Zisserman, 2014) proposes a modular network design strategy, stacking the same type of blocks repeatedly, which simplifies both the design workflow and transfer learning for downstream tasks. ResNet (He et al., 2016) introduces identity skip connections and bottleneck modules that alleviate training difficulties (e.g., vanishing gradient). With the desired properties, ResNet and its variants (Zagoruyko & Komodakis, 2016; Xie et al., 2017; Hu et al., 2018; Zhang et al., 2022a) have become the most widely adopted ConvNet architectures in numerous CV applications. For practical usage, efficient models (Ma et al., 2018; Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019; Tan & Le, 2019; Radosavovic et al., 2020) are designed for a complexity-accuracy trade-off and hardware devices. Since the limited reception fields, spatial and temporal convolutions struggle to capture global dependency (Luo et al., 2016). Various spatial-wise or channel-wise attention strategies (Dai et al., 2017; Hu et al., 2018; Wang et al., 2018; Woo et al., 2018; Cao et al., 2019) are introduced. Recently, taking the merits of Transformer-like macro design (Dosovitskiy et al., 2021), modern ConvNets (Trockman & Kolter, 2022; Ding et al., 2022b; Liu et al., 2023; Rao et al., 2022; Kirchmeyer & Deng, 2023) show thrilling performance with large depth-wise convolutions (Han et al., 2021b) for global contextual features. Among them, VAN (Guo et al., 2023), FocalNet (Yang et al., 2022), HorNet (Rao et al., 2022), and Conv2Former (Hou et al., 2022) exploit multi-scale convolutional kernels with gating operations. However, these methods fail to ensure the networks learn the inherently overlooked features (Deng et al., 2022) and achieve ideal contextual aggregation. Unlike the previous works, we first design three groups of multi-order depth-wise convolutions in parallel followed by a double-branch activated gating operation, and then propose a channel aggregation module to enforce the network to learn informative features of various interaction scales.

Vision Transformers

Transformer (Vaswani et al., 2017) with self-attention mechanism has become the mainstream choice in natural language processing (NLP) community (Devlin et al., 2018; Brown et al., 2020). Considering that global information is also essential for CV tasks, Vision Transformer (ViT) (Dosovitskiy et al., 2021) is proposed and has achieved promising results on ImageNet (Deng et al., 2009). In particular, ViT splits raw images into non-overlapping fixed-size patches as visual tokens to capture long-range feature interactions among these tokens by self-attention. By introducing regional inductive bias, ViT and its variants have been extended to various vision tasks Carion et al. (2020); Zhu et al. (2021); Chen et al. (2021); Parmar et al. (2018); Jiang et al. (2021a); Arnab et al. (2021). Equipped with advanced training strategies (Touvron et al., 2021a; 2022) or extra knowledge (Jiang et al., 2021b; Lin et al., 2022; Wu et al., 2022c), pure ViTs can achieve competitive performance as ConvNets in CV tasks. In the literature of Yu et al. (2022), the MetaFormer architecture substantially influenced the design of vision backbones, and all Transformer-like models (Touvron et al., 2021a; Trockman & Kolter, 2022; Wang et al., 2022a) are classified by how they treat the token-mixing approaches, such as relative position encoding (Wu et al., 2021b), local window shifting (Liu et al., 2021) and MLP layer (Tolstikhin et al., 2021), etc. Beyond the aspect of macro design, Touvron et al. (2021b); Yuan et al. (2021a) introduced knowledge distillation and progressive tokenization to boost training data efficiency. Compared to ConvNets banking on the inherent inductive biases (e.g., locality and translation equivariance), the pure ViTs are more over-parameterized and rely on large-scale pre-training (Dosovitskiy et al., 2021; Bao et al., 2022; He et al., 2022; Li et al., 2023; Woo et al., 2023) to a great extent. Targeting this problem, one branch of researchers proposes lightweight ViTs (Xiao et al., 2021; Mehta & Rastegari, 2022; Li et al., 2022c; Chen et al., 2023) with more efficient self-attentions variants (Wang et al., 2021a). Meanwhile, the incorporation of self-attention and convolution as a hybrid backbone has been vigorously studied (Guo et al., 2022; Wu et al., 2021a; Dai et al., 2021; d’Ascoli et al., 2021; Li et al., 2022a; Pan et al., 2022b; Si et al., 2022) for imparting regional priors to ViTs.