This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Modular flavor symmetric models 111The contribution to a special book dedicated to the memory of Professor Harald Fritzsch

Tatsuo Kobayashi 1 and  Morimitsu Tanimoto 2
1Department of Physics, Hokkaido University, Sapporo 060-0810, Japan 2Department of Physics, Niigata University, Ikarashi 2, Niigata 950-2181, Japan
( Abstract
We review the modular flavor symmetric models of quarks and leptons focusing on our works. We present some flavor models of quarks and leptons by using finite modular groups and discuss the phenomenological implications. The modular flavor symmetry gives interesting phenomena at the fixed point of modulus. As a representative, we show the successful texture structure at the fixed point τ=ω\tau=\omega. We also study CP violation, which occurs through the modulus stabilization. Finally, we study SMEFT with modular flavor symmetry by including higher dimensional operators. )

1 Introduction

One of important mysteries in particle physics is the origin of the flavor structure, i.e., fermion mass hierarchies, their mixing angles, and CP violation. Various studies have been done to understand their origin. One of traditional approaches is the texture zeros proposed by Weinberg and Fritzsch, where zero entries are put in the fermion mass matrices [1, 2]. Indeed, the Fritzsch Ansatz [3, 4] gave significant prediction power for the flavor mixing although the origin of zeros are unclear. This approach leads to the texture zero analysis where some elements of mass matrices are required to be zero to reduce the degrees of freedom in mass matrices. Some famous works have been made in the texture zeros [5, 6, 7, 8, 9]. Those zeros can be related with certain symmetries.

Flavor symmetries are interesting approaches to attack the origin of fermion mass hierarchies and mixing angles. Froggatt-Nielsen have taken the U(1)U(1) symmetry to explain the observed masses and mixing angles for quarks [10]. Furthermore, the S3S_{3} symmetry was used for quark mass matrices [11, 12]. It was also discussed to understand the large mixing angle [13] in the oscillation of atmospheric neutrinos [14]. For the last twenty years, non-Abelian discrete flavor symmetries have been developed, that is motivated by the precise observation of flavor mixing angles of leptons [15, 16, 17, 19, 20, 21, 22, 23, 24, 18, 25].

The standard model (SM) is the low-energy effective field theory from the viewpoint of underlying theory, and it is referred to as the SM effective field theory (SMEFT) [26, 27, 28]. The SMEFT includes many higher dimensional operators, and they contribute to flavor changing processes and muon (g2)(g-2). Flavor symmetries are useful not only to derive realistic fermion masses and their mixing angles, but to control higher dimensional operators in the SMEFT. Indeed, the U(3)5U(3)^{5} and U(2)5U(2)^{5} symmetries control the SMEFT operators [29]. The U(3)5U(3)^{5} symmetry [30] allows us to apply the Minimal Flavor Violation (MFV) hypothesis [31, 32], which is the most restrictive hypothesis consistent with the SMEFT. In the U(2)5U(2)^{5} symmetry [33, 34, 35], it retains most of the MFV virtues and allows us to have a much richer structure as far as the dynamics of third family is concerned. Thus, flavor symmetries are useful to connect between the low-energy physics and high-energy physics such as superstring theory.

Superstring theory is a promising candidate for unified theory of all the interactions including gravity and matters such as quarks and leptons, and Higgs modes. Superstring theory must have six-dimensional (6D) compact space in addition to four-dimensional (4D) space times. Geometrical symmetries of 6D compact space control 4D effective field theory. For example, in certain compactifications there appears non-Abelian discrete symmetries such as D4D_{4} and Δ(54)\Delta(54) [36, 37, 38, 39, 40].

The modular symmetry is a geometrical symmetry of T2T^{2} and T2/Z2T^{2}/Z_{2}, and corresponds to change of their cycle basis. Matter modes transform non-trivially under the modular symmetry. (See for hetetrotic string theory on orbifolds Refs. [41, 42, 43, 44] and magnetized D-brane models Refs. [45, 46, 47, 48, 49, 50, 51] . 222Calai-Yau manifolds have larger symplectic modular symmetries of many moduli [52, 53, 54, 55] .) That is, the modular symmetry is a flavor symmetry. Indeed, finite modular groups include S3S_{3}, A4A_{4}, S4S_{4}, A5A_{5}, which have been used in 4D flavor models so far, while Δ(98)\Delta(98) and Δ(384)\Delta(384) are also included as subgroups.

The well-known finite groups S3S_{3}, A4A_{4}, S4S_{4} and A5A_{5} are isomorphic to the finite modular groups ΓN\Gamma_{N} for N=2,3,4,5N=2,3,4,5, respectively[56]. The lepton mass matrices have been presented in terms of Γ3A4\Gamma_{3}\simeq A_{4} modular forms [57]. Modular forms have also been obtained for Γ2S3\Gamma_{2}\simeq S_{3} [58], Γ4S4\Gamma_{4}\simeq S_{4} [59] and Γ5A5\Gamma_{5}\simeq A_{5} [60, 61], respectively. By using them, the viable lepton mass matrices have been obtained for Γ4S4\Gamma_{4}\simeq S_{4} [59], and then Γ5A5\Gamma_{5}\simeq A_{5} [60, 61].

The 4D CP symmetry can be embedded into a proper Lorentz symmetry in higher dimensional theory such as superstring theory [62, 63, 64, 65, 66, 67]. From this viewpoint, CP violation in 4D effective field theory would originate from the compactification, that is, the moduli stabilization. (See for early studies on the CP violation through the moduli stabilization Refs. [68, 69, 70, 71] .) Recently, the spontaneous breaking of the CP symmetry was studied through the moduli stabilization due to 3-form fluxes Refs. [72, 54]. In modular flavor symmetric models, the CP symmetry is combined with the modular symmetry as well as other symmetries, and is enlarged [73, 74, 75, 76, 77, 55] 333See for the CP symmetry in the Calabi-Yau compactification Refs. [54, 55, 78] .. The CP-invariant vacua and CP-preserving modulus values increase by the modular symmetry. It is important to study the CP violation in such models with the enlarged symmetry [79, 80].

Higher dimensional operators can be computed within the framework of superstring theory. Allowed couplings are controlled by stringy symmetries and nn-point couplings are written by products of 3-point couplings. The modular flavor symmetry also control these higher dimensional operators [81, 82, 83].

In addition to the above aspects, the modular flavor symmetries were recently extended to models for dark matter [84, 85], soft supersymmetry breaking terms [86, 87, 88], matter parity [89], the strong CP problem[90], etc.

The paper is organized as follows. In section 2, we give a brief review on modular symmetry. In section 3, we study modular flavor symmetric models. As an illustrating example, we explain A4A_{4} modular symmetric models. In section 4, we study texture structure at the fixed point τ=ω\tau=\omega. In section 5, we study CP violation in modular symmetric models. In section 6, we study SMEFT with modular flavor symmetry. Section 7 is devoted to conclusion. In Appendix A, we review modular forms of A4A_{4}. In Appendix B, the tensor product decomposition is given in the A4A_{4} group.

2 Modular Symmetry

The modular symmetry is a geometrical symmetry of the two-dimensional torus, T2T^{2}. The two-dimensional torus is constructed as division of the two-dimensional Euclidean space R2R^{2} by a lattice Λ\Lambda, T2=R2/ΛT^{2}=R^{2}/\Lambda. Instead of R2R^{2}, one can use the one-dimensional complex plane. As shown in Fig. 1, the lattice is spanned by two basis vectors, e1e_{1} and e2e_{2} as m1e1+m2e2m_{1}e_{1}+m_{2}e_{2}, where m1m_{1} and m2m_{2} are integer. Their ratio,

τ=e2e1,\displaystyle\tau=\frac{e_{2}}{e_{1}}, (1)

in the complex plane, represents the shape of T2T^{2}, and the parameter τ\tau is called the modulus.

Refer to caption
Figure 1: Lattice Λ\Lambda and two basis vectors, e1e_{1} and e2e_{2}.

The same lattice can be spanned by other basis vectors such as

(e2e1)=(abcd)(e2e1),\displaystyle\left(\begin{array}[]{c}e^{\prime}_{2}\\ e^{\prime}_{1}\end{array}\right)=\left(\begin{array}[]{cc}a&b\\ c&d\end{array}\right)\left(\begin{array}[]{c}e_{2}\\ e_{1}\end{array}\right), (8)

where a,b,c,da,b,c,d are integer satisfying adbc=1ad-bc=1. That is the SL(2,Z)SL(2,Z).

Under the above transformation, the modulus τ\tau transforms as follows,

ττ=γτ=aτ+bcτ+d.\displaystyle\tau\longrightarrow\tau^{\prime}=\gamma\tau=\frac{a\tau+b}{c\tau+d}\,. (9)

That is the modular symmetry [91, 92, 93, 94]. For the element e-e in SL(2,Z)SL(2,Z),

e=(1001),\displaystyle-e=\left(\begin{array}[]{cc}-1&0\\ 0&-1\end{array}\right), (12)

the modulus τ\tau is invariant, ττ=(τ)/(1)=τ\tau\longrightarrow\tau^{\prime}=(-\tau)/(-1)=\tau. Thus, the modular group is Γ¯=PSL(2,Z)=SL(2,Z)/{e,e}\bar{\Gamma}=PSL(2,Z)=SL(2,Z)/\{e,-e\}. It is sometimes called the inhomogeneous modular group. On the other hand, the group, Γ=SL(2,Z)\Gamma=SL(2,Z) is called the homogeneous modular group or the full modular group.

The generators of ΓSL(2,Z)\Gamma\simeq SL(2,Z) are written by SS and TT,

S=(0110),T=(1101).\displaystyle S=\left(\begin{array}[]{cc}0&1\\ -1&0\end{array}\right),\qquad T=\left(\begin{array}[]{cc}1&1\\ 0&1\end{array}\right). (17)

They satisfy the following algebraic relations,

S4=(ST)3=e.\displaystyle S^{4}=(ST)^{3}=e. (18)

Note that

S2=e.\displaystyle S^{2}=-e. (19)

On Γ¯=PSL(2,Z)\bar{\Gamma}=PSL(2,Z), they satisfy

S2=(ST)3=e.\displaystyle S^{2}=(ST)^{3}=e. (20)

These relations are also confirmed explicitly by the following transformations:

S:τ1τ,T:ττ+1,\displaystyle S:~{}\tau\longrightarrow-\frac{1}{\tau},\qquad T:~{}\tau\longrightarrow\tau+1, (21)

which are shown on the lattice Λ\Lambda in Figs. 3 and 3.

Refer to caption
Figure 2: Basis change with (a,b,c,d)=(1,1,0,1)(a,b,c,d)=(1,1,0,1) corresponds to TT.
Refer to caption
Figure 3: Basis change with (a,b,c,d)=(0,1,1,0)(a,b,c,d)=(0,1,-1,0) corresponds to SS.

In addition to the above algebraic relations of Γ¯=PSL(2,Z)\bar{\Gamma}=PSL(2,Z), we can require TN=eT^{N}=e, i.e.

S2=(ST)3=TN=e.\displaystyle S^{2}=(ST)^{3}=T^{N}=e. (22)

They can correspond to finite groups such as S3,A4,S4,A5S_{3},A_{4},S_{4},A_{5} for N=2,3,4,5N=2,3,4,5. In practice, we define the principal congruence subgroup Γ(N)\Gamma(N) as

Γ(N)={(abcd)Γ|(abcd)=(1001)(modN)}.\displaystyle\Gamma(N)=\left\{\left(\begin{array}[]{cc}a&b\\ c&d\end{array}\right)\in{\Gamma}~{}\right|\left.\left(\begin{array}[]{cc}a&b\\ c&d\end{array}\right)=\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right)~{}~{}({\rm mod}~{}N)\right\}. (29)

It includes TNT^{N}, but not SS or TT. Then, we define the quotient ΓN=Γ¯/Γ¯(N)\Gamma_{N}=\bar{\Gamma}/\bar{\Gamma}(N), where the above algebraic relations are satisfied. It is found that ΓN\Gamma_{N} with N=2,3,4,5N=2,3,4,5 are isomorphic to S3,A4,S4,A5S_{3},A_{4},S_{4},A_{5}, respectively [56].

We define SL(2,ZN)SL(2,Z_{N}) by

SL(2,ZN)={(abcd)|a,b,c,dZN,adbc=1},\displaystyle SL(2,Z_{N})=\left.\left\{\left(\begin{array}[]{cc}a&b\\ c&d\end{array}\right)\right|a,b,c,d\in Z_{N},ad-bc=1\right\}, (32)

where ZNZ_{N} denotes integers modulo NN. The group ΓN\Gamma_{N} is isomorphic to PSL(2,ZN)=SL(2,ZN)/{e,e}PSL(2,Z_{N})=SL(2,Z_{N})/\{e,-e\} for N>2N>2, while Γ2\Gamma_{2} is isomorphic to SL(2,Z2)SL(2,Z_{2}), because e=ee=-e in SL(2,Z2)SL(2,Z_{2}).

Similar to ΓN\Gamma_{N}, we can define ΓN=SL(2,Z)/Γ(N)\Gamma^{\prime}_{N}=SL(2,Z)/\Gamma(N), and it is the double cover of ΓN\Gamma_{N}. That is, the groups ΓN\Gamma^{\prime}_{N} for N=3,4,5N=3,4,5 are isomorphic to the double covering groups of A4,S4,A5A_{4},S_{4},A_{5}, i.e. T,S4,A5T^{\prime},S^{\prime}_{4},A^{\prime}_{5}, respectively, although Γ2\Gamma_{2}^{\prime} is isomorphic to S3S_{3}.

The upper half-plane of the modulus space τ\tau is mapped onto itself. For example, Γ\Gamma does not include the basis change. (e1,e2)(e1,e2)(e_{1},e_{2})\longrightarrow(e_{1},-e_{2}), i.e. ττ\tau\to-\tau. In practice, we find

Im(γτ)=|cτ+d|2Im(τ).\displaystyle{\rm Im}(\gamma\tau)=|c\tau+d|^{-2}{\rm Im}(\tau). (33)

Thus, the modular group is represented on the upper half-plane of τ\tau. Obviously one can map any value of τ\tau on the upper half-plane into the region, 12Re(τ)12-\frac{1}{2}\leq{\rm Re}(\tau)\leq\frac{1}{2} by TnT^{n}. Furthermore, by the modular transformation one can map any value of τ\tau on the upper half-plane into the following region:

12Re(τ)12,|τ|>1,\displaystyle-\frac{1}{2}\leq{\rm Re}(\tau)\leq\frac{1}{2},\qquad|\tau|>1, (34)

which is called the fundamental domain. Suppose that Im(γτ){\rm Im}(\gamma\tau) is a maximum value among all of γ\gamma for a fixed value of τ\tau. If |γτ|<1|\gamma\tau|<1, we map it by SS, and we find

Im(Sγτ)=Im(γτ)|γτ|2>Im(γτ).\displaystyle{\rm Im}(S\gamma\tau)=\frac{{\rm Im}(\gamma\tau)}{|\gamma\tau|^{2}}>{\rm Im}(\gamma\tau). (35)

That is inconsistent with the assumption that Im(γτ){\rm Im}(\gamma\tau) is a maximum value among all of γ\gamma. That is, we find |γτ|>1|\gamma\tau|>1. Thus, we can map τ\tau on the upper half-plane into the fundamental region by the modular transformation. The point τ=i\tau=i is the fixed point under SS because S:i1i=iS:i\to-\frac{1}{i}=i, where Z2Z_{2} symmetry remains. Similarly, the point τ=e2πi/3\tau=e^{2\pi i/3} is the fixed point under STST, where Z3Z_{3} symmetry remains.

Modular forms fi(τ)f_{i}(\tau) of weight kk are the holomorphic functions of τ\tau and transform as

fi(τ)(cτ+d)kρ(γ)ijfj(τ),γΓ¯,f_{i}(\tau)\longrightarrow(c\tau+d)^{k}\rho(\gamma)_{ij}f_{j}(\tau)\,,\quad\gamma\in\bar{\Gamma}\,, (36)

under the modular symmetry, where ρ(γ)ij\rho(\gamma)_{ij} is a unitary matrix under ΓN\Gamma_{N}.

Under the modular transformation, chiral superfields ψi\psi_{i} (ii denotes flavors) with weight k-k transform as [95]

ψi(cτ+d)kiρ(γ)ijψj.\psi_{i}\longrightarrow(c\tau+d)^{-k_{i}}\rho(\gamma)_{ij}\psi_{j}\,. (37)

We study global SUSY models. The superpotential which is built from matter fields and modular forms is assumed to be modular invariant, i.e., to have a vanishing modular weight. For given modular forms, this can be achieved by assigning appropriate weights to the matter superfields.

The kinetic terms are derived from a Kähler potential. The Kähler potential of chiral matter fields ψi\psi_{i} with the modular weight k-k is given simply by

1[i(τ¯τ)]ki|ψi|2,\frac{1}{[i(\bar{\tau}-\tau)]^{k}}\sum_{i}|\psi_{i}|^{2}, (38)

where the superfield and its scalar component are denoted by the same letter, and τ¯=τ\bar{\tau}=\tau^{*} after taking vacuum expectation value (VEV) of τ\tau. The canonical form of the kinetic terms is obtained by changing the normalization of parameters. The general Kähler potential consistent with the modular symmetry possibly contains additional terms [96]. However, we consider only the simplest form of the Kähler potential.

3 Modular flavor symmetric models

In this section, we discuss the flavor model of quark and lepton mass matrices. There is a difference between the modular symmetry and the usual flavor symmetry. Coupling constants such as Yukawa couplings also transform non-trivially under the modular symmetry and are written as functions of the modulus called modular forms, which are holomorphic functions of the modulus τ\tau. On the other hand, coupling constants are invariant under the traditional flavor symmetries.

The flavor model of lepton mass matrices have been proposed based on the finite modular group Γ3A4\Gamma_{3}\simeq A_{4} [57]. This approach based on modular invariance opened up a new promising direction in the studies of the flavor physics and correspondingly in flavor model building.

3.1 Modular A4A_{4} invariance and neutrino mixing

We present a phenomenological discussion of the modular invariant lepton mass matrix by using the finite modular group Γ3A4\Gamma_{3}\simeq A_{4}, where a simple model was proposed by Feruglio [57]. We have shown that it can predict a clear correlation between the neutrino mixing angle θ23\theta_{23} and the CP violating Dirac phase [97].

The mass matrices of neutrinos and charged leptons are essentially given by fixing the expectation value of the modulus τ\tau, which is the only source of the breaking of the modular invariance. Since there are freedoms for the assignment of irreducible representations and modular weights to leptons, suppose that three left-handed lepton doublets are of a triplet of the A4A_{4} group. The three right-handed neutrinos are also of a triplet of A4A_{4}. On the other hand, the Higgs doublets are supposed to be a trivial singlet of A4A_{4} for simplicity (In the next section, we modify this assumption.). We also assign three right-handed charged leptons for three different singlets of A4A_{4}, (1,1,1′′)(1,1^{\prime},1^{\prime\prime}), respectively. Therefore, there are three independent couplings in the superpotential of the charged lepton sector. Those coupling constants can be adjusted to the observed charged lepton masses.

The assignments of representations and modular weights to the MSSM fields as well as right-handed neutrino superfields are presented in Table 1.

LL ec,μc,τce^{c},\mu^{c},\tau^{c} νc\nu^{c} HuH_{u} HdH_{d} 𝐘𝟑=(Y1,Y2,Y3)T{\bf Y_{3}}=(Y_{1},Y_{2},Y_{3})^{T}
SU(2) 22 11 11 22 22 11
A4A_{4} 33 1, 1”, 1’ 33 11 11 33
kIk_{I} 11 11 11 0 0 k=2k=2
Table 1: The charge assignment of SU(2), A4A_{4}, and the modular weight.

In terms of modular forms of A4A_{4} triplet, 𝐘𝟑{\bf Y_{3}} in Eq.(A) of Appendix A, the modular invariant Yukawa coupling and Majorana mass terms of the leptons are given by the following superpotentials:

we\displaystyle w_{e} =αeHd(L𝐘𝟑)ec+βeHd(L𝐘𝟑)μc+γeHd(L𝐘𝟑)τc,\displaystyle=\alpha_{e}H_{d}(L{\bf Y_{3}})e^{c}+\beta_{e}H_{d}(L{\bf Y_{3}})\mu^{c}+\gamma_{e}H_{d}(L{\bf Y_{3}})\tau^{c}~{}, (39)
wD\displaystyle w_{D} =gi(HuLνc𝐘𝟑)𝟏,\displaystyle=g_{i}(H_{u}L\,\nu^{c}\,{\bf Y_{3}})_{\bf 1}~{}, (40)
wN\displaystyle w_{N} =Λ(νcνc𝐘𝟑)𝟏,\displaystyle=\Lambda(\nu^{c}\nu^{c}{\bf Y_{3}})_{\bf 1}~{}, (41)

where the sums of the modular weights vanish. The parameters αe\alpha_{e}, βe\beta_{e}, γe\gamma_{e}, gig_{i}(i=1,2i=1,2), and Λ\Lambda are constant coefficients.

VEVs of the neutral component of HuH_{u} and HdH_{d} are written as vuv_{u} and vdv_{d}, respectively. Then, the mass matrix of charged leptons is given by the superpotential Eq. (39) as follows:

ME=vd(Y1Y2Y3Y3Y1Y2Y2Y3Y1)(αe000βe000γe)LR.\displaystyle\begin{aligned} M_{E}&=v_{d}\,\begin{pmatrix}Y_{1}&Y_{2}&Y_{3}\\ Y_{3}&Y_{1}&Y_{2}\\ Y_{2}&Y_{3}&Y_{1}\end{pmatrix}\begin{pmatrix}\alpha_{e}&0&0\\ 0&\beta_{e}&0\\ 0&0&\gamma_{e}\end{pmatrix}_{LR}\,.\end{aligned} (42)

The coefficients αe\alpha_{e}, βe\beta_{e}, and γe\gamma_{e} are taken to be real positive by rephasing right-handed charged lepton fields without loss of generality.

Since the tensor product of 333\otimes 3 is decomposed into the symmetric triplet and the antisymmetric triplet as seen in Appendix B, the superpotential of the Dirac neutrino mass in Eq. (40) is expressed by introducing additional two parameters g1g_{1} and g2g_{2} as:

wD=vu[g1(2νeY1νμY3ντY22ντY3νeY2νμY12νμY2ντY1νeY3)g2(νμY3ντY2νeY2νμY1ντY1νeY3)](ν1cν2cν3c)=vug1[(2νeY1νμY3ντY2)ν1c+(2νμY2ντY1νeY3)ν2c+(2ντY3νeY2νμY1)ν3c]+vug2[(νμY3ντY2)ν1c+(ντY1νeY3)ν2c+(νeY2νμY1)ν3c].\displaystyle\begin{aligned} w_{D}=&v_{u}\left[g_{1}\begin{pmatrix}2\nu_{e}Y_{1}-\nu_{\mu}Y_{3}-\nu_{\tau}Y_{2}\\ 2\nu_{\tau}Y_{3}-\nu_{e}Y_{2}-\nu_{\mu}Y_{1}\\ 2\nu_{\mu}Y_{2}-\nu_{\tau}Y_{1}-\nu_{e}Y_{3}\end{pmatrix}\oplus g_{2}\begin{pmatrix}\nu_{\mu}Y_{3}-\nu_{\tau}Y_{2}\\ \nu_{e}Y_{2}-\nu_{\mu}Y_{1}\\ \nu_{\tau}Y_{1}-\nu_{e}Y_{3}\end{pmatrix}\right]\otimes\begin{pmatrix}\nu^{c}_{1}\\ \nu^{c}_{2}\\ \nu^{c}_{3}\end{pmatrix}\\ =&v_{u}g_{1}\left[(2\nu_{e}Y_{1}-\nu_{\mu}Y_{3}-\nu_{\tau}Y_{2})\nu^{c}_{1}+(2\nu_{\mu}Y_{2}-\nu_{\tau}Y_{1}-\nu_{e}Y_{3})\nu^{c}_{2}\right.\\ &\left.+(2\nu_{\tau}Y_{3}-\nu_{e}Y_{2}-\nu_{\mu}Y_{1})\nu^{c}_{3}\right]\\ &+v_{u}g_{2}\left[(\nu_{\mu}Y_{3}-\nu_{\tau}Y_{2})\nu^{c}_{1}+(\nu_{\tau}Y_{1}-\nu_{e}Y_{3})\nu^{c}_{2}+(\nu_{e}Y_{2}-\nu_{\mu}Y_{1})\nu^{c}_{3}\right].\end{aligned} (43)

The Dirac neutrino mass matrix is given as

MD=vu(2g1Y1(g1g2)Y3(g1+g2)Y2(g1+g2)Y32g1Y2(g1g2)Y1(g1g2)Y2(g1+g2)Y12g1Y3)LR.\displaystyle M_{D}=v_{u}\begin{pmatrix}2g_{1}Y_{1}&-(g_{1}-g_{2})Y_{3}&\ -(g_{1}+g_{2})Y_{2}\\ -(g_{1}+g_{2})Y_{3}&2g_{1}Y_{2}&\ -(g_{1}-g_{2})Y_{1}\\ -(g_{1}-g_{2})Y_{2}&\ -(g_{1}+g_{2})Y_{1}&2g_{1}Y_{3}\end{pmatrix}_{LR}. (44)

On the other hand, since the Majorana neutrino mass terms are symmetric, the superpotential in Eq. (41) is expressed simply as

wN=Λ(2ν1cν1cν2cν3cν3cν2c2ν3cν3cν1cν2cν2cν1c2ν2cν2cν3cν1cν1cν3c)(Y1Y2Y3)=Λ[(2ν1cν1cν2cν3cν3cν2c)Y1+(2ν3cν3cν1cν2cν2cν1c)Y3+(2ν2cν2cν3cν1cν1cν3c)Y2].\displaystyle\begin{aligned} w_{N}=&\Lambda\begin{pmatrix}2\nu^{c}_{1}\nu^{c}_{1}-\nu^{c}_{2}\nu^{c}_{3}-\nu^{c}_{3}\nu^{c}_{2}\\ 2\nu^{c}_{3}\nu^{c}_{3}-\nu^{c}_{1}\nu^{c}_{2}-\nu^{c}_{2}\nu^{c}_{1}\\ 2\nu^{c}_{2}\nu^{c}_{2}-\nu^{c}_{3}\nu^{c}_{1}-\nu^{c}_{1}\nu^{c}_{3}\end{pmatrix}\otimes\begin{pmatrix}Y_{1}\\ Y_{2}\\ Y_{3}\end{pmatrix}\\ =&\Lambda\left[(2\nu^{c}_{1}\nu^{c}_{1}-\nu^{c}_{2}\nu^{c}_{3}-\nu^{c}_{3}\nu^{c}_{2})Y_{1}+(2\nu^{c}_{3}\nu^{c}_{3}-\nu^{c}_{1}\nu^{c}_{2}-\nu^{c}_{2}\nu^{c}_{1})Y_{3}\right.\\ &\left.+(2\nu^{c}_{2}\nu^{c}_{2}-\nu^{c}_{3}\nu^{c}_{1}-\nu^{c}_{1}\nu^{c}_{3})Y_{2}\right].\end{aligned} (45)

Then, the modular invariant right-handed Majorana neutrino mass matrix is given as

MN=Λ(2Y1Y3Y2Y32Y2Y1Y2Y12Y3)RR.\displaystyle M_{N}=\Lambda\begin{pmatrix}2Y_{1}&-Y_{3}&-Y_{2}\\ -Y_{3}&2Y_{2}&-Y_{1}\\ -Y_{2}&-Y_{1}&2Y_{3}\end{pmatrix}_{RR}. (46)

Finally, the effective neutrino mass matrix is obtained by the type I seesaw as follows:

Mν=MDMN1MDT.\displaystyle M_{\nu}=-M_{D}M_{N}^{-1}M_{D}^{\rm T}~{}. (47)

When τ\tau is fixed, the modular invariance is broken, and then the lepton mass matrices give the mass eigenvalues and flavor mixing numerically. In order to determine the value of τ\tau, we use the result of NuFIT 5.1 [98]. By inputting the data of Δmatm2m32m12\Delta m_{\rm atm}^{2}\equiv m_{3}^{2}-m_{1}^{2}, Δmsol2m22m12\Delta m_{\rm sol}^{2}\equiv m_{2}^{2}-m_{1}^{2}, and three mixing angles θ23\theta_{23}, θ12\theta_{12}, and θ13\theta_{13} with 3σ3\,\sigma error-bar, we can severely constraint values of the modulus τ\tau and the other parameters, and then we can predict the CP violating Dirac phases δCP\delta_{CP}. We consider both the normal hierarchy (NH) of neutrino masses m1<m2<m3m_{1}<m_{2}<m_{3} and the inverted hierarchy (IH) of neutrino masses m3<m1<m2m_{3}<m_{1}<m_{2}, where m1m_{1}, m2m_{2}, and m3m_{3} denote three light neutrino masses. Since the sum of three neutrino masses mi\sum m_{i} is constrained by the recent cosmological data [99, 100, 101], we exclude the predictions with mi200\sum m_{i}\geq 200 meV even if mixing angles are consistent with observed one.

The coefficients αe/γe\alpha_{e}/\gamma_{e} and βe/γe\beta_{e}/\gamma_{e} in the charged lepton mass matrix are given only in terms of τ\tau by the input of the observed values me/mτm_{e}/m_{\tau} and mμ/mτm_{\mu}/m_{\tau}. As the input charged lepton masses, we take Yukawa couplings of charged leptons at the GUT scale 2×10162\times 10^{16} GeV, where tanβ=5\tan\beta=5 is taken as a bench mark [102, 103]:

ye=(1.97±0.024)×106,yμ=(4.16±0.050)×104,\displaystyle y_{e}=(1.97\pm 0.024)\times 10^{-6},\quad y_{\mu}=(4.16\pm 0.050)\times 10^{-4},
yτ=(7.07±0.073)×103.\displaystyle y_{\tau}=(7.07\pm 0.073)\times 10^{-3}. (48)

Lepton masses are given by m=yvHm_{\ell}=y_{\ell}v_{H} with vH=174v_{H}=174 GeV.

Then, we have two free complex parameters, g2/g1g_{2}/g_{1} and the modulus τ\tau apart from the overall factors in the neutrino sector. The value of τ\tau is scanned in the fundamental domain of SL(2,Z)SL(2,Z).

[Uncaptioned image]
Figure 4: The allowed regions of Re[τ]{\rm Re}[\tau] and Im[τ]{\rm Im}[\tau] for NH. The predicted regions mi<160\sum m_{i}<160 meV and mi>160\sum m_{i}>160 meV are shown, respectively. Black and grey points are in 2σ2\,\sigma and 3σ3\,\sigma regions, respectively.
=
[Uncaptioned image]
Figure 5: Predictions of δCP\delta_{CP} versus sin2θ23\sin^{2}\theta_{23} for NH. Vertical solid and dashed lines denote the central value, and the upper and lower bounds of the experimental data with 3σ3\ \sigma, respectively. Notations are same as in Fig.5.

In Fig.5, we show allowed regions in the Re[τ]{\rm Re}[\tau]-Im[τ]{\rm Im}[\tau] plain for NH of neutrino masses. Those are given in the sum of neutrino masses mi=140\sum m_{i}=140150150 meV and mi=170\sum m_{i}=170200200 meV. The 2σ2\,\sigma and 3σ3\,\sigma regions are presented by black and grey points, respectively. If the cosmological observation confirms mi<160\sum m_{i}<160 meV, the region of τ\tau is severely restricted in this model.

We present the prediction of the Dirac CP violating phase δCP\delta_{CP} versus sin2θ23\sin^{2}\theta_{23} for NH of neutrino masses in Fig.5. The predicted regions correspond to regions of τ\tau in Fig.5. It is emphasized that the predicted sin2θ23\sin^{2}\theta_{23} is larger than 0.5350.535, and δCP=±(60\delta_{CP}=\pm(60^{\circ}180)180^{\circ}) in the region of mi<160\sum m_{i}<160 meV. Since the correlation of sin2θ23\sin^{2}\theta_{23} and δCP\delta_{CP} is clear, this prediction is testable in the future experiments of neutrinos. On the other hand, predicted sin2θ12\sin^{2}\theta_{12} and sin2θ13\sin^{2}\theta_{13} cover observed full region with 3σ3\ \sigma error-bar, and there are no correlations with δCP\delta_{CP}.

The prediction of the effective mass mee\langle m_{ee}\rangle, which is the measure of the neutrinoless double beta decay, is around 20202222 meV and 45456060 meV. We present a sample set of parameters and outputs for NH in Table 2.

τ\tau 0.4707+1.2916i0.4707+1.2916\,i
g2/g1g_{2}/g_{1} 0.0509+1.2108i-0.0509+1.2108\,i
αe/γe\alpha_{e}/\gamma_{e} 2.09×1022.09\times 10^{2}
βe/γe\beta_{e}/\gamma_{e} 3.44×1033.44\times 10^{3}
sin2θ12\sin^{2}\theta_{12} 0.3200.320
sin2θ23\sin^{2}\theta_{23} 0.5710.571
sin2θ13\sin^{2}\theta_{13} 0.02290.0229
δCP\delta_{CP} 278278^{\circ}
mi\sum m_{i} 146146 meV
mee\langle m_{ee}\rangle 2222 meV
χi2\sum\chi_{i}^{2} 1.861.86
Table 2: Numerical values of parameters and output at a sample point of NH.

We have also scanned the parameter space for the case of IH of neutrino masses. We have found parameter sets which fit the data of Δmsol2\Delta m_{\rm sol}^{2} and Δmatm2\Delta m_{\rm atm}^{2} reproduce the observed three mixing angles sin2θ23\sin^{2}\theta_{23}, sin2θ12\sin^{2}\theta_{12}, and sin2θ13\sin^{2}\theta_{13}. However, the predicted mi\sum m_{i} is around 200200 meV, which may be excluded.

It is helpful to comment on the effects of the supersymmetry breaking and the radiative corrections because we have discussed our model in the limit of exact supersymmetry. The supersymmetry breaking effect can be neglected if the separation between the supersymmetry breaking scale and the supersymmetry breaking mediator scale is sufficiently large. In our numerical results, the corrections by the renormalization are very small as far as we take the relatively small value of tanβ\tan\beta.

3.2 Other modular invariant flavor models

In addition of this Γ3A4\rm\Gamma_{3}\simeq A_{4} flavor model, other viable models have been also presented for Γ3A4\rm\Gamma_{3}\simeq A_{4} [104, 105, 106, 107], Γ4S4\Gamma_{4}\simeq S_{4} [108, 109, 110, 111] and for Γ2S3\Gamma_{2}\simeq S_{3}[112, 113]. The double covering groups, T\rm T^{\prime} [114], S4\rm S_{4}^{\prime} [115, 116] and A5\rm A_{5}^{\prime} [117, 118] have also discussed in the modular symmetry. Subsequently these groups have been used for flavor model building [119, 120, 121, 122]. Furthermore, modular forms for Δ(96)\Delta(96) and Δ(384)\Delta(384) have been constructed[46], and the level 77 finite modular group Γ7PSL(2,Z7)\rm\Gamma_{7}\simeq PSL(2,Z_{7}) as well as the level 6 group has been examined for the lepton mixing[123, 124].

On the other hand, the quark mass matrix has been also studied in the Γ3A4\rm\Gamma_{3}\simeq A_{4} flavor symmetries[125, 126]. Hence, the unification of quarks and leptons has been applied in the framework of the SU(5)(5) or SO(10)(10) GUT [127, 112, 128, 129, 130, 131, 132, 133].

There are also another important physics, the baryon asymmetry in the universe, which is discussed with the modular symmetry. Indeed, the A4\rm A_{4} modular flavor symmetry has been examined in the leptogenesis[134, 135, 136].

The modular symmetry keeps a residual symmetry at the fixed points even if the modular symmetry is broken. The Z3STZ_{3}^{ST} symmetry generated by STST remains at τ=ω\tau=\omega, while the symmetry generated by SS remains at τ=i\tau=i, and it corresponds to the Z4SZ_{4}^{S} symmetry in SL(2,Z)SL(2,Z) and the Z2SZ_{2}^{S} symmetry in PSL(2,Z)PSL(2,Z). Furthermore, the ZNTZ_{N}^{T} symmetry in ΓN\Gamma_{N} remains in the limit τi\tau\to i\infty. That gives interesting lepton mass matrices for the flavor mixing [137, 138]. In the modular invariant flavor model of A4A_{4}, the hierarchical structure of lepton and quark flavors has been examined at nearby fixed points [139]. It is also remarked that the hierarchical structure of quark and lepton mass matrices could be derived without fine-tuning of parameters at the nearby fixed points of the modular symmetry [140]. (See also Refs.[141, 142].) For example, the modular forms Y2Y_{2} and Y3Y_{3} among the A4A_{4} triplet of weight 2 vanish in the limit τ=i\tau=i\infty. When Imτ{\rm Im}\tau is large, but finite, the A4A_{4} triplet modular forms of weight 2 behave

Y11,Y2ε1/3,Y3ε2/3\displaystyle Y_{1}\sim 1,\quad Y_{2}\sim\varepsilon^{1/3},\quad Y_{3}\sim\varepsilon^{2/3} (49)

where ε=e2πImτ\varepsilon=e^{-2\pi{\rm Im}\tau}. In general, the modular form f(τ)f(\tau) of ΓN\Gamma_{N} behaves as

f(τ)εr/N,\displaystyle f(\tau)\sim\varepsilon^{r/N}, (50)

when Imτ{\rm Im}\tau is large, where rr denotes ZNTZ_{N}^{T} charges. These can lead to hierarchical structures in Yukawa matrices. Similarly, certain modular forms vanish at the fixed point τ=ω\tau=\omega. Around this fixed, it is convenient to define the following parameter[140]:

uτωτω2.\displaystyle u\equiv\frac{\tau-\omega}{\tau-\omega^{2}}\ . (51)

By use of this parameter, generic modular form can be approximated as

f(τ)ur,\displaystyle f(\tau)\sim u^{r}, (52)

around the fixed point τ=ω\tau=\omega, where rr depends on Z3STZ_{3}^{ST} charges. We have a similar behavior around the fixed pint τ=i\tau=i.

These behaviors around the fixed points allow to construct models in which the fermion mass hierarchies follow solely from the properties of the modular forms. For example, one can derive mass matrices such as mijuri+rjm_{ij}\sim u^{r_{i}+r_{j}} and mijε(ri+rj)/Nm_{ij}\sim\varepsilon^{(r_{i}+r_{j})/N} depending on ZNZ_{N} charges of matter fields. Indeed, viable lepton and quark mass matrices are obtained without fine-tuning of parameters [140, 143, 144, 145, 146, 147, 148, 149].

Further phenomenology has been developed in many works [150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 175, 162, 164, 165, 163, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 204, 206, 201, 202, 203, 205, 207, 208, 209], while theoretical investigations have been also proceeded [210, 211, 218, 215, 216, 217, 219, 212, 213, 214, 220, 221, 222, 223, 224, 225, 226, 227].

4 Texture zeros in modular symmetry

Texture zeros of the fermion mass matrix provide an attractive approach to understand the flavor mixing. Those can be related with some flavor symmetries. Indeed, zeros of the mass matrix are discussed in the modular symmetry of flavors [162, 163, 121].

The flavor structure has been investigated in magnetized orbifold models with multi-Higgs modes[228, 229, 230], which are interesting compactification from higher dimensional theory such as superstring theory. They lead to a four-dimensional chiral theory, which has the modular symmetry [45, 46, 47, 48, 49, 50, 51]. In these models, quark and lepton masses and their mixing angles were discussed [231, 233, 232, 214, 234, 235, 236]. These magnetized orbifold models lead to multi-Higgs modes, while generic string compactification also leads more than one candidates for Higgs fields.

In this section, we show that texture zeros are generally realized at the fixed points τ=ω\tau=\omega in the modular flavor models with multi-Higgs [237].

4.1 Quark mass matrices with mluti-Higgs

4.1.1 Three pairs of Higgs fields (1,1′′)(1,1^{\prime\prime})

We present a simple model of quark mass matrices in the level N=3N=3 modular flavor symmetry A4A_{4} with the multi-Higgs at τ=ω\tau=\omega, which is referred to as Model 1. We assign the A4A_{4} representation and the weights kIk_{I} for the relevant chiral superfields as

  • quark doublet Q=(Q1,Q2,Q3)Q=(Q^{1},Q^{2},Q^{3}): A4A_{4} triplet with weight 2

  • up-type quark singlets (u,c,t)(u,c,t): A4A_{4} singlets (1,1,1′′)(1,1^{\prime},1^{\prime\prime}) with weight 0

  • down-type quark singlets (d,s,b)(d,s,b): A4A_{4} singlets (1,1,1′′)(1,1^{\prime},1^{\prime\prime}) with weight 0

  • up and down sector Higgs fields Hu,di=(Hu,d1,Hu,d2)H_{u,d}^{i}=(H_{u,d}^{1},H_{u,d}^{2}): A4A_{4} singlets (1,1′′)(1,1^{\prime\prime}) with weight 0

which are summarized in Table 3.

Q=(Q1,Q2,Q3)Q=(Q^{1},Q^{2},Q^{3}) (u,c,t)(u,c,t) (d,s,b)(d,s,b) HuH_{u} HdH_{d}
SU(2)SU(2) 2 1 1 2 2
A4A_{4} 3 (1,1,1′′)(1,1^{\prime},1^{\prime\prime}) (1,1,1′′)(1,1^{\prime},1^{\prime\prime}) (1,1′′)(1,1^{\prime\prime}) (1,1′′)(1,1^{\prime\prime})
kIk_{I} 2 0 0 0 0
Table 3: Assignments of A4A_{4} representations and weights in Model 1.

Then, the superpotential terms of the up-type quark masses and down-type quark masses are written by

Wu=[αu1(𝐘(𝟐)Q)1u1+βu1(𝐘(𝟐)Q)1′′c1+γu1(𝐘(𝟐)Q)1t1′′](Hu1)1\displaystyle W_{u}=\left[\alpha^{1}_{u}({\bf Y^{(2)}}Q)_{1}u_{1}+\beta^{1}_{u}({\bf Y^{(2)}}Q)_{1^{\prime\prime}}c_{1^{\prime}}+\gamma^{1}_{u}({\bf Y^{(2)}}Q)_{1^{\prime}}t_{1^{\prime\prime}}\right](H_{u}^{1})_{1}
+[αu2(𝐘(𝟐)Q)1u1+βu2(𝐘(𝟐)Q)1c1+γu2(𝐘(𝟐)Q)1′′t1′′](Hu2)1′′,\displaystyle\quad+\left[\alpha^{2}_{u}({\bf Y^{(2)}}Q)_{1^{\prime}}u_{1}+\beta^{2}_{u}({\bf Y^{(2)}}Q)_{1}c_{1^{\prime}}+\gamma^{2}_{u}({\bf Y^{(2)}}Q)_{1^{\prime\prime}}t_{1^{\prime\prime}}\right](H_{u}^{2})_{1^{\prime\prime}}, (53)
Wd=[αd1(𝐘(𝟐)Q)1d1+βd1(𝐘(𝟐)Q)1′′s1+γd1(𝐘(𝟐)Q)1b1′′](Hd1)1\displaystyle W_{d}=\left[\alpha^{1}_{d}({\bf Y^{(2)}}Q)_{1}d_{1}+\beta^{1}_{d}({\bf Y^{(2)}}Q)_{1^{\prime\prime}}s_{1^{\prime}}+\gamma^{1}_{d}({\bf Y^{(2)}}Q)_{1^{\prime}}b_{1^{\prime\prime}}\right](H_{d}^{1})_{1}
+[αd2(𝐘(𝟐)Q)1d1+βd2(𝐘(𝟐)Q)1s1+γd2(𝐘(𝟐)Q)1′′b1′′](Hd2)1′′,\displaystyle\quad+\left[\alpha^{2}_{d}({\bf Y^{(2)}}Q)_{1^{\prime}}d_{1}+\beta^{2}_{d}({\bf Y^{(2)}}Q)_{1}s_{1^{\prime}}+\gamma^{2}_{d}({\bf Y^{(2)}}Q)_{1^{\prime\prime}}b_{1^{\prime\prime}}\right](H_{d}^{2})_{1^{\prime\prime}}, (54)

where the decompositions of the tensor products are

(𝐘(𝟐)Q)1=((Y1Y2Y3)3(Q1Q2Q3)3)1=Y1Q1+Y2Q3+Y3Q2,\displaystyle({\bf Y^{(2)}}Q)_{1}=\left(\begin{pmatrix}Y_{1}\\ Y_{2}\\ Y_{3}\\ \end{pmatrix}_{3}\otimes\begin{pmatrix}Q^{1}\\ Q^{2}\\ Q^{3}\\ \end{pmatrix}_{3}\right)_{1}=Y_{1}Q^{1}+Y_{2}Q^{3}+Y_{3}Q^{2}, (55)
(𝐘(𝟐)Q)1′′=((Y1Y2Y3)3(Q1Q2Q3)3)1′′=Y3Q3+Y1Q2+Y2Q1,\displaystyle({\bf Y^{(2)}}Q)_{1^{\prime\prime}}=\left(\begin{pmatrix}Y_{1}\\ Y_{2}\\ Y_{3}\\ \end{pmatrix}_{3}\otimes\begin{pmatrix}Q^{1}\\ Q^{2}\\ Q^{3}\\ \end{pmatrix}_{3}\right)_{1^{\prime\prime}}=Y_{3}Q^{3}+Y_{1}Q^{2}+Y_{2}Q^{1}, (56)
(𝐘(𝟐)Q)1=((Y1Y2Y3)3(Q1Q2Q3)3)1=Y2Q2+Y1Q3+Y3Q1.\displaystyle({\bf Y^{(2)}}Q)_{1^{\prime}}=\left(\begin{pmatrix}Y_{1}\\ Y_{2}\\ Y_{3}\\ \end{pmatrix}_{3}\otimes\begin{pmatrix}Q^{1}\\ Q^{2}\\ Q^{3}\\ \end{pmatrix}_{3}\right)_{1^{\prime}}=Y_{2}Q^{2}+Y_{1}Q^{3}+Y_{3}Q^{1}. (57)

The superpotential terms are rewritten as:

Wu\displaystyle W_{u} =[αu1(Y1Q1+Y2Q3+Y3Q2)u+βu1(Y3Q3+Y1Q2+Y2Q1)c\displaystyle=[\alpha_{u}^{1}(Y_{1}Q^{1}+Y_{2}Q^{3}+Y_{3}Q^{2})u+\beta^{1}_{u}(Y_{3}Q^{3}+Y_{1}Q^{2}+Y_{2}Q^{1})c
+γu1(Y2Q2+Y1Q3+Y3Q1)t]Hu1\displaystyle+\gamma^{1}_{u}(Y_{2}Q^{2}+Y_{1}Q^{3}+Y_{3}Q^{1})t]H_{u}^{1}
+[αu2(Y2Q2+Y1Q3+Y3Q1)u+βu2(Y1Q1+Y2Q3+Y3Q2)c\displaystyle+[\alpha_{u}^{2}(Y_{2}Q^{2}+Y_{1}Q^{3}+Y_{3}Q^{1})u+\beta^{2}_{u}(Y_{1}Q^{1}+Y_{2}Q^{3}+Y_{3}Q^{2})c
+γu2(Y3Q3+Y1Q2+Y2Q1)t]Hu2\displaystyle+\gamma^{2}_{u}(Y_{3}Q^{3}+Y_{1}Q^{2}+Y_{2}Q^{1})t]H_{u}^{2}
=(Q1Q2Q3)((αu1Y1βu1Y2γu1Y3αu1Y3βu1Y1γu1Y2αu1Y2βu1Y3γu1Y1)Hu1+(αu2Y3βu2Y1γu2Y2αu2Y2βu2Y3γu2Y1αu2Y1βu2Y2γu2Y3)Hu2)(uct),\displaystyle=\begin{pmatrix}Q^{1}&Q^{2}&Q^{3}\\ \end{pmatrix}\left(\begin{pmatrix}\alpha_{u}^{1}Y_{1}&\beta_{u}^{1}Y_{2}&\gamma_{u}^{1}Y_{3}\\ \alpha_{u}^{1}Y_{3}&\beta_{u}^{1}Y_{1}&\gamma_{u}^{1}Y_{2}\\ \alpha_{u}^{1}Y_{2}&\beta_{u}^{1}Y_{3}&\gamma_{u}^{1}Y_{1}\\ \end{pmatrix}H_{u}^{1}+\begin{pmatrix}\alpha_{u}^{2}Y_{3}&\beta_{u}^{2}Y_{1}&\gamma_{u}^{2}Y_{2}\\ \alpha_{u}^{2}Y_{2}&\beta_{u}^{2}Y_{3}&\gamma_{u}^{2}Y_{1}\\ \alpha_{u}^{2}Y_{1}&\beta_{u}^{2}Y_{2}&\gamma_{u}^{2}Y_{3}\\ \end{pmatrix}H_{u}^{2}\right)\begin{pmatrix}u\\ c\\ t\\ \end{pmatrix}, (58)
Wd\displaystyle W_{d} =[αd1(Y1Q1+Y2Q3+Y3Q2)d+βd1(Y3Q3+Y1Q2+Y2Q1)s\displaystyle=[\alpha_{d}^{1}(Y_{1}Q^{1}+Y_{2}Q^{3}+Y_{3}Q^{2})d+\beta^{1}_{d}(Y_{3}Q^{3}+Y_{1}Q^{2}+Y_{2}Q^{1})s
+γd1(Y2Q2+Y1Q3+Y3Q1)b]Hd1\displaystyle+\gamma^{1}_{d}(Y_{2}Q^{2}+Y_{1}Q^{3}+Y_{3}Q^{1})b]H_{d}^{1}
+[αd2(Y2Q2+Y1Q3+Y3Q1)d+βd2(Y1Q1+Y2Q3+Y3Q2)s\displaystyle+[\alpha_{d}^{2}(Y_{2}Q^{2}+Y_{1}Q^{3}+Y_{3}Q^{1})d+\beta^{2}_{d}(Y_{1}Q^{1}+Y_{2}Q^{3}+Y_{3}Q^{2})s
+γd2(Y3Q3+Y1Q2+Y2Q1)b]Hd2\displaystyle+\gamma^{2}_{d}(Y_{3}Q^{3}+Y_{1}Q^{2}+Y_{2}Q^{1})b]H_{d}^{2}
=(Q1Q2Q3)((αd1Y1βd1Y2γd1Y3αd1Y3βd1Y1γd1Y2αd1Y2βd1Y3γd1Y1)Hd1+(αd2Y3βd2Y1γd2Y2αd2Y2βd2Y3γd2Y1αd2Y1βd2Y2γd2Y3)Hd2)(dsb).\displaystyle=\begin{pmatrix}Q^{1}&Q^{2}&Q^{3}\\ \end{pmatrix}\left(\begin{pmatrix}\alpha_{d}^{1}Y_{1}&\beta_{d}^{1}Y_{2}&\gamma_{d}^{1}Y_{3}\\ \alpha_{d}^{1}Y_{3}&\beta_{d}^{1}Y_{1}&\gamma_{d}^{1}Y_{2}\\ \alpha_{d}^{1}Y_{2}&\beta_{d}^{1}Y_{3}&\gamma_{d}^{1}Y_{1}\\ \end{pmatrix}H_{d}^{1}+\begin{pmatrix}\alpha_{d}^{2}Y_{3}&\beta_{d}^{2}Y_{1}&\gamma_{d}^{2}Y_{2}\\ \alpha_{d}^{2}Y_{2}&\beta_{d}^{2}Y_{3}&\gamma_{d}^{2}Y_{1}\\ \alpha_{d}^{2}Y_{1}&\beta_{d}^{2}Y_{2}&\gamma_{d}^{2}Y_{3}\\ \end{pmatrix}H_{d}^{2}\right)\begin{pmatrix}d\\ s\\ b\\ \end{pmatrix}. (59)

Finally, the quark mass matrices are given as:

Mu\displaystyle M_{u} =(αu1Y1βu1Y2γu1Y3αu1Y3βu1Y1γu1Y2αu1Y2βu1Y3γu1Y1)Hu1+(αu2Y3βu2Y1γu2Y2αu2Y2βu2Y3γu2Y1αu2Y1βu2Y2γu2Y3)Hu2,\displaystyle=\begin{pmatrix}\alpha_{u}^{1}Y_{1}&\beta_{u}^{1}Y_{2}&\gamma_{u}^{1}Y_{3}\\ \alpha_{u}^{1}Y_{3}&\beta_{u}^{1}Y_{1}&\gamma_{u}^{1}Y_{2}\\ \alpha_{u}^{1}Y_{2}&\beta_{u}^{1}Y_{3}&\gamma_{u}^{1}Y_{1}\\ \end{pmatrix}\langle H_{u}^{1}\rangle+\begin{pmatrix}\alpha_{u}^{2}Y_{3}&\beta_{u}^{2}Y_{1}&\gamma_{u}^{2}Y_{2}\\ \alpha_{u}^{2}Y_{2}&\beta_{u}^{2}Y_{3}&\gamma_{u}^{2}Y_{1}\\ \alpha_{u}^{2}Y_{1}&\beta_{u}^{2}Y_{2}&\gamma_{u}^{2}Y_{3}\\ \end{pmatrix}\langle H_{u}^{2}\rangle, (60)
Md\displaystyle M_{d} =(αd1Y1βd1Y2γd1Y3αd1Y3βd1Y1γd1Y2αd1Y2βd1Y3γd1Y1)Hu1+(αd2Y3βd2Y1γd2Y2αd2Y2βd2Y3γd2Y1αd2Y1βd2Y2γd2Y3)Hu2,\displaystyle=\begin{pmatrix}\alpha_{d}^{1}Y_{1}&\beta_{d}^{1}Y_{2}&\gamma_{d}^{1}Y_{3}\\ \alpha_{d}^{1}Y_{3}&\beta_{d}^{1}Y_{1}&\gamma_{d}^{1}Y_{2}\\ \alpha_{d}^{1}Y_{2}&\beta_{d}^{1}Y_{3}&\gamma_{d}^{1}Y_{1}\\ \end{pmatrix}\langle H_{u}^{1}\rangle+\begin{pmatrix}\alpha_{d}^{2}Y_{3}&\beta_{d}^{2}Y_{1}&\gamma_{d}^{2}Y_{2}\\ \alpha_{d}^{2}Y_{2}&\beta_{d}^{2}Y_{3}&\gamma_{d}^{2}Y_{1}\\ \alpha_{d}^{2}Y_{1}&\beta_{d}^{2}Y_{2}&\gamma_{d}^{2}Y_{3}\\ \end{pmatrix}\langle H_{u}^{2}\rangle, (61)

where the chiralities of the mass matrix, LL and RR are defined as [Mu(d)]LR[M_{u(d)}]_{LR}. At the fixed point τ=ω\tau=\omega, modular forms are given as

(Y1(ω)Y2(ω)Y3(ω))=Y1(ω)(1ω12ω2).\displaystyle\begin{pmatrix}Y_{1}(\omega)\\ Y_{2}(\omega)\\ Y_{3}(\omega)\end{pmatrix}=Y_{1}(\omega)\begin{pmatrix}1\\ \omega\\ -\frac{1}{2}\omega^{2}\end{pmatrix}\,. (62)

4.1.2 STST-eigenstate base at τ=ω\tau=\omega

Let us discuss the mass matrices at τ=ω\tau=\omega in the STST-eigenstates. The STST-transformation of the A4A_{4} triplet of the left-handed quarks QQ is

(Q1Q2Q3)\displaystyle\begin{pmatrix}Q^{1}\\ Q^{2}\\ Q^{3}\\ \end{pmatrix} ST(ω1)2ρ(ST)(Q1Q2Q3)\displaystyle\xrightarrow{ST}(-\omega-1)^{-2}\rho(ST)\begin{pmatrix}Q^{1}\\ Q^{2}\\ Q^{3}\\ \end{pmatrix}
=ω413(12ω2ω22ω2ω222ωω2)(Q1Q2Q3),\displaystyle=\omega^{-4}\frac{1}{3}\begin{pmatrix}-1&2\omega&2\omega^{2}\\ 2&-\omega&2\omega^{2}\\ 2&2\omega&-\omega^{2}\\ \end{pmatrix}\begin{pmatrix}Q^{1}\\ Q^{2}\\ Q^{3}\\ \end{pmatrix}, (63)

where representations of SS and TT are given explicitly for the triplet in Appendix A. The STST-eigenstate QQ^{\prime} is obtained by using the unitary matrix ULU_{L} as follows:

UL=13(2ω2ω2ω2ω222ω22ω),\displaystyle U_{L}=\frac{1}{3}\begin{pmatrix}2&-\omega&2\omega^{2}\\ -\omega&2\omega^{2}&2\\ 2\omega^{2}&2&-\omega\\ \end{pmatrix}, (64)
ULω4ρ(ST)UL=(1000ω2000ω).\displaystyle U_{L}^{\dagger}\omega^{-4}\rho(ST)U_{L}=\begin{pmatrix}1&0&0\\ 0&\omega^{2}&0\\ 0&0&\omega\\ \end{pmatrix}. (65)

The STST-eigenstates are QULQQ^{\prime}\equiv U_{L}^{\dagger}Q.

On the other hand, right-handed quarks, which are singlets (1,1,1′′)(1,1^{\prime},1^{\prime\prime}), are the eigenstates of STST; that is, the STST-transformation is

(uct)ST(1000ω2000ω)(uct),(dsb)ST(1000ω2000ω)(dsb).\displaystyle\begin{pmatrix}u\\ c\\ t\\ \end{pmatrix}\xrightarrow{ST}\begin{pmatrix}1&0&0\\ 0&\omega^{2}&0\\ 0&0&\omega\\ \end{pmatrix}\begin{pmatrix}u\\ c\\ t\\ \end{pmatrix},\quad\begin{pmatrix}d\\ s\\ b\\ \end{pmatrix}\xrightarrow{ST}\begin{pmatrix}1&0&0\\ 0&\omega^{2}&0\\ 0&0&\omega\\ \end{pmatrix}\begin{pmatrix}d\\ s\\ b\\ \end{pmatrix}. (66)

Higgs fields are also the STST-eigenstates since they are singlets (1,1′′)(1,1^{\prime\prime}). Therefore, STST-transformation of them is

(Hu,d1Hu,d2)ST(100ω)(Hu,d1Hu,d2).\displaystyle\begin{pmatrix}H_{u,d}^{1}\\ H_{u,d}^{2}\\ \end{pmatrix}\xrightarrow{ST}\begin{pmatrix}1&0\\ 0&\omega\\ \end{pmatrix}\begin{pmatrix}H_{u,d}^{1}\\ H_{u,d}^{2}\\ \end{pmatrix}. (67)

In the STST-eigenstates, the quark mass matrices are transformed by Eq. (64). It is given as:

ULTMu=c(αu10000γu10βu10)Hu1+c(0βu20αu20000γu2)Hu2,\displaystyle U_{L}^{T}M_{u}=c\begin{pmatrix}\alpha_{u}^{1}&0&0\\ 0&0&\gamma_{u}^{1}\\ 0&\beta_{u}^{1}&0\\ \end{pmatrix}\langle H_{u}^{1}\rangle+c\begin{pmatrix}0&\beta_{u}^{2}&0\\ \alpha_{u}^{2}&0&0\\ 0&0&\gamma_{u}^{2}\\ \end{pmatrix}\langle H_{u}^{2}\rangle, (68)
ULTMd=c(αd10000γd10βd10)Hd1+c(0βd20αd20000γd2)Hd2,\displaystyle U_{L}^{T}M_{d}=c\begin{pmatrix}\alpha_{d}^{1}&0&0\\ 0&0&\gamma_{d}^{1}\\ 0&\beta_{d}^{1}&0\\ \end{pmatrix}\langle H_{d}^{1}\rangle+c\begin{pmatrix}0&\beta_{d}^{2}&0\\ \alpha_{d}^{2}&0&0\\ 0&0&\gamma_{d}^{2}\\ \end{pmatrix}\langle H_{d}^{2}\rangle, (69)

where c=|Y1|2+|Y2|2+|Y3|2c=\sqrt{|Y_{1}|^{2}+|Y_{2}|^{2}+|Y_{3}|^{2}}. Thus, some zeros appear for quark mass matrices.

Now, we impose αu,d1=0\alpha^{1}_{u,d}=0, we obtain the nearest neighbor interaction (NNI) form,444The NNI form of three families has vanishing entries of (1,1),  (2,2),  (1,3),  (3,1), but is not necessary to be Hermitian. which is considered as a general form of both up- and down-types quark mass matrices because this form is achieved by the transformation that leaves the left- handed gauge interaction invariant [6]. The NNI form is a desirable base to derive the Fritzsch-type quark mass matrix while the NNI form is a general form of quark mass matrices.

Therefore, the quark masses and the CKM matrix are reproduced taking relevant values of parameters. It is noticed that the flavor mixing is not realized in the case of one Higgs doublets for up- and down-type quark sectors. Thus, the NNI forms at τ=ω\tau=\omega are simply obtained unless the VEVs of two-Higgs vanish.

The CP symmetry is not violated at τ=ω\tau=\omega in modular flavor symmetric models with a pair of Higgs fields because of the TT symmetry [79]. However, the models with multi-Higgs fields can break the CP symmetry at the fixed point τ=ω\tau=\omega even if all of the Higgs VEVs are real [80]. Thus, the CP phase appears in our models, in general. Our models are interesting from the viewpoint of the CP violation, too.

The non-vanishing VEVs of both Higgs fields Hu,d1H^{1}_{u,d} and Hu,d2H^{2}_{u,d} are important to realize the NNI forms. We expect the scenario that these Higgs fields have a μ\mu-matrix to mix them,

Wμ=μijHuiHdj.\displaystyle W_{\mu}=\mu_{ij}H^{i}_{u}H^{j}_{d}. (70)

Then, a light linear combination develops its VEV, which includes Hu,d1H^{1}_{u,d} and Hu,d2H^{2}_{u,d}. However, the above assignment of A4A_{4} representations (1,1′′)(1,1^{\prime\prime}) for the Higgs fields allows the μ\mu-term of only μ11\mu_{11}, and the others vanish. That is, the mixing does not occur. When we assume the singlet SS with the A4A_{4} 11^{\prime} representation develops its VEV, the (1,2)(1,2) and (2,1)(2,1) elements appear as μ12=μ21=λS\mu_{12}=\mu_{21}=\lambda\langle S\rangle like the next-to-minimal supersymmetric standard model.

It is noted that the alternative assignment of weights for the Higgs and the left-handed quarks also gives desirable μ\mu term [237].

4.1.3 Three pairs of Higgs fields (1,1′′,1)(1,1^{\prime\prime},1^{\prime})

We also study three pairs of Higgs fields with the A4A_{4} (1,1′′,1)(1,1^{\prime\prime},1^{\prime}) representations. We add another pair of Higgs fields Hu,d3H^{3}_{u,d} with the A4A_{4} 11^{\prime} representation of the modular weight 0. Then, we easily obtain the mass matrices as follows:

ULTMu=c(αu10000γu10βu10)Hu1+c(0βu20αu20000γu2)Hu2+c(00γu30βu30αu300)Hu3,\displaystyle U_{L}^{T}M_{u}=c\begin{pmatrix}\alpha_{u}^{1}&0&0\\ 0&0&\gamma_{u}^{1}\\ 0&\beta_{u}^{1}&0\\ \end{pmatrix}\langle H_{u}^{1}\rangle+c\begin{pmatrix}0&\beta_{u}^{2}&0\\ \alpha_{u}^{2}&0&0\\ 0&0&\gamma_{u}^{2}\\ \end{pmatrix}\langle H_{u}^{2}\rangle+c\begin{pmatrix}0&0&\gamma_{u}^{3}\\ 0&\beta_{u}^{3}&0\\ \alpha_{u}^{3}&0&0\\ \end{pmatrix}\langle H_{u}^{3}\rangle, (71)
ULTMd=c(αd10000γd10βd10)Hd1+c(0βd20αd20000γd2)Hd2+c(00γd30βd30αd300)Hd3.\displaystyle U_{L}^{T}M_{d}=c\begin{pmatrix}\alpha_{d}^{1}&0&0\\ 0&0&\gamma_{d}^{1}\\ 0&\beta_{d}^{1}&0\\ \end{pmatrix}\langle H_{d}^{1}\rangle+c\begin{pmatrix}0&\beta_{d}^{2}&0\\ \alpha_{d}^{2}&0&0\\ 0&0&\gamma_{d}^{2}\\ \end{pmatrix}\langle H_{d}^{2}\rangle+c\begin{pmatrix}0&0&\gamma_{d}^{3}\\ 0&\beta_{d}^{3}&0\\ \alpha_{d}^{3}&0&0\\ \end{pmatrix}\langle H_{d}^{3}\rangle. (72)

This model can lead to a quite generic mass matrix. For example, by setting some of αu,di,βu,di,γu,di\alpha^{i}_{u,d},\beta^{i}_{u,d},\gamma^{i}_{u,d} to be zero, we can drive some of texture zero structures including the NNI form. In addition, we can assume βu,di=γu,di\beta^{i}_{u,d}=\gamma^{i}_{u,d} or βu,di=(γu,di)\beta^{i}_{u,d}=(\gamma^{i}_{u,d})^{*} to reduce the number of free parameters and realize a certain form of mass matrices. Thus, the different assignment of the A4A_{4} singlets (1,1′′,1)(1,1^{\prime\prime},1^{\prime}) for Higgs leads to different texture zeros.

4.2 Extensions of models

In this section, the quark mass matrices are discussed in the specific modular symmetry of N=3N=3 in order to show the derivation of NNI forms clearly.

It is noted that one can obtain flavor models leading to the NNI forms in the S4S_{4} and A5A_{5} modular flavor symmetries. Such texture zero structure originates from the STST charge of the residual symmetry Z3Z_{3} of SL(2,Z)SL(2,Z). The NNI form can be realized at the fixed point τ=ω\tau=\omega in A4A_{4} and S4S_{4} modular flavor models with two pairs of Higgs fields, when we assign properly modular weights to Yukawa couplings and A4A_{4} and S4S_{4} representations to three generations of quarks. It is found that four pairs of Higgs fields to realize the NNI form in A5A_{5} modular flavor models. Thus, the modular flavor models with multi-Higgs fields at the fixed point τ=ω\tau=\omega leads to successful quark mass matrices [237].

Texture zeros have been studied phenomenologically in the lepton sector [238, 239, 240, 241, 242, 243]. We can extend our formula of the quark mass matrices to the lepton sector. Extension to the charged lepton mass matrix is straightforward, and we obtain the same results. On the other hand, there is some freedoms for the neutrino mass matrix, depending on the mechanism of producing tiny masses, for example, seesaw mechanism.

5 CP Symmetry

In this section, we study CP violation in modular symmetric flavor models.

The 4D CP symmetry can be embedded into a proper Lorentz transformation in a higher dimensional theory. Here, we concentrate on 6D theory, that is, extra two dimensions in addition to our 4D space-time. T2T^{2} is one of examples of two-dimensional compact space. We denote the coordinate on extra dimension, e.g. T2T^{2}, by zz. Then, we consider the following transformation

zz,\displaystyle z\to-z^{*}, (73)

at the same time as the 4D CP transformation. Such a combination is included in a 6D proper Lorentz symmetry. Because of the above coordinate transformation, the modulus τ\tau on T2T^{2} transforms

ττ,\displaystyle\tau\to-\tau^{*}, (74)

under the CP symmetry [73, 74]. Note that the upper half plane of τ\tau maps onto itself by this transformation. Another transformation such as zzz\to z^{*} can also correspond to a 6D proper Lorentz symmetry, but such a transformation maps the upper half plane onto the lower half plane. Thus, we do not use such a transformation.

Obviously, we find that the line Reτ=0{\rm Re}\tau=0 is CP invariant. Other values are also CP invariant up to the modular symmetry. For example, τ=ω=e2πi/3\tau=\omega=e^{2\pi i/3} transforms

τ=ω=1+3i2τ=1+3i2,\displaystyle\tau=\omega=\frac{-1+\sqrt{3}i}{2}\to-\tau^{*}=\frac{1+\sqrt{3}i}{2}, (75)

under the CP transformation Eq. (74). However, these values are related with each other by the TT-transformation. Thus, the fixed point τ=ω\tau=\omega is also CP invariant point. Similarly, the line Reτ=±1/2{\rm Re}\tau=\pm 1/2 is CP invariant.

The typical Kähler potential of the modulus field τ\tau is written by

K=ln[2Imτ].\displaystyle K=-\ln[2{\rm Im}\tau]. (76)

The Kähler potential is invariant under the transformation, ττ\tau\to-\tau^{*}. In addition, the superpotential |W^|2|\hat{W}|^{2} is invariant if it transforms

W(τ)W(τ)=eiχW(τ)¯,\displaystyle W(\tau)\to W(-\tau^{*})=e^{i\chi}\overline{W(\tau)}, (77)

under the CP symmetry with ττ\tau\to-\tau^{*} including the CP transformation of chiral matter fields.

We study the CP violation through the modulus stabilization. One of the moduli stabilization scenarios is due to the three-form fluxes [244]. Indeed, the moduli stabilization due to the three-from fluxes was studied in modular flavor models in Ref. [212]. Its result shows that the fixed point τ=ω\tau=\omega is favored statistically with highest probability. The above discussions implies that the CP violation does not occur at this fixed point. In Ref. [213] the moduli stabilization was studied by one-loop induced Fayet-Illiopoulos terms, and the modulus τ\tau is stabilized at the same fixed point555See also for recent studies on moduli stabilization in modular flavor models Refs. [196, 245].. In addition, we study another mechanism of the moduli stabilization by assuming non-perturbative effects. We start with the superpotential W=m(τ)QQ¯W=m(\tau)Q\bar{Q} with the A4A_{4} modular flavor symmetry. Then, we assume the condensation QQ¯0\langle Q\bar{Q}\rangle\neq 0. The superpotential is A4A_{4} trivial singlet. We assume the following superpotential:

W=ΛdY𝟏(4)(τ),\displaystyle W=\Lambda_{d}Y^{(4)}_{\bf 1}(\tau), (78)

where Λd\Lambda_{d} corresponds to QQ¯\langle Q\bar{Q}\rangle and must have a proper modular weight. The minimum of the supergravity scalar potential with the above superpotential is obtained as τmin=1.09i+p/2\tau_{min}=1.09\,i+p/2, where pp is odd integer[79]. The above discussion implies that the CP violation does not occur at this point. On the other hand, we assume the following superpotential:

W=Λd(Y𝟏(4)(τ))1,\displaystyle W=\Lambda_{d}(Y^{(4)}_{\bf 1}(\tau))^{-1}, (79)

where Λd\Lambda_{d} must have a proper modular weight. The minimum of the supergravity scalar potential with the above superpotential is obtained as τmin=1.09i+n\tau_{min}=1.09\,i+n, where nn is integer[79]. Obviously, this is CP invariant point. Similarly, we can study other modular flavor models such as S3S_{3} and S4S_{4} modular symmetries, and the potential minimum corresponds to either Reτ=0{\rm Re}\,\tau=0 or 1/21/2 (mod 1) [79]. In both cases, CP violation does not occur.

We examine explicitly mass matrices at Reτ=0{\rm Re}\,\tau=0 and 1/21/2 in order to understand that the CP symmetry is not violated at these lines. We study the flavor model with the ΓN\Gamma_{N} modular flavor symmetry. We use the basis that ρ(T)\rho(T) is diagonal and satisfies ρ(T)N=1\rho(T)^{N}=1. Then, the chiral fields Φi\Phi_{i} such as left-handed quarks QiQ_{i}, up-sector and down-sector right-handed quarks uiu_{i}, did_{i}, and the Higgs field Hu,dH_{u,d} as well as lepton fields transform

Φie2πiP[Φi]/NΦi,\displaystyle\Phi_{i}\to e^{2\pi iP[\Phi_{i}]/N}\Phi_{i}, (80)

under the TT-transformation, where P[Φi]P[\Phi_{i}] is integer. That is the ZN(T)Z_{N}^{(T)} rotation. Here, we assume one pair of Higgs fields HuH^{u} and HdH^{d}, which are trivial singlets under the ΓN\Gamma_{N} modular symmetry. Then, the quark Yukawa terms in the superpotential can be written by

W^=Yij(u)(τ)QiujHu+Yij(d)QidjHd.\displaystyle\hat{W}=Y^{(u)}_{ij}(\tau)Q_{i}u_{j}H^{u}+Y^{(d)}_{ij}Q_{i}d_{j}H^{d}. (81)

We replace the Higgs fields by their VEVs so as to obtain the mass terms,

W^=Miju(τ)Qiuj+Mijd(τ)Qidj.\displaystyle\hat{W}=M^{u}_{ij}(\tau)Q_{i}u_{j}+M^{d}_{ij}(\tau)Q_{i}d_{j}. (82)

Note that the Yukawa couplings are modular forms. Then, the above mass matrices can also be written by modular forms after replacing the Higgs fields by their VEVs. Since these mass terms must be invariant under the TT-transformation, the mass matrix must transform as

Miju(τ)e2πi(P[Qi]+P[uj])/NMiju,Mijd(τ)e2πi(P[Qi]+P[dj])/NMijd.\displaystyle M^{u}_{ij}(\tau)\to e^{-2\pi i(P[Q_{i}]+P[u_{j}])/N}M^{u}_{ij},\qquad M^{d}_{ij}(\tau)\to e^{-2\pi i(P[Q_{i}]+P[d_{j}])/N}M^{d}_{ij}. (83)

That implies that the mass matrices can be written by

Miju(τ)=miju(q)q(P[Qi]+P[uj])/N=miju(q)e2πi(P[Qi]+P[uj])τ/N,\displaystyle M^{u}_{ij}(\tau)=m^{u}_{ij}(q)q^{-(P[Q_{i}]+P[u_{j}])/N}=m^{u}_{ij}(q)e^{-2\pi i(P[Q_{i}]+P[u_{j}])\tau/N},
Mijd(τ)=mijd(q)q(P[Qi]+P[dj])/N=mijd(q)e2πi(P[Qi]+P[dj])τ/N,\displaystyle M^{d}_{ij}(\tau)=m^{d}_{ij}(q)q^{-(P[Q_{i}]+P[d_{j}])/N}=m^{d}_{ij}(q)e^{-2\pi i(P[Q_{i}]+P[d_{j}])\tau/N}, (84)

in terms of q=e2πiτq=e^{2\pi i\tau}, where miju,d(q)m^{u,d}_{ij}(q) include series of integer powers of qq as

miju,d(q)=a0u,d+a1u,dq+a2u,dq2+.\displaystyle m^{u,d}_{ij}(q)=a_{0}^{u,d}+a_{1}^{u,d}q+a_{2}^{u,d}q^{2}+\cdots. (85)

It is obvious that all of the entries in Miju,d(τ)M^{u,d}_{ij}(\tau) are real when Reτ=0{\rm Re}\,\tau=0. CP is not violated. On the other hand, it seems that the mass matrix has phases for other values of Reτ{\rm Re}\,\tau. For example, when Reτ=1/2{\rm Re}\,\tau=1/2, the phase structure of the mass matrix can be written by

Miju=m~ijueπi(P[Qi]+P[uj])/N,Mijd=m~ijdeπi(P[Qi]+P[dj])/N,\displaystyle M^{u}_{ij}=\tilde{m}^{u}_{ij}e^{-\pi i(P[Q_{i}]+P[u_{j}])/N},\qquad M^{d}_{ij}=\tilde{m}^{d}_{ij}e^{-\pi i(P[Q_{i}]+P[d_{j}])/N}, (86)

where m~iju=mijue2π(P[Qi]+P[uj])Imτ/N\tilde{m}^{u}_{ij}=m^{u}_{ij}e^{-2\pi(P[Q_{i}]+P[u_{j}]){\rm Im}\tau/N}, m~ijd=mijde2π(P[Qi]+P[dj])Imτ/N\tilde{m}^{d}_{ij}=m^{d}_{ij}e^{-2\pi(P[Q_{i}]+P[d_{j}]){\rm Im}\tau/N}, and they are real. However, such phases can be canceled by rephasing

ΦiΦeπiP[Φi]/NΦi,\displaystyle\Phi_{i}\to\Phi e^{\pi iP[\Phi_{i}]/N}\Phi_{i}, (87)

and there is no physical CP phase for Reτ=1/2{\rm Re}\,\tau=1/2. That is the Z2N(T)Z_{2N}^{(T)} rotation. Note that mij(q)m_{ij}(q) can have a physical CP phase, which can not be canceled, except Reτ=0,1/2{\rm Re}\,\tau=0,1/2. Similarly, we can discuss the lepton sector, and the CP phase does not appear when Reτ=0,1/2{\rm Re}\,\tau=0,1/2.

The fixed point τ=ω\tau=\omega is statistically favored with highest probability, and phenomenological interesting because there remains Z3Z_{3} symmetry. However, the CP violation does not occur in modular flavor models with one pair of Higgs fields. That suggests extension to models with multi-Higgs fields. Indeed many string compactifications lead more than one candidates of Higgs fields, which have the same quantum numbers of SU(3)×SU(2)×U(1)YSU(3)\times SU(2)\times U(1)_{Y} and can couple with quarks and leptons. We extend the above discussion to modular flavor models with multi-Higgs fields Hu,dH^{u,d}_{\ell}. The quark Yukawa terms in the superpotential can be written by

W^=Yij(u)(τ)QiujHu+Yij(d)QidjHd.\displaystyle\hat{W}=Y^{(u)}_{ij\ell}(\tau)Q_{i}u_{j}H^{u}_{\ell}+Y^{(d)}_{ij\ell}Q_{i}d_{j}H^{d}_{\ell}. (88)

Since these terms are invariant under the TT-transformation, Yukawa couplings must transform as

Yij(u)(τ)e2πiP[Yiju]Yij(u)(τ),Yij(d)(τ)e2πiP[Yijd]Yij(d)(τ),\displaystyle Y^{(u)}_{ij\ell}(\tau)\to e^{2\pi iP[Y^{u}_{ij\ell}]}Y^{(u)}_{ij\ell}(\tau),\qquad Y^{(d)}_{ij\ell}(\tau)\to e^{2\pi iP[Y^{d}_{ij\ell}]}Y^{(d)}_{ij\ell}(\tau), (89)

under the TT-transformation, where

P[Yiju]=(P[Qi]+P[uj]+P[Hu]),P[Yijd]=(P[Qi]+P[dj]+P[Hd]).\displaystyle P[Y^{u}_{ij\ell}]=-(P[Q_{i}]+P[u_{j}]+P[H^{u}_{\ell}]),\qquad P[Y^{d}_{ij\ell}]=-(P[Q_{i}]+P[d_{j}]+P[H^{d}_{\ell}]). (90)

That implies that the modular forms of Yukawa couplings can be written by

Yij(u)(τ)\displaystyle Y^{(u)}_{ij\ell}(\tau) =a0qP[Y(ij)u]/N+a1qqP[Y(ij)u]/N+a2q2qP[Y(ij)u]/N+\displaystyle=a_{0}q^{P[Y^{u}_{(ij\ell)}]/N}+a_{1}qq^{P[Y^{u}_{(ij\ell)}]/N}+a_{2}q^{2}q^{P[Y^{u}_{(ij\ell)}]/N}+\cdots
=Y~ij(u)(q)qP[Y(ij)u]/N,\displaystyle=\tilde{Y}^{(u)}_{ij\ell}(q)q^{P[Y^{u}_{(ij\ell)}]/N},
Yij(d)(τ)\displaystyle Y^{(d)}_{ij\ell}(\tau) =b0qP[Y(ij)d]/N+b1qqP[Y(ij)d]/N+b2q2qP[Y(ij)d]/N+\displaystyle=b_{0}q^{P[Y^{d}_{(ij\ell)}]/N}+b_{1}qq^{P[Y^{d}_{(ij\ell)}]/N}+b_{2}q^{2}q^{P[Y^{d}_{(ij\ell)}]/N}+\cdots
=Y~ij(d)(q)qP[Y(ij)u]/N,\displaystyle=\tilde{Y}^{(d)}_{ij\ell}(q)q^{P[Y^{u}_{(ij\ell)}]/N}, (91)

where the functions Y~ij(u)(q)\tilde{Y}^{(u)}_{ij\ell}(q) and Y~ij(d)(q)\tilde{Y}^{(d)}_{ij\ell}(q) are series of positive integer powers of qq.

We denote Higgs VEVs by

vu=|vu|e2πiP[vu]/N=Hu,vd=|vd|e2πiP[vd]/N=Hd,\displaystyle v^{u}_{\ell}=|v^{u}_{\ell}|e^{2\pi iP[v^{u}_{\ell}]/N}=\langle H^{u}_{\ell}\rangle,\qquad v^{d}_{\ell}=|v^{d}_{\ell}|e^{2\pi iP[v^{d}_{\ell}]/N}=\langle H^{d}_{\ell}\rangle, (92)

where P[vu]P[v^{u}_{\ell}] or P[vd]P[v^{d}_{\ell}] is not integer for a generic VEV. Then, the mass matrices can be written by

Miju,d=Yij(u,d)vu,d.\displaystyle M^{u,d}_{ij}=\sum_{\ell}Y^{(u,d)}_{ij\ell}v^{u,d}_{\ell}. (93)

When Reτ=0{\rm Re}\,\tau=0, all of the Yukawa coupligs Yij(u,d)Y^{(u,d)}_{ij\ell} are real. In this case, the non-trivial CP phase appears only if the VEVs vu,dv^{u,d}_{\ell} have phases different relatively from each other. When Reτ=1/2{\rm Re}\,\tau=-1/2, e.g. τ=ω\tau=\omega, the Yukawa coupligs Yij(u,d)Y^{(u,d)}_{ij\ell} have different phases. Thus, the non-trivial CP phase appears for generic values of VEVs. However, if they satisfy

12(P[Y(ij)u]+P[Qi]+P[uj])+P[vu]=constantindependentof,\displaystyle-\frac{1}{2}\left(P[Y^{u}_{(ij\ell)}]+P[{Q_{i}}]+P[{u_{j}}]\right)+P[v^{u}_{\ell}]={\rm constant~{}independent~{}of}~{}\ell,
12(P[Y(ij)d]+P[Qi]+P[dj])+P[vd]=constantindependentof,\displaystyle-\frac{1}{2}\left(P[Y^{d}_{(ij\ell)}]+P[{Q_{i}}]+P[{d_{j}}]\right)+P[v^{d}_{\ell}]={\rm constant~{}independent~{}of}~{}\ell, (94)

for all of allowed Yukawa couplings with i,ji,j fixed, one can cancel phases of mass matrix elements up to an overall phase by Z2N(T)Z_{2N}^{(T)} rotation. We can compare this condition with the relations Eq. (90), where the factor 1/2-1/2 originates from Reτ=1/2{\rm Re}\,\tau=-1/2. Thus, the TT-symmetry determines the VEV direction vu,dv^{u,d}_{\ell}, where the CP symmetry remains. CP violation was also studied in an explicit magnetized orbifold model [80].

6 SMEFT

So far, we have studied renormalizable coupligs such as Yukawa couplings. Since the SM is effective theory of underlying theory, it may include higher dimensional operators and they may lead to flavor and CP violating processes. Here, we study higher dimensional operators.

The SM with renormalizable couplings has the U(3)5U(3)^{5} flavor symmetry in the limit that all of the Yukawa couplings vanish, where the U(3)5U(3)^{5} symmetry is explicitly written by U(3)Q×U(3)u×U(3)d×U(3)L×U(3)eU(3)_{Q}\times U(3)_{u}\times U(3)_{d}\times U(3)_{L}\times U(3)_{e} and they correspond to the symmetries of three generations of left-handed quarks, up-sector and down-sector right-handed quarks, left-handed leptons, and right-handed charged leptons. Even for non-vanishing Yukawa couplings, the SM can have the U(3)5U(3)^{5} flavor symmetry by assuming that Yukawa couplings are spurion fields, which transform non-trivially under the U(3)5U(3)^{5} flavor symmetry. That is, the up-sector and down-sector Yukawa couplings transform as (𝟑,𝟑¯,𝟏,𝟏,𝟏)({\bf 3},\bar{\bf 3},{\bf 1},{\bf 1},{\bf 1}) and (𝟑,𝟏,𝟑¯,𝟏,𝟏)({\bf 3},{\bf 1},\bar{\bf 3},{\bf 1},{\bf 1}) under the symmetry U(3)Q×U(3)u×U(3)d×U(3)L×U(3)eU(3)_{Q}\times U(3)_{u}\times U(3)_{d}\times U(3)_{L}\times U(3)_{e} while the lepton Yukawa couplings transform as (𝟏,𝟏,𝟏,𝟑,𝟑¯)({\bf 1},{\bf 1},{\bf 1},{\bf 3},\bar{\bf 3}). We require that higher dimensional operators also satisfy the U(3)5U(3)^{5} flavor symmetry. Then coefficients of higher dimensional operators can be written in terms of Yukawa couplings, which are spurion fields. That is the MFV scenario [31, 32].

We can compute nn-point couplings within the framework of superstring theory. For example, nn-point couplings were calculated in intersecting D-brane models [246, 247, 248], magnetized D-brane models[249, 250], and heterotic orbifold models [251, 252, 253, 254, 255, 256]. These computations are carried out by two-dimensional conformal field theory (CFT) and integral of products of wave functions in compact space.

Massless modes in string theory correspond to vertex operators Vi(z)V_{i}(z) in CFT, where ww denotes the complex coordinate on the world-sheet. These vertex operators satisfy the operator product expansion,

Vi(w)Vj(0)kyijkwhkhihjVk(0),\displaystyle V_{i}(w)V_{j}(0)\sim\sum_{k}\frac{y_{ijk}}{w^{h_{k}-h_{i}-h_{j}}}V_{k}(0), (95)

where hih_{i} denote the conformal dimensions of vertex operators ViV_{i}. The coefficients yijky_{ijk} provide us with 3-point couplings among massless modes corresponding vertex operators, ViV_{i}, VjV_{j}, VkV_{k} in low-energy effective field theory. Furthermore, 4-point couplings yijky_{ijk\ell} can be written by products of 3-point couplings,

yijk=myijmymk.\displaystyle y_{ijk\ell}=\sum_{m}y_{ijm}y_{mk\ell}. (96)

Similarly, generic nn-point couplings can be written by products of 3-point couplings. That implies that when the 3-point couplings yijky_{ijk} have the modular symmetry, 4-point couplings and higher order couplings are also controlled by the modular symmetry. Indeed, these couplings can be written by modular forms, which depend on the moduli fields. In this sense, these couplings are spurion fields. Thus, this theory can provide us with the stringy origin of minimal flavor violation, where the flavor symmetry is the modular symmetry instead of U(3)5U(3)^{5}.

Similarly, various classes of 4D low-energy effective field theory derived string theory satisfy the requirement of minimal flavor violation hypothesis at the compactification scale. However, several physical stages may occur between the compactification scale and low energy scale, (i) some modes gain masses and (ii) some scalar fields develop their VEVs. At the stage (i), we just integrate out massive modes. Effective field theory after such an integration also satisfies the above structure. At the stage (ii), new operators appear. For example, suppose that we have the coupling, yijkϕiϕjϕkϕy_{ijk\ell}\phi_{i}\phi_{j}\phi_{k}\phi_{\ell} and ϕi\phi_{i} develops its VEV. Then, the new operator yjkϕjϕkϕy^{\prime}_{jk\ell}\phi_{j}\phi_{k}\phi_{\ell} appears, where yjk=yijkϕiy^{\prime}_{jk\ell}=y_{ijk\ell}\langle\phi_{i}\rangle. Both yjky^{\prime}_{jk\ell} and yijky_{ijk\ell} are spurion fields, and the transformation behavior of yjky^{\prime}_{jk\ell} is the same as yijkϕiy_{ijk\ell}\langle\phi_{i}\rangle. Thus, the minimal flavor violation structure with the modular symmetry is not violated.

One of non-trivial symmetry breaking is the supersymmetry breaking. The supersymmetry breaking can occur by non-vanishing F-terms. If all of the F-terms are trivial singlets under the modular symmetry, obviously all of the soft terms are modular invariant. The supersymmetry breaking due to modulus F-term is non-trivial from the viewpoint of the modular symmetry. Detailed study was done in Ref. [88]. It was found that all of the soft terms except the B-term are modular invariant. If the generation mechanism of the μ\mu-term is modular invariant, the B-term is also modular invariant.

If the above scenario holds true, the low-energy effective field theory around the weak scale has the minimal flavor violation structure with the modular symmetry. That is, the SMEFT can have the modular symmetry. For example, there appear the four-fermi operators and dipole operators,

yijkΛ2(Ψ¯iΓΨj)(Ψ¯kΓΨ),cijvΛ2(Ψ¯iσμνΨj)Fμν,\displaystyle\frac{y_{ijk\ell}}{\Lambda^{2}}(\bar{\Psi}_{i}\Gamma\Psi_{j})(\bar{\Psi}_{k}\Gamma\Psi_{\ell}),\qquad\frac{c_{ij}v}{\Lambda^{2}}(\bar{\Psi}_{i}\sigma^{\mu\nu}\Psi_{j})F_{\mu\nu}, (97)

where Γ\Gamma denotes a generic combination of gamma matrices. These operators must be modular invariant and their coefficients yijky_{ijk\ell} and cijc_{ij} are modular forms. Furthermore, the coefficients yijky_{ijk\ell} can be written by productions of 3-point couplings as Eq. (96), where the mode mm may correspond to known modes like the Higgs field or unknown modes. The cut-off scale Λ\Lambda depends on the scenario with the stages (i) and (ii), that is, mass scales and symmetry breaking scales including the supersymmetry breaking scale. Phenomenological implications of modular symmetric SMEFT were studied, e.g. flavor violations and lepton (g2)(g-2) processes [81, 82, 83].

7 Conclusion

We have reviewed on modular flavor symmetric models from several viewpoints, realization of fermion mass matrices, the texture structure, the CP violation and higher dimensional operators in SMEFT. Indeed many works have been done recently, in particular in realization of quark and lepton masses and mixing angles as well as the CP violation. In addition, the modular flavor symmetry have been used for dark matter, inflation models, and leptogenesis in bottom-up approach. The modular flavor symmetry may originate from compactification of higher dimensional theory such as superstring theory. Also the modular flavor symmetry have been studied in top-down approach. Thus, the modular flavor symmetry can become a bridge to connect the low-energy physics and high-energy physic such as superstring theory and would provide us with a missing piece to solve the flavor puzzle in particle physics.

Acknowledgement

The authors would like to thank Y. Abe, T. Higaki, K. Ishiguro, J. Kawamura, S. Kikuchi, S. Nagamoto, K. Nasu, T. Nomura, H. Okada, N. Omoto, Y. Orisaka, H. Otsuka, S.T. Petcov, Y. Shimizu, T. Shimomura, S. Takada, K. Takagi, S. Tamba, K. Tanaka, T.H. Tatsuishi, H. Uchida, S. Uemura, K. Yamamoto, T. Yoshida for useful discussions.

Appendix

Appendix A Modular forms of A4A_{4}

The modular forms of weight 22 transforming as a triplet of A4A_{4} can be written in terms of η(τ)\eta(\tau) and its derivative [57]:

Y1\displaystyle Y_{1} =\displaystyle= i2π(η(τ/3)η(τ/3)+η((τ+1)/3)η((τ+1)/3)+η((τ+2)/3)η((τ+2)/3)27η(3τ)η(3τ)),\displaystyle\frac{i}{2\pi}\left(\frac{\eta^{\prime}(\tau/3)}{\eta(\tau/3)}+\frac{\eta^{\prime}((\tau+1)/3)}{\eta((\tau+1)/3)}+\frac{\eta^{\prime}((\tau+2)/3)}{\eta((\tau+2)/3)}-\frac{27\eta^{\prime}(3\tau)}{\eta(3\tau)}\right),
Y2\displaystyle Y_{2} =\displaystyle= iπ(η(τ/3)η(τ/3)+ω2η((τ+1)/3)η((τ+1)/3)+ωη((τ+2)/3)η((τ+2)/3)),\displaystyle\frac{-i}{\pi}\left(\frac{\eta^{\prime}(\tau/3)}{\eta(\tau/3)}+\omega^{2}\frac{\eta^{\prime}((\tau+1)/3)}{\eta((\tau+1)/3)}+\omega\frac{\eta^{\prime}((\tau+2)/3)}{\eta((\tau+2)/3)}\right), (98)
Y3\displaystyle Y_{3} =\displaystyle= iπ(η(τ/3)η(τ/3)+ωη((τ+1)/3)η((τ+1)/3)+ω2η((τ+2)/3)η((τ+2)/3)),\displaystyle\frac{-i}{\pi}\left(\frac{\eta^{\prime}(\tau/3)}{\eta(\tau/3)}+\omega\frac{\eta^{\prime}((\tau+1)/3)}{\eta((\tau+1)/3)}+\omega^{2}\frac{\eta^{\prime}((\tau+2)/3)}{\eta((\tau+2)/3)}\right)\,,

which satisfy also the constraint [57]:

Y22+2Y1Y3=0.\displaystyle Y_{2}^{2}+2Y_{1}Y_{3}=0~{}. (99)

They have the following qq-expansions:

𝐘𝟑(𝟐)=(Y1Y2Y3)=(1+12q+36q2+12q3+6q1/3(1+7q+8q2+)18q2/3(1+2q+5q2+)),\displaystyle{\bf Y^{(2)}_{3}}=\begin{pmatrix}Y_{1}\\ Y_{2}\\ Y_{3}\end{pmatrix}=\begin{pmatrix}1+12q+36q^{2}+12q^{3}+\dots\\ -6q^{1/3}(1+7q+8q^{2}+\dots)\\ -18q^{2/3}(1+2q+5q^{2}+\dots)\end{pmatrix}\,, (100)

where

q=exp(2πiτ).\displaystyle q=\exp{(2\pi i\,\tau)}\,. (101)

The five modular forms of weight 4 are given as:

where 𝐘𝟏′′(4){\bf Y^{(\rm 4)}_{1^{\prime\prime}}} vanishes due to the constraint of Eq. (99).

For weigh 6, there are seven modular forms as:

For weigh 8, there are nine modular forms as:

For weigh 10, there are eleven modular forms as:

𝐘𝟏(10)=(Y12+2Y2Y3)(Y13+Y23+Y333Y1Y2Y3)\displaystyle{\bf Y^{(\rm 10)}_{1}}=(Y_{1}^{2}+2Y_{2}Y_{3})(Y_{1}^{3}+Y_{2}^{3}+Y_{3}^{3}-3Y_{1}Y_{2}Y_{3})\,
𝐘𝟏(10)=(Y32+2Y1Y2)(Y13+Y23+Y333Y1Y2Y3),\displaystyle{\bf Y^{(\rm 10)}_{1^{\prime}}}=(Y_{3}^{2}+2Y_{1}Y_{2})(Y_{1}^{3}+Y_{2}^{3}+Y_{3}^{3}-3Y_{1}Y_{2}Y_{3})\,,
𝐘𝟑,1(10)(Y1,1(10)Y2,1(10)Y3,1(10))=(Y12+2Y2Y3)2(Y1Y2Y3),\displaystyle{\bf Y^{(\rm 10)}_{3,{\rm 1}}}\equiv\begin{pmatrix}Y_{1,1}^{(10)}\\ Y_{2,1}^{(10)}\\ Y_{3,1}^{(10)}\end{pmatrix}=(Y_{1}^{2}+2Y_{2}Y_{3})^{2}\begin{pmatrix}Y_{1}\\ Y_{2}\\ Y_{3}\end{pmatrix}\,,
𝐘𝟑,2(10)(Y1,2(10)Y2,2(10)Y3,2(10))=(Y32+2Y1Y2)2(Y2Y3Y1),\displaystyle{\bf Y^{(\rm 10)}_{3,{\rm 2}}}\equiv\begin{pmatrix}Y_{1,2}^{(10)}\\ Y_{2,2}^{(10)}\\ Y_{3,2}^{(10)}\end{pmatrix}=(Y_{3}^{2}+2Y_{1}Y_{2})^{2}\begin{pmatrix}Y_{2}\\ Y_{3}\\ Y_{1}\end{pmatrix}\,,
𝐘𝟑,3(10)(Y1,3(10)Y2,3(10)Y3,3(10))=(Y12+2Y2Y3)(Y32+2Y1Y2)(Y3Y1Y2).\displaystyle{\bf Y^{(\rm 10)}_{3,{\rm 3}}}\equiv\begin{pmatrix}Y_{1,3}^{(10)}\\ Y_{2,3}^{(10)}\\ Y_{3,3}^{(10)}\end{pmatrix}=(Y_{1}^{2}+2Y_{2}Y_{3})(Y_{3}^{2}+2Y_{1}Y_{2})\begin{pmatrix}Y_{3}\\ Y_{1}\\ Y_{2}\end{pmatrix}\,. (102)

At the fixed point τ=ω\tau=\omega, they are given as:

Appendix B Tensor product of A4\rm A_{4} group

We take the generators of A4A_{4} group for the triplet as follows:

S=13(122212221),T=(1000ω000ω2),\displaystyle\begin{aligned} S=\frac{1}{3}\begin{pmatrix}-1&2&2\\ 2&-1&2\\ 2&2&-1\end{pmatrix},\end{aligned}\qquad\begin{aligned} T=\begin{pmatrix}1&0&0\\ 0&\omega&0\\ 0&0&\omega^{2}\end{pmatrix},\end{aligned} (103)

where ω=ei23π\omega=e^{i\frac{2}{3}\pi} for a triplet. In this base, the multiplication rule is

(a1a2a3)𝟑(b1b2b3)𝟑\displaystyle\begin{pmatrix}a_{1}\\ a_{2}\\ a_{3}\end{pmatrix}_{\bf 3}\otimes\begin{pmatrix}b_{1}\\ b_{2}\\ b_{3}\end{pmatrix}_{\bf 3} =(a1b1+a2b3+a3b2)𝟏(a3b3+a1b2+a2b1)𝟏\displaystyle=\left(a_{1}b_{1}+a_{2}b_{3}+a_{3}b_{2}\right)_{\bf 1}\oplus\left(a_{3}b_{3}+a_{1}b_{2}+a_{2}b_{1}\right)_{{\bf 1}^{\prime}}
(a2b2+a1b3+a3b1)𝟏′′\displaystyle\oplus\left(a_{2}b_{2}+a_{1}b_{3}+a_{3}b_{1}\right)_{{\bf 1}^{\prime\prime}}
13(2a1b1a2b3a3b22a3b3a1b2a2b12a2b2a1b3a3b1)𝟑12(a2b3a3b2a1b2a2b1a3b1a1b3)𝟑,\displaystyle\oplus\frac{1}{3}\begin{pmatrix}2a_{1}b_{1}-a_{2}b_{3}-a_{3}b_{2}\\ 2a_{3}b_{3}-a_{1}b_{2}-a_{2}b_{1}\\ 2a_{2}b_{2}-a_{1}b_{3}-a_{3}b_{1}\end{pmatrix}_{{\bf 3}}\oplus\frac{1}{2}\begin{pmatrix}a_{2}b_{3}-a_{3}b_{2}\\ a_{1}b_{2}-a_{2}b_{1}\\ a_{3}b_{1}-a_{1}b_{3}\end{pmatrix}_{{\bf 3}\ }\ ,
𝟏𝟏=𝟏,\displaystyle{\bf 1}\otimes{\bf 1}={\bf 1}\ ,\qquad 𝟏𝟏=𝟏′′,𝟏′′𝟏′′=𝟏,𝟏𝟏′′=𝟏,\displaystyle{\bf 1^{\prime}}\otimes{\bf 1^{\prime}}={\bf 1^{\prime\prime}}\ ,\qquad{\bf 1^{\prime\prime}}\otimes{\bf 1^{\prime\prime}}={\bf 1^{\prime}}\ ,\qquad{\bf 1^{\prime}}\otimes{\bf 1^{\prime\prime}}={\bf 1}\ , (104)

where

T(𝟏)=ω,T(𝟏′′)=ω2.\displaystyle T({\bf 1^{\prime})}=\omega\,,\qquad T({\bf 1^{\prime\prime}})=\omega^{2}. (105)

More details are shown in the review  [16, 17, 18].

References

  • [1] S. Weinberg, Trans. New York Acad. Sci. 38 (1977), 185-201.
  • [2] H. Fritzsch, Phys. Lett. B 70 (1977), 436-440.
  • [3] H. Fritzsch, Phys. Lett. B 73 (1978), 317-322.
  • [4] H. Fritzsch, Nucl. Phys. B 155 (1979), 189-207.
  • [5] H. Georgi and C. Jarlskog, Phys. Lett. B 86 (1979), 297-300.
  • [6] G. C. Branco, L. Lavoura and F. Mota, Phys. Rev. D 39 (1989), 3443.
  • [7] S. Dimopoulos, L. J. Hall and S. Raby, Phys. Rev. D 45 (1992), 4192-4200.
  • [8] P. Ramond, R. G. Roberts and G. G. Ross, Nucl. Phys. B 406 (1993), 19-42. [arXiv:hep-ph/9303320 [hep-ph]].
  • [9] P. H. Frampton, S. L. Glashow and D. Marfatia, Phys. Lett. B 536 (2002), 79-82 [arXiv:hep-ph/0201008 [hep-ph]].
  • [10] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B 147 (1979), 277-298
  • [11] S. Pakvasa and H. Sugawara, Phys. Lett.  73B (1978) 61.
  • [12] F. Wilczek and A. Zee, Phys. Lett.  70B (1977) 418 Erratum: [Phys. Lett.  72B (1978) 504].
  • [13] M. Fukugita, M. Tanimoto and T. Yanagida, Phys. Rev. D 57 (1998) 4429 [hep-ph/9709388].
  • [14] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett.  81 (1998) 1562 [hep-ex/9807003].
  • [15] G. Altarelli and F. Feruglio, Rev. Mod. Phys.  82 (2010) 2701 [arXiv:1002.0211 [hep-ph]].
  • [16] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Prog. Theor. Phys. Suppl.  183 (2010) 1 [arXiv:1003.3552 [hep-th]].
  • [17] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, Lect. Notes Phys.  858 (2012) 1, Springer.
  • [18] T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, Lect. Notes Phys. 995 (2022) 1, Springer doi:10.1007/978-3-662-64679-3.
  • [19] D. Hernandez and A. Y. Smirnov, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445 [hep-ph]].
  • [20] S. F. King and C. Luhn, Rept. Prog. Phys.  76 (2013) 056201 [arXiv:1301.1340 [hep-ph]].
  • [21] S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys.  16, 045018 (2014) [arXiv:1402.4271 [hep-ph]].
  • [22] M. Tanimoto, AIP Conf. Proc.  1666 (2015) 120002.
  • [23] S. F. King, Prog. Part. Nucl. Phys.  94 (2017) 217 [arXiv:1701.04413 [hep-ph]].
  • [24] S. T. Petcov, Eur. Phys. J. C 78 (2018) no.9, 709 [arXiv:1711.10806 [hep-ph]].
  • [25] F. Feruglio and A. Romanino, arXiv:1912.06028 [hep-ph].
  • [26] W. Buchmuller and D. Wyler, Nucl. Phys. B 268 (1986), 621-653.
  • [27] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, JHEP 10 (2010), 085 [arXiv:1008.4884 [hep-ph]].
  • [28] R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, JHEP 04 (2014), 159 [arXiv:1312.2014 [hep-ph]].
  • [29] D. A. Faroughy, G. Isidori, F. Wilsch and K. Yamamoto, JHEP 08 (2020), 166 [arXiv:2005.05366 [hep-ph]].
  • [30] J. M. Gerard, Z. Phys. C 18 (1983), 145.
  • [31] R. S. Chivukula and H. Georgi, Phys. Lett. B 188 (1987), 99-104.
  • [32] G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Nucl. Phys. B 645 (2002), 155-187 [arXiv:hep-ph/0207036 [hep-ph]].
  • [33] R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D. M. Straub, Eur. Phys. J. C 71 (2011), 1725 [arXiv:1105.2296 [hep-ph]].
  • [34] R. Barbieri, D. Buttazzo, F. Sala and D. M. Straub, JHEP 07 (2012), 181 [arXiv:1203.4218 [hep-ph]].
  • [35] G. Blankenburg, G. Isidori and J. Jones-Perez, Eur. Phys. J. C 72 (2012), 2126 [arXiv:1204.0688 [hep-ph]].
  • [36] T. Kobayashi, S. Raby and R. J. Zhang, Nucl. Phys. B 704, 3-55 (2005) [arXiv:hep-ph/0409098 [hep-ph]].
  • [37] T. Kobayashi, H. P. Nilles, F. Ploger, S. Raby and M. Ratz, Nucl. Phys. B 768, 135-156 (2007) [arXiv:hep-ph/0611020 [hep-ph]].
  • [38] P. Ko, T. Kobayashi, J. h. Park and S. Raby, Phys. Rev. D 76, 035005 (2007) [erratum: Phys. Rev. D 76, 059901 (2007)] [arXiv:0704.2807 [hep-ph]].
  • [39] H. Abe, K. S. Choi, T. Kobayashi and H. Ohki, Nucl. Phys. B 820, 317-333 (2009) [arXiv:0904.2631 [hep-ph]].
  • [40] F. Beye, T. Kobayashi and S. Kuwakino, Phys. Lett. B 736, 433-437 (2014) [arXiv:1406.4660 [hep-th]].
  • [41] S. Ferrara, D. Lust and S. Theisen, Phys. Lett. B 233 (1989), 147-152.
  • [42] W. Lerche, D. Lust and N. P. Warner, Phys. Lett. B 231 (1989), 417-424.
  • [43] J. Lauer, J. Mas and H. P. Nilles, Phys. Lett. B 226, 251-256 (1989) doi:10.1016/0370-2693(89)91190-8.
  • [44] J. Lauer, J. Mas and H. P. Nilles, Nucl. Phys. B 351, 353 (1991).
  • [45] T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba and T. H. Tatsuishi, Phys. Rev. D 97, no. 11, 116002 (2018) [arXiv:1804.06644 [hep-th]].
  • [46] T. Kobayashi and S. Tamba, Phys. Rev. D 99, no.4, 046001 (2019) [arXiv:1811.11384 [hep-th]].
  • [47] H. Ohki, S. Uemura and R. Watanabe, Phys. Rev. D 102, no.8, 085008 (2020) [arXiv:2003.04174 [hep-th]].
  • [48] S. Kikuchi, T. Kobayashi, S. Takada, T. H. Tatsuishi and H. Uchida, Phys. Rev. D 102, no.10, 105010 (2020) [arXiv:2005.12642 [hep-th]].
  • [49] S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada and H. Uchida, JHEP 11, 101 (2020) [arXiv:2007.06188 [hep-th]].
  • [50] S. Kikuchi, T. Kobayashi and H. Uchida, Phys. Rev. D 104, no.6, 065008 (2021) [arXiv:2101.00826 [hep-th]].
  • [51] Y. Almumin, M. C. Chen, V. Knapp-Perez, S. Ramos-Sanchez, M. Ratz and S. Shukla, JHEP 05 (2021), 078 [arXiv:2102.11286 [hep-th]].
  • [52] A. Strominger, Commun. Math. Phys. 133 (1990), 163-180.
  • [53] P. Candelas and X. de la Ossa, Nucl. Phys. B 355 (1991), 455-481.
  • [54] K. Ishiguro, T. Kobayashi and H. Otsuka, Nucl. Phys. B 973, 115598 (2021) [arXiv:2010.10782 [hep-th]].
  • [55] K. Ishiguro, T. Kobayashi and H. Otsuka, JHEP 01, 020 (2022) [arXiv:2107.00487 [hep-th]].
  • [56] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Nucl. Phys. B 858, 437 (2012) [arXiv:1112.1340 [hep-ph]].
  • [57] F. Feruglio, in From My Vast Repertoire …: Guido Altarelli’s Legacy, A. Levy, S. Forte, Stefano, and G. Ridolfi, eds., pp.227–266, 2019, arXiv:1706.08749 [hep-ph].
  • [58] T. Kobayashi, K. Tanaka and T. H. Tatsuishi, Phys. Rev. D 98 (2018) no.1, 016004 [arXiv:1803.10391 [hep-ph]].
  • [59] J. T. Penedo and S. T. Petcov, Nucl. Phys. B 939 (2019) 292 [arXiv:1806.11040 [hep-ph]].
  • [60] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1904, 174 (2019) [arXiv:1812.02158 [hep-ph]].
  • [61] G. J. Ding, S. F. King and X. G. Liu, Phys. Rev. D 100 (2019) no.11, 115005 [arXiv:1903.12588 [hep-ph]].
  • [62] M. B. Green, J. H. Schwarz and E. Witten, Cambridge, Uk: Univ. Pr. ( 1987) 596 P. ( Cambridge Monographs On Mathematical Physics)
  • [63] A. Strominger and E. Witten, Commun. Math. Phys. 101, 341 (1985).
  • [64] M. Dine, R. G. Leigh and D. A. MacIntire, Phys. Rev. Lett. 69, 2030 (1992) [hep-th/9205011].
  • [65] K. w. Choi, D. B. Kaplan and A. E. Nelson, Nucl. Phys. B 391, 515 (1993) [hep-ph/9205202].
  • [66] C. S. Lim, Phys. Lett. B 256, 233 (1991).
  • [67] T. Kobayashi and C. S. Lim, Phys. Lett. B 343, 122 (1995) [hep-th/9410023].
  • [68] B. S. Acharya, D. Bailin, A. Love, W. A. Sabra and S. Thomas, Phys. Lett. B 357, 387 (1995) Erratum: [Phys. Lett. B 407, 451 (1997)] [hep-th/9506143].
  • [69] T. Dent, Phys. Rev. D 64, 056005 (2001) [hep-ph/0105285].
  • [70] S. Khalil, O. Lebedev and S. Morris, Phys. Rev. D 65, 115014 (2002) [hep-th/0110063].
  • [71] J. Giedt, Mod. Phys. Lett. A 17, 1465 (2002) [hep-ph/0204017].
  • [72] T. Kobayashi and H. Otsuka, Phys. Rev. D 102, no.2, 026004 (2020) [arXiv:2004.04518 [hep-th]].
  • [73] A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Phys. Lett. B 795, 7 (2019) [arXiv:1901.03251 [hep-th]];
  • [74] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1907, 165 (2019) [arXiv:1905.11970 [hep-ph]].
  • [75] A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Nucl. Phys. B 947 (2019), 114737 [arXiv:1908.00805 [hep-th]].
  • [76] A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sanchez and P. K. S. Vaudrevange, JHEP 02 (2021), 018 [arXiv:2008.07534 [hep-th]].
  • [77] H. P. Nilles, S. Ramos–Sánchez and P. K. S. Vaudrevange, Nucl. Phys. B 966 (2021), 115367 [arXiv:2010.13798 [hep-th]].
  • [78] K. Bönisch, M. Elmi, A. K. Kashani-Poor and A. Klemm, [arXiv:2204.06506 [hep-th]].
  • [79] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida, Phys. Rev. D 101, no.5, 055046 (2020) [arXiv:1910.11553 [hep-ph]].
  • [80] S. Kikuchi, T. Kobayashi, M. Tanimoto and H. Uchida, PTEP 2022, no.11, 113B07 (2022) [arXiv:2206.08538 [hep-ph]].
  • [81] T. Kobayashi and H. Otsuka, Eur. Phys. J. C 82, no.1, 25 (2022) [arXiv:2108.02700 [hep-ph]].
  • [82] T. Kobayashi, H. Otsuka, M. Tanimoto and K. Yamamoto, Phys. Rev. D 105, no.5, 055022 (2022) [arXiv:2112.00493 [hep-ph]].
  • [83] T. Kobayashi, H. Otsuka, M. Tanimoto and K. Yamamoto, JHEP 08, 013 (2022) [arXiv:2204.12325 [hep-ph]].
  • [84] T. Nomura and H. Okada, Phys. Lett. B 797, 134799 (2019) [arXiv:1904.03937 [hep-ph]].
  • [85] T. Kobayashi, H. Okada and Y. Orikasa, Phys. Dark Univ. 37, 101080 (2022) [arXiv:2111.05674 [hep-ph]].
  • [86] T. Kobayashi, T. Shimomura and M. Tanimoto, Phys. Lett. B 819, 136452 (2021) [arXiv:2102.10425 [hep-ph]].
  • [87] M. Tanimoto and K. Yamamoto, JHEP 10, 183 (2021) [arXiv:2106.10919 [hep-ph]].
  • [88] S. Kikuchi, T. Kobayashi, K. Nasu, H. Otsuka, S. Takada and H. Uchida, PTEP 2022, no.12, 123B02 (2022) [arXiv:2203.14667 [hep-ph]].
  • [89] T. Kobayashi, S. Nishimura, H. Otsuka, M. Tanimoto and K. Yamamoto, [arXiv:2207.14014 [hep-ph]].
  • [90] F. Feruglio, A. Strumia and A. Titov, [arXiv:2305.08908 [hep-ph]].
  • [91] R. C. Gunning, Lectures on Modular Forms (Princeton University Press, Princeton, NJ, 1962).
  • [92] B. Schoeneberg, Elliptic Modular Functions (Springer-Verlag, 1974).
  • [93] N. Koblitz, Introduction to Elliptic Curves and Modular Forms (Springer-Verlag, 1984).
  • [94] J.H. Bruinier, G.V.D. Geer, G. Harder, and D. Zagier, The 1-2-3 of Modular Forms (Springer, 2008).
  • [95] S. Ferrara, D. Lust, A. D. Shapere and S. Theisen, Phys. Lett. B 225, 363 (1989).
  • [96] M. Chen, S. Ramos-Sánchez and M. Ratz, Phys. Lett. B 801 (2020), 135153 [arXiv:1909.06910 [hep-ph]].
  • [97] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP 11 (2018), 196 [arXiv:1808.03012 [hep-ph]].
  • [98] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, JHEP 09 (2020), 178 [arXiv:2007.14792 [hep-ph]].
  • [99] S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho and M. Lattanzi, Phys. Rev. D 96 (2017) no.12, 123503 [arXiv:1701.08172 [astro-ph.CO]].
  • [100] N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020), A6 [arXiv:1807.06209 [astro-ph.CO]].
  • [101] R. L. Workman et al. [Particle Data Group], PTEP 2022 (2022), 083C01.
  • [102] S. Antusch and V. Maurer, JHEP 1311 (2013) 115 [arXiv:1306.6879 [hep-ph]].
  • [103] F. Björkeroth, F. J. de Anda, I. de Medeiros Varzielas and S. F. King, JHEP 1506 (2015) 141 [arXiv:1503.03306 [hep-ph]].
  • [104] J. C. Criado and F. Feruglio, SciPost Phys.  5 (2018) no.5, 042 [arXiv:1807.01125 [hep-ph]].
  • [105] G. J. Ding, S. F. King and X. G. Liu, JHEP 1909 (2019) 074 [arXiv:1907.11714 [hep-ph]].
  • [106] H. Okada and M. Tanimoto, JHEP 03 (2021), 010 [arXiv:2012.01688 [hep-ph]].
  • [107] C. Y. Yao, J. N. Lu and G. J. Ding, JHEP 05 (2021), 102 [arXiv:2012.13390 [hep-ph]].
  • [108] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1904 (2019) 005 [arXiv:1811.04933 [hep-ph]].
  • [109] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP 02 (2020), 097 [arXiv:1907.09141 [hep-ph]].
  • [110] X. Wang and S. Zhou, JHEP 05 (2020), 017 [arXiv:1910.09473 [hep-ph]].
  • [111] J. Gehrlein and M. Spinrath, JHEP 03 (2021), 177 [arXiv:2012.04131 [hep-ph]].
  • [112] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, PTEP 2020, no.5, 053B05 (2020) [arXiv:1906.10341 [hep-ph]].
  • [113] D. Meloni and M. Parriciatu, [arXiv:2306.09028 [hep-ph]].
  • [114] X. G. Liu and G. J. Ding, JHEP 1908 (2019) 134 [arXiv:1907.01488 [hep-ph]].
  • [115] P. P. Novichkov, J. T. Penedo and S. T. Petcov, Nucl. Phys. B 963 (2021), 115301 [arXiv:2006.03058 [hep-ph]].
  • [116] X. G. Liu, C. Y. Yao and G. J. Ding, Phys. Rev. D 103 (2021) no.5, 056013 [arXiv:2006.10722 [hep-ph]].
  • [117] X. Wang, B. Yu and S. Zhou, Phys. Rev. D 103 (2021) no.7, 076005 [arXiv:2010.10159 [hep-ph]].
  • [118] C. Y. Yao, X. G. Liu and G. J. Ding, [arXiv:2011.03501 [hep-ph]].
  • [119] H. Okada and Y. Orikasa, Chin. Phys. C 46 (2022) no.12, 123108 [arXiv:2206.12629 [hep-ph]].
  • [120] G. J. Ding, X. G. Liu and C. Y. Yao, [arXiv:2211.04546 [hep-ph]].
  • [121] G. J. Ding, F. R. Joaquim and J. N. Lu, [arXiv:2211.08136 [hep-ph]].
  • [122] P. Beneš, H. Okada and Y. Orikasa, [arXiv:2212.07245 [hep-ph]].
  • [123] G. J. Ding, S. F. King, C. C. Li and Y. L. Zhou, JHEP 08 (2020), 164 [arXiv:2004.12662 [hep-ph]].
  • [124] C. C. Li, X. G. Liu and G. J. Ding, JHEP 10 (2021), 238 [arXiv:2108.02181 [hep-ph]].
  • [125] H. Okada and M. Tanimoto, Phys. Lett. B 791 (2019) 54 [arXiv:1812.09677 [hep-ph]].
  • [126] H. Okada and M. Tanimoto, Eur. Phys. J. C 81 (2021) no.1, 52 [arXiv:1905.13421 [hep-ph]].
  • [127] F. J. de Anda, S. F. King and E. Perdomo, Phys. Rev. D 101 (2020) no.1, 015028 [arXiv:1812.05620 [hep-ph]].
  • [128] S. F. King and Y. L. Zhou, JHEP 04 (2021), 291 [arXiv:2103.02633 [hep-ph]].
  • [129] P. Chen, G. J. Ding and S. F. King, JHEP 04 (2021), 239 [arXiv:2101.12724 [hep-ph]].
  • [130] X. Du and F. Wang, JHEP 02, 221 (2021) [arXiv:2012.01397 [hep-ph]].
  • [131] G. J. Ding, S. F. King and C. Y. Yao, [arXiv:2103.16311 [hep-ph]].
  • [132] G. J. Ding, S. F. King and J. N. Lu, JHEP 11 (2021), 007 [arXiv:2108.09655 [hep-ph]].
  • [133] G. J. Ding, S. F. King, J. N. Lu and B. Y. Qu, JHEP 10 (2022), 071 [arXiv:2206.14675 [hep-ph]].
  • [134] T. Asaka, Y. Heo, T. H. Tatsuishi and T. Yoshida, JHEP 2001 (2020) 144 [arXiv:1909.06520 [hep-ph]].
  • [135] H. Okada, Y. Shimizu, M. Tanimoto and T. Yoshida, JHEP 07 (2021), 184 [arXiv:2105.14292 [hep-ph]].
  • [136] B. Y. Qu, X. G. Liu, P. T. Chen and G. J. Ding, Phys. Rev. D 104 (2021) no.7, 076001 [arXiv:2106.11659 [hep-ph]].
  • [137] P. P. Novichkov, S. T. Petcov and M. Tanimoto, Phys. Lett. B 793 (2019) 247 [arXiv:1812.11289 [hep-ph]].
  • [138] G. J. Ding, S. F. King, X. G. Liu and J. N. Lu, JHEP 1912 (2019) 030 [arXiv:1910.03460 [hep-ph]].
  • [139] H. Okada and M. Tanimoto, Phys. Rev. D 103 (2021) no.1, 015005 [arXiv:2009.14242 [hep-ph]].
  • [140] P. P. Novichkov, J. T. Penedo and S. T. Petcov, JHEP 04, 206 (2021) [arXiv:2102.07488 [hep-ph]].
  • [141] F. Feruglio, V. Gherardi, A. Romanino and A. Titov, JHEP 05 (2021), 242 [arXiv:2101.08718 [hep-ph]].
  • [142] F. Feruglio, Phys. Rev. Lett. 130 (2023) no.10, 101801 doi:10.1103/PhysRevLett. 130.101801.
  • [143] S. T. Petcov and M. Tanimoto, [arXiv:2212.13336 [hep-ph]].
  • [144] S. T. Petcov and M. Tanimoto, [arXiv:2306.05730 [hep-ph]].
  • [145] S. Kikuchi, T. Kobayashi, K. Nasu, S. Takada and H. Uchida, Phys. Rev. D 107, no.5, 055014 (2023) [arXiv:2301.03737 [hep-ph]].
  • [146] Y. Abe, T. Higaki, J. Kawamurab and T. Kobayashi, [arXiv:2301.07439 [hep-ph]].
  • [147] S. Kikuchi, T. Kobayashi, K. Nasu, S. Takada and H. Uchida, [arXiv:2302.03326 [hep-ph]].
  • [148] Y. Abe, T. Higaki, J. Kawamura and T. Kobayashi, [arXiv:2302.11183 [hep-ph]].
  • [149] Y. Abe, T. Higaki, J. Kawamura and T. Kobayashi, [arXiv:2307.01419 [hep-ph]].
  • [150] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida, Phys. Lett. B 794 (2019) 114 [arXiv:1812.11072 [hep-ph]].
  • [151] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, Phys. Rev. D 100 (2019) no.11, 115045 [erratum: Phys. Rev. D 101 (2020) no.3, 039904] [arXiv:1909.05139 [hep-ph]].
  • [152] T. Asaka, Y. Heo and T. Yoshida, Phys. Lett. B 811 (2020), 135956 [arXiv:2009.12120 [hep-ph]].
  • [153] M. K. Behera, S. Mishra, S. Singirala and R. Mohanta, Phys. Dark Univ. 36 (2022), 101027 [arXiv:2007.00545 [hep-ph]].
  • [154] S. Mishra, [arXiv:2008.02095 [hep-ph]].
  • [155] H. Okada and Y. Orikasa, Phys. Rev. D 100, no.11, 115037 (2019) [arXiv:1907.04716 [hep-ph]].
  • [156] Y. Kariyazono, T. Kobayashi, S. Takada, S. Tamba and H. Uchida, Phys. Rev. D 100, no.4, 045014 (2019) [arXiv:1904.07546 [hep-th]].
  • [157] T. Nomura and H. Okada, Nucl. Phys. B 966 (2021), 115372 [arXiv:1906.03927 [hep-ph]].
  • [158] H. Okada and Y. Orikasa, arXiv:1908.08409 [hep-ph].
  • [159] T. Nomura, H. Okada and O. Popov, Phys. Lett. B 803 (2020) 135294 [arXiv:1908.07457 [hep-ph]].
  • [160] J. C. Criado, F. Feruglio and S. J. D. King, JHEP 2002 (2020) 001 [arXiv:1908.11867 [hep-ph]].
  • [161] S. F. King and Y. L. Zhou, Phys. Rev. D 101 (2020) no.1, 015001 [arXiv:1908.02770 [hep-ph]].
  • [162] D. Zhang, Nucl. Phys. B 952 (2020) 114935 [arXiv:1910.07869 [hep-ph]].
  • [163] J. N. Lu, X. G. Liu and G. J. Ding, Phys. Rev. D 101 (2020) no.11, 115020 [arXiv:1912.07573 [hep-ph]].
  • [164] T. Nomura, H. Okada and S. Patra, Nucl. Phys. B 967 (2021), 115395 [arXiv:1912.00379 [hep-ph]].
  • [165] T. Kobayashi, T. Nomura and T. Shimomura, Phys. Rev. D 102 (2020) no.3, 035019 [arXiv:1912.00637 [hep-ph]].
  • [166] X. Wang, Nucl. Phys. B 957 (2020), 115105 [arXiv:1912.13284 [hep-ph]].
  • [167] S. J. D. King and S. F. King, JHEP 09 (2020), 043 [arXiv:2002.00969 [hep-ph]].
  • [168] M. Abbas, Phys. Rev. D 103 (2021) no.5, 056016 [arXiv:2002.01929 [hep-ph]].
  • [169] H. Okada and Y. Shoji, Phys. Dark Univ. 31 (2021), 100742 [arXiv:2003.11396 [hep-ph]].
  • [170] H. Okada and Y. Shoji, Nucl. Phys. B 961 (2020), 115216 [arXiv:2003.13219 [hep-ph]].
  • [171] G. J. Ding and F. Feruglio, JHEP 06 (2020), 134 [arXiv:2003.13448 [hep-ph]].
  • [172] T. Nomura and H. Okada, JCAP 09 (2022), 049 doi:10.1088/1475-7516/2022/09/049 [arXiv:2007.04801 [hep-ph]].
  • [173] T. Nomura and H. Okada, arXiv:2007.15459 [hep-ph].
  • [174] H. Okada and M. Tanimoto, Phys. Dark Univ. 40 (2023), 101204 [arXiv:2005.00775 [hep-ph]].
  • [175] I. de Medeiros Varzielas, M. Levy and Y. L. Zhou, JHEP 11 (2020), 085 [arXiv:2008.05329 [hep-ph]].
  • [176] K. I. Nagao and H. Okada, JCAP 05 (2021), 063 [arXiv:2008.13686 [hep-ph]].
  • [177] K. I. Nagao and H. Okada, Nucl. Phys. B 980 (2022), 115841 [arXiv:2010.03348 [hep-ph]].
  • [178] M. Abbas, Phys. Atom. Nucl. 83 (2020) no.5, 764-769.
  • [179] H. Kuranaga, H. Ohki and S. Uemura, JHEP 07 (2021), 068 [arXiv:2105.06237 [hep-ph]].
  • [180] H. Okada and Y. h. Qi, [arXiv:2109.13779 [hep-ph]].
  • [181] A. Dasgupta, T. Nomura, H. Okada, O. Popov and M. Tanimoto, [arXiv:2111.06898 [hep-ph]].
  • [182] T. Nomura and H. Okada, Chin. Phys. C 46 (2022) no.5, 053101 [arXiv:2109.04157 [hep-ph]].
  • [183] K. I. Nagao and H. Okada, Phys. Dark Univ. 36 (2022), 101039 [arXiv:2108.09984 [hep-ph]].
  • [184] T. Nomura, H. Okada and Y. Orikasa, Eur. Phys. J. C 81 (2021) no.10, 947 [arXiv:2106.12375 [hep-ph]].
  • [185] T. Nomura and H. Okada, Phys. Rev. D 105 (2022) no.7, 075010 [arXiv:2106.10451 [hep-ph]].
  • [186] X. Zhang and S. Zhou, JCAP 09 (2021), 043 [arXiv:2106.03433 [hep-ph]].
  • [187] X. Wang and S. Zhou, JHEP 07 (2021), 093 [arXiv:2102.04358 [hep-ph]].
  • [188] X. Wang, Nucl. Phys. B 962 (2021), 115247 [arXiv:2007.05913 [hep-ph]].
  • [189] P. Ko, T. Nomura and H. Okada, JHEP 05 (2022), 098 [arXiv:2110.10513 [hep-ph]].
  • [190] T. Nomura, H. Okada and Y. h. Qi, [arXiv:2111.10944 [hep-ph]].
  • [191] T. Nomura and H. Okada, [arXiv:2201.10244 [hep-ph]].
  • [192] H. Otsuka and H. Okada, [arXiv:2202.10089 [hep-ph]].
  • [193] G. J. Ding, F. Feruglio and X. G. Liu, SciPost Phys. 10 (2021) no.6, 133 [arXiv:2102.06716 [hep-ph]].
  • [194] G. Charalampous, S. F. King, G. K. Leontaris and Y. L. Zhou, Phys. Rev. D 104 (2021) no.11, 115015 [arXiv:2109.11379 [hep-ph]].
  • [195] X. G. Liu and G. J. Ding, JHEP 03 (2022), 123 [arXiv:2112.14761 [hep-ph]].
  • [196] P. P. Novichkov, J. T. Penedo and S. T. Petcov, JHEP 03 (2022), 149 [arXiv:2201.02020 [hep-ph]].
  • [197] S. Kikuchi, T. Kobayashi, H. Otsuka, M. Tanimoto, H. Uchida and K. Yamamoto, Phys. Rev. D 106 (2022) no.3, 035001 [arXiv:2201.04505 [hep-ph]].
  • [198] M. K. Behera, S. Singirala, S. Mishra and R. Mohanta, J. Phys. G 49 (2022) no.3, 035002 [arXiv:2009.01806 [hep-ph]].
  • [199] Y. H. Ahn, S. K. Kang, R. Ramos and M. Tanimoto, Phys. Rev. D 106 (2022) no.9, 095002 [arXiv:2205.02796 [hep-ph]].
  • [200] Y. Gunji, K. Ishiwata and T. Yoshida, JHEP 11 (2022), 002 [arXiv:2208.10086 [hep-ph]].
  • [201] J. Kim and H. Okada, [arXiv:2302.09747 [hep-ph]].
  • [202] T. Nomura, H. Okada and Y. Shoji, PTEP 2023 (2023) no.2, 023B04.
  • [203] D. W. Kang, J. Kim, T. Nomura and H. Okada, JHEP 07 (2022), 050 [arXiv:2205.08269 [hep-ph]].
  • [204] Y. Abe, T. Higaki, F. Kaneko, T. Kobayashi and H. Otsuka, [arXiv:2303.02947 [hep-ph]].
  • [205] I. de Medeiros Varzielas, S. F. King and M. Levy, JHEP 02 (2023), 143 [arXiv:2211.00654 [hep-ph]].
  • [206] G. J. Ding, S. F. King, C. C. Li, X. G. Liu and J. N. Lu, [arXiv:2303.02071 [hep-ph]].
  • [207] F. J. de Anda and S. F. King, [arXiv:2304.05958 [hep-ph]].
  • [208] T. Nomura and H. Okada, [arXiv:2304.13361 [hep-ph]].
  • [209] Y. H. Ahn and S. K. Kang, [arXiv:2306.14467 [hep-ph]].
  • [210] T. Kobayashi, S. Nagamoto and S. Uemura, PTEP 2017, no.2, 023B02 (2017) [arXiv:1608.06129 [hep-th]].
  • [211] I. de Medeiros Varzielas, S. F. King and Y. L. Zhou, Phys. Rev. D 101 (2020) no.5, 055033 [arXiv:1906.02208 [hep-ph]].
  • [212] K. Ishiguro, T. Kobayashi and H. Otsuka, JHEP 03, 161 (2021) [arXiv:2011.09154 [hep-ph]].
  • [213] H. Abe, T. Kobayashi, S. Uemura and J. Yamamoto, Phys. Rev. D 102, no.4, 045005 (2020) [arXiv:2003.03512 [hep-th]].
  • [214] S. Kikuchi, T. Kobayashi, Y. Ogawa and H. Uchida, PTEP 2022, no.3, 033B10 (2022) [arXiv:2112.01680 [hep-ph]].
  • [215] H. P. Nilles, S. Ramos-Śanchez and P. K. S. Vaudrevange, JHEP 02 (2020), 045 [arXiv:2001.01736 [hep-ph]].
  • [216] H. P. Nilles, S. Ramos-Sánchez and P. K. S. Vaudrevange, Nucl. Phys. B 957 (2020), 115098 [arXiv:2004.05200 [hep-ph]].
  • [217] H. P. Nilles, S. Ramos–Sánchez and P. K. S. Vaudrevange, Phys. Lett. B 808 (2020), 135615 [arXiv:2006.03059 [hep-th]].
  • [218] A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sanchez and P. K. S. Vaudrevange, Phys. Lett. B 816 (2021), 136176 [arXiv:2012.09586 [hep-th]].
  • [219] G. J. Ding, F. Feruglio and X. G. Liu, JHEP 01 (2021), 037 [arXiv:2010.07952 [hep-th]].
  • [220] A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sanchez and P. K. S. Vaudrevange, JHEP 06 (2021), 110 [arXiv:2104.03981 [hep-th]].
  • [221] H. P. Nilles, S. Ramos-Sanchez and P. K. S. Vaudrevange, [arXiv:2105.02984 [hep-th]].
  • [222] H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, Nucl. Phys. B 971 (2021), 115534 [arXiv:2105.08078 [hep-th]].
  • [223] A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, Phys. Rev. D 105 (2022) no.5, 055018 [arXiv:2112.06940 [hep-th]].
  • [224] A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, JHEP 09 (2022), 224 [arXiv:2207.10677 [hep-ph]].
  • [225] S. Kikuchi, T. Kobayashi, K. Nasu, H. Otsuka, S. Takada and H. Uchida, JHEP 04, 003 (2023) [arXiv:2301.10356 [hep-th]].
  • [226] F. Feruglio, JHEP 03 (2023), 236 [arXiv:2302.11580 [hep-ph]].
  • [227] V. Knapp-Perez, X. G. Liu, H. P. Nilles, S. Ramos-Sanchez and M. Ratz, [arXiv:2304.14437 [hep-th]].
  • [228] H. Abe, T. Kobayashi and H. Ohki, JHEP 09 (2008), 043 [arXiv:0806.4748 [hep-th]].
  • [229] T. H. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki and M. Sakamoto, JHEP 1401, 065 (2014) [arXiv:1309.4925 [hep-th]].
  • [230] H. Abe, T. Kobayashi, K. Sumita and S. Uemura, Phys. Rev. D 96, no.2, 026019 (2017) [arXiv:1703.03402 [hep-th]].
  • [231] H. Abe, T. Kobayashi, H. Ohki, A. Oikawa and K. Sumita, Nucl. Phys. B 870, 30-54 (2013) [arXiv:1211.4317 [hep-ph]].
  • [232] H. Abe, T. Kobayashi, K. Sumita and Y. Tatsuta, Phys. Rev. D 90, no.10, 105006 (2014) [arXiv:1405.5012 [hep-ph]].
  • [233] Y. Fujimoto, T. Kobayashi, K. Nishiwaki, M. Sakamoto and Y. Tatsuta, Phys. Rev. D 94, no.3, 035031 (2016) [arXiv:1605.00140 [hep-ph]].
  • [234] W. Buchmuller and J. Schweizer, Phys. Rev. D 95, no.7, 075024 (2017) [arXiv:1701.06935 [hep-ph]].
  • [235] W. Buchmuller and K. M. Patel, Phys. Rev. D 97, no.7, 075019 (2018) [arXiv:1712.06862 [hep-ph]].
  • [236] K. Hoshiya, S. Kikuchi, T. Kobayashi and H. Uchida, Phys. Rev. D 106 (2022) no.11, 115003 [arXiv:2209.07249 [hep-ph]].
  • [237] S. Kikuchi, T. Kobayashi, M. Tanimoto and H. Uchida, [arXiv:2207.04609 [hep-ph]].
  • [238] M. Fukugita, M. Tanimoto and T. Yanagida, Phys. Lett. B 562 (2003), 273-278 doi:10.1016/S0370-2693(03)00568-9 [arXiv:hep-ph/0303177 [hep-ph]].
  • [239] Z. z. Xing and S. Zhou, Phys. Lett. B 593 (2004), 156-164 [arXiv:hep-ph/0403261 [hep-ph]].
  • [240] M. Obara and Z. z. Xing, Phys. Lett. B 644 (2007), 136-146 doi:10.1016/j.physletb. 2006.11.010 [arXiv:hep-ph/0608280 [hep-ph]].
  • [241] M. Fukugita, Y. Shimizu, M. Tanimoto and T. T. Yanagida, Phys. Lett. B 716 (2012), 294-297 doi:10.1016/j.physletb.2012.06.049 [arXiv:1204.2389 [hep-ph]].
  • [242] M. Fukugita, Y. Kaneta, Y. Shimizu, M. Tanimoto and T. T. Yanagida, Phys. Lett. B 764 (2017), 163-166 doi:10.1016/j.physletb.2016.11.024 [arXiv:1609.01864 [hep-ph]].
  • [243] H. Fritzsch and S. Zhou, Phys. Lett. B 718 (2013), 1457-1464 [arXiv:1212.0411 [hep-ph]].
  • [244] S. Gukov, C. Vafa and E. Witten, Nucl. Phys. B 584, 69-108 (2000) [erratum: Nucl. Phys. B 608, 477-478 (2001)] [arXiv:hep-th/9906070 [hep-th]].
  • [245] K. Ishiguro, H. Okada and H. Otsuka, JHEP 09 (2022), 072 [arXiv:2206.04313 [hep-ph]].
  • [246] M. Cvetic and I. Papadimitriou, Phys. Rev. D 68, 046001 (2003) [erratum: Phys. Rev. D 70, 029903 (2004)] [arXiv:hep-th/0303083 [hep-th]].
  • [247] S. A. Abel and A. W. Owen, Nucl. Phys. B 663, 197-214 (2003) [arXiv:hep-th/0303124 [hep-th]].
  • [248] S. A. Abel and A. W. Owen, Nucl. Phys. B 682, 183-216 (2004) [arXiv:hep-th/0310257 [hep-th]].
  • [249] D. Cremades, L. E. Ibanez and F. Marchesano, JHEP 05 (2004), 079 [arXiv:hep-th/0404229 [hep-th]].
  • [250] H. Abe, K. S. Choi, T. Kobayashi and H. Ohki, JHEP 06, 080 (2009) [arXiv:0903.3800 [hep-th]].
  • [251] S. Hamidi and C. Vafa, Nucl. Phys. B 279, 465-513 (1987).
  • [252] L. J. Dixon, D. Friedan, E. J. Martinec and S. H. Shenker, Nucl. Phys. B 282, 13-73 (1987).
  • [253] J. J. Atick, L. J. Dixon, P. A. Griffin and D. Nemeschansky, Nucl. Phys. B 298, 1-35 (1988).
  • [254] T. T. Burwick, R. K. Kaiser and H. F. Muller, Nucl. Phys. B 355, 689-711 (1991).
  • [255] S. Stieberger, D. Jungnickel, J. Lauer and M. Spalinski, Mod. Phys. Lett. A 7, 3059-3070 (1992) [arXiv:hep-th/9204037 [hep-th]].
  • [256] K. S. Choi and T. Kobayashi, Nucl. Phys. B 797, 295-321 (2008) [arXiv:0711.4894 [hep-th]].