This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Moduli Spaces of Sheaves on General Blow-ups of 2\mathbb{P}^{2}

Junyan Zhao
Abstract

Let XX be the blow-up of 2\mathbb{P}^{2} along mm general points, and A=HεiEiA=H-\sum\varepsilon_{i}E_{i} be a generic polarization with 0<εi10<\varepsilon_{i}\ll 1. We classify the Chern characters which satisfy the weak Brill-Noether property, i.e. a general sheaf in MA(𝐯)M_{A}({\bf{v}}), the moduli space of slope stable sheaves with Chern character 𝐯{\bf{v}}, has at most one non-zero cohomology. We further give a necessary and sufficient condition for the existence of stable sheaves. Our strategy is to specialize to the case when the mm points are collinear.

1 Introduction

Let XX be a complex smooth projective surface with an ample \mathbb{R}-divisor AA, and MX,A(𝐯)M_{X,A}({\bf{v}}) be the moduli space of Gieseker AA-semistable sheaves of character 𝐯{\bf{v}}. Among all the fundamental problems about moduli spaces of sheaves, there are two extremely interesting ones:

  1. (1)

    compute the cohomology of a general element in an irreducible component of MX,A(𝐯)M_{X,A}({\bf{v}}), and

  2. (2)

    classify the Chern characters 𝐯{\bf{v}} for which MX,A(𝐯)M_{X,A}({\bf{v}}) is non-empty.

In this paper, we classify the non-special characters and stable characters on the blow-up of 2\mathbb{P}^{2} along mm general points by specializing to the case of mm collinear points and applying results from deformation theory.

1.1 Prioritary sheaves

In contrast to (semi)stable sheaves, the families of prioritary sheaves are easier to construct. Let DD be an effective divisor on XX. A torsion-free coherent sheaf \mathcal{E} on XX is called DD-prioritary if

Ext2(,(D))=0.\operatorname{Ext}^{2}(\mathcal{E},\mathcal{E}(-D))=0.

For a character 𝐯K(X){\bf{v}}\in K(X)_{\mathbb{Q}}, let 𝒫D(𝐯)Coh(𝐯)\mathcal{P}_{D}({\bf{v}})\subseteq\operatorname{Coh}({\bf{v}}) be the open substack of DD-prioritary sheaves. If XX is some blow-up of 2\mathbb{P}^{2} with an exceptional divisor EE and a fibre F:=HEF:=H-E, where HH is the pullback of a hyperplane section on 2\mathbb{P}^{2}, then stack 𝒫F(𝐯)\mathcal{P}_{F}({\bf{v}}) of FF-prioritary sheaves is irreducible by a theorem of Walter [Wal98]. Let EiE_{i} be the exceptional divisors. It is natural to take the polarization AA to be HεiEiH-\sum\varepsilon_{i}E_{i} with 0<εi10<\varepsilon_{i}\ll 1. Then every μA\mu_{A}-semistable sheaf is automatically HH-prioritary. Therefore, if MX,A(𝐯)M_{X,A}({\bf{v}}) is nonempty, then it is an open dense substack of 𝒫H(𝐯)\mathcal{P}_{H}({\bf{v}}). We prove the following result.

Theorem 1.1.

(Proposition 4.3) Let XX be the blow-up of 2\mathbb{P}^{2} along mm collinear points. Let 𝐯=(r,c1,Δ){\bf{v}}=(r,c_{1},\Delta) be a Chern character such that r2r\geq 2 and Δ0\Delta\geq 0. Then the stack 𝒫X,F(𝐯)\mathcal{P}_{X,F}({\bf{v}}) is non-empty, and a general sheaf \mathcal{E} parameterized by 𝒫X,F(𝐯)\mathcal{P}_{X,F}({\bf{v}}) admits a resolution of the form

0𝒪X(2H+D)α𝒪X(H+D)βsi=1m𝒪X(Ei+D)γi𝒪X(D)δ0,0\longrightarrow\mathcal{O}_{X}(-2H+D)^{\alpha}\oplus\mathcal{O}_{X}(-H+D)^{\beta}\stackrel{{\scriptstyle s}}{{\longrightarrow}}\bigoplus_{i=1}^{m}\mathcal{O}_{X}(-E_{i}+D)^{\gamma_{i}}\oplus\mathcal{O}_{X}(D)^{\delta}\longrightarrow\mathcal{E}\longrightarrow 0,

or

0𝒪X(2H+D)αs𝒪X(H+D)βi=1m𝒪X(Ei+D)γi𝒪X(D)δ00\longrightarrow\mathcal{O}_{X}(-2H+D)^{\alpha}\stackrel{{\scriptstyle s}}{{\longrightarrow}}\mathcal{O}_{X}(-H+D)^{\beta}\oplus\bigoplus_{i=1}^{m}\mathcal{O}_{X}(-E_{i}+D)^{\gamma_{i}}\oplus\mathcal{O}_{X}(D)^{\delta}\longrightarrow\mathcal{E}\longrightarrow 0

for some divisor DD. In particular, the stack MX,A(𝐯)M_{X,A}({\bf{v}}) is unirational when it is non-empty.

1.2 Higher rank Brill-Noether theory

The higher rank Brill-Noether theory aims to classify non-special Chern characters (Definition 1.2) on a polarized surface (X,A)(X,A). The applications have been found in classifying globally generated Chern characters ([CH18b]), describing effective cones of moduli spaces ([Hui16][CHW17]), and classifying Chern characters with non-empty moduli spaces MX,A(𝐯)M_{X,A}({\bf{v}}) ([CH21]).

The classification of non-special Chern characters was worked out for 2\mathbb{P}^{2} in [GH94], and for Hirzebruch surfaces, including 1×1\mathbb{P}^{1}\times\mathbb{P}^{1} and 𝔽1\mathbb{F}_{1}, in [CH18b]. For del Pezzo surfaces and arbitrary blow-ups, partial results were obtained in [CH20] under the condition that the Chern character 𝐯{\bf{v}} satisfies χ(𝐯)=0\chi({\bf{v}})=0. For del Pezzo surfaces of degree 4\geq 4, a classification of all non-special Chern characters is given in [LZ19]. In this paper, we classify the Chern characters for the blow-ups of 2\mathbb{P}^{2} along mm general points which satisfies the weak Brill-Noether property.

Definition 1.2.

We say that the moduli space MX,A(𝐯)M_{X,A}({\bf{v}}) (resp. the moduli stack 𝒫H(𝐯)\mathcal{P}_{H}({\bf{v}})) satisfies the weak Brill-Noether property (or is non-special) if there exists a sheaf MX,A(𝐯)\mathcal{E}\in M_{X,A}({\bf{v}}) (resp. 𝒫H(𝐯)\mathcal{E}\in\mathcal{P}_{H}({\bf{v}})) such that Hi(X,)0H^{i}(X,\mathcal{E})\neq 0 for at most one ii. In this case, we also say that the character 𝐯{\bf{v}} satisfies the weak Brill-Noether property (or is non-special).

Let XX be the blow-up of 2\mathbb{P}^{2} along mm distinct points p1,,pmp_{1},...,p_{m}, and E1,,EmE_{1},...,E_{m} be the corresponding exceptional divisors. When p1,,pmp_{1},...,p_{m} are collinear, we have the following.

Theorem 1.3.

(Theorem 4.7) Let XX be the blow-up of 2\mathbb{P}^{2} along mm collinear points. Let 𝐯=(r,ν,Δ){\bf{v}}=(r,\nu,\Delta) be a Chern character such that r(𝐯)2r({\bf{v}})\geq 2, and Δ0\Delta\geq 0. Write ν=aHbiEi\nu=aH-\sum b_{i}E_{i}, and define ν:=aHbi>0biEi\nu^{\prime}:=aH-\sum_{b_{i}>0}b_{i}E_{i}. If ν\nu satisfies that (ν.Ei)1(\nu.E_{i})\geq-1 and (ν.L)1(\nu^{\prime}.L)\geq-1, then a general sheaf parameterized by 𝒫F1,,Fm,H(𝐯)\mathcal{P}_{F_{1},...,F_{m},H}({\bf{v}}) is non-special.

We will see in Section 9 that stable sheaves can deform to nearby surfaces. Applying the semicontinuity of the dimensions of cohomology groups, one obtains the following result on general blow-ups.

Theorem 1.4.

(Theorem 7.4) Let 𝐯=(r,ν,Δ){\bf{v}}=(r,\nu,\Delta) be a character such that ν(𝐯)=αHβiEi\nu({\bf{v}})=\alpha H-\sum\beta_{i}E_{i} with 1βi0-1\leq\beta_{i}\leq 0, αβi1\alpha-\sum\beta_{i}\geq-1, and Δ(𝐯)0\Delta({\bf{v}})\geq 0. Let A=HεiEiA=H-\sum\varepsilon_{i}E_{i} be a polarization on the blow-up of 2\mathbb{P}^{2} along mm general points with 0<εi10<\varepsilon_{i}\ll 1. Let Xh0X_{h_{0}} be the blow-up of 2\mathbb{P}^{2} along mm collinear points, and XhX_{h} be the blow-up of 2\mathbb{P}^{2} along mm general points. If M𝒳h0,A(𝐯)M_{\mathcal{X}_{h_{0}},A}({\bf{v}}) is non-empty, then 𝐯{\bf{v}} is a character on 𝒳h\mathcal{X}_{h} satisfying the weak Brill-Noether property.

1.3 Exceptional sheaves

Recall that an exceptional bundle is a simple vector bundle \mathcal{E} with Exti(,)=0\operatorname{Ext}^{i}(\mathcal{E},\mathcal{E})=0 for i>0i>0. On 2\mathbb{P}^{2}, there is a beautiful description of the Chern characters of exceptional bundles [LP97]. When XX is a del Pezzo surface, it is known that every torsion-free exceptional sheaf is locally free, constructible (see Definition 6.9) and stable with respect to the anticanonical polarization. See [KO95] for a thorough study of exceptional objects on del Pezzo surfaces.

On the blow-up of 2\mathbb{P}^{2} along mm distinct points, we don’t know whether there are non-constructible exceptional bundles. However, we still have the following result on the stability of constructible ones.

Theorem 1.5.

(Theorem 5.2) Let XX be the blow-up of 2\mathbb{P}^{2} along mm distinct collinear points, and A=HεiEiA=H-\sum\varepsilon_{i}E_{i} with 0<εi10<\varepsilon_{i}\ll 1 a generic polarization. If \mathcal{E} is a constructible exceptional bundle, then it is μA\mu_{A}-stable.

1.4 Existence of stable sheaves

On 2\mathbb{P}^{2}, the existence of stable sheaves is controlled by the exceptional bundles. Drézet and Le Potier construct a function δ:\delta:\mathbb{R}\rightarrow\mathbb{R} whose graph in the (μ,Δ)(\mu,\Delta)-plane, which completely determines when MH(𝐯)M_{H}({\bf{v}}) is nonempty. If (μ(𝐯),δ(𝐯))(\mu({\bf{v}}),\delta({\bf{v}})) lies above the graph of δ\delta, then MH(𝐯)M_{H}({\bf{v}}) is nonempty. Otherwise, MH(𝐯)M_{H}({\bf{v}}) is empty or 𝐯{\bf{v}} is semi-exceptional. See [DLP85] and [LP97] for the argument and [CH21] for a figurative illustration. The classification of semistable characters on 1×1\mathbb{P}^{1}\times\mathbb{P}^{1} is worked out in [Rud94]. For Hirzebruch surfaces and generic polarizations, the classification of non-empty moduli spaces is worked out by [CH21]. The existence theorems for del Pezzo surfaces of degree 3\geq 3 with the anti-canonical polarization is given by [LZ19].

As a consequence of the classification on 2\mathbb{P}^{2}, we are able to construct a family of stable bundles on general blow-ups of 2\mathbb{P}^{2} by analyzing the special blow-up along collinear points. We define the weak DL-condition for a Chern character 𝐯{\bf{v}} in Section 8. Roughly speaking, it means that for a constructible exceptional bundle \mathcal{E} whose slope is close to the slope of 𝐯{\bf{v}}, the Euler characteristic χ(𝐯,)\chi({\bf{v}},\mathcal{E}) or χ(,𝐯)\chi(\mathcal{E},{\bf{v}}) has the expected sign.

Theorem 1.6.

(Theorem 7.3) Let XX be the blow-up of 2\mathbb{P}^{2} along mm general points, A=HεiEiA=H-\sum\varepsilon_{i}E_{i} be a polarization with 0<εi10<\varepsilon_{i}\ll 1, and 𝐯=(r,ν,Δ){\bf{v}}=(r,\nu,\Delta) be a character such that ν(𝐯)=αHβiEi\nu({\bf{v}})=\alpha H-\sum\beta_{i}E_{i} with 1βi0-1\leq\beta_{i}\leq 0 and Δ(𝐯)0\Delta({\bf{v}})\geq 0. Suppose that α\alpha\notin\mathfrak{C}, where \mathfrak{C} is the set of HH-slopes on 2\mathbb{P}^{2} of exceptional bundles. If 𝐯{\bf{v}} satisfies the weak DL-condition, then MX,A(𝐯)M_{X,A}({\bf{v}})\neq\emptyset.

1.5 The organization of the paper

In Section 2, we recall the preliminary facts needed in the rest of the paper. In Section 3, we study the basic properties of the blow-up of 2\mathbb{P}^{2}, especially the cohomology of line bundles.

Section 4 compiles some useful properties and constructions of special prioritary sheaves. We construct a family of prioritary sheaves and characterize Chern characters on the blow-up of 2\mathbb{P}^{2} along distinct collinear points that satisfy the weak Brill-Noether property. In Section 5, we prove the stability of constructible exceptional bundles, which is crucial in the classification of stable Chern characters.

In sections 6, we define a sharp Bogomolov function and determine its basic properties. We primarily concentrate on the characters on the blow-up of 2\mathbb{P}^{2} along collinear points. In this case, we study the stability of sheaves with respect to generic polarization in detail. In Section 7, using deformation theory, we generalize our results to general blow-ups of 2\mathbb{P}^{2}.

Finally, in Section 8, we compute its ample cone of the Hilbert scheme of points on the blow-up of 2\mathbb{P}^{2} along distinct collinear points.  

Acknowledgements The author is greatly indebted to his advisor, Izzet Coskun, for suggesting the problem and many stimulating conversations. The author would also like to thank Lawrence Ein, Benjamin Gould, Shizhuo Zhang, Yeqin Liu, Sixuan Lou for helpful discussions and suggestions.

2 Preliminaries

Convention.

By a surface, we mean a connected smooth projective algebraic surface over \mathbb{C}. All sheaves are coherent unless specified. For a surface XX and coherent sheaves \mathcal{E} and \mathcal{F}, we write hi(X,)=dimHi(X,)h^{i}(X,\mathcal{E})=\dim H^{i}(X,\mathcal{E}), hom(,)=dimHom(,)\hom(\mathcal{E},\mathcal{F})=\dim\operatorname{Hom}(\mathcal{E},\mathcal{F}), and exti(,)=dimExti(,)\operatorname{ext}^{i}(\mathcal{E},\mathcal{F})=\dim\operatorname{Ext}^{i}(\mathcal{E},\mathcal{F}).

2.1 Chern characters and Riemann-Roch on surfaces

Let \mathcal{E} be a torsion-free sheaf on a polarized surface (X,A)(X,A). Let K(X)K(X)_{\mathbb{Q}} be the Grothendieck group of XX with \mathbb{Q}-coefficients. The Chern character ch()=(ch0(),ch1(),ch2())\operatorname{ch}(\mathcal{E})=(\operatorname{ch}_{0}(\mathcal{E}),\operatorname{ch}_{1}(\mathcal{E}),\operatorname{ch}_{2}(\mathcal{E})) is given by

ch0()=r(),ch1()=c1(),ch2()=c122c22.\operatorname{ch}_{0}(\mathcal{E})=r(\mathcal{E}),\quad\operatorname{ch}_{1}(\mathcal{E})=c_{1}(\mathcal{E}),\quad\operatorname{ch}_{2}(\mathcal{E})=\frac{c_{1}^{2}-2c_{2}}{2}.

We define the total slope ν\nu, the AA-slope μA\mu_{A} and the discriminant Δ\Delta by

ν()=c1()r(),μA()=c1().Ar(),Δ()=μ()22ch2()r().\nu(\mathcal{E})=\frac{c_{1}(\mathcal{E})}{r(\mathcal{E})},\quad\mu_{A}(\mathcal{E})=\frac{c_{1}(\mathcal{E}).A}{r(\mathcal{E})},\quad\Delta(\mathcal{E})=\frac{\mu(\mathcal{E})^{2}}{2}-\frac{\operatorname{ch}_{2}(\mathcal{E})}{r(\mathcal{E})}.

These quantities depend only on the Chern character of \mathcal{E} (and the polarization) but not on the particular sheaf. Given a Chern character 𝐯{\bf{v}}, we define the total slope ν\nu, the AA-slope μA\mu_{A} and the discriminant Δ\Delta of 𝐯{\bf{v}} by the same formulae.

Then we have the following Riemann-Roch formula for torsion-free sheaves \mathcal{E} and \mathcal{F}:

χ(,)=r()r()(P(ν()ν())Δ()Δ()),\chi(\mathcal{E},\mathcal{F})=r(\mathcal{E})r(\mathcal{F})(P(\nu(\mathcal{F})-\nu(\mathcal{E}))-\Delta(\mathcal{E})-\Delta(\mathcal{F})),

where

P(ν):=χ(𝒪X)+ν.(νKX)2P(\nu):=\chi(\mathcal{O}_{X})+\frac{\nu.(\nu-K_{X})}{2}

is the Hilbert polynomial of 𝒪X\mathcal{O}_{X}. In particular, taking =𝒪X\mathcal{E}=\mathcal{O}_{X}, this reduces to the usual Riemann-Roch formula

χ()=r()(P(ν())Δ()).\chi(\mathcal{F})=r(\mathcal{F})(P(\nu(\mathcal{F}))-\Delta(\mathcal{F})).

2.2 Stability

We now introduce the basic notions and properties about stability conditions. For more details, see [HL10] or [LP97].

The sheaf \mathcal{E} is called μA\mu_{A}-semistable if every proper subsheaf 00\neq\mathcal{F}\subseteq\mathcal{E} of smaller rank satisfies

μA()μA().\mu_{A}(\mathcal{F})\leq\mu_{A}(\mathcal{E}).

If the inequality is strict for every such \mathcal{F}, then \mathcal{E} is called μA\mu_{A}-stable.

Now suppose that AA is an integral divisor. Define the Hilbert polynomial P(m)P_{\mathcal{E}}(m) and the reduced Hilbert polynomial p(m)p_{\mathcal{E}}(m) of \mathcal{E} by

P(m)=χ((m)),p(m)=χ((m))r().P_{\mathcal{E}}(m)=\chi(\mathcal{E}(m)),\quad p_{\mathcal{E}}(m)=\frac{\chi(\mathcal{E}(m))}{r(\mathcal{E})}.

Then \mathcal{E} is AA-semistable (or Gieseker semistable) if every proper subsheaf 00\neq\mathcal{F}\subseteq\mathcal{E} of smaller rank satisfies that

p(m)p(m)p_{\mathcal{F}}(m)\leq p_{\mathcal{E}}(m)

for all m0m\gg 0. If the inequality is strict for every such \mathcal{F}, then \mathcal{E} is called AA-stable (or Gieseker AA-stable). It follows immediately from the Riemann-Roch formula that

μA-stableA-stableA-semistableμA-semistable.\mu_{A}\textup{-stable}\Rightarrow A\textup{-stable}\Rightarrow A\textup{-semistable}\Rightarrow\mu_{A}\textup{-semistable}.

If \mathcal{E} is μA\mu_{A}-semistable for some polarization AA, then Δ()0\Delta(\mathcal{E})\geq 0 by Bogomolov inequality.

Every torsion free sheaf \mathcal{E} admits a Harder-Narasimhan filtration with respect to both μA\mu_{A}- and AA-stability, that is there is a finite filtration

0=012n=0=\mathcal{E}_{0}\subset\mathcal{E}_{1}\subset\mathcal{E}_{2}\subset\cdots\subset\mathcal{E}_{n}=\mathcal{E}

such that the quotients

𝒢i=i/i1,\mathcal{G}_{i}=\mathcal{E}_{i}/\mathcal{E}_{i-1},

called Harder-Narasimhan factors, are μA\mu_{A}- (respectively AA-) semistable and

μA(𝒢i)>μA(𝒢i+1)(respectively, p𝒢i(m)>p𝒢i+1(m) for m0)\mu_{A}(\mathcal{G}_{i})>\mu_{A}(\mathcal{G}_{i+1})\quad\quad\textup{(respectively, }p_{\mathcal{G}_{i}}(m)>p_{\mathcal{G}_{i+1}}(m)\textup{ for }m\gg 0\textup{)}

for 1in11\leq i\leq n-1. Moreover, the Harder-Narasimhan filtration is unique.

2.3 Prioritary sheaves

In this section, we recall some results by Walter [Wal98].

Definition 2.1.

Let XX be a surface, and DD be an effective divisor. A torsion free sheaf \mathcal{E} is called DD-prioritary if

Ext2(,(D))=0.\operatorname{Ext}^{2}(\mathcal{E},\mathcal{E}(-D))=0.
Lemma 2.2.

(Lemma 3.1 [CH21]) Let D1D_{1} and D2D_{2} be two effective divisors on a surface XX such that D1D2D_{1}-D_{2} is effective. If a sheaf \mathcal{E} is D1D_{1}-prioritary, then it is also D2D_{2}-prioritary

Lemma 2.3.

(Lemma 4 [Wal98]) Let DD be an effective Cartier divisor on a surface XX. If \mathcal{E} is a DD-prioritary torsion-free sheaf on XX of character 𝐯{\bf{v}}, then the restriction map 𝒫D(𝐯)CohD(i𝐯)\mathcal{P}_{D}({\bf{v}})\rightarrow\operatorname{Coh}_{D}(i^{*}{\bf{v}}), given by |D\mathcal{E}\mapsto\mathcal{E}|_{D}, is smooth (and therefore open) in a neighborhood of [][\mathcal{E}], where i:DXi:D\rightarrow X is the natural inclusion.

Definition 2.4.

A vector bundle \mathcal{E} of rank rr on 1\mathbb{P}^{1} is called balanced if 𝒪1(a)k𝒪1(a+1)rk\mathcal{E}\simeq\mathcal{O}_{\mathbb{P}^{1}}(a)^{k}\oplus\mathcal{O}_{\mathbb{P}^{1}}(a+1)^{r-k} for some aa\in\mathbb{Z} and 0k<r0\leq k<r

Lemma 2.5.

(Lemma 3 [Wal98]) Let r2r\geq 2 and 0d<r0\leq d<r be integers. Let Coh1(r,d)\operatorname{Coh}_{\mathbb{P}^{1}}(r,-d) be the stack of coherent sheaves of rank rr and degree d-d on 1\mathbb{P}^{1}.

  1. (i)

    If d>0d>0, then the sheaves not balanced form a closed substack of Coh1(r,d)\operatorname{Coh}_{\mathbb{P}^{1}}(r,-d) of codimension at least 22.

  2. (ii)

    If d=0d=0, then the sheaves not balanced form a closed substack of Coh1(r,0)\operatorname{Coh}_{\mathbb{P}^{1}}(r,0) of codimension 11.

Corollary 2.6.

If \mathcal{E} is a general sheaf in 𝒫F(𝐯)\mathcal{P}_{F}({\bf{v}}) with FF a smooth rational curve, then |F\mathcal{E}|_{F} is balanced along FF.

Lemma 2.7.

(Lemma 6 [Wal98]) Let f:XXf:X^{\prime}\rightarrow X be the blow-up of a surface XX at a point xXx\in X, and EE be the exceptional divisor in XX^{\prime}. Suppose that \mathcal{E} is a coherent sheaf of rank rr on XX^{\prime} such that |E𝒪Erd𝒪E(1)d\mathcal{E}|_{E}\simeq\mathcal{O}_{E}^{r-d}\oplus\mathcal{O}_{E}(-1)^{d} for some dd. Then ff_{*}\mathcal{E} is locally free in a neighborhood of xx, and there are exact sequences

0ff𝒪E(1)d0,0\longrightarrow f^{*}f_{*}\mathcal{E}\longrightarrow\mathcal{E}\longrightarrow\mathcal{O}_{E}(-1)^{d}\longrightarrow 0,
0(E)ff𝒪Erd0.0\longrightarrow\mathcal{E}(-E)\longrightarrow f^{*}f_{*}\mathcal{E}\longrightarrow\mathcal{O}_{E}^{r-d}\longrightarrow 0.

Moreover, for any divisor DD on XX, we have Ext2(,(fD)))Ext2(f,f(D)))\operatorname{Ext}^{2}(\mathcal{E},\mathcal{E}(f^{*}D)))\simeq\operatorname{Ext}^{2}(f_{*}\mathcal{E},f_{*}\mathcal{E}(D))). In particular, \mathcal{E} is fDf^{*}D-prioritary if and only if ff_{*}\mathcal{E} is DD-prioritary.

Lemma 2.8.

(Proposition 2 [Wal98]) Let π:XC\pi:X\rightarrow C be a birationally ruled surface and FNS(X)F\in NS(X) the numerical class of a fiber of π\pi. Suppose r2r\geq 2, c1NS(X)c_{1}\in NS(X), and c2c_{2}\in\mathbb{Z} are given. Then the stack 𝒫X,F(r,c1,c2)\mathcal{P}_{X,F}(r,c_{1},c_{2}) of FF-prioritary sheaves on XX of rank rr and Chern classes c1c_{1} and c2c_{2} is smooth and irreducible.

2.4 Exceptional bundles

In this section, we recall some known results of exceptional bundles.

A coherent sheaf \mathcal{E} on XX is called exceptional if Hom(,)=\operatorname{Hom}(\mathcal{E},\mathcal{E})=\mathbb{C} and Exti(,)=0\operatorname{Ext}^{i}(\mathcal{E},\mathcal{E})=0 for any i>0i>0. The Mukai’s lemma ([Muk84] [KO95]) implies that every torsion free exceptional sheaves are locally free. Thus we call torsion free exceptional sheaves exceptional bundles. There do exist torsion exceptional sheaves. For example, the structure sheaves 𝒪Ei\mathcal{O}_{E_{i}} of exceptional divisors on the blow-up of 2\mathbb{P}^{2} along general points are exceptional.

Let A=HεiEiA=H-\sum\varepsilon_{i}E_{i} be a polarization on XX, i.e. εi>0\varepsilon_{i}>0 and εi<1\sum\varepsilon_{i}<1. We say that AA is generic (or ε\varepsilon is generic) if (ε1,,εm)(\varepsilon_{1},...,\varepsilon_{m}) is a generic point in the region defined by εi>0\varepsilon_{i}>0 and εi<1\sum\varepsilon_{i}<1. Sometimes, we prefer to take A=HεEiA=H-\varepsilon\sum E_{i}, that is, ε1==εm\varepsilon_{1}=\cdots=\varepsilon_{m}, whence we mean ε\varepsilon is a generic number in (0,1/m)(0,1/m) by saying AA is generic or ε\varepsilon is generic.

The following lemma is proved in [CH21] on Hirzebruch surfaces. For the reader’s convenience, we give the proof on our surface here.

Lemma 2.9.

(Lemma 6.7 [CH21]) Let 𝐯K(X){\bf{v}}\in K(X)_{\mathbb{Q}} be a potentially exceptional character of rank rr with c1(𝐯)=aHbiEic_{1}({\bf{v}})=aH-\sum b_{i}E_{i}.

  1. (1)

    The discriminant of 𝐯{\bf{v}} is Δ=1212r2\Delta=\frac{1}{2}-\frac{1}{2r^{2}}.

  2. (2)

    The character 𝐯{\bf{v}} is primitive.

  3. (3)

    If \mathcal{E} is an μA\mu_{A}-stable sheaf of discriminant Δ()<1/2\Delta(\mathcal{E})<1/2, then \mathcal{E} is exceptional.

  4. (4)

    If ε\varepsilon is generic and \mathcal{E} is a μA\mu_{A}-semistable sheaf of character 𝐯{\bf{v}}, then it is μA\mu_{A}-stable and exceptional.

  5. (5)

    If ε\varepsilon is generic and \mathcal{E} is a AA-semistable sheaf of discriminant Δ()<12\Delta(\mathcal{E})<\frac{1}{2}, then it is semiexceptional.

Proof.
  1. (1)

    Solving the Riemann-Roch formula

    1=χ(𝐯,𝐯)=r2(12Δ)1=\chi({\bf{v}},{\bf{v}})=r^{2}(1-2\Delta)

    for Δ\Delta proves the statement.

  2. (2)

    By the Riemann-Roch formula,

    χ(𝐯)=r(P(arHbirEi)12+12r2)=12r((a+2r)(a+r)bi(bi+r)+r2+1).\begin{split}\chi({\bf{v}})&=r\left(P\left(\frac{a}{r}H-\sum\frac{b_{i}}{r}E_{i}\right)-\frac{1}{2}+\frac{1}{2r^{2}}\right)\\ &=\frac{1}{2r}\left((a+2r)(a+r)-\sum b_{i}(b_{i}+r)+r^{2}+1\right).\end{split}

    As χ(𝐯)\chi({\bf{v}}) is an integer, then gcd(r,a,b1,,bm)=1\gcd(r,a,b_{1},...,b_{m})=1 and thus 𝐯{\bf{v}} is primitive.

  3. (3)

    By the Riemann-Roch formula and stability, one has hom(,)=1\hom(\mathcal{E},\mathcal{E})=1, ext2(,)=0\operatorname{ext}^{2}(\mathcal{E},\mathcal{E})=0, and

    χ(,)=1r2(12Δ)=1ext1(,)>0.\chi(\mathcal{E},\mathcal{E})=\frac{1}{r^{2}}\left(1-2\Delta\right)=1-\operatorname{ext}^{1}(\mathcal{E},\mathcal{E})>0.

    Thus ext1(,)=0\operatorname{ext}^{1}(\mathcal{E},\mathcal{E})=0 and \mathcal{E} is exceptional.

  4. (4)

    Since ε\varepsilon is generic and 𝐯{\bf{v}} is primitive, then \mathcal{E} has no subsheaf of smaller rank with the same AA-slope. Hence \mathcal{E} is μA\mu_{A}-stable, and exceptional by (3).

  5. (5)

    Since ε\varepsilon is generic, then the Jordan-Hölder factors gr1,,grl\operatorname{gr}_{1},...,\operatorname{gr}_{l} of \mathcal{E} have the same total slope and discriminant. They are also exceptional bundles, by (1), so their Chern characters are primitive, hence have the same rank, and they are the same. Thus the factors are all isomorphic, and an easy induction using ext1(gr1,gr1)=0\operatorname{ext}^{1}(\operatorname{gr}_{1},\operatorname{gr}_{1})=0 shows that gr1l\mathcal{E}\simeq\operatorname{gr}_{1}^{\oplus l}.

The simplest examples of exceptional bundles on blow-ups of 2\mathbb{P}^{2} are line bundles. Now given an ordered pair of sheaves (,)(\mathcal{E},\mathcal{F}), we form the evaluation and coevaluation maps

ev:Hom(,),coev:Hom(,),\operatorname{ev}:\mathcal{E}\otimes\operatorname{Hom}(\mathcal{E},\mathcal{F})\longrightarrow\mathcal{F},\quad\operatorname{coev}:\mathcal{E}\longrightarrow\mathcal{F}\otimes\operatorname{Hom}(\mathcal{E},\mathcal{F})^{*},

each of which is associated to the identity element of the space Hom(,)Hom(,)\operatorname{Hom}(\mathcal{E},\mathcal{F})\otimes\operatorname{Hom}(\mathcal{E},\mathcal{F})^{*}. If the evaluation map is surjective, then we consider the kernel

0LHom(,)0;0\longrightarrow L_{\mathcal{E}}\mathcal{F}\longrightarrow\mathcal{E}\otimes\operatorname{Hom}(\mathcal{E},\mathcal{F})\longrightarrow\mathcal{F}\longrightarrow 0;

if the coevaluation map is injective, then we consider the cokernel

0Hom(,)R0.0\longrightarrow\mathcal{E}\longrightarrow\mathcal{F}\otimes\operatorname{Hom}(\mathcal{E},\mathcal{F})^{*}\longrightarrow R_{\mathcal{F}}\mathcal{E}\longrightarrow 0.
Definition 2.10.

The sheaf LL_{\mathcal{E}}\mathcal{F} is the left mutation of \mathcal{F} across EE, and the sheaf RR_{\mathcal{F}}\mathcal{E} is the right mutation of \mathcal{E} across \mathcal{F}.

If (,)(\mathcal{E},\mathcal{F}) is an ordered pair of exceptional bundles, then the left and right mutations are exceptional whenever they are defined. This gives us a way of producing exceptional bundles.

Example 2.11.

The Euler sequence

0𝒪2𝒪2(1)Hom(𝒪2,𝒪2(1))T200\longrightarrow\mathcal{O}_{\mathbb{P}^{2}}\longrightarrow\mathcal{O}_{\mathbb{P}^{2}}(1)\otimes\operatorname{Hom}(\mathcal{O}_{\mathbb{P}^{2}},\mathcal{O}_{\mathbb{P}^{2}}(1))^{*}\longrightarrow T_{\mathbb{P}^{2}}\longrightarrow 0

implies that T2T_{\mathbb{P}^{2}} is exceptional, since it is the right mutation R𝒪(1)𝒪R_{\mathcal{O}(1)}\mathcal{O}.

Start with a strong exceptional collection σ0=(0,,n)\sigma_{0}=(\mathcal{E}_{0},...,\mathcal{E}_{n}) on a surface XX. A transformation of the exceptional collection σ0\sigma_{0} is defined as a transformation of a pair of neighboring objects in this collection. One extends σ\sigma to an infinite periodic collection (i)i(\mathcal{E}_{i})_{i\in\mathbb{Z}} by setting i+(n+1)k=i(ωX)k\mathcal{E}_{i+(n+1)k}=\mathcal{E}_{i}\otimes(\omega_{X}^{*})^{\otimes k} for i=0,1,,ni=0,1,...,n. We can also do mutations in collections: if (i,i+1)(\mathcal{E}_{i},\mathcal{E}_{i+1}) has a surjective evaluation map (resp. injective coevaluation map), then one replaces (i,i+1)(\mathcal{E}_{i},\mathcal{E}_{i+1}) by (Lii+1,i)(L_{\mathcal{E}_{i}}\mathcal{E}_{i+1},\mathcal{E}_{i}) (resp. (i+1,Ri+1i)(\mathcal{E}_{i+1},R_{\mathcal{E}_{i}+1}\mathcal{E}_{i})). When the operations are defined, we can iterate mutations. Write Lj(i)iL_{j}(\mathcal{E}_{i})_{i\in\mathbb{Z}} for the left mutation LjL_{\mathcal{E}_{j}}.

On the surface XX obtained by blow up 2\mathbb{P}^{2} along mm distinct points, one has a standard exceptional collection

σ0=(𝒪(2H),𝒪(H),𝒪(E1),,𝒪(Em),𝒪).\sigma_{0}=\left(\mathcal{O}(-2H),\mathcal{O}(-H),\mathcal{O}(-E_{1}),\cdots,\mathcal{O}(-E_{m}),\mathcal{O}\right).
Definition 2.12.

A bundle \mathcal{E} on XX is called constructible if it can be obtained by a sequence of mutations from the standard helix σ0\sigma_{0}.

Theorem 2.13.

([KO95]) All exceptional bundles and helixes on del Pezzo surfaces are constructible.

3 Blow-ups of the projective plane

In this section, we review some properties of blow-ups of 2\mathbb{P}^{2}. We refer the reader to [Har77] and [Laz04] for definitions and details of the proof.

Let Γ={p1,,pm}\Gamma=\{p_{1},...,p_{m}\} be a set of mm distinct collinear points on 2\mathbb{P}^{2}. Let π:X=BlΓ22\pi:X=\operatorname{Bl}_{\Gamma}\mathbb{P}^{2}\rightarrow\mathbb{P}^{2} be the blow-up of 2\mathbb{P}^{2} along Γ\Gamma with exceptional divisor E1,,EmE_{1},...,E_{m}. Let H=π𝒪(1)H=\pi^{*}\mathcal{O}(1) be pull-back of the line class on 2\mathbb{P}^{2}, and L=Hi=1mEiL=H-\sum_{i=1}^{m}E_{i} be the proper transform of the line passing through the mm points. Then we have

Pic(X)=HE1Em,\operatorname{Pic}(X)=\mathbb{Z}H\oplus\mathbb{Z}E_{1}\oplus\cdots\oplus\mathbb{Z}E_{m},

and intersection numbers

H2=1,Ei2=1,L2=1m,L.Ei=1,L.H=1,Ei.Ej=0H^{2}=1,\quad E_{i}^{2}=-1,\quad L^{2}=1-m,\quad L.E_{i}=1,\quad L.H=1,\quad E_{i}.E_{j}=0

for any iji\neq j. The canonical divisor of XX is KX=3H+i=1mEiK_{X}=-3H+\sum_{i=1}^{m}E_{i}. If D=aHbiEiD=aH-\sum b_{i}E_{i}, then the Riemann-Roch formula reads

χ(𝒪X(D))=(a+1)(a+2)2i=1mbi(bi+1)2.\chi(\mathcal{O}_{X}(D))=\frac{(a+1)(a+2)}{2}-\sum_{i=1}^{m}\frac{b_{i}(b_{i}+1)}{2}.

Notice that E1,,Em,LE_{1},...,E_{m},L are effective and that H,HE1,,HEmH,H-E_{1},...,H-E_{m} are nef. Since the cones generated by them are dual to each other, then we know that the nef cone of XX is generated by

H,HE1,,HEm,H,H-E_{1},...,H-E_{m},

and the effective cone is generated by

E1,,Em,HE1Em.E_{1},...,E_{m},H-E_{1}-\cdots-E_{m}.

Equivalently, a divisor D=aHbiEiD=aH-\sum b_{i}E_{i} is nef if and only if abia\geq\sum b_{i} and bi0b_{i}\geq 0 for all ii, and a divisor D=aHbiEiD^{\prime}=a^{\prime}H-\sum b_{i}^{\prime}E_{i} is effective if and only if a0a^{\prime}\geq 0 and abia^{\prime}\geq b_{i}^{\prime} for all ii.

3.1 Cohomology of line bundles

If we know the dimension of the global sections of a line bundle 𝒪X(D)\mathcal{O}_{X}(D), then by Serre duality, one has

h2(X,𝒪X(D))=h0(X,𝒪X(KXD)).h^{2}(X,\mathcal{O}_{X}(D))=h^{0}(X,\mathcal{O}_{X}(K_{X}-D)).

One can also compute h1(X,𝒪X(D))h^{1}(X,\mathcal{O}_{X}(D)) via Riemann-Roch formula:

h1(X,𝒪X(D))=h0(X,𝒪X(D))+h0(X,𝒪X(KXD))D.(DKX)21.h^{1}(X,\mathcal{O}_{X}(D))=h^{0}(X,\mathcal{O}_{X}(D))+h^{0}(X,\mathcal{O}_{X}(K_{X}-D))-\frac{D.(D-K_{X})}{2}-1.

In this way, we know all the cohomology of a line bundle.

Now we compute the global sections of line bundles on XX. Let D=aHbiEiD=aH-\sum b_{i}E_{i} be a divisor with amax{b1,0}a\geq\max\{b_{1},0\}. If any bi<0b_{i}<0, then chasing the exact sequence

0𝒪X(DEi)𝒪X(D)𝒪Ei(bi)0,0\longrightarrow\mathcal{O}_{X}(D-E_{i})\longrightarrow\mathcal{O}_{X}(D)\longrightarrow\mathcal{O}_{E_{i}}(b_{i})\longrightarrow 0,

one has h0(X,𝒪X(D))=h0(X,𝒪X(DEi))h^{0}(X,\mathcal{O}_{X}(D))=h^{0}(X,\mathcal{O}_{X}(D-E_{i})), so one can replace DD by DEiD-E_{i}. Repeating this, we may assume that bi0b_{i}\geq 0 for any ii.

Assume first that DD is nef. Chasing the exact sequence

0𝒪X((n1)H)𝒪X(nH)𝒪H(n)0,0\longrightarrow\mathcal{O}_{X}((n-1)H)\longrightarrow\mathcal{O}_{X}(nH)\longrightarrow\mathcal{O}_{H}(n)\longrightarrow 0,

and using the vanishing of h1(X,𝒪X(nH))h^{1}(X,\mathcal{O}_{X}(nH)) for n0n\geq 0, one obtains that

h0(X,𝒪X(aH))=(a+1)(a+2)2.h^{0}(X,\mathcal{O}_{X}(aH))=\frac{(a+1)(a+2)}{2}.

Now consider the exact sequence

0𝒪X(aHbE1)𝒪X(aH(b1)E1)𝒪E1(b1)00\longrightarrow\mathcal{O}_{X}(aH-bE_{1})\longrightarrow\mathcal{O}_{X}(aH-(b-1)E_{1})\longrightarrow\mathcal{O}_{E_{1}}(b-1)\longrightarrow 0

for 1bb11\leq b\leq b_{1}. Since ab1a\geq b_{1}, one always has the surjection

H0(X,aH(b1)E1)H0(E1,𝒪E1(b1)).H^{0}(X,aH-(b-1)E_{1})\twoheadrightarrow H^{0}(E_{1},\mathcal{O}_{E_{1}}(b-1)).

As a consequence, we get

h0(X,𝒪X(aHb1E1))=(a+1)(a+2)2b1(b1+1)2.h^{0}(X,\mathcal{O}_{X}(aH-b_{1}E_{1}))=\frac{(a+1)(a+2)}{2}-\frac{b_{1}(b_{1}+1)}{2}.

Repeating this for E2,,EmE_{2},...,E_{m} and using the assumption that ab1a\geq\sum b_{1}, we deduce that

h0(X,𝒪X(D))=(a+1)(a+2)2imbi(bi+1)2.h^{0}(X,\mathcal{O}_{X}(D))=\frac{(a+1)(a+2)}{2}-\sum_{i}^{m}\frac{b_{i}(b_{i}+1)}{2}. (1)

If DD is not nef, then the short exact sequence

0𝒪X(DL)𝒪X(D)𝒪L(abi)00\longrightarrow\mathcal{O}_{X}(D-L)\longrightarrow\mathcal{O}_{X}(D)\longrightarrow\mathcal{O}_{L}\left(a-\sum b_{i}\right)\longrightarrow 0

together with a<bia<\sum b_{i} implies that h0(X,𝒪X(D))=h0(X,𝒪X(DL))h^{0}(X,\mathcal{O}_{X}(D))=h^{0}(X,\mathcal{O}_{X}(D-L)). Thus we can replace DD by DL=(a1)(bi1)EiD-L=(a-1)-\sum(b_{i}-1)E_{i}. If some coefficient bib_{i} becomes negative, one uses the previous reduction to place bib_{i} by 0. Repeating this, we reduce the computation to the case when DD is nef.

Now we can prove the following useful properties.

Lemma 3.1.

Let XX be the blow-up of 2\mathbb{P}^{2} along mm collinear points, and D=aHi=1mbiEiD=aH-\sum_{i=1}^{m}b_{i}E_{i} be a divisor on XX.

  1. (a)

    If a>3a>-3, then h2(X,𝒪X(D))=0h^{2}(X,\mathcal{O}_{X}(D))=0. In particular, any effective divisor DD has h2(X,𝒪D)=0h^{2}(X,\mathcal{O}_{D})=0.

  2. (b)

    If DD is a nef divisor, then 𝒪X(D)\mathcal{O}_{X}(D) has no higher cohomology.

  3. (c)

    Let II be a subset of {1,2,,m}\{1,2,...,m\} and jj be any index in {1,2,,m}\{1,2,...,m\}. If DD is of either of the form

    2H+iIEi,H+iIEi,aH(a+1)Ej,Ej+iI,ijEi,-2H+\sum_{i\in I}E_{i},\quad-H+\sum_{i\in I}E_{i},\quad aH-(a+1)E_{j},\quad-E_{j}+\sum_{i\in I,i\neq j}E_{i},

    then 𝒪X(D)\mathcal{O}_{X}(D) has no cohomology.

  4. (d)

    If DD is of the form

    D=aHi=1mbiEiD=aH-\sum_{i=1}^{m}b_{i}E_{i}

    with a=i=1mbi1a=\sum_{i=1}^{m}b_{i}-1 and bi0b_{i}\geq 0 for any ii, then 𝒪X(D)\mathcal{O}_{X}(D) has no higher cohomology.

  5. (e)

    Assume that Hi(X,𝒪X(D))=0H^{i}(X,\mathcal{O}_{X}(D))=0 for i>0i>0. If D.Ej0D.E_{j}\geq 0 (resp. D.H2D.H\geq-2), then Hi(X,𝒪X(D+Ej))=0H^{i}(X,\mathcal{O}_{X}(D+E_{j}))=0 (resp. Hi(X,𝒪X(D+H))=0H^{i}(X,\mathcal{O}_{X}(D+H))=0) for i>0i>0.

Proof.
  1. (a)

    This is because the coefficient of HH in the Serre dual of DD is negative.

  2. (b)

    Using (1), one has that

    h0(X,𝒪X(D))=(a+1)(a+2)2imbi(bi+1)2.h^{0}(X,\mathcal{O}_{X}(D))=\frac{(a+1)(a+2)}{2}-\sum_{i}^{m}\frac{b_{i}(b_{i}+1)}{2}.

    Since h2(X,𝒪X(D))=0h^{2}(X,\mathcal{O}_{X}(D))=0 by (a), then h1(X,𝒪X(D))=0h^{1}(X,\mathcal{O}_{X}(D))=0 follows from the Riemann-Roch formula.

  3. (c)

    This is also a combination of the Riemann-Roch formula, Serre duality, and the computation of global sections.

  4. (d)

    Assume that b1b2bmb_{1}\geq b_{2}\geq\cdots\geq b_{m}. If bm=0b_{m}=0, then we can reduce to the m1m-1 case. Thus we may assume that bm>0b_{m}>0. One has

    χ(𝒪X(D))χ(𝒪X(DL))=(a+1)i=1mbi=0,\chi(\mathcal{O}_{X}(D))-\chi(\mathcal{O}_{X}(D-L))=(a+1)-\sum_{i=1}^{m}b_{i}=0,

    and

    h0(𝒪X(D))=h0(𝒪X(DL)).h^{0}(\mathcal{O}_{X}(D))=h^{0}(\mathcal{O}_{X}(D-L)).

    Since DLD-L is a nef divisor, thus we conclude by (b).

  5. (e)

    If DD is a class such that Hi(X,𝒪X(D))=0H^{i}(X,\mathcal{O}_{X}(D))=0 for all i>0i>0 and Ej.D0E_{j}.D\geq 0, then Hi(X,𝒪XX(D+Ej))=0H^{i}(X,\mathcal{O}_{X}X(D+E_{j}))=0 for all i>0i>0. To see this, consider the exact sequence

    0𝒪X(D)𝒪X(D+Ej)𝒪1(1)0.0\longrightarrow\mathcal{O}_{X}(D)\longrightarrow\mathcal{O}_{X}(D+E_{j})\longrightarrow\mathcal{O}_{\mathbb{P}^{1}}(-1)\longrightarrow 0.

    Since 𝒪X(D)\mathcal{O}_{X}(D) and 𝒪1(1)\mathcal{O}_{\mathbb{P}^{1}}(-1) have no higher cohomology, then 𝒪X(D+Ej)\mathcal{O}_{X}(D+E_{j}) has no higher cohomology. Similar sequences imply the other statements.

4 Cohomology of General Sheaves in 𝒫X,F(𝐯)\mathcal{P}_{X,F}({\bf{v}})

4.1 Elementary transformations

In this section, we first recall the minimal discriminant property of type 2 elementary transformations, and then we give an explicit construction of an elementary transformation following the method in [LZ19].

Consider the projection from EiE_{i} to a general line HH, and let Fi=LEiF_{i}=L-E_{i} be the class of the fiber of this projection. We write FF to denote the class of one of the fibers FiF_{i} if it does not matter which fiber we choose. For a given Chern character 𝐯=(r,c1,Δ){\bf{v}}=(r,c_{1},\Delta), we can give a necessary and sufficient condition for the existence of HH-prioritary sheaves with character 𝐯\bf{v}.

Write c1(𝐯)=aHbiEic_{1}({\bf{v}})=aH-\sum b_{i}E_{i} with

a=ar+a′′,bi=bir+bi′′,0a′′,bi′′<r,i=1,,m.a=a^{\prime}r+a^{\prime\prime},\quad b_{i}=b_{i}^{\prime}r+b_{i}^{\prime\prime},\quad 0\leq a^{\prime\prime},b_{i}^{\prime\prime}<r,\quad\forall i=1,...,m.

Let D=(a+2)H(bi+1)EiD=(a^{\prime}+2)H-\sum(b_{i}+1)E_{i} be a divisor. Notice that there exists an FF-prioritary sheaf with Chern character 𝐯{\bf{v}} if and only if there exists one with 𝐯=(r,c1rD,Δ){\bf{v}^{\prime}}=(r,c_{1}-rD,\Delta) since any twist of a prioritary sheaf is also prioritary.

Recall that a type 11 elementary transformation of \mathcal{E} along \mathcal{F} is the kernel of a surjective map \mathcal{E}\rightarrow\mathcal{F}, and a type 22 elementary transformation of \mathcal{E} along \mathcal{F} is an extension of \mathcal{F} by \mathcal{E}.

For a clearer description of the existence of prioritary sheaves, see Figure 1 in [CH21].

Proposition 4.1.

(Proposition 4.9 [LZ19]) Let XX be the blow-up of 2\mathbb{P}^{2} along mm collinear points, and \mathcal{E} be a sheaf on XX of rank r2r\geq 2. Suppose that \mathcal{E} is a type 2 elementary transformation of 𝒪X(2H)(ra′′)𝒪X(H)a′′\mathcal{O}_{X}(-2H)^{\oplus(r-a^{\prime\prime})}\oplus\mathcal{O}_{X}(-H)^{\oplus a^{\prime\prime}} along i=1m𝒪Ei(1)(rbi′′)\oplus_{i=1}^{m}\mathcal{O}_{E_{i}}(-1)^{\oplus(r-b_{i}^{\prime\prime})}. Then \mathcal{E} is an HH-prioritary sheaf, and for any DPic(X)D\in\operatorname{Pic}(X), there are no HH-prioritary sheaves of the same rank and total slope as 𝒪X(D)\mathcal{E}\otimes\mathcal{O}_{X}(D) with strictly smaller discriminant.

Now we construct type 2 elementary transformations of 𝒪X(2H)(ra′′)𝒪X(H)a′′\mathcal{O}_{X}(-2H)^{\oplus(r-a^{\prime\prime})}\oplus\mathcal{O}_{X}(-H)^{\oplus a^{\prime\prime}} along i=1m𝒪Ei(1)(rbi′′)\oplus_{i=1}^{m}\mathcal{O}_{E_{i}}(-1)^{\oplus(r-b_{i}^{\prime\prime})}. Roughly speaking, we distribute HH and EiE_{i} evenly among the direct summands. Then we will see that such sheaves are HH-prioritary.

Consider the rr-tuple

𝒮=(𝒪(2H),,𝒪(2H),𝒪(H),,𝒪(H))\mathcal{S}=\left(\mathcal{O}\left(-2H\right),...,\mathcal{O}\left(-2H\right),\mathcal{O}\left(-H\right),...,\mathcal{O}\left(-H\right)\right)

where the number of 𝒪(H)\mathcal{O}(-H) is a′′a^{\prime\prime}.

  1. 1)

    Start with i=1i=1. Twist each coordinate by 𝒪(E1)\mathcal{O}(E_{1}) starting from left to right in 𝒮\mathcal{S} until reaching the (rb1′′)(r-b_{1}^{\prime\prime})-th coordinate.

  2. 2)

    Let 𝒮\mathcal{S}^{\prime} be the new rr-tuple obtained from the previous step. Reorder the coordinates of 𝒮\mathcal{S} by decreasing LL-slope. If two distinct line bundles 𝒪(D1)\mathcal{O}(D_{1}) and 𝒪(D2)\mathcal{O}(D_{2}) have the same LL-slope, then 𝒪(D1)\mathcal{O}(D_{1}) sits to the left of 𝒪(D2)\mathcal{O}(D_{2}) if either

    1. (a)

      D1.H<D2.HD_{1}.H<D_{2}.H

    2. (b)

      or D1.H=D2.HD_{1}.H=D_{2}.H and there exists a jj such that D1.Ei=D2.EiD_{1}.E_{i}=D_{2}.E_{i} for all i<ji<j and D1.Ej>D2.EjD_{1}.E_{j}>D_{2}.E_{j}.

  3. 3)

    Repeat steps 1) and 2) using Ei+1E_{i+1}

We call such a bundle \mathcal{E} a good bundle. By construction, there is a unique (up to isomorphism) good bundle \mathcal{E} such that r()=rr(\mathcal{E})=r and c1(𝒱)=c1c_{1}(\mathcal{V})=c_{1}. Also, notice that good bundles are type 22 elementary transformations.

Lemma 4.2.

Good bundles are HH-prioritary.

Proof.

Notice that for any two summands 𝒪(D1)\mathcal{O}(D_{1}) and 𝒪(D2)\mathcal{O}(D_{2}) in the good bundles, the coefficient of HH in D2D1D_{2}-D_{1} is at least 1-1. Therefore we have that

Ext2(𝒪(D1),𝒪(D2H))H2(X,𝒪(D2D1H))=0,\operatorname{Ext}^{2}(\mathcal{O}(D_{1}),\mathcal{O}(D_{2}-H))\simeq H^{2}(X,\mathcal{O}(D_{2}-D_{1}-H))=0,

so Ext2(,(H))=0\operatorname{Ext}^{2}(\mathcal{E},\mathcal{E}(-H))=0, \mathcal{E} is HH-prioritary.

4.2 Construction of a complete family of HH-prioritary sheaves

In this section, we will construct a complete family of HH-prioritary, hence FiF_{i}-prioritary, sheaves on the blow-up of 2\mathbb{P}^{2} along mm distinct collinear points, parameterized by a rational variety. This will imply that 𝒫H(𝐯)\mathcal{P}_{H}(\bf{v}) and 𝒫Fi(𝐯)\mathcal{P}_{F_{i}}(\bf{v}) are unirational. In particular, if MX,A(𝐯)M_{X,A}({\bf{v}}) is non-empty, then it is unirational.

Proposition 4.3.

Let XX be the blow-up of 2\mathbb{P}^{2} along mm collinear points. Let 𝐯=(r,c1,Δ){\bf{v}}=(r,c_{1},\Delta) be a Chern character such that r2r\geq 2 and Δ0\Delta\geq 0. Then the stack 𝒫X,F(𝐯)\mathcal{P}_{X,F}({\bf{v}}) is non-empty, and a general sheaf \mathcal{E} parameterized by 𝒫X,F(𝐯)\mathcal{P}_{X,F}({\bf{v}}) admits a resolution of the form

0𝒪X(2H+D)α𝒪X(H+D)βsi=1m𝒪X(Ei+D)γi𝒪X(D)δ0,0\longrightarrow\mathcal{O}_{X}(-2H+D)^{\alpha}\oplus\mathcal{O}_{X}(-H+D)^{\beta}\stackrel{{\scriptstyle s}}{{\longrightarrow}}\bigoplus_{i=1}^{m}\mathcal{O}_{X}(-E_{i}+D)^{\gamma_{i}}\oplus\mathcal{O}_{X}(D)^{\delta}\longrightarrow\mathcal{E}\longrightarrow 0,

or

0𝒪X(2H+D)αs𝒪X(H+D)βi=1m𝒪X(Ei+D)γi𝒪X(D)δ00\longrightarrow\mathcal{O}_{X}(-2H+D)^{\alpha}\stackrel{{\scriptstyle s}}{{\longrightarrow}}\mathcal{O}_{X}(-H+D)^{\beta}\oplus\bigoplus_{i=1}^{m}\mathcal{O}_{X}(-E_{i}+D)^{\gamma_{i}}\oplus\mathcal{O}_{X}(D)^{\delta}\longrightarrow\mathcal{E}\longrightarrow 0

for some divisor DD. If the coefficient of EiE_{i} in c1rDc_{1}-rD is bib_{i}, then the exponents are given by

α=χ(𝐯(DH)),δ=χ(𝐯(D)),γi=bi,β=|r+αδγi|.\alpha=-\chi({\bf{v}}(-D-H)),\quad\delta=\chi({\bf{v}}(-D)),\quad\gamma_{i}=b_{i},\quad\beta=\left|r+\alpha-\delta-\sum\gamma_{i}\right|.

In particular, the stack 𝒫X,F(𝐯)\mathcal{P}_{X,F}({\bf{v}}) is unirational.

Proof.

We first show that we can choose DD such that α,β,γ,δ\alpha,\beta,\gamma,\delta given above are all non-negative. Write D=cHdiEiD=cH-\sum d_{i}E_{i} and c1rD=(ac)HbiEic_{1}-rD=(a-c)H-\sum b_{i}E_{i}. We first fix the coefficients did_{i} by making 0bi<r0\leq b_{i}<r.

Write a=ar+a′′a=a^{\prime}r+a^{\prime\prime} such that 0a′′<r0\leq a^{\prime\prime}<r. By the Riemann-Roch formula, we have that

χ(𝐯((a+2)H+diEi))=r(a′′2rr(a′′2rr+3)+1ibir(bir+1)Δ)<0.\chi({\bf{v}}(-(a^{\prime}+2)H+\sum d_{i}E_{i}))=r\left(\frac{a^{\prime\prime}-2r}{r}\left(\frac{a^{\prime\prime}-2r}{r}+3\right)+1-\sum_{i}\frac{b_{i}}{r}\left(\frac{b_{i}}{r}+1\right)-\Delta\right)<0.

Thus we can choose cc to be the largest integer such that χ(𝐯(D))0\chi({\bf{v}}(-D))\geq 0 but χ(𝐯(DH))<0\chi({\bf{v}}(-D-H))<0. Setting

𝒰:=𝒪X(2H+D)α𝒪X(H+D)β,and𝒱:=i=1m𝒪X(Ei+D)γi𝒪X(D)δ,\mathcal{U}:=\mathcal{O}_{X}(-2H+D)^{\alpha}\oplus\mathcal{O}_{X}(-H+D)^{\beta},\quad\text{and}\quad\mathcal{V}:=\bigoplus_{i=1}^{m}\mathcal{O}_{X}(-E_{i}+D)^{\gamma_{i}}\oplus\mathcal{O}_{X}(D)^{\delta},

one has that the sheaf om(𝒰,𝒱)\mathcal{H}om(\mathcal{U},\mathcal{V}) is globally generated. Since rank𝒱rank𝒰=r2\operatorname{rank}\mathcal{V}-\operatorname{rank}\mathcal{U}=r\geq 2, then a general cokernel =s\mathcal{E}=\mathcal{E}_{s} is a vector bundle, whose Chern character is given by 𝐯()=𝐯{\bf{v}}(\mathcal{E})={\bf{v}}. The same argument applies to the exact sequence

0𝒪X(2H)α𝒪X(H)βi=1m𝒪X(Ei)γi𝒪Xδ0.0\longrightarrow\mathcal{O}_{X}(-2H)^{\alpha}\longrightarrow\mathcal{O}_{X}(-H)^{\beta}\oplus\bigoplus_{i=1}^{m}\mathcal{O}_{X}(-E_{i})^{\gamma_{i}}\oplus\mathcal{O}_{X}^{\delta}\longrightarrow\mathcal{E}\longrightarrow 0.

The rest of the statement is the contents of the next two lemmas, which are proved in [LP97] for 2\mathbb{P}^{2} and in [CH18b] for blow-ups of 2\mathbb{P}^{2} with χ(𝐯)=0\chi({\bf{v}})=0.

Lemma 4.4.

A general cokernel \mathcal{E} constructed as above is HH-prioritary, and hence FiF_{i}-prioritary for all ii.

Proof.

We may assume that \mathcal{E} is a vector bundle. To check that \mathcal{E} is FF-prioritary, we need to show that Ext2(,(H))=0\operatorname{Ext}^{2}(\mathcal{E},\mathcal{E}(-H))=0. Applying Ext(,)\operatorname{Ext}(\mathcal{E},\cdot) to the exact sequence

0𝒪X(2HH)α𝒪X(HH)β𝒪X(EiH)γi𝒪X(H)δ(H)0,0\longrightarrow\mathcal{O}_{X}(-2H-H)^{\alpha}\oplus\mathcal{O}_{X}(-H-H)^{\beta}{\longrightarrow}\bigoplus\mathcal{O}_{X}(-E_{i}-H)^{\gamma_{i}}\oplus\mathcal{O}_{X}(-H)^{\delta}\longrightarrow\mathcal{E}(-H)\longrightarrow 0,

we notice that it suffices to prove that Ext2(,𝒪X(EiH))=0\operatorname{Ext}^{2}(\mathcal{E},\mathcal{O}_{X}(-E_{i}-H))=0 and that Ext2(,𝒪X(H))=0\operatorname{Ext}^{2}(\mathcal{E},\mathcal{O}_{X}(-H))=0 for i=1,,mi=1,...,m. Now applying Ext(,𝒪X(EiH))\operatorname{Ext}(\cdot,\mathcal{O}_{X}(-E_{i}-H)) to the sequence

0𝒪X(2H)α𝒪X(H)β𝒪X(Ei)γi𝒪Xδ0,0\longrightarrow\mathcal{O}_{X}(-2H)^{\alpha}\oplus\mathcal{O}_{X}(-H)^{\beta}{\longrightarrow}\bigoplus\mathcal{O}_{X}(-E_{i})^{\gamma_{i}}\oplus\mathcal{O}_{X}^{\delta}\longrightarrow\mathcal{E}\longrightarrow 0,

one obtains

Ext1(𝒪X(2H)α𝒪X(H)β,𝒪X(EiH))Ext2(,𝒪X(EiH))\operatorname{Ext}^{1}(\mathcal{O}_{X}(-2H)^{\alpha}\oplus\mathcal{O}_{X}(-H)^{\beta},\mathcal{O}_{X}(-E_{i}-H))\longrightarrow\operatorname{Ext}^{2}(\mathcal{E},\mathcal{O}_{X}(-E_{i}-H))
Ext2(𝒪X(Ei)γi𝒪Xδ,𝒪X(EiH)).\longrightarrow\operatorname{Ext}^{2}(\bigoplus\mathcal{O}_{X}(-E_{i})^{\gamma_{i}}\oplus\mathcal{O}_{X}^{\delta},\mathcal{O}_{X}(-E_{i}-H)).

This gives Ext2(,𝒪X(EiH))=0\operatorname{Ext}^{2}(\mathcal{E},\mathcal{O}_{X}(-E_{i}-H))=0. Similarly, one can apply Ext(,𝒪X(H))\operatorname{Ext}(\cdot,\mathcal{O}_{X}(-H)) to obtain

Ext1(𝒪X(2H)α𝒪X(H)β,𝒪X(H))Ext2(,𝒪X(H))\operatorname{Ext}^{1}(\mathcal{O}_{X}(-2H)^{\alpha}\oplus\mathcal{O}_{X}(-H)^{\beta},\mathcal{O}_{X}(-H))\longrightarrow\operatorname{Ext}^{2}(\mathcal{E},\mathcal{O}_{X}(-H))
Ext2(𝒪X(Ei)γi𝒪Xδ,𝒪X(H)),\longrightarrow\operatorname{Ext}^{2}(\bigoplus\mathcal{O}_{X}(-E_{i})^{\gamma_{i}}\oplus\mathcal{O}_{X}^{\delta},\mathcal{O}_{X}(-H)),

yielding Ext2(,𝒪X(H))=0\operatorname{Ext}^{2}(\mathcal{E},\mathcal{O}_{X}(-H))=0. The same argument applies to the exact sequence

0𝒪X(2H)α𝒪X(H)βi=1m𝒪X(Ei)γi𝒪Xδ0.0\longrightarrow\mathcal{O}_{X}(-2H)^{\alpha}\longrightarrow\mathcal{O}_{X}(-H)^{\beta}\oplus\bigoplus_{i=1}^{m}\mathcal{O}_{X}(-E_{i})^{\gamma_{i}}\oplus\mathcal{O}_{X}^{\delta}\longrightarrow\mathcal{E}\longrightarrow 0.

Lemma 4.5.

Let

𝒰=𝒪X(2H)α𝒪X(H)βand𝒱=𝒪X(Ei)γi𝒪Xδ\mathcal{U}=\mathcal{O}_{X}(-2H)^{\alpha}\oplus\mathcal{O}_{X}(-H)^{\beta}\quad\textup{and}\quad\mathcal{V}=\bigoplus\mathcal{O}_{X}(-E_{i})^{\gamma_{i}}\oplus\mathcal{O}_{X}^{\delta}

or

𝒰=𝒪X(2H)αand𝒱=𝒪X(H)β𝒪X(Ei)γi𝒪Xδ\mathcal{U}=\mathcal{O}_{X}(-2H)^{\alpha}\quad\textup{and}\quad\mathcal{V}=\mathcal{O}_{X}(-H)^{\beta}\oplus\bigoplus\mathcal{O}_{X}(-E_{i})^{\gamma_{i}}\oplus\mathcal{O}_{X}^{\delta}

be as above. Then the open dense subset SHom(𝒰,𝒱)S\subset\operatorname{Hom}\left(\mathcal{U},\mathcal{V}\right) parameterizing locally free FF-prioritary sheaves is a complete family of FF-prioritary sheaves.

Proof.

We only prove for the first case, and the second is the same. We need to check that the Kodaira-Spencer map

κ:TsS=Hom(U,V)Ext1(,)\kappa:T_{s}S=\operatorname{Hom}(U,V)\longrightarrow\operatorname{Ext}^{1}(\mathcal{E},\mathcal{E})

is surjective. As the map κ\kappa factors as the composition of two maps

Hom(𝒰,𝒱)ϕHom(𝒰,)ψExt1(,),\operatorname{Hom}(\mathcal{U},\mathcal{V})\stackrel{{\scriptstyle\phi}}{{\longrightarrow}}\operatorname{Hom}(\mathcal{U},\mathcal{E})\stackrel{{\scriptstyle\psi}}{{\longrightarrow}}\operatorname{Ext}^{1}(\mathcal{E},\mathcal{E}),

where ϕ\phi and ψ\psi are given by applying Ext(𝒰,)\operatorname{Ext}(\mathcal{U},\cdot) and Ext(,)\operatorname{Ext}(\cdot,\mathcal{E}), respectively:

Hom(𝒰,𝒱)ϕHom(𝒰,)Ext1(𝒰,𝒰),Hom(𝒰,)ψExt1(,)Ext1(𝒱,).\operatorname{Hom}(\mathcal{U},\mathcal{V})\stackrel{{\scriptstyle\phi}}{{\longrightarrow}}\operatorname{Hom}(\mathcal{U},\mathcal{E})\longrightarrow\operatorname{Ext}^{1}(\mathcal{U},\mathcal{U}),\quad\quad\operatorname{Hom}(\mathcal{U},\mathcal{E})\stackrel{{\scriptstyle\psi}}{{\longrightarrow}}\operatorname{Ext}^{1}(\mathcal{E},\mathcal{E})\longrightarrow\operatorname{Ext}^{1}(\mathcal{V},\mathcal{E}).

Notice that we have

Ext1(𝒰,𝒰)=0,Ext1(𝒱,𝒱)=0,andExt2(𝒱,𝒰)=0.\operatorname{Ext}^{1}(\mathcal{U},\mathcal{U})=0,\quad\operatorname{Ext}^{1}(\mathcal{V},\mathcal{V})=0,\quad\textup{and}\quad\operatorname{Ext}^{2}(\mathcal{V},\mathcal{U})=0.

Applying Ext(𝒱,)\operatorname{Ext}(\mathcal{V},\cdot) to the sequence

0𝒪X(2H)α𝒪X(H)βs𝒪X(Ei)γi𝒪Xδ0,0\longrightarrow\mathcal{O}_{X}(-2H)^{\alpha}\oplus\mathcal{O}_{X}(-H)^{\beta}\stackrel{{\scriptstyle s}}{{\longrightarrow}}\bigoplus\mathcal{O}_{X}(-E_{i})^{\gamma_{i}}\oplus\mathcal{O}_{X}^{\delta}\longrightarrow\mathcal{E}\longrightarrow 0,

one obtains that

Ext1(𝒱,𝒱)Ext1(𝒱,)Ext2(𝒱,𝒰).\operatorname{Ext}^{1}(\mathcal{V},\mathcal{V})\longrightarrow\operatorname{Ext}^{1}(\mathcal{V},\mathcal{E})\longrightarrow\operatorname{Ext}^{2}(\mathcal{V},\mathcal{U}).

Thus we conclude that Ext1(𝒱,)=0\operatorname{Ext}^{1}(\mathcal{V},\mathcal{E})=0 and consequently κ\kappa is surjective.

4.3 Brill-Noether property

In this section, we will give a sufficient condition for the character 𝐯{\bf{v}} to satisfy the weak Brill-Noether property.

By semicontinuity, if \mathcal{E} is any sheaf with at most one cohomology, then the cohomology also vanishes for the general sheaf in any component of 𝒫H(𝐯)\mathcal{P}_{H}({\bf{v}}) that contains \mathcal{E}. If moreover, the moduli space MA(𝐯)M_{A}({\bf{v}}) is non-empty, then the general sheaf in MA(𝐯)M_{A}({\bf{v}}) has at most one non-zero cohomology.

Lemma 4.6.

([CH18b]) Let \mathcal{L} be a line bundle on a smooth surface XX. Let 𝒱\mathcal{V} be a torsion-free sheaf on XX, and let 𝒱\mathcal{V}^{\prime} be a general elementary modification of 𝒱\mathcal{V} at a general point pXp\in X, defined as the kernel of a general surjection ϕ:𝒱𝒪p\phi:\mathcal{V}\rightarrow\mathcal{O}_{p}:

0𝒱𝒱ϕ𝒪p0.0\longrightarrow\mathcal{V}^{\prime}\longrightarrow\mathcal{V}\stackrel{{\scriptstyle\phi}}{{\longrightarrow}}\mathcal{O}_{p}\longrightarrow 0.
  1. 1.

    If 𝒱\mathcal{V} is \mathcal{L}-prioritary, then 𝒱\mathcal{V}^{\prime} is \mathcal{L}-prioritary.

  2. 2.

    The sheaves 𝒱\mathcal{V} and 𝒱\mathcal{V}^{\prime} have the same rank and c1c_{1}, and

    χ(𝒱)=χ(𝒱)1,\chi(\mathcal{V}^{\prime})=\chi(\mathcal{V})-1,
    Δ(𝒱)=Δ(𝒱)+1r.\Delta(\mathcal{V}^{\prime})=\Delta(\mathcal{V})+\frac{1}{r}.
  3. 3.

    We have H2(X,𝒱)H2(X,𝒱)H^{2}(X,\mathcal{V})\simeq H^{2}(X,\mathcal{V}^{\prime}).

  4. 4.

    If at least one of H0(X,𝒱)H^{0}(X,\mathcal{V}) or H1(X,𝒱)H^{1}(X,\mathcal{V}) is zero, then at least one of H0(X,𝒱)H^{0}(X,\mathcal{V}^{\prime}) or H1(X,𝒱)H^{1}(X,\mathcal{V}^{\prime}) is zero. In particular, if H2(X,𝒱)=0H^{2}(X,\mathcal{V})=0 and 𝒱\mathcal{V} is non-special, then H2(X,𝒱)=0H^{2}(X,\mathcal{V}^{\prime})=0 and 𝒱\mathcal{V}^{\prime} is also non-special.

Theorem 4.7.

Let XX be the blow-up of 2\mathbb{P}^{2} along mm collinear points. Let 𝐯=(r,ν,Δ){\bf{v}}=(r,\nu,\Delta) be a Chern character such that r(𝐯)2r({\bf{v}})\geq 2, and Δ0\Delta\geq 0. Write ν=aHbiEi\nu=aH-\sum b_{i}E_{i}, and define ν:=aHbi>0biEi\nu^{\prime}:=aH-\sum_{b_{i}>0}b_{i}E_{i}. If ν\nu satisfies that (ν.Ei)1(\nu.E_{i})\geq-1 and (ν.L)1(\nu^{\prime}.L)\geq-1, then 𝒫F1,,Fm,H(𝐯)\mathcal{P}_{F_{1},...,F_{m},H}({\bf{v}}) is non-special.

Proof.

If ν=ν\nu=\nu^{\prime}, then we can find good bundles =𝒪(Di)\mathcal{E}=\oplus\mathcal{O}(D_{i}) such that r()=rr(\mathcal{E})=r and ν()=ν\nu(\mathcal{E})=\nu. Then \mathcal{E} has no higher cohomology by our computation of cohomology of line bundles. Thus we can find a non-special sheaf in 𝒫H(𝐯)\mathcal{P}_{H}(\bf{v}). It then follows that a general sheaf parameterized by 𝒫F1,,Fm,H(𝐯)\mathcal{P}_{F_{1},...,F_{m},H}({\bf{v}}) is non-special.

If νν\nu\neq\nu^{\prime}, we may assume that 1(ν.Em)=dm/r<0-1\leq(\nu.E_{m})=-d_{m}/r<0. Consider the map π:XmXm1\pi:X_{m}\rightarrow X_{m-1} contracting EE. Let \mathcal{E} be a general sheaf in 𝒫H,F1,,Fm(v)\mathcal{P}_{H,F_{1},...,F_{m}}(v). Then in particular \mathcal{E} is locally free and balanced along EE. Thus |E𝒪Ea𝒪E(1)ra\mathcal{E}|_{E}\simeq\mathcal{O}_{E}^{a}\oplus\mathcal{O}_{E}(-1)^{r-a} for some aa. Taking the push-forward of the resolution

0𝒪X(2H+D)αs𝒪X(H+D)βi=1m𝒪X(Ei+D)γi𝒪X(D)δ00\longrightarrow\mathcal{O}_{X}(-2H+D)^{\alpha}\stackrel{{\scriptstyle s}}{{\longrightarrow}}\mathcal{O}_{X}(-H+D)^{\beta}\oplus\bigoplus_{i=1}^{m}\mathcal{O}_{X}(-E_{i}+D)^{\gamma_{i}}\oplus\mathcal{O}_{X}(D)^{\delta}\longrightarrow\mathcal{E}\longrightarrow 0

of \mathcal{E}, one gets

0𝒪Xm1(2H+D)αs𝒪Xm1(H+D)βi=1m1𝒪Xm1(Ei+D)γi𝒪Xm1(D)δ0\longrightarrow\mathcal{O}_{X_{m-1}}(-2H+D^{\prime})^{\alpha}\stackrel{{\scriptstyle s}}{{\longrightarrow}}\mathcal{O}_{X_{m-1}}(-H+D^{\prime})^{\beta}\oplus\bigoplus_{i=1}^{m-1}\mathcal{O}_{X_{m-1}}(-E_{i}+D^{\prime})^{\gamma_{i}}\oplus\mathcal{O}_{X_{m-1}}(D^{\prime})^{\delta}
πR1π𝒪X(2H+D)α=0\longrightarrow\pi_{*}\mathcal{E}\longrightarrow R^{1}\pi_{*}\mathcal{O}_{X}(-2H+D)^{\alpha}=0

because (2H+D)|E𝒪E(1)(-2H+D)|_{E}\simeq\mathcal{O}_{E}(-1), where D=πDD^{\prime}=\pi_{*}D. In particular, the higher direct image RifR^{i}f_{*}\mathcal{E} vanish for all i>0i>0 so that the cohomology of \mathcal{E} is the cohomology of π\pi_{*}\mathcal{E}. Moreover, π\pi_{*}\mathcal{E} is locally free and prioritary with respect to H,F1,,Fm1H,F_{1},...,F_{m-1} and admits a desired resolution. Notice that the rational map π:𝒫F(𝐯)𝒫F(π(𝐯))\pi_{*}:\mathcal{P}_{F}({\bf{v}})\dashrightarrow\mathcal{P}_{F}(\pi_{*}({\bf{v}})) defined by π\mathcal{E}\mapsto\pi_{*}\mathcal{E} is dominant: the tangent map is

Ext1(,)Ext1(π,π)Ext1(ππ,),\operatorname{Ext}^{1}(\mathcal{E},\mathcal{E})\longrightarrow\operatorname{Ext}^{1}(\pi_{*}\mathcal{E},\pi_{*}\mathcal{E})\simeq\operatorname{Ext}^{1}(\pi^{*}\pi_{*}\mathcal{E},\mathcal{E}),

whose cokernel is

Ext2(𝒪Em(1)dm,)H0(KX|Em(1))=H0(X,𝒪Em(1)rd𝒪Em(2)d)=0.\operatorname{Ext}^{2}(\mathcal{O}_{E_{m}}(-1)^{d_{m}},\mathcal{E})\simeq H^{0}(\mathcal{E}^{*}\otimes K_{X}|_{E_{m}}(-1))=H^{0}(X,\mathcal{O}_{E_{m}}(-1)^{r-d}\oplus\mathcal{O}_{E_{m}}(-2)^{d})=0.

Thus we reduce to the case when ν=ν\nu=\nu^{\prime}.

Corollary 4.8.

Let XX be the blow-up of 2\mathbb{P}^{2} along mm distinct collinear points, and 𝐯=(r,c1,Δ){\bf{v}}=(r,c_{1},\Delta) be a Chern character on XX such that r(𝐯)2r({\bf{v}})\geq 2, Δ0\Delta\geq 0, and c1c_{1} is nef. Then 𝒫F1,,Fm,H(𝐯)\mathcal{P}_{F_{1},...,F_{m},H}({\bf{v}}) is non-special.

Remark 4.9.

On a smooth del Pezzo surface, we expect that 𝐯{\bf{v}} is non-special for 𝐯=(r,c1,Δ){\bf{v}}=(r,c_{1},\Delta) such that Δ0\Delta\geq 0 and that (ν.C)1(\nu.C)\geq-1 for any negative curve CC. On our surface X=XmX=X_{m}, this already fails for line bundles. Consider for example m=5m=5 and the line bundle D=2H+E1E2E5D=2H+E_{1}-E_{2}-...-E_{5}, which satisfies that (D.Ei)1(D.E_{i})\geq-1 and (D.L)1(D.L)\geq-1. We have h0(D)=h0(H)=3h^{0}(D)=h^{0}(H)=3 and χ(D)=64=2\chi(D)=6-4=2, so that h1(D)=1h^{1}(D)=1.

5 Stability of exceptional bundles

In this section, we prove the stability of the constructible exceptional bundles. Although it is unknown whether all exceptional bundles on the blow-up of 2\mathbb{P}^{2} along mm collinear points are constructible, we will see in the next two sections that the constructible ones are sufficient to give us a description of stable characters.

Proposition 5.1.

Let XX be the blow-up of 2\mathbb{P}^{2} along mm distinct points (not necessarily collinear). If \mathcal{E} is an exceptional bundle which is balanced on EiE_{i} for any ii, then π\pi_{*}\mathcal{E} is semi-exceptional.

Proof.

Let \mathcal{E} be an exceptional bundle balanced on every EiE_{i}. By twisting with some line bundle, we may assume that |Ei=𝒪Eirdi𝒪Ei(1)di\mathcal{E}|_{E_{i}}=\mathcal{O}_{E_{i}}^{r-d_{i}}\oplus\mathcal{O}_{E_{i}}(-1)^{d_{i}}. Let π:X2\pi:X\rightarrow\mathbb{P}^{2} be the blow-down map. We first show that Riπ=0R^{i}\pi_{*}\mathcal{E}=0 for any i>0i>0. For each exceptional divisor E=EiE=E_{i}, by the theorem on formal functions, the cohomology vanishes if and only if limH1(En,|En)=0\varinjlim H^{1}(E_{n},\mathcal{E}|_{E_{n}})=0, where EnE_{n} is the closed subscheme of XX defined by 𝒪(nE)\mathcal{O}(-nE). For each n1n\geq 1, there are exact sequences on XX

0𝒪E(n)𝒪En+1𝒪En00\longrightarrow\mathcal{O}_{E}(n)\longrightarrow\mathcal{O}_{E_{n+1}}\longrightarrow\mathcal{O}_{E_{n}}\longrightarrow 0

Tensoring with \mathcal{E} and induction on nn gives the result.

Now consider the short exact sequence

0ππi=1m𝒪Ei(1)di0.0\rightarrow\pi^{*}\pi_{*}\mathcal{E}\rightarrow\mathcal{E}\rightarrow\bigoplus_{i=1}^{m}\mathcal{O}_{E_{i}}(-1)^{\oplus d_{i}}\longrightarrow 0.

Applying the functor Hom(,)\operatorname{Hom}(\cdot,\mathcal{E}), one gets the long exact sequence

Ext1(,)Ext1(ππ,)i=1mExt2(𝒪Ei(1)di,)Ext2(,)Ext2(ππ,)0.\operatorname{Ext}^{1}(\mathcal{E},\mathcal{E})\rightarrow\operatorname{Ext}^{1}(\pi^{*}\pi_{*}\mathcal{E},\mathcal{E})\rightarrow\bigoplus_{i=1}^{m}\operatorname{Ext}^{2}(\mathcal{O}_{E_{i}}(-1)^{d_{i}},\mathcal{E})\rightarrow\operatorname{Ext}^{2}(\mathcal{E},\mathcal{E})\rightarrow\operatorname{Ext}^{2}(\pi^{*}\pi_{*}\mathcal{E},\mathcal{E})\rightarrow 0.

We have that

Exti(ππ,)=Hi(X,π(π))=Hi(2,π(π(π)))=Exti(π,π),\operatorname{Ext}^{i}(\pi^{*}\pi_{*}\mathcal{E},\mathcal{E})=H^{i}(X,\pi^{*}(\pi_{*}\mathcal{E})^{\vee}\otimes\mathcal{E})=H^{i}(\mathbb{P}^{2},\pi_{*}(\pi^{*}(\pi_{*}\mathcal{E})^{\vee}\otimes\mathcal{E}))=\operatorname{Ext}^{i}(\pi_{*}\mathcal{E},\pi_{*}\mathcal{E}),

and that

Ext2(𝒪Ei(1),)Hom(,𝒪Ei(2))=0\operatorname{Ext}^{2}(\mathcal{O}_{E_{i}}(-1),\mathcal{E})\simeq\operatorname{Hom}(\mathcal{E},\mathcal{O}_{E_{i}}(-2))^{*}=0

as Ei𝒪Eirdi𝒪Ei(1)di\mathcal{E}_{E_{i}}\simeq\mathcal{O}_{E_{i}}^{r-d_{i}}\oplus\mathcal{O}_{E_{i}}(-1)^{d_{i}}. Since \mathcal{E} is exceptional, then π\pi_{*}\mathcal{E} is semi-exceptional by the long exact sequence.

Theorem 5.2.

Let XX be the blow-up of 2\mathbb{P}^{2} along mm distinct collinear points, and A=HεiEiA=H-\sum\varepsilon_{i}E_{i} with 0<εi10<\varepsilon_{i}\ll 1 a generic polarization. If \mathcal{E} is a constructible exceptional bundle, then it is μA\mu_{A}-stable.

Proof.

Notice first that constructible exceptional bundles are balanced on every EiE_{i}. It suffices to show that \mathcal{E} is μA\mu_{A}-semistable. Suppose otherwise, one has a destabilizing subsheaf \mathcal{F}\subseteq\mathcal{E}. Write ν()=αHβiEi\nu(\mathcal{E})=\alpha H-\sum\beta_{i}E_{i} and ν()=αHβiEi\nu(\mathcal{F})=\alpha^{\prime}H-\sum\beta_{i}^{\prime}E_{i}, then we have

αεiβi<αεiβi.\alpha-\sum\varepsilon_{i}\beta_{i}<\alpha^{\prime}-\sum\varepsilon_{i}\beta_{i}^{\prime}.

It follows that αα\alpha\leq\alpha^{\prime} by taking εi\varepsilon_{i} sufficiently small. However, since π\pi_{*}\mathcal{E} is an exceptional bundle on 2\mathbb{P}^{2}, in particular μH\mu_{H}-stable, then we get a contradiction. ∎

Remark 5.3.

For a general exceptional bundle \mathcal{E}, consider the exact sequence

0(H)|H0.0\longrightarrow\mathcal{E}(-H)\longrightarrow\mathcal{E}\longrightarrow\mathcal{E}|_{H}\longrightarrow 0.

As ext1(,)=ext2(,)=0\operatorname{ext}^{1}(\mathcal{E},\mathcal{E})=\operatorname{ext}^{2}(\mathcal{E},\mathcal{E})=0, then applying Ext(,)\operatorname{Ext}(\mathcal{E},\cdot) to the sequence, one gets

Ext2(,(H))Ext1(,|H).\operatorname{Ext}^{2}(\mathcal{E},\mathcal{E}(-H))\simeq\operatorname{Ext}^{1}(\mathcal{E},\mathcal{E}|_{H}).

Notice that there exists a line l0|H|l_{0}\in|H| such that |l0\mathcal{E}|_{l_{0}} is balanced if and only if \mathcal{E} is HH-prioritary:

Ext1(,|H)Ext1(|H,|H)=H1(l0,()|l0).\operatorname{Ext}^{1}(\mathcal{E},\mathcal{E}|_{H})\simeq\operatorname{Ext}^{1}(\mathcal{E}|_{H},\mathcal{E}|_{H})=H^{1}(l_{0},(\mathcal{E}\otimes\mathcal{E})|_{l_{0}}).
Example 5.4.

On our polarized surface (X,A)(X,A) with π:X2\pi:X\rightarrow\mathbb{P}^{2} the blow-up of 2\mathbb{P}^{2} along mm collinear points and A=HεEiA=H-\varepsilon\sum E_{i} an ample class, consider the bundle :=π𝒯2\mathcal{E}:=\pi^{*}\mathcal{T}_{\mathbb{P}^{2}}. Notice that

Ext(,)=Ext(𝒪,π(𝒯2Ω21))H(X,π(𝒯2Ω21))\operatorname{Ext}^{*}(\mathcal{E},\mathcal{E})=\operatorname{Ext}^{*}(\mathcal{O},\pi^{*}(\mathcal{T}_{\mathbb{P}^{2}}\otimes\Omega^{1}_{\mathbb{P}^{2}}))\simeq H^{*}(X,\pi^{*}(\mathcal{T}_{\mathbb{P}^{2}}\otimes\Omega^{1}_{\mathbb{P}^{2}}))
=H(2,𝒯2Ω21)Ext(𝒯2,𝒯2),=H^{*}(\mathbb{P}^{2},\mathcal{T}_{\mathbb{P}^{2}}\otimes\Omega^{1}_{\mathbb{P}^{2}})\simeq\operatorname{Ext}^{*}(\mathcal{T}_{\mathbb{P}^{2}},\mathcal{T}_{\mathbb{P}^{2}}),

implying that \mathcal{E} is exceptional since 𝒯2\mathcal{T}_{\mathbb{P}^{2}} is. We will show that \mathcal{E} is μA\mu_{A}-stable for any sufficiently small ε>0\varepsilon>0. Suppose we have a sub-line bundle 𝒪X(D)\mathcal{O}_{X}(D) of \mathcal{E} with D=aHbiEiD=aH-\sum b_{i}E_{i}, we claim that a1a\leq 1. If not, consider the short exact sequence

0𝒪X(D)𝒪X(HD)𝒪H(HD)𝒪1(1a)0.0\longrightarrow\mathcal{O}_{X}(-D)\longrightarrow\mathcal{O}_{X}(H-D)\longrightarrow\mathcal{O}_{H}(H-D)\simeq\mathcal{O}_{\mathbb{P}^{1}}(1-a)\longrightarrow 0.

Taking the induced long exact sequence on cohomology, we see that the map

H1(X,𝒪X(D))H1(X,𝒪X(HD))H^{1}(X,\mathcal{O}_{X}(-D))\longrightarrow H^{1}(X,\mathcal{O}_{X}(H-D))

given by multiplication of a non-zero element in H0(X,𝒪X(H))H^{0}(X,\mathcal{O}_{X}(H)) is injective. Now consider the pull-back of the Euler sequence on 2\mathbb{P}^{2} twisted by 𝒪(D)\mathcal{O}(-D):

0𝒪X(D)(x0,x1,x2)𝒪X(HD)3(D)0.0\longrightarrow\mathcal{O}_{X}(-D)\stackrel{{\scriptstyle(x_{0},x_{1},x_{2})}}{{\longrightarrow}}\mathcal{O}_{X}(H-D)^{\oplus 3}\longrightarrow\mathcal{E}(-D)\longrightarrow 0.

As a consequence, the induced exact sequence on cohomology

0=H0(X,𝒪X(HD))3H0((D))H1(X,𝒪X(D))H1(X,𝒪X(HD))30=H^{0}(X,\mathcal{O}_{X}(H-D))^{\oplus 3}\longrightarrow H^{0}(\mathcal{E}(-D))\longrightarrow H^{1}(X,\mathcal{O}_{X}(-D))\longrightarrow H^{1}(X,\mathcal{O}_{X}(H-D))^{\oplus 3}

implies that H0(X,(D))=0H^{0}(X,\mathcal{E}(-D))=0, which is a contradiction.

We can choose ε0\varepsilon_{0} sufficiently small such that

μA(𝒪X(D))<3/2=μA(𝒯2)\mu_{A}(\mathcal{O}_{X}(D))<3/2=\mu_{A}(\mathcal{T}_{\mathbb{P}^{2}})

for all sub-line bundles OX(D)O_{X}(D) of \mathcal{E} with a=0a=0 or a=1a=1 as there are only finitely many of them. Now we claim that \mathcal{E} is μA\mu_{A}-stable. It suffices to check that there does not exist any possible destabilizing sub-line bundle 𝒪X(D)\mathcal{O}_{X}(D) with a<0a<0. Suppose that 𝒪X(D)\mathcal{O}_{X}(D) is such a line bundle: D=aHbiEiD=aH-\sum b_{i}E_{i} with a<0a<0 and

μA(𝒪X(D))=aε0bi32.\mu_{A}(\mathcal{O}_{X}(D))=a-\varepsilon_{0}\sum b_{i}\geq\frac{3}{2}.

If bi>0b_{i}>0 for some ii, then we may replace DD by D+EiD+E_{i}: notice that μA(𝒪X(D))<μA(𝒪X(D+Ei))\mu_{A}(\mathcal{O}_{X}(D))<\mu_{A}(\mathcal{O}_{X}(D+E_{i})) and that

H0((D))=H0((DEi))H^{0}(\mathcal{E}(-D))=H^{0}(\mathcal{E}(-D-E_{i}))

due to the short exact sequence

0(DEi)(D)(D)|Ei00\longrightarrow\mathcal{E}(-D-E_{i})\longrightarrow\mathcal{E}(-D)\longrightarrow\mathcal{E}(-D)|_{E_{i}}\longrightarrow 0

and (D)|Ei𝒪1(bi)𝒪1(bi)\mathcal{E}(-D)|_{E_{i}}\simeq\mathcal{O}_{\mathbb{P}^{1}}(-b_{i})\oplus\mathcal{O}_{\mathbb{P}^{1}}(-b_{i}). Now we reduce to the case when bi0b_{i}\leq 0 for all ii. Consider the short exact sequence

0(DL)(D)(D)|L0.0\longrightarrow\mathcal{E}(-D-L)\longrightarrow\mathcal{E}(-D)\longrightarrow\mathcal{E}(-D)|_{L}\longrightarrow 0.

We see that |L=π𝒯2|L𝒪L(1)𝒪L(2)\mathcal{E}|_{L}=\pi^{*}\mathcal{T}_{\mathbb{P}^{2}}|_{L}\simeq\mathcal{O}_{L}(1)\oplus\mathcal{O}_{L}(2) by performing the pull-back of the Euler sequence on 2\mathbb{P}^{2} restricted to LL. It thus follows that

(D)|L𝒪L(1a+bi)𝒪L(2a+bi).\mathcal{E}(-D)|_{L}\simeq\mathcal{O}_{L}(1-a+\sum b_{i})\oplus\mathcal{O}_{L}(2-a+\sum b_{i}).

Observe that 2a+bi<02-a+\sum b_{i}<0: suppose not, then one gets

2+biaε0bi+32,(1ε0)(bi)12,2+\sum b_{i}\geq a\geq\varepsilon_{0}\sum b_{i}+\frac{3}{2},\quad(1-\varepsilon_{0})(\sum b_{i})\geq-\frac{1}{2},

which is impossible. Hence we arrive at the case when a0a\geq 0 by performing these two kinds of reduction. This case follows from our choice of ε0\varepsilon_{0}.

In fact, \mathcal{E} is μA\mu_{A}-stable for any ε\varepsilon such that AA is ample, i.e. 0<ε<1/m0<\varepsilon<1/m. By our argument above, it suffices to check the case where a=0a=0 and a=1a=1. When a=0a=0, notice that (2Ei)\mathcal{E}(-2E_{i}) has no sections because every non-zero tangent vector field on 2\mathbb{P}^{2} vanishes at a point of multiplicity at most one. Thus the sub-line bundle with maximal AA-slope is 𝒪X(Ei)\mathcal{O}_{X}(\sum E_{i}), which satisfies that μA(𝒪X(Ei))=mε<1<3/2\mu_{A}(\mathcal{O}_{X}(\sum E_{i}))=m\varepsilon<1<3/2, and hence does not destabilize \mathcal{E} either.

When a=1a=1, Notice that every section of 𝒯2(1)\mathcal{T}_{\mathbb{P}^{2}}(-1) vanishes at one point, hence the divisor corresponding to any section of (H)\mathcal{E}(-H) is either trivial or EiE_{i}. In particular, the sub-line bundle with maximal AA-slope is 𝒪X(H+Ei)\mathcal{O}_{X}(H+E_{i}), whose AA-slope is 1+ε<3/21+\varepsilon<3/2, and hence does not destabilize \mathcal{E}.

However, in the case when a=1a=1, if we take our polarization to be A=H(1δ)E1i2εEiA=H-(1-\delta)E_{1}-\sum_{i\geq 2}\varepsilon E_{i} such that 0<δ00<\delta\ll 0, 0<ε00<\varepsilon\ll 0 and 1δ+(m1)ε<11-\delta+(m-1)\varepsilon<1, then 𝒪(H+E1)\mathcal{O}(H+E_{1}) destabilizes \mathcal{E}. This suggests that we cannot expect that the exceptional bundles, even the constructible ones, to be μA\mu_{A}-stable for any polarization A=HεiEiA=H-\sum\varepsilon_{i}E_{i}.

6 Existence of Stable Sheaves

Let XX be the blow-up of 2\mathbb{P}^{2} along mm distinct collinear points. In this section, we first computationally determine whether the moduli space MX,A(𝐯)M_{X,A}({\bf{v}}) is nonempty. Then for a generic polarization and an arbitrary character except for one special case, we will give an equivalent condition for the existence of stable sheaves with this character.

6.1 Generic polarization and sharp Bogomolov inequalities

In this section we introduce functions of the slope which provide sharp Bogomolov-type inequalities for various stabilities. We follow the treatment in [CH21].

For a μA\mu_{A}-stable exceptional bundle \mathcal{E}, we define a function

DLPA,(ν)={P(νν())Δ(),if 12KX.A(νν()).A<0P(ν()ν)Δ(),if 0<(νν()).A12KX.Amax{P(±(ν()ν))Δ()},if (νν()).A=0\operatorname{DLP}_{A,\mathcal{E}}(\nu)=\begin{cases}P(\nu-\nu(\mathcal{E}))-\Delta(\mathcal{E}),&\textup{if }\frac{1}{2}K_{X}.A\leq(\nu-\nu(\mathcal{E})).A<0\\ P(\nu(\mathcal{E})-\nu)-\Delta(\mathcal{E}),&\textup{if }0<(\nu-\nu(\mathcal{E})).A\leq-\frac{1}{2}K_{X}.A\\ \max\{P(\pm(\nu(\mathcal{E})-\nu))-\Delta(\mathcal{E})\},&\textup{if }(\nu-\nu(\mathcal{E})).A=0\end{cases}
Definition 6.1.

Let A=HεiEiA=H-\sum\varepsilon_{i}E_{i} be a polarization and A\mathfrak{C}_{A} be the set of μA\mu_{A}-stable exceptional bundles on XX. Define functions

DLPA(ν)=supA|(νν()).A|12KX.ADLPA,(ν),\operatorname{DLP}_{A}(\nu)=\sup_{\mathcal{E}\in\mathfrak{C}_{A}\atop|(\nu-\nu(\mathcal{E})).A|\leq-\frac{1}{2}K_{X}.A}\operatorname{DLP}_{A,\mathcal{E}}(\nu),

and

DLPA<r(ν)=supA,r()<r|(νν()).A|12KX.ADLPA,(ν).\operatorname{DLP}^{<r}_{A}(\nu)=\sup_{\mathcal{E}\in\mathfrak{C}_{A},r(\mathcal{E})<r\atop|(\nu-\nu(\mathcal{E})).A|\leq-\frac{1}{2}K_{X}.A}\operatorname{DLP}_{A,\mathcal{E}}(\nu).
Proposition 6.2.

Let ε\varepsilon be generic.

  1. (i)

    If \mathcal{E} is an AA-semistable exceptional bundle on XX of rank rr, then

    Δ()DLPA<r(ν()).\Delta(\mathcal{E})\geq\operatorname{DLP}^{<r}_{A}(\nu(\mathcal{E})).
  2. (ii)

    If \mathcal{E} is an AA-semistable non-semiexceptional bundle on XX, then

    Δ()DLPA(ν()).\Delta(\mathcal{E})\geq\operatorname{DLP}_{A}(\nu(\mathcal{E})).
Proof.

If \mathcal{E} is a μA\mu_{A}-semistable sheaf with

12KX.AμA()μA(𝒱)<0,\frac{1}{2}K_{X}.A\leq\mu_{A}(\mathcal{E})-\mu_{A}(\mathcal{V})<0,

when hom(𝒱,)=hom(,𝒱(KX))\hom(\mathcal{V},\mathcal{E})=\hom(\mathcal{E},\mathcal{V}(K_{X})) by stability and duality. Therefore χ(𝒱,)0\chi(\mathcal{V},\mathcal{E})\leq 0 and

Δ()P(ν()ν(𝒱))Δ(𝒱).\Delta(\mathcal{E})\geq P(\nu(\mathcal{E})-\nu(\mathcal{V}))-\Delta(\mathcal{V}).

Likewise, if

0<μA()μA(𝒱)12KX.A,0<\mu_{A}(\mathcal{E})-\mu_{A}(\mathcal{V})\leq-\frac{1}{2}K_{X}.A,

then the inequality χ(,𝒱)0\chi(\mathcal{E},\mathcal{V})\leq 0 provides a lower bound

Δ()P(ν(𝒱)ν())Δ(𝒱).\Delta(\mathcal{E})\geq P(\nu(\mathcal{V})-\nu(\mathcal{E}))-\Delta(\mathcal{V}).

Notice that if ε\varepsilon is generic, then (νν(𝒱)).A=0(\nu-\nu(\mathcal{V})).A=0 happen only when ν=ν(𝒱)\nu=\nu(\mathcal{V}). Suppose that \mathcal{E} is AA-semistable of total slope ν()=ν(𝒱)\nu(\mathcal{E})=\nu(\mathcal{V}). If Δ()=Δ(𝒱)<1/2\Delta(\mathcal{E})=\Delta(\mathcal{V})<1/2, then \mathcal{E} is semistable. If Δ()Δ(𝒱)\Delta(\mathcal{E})\neq\Delta(\mathcal{V}), then either hom(,𝒱)=0\hom(\mathcal{E},\mathcal{V})=0 or hom(𝒱,)=0\hom(\mathcal{V},\mathcal{E})=0 by AA-semistability, and in either case Riemann-Roch implies

Δ()DLPA,𝒱(ν)=12+12r(𝒱)2.\Delta(\mathcal{E})\geq\operatorname{DLP}_{A,\mathcal{V}}(\nu)=\frac{1}{2}+\frac{1}{2r(\mathcal{V})^{2}}.

Thus if AA is generic, then ΔDLPH,(ν)\Delta\geq\operatorname{DLP}_{H,\mathcal{E}}(\nu) whenever there is an AA-semistable sheaf of total slope ν\nu and discriminant Δ\Delta satisfying |(νν(𝒱)).A|12KX.A|(\nu-\nu(\mathcal{V})).A|\leq-\frac{1}{2}K_{X}.A.

Definition 6.3.

Let A=HεiEiA=H-\sum\varepsilon_{i}E_{i} be a polarization and 𝐯{\bf{v}} be a Chern character. Define

δAμs(ν)=inf{Δ12:there is a μA-stable sheaf of total slope ν and discriminant Δ}.\delta_{A}^{\mu-s}(\nu)=\inf\left\{\Delta\geq\frac{1}{2}:\textup{there is a }\mu_{A}\textup{-stable sheaf of total slope }\nu\textup{ and discriminant }\Delta\right\}.

We similarly define functions δAs\delta^{s}_{A}, δAss\delta^{ss}_{A}, δAμss\delta^{\mu-ss}_{A}.

It is immediate that

δAμss(ν)δAss(ν)δAs(ν)δAμs(ν).\delta_{A}^{\mu-ss}(\nu)\leq\delta_{A}^{ss}(\nu)\leq\delta_{A}^{s}(\nu)\leq\delta_{A}^{\mu-s}(\nu).

Now let us compare the various δ\delta-functions in the case where the polarization A=HεiEiA=H-\sum\varepsilon_{i}E_{i} is generic.

Theorem 6.4.

(Theorem 9.2 [CH21]) Let νPic(X)\nu\in\operatorname{Pic}(X)_{\mathbb{Q}}, and AA be a generic polarization. Then

δAss(ν)=δAs(ν)=δAμs(ν).\delta_{A}^{ss}(\nu)=\delta_{A}^{s}(\nu)=\delta_{A}^{\mu-s}(\nu).

If moreover there is no μA\mu_{A}-stable exceptional bundle of total slope ν\nu, then these numbers also equal δAμss(ν)\delta_{A}^{\mu-ss}(\nu).

The main result about existence of sheaves with discriminant above δAμs(ν)\delta_{A}^{\mu-s}(\nu) is the following:

Theorem 6.5.

(Theorem 9.7 [CH21]) Let 𝐯=(r,ν,Δ)K(X){\bf{v}}=(r,\nu,\Delta)\in K(X) and AA be any polarization.

  1. 1.

    If Δ>δAμs(ν)\Delta>\delta_{A}^{\mu-s}(\nu), then there are μA\mu_{A}-stable sheaves of character 𝐯{\bf{v}}.

  2. 2.

    If there is a non-exceptional μA\mu_{A}-stable sheaf of character 𝐯{\bf{v}}, then ΔδAμs(ν)\Delta\geq\delta_{A}^{\mu-s}(\nu).

  3. 3.

    If there is a μA\mu_{A}-stable sheaf of slope ν\nu and discriminant δAμs(ν)>12\delta^{\mu-s}_{A}(\nu)>\frac{1}{2}, then non-exceptional μA\mu_{A}-stable sheaves of character 𝐯{\bf{v}} exist if and only if ΔδAμs(ν)\Delta\geq\delta_{A}^{\mu-s}(\nu).

6.2 Harder-Narasimhan filtration

Let X=XmX=X_{m} be the blow-up of 2\mathbb{P}^{2} along mm collinear points, and A=HεiEiA=H-\sum\varepsilon_{i}E_{i} be a polarization of XX, where εi>0\varepsilon_{i}>0 is a rational number such that εi<1\sum\varepsilon_{i}<1.

Let s\mathcal{E}_{s} be a complete family of torsion-free coherent sheaves on (X,A)(X,A), which is both HH-prioritary and FiF_{i}-prioritary for all ii, parameterized by a smooth algebraic variety SS. Consider the r(ε)Ar(\varepsilon)A-Harder-Narasimhan filtration of a general sheaf s\mathcal{E}_{s}, where r(ε)r(\varepsilon) is the smallest positive integer such that r(ε)Ar(\varepsilon)A is an integral divisor. Suppose this Harder-Narasimhan filtration has length ll, and the r(ε)Ar(\varepsilon)A-semistable quotients gri,s\operatorname{gr}_{i,s} have corresponding r(ε)Ar(\varepsilon)A-Hilbert polynomial PiP_{i}, reduced r(ε)Ar(\varepsilon)A-Hilbert polynomial p1>>plp_{1}>\cdots>p_{l}, and Chern characters 𝐠𝐫i=(ri,νi,Δi){\bf{gr}}_{i}=(r_{i},\nu_{i},\Delta_{i}).

The next lemma is useful in bounding the polarization in Section 6.3. We include the proof here.

Lemma 6.6.

(Lemma 5.1 [CH21]) A general sheaf s\mathcal{E}_{s} in this family satisfies that

0μmax,A(s)μmin,A(s)1.0\leq\mu_{\max,A}(\mathcal{E}_{s})-\mu_{\min,A}(\mathcal{E}_{s})\leq 1.
Proof.

First suppose CC is a smooth rational curve, and then general s|C\mathcal{E}_{s}|_{C} is a locally free sheaf. Recall that if s/S\mathcal{E}_{s}/S is a complete family of 𝒪(C)\mathcal{O}(C)-prioritary sheaves which are locally free along CC, then the general s\mathcal{E}_{s} has restriction s|C\mathcal{E}_{s}|_{C} which is balanced so that

μmax(s|C)μmin(s|C)1.\mu_{\max}(\mathcal{E}_{s}|C)-\mu_{\min}(\mathcal{E}_{s}|C)\leq 1.

Observe that μmax,𝒪C(s)μmax(s|C)\mu_{\max,\mathcal{O}_{C}}(\mathcal{E}_{s})\leq\mu_{\max}(\mathcal{E}_{s}|C). Indeed, suppose s\mathcal{F}\subseteq\mathcal{E}_{s} is a subsheaf. Then

μ𝒪C()=μ(|C)μmax(s|C).\mu_{\mathcal{O}_{C}}(\mathcal{F})=\mu(\mathcal{F}|_{C})\leq\mu_{\max}(\mathcal{E}_{s}|C).

Analogously we have μmin,𝒪C(s)μmin(s|C)\mu_{\min,\mathcal{O}_{C}}(\mathcal{E}_{s})\geq\mu_{\min}(\mathcal{E}_{s}|C), and we conclude that

μmax,𝒪(C)(s)μmin,𝒪(C)(s)1\mu_{\max,\mathcal{O}(C)}(\mathcal{E}_{s})-\mu_{\min,\mathcal{O}(C)}(\mathcal{E}_{s})\leq 1

holds for a general sSs\in S. (Even if LL is not ample, we write for example μmax,L()\mu_{\max,L}(\mathcal{E}) for the maximum LL-slope of a subsheaf of \mathcal{E}, if it exists. For L=𝒪(C)L=\mathcal{O}(C), the above restriction argument shows the maximum exists.)

Now observe that if s/S\mathcal{E}_{s}/S is a complete family of (F1,,Fm,H)(F_{1},...,F_{m},H)-prioritary sheaves, then

mumax,A(s)μmax,A(s)=μA(gr1,s)μA(grl,s)=(ν1νl).((1εi)H+εiFi)(1εi)+εi=1.\begin{split}mu_{\max,A}(\mathcal{E}_{s})-\mu_{\max,A}(\mathcal{E}_{s})&=\mu_{A}(\operatorname{gr}_{1,s})-\mu_{A}(\operatorname{gr}_{l,s})\\ &=(\nu_{1}-\nu_{l}).((1-\sum\varepsilon_{i})H+\sum\varepsilon_{i}F_{i})\\ &\leq(1-\sum\varepsilon_{i})+\sum\varepsilon_{i}=1.\end{split}

Lemma 6.7.

(Lemma 5.2 [CH21]) With the notation above, we have χ(𝐠𝐫i,𝐠𝐫j)=0\chi({\bf{gr}}_{i},{\bf{gr}}_{j})=0 for all i<ji<j.

The following theorem provides an algorithm to determine stable characters inductively. We will use it to determine a class of special characters that cannot be detected by the weak DL condition given in Definition 6.11. This is proved for Hirzebruch surfaces in [CH21]. We repeat the argument here for the reader’s convenience.

Theorem 6.8.

(Theorem 5.3 [CH21]) Suppose 𝐰1,,𝐰kK(X){\bf{w}}_{1},...,{\bf{w}}_{k}\in K(X) are characters of positive rank satisfying the following properties:

  1. 1.

    𝐰1++𝐰k=𝐯{\bf{w}}_{1}+\cdots+{\bf{w}}_{k}={\bf{v}}.

  2. 2.

    q1>>qkq_{1}>\cdots>q_{k}, where qiq_{i} is the reduced AA-Hilbert polynomial corresponding to 𝐰i{\bf{w}}_{i}.

  3. 3.

    μA(𝐰1)μA(𝐰k)1\mu_{A}({\bf{w}}_{1})-\mu_{A}({\bf{w}}_{k})\leq 1.

  4. 4.

    χ(𝐰i,𝐰j)=0\chi({\bf{w}}_{i},{\bf{w}}_{j})=0 for i<ji<j.

  5. 5.

    The moduli space MA(𝐰i)M_{A}({\bf{w}}_{i}) is nonempty for each ii.

Then k=lk=l and 𝐠𝐫i=𝐰i{\bf{gr}}_{i}={\bf{w}}_{i} for each ii.

Proof.

Pick AA-semistable sheaves 𝒲iMA(𝐰i)\mathcal{W}_{i}\in M_{A}({\bf{w}}_{i}) for each ii, and consider the sheaf

𝒰:=i𝒲i\mathcal{U}:=\bigoplus_{i}\mathcal{W}_{i}

so that 𝒰\mathcal{U} has character 𝐯{\bf{v}} and the Harder-Narasimhan filtration of 𝒰\mathcal{U} has factors 𝒲1,,𝒲k\mathcal{W}_{1},...,\mathcal{W}_{k}. Then by assumption

μmax,A(𝒰)μmin,A(𝒰)=μA(𝒲1)μA(𝒲k)1,\mu_{\max,A}(\mathcal{U})-\mu_{\min,A}(\mathcal{U})=\mu_{A}(\mathcal{W}_{1})-\mu_{A}(\mathcal{W}_{k})\leq 1,

so that

Ext2(𝒲i,𝒲j(Fn))Hom(𝒲j,𝒲i(KX+Fn))=0,\operatorname{Ext}^{2}(\mathcal{W}_{i},\mathcal{W}_{j}(-F_{n}))\simeq\operatorname{Hom}(\mathcal{W}_{j},\mathcal{W}_{i}(K_{X}+F_{n}))^{*}=0,

𝒰\mathcal{U} is both HH-prioritary and FnF_{n}-prioritary for each nn.

Now we can construct a complete family 𝒰t/Σ\mathcal{U}_{t}/\Sigma parameterized by a smooth, irreducible variety Σ\Sigma such that 𝒰=𝒰t0\mathcal{U}=\mathcal{U}_{t_{0}} for some t0Σt_{0}\in\Sigma. Let d0d\gg 0 be sufficiently large and divisible, let χ=χ(𝒪X(dA),𝒰)\chi=\chi(\mathcal{O}_{X}(-dA),\mathcal{U}), and consider the universal family of quotients 𝒰t/Σ\mathcal{U}_{t}/\Sigma on Σ=Quot(𝒪X(dA)χ,ch(𝒰))\Sigma=\operatorname{Quot}(\mathcal{O}_{X}(-dA)^{\chi},\operatorname{ch}(\mathcal{U})) parameterizing quotients

0𝒦t𝒪X(dA)χ𝒰t0.0\longrightarrow\mathcal{K}_{t}\longrightarrow\mathcal{O}_{X}(-dA)^{\chi}\longrightarrow\mathcal{U}_{t}\longrightarrow 0.

Let t0Σt_{0}\in\Sigma be the point corresponding to the canonical evaluation

𝒪X(dA)Hom(𝒪X(dA),𝒰)𝒰.\mathcal{O}_{X}(-dA)\otimes\operatorname{Hom}(\mathcal{O}_{X}(-dA),\mathcal{U})\longrightarrow\mathcal{U}.

Then the tangent space to Σ\Sigma at a point tt corresponding to the previous short exact sequence is Hom(𝒦t,𝒰t)\operatorname{Hom}(\mathcal{K}_{t},\mathcal{U}_{t}), and Σ\Sigma is smooth at tt if Ext1(𝒦t,𝒰t)=0\operatorname{Ext}^{1}(\mathcal{K}_{t},\mathcal{U}_{t})=0. Applying Hom(,𝒰t)\operatorname{Hom}(\cdot,\mathcal{U}_{t}) to the exact sequence, one gets

Hom(𝒦t,𝒰t)Ext1(𝒰t,𝒰t)Ext1(𝒪X(dA)χ,𝒰t)Ext1(𝒦t,𝒰t)Ext2(𝒰t,𝒰t).\operatorname{Hom}(\mathcal{K}_{t},\mathcal{U}_{t})\longrightarrow\operatorname{Ext}^{1}(\mathcal{U}_{t},\mathcal{U}_{t})\longrightarrow\operatorname{Ext}^{1}(\mathcal{O}_{X}(-dA)^{\chi},\mathcal{U}_{t})\longrightarrow\operatorname{Ext}^{1}(\mathcal{K}_{t},\mathcal{U}_{t})\longrightarrow\operatorname{Ext}^{2}(\mathcal{U}_{t},\mathcal{U}_{t}).

By passing to the open subset parameterizing locally free sheaves if necessary, we have

ext2(𝒰t,𝒰t)=hom(𝒰t,𝒰t(KX))=0\operatorname{ext}^{2}(\mathcal{U}_{t},\mathcal{U}_{t})=\hom(\mathcal{U}_{t},\mathcal{U}_{t}(K_{X}))=0

by our assumptions on the slopes. Since d0d\gg 0, we have Ext1(𝒪X(dA)χ,𝒰t)=0\operatorname{Ext}^{1}(\mathcal{O}_{X}(-dA)^{\chi},\mathcal{U}_{t})=0 by Serre vanishing and boundedness of the Quot scheme. Therefore Ext1(𝒦t,𝒰t)=0\operatorname{Ext}^{1}(\mathcal{K}_{t},\mathcal{U}_{t})=0 and Σ\Sigma is smooth at tt, including at t=t0t=t_{0}. Furthermore, the Kodaira-Spencer map at tt is the natural map

TtΣ=Hom(𝒦t,𝒰t)Ext1(𝒰t,𝒰t),T_{t}\Sigma=\operatorname{Hom}(\mathcal{K}_{t},\mathcal{U}_{t})\longrightarrow\operatorname{Ext}^{1}(\mathcal{U}_{t},\mathcal{U}_{t}),

so the universal family on Σ\Sigma is complete at tt, including at t=t0t=t_{0}. We have thus constructed the required complete family 𝒰t/Σ\mathcal{U}_{t}/\Sigma.

Let QiQ_{i} be the AA-Hilbert polynomial corresponding to 𝐰i{\bf{w}}_{i}. Then by the same computation as in the previous lemma, the Schatz stratum SA(Q1,,Qk)ΣS_{A}(Q_{1},...,Q_{k})\subset\Sigma is smooth at t0t_{0} of codimension 0. Therefore the stratum is dense in Σ\Sigma, and the general sheaf 𝒰t\mathcal{U}_{t} has an AA-Harder-Narasimhan filtration with quotients of character 𝐰i{\bf{w}}_{i}. Thus 𝐠𝐫i=𝐰i{\bf{gr}}_{i}={\bf{w}}_{i} and k=lk=l.

6.3 Classification of stable characters

In this section, we will give an equivalent condition for the existence of μA\mu_{A}-stable bundles of character 𝐯{\bf{v}} for some polarization A=HεiEiA=H-\sum\varepsilon_{i}E_{i}.

Definition 6.9.

A torsion-free coherent sheaf \mathcal{E} (or Chern character) satisfies the strong Drézet-Le Potier condition (abbr. as strong DL condition) if

  1. (a)

    for every μA\mu_{A}-stable sheaf \mathcal{F} satisfying r()<r()r(\mathcal{F})<r(\mathcal{E}) and

    μA()μA()μA()A.KX,\mu_{A}(\mathcal{E})\leq\mu_{A}(\mathcal{F})\leq\mu_{A}(\mathcal{E})-A.K_{X},

    we have χ(,)0\chi(\mathcal{F},\mathcal{E})\leq 0;

  2. (b)

    for every μA\mu_{A}-stable sheaf \mathcal{F} satisfying r()<r()r(\mathcal{F})<r(\mathcal{E}) and

    μA()+A.KXμA()μA(),\mu_{A}(\mathcal{E})+A.K_{X}\leq\mu_{A}(\mathcal{F})\leq\mu_{A}(\mathcal{E}),

    we have χ(,)0\chi(\mathcal{E},\mathcal{F})\leq 0.

Lemma 6.10.

Suppose \mathcal{E} is a non-exceptional μA\mu_{A}-stable sheaf with r()2r(\mathcal{E})\geq 2. Then Δ()1/2\Delta(\mathcal{E})\geq 1/2 and \mathcal{E} satisfies strong DL condition.

Proof.

We have that ext2(,)=0\operatorname{ext}^{2}(\mathcal{E},\mathcal{E})=0 and hom(,)=1\hom(\mathcal{E},\mathcal{E})=1 by stability. As \mathcal{E} is not exceptional, then

r()2(12Δ())=χ(,)=1ext1(,)0,r(\mathcal{E})^{2}(1-2\Delta(\mathcal{E}))=\chi(\mathcal{E},\mathcal{E})=1-\operatorname{ext}^{1}(\mathcal{F},\mathcal{F})\leq 0,

which gives Δ()1/2\Delta(\mathcal{E})\geq 1/2. Now if \mathcal{F} is a μA\mu_{A}-stable bundle such that r()<r()r(\mathcal{F})<r(\mathcal{E}) and

μA()μA()μA()A.KX,\mu_{A}(\mathcal{E})\leq\mu_{A}(\mathcal{F})\leq\mu_{A}(\mathcal{E})-A.K_{X},

then we have hom(,)=0\hom(\mathcal{F},\mathcal{E})=0 and ext2(,)=hom(,(KX))=0\operatorname{ext}^{2}(\mathcal{F},\mathcal{E})=\hom(\mathcal{E},\mathcal{F}(K_{X}))=0 by stability; which implies that χ(,)0\chi(\mathcal{F},\mathcal{E})\leq 0. The other condition is similar.

Definition 6.11.

A torsion-free coherent sheaf \mathcal{E} (or Chern character) satisfies the weak Drézet-Le Potier condition (abbr. as weak DL condition) if

  1. (a)

    for every exceptional bundle \mathcal{F} which is constructible and satisfies r()<r()r(\mathcal{F})<r(\mathcal{E}) and

    μA()μA()μA()A.KX,\mu_{A}(\mathcal{E})\leq\mu_{A}(\mathcal{F})\leq\mu_{A}(\mathcal{E})-A.K_{X},

    for some polarization AA, we have χ(,)0\chi(\mathcal{F},\mathcal{E})\leq 0;

  2. (b)

    for every exceptional bundle \mathcal{F} which is constructible and satisfies r()<r()r(\mathcal{F})<r(\mathcal{E}) and

    μA()μA()μA()A.KX,\mu_{A}(\mathcal{E})\leq\mu_{A}(\mathcal{F})\leq\mu_{A}(\mathcal{E})-A.K_{X},

    for some polarization AA, we have χ(,)0\chi(\mathcal{E},\mathcal{F})\leq 0.

Remark 6.12.

If \mathcal{E} is a μA\mu_{A}-stable sheaf for some polarization AA, then \mathcal{E} satisfies both strong and weak DL conditions thanks to the stability condition and Serre duality.

Let 𝐯=(r,ν,Δ){\bf{v}}=(r,\nu,\Delta) be a character such that ν(𝐯)=αHβiEi\nu({\bf{v}})=\alpha H-\sum\beta_{i}E_{i} with 1βi0-1\leq\beta_{i}\leq 0 and Δ(𝐯)0\Delta({\bf{v}})\geq 0. Suppose that α\alpha\notin\mathfrak{C}, where \mathfrak{C} is the set of HH-slopes on 2\mathbb{P}^{2} of exceptional bundles.

Proposition 6.13.

Let 𝐯=(r,ν,Δ){\bf{v}}=(r,\nu,\Delta) be as above, and 𝒫H(𝐯)\mathcal{E}\in\mathcal{P}_{H}({\bf{v}}) be a general sheaf. If \mathcal{E} satisfies the weak DL-condition, then π\pi_{*}\mathcal{E} is μH\mu_{H}-stable.

Proof.

Since \mathcal{E} is general, then one has |Ei𝒪Eirdi𝒪Ei(1)di\mathcal{E}|_{E_{i}}\simeq\mathcal{O}_{E_{i}}^{r-d_{i}}\oplus\mathcal{O}_{E_{i}}(-1)^{d_{i}} for every i=1,,mi=1,...,m. In particular, π\pi_{*}\mathcal{E} is a vector bundle on 2\mathbb{P}^{2} which fits in the short exact sequence

0ππi=1m𝒪Ei(1)di0.0\longrightarrow\pi^{*}\pi_{*}\mathcal{E}\longrightarrow\mathcal{E}\longrightarrow\bigoplus_{i=1}^{m}\mathcal{O}_{E_{i}}(-1)^{d_{i}}\longrightarrow 0.

Applying Hom(,)\operatorname{Hom}(\cdot,\mathcal{E}) to this sequence, one gets that

Ext1(,)Ext1(ππ,)i=1mExt2(𝒪Ei(1)di,)=0.\operatorname{Ext}^{1}(\mathcal{E},\mathcal{E})\longrightarrow\operatorname{Ext}^{1}(\pi^{*}\pi_{*}\mathcal{E},\mathcal{E})\longrightarrow\bigoplus_{i=1}^{m}\operatorname{Ext}^{2}(\mathcal{O}_{E_{i}}(-1)^{d_{i}},\mathcal{E})=0.

Using the argument in the proof of Proposition 8.8, one can deduce that Ext1(ππ,)Ext1(π,π)\operatorname{Ext}^{1}(\pi^{*}\pi_{*}\mathcal{E},\mathcal{E})\simeq\operatorname{Ext}^{1}(\pi_{*}\mathcal{E},\pi_{*}\mathcal{E}), and hence one may assume that π\pi_{*}\mathcal{E} is a general sheaf in 𝒫H(𝐯(π))\mathcal{P}_{H}({\bf{v}^{\prime}}(\pi_{*}\mathcal{E})).

We need to show that π\pi_{*}\mathcal{E} satisfies the DL-condition on 2\mathbb{P}^{2}. Let 𝒱\mathcal{V} be an exceptional bundle on 2\mathbb{P}^{2} of such that r(𝒱)<rr(\mathcal{V})<r and 0<μH(𝒱)μH(π)20<\mu_{H}(\mathcal{V})-\mu_{H}(\pi_{*}\mathcal{E})\leq 2. We claim that

χ(𝒱,π)0.\chi(\mathcal{V},\pi_{*}\mathcal{E})\leq 0.

Consider the exceptional bundle =π𝒱\mathcal{F}=\pi^{*}\mathcal{V} on XX. We have for each i0i\geq 0 that

Exti(π𝒱,)Hi(X,π𝒱)Hi(2,𝒱π)Exti(𝒱,π)\operatorname{Ext}^{i}(\pi^{*}\mathcal{V},\mathcal{E})\simeq H^{i}(X,\pi^{*}\mathcal{V}^{*}\otimes\mathcal{E})\simeq H^{i}(\mathbb{P}^{2},\mathcal{V}^{*}\otimes\pi_{*}\mathcal{E})\simeq\operatorname{Ext}^{i}(\mathcal{V},\pi_{*}\mathcal{E})

since Rjπ=0R^{j}\pi_{*}\mathcal{E}=0 for j>0j>0. In particular, one has

χ(𝒱,π)=χ(π𝒱,)0\chi(\mathcal{V},\pi_{*}\mathcal{E})=\chi(\pi^{*}\mathcal{V},\mathcal{E})\leq 0

since rank()<r\operatorname{rank}(\mathcal{F})<r and μA()μA()μA()(KX.A)\mu_{A}(\mathcal{E})\leq\mu_{A}(\mathcal{F})\leq\mu_{A}(\mathcal{E})-(K_{X}.A).

Similarly, for any exceptional bundle 𝒱\mathcal{V} on 2\mathbb{P}^{2} of such that r(𝒱)<rr(\mathcal{V})<r and 0<μH()μH(𝒱)20<\mu_{H}(\mathcal{E})-\mu_{H}(\mathcal{V})\leq 2, we have that

χ(π,𝒱)0\chi(\pi_{*}\mathcal{E},\mathcal{V})\leq 0

by considering the exceptional bundle \mathcal{F} on XX given by

0π𝒱i=1m𝒪Ei(1)r(𝒱)i=1mExt1(𝒪Ei(1),π𝒱)𝒪Ei(1)0.0\longrightarrow\pi^{*}\mathcal{V}\longrightarrow\mathcal{F}\longrightarrow\bigoplus_{i=1}^{m}\mathcal{O}_{E_{i}}(-1)^{r(\mathcal{V})}\simeq\bigoplus_{i=1}^{m}\operatorname{Ext}^{1}(\mathcal{O}_{E_{i}}(-1),\pi^{*}\mathcal{V})\otimes\mathcal{O}_{E_{i}}(-1)\longrightarrow 0.

We can conclude that π\pi_{*}\mathcal{E} is HH-stable. Since π\pi_{*}\mathcal{E} is general, then it is μH\mu_{H}-stable.

Theorem 6.14.

Let 𝐯=(r,ν,Δ){\bf{v}}=(r,\nu,\Delta) be as above, and 𝒫H(𝐯)\mathcal{E}\in\mathcal{P}_{H}({\bf{v}}) be a general sheaf. If \mathcal{E} satisfies the weak DL-condition, then \mathcal{E} is μA\mu_{A}-stable for 0<εi10<\varepsilon_{i}\ll 1, where A=HεiEiA=H-\sum\varepsilon_{i}E_{i}.

Proof.

Recall that for any subsheaf \mathcal{E}^{\prime} of \mathcal{E} and any polarization A=HεiEiA=H-\sum\varepsilon_{i}E_{i}, one has

μA()μA()1.\mu_{A}(\mathcal{E})-\mu_{A}(\mathcal{E}^{\prime})\leq 1.

Write ν()=αHβiEi\nu(\mathcal{E})=\alpha H-\sum\beta_{i}E_{i} and ν()=αHβiEi\nu(\mathcal{E})=\alpha^{\prime}H-\sum\beta_{i}^{\prime}E_{i}, then the inequality comes down to saying that

ααεi(βiβi)1.\alpha^{\prime}-\alpha-\sum\varepsilon_{i}(\beta_{i}^{\prime}-\beta_{i})\leq 1.

Setting φi1\varphi_{i}\to 1 and φj0\varphi_{j}\to 0, one obtains that

βiβiαα+1.\beta_{i}-\beta_{i}^{\prime}\leq\alpha-\alpha^{\prime}+1.

Notice that for any subsheaf \mathcal{E}^{\prime} of \mathcal{E}, since π\pi_{*}\mathcal{E} is μH\mu_{H}-stable, then α<α\alpha^{\prime}<\alpha. Thus αα\alpha-\alpha^{\prime} has a strictly positive lower bound δ\delta since rr is a finite number. Now let εi\sum\varepsilon_{i} satisfy that

δ>εi1εi.\delta>\frac{\sum\varepsilon_{i}}{1-\sum\varepsilon_{i}}.

Then we claim that \mathcal{E} is μA\mu_{A}-stable for A=HεiEiA=H-\sum\varepsilon_{i}E_{i}. Indeed, for any subsheaf \mathcal{E}^{\prime} of \mathcal{E}, one has

μA()μA()=ααiεi(βiβi)(αα)εi(αα+1)=(1εi)(αα)εi(1εi)δεi>0.\begin{split}\mu_{A}(\mathcal{E})-\mu_{A}(\mathcal{E}^{\prime})&=\alpha-\alpha^{\prime}-\sum_{i}\varepsilon_{i}(\beta_{i}-\beta_{i}^{\prime})\\ &\geq(\alpha-\alpha^{\prime})-\sum\varepsilon_{i}(\alpha-\alpha^{\prime}+1)\\ &=(1-\sum\varepsilon_{i})(\alpha-\alpha^{\prime})-\sum\varepsilon_{i}\\ &\geq(1-\sum\varepsilon_{i})\delta-\sum\varepsilon_{i}>0.\end{split}

Now let us consider the case when μH(π)=μH(𝒱)\mu_{H}(\pi_{*}\mathcal{E})=\mu_{H}(\mathcal{V}) for some exceptional bundle 𝒱\mathcal{V}. Consider the Harder-Narasimhan filtration of π\pi_{*}\mathcal{E}. Either none of the Harder-Narasimhan factors is isomorphic to 𝒱\mathcal{V}, or every Harder-Narasimhan factor is isomorphic to 𝒱\mathcal{V}. In the former case, one can run the same argument as above to show that \mathcal{E} is μA\mu_{A}-stable for 0<εi10<\varepsilon_{i}\ll 1 if \mathcal{E} satisfies the weak DL-condition.

For the latter case, a general element in 𝒫H(𝐯)\mathcal{P}_{H}({\bf{v}}) fits in an exact sequence

0π𝒱Ni=1m𝒪Ei(1)di0.0\longrightarrow\pi^{*}\mathcal{V}^{\oplus N}\longrightarrow\mathcal{E}\longrightarrow\bigoplus_{i=1}^{m}\mathcal{O}_{E_{i}}(-1)^{d_{i}}\longrightarrow 0.

If \mathcal{E} is not μA\mu_{A}-semistable, then every destabilizing sheaf \mathcal{E}^{\prime} is of the form

0π𝒱Ni=1m𝒪Ei(1)di0,0\longrightarrow\pi^{*}\mathcal{V}^{\oplus N^{\prime}}\longrightarrow\mathcal{E}^{\prime}\longrightarrow\bigoplus_{i=1}^{m}\mathcal{O}_{E_{i}}(-1)^{d_{i}^{\prime}}\longrightarrow 0,

where N>NN>N^{\prime}, didid_{i}^{\prime}\geq d_{i} for every ii, and for at least one ii, di>did_{i}^{\prime}>d_{i}.

Now let 𝐯=𝐯(){\bf{v}}={\bf{v}}(\mathcal{E}) be a character with \mathcal{E} a general sheaf fitting in an exact sequence

0π𝒱Ni=1m𝒪Ei(1)di0.0\longrightarrow\pi^{*}\mathcal{V}^{\oplus N}\longrightarrow\mathcal{E}\longrightarrow\bigoplus_{i=1}^{m}\mathcal{O}_{E_{i}}(-1)^{d_{i}}\longrightarrow 0.

It follows from Theorem 8.3 that \mathcal{E} is μA\mu_{A}-stable if and only if there exists an integer K2K\geq 2 and

  1. 1.

    N1,,Nk1N_{1},...,N_{k}\geq 1 such that Ni=N\sum N_{i}=N,

  2. 2.

    dij0d_{i}^{j}\geq 0 for i=1,,mi=1,...,m and j=1,,kj=1,...,k such that jdij=di\sum_{j}d_{i}^{j}=d_{i}, dijdij+1d_{i}^{j}\geq d_{i}^{j+1}, and for every jj at least one strict inequality dij>dij+1d_{i}^{j}>d_{i}^{j+1} holds,

satisfying the following conditions

  1. a)

    MA(𝐯𝐢)M_{A}({\bf{v}_{i}}) is non-empty for any ii, where 𝐯𝐢{\bf{v}_{i}} is the character of a sheaf given by an extension

    0π𝒱Niij=1m𝒪Ej(1)dji0,0\longrightarrow\pi^{*}\mathcal{V}^{\oplus N_{i}}\longrightarrow\mathcal{E}_{i}\longrightarrow\bigoplus_{j=1}^{m}\mathcal{O}_{E_{j}}(-1)^{d_{j}^{i}}\longrightarrow 0,

    and

  2. b)

    χ(𝐯𝐢,𝐯𝐣)=0\chi({\bf{v}_{i}},{\bf{v}_{j}})=0 for any i<ji<j.

The condition b) comes down to saying that

1r02=i=1mdijNjr0(dikNkr0dijNjr0)2\frac{1}{r_{0}^{2}}=\sum_{i=1}^{m}\frac{d_{i}^{j}}{N_{j}r_{0}}-\left(\frac{d_{i}^{k}}{N_{k}r_{0}}-\frac{d_{i}^{j}}{N_{j}r_{0}}\right)^{2}

for any k<jk<j, where r0r_{0} is the rank of 𝒱\mathcal{V}.

7 Stable characters on general blow-ups of 2\mathbb{P}^{2}

In this section, we will apply some results in deformation theory to illustrate that the weak Brill-Noether property and the non-emptiness of the moduli space of stable sheaves proven before actually hold on a blow-up of 2\mathbb{P}^{2} along mm general points.

Let X0X_{0} be a smooth projective surface, and let 0\mathcal{E}_{0} be a coherent sheaf on X0X_{0}. Let XX be a deformation of X0X_{0} over a local Artin ring CC. By a deformation of 0\mathcal{E}_{0} over XX we mean a coherent sheaf \mathcal{E} on XX, flat over CC, together with a map 0\mathcal{E}\longrightarrow\mathcal{E}_{0} such that the induced map

𝒪X𝒪X00\mathcal{E}\otimes_{\mathcal{O}_{X}}\mathcal{O}_{X_{0}}\longrightarrow\mathcal{E}_{0}

is an isomorphism. We know that if CC is the ring of dual numbers DD, and X=X0×DX=X_{0}\times_{\mathbb{C}}D is the trivial deformation of X0X_{0}, then such deformations \mathcal{E} always exist, and they are classified by ExtX01(0,0)\operatorname{Ext}^{1}_{X_{0}}(\mathcal{E}_{0},\mathcal{E}_{0}). Now we consider the more general situation over a sequence

0JCC0,0\longrightarrow J\longrightarrow C^{\prime}\longrightarrow C\longrightarrow 0,

where CC is a local Artin ring with the residue field \mathbb{C}, CC^{\prime} is another local Artin ring mapping to CC, and JJ is an ideal with 𝔪CJ=0\mathfrak{m}_{C^{\prime}}J=0 so that JJ can be considered as a \mathbb{C}-vector space. Suppose we are given X0,0,X,X_{0},\mathcal{E}_{0},X,\mathcal{E} as above, and further suppose we are given an extension XX^{\prime} of XX over CC^{\prime}. We ask for an extension \mathcal{E}^{\prime} of \mathcal{E} over CC^{\prime}, that is, a coherent sheaf \mathcal{E}^{\prime} on XX^{\prime}, flat over CC^{\prime}, together with a map \mathcal{E}^{\prime}\longrightarrow\mathcal{E} inducing an isomorphism CC\mathcal{E}^{\prime}\otimes_{C^{\prime}}C\longrightarrow\mathcal{E}. We only need to treat the case of a vector bundle since a general sheaf in 𝒫H(𝐯)\mathcal{P}_{H}({\bf{v}}) is locally free, in which case \mathcal{E} and \mathcal{E}^{\prime} will also be locally free.

Theorem 7.1.

([Har10]) In the situation as above, assume that 0\mathcal{E}_{0} is locally free. Then:

  1. (1)

    If an extension \mathcal{E}^{\prime} of \mathcal{E} over XX^{\prime} exists, then Aut(/)=JHomX0(0,0)\operatorname{Aut}(\mathcal{E}^{\prime}/\mathcal{E})=J\otimes_{\mathbb{C}}\operatorname{Hom}_{X_{0}}(\mathcal{E}_{0},\mathcal{E}_{0}).

  2. (2)

    Given \mathcal{E}, there is an obstruction in JExtX02(0,0)J\otimes_{\mathbb{C}}\operatorname{Ext}^{2}_{X_{0}}(\mathcal{E}_{0},\mathcal{E}_{0}) to the existence of \mathcal{E}^{\prime}.

  3. (3)

    If an \mathcal{E}^{\prime} exists, then the set of all such is a torsor under the action of JExtX01(0,0)J\otimes_{\mathbb{C}}\operatorname{Ext}^{1}_{X_{0}}(\mathcal{E}_{0},\mathcal{E}_{0})

Corollary 7.2.

Let X0X_{0} be the blow-up of mm collinear points and 0\mathcal{E}_{0} a general member in a prioritary stack 𝒫H(𝐯)\mathcal{P}_{H}({\bf{v}}), which is μA\mu_{A}-stable for some A=HεiEiA=H-\sum\varepsilon_{i}E_{i}. Then

  1. (1)

    an extension \mathcal{E}^{\prime} always exists, and

  2. (2)

    Aut(/)=J\operatorname{Aut}(\mathcal{E^{\prime}}/\mathcal{E})=J.

Now let \mathcal{H} be the Hilbert scheme of mm points on 2\mathbb{P}^{2}, and 𝒰×2\mathcal{U}\subseteq\mathcal{H}\times\mathbb{P}^{2} the universal family. Let 𝒳\mathcal{X}\rightarrow\mathcal{H} the blow-up of ×2\mathcal{H}\times\mathbb{P}^{2} along 𝒰\mathcal{U}. This is the family parameterizing blow-ups of 2\mathbb{P}^{2} along mm points. Let h0h_{0}\in\mathcal{H} be the point corresponding to a blow-up of 2\mathbb{P}^{2} along mm distinct collinear points. Let \mathcal{H}^{\prime} be the open subscheme of \mathcal{H} parameterizing distinct points of 2\mathbb{P}^{2}. Then for 0<εi10<\varepsilon_{i}\ll 1, the divisor A=HεiEiA=H-\sum\varepsilon_{i}E_{i} is ample on the surface 𝒳h\mathcal{X}_{h} for any hh\in\mathcal{H}^{\prime}. Given a μA\mu_{A}-stable sheaf h0\mathcal{E}_{h_{0}} on 𝒳h0\mathcal{X}_{h_{0}}, by Corollary 9.2, one can always deform h0\mathcal{E}_{h_{0}} to the nearby surfaces, which is still μA\mu_{A}-stable. Moreover, if h0\mathcal{E}_{h_{0}} satisfies the weak Brill-Noether property, then so do its deformations. This gives us the following:

Theorem 7.3.

Let 𝐯=(r,ν,Δ){\bf{v}}=(r,\nu,\Delta) be a character such that ν(𝐯)=αHβiEi\nu({\bf{v}})=\alpha H-\sum\beta_{i}E_{i} with 1βi0-1\leq\beta_{i}\leq 0 and Δ(𝐯)0\Delta({\bf{v}})\geq 0. Suppose that α\alpha\notin\mathfrak{C}, where \mathfrak{C} is the set of HH-slopes on 2\mathbb{P}^{2} of exceptional bundles. If 𝐯{\bf{v}} satisfies the weak DL-condition, then M𝒳h,A(𝐯)M_{\mathcal{X}_{h},A}({\bf{v}})\neq\emptyset for general 0<εi10<\varepsilon_{i}\ll 1 and general hh\in\mathcal{H}^{\prime}, where A=HεiEiA=H-\sum\varepsilon_{i}E_{i}.

Theorem 7.4.

Let 𝐯=(r,ν,Δ){\bf{v}}=(r,\nu,\Delta) be a character such that ν(𝐯)=αHβiEi\nu({\bf{v}})=\alpha H-\sum\beta_{i}E_{i} with 1βi0-1\leq\beta_{i}\leq 0, αβi1\alpha-\sum\beta_{i}\geq-1, and Δ(𝐯)0\Delta({\bf{v}})\geq 0. Let A=HεiEiA=H-\sum\varepsilon_{i}E_{i} be a polarization on any surfaces 𝒳h\mathcal{X}_{h}, hh\in\mathcal{H}^{\prime}. If M𝒳h0,A(𝐯)M_{\mathcal{X}_{h_{0}},A}({\bf{v}}) is non-empty, then 𝐯{\bf{v}} is a character on 𝒳h\mathcal{X}_{h} satisfying weak Brill-Noether property for general hh\in\mathcal{H}^{\prime}.

8 Birational geometry of Hilbert schemes of XmX_{m}

It is interesting to figure out the birational properties of moduli spaces. In [CH18a], Coskun and Huizenga reveal the relation between the strong Bogomolov inequalities and the nef cone of the moduli space of sheaves on a surface. The ample cone of the Hilbert scheme of points on 2\mathbb{P}^{2} was worked out in [LQZ03] and [ABCH13]. For del Pezzo surfaces, the ample cone of Hilbert schemes of points is described in [BC13] and [BHL+16]. In this section, we will study the ample cone of the Hilbert schemes of points on the blow-up of 2\mathbb{P}^{2} along mm distinct collinear points.

Let X=XmX=X_{m} be the blow-up of 2\mathbb{P}^{2} along mm collinear points. Let X[n]X^{[n]} denote the Hilbert scheme parameterizing zero-dimensional schemes of length nn. Let X(n)=Xn/𝔖nX^{(n)}=X^{n}/\mathfrak{S}_{n} denote the n-th symmetric product of XX. There is a natural morphism h:X[n]X(n)h:X^{[n]}\rightarrow X^{(n)}, called the Hilbert-Chow morphism, that maps a zero dimensional scheme ZZ of length nn to its support weighted by multiplicity.

In [Fog73], Fogarty determined the Picard group of X[n]X^{[n]} in terms of the Picard group of XX. A line bundle \mathcal{L} on XX naturally determines a line bundle [n]\mathcal{L}^{[n]} as follows: \mathcal{L} gives rise to a line bundle \mathcal{L}\boxtimes\cdots\boxtimes\mathcal{L} on XnX^{n}, which is invariant under the action of the symmetric group 𝔖n\mathfrak{S}_{n}, therefore \mathcal{L}\boxtimes\cdots\boxtimes\mathcal{L} descends to a line bundle X(n)\mathcal{L}_{X^{(n)}} on X(n)X^{(n)}; the pull-back [n]:=hX(n)\mathcal{L}[n]:=h^{*}\mathcal{L}_{X^{(n)}} gives the desired line bundle on X[n]X^{[n]}.

Let BB be the class of the exceptional divisor of the Hilbert-Chow morphism, which parameterizes non-reduced schemes in X[n]X^{[n]}. Fogarty proves in [Fog73] that if the irregularity q(X)=0q(X)=0, then

Pic(X[n])Pic(X)B2.\operatorname{Pic}(X^{[n]})\simeq\operatorname{Pic}(X)\oplus\mathbb{Z}\cdot\frac{B}{2}.

As a consequence, the Néron-Severi space N1(X[n])N^{1}(X^{[n]}) is spanned by N1(X)N^{1}(X) and BB.

Let \mathcal{L} be an ample line bundle on XX. Then n\mathcal{L}^{\boxtimes n} is an ample line bundle on XnX^{n} invariant under the 𝔖n\mathfrak{S}_{n}-action. As a result, n\mathcal{L}^{\boxtimes n} descends to an ample bundle (n)\mathcal{L}^{(n)} on X(n)X^{(n)}. Since the Hilbert-Chow morphism is birational, then the induced line bundle [n]\mathcal{L}[n] is big and nef on X[n]X^{[n]}. However, since [n]\mathcal{L}[n] has degree zero on the fibres of the Hilbert-Chow morphism, then it is not ample and hence it lies on the boundary of the nef cone of X[n]X^{[n]}.

Given a line bundle \mathcal{L} on XX, we consider the short exact sequence

0Z|Z0,0\longrightarrow\mathcal{I}_{Z}\otimes\mathcal{L}\longrightarrow\mathcal{L}\longrightarrow\mathcal{L}|_{Z}\longrightarrow 0,

which induces an inclusion H0(X,Z)H0(X,)H^{0}(X,\mathcal{L}\otimes\mathcal{I}_{Z})\subseteq H^{0}(X,\mathcal{L}). Suppose that N>nN>n, then the inclusion induces a rational map

ψ:X[n]Gr(Nn,N).\psi_{\mathcal{L}}:X^{[n]}\dashrightarrow\operatorname{Gr}(N-n,N).

Denote by DL(n):=ψ𝒪Gr(Nn,N)(1)D_{L}(n):=\psi_{\mathcal{L}}^{*}\mathcal{O}_{\operatorname{Gr}(N-n,N)}(1) the pull-back of 𝒪Gr(Nn,N)(1)\mathcal{O}_{\operatorname{Gr}(N-n,N)}(1). By the Grothendieck-Riemann-Roch Theorem, one can show that the class of D(n)D_{\mathcal{L}}(n) is

D(n)=[n]B2.D_{\mathcal{L}}(n)=\mathcal{L}[n]-\frac{B}{2}.

As 𝒪Gr(Nn,N)(1)\mathcal{O}_{\operatorname{Gr}(N-n,N)}(1) is very ample, then the base locus of D(n)D_{\mathcal{L}}(n) is contained in the indeterminacy locus of ψ\psi_{\mathcal{L}}. If ψ\psi_{\mathcal{L}} is a morphism, then D(n)D_{\mathcal{L}}(n) is base point free and in particular nef.

Definition 8.1.

A line bundle \mathcal{L} on XX is called kk-very ample if the restriction map

H0(X,)H0(X,|Z)H^{0}(X,\mathcal{L})\longrightarrow H^{0}(X,\mathcal{L}|_{Z})

is surjective for every zero dimensional scheme ZZ of length at most k+1k+1.

Let \mathcal{L} be an (n1)(n-1)-very ample line bundle on a surface XX and assume that h0(X,)=Nh^{0}(X,\mathcal{L})=N and hi(X,)=0h^{i}(X,\mathcal{L})=0 for i>0i>0. Then Hi(X,Z)=0H^{i}(X,\mathcal{L}\otimes\mathcal{I}_{Z})=0 for any i>0i>0 and any ZX[n]Z\in X^{[n]}. Let

ΞnX[n]×X\Xi_{n}\subseteq X^{[n]}\times X

be the universal family and let π1\pi_{1} and π2\pi_{2} be the natural projections. By cohomology and base change, the π1(π2Ξn)\pi_{1*}(\pi_{2}^{*}\mathcal{L}\otimes\mathcal{I}_{\Xi_{n}}) is a vector bundle of rank NnN-n on X[n]X^{[n]}. By the universal property of the Grassmannian, the map ψ:X[n]Gr(Nn,N)\psi_{\mathcal{L}}:X^{[n]}\longrightarrow\operatorname{Gr}(N-n,N) is a morphism. It follows that D(n)=[n]B2D_{\mathcal{L}}(n)=\mathcal{L}[n]-\frac{B}{2} is base point free.

Lemma 8.2.

([BS88]) Let i\mathcal{L}_{i} be a kik_{i}-ample line bundle on a projective smooth surface XX, where i=1,,ni=1,...,n. Then 1n\mathcal{L}_{1}\otimes\cdots\otimes\mathcal{L}_{n} is (k1++kn)(k_{1}+\cdots+k_{n})-ample.

Proposition 8.3.

Let XX be the blow-up of 2\mathbb{P}^{2} along mm distinct collinear points. Then the divisor aH+bi(HEi)aH+\sum b_{i}(H-E_{i}) with a,b1,,bm1a,b_{1},...,b_{m}\geq 1 is very ample. In particular, the divisor (n1)(aH+bi(HEi))(n-1)(aH+\sum b_{i}(H-E_{i})) with a,b1,,bm1a,b_{1},...,b_{m}\geq 1 is (n1)(n-1)-very ample.

Proof.

This is immediate from the criterion that a divisor is very ample if and only if it separates points and tangent directions ([Har77]). ∎

Theorem 8.4.

Let XX be the blow-up of 2\mathbb{P}^{2} along mm distinct collinear points. Then the nef cone of X[n]X^{[n]} is the cone αH[n]βiEi[n]+γB2\alpha H[n]-\sum\beta_{i}E_{i}[n]+\gamma\frac{B}{2} satisfying the inequalities

γ0,βi+(n1)γ0,and α+(n1)γβi.\gamma\leq 0,\quad\beta_{i}+(n-1)\gamma\geq 0,\quad\textup{and }\alpha+(n-1)\gamma\geq\sum\beta_{i}.
Proof.

Let RR be a general fibre of the Hilbert-Chow morphism over the singular locus of X(n)X^{(n)}. Then the curve RR has the intersection number (R.B)=2(R.B)=-2 and (R.[n])=0(R.\mathcal{L}[n])=0 for any line bundle \mathcal{L} on XX. As a consequence, the coefficient of BB in any nef line bundle on X[n]X^{[n]} is non-positive.

Let CC be a curve in XX that admits a gn1g^{1}_{n}. The morphism f:C1f:C\rightarrow\mathbb{P}^{1} defined by the gn1g^{1}_{n} induces a curve C(n)C(n) in X[n]X^{[n]}. Now let LL be the special line HE1EmH-E_{1}-\cdots-E_{m} on XX, and then the induced curve L(n)L(n) satisfies the intersection numbers

(L(n).H[n])=1,(L(n).Ei[n])=1,(L(n),B/2)=n1.(L(n).H[n])=1,(L(n).E_{i}[n])=1,(L(n),B/2)=n-1.

It follows that

α+(n1)γβi.\alpha+(n-1)\gamma\geq\sum\beta_{i}.

Similarly, intersecting with Ei(n)E_{i}(n), one obtains that

βi+(n1)γ0.\beta_{i}+(n-1)\gamma\geq 0.

On the other hand, let D=αH[n]βiEi[n]+γB2D=\alpha H[n]-\sum\beta_{i}E_{i}[n]+\gamma\frac{B}{2} be a divisor satisfying the inequalities. Then we may write

D=(αβi+(n1)γ)H[n]γ((n1)(H+(HEi))[n]B2)D=\left(\alpha-\sum\beta_{i}+(n-1)\gamma\right)H[n]-\gamma\left((n-1)(H+\sum(H-E_{i}))[n]-\frac{B}{2}\right)
+(βi(n1))(HEi)[n]\quad\quad\quad\quad\quad\quad+\sum(\beta_{i}-(n-1))(H-E_{i})[n]

as the sum of three nef divisors. Thus we conclude that the nef cone of X[n]X^{[n]} is given by the above inequalities.

Corollary 8.5.

The Hilbert scheme X[n]X^{[n]} is log Fano.

Proof.

Choose a boundary divisor Δ=(1δ)L[n]+εB2\Delta=(1-\delta)L[n]+\varepsilon\frac{B}{2} such that 0<δ10<\delta\ll 1 and 0<(n1)ε<δ0<(n-1)\varepsilon<\delta. Then the divisor

KX[n]Δ=KX[n]Δ=(2+δ)H[n]iδEi[n]εB2-K_{X^{[n]}}-\Delta=-K_{X}[n]-\Delta=(2+\delta)H[n]-\sum_{i}\delta E_{i}[n]-\varepsilon\frac{B}{2}

is ample. As X[n]X^{[n]} is smooth, then (X[n],Δ)(X^{[n]},\Delta) is a klt pair, and hence log Fano. ∎

Question 8.6.

Let XX be the blow-up of 2\mathbb{P}^{2} along mm collinear points, and A=HεiEiA=H-\sum\varepsilon_{i}E_{i} a polarization. Is the moduli space MA(𝐯)M_{A}({\bf{v}}) a log Fano variety?

References

  • [ABCH13] Daniele Arcara, Aaron Bertram, Izzet Coskun, and Jack Huizenga. The minimal model program for the Hilbert scheme of points on 2\mathbb{P}^{2} and bridgeland stability. Advances in mathematics, 235:580–626, 2013.
  • [BC13] Aaron Bertram and Izzet Coskun. The birational geometry of the Hilbert scheme of points on surfaces. In Birational geometry, rational curves, and arithmetic, pages 15–55. Springer, 2013.
  • [BHL+16] Barbara Bolognese, Jack Huizenga, Yinbang Lin, Eric Riedl, Benjamin Schmidt, Matthew Woolf, and Xiaolei Zhao. Nef cones of Hilbert schemes of points on surfaces. Algebra & Number Theory, 10(4):907–930, 2016.
  • [BS88] Mauro Beltrametti and Andrew J Sommese. On k-spannedness for projective surfaces. In Algebraic geometry, pages 24–51. Springer, 1988.
  • [CH18a] Izzet Coskun and Jack Huizenga. The nef cone of the moduli space of sheaves and strong Bogomolov inequalities. Israel Journal of Mathematics, 226(1):205–236, 2018.
  • [CH18b] Izzet Coskun and Jack Huizenga. Weak Brill-Noether for rational surfaces. Local and Global Methods in Algebraic Geometry, Contemporary Mathematics, 712:81–104, 2018.
  • [CH20] Izzet Coskun and Jack Huizenga. Brill-Noether theorems and globally generated vector bundles on Hirzebruch surfaces. Nagoya Mathematical Journal, 238:1–36, 2020.
  • [CH21] Izzet Coskun and Jack Huizenga. Existence of semistable sheaves on Hirzebruch surfaces. Advances in Mathematics, 381, 2021.
  • [CHW17] Izzet Coskun, Jack Huizenga, and Matthew Woolf. The effective cone of the moduli space of sheaves on the plane. Journal of the European Mathematical Society, 19(5):1421–1467, 2017.
  • [DLP85] J-M Drézet and Joseph Le Potier. Fibrés stables et fibrés exceptionnels sur 2\mathbb{P}^{2}. In Annales scientifiques de l’École Normale Supérieure, volume 18, pages 193–243, 1985.
  • [Fog73] John Fogarty. Algebraic families on an algebraic surface, II, the Picard scheme of the punctual Hilbert scheme. American Journal of Mathematics, 95(3):660–687, 1973.
  • [GH94] Lothar Göttsche and André Hirschowitz. Weak Brill-Noether for vector bundles on the projective plane. Algebraic geometry (Catania, 1993/Barcelona, 1994), 63–74, Lecture Notes in Pure and Appl. Math., 200 Dekker, New York, 1994.
  • [Har77] Robin Hartshorne. Algebraic Geometry, volume 52. Springer, 1977.
  • [Har10] Robin Hartshorne. Deformation Theory, volume 257. Springer, 2010.
  • [HL10] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. Cambridge University Press, 2010.
  • [Hui16] Jack Huizenga. Effective divisors on the Hilbert scheme of points in the plane and interpolation for stable bundles. J. Algebraic Geom., 25:19–75, 2016.
  • [KO95] SA Kuleshov and Dmitri Olegovich Orlov. Exceptional sheaves on del Pezzo surfaces. Izvestiya: Mathematics, 44(3):479, 1995.
  • [Laz04] Robert K Lazarsfeld. Positivity in algebraic geometry I: Classical setting: line bundles and linear series, volume 48. Springer, 2004.
  • [LP97] Joseph Le Potier. Lectures on vector bundles. Cambridge University Press, 1997.
  • [LQZ03] W-P Li, Z Qin, and Q Zhang. Curves in the Hilbert schemes of points on surfaces. Contemporary Mathematics, 322:89–96, 2003.
  • [LZ19] D Levine and S Zhang. Brill-Noether and existence of semistable sheaves for del Pezzo surfaces, submitted preprint. 2019.
  • [Muk84] Shigeru Mukai. On the moduli space of bundles on K3 surfaces. I. Vector bundles on algebraic varieties (Bombay, 1984), 11:341–413, 1984.
  • [Rud94] Alexei N Rudakov. A description of Chern classes of semistable sheaves on a quadric surface. J. reine angew. Math., 453:113–135, 1994.
  • [Wal98] Charles Walter. Irreducibility of moduli spaces of vector bundles on birationally ruled surfaces. Algebraic geometry (Catania, 1993/Barcelona, 1994), Lecture Notes in Pure and Appl. Math., 200, pages 201–211, 1998.