This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Modified shrinking target problem for Matrix Transformations of Tori

Na Yuan School of Mathematics, Guangdong University of Education, Xingang Middle Road, 351, Guangzhou, P. R. China [email protected]  and  ShuaiLing Wang Department of Mathematics, South China University of Technology, Guangzhou, 510641, P. R. China [email protected]
Key words and phrases:
Shrinking target problem; Fractal sets; Hausdorff dimension
2020 Mathematics Subject Classification:
37A05, 37B20, 28A80
* Corresponding author

Abstract. We calculate the Hausdorff dimension of the fractal set

{𝚡𝕋d:1id|Tβin(xi)xi|<ψ(n) for  infinitely  many n},\Big{\{}\mathtt{x}\in\mathbb{T}^{d}:\prod_{1\leq i\leq d}|T_{\beta_{i}}^{n}(x_{i})-x_{i}|<\psi(n)\text{\ for \ infinitely \ many }n\in\mathbb{N}\Big{\}},

where the TβiT_{\beta_{i}} is the standard βi\beta_{i}-transformation with βi>1\beta_{i}>1, ψ\psi is a positive function on \mathbb{N} and |||\cdot| is the usual metric on the torus 𝕋\mathbb{T}. Moreover, we investigate a modified version of the shrinking target problem, which unifies the shrinking target problems and quantitative recurrence properties for matrix transformations of tori. Let TT be a d×dd\times d non-singular matrix with real coefficients. Then, TT determines a self-map of the dd-dimensional torus 𝕋d:=d/d\mathbb{T}^{d}:=\mathbb{R}^{d}/\mathbb{Z}^{d}. For any 1id1\leq i\leq d, let ψi\psi_{i} be a positive function on \mathbb{N} and Ψ(n):=(ψ1(n),,ψd(n))\Psi(n):=(\psi_{1}(n),\dots,\psi_{d}(n)) with nn\in\mathbb{N}. We obtain the Hausdorff dimension of the fractal set

{𝚡𝕋d:Tn(x)L(fn(𝚡),Ψ(n)) for  infinitely  many n},\big{\{}\mathtt{x}\in\mathbb{T}^{d}:T^{n}(x)\in L(f_{n}(\mathtt{x}),\Psi(n))\text{\ for \ infinitely \ many }n\in\mathbb{N}\big{\}},

where L(fn(𝚡,Ψ(n)))L(f_{n}(\mathtt{x},\Psi(n))) is a hyperrectangle and {fn}n1\{f_{n}\}_{n\geq 1} is a sequence of Lipschitz vector-valued functions on 𝕋d\mathbb{T}^{d} with a uniform Lipschitz constant.

1. Introduction

Let (X,d)(X,d) be a metric space, and let T:XXT:X\to X be a transformation. If μ\mu is a TT-invariant Borel probability measure on XX and TT is ergodic with respect to the measure μ\mu, Birkhoff’s ergodic theorem implies that for any ball BXB\subset X of positive measure, the subset S={xX:TnxB for   i.m. n}S=\{x\in X:T^{n}x\in B\text{\ for \ i.m.\ }n\in\mathbb{N}\} has full μ\mu-measure. Here and throughout the paper, ‘i.m.’ stands for ‘infinitely many’. This means that the trajectories of almost all points will enter the ball BB infinitely often. In general, one may wonder what will happen if BB shrinks with time. Let ψ\psi be a function on \mathbb{N} and zXz\in X, the investigation of the size in terms of measure and dimension of the set

S(ψ,z)={xX:TnxB(z,ψ(n)) for   i.m. n},S(\psi,z)=\{x\in X:T^{n}x\in B(z,\psi(n))\text{\ for \ i.m.\ }n\in\mathbb{N}\},

is called shrinking target problems by Hill and Velani [13], where B(z,ψ(n))XB(z,\psi(n))\subset X is a ball of center zz and radius ψ(n)\psi(n). On the other hand, motivated by Poincaré’s recurrence theorem in dynamical systems, one is also interested in the quantitative recurrence set(see[5, 6])

R(ψ):={xX:TnxB(x,ψ(n)) for   i.m. n}.R(\psi):=\{x\in X:T^{n}x\in B(x,\psi(n))\text{\ for \ i.m.\ }n\in\mathbb{N}\}.

The measures and dimensions of the fractal sets S(ψ,z)S(\psi,z) and R(ψ)R(\psi) have already been extensively investigated in many dynamical systems. For the measure aspect, the reader is referred to [1, 2, 9, 10, 12, 16, 17, 19, 20, 21] and references therein. With regards to the dimension aspect, let us cite some but far from all concrete cases. The dimension aspect has been studied for expanding rational maps of Julia sets [13, 14], matrix transformations of tori [15, 21], β\beta-transformations [18, 27, 29], conformal iterated function systems [24, 26, 22]. For the more results, the reader is referred to [23, 3, 4, 33] and references therein.

It should be observed that in many systems, the fractal dimensional formulae for the two sets S(ψ)S(\psi) and R(ψ)R(\psi) are the same. In [28, 31, 32, 34], the dimensions of S(ψ)S(\psi) and R(ψ)R(\psi) were unified in some dynamical systems by using a Lipschitz function. We are interested in finding out if they can be unified when TT is a matrix transformation on the torus 𝕋d\mathbb{T}^{d}.

We start by laying out some necessary definitions and notations. Let 𝕋d:=d/d\mathbb{T}^{d}:=\mathbb{R}^{d}/\mathbb{Z}^{d} be a dd-dimensional torus endowed with the usual metric in 𝕋d\mathbb{T}^{d} induced by the Euclidean metric. Let TT be a d×dd\times d non-singular matrix with real coefficients. Then, TT determines a self-map of the dd-dimensional torus 𝕋d\mathbb{T}^{d}, namely, for any 𝚡𝕋d\mathtt{x}\in\mathbb{T}^{d}, T:𝚡T(𝚡)(mod1)T:\mathtt{x}\to T(\mathtt{x})\ (\bmod 1). In what follows, TT will denote both the matrix and the transformation. Denote by TnT^{n} the nn-th iteration of the transformation TT with nn\in\mathbb{N}. Let +\mathbb{R}^{+} be the set of positive numbers.

We explore two special sets that are relevant to the classical theory of Diophantine approximation. For any 1id1\leq i\leq d, let ψi\psi_{i} be a positive function on \mathbb{N} and Ψ(n):=(ψ1(n),,ψd(n))\Psi(n):=(\psi_{1}(n),\dots,\psi_{d}(n)) with nn\in\mathbb{N}. For any 𝚢=(y1,y2,,yd)𝕋d\mathtt{y}=(y_{1},y_{2},\dots,y_{d})\in\mathbb{T}^{d}, let

L(𝚢,Ψ(n)):={𝚡𝕋d:|xiyi|<ψi(n) for any 1id},L(\mathtt{y},\Psi(n)):=\Big{\{}\mathtt{x}\in\mathbb{T}^{d}:|x_{i}-y_{i}|<\psi_{i}(n)\text{\ for any\ }1\leq i\leq d\Big{\}},

and

P(𝚢,ψ(n)):={𝚡𝕋d:1id|xiyi|<ψ(n)},P(\mathtt{y},\psi(n)):=\Big{\{}\mathtt{x}\in\mathbb{T}^{d}:\prod_{1\leq i\leq d}|x_{i}-y_{i}|<\psi(n)\Big{\}},

where |||\cdot| is the usual metric on 𝕋\mathbb{T}. Then L(𝚢,ψ(n))L(\mathtt{y},\psi(n)) is a hyperrectangle and P(𝚢,ψ(n))P(\mathtt{y},\psi(n)) is a hyperboloid. Define

Hd(T,ψ)={𝚡𝕋d:Tn(𝚡)P(𝚡,ψ(n)) for   i.m. n}.H_{d}(T,\psi)=\big{\{}\mathtt{x}\in\mathbb{T}^{d}:T^{n}(\mathtt{x})\in P(\mathtt{x},\psi(n))\text{\ for \ i.m.\ }n\in\mathbb{N}\big{\}}.

The set Hd(T,ψ)H_{d}(T,\psi) is intimately related to sets studied within the multiplicative theory of Diophantine approximation.

Let {fn}n1\{f_{n}\}_{n\geq 1} be a sequence of vector-valued functions on 𝕋d\mathbb{T}^{d} with a uniform Lipsitz constant, i.e., there exists c+c\in\mathbb{R}^{+} such that for any nn\in\mathbb{N} and 𝚡,𝚢𝕋d\mathtt{x},\mathtt{y}\in\mathbb{T}^{d},

(1.1) |fn(𝚡)fn(𝚢)|c|𝚡𝚢|,|f_{n}(\mathtt{x})-f_{n}(\mathtt{y})|\leq c|\mathtt{x}-\mathtt{y}|,

where we also use |||\cdot| for the usual metric on 𝕋d\mathbb{T}^{d} induced by the Euclidean metric. Then, (1.1) means that for any nn\in\mathbb{N} and x,y𝕋x,y\in\mathbb{T},

(1.2) |fn(i)(x)fn(i)(y)|c|xy||f^{(i)}_{n}(x)-f^{(i)}_{n}(y)|\leq c|x-y|

where fn(i)f^{(i)}_{n} is the function fnf_{n} restricted to the direction of the ii-th axis.

Define the modified shrinking target set associated to Ψ\Psi and {fn}n1\{f_{n}\}_{n\geq 1} by

W(T,Ψ,{fn})={𝚡𝕋d:Tn(𝚡)L(fn(𝚡),Ψ(n)) for   i.m. n}.W(T,\Psi,\{f_{n}\})=\big{\{}\mathtt{x}\in\mathbb{T}^{d}:T^{n}(\mathtt{x})\in L(f_{n}(\mathtt{x}),\Psi(n))\text{\ for \ i.m.\ }n\in\mathbb{N}\big{\}}.

If ψ1=ψ2==ψd=ψ\psi_{1}=\psi_{2}=\dots=\psi_{d}=\psi, we write

W(T,ψ,{fn})={𝚡𝕋d:Tn(𝚡)L(fn(𝚡),ψ(n)) for   i.m. n}.W(T,\psi,\{f_{n}\})=\big{\{}\mathtt{x}\in\mathbb{T}^{d}:T^{n}(\mathtt{x})\in L(f_{n}(\mathtt{x}),\psi(n))\text{\ for \ i.m.\ }n\in\mathbb{N}\big{\}}.

Note that if fn=yf_{n}=y for all nn\in\mathbb{N}, where 𝚢\mathtt{y} is a fixed point in 𝕋d\mathbb{T}^{d}, then the fractal set W(T,ψ,{fn})W(T,\psi,\{f_{n}\}) is an analogue of the sets explored by the classical simultaneous theory of Diophantine approximation.

Denote by dimH\dim_{\mathrm{H}} the Hausdorff dimension. Let

τ:=lim infnlogψ(n)n.\tau:=\liminf_{n\to\infty}\frac{-\log\psi(n)}{n}.

Our results are listed below.

Theorem 1.1.

Let TT be a real, non-singular matrix transformation of the torus 𝕋d\mathbb{T}^{d}. Suppose that TT is diagonal and all eigenvalues β1\beta_{1}, β2\beta_{2}, \dots, βd\beta_{d} are of modulus strictly larger than 11. Assume that 1<β1β2βd1<\beta_{1}\leq\beta_{2}\leq\dots\leq\beta_{d}. Then

dimHHd(T,ψ)=d1+logβdτ+logβd.\dim_{\mathrm{H}}H_{d}(T,\psi)=d-1+\frac{\log\beta_{d}}{\tau+\log\beta_{d}}.

Let 𝒞(Ψ)\mathcal{C}(\Psi) be the set of accumulation points 𝐭=(t1,,td)\mathbf{t}=(t_{1},\dots,t_{d}) of the sequence

{logψ1(n)n,,logψd(n)n}n1.\Big{\{}\frac{-\log\psi_{1}(n)}{n},\dots,\frac{-\log\psi_{d}(n)}{n}\Big{\}}_{n\geq 1}.

The following Theorem 1.2 gives the value of dimHW(T,Ψ,{fn})\dim_{\mathrm{H}}W(T,\Psi,\{f_{n}\}) when TT is a real, non-singular diagonal matrix transformation of the torus 𝕋d\mathbb{T}^{d}.

Theorem 1.2.

Let TT be a real, non-singular matrix transformation of the torus 𝕋d\mathbb{T}^{d}. Suppose that TT is diagonal with all eigenvalues βi>1\beta_{i}>1, i1i\geq 1 and 1<β1β2βd1<\beta_{1}\leq\beta_{2}\leq\dots\leq\beta_{d}. Let {fn}n1\{f_{n}\}_{n\geq 1} be a sequence of vector-valued functions on 𝕋d\mathbb{T}^{d} with a uniform Lipsitz constant and Ψ=(ψ1,ψ2,,ψd)\Psi=(\psi_{1},\psi_{2},\dots,\psi_{d}), where ψi:+\psi_{i}:\mathbb{N}\to\mathbb{R}^{+}. If 𝒞(Ψ)\mathcal{C}(\Psi) is bounded, then

dimHW(T,Ψ,{fn})=sup𝐭𝒞(Ψ)min1id{λi(𝐭)},\dim_{\mathrm{H}}W(T,\Psi,\{f_{n}\})=\sup_{\mathbf{t}\in\mathcal{C}(\Psi)}\min_{1\leq i\leq d}\{\lambda_{i}(\mathbf{t})\},

where

λi(𝐭):=j𝒬i11+j𝒬i2(1tjlogβi+ti)+j𝒬i3logβjlogβi+ti\lambda_{i}(\mathbf{t}):=\sum_{j\in\mathcal{Q}^{1}_{i}}1+\sum_{j\in\mathcal{Q}^{2}_{i}}(1-\frac{t_{j}}{\log\beta_{i}+t_{i}})+\sum_{j\in\mathcal{Q}^{3}_{i}}\frac{\log\beta_{j}}{\log\beta_{i}+t_{i}}

and

𝒬i1:={1jd:logβj>logβi+ti},𝒬i2:={1jd:logβj+tjlogβi+ti},\mathcal{Q}^{1}_{i}:=\{1\leq j\leq d:\log\beta_{j}>\log\beta_{i}+t_{i}\},\ \mathcal{Q}^{2}_{i}:=\{1\leq j\leq d:\log\beta_{j}+t_{j}\leq\log\beta_{i}+t_{i}\},
𝒬i3:={1,2,,d}\(𝒬i1𝒬i2).\mathcal{Q}^{3}_{i}:=\{1,2,\dots,d\}\backslash(\mathcal{Q}^{1}_{i}\cup\mathcal{Q}^{2}_{i}).
Remark 1.3.

Note that the Hausdorff dimension of the set W(T,Ψ,{fn})W(T,\Psi,\{f_{n}\}) is independent of the sequence {fn}n1\{f_{n}\}_{n\geq 1}.

If for each 1i,jd1\leq i,j\leq d, ψi=ψj=ψ\psi_{i}=\psi_{j}=\psi in Theorem 1.2, we can obtain the following Corollary 1.4.

Corollary 1.4.

Let {fn}n1\{f_{n}\}_{n\geq 1} be a sequence of vector-valued functions on 𝕋d\mathbb{T}^{d} with a uniform Lipsitz constant. Let TT be a real, non-singular matrix transformation of the torus 𝕋d\mathbb{T}^{d}. Suppose that TT is diagonal with all eigenvalues βi>1\beta_{i}>1, i1i\geq 1. Assume that 1<β1β2βd1<\beta_{1}\leq\beta_{2}\leq\dots\leq\beta_{d}, then

dimHW(T,ψ,{fn})=min1id{ilogβij:βj>βieτ(logβjlogβiτ)+j>iβjτ+logβi}.\dim_{\mathrm{H}}W(T,\psi,\{f_{n}\})=\min_{1\leq i\leq d}\Bigg{\{}\frac{i\log\beta_{i}-\sum_{j:\beta_{j}>\beta_{i}e^{\tau}}(\log\beta_{j}-\log\beta_{i}-\tau)+\sum_{j>i}\beta_{j}}{\tau+\log\beta_{i}}\Bigg{\}}.
Remark 1.5.

In particular, the work in [15] concerned about the Hausdorff dimension of W(T,Ψ,{fn})W(T,\Psi,\{f_{n}\}), where fnf_{n} is a constant function for each n1n\geq 1. However, when TT satisfies the conditions in Corollary 1.4 and fn=znf_{n}=z_{n} with n1n\geq 1, our result of determining dimHW(T,ψ,{fn})\dim_{\rm{H}}W(T,\psi,\{f_{n}\}) is new.

The following Theorem 1.6 extends Corollary 1.4 from diagonal matrix to the matrix which can be diagonalizable over \mathbb{Z}.

Theorem 1.6.

Let TT be an integer, non-singular matrix transformation of the torus 𝕋d\mathbb{T}^{d}. Let {fn}n1\{f_{n}\}_{n\geq 1} be a sequence of vector-valued functions on 𝕋d\mathbb{T}^{d} with a uniform Lipsitz constant and ψ:+\psi:\mathbb{N}\to\mathbb{R}^{+}. Suppose that TT is diagonalizable over \mathbb{Z} with all eigenvalues βi>1\beta_{i}>1, i1i\geq 1. Assume that 1<β1β2βd1<\beta_{1}\leq\beta_{2}\leq\dots\leq\beta_{d}. Then

dimHW(T,ψ,{fn})=min1id{ilogβij:βj>βieτ(logβjlogβiτ)+j>iβjτ+logβi}.\dim_{\mathrm{H}}W(T,\psi,\{f_{n}\})=\min_{1\leq i\leq d}\Bigg{\{}\frac{i\log\beta_{i}-\sum_{j:\beta_{j}>\beta_{i}e^{\tau}}(\log\beta_{j}-\log\beta_{i}-\tau)+\sum_{j>i}\beta_{j}}{\tau+\log\beta_{i}}\Bigg{\}}.

Our paper is organized as follows. Section 2 begins with some preparations on β\beta-transformation and some useful Lemma. Section 3 provides the proof of Theorem 1.1. The proof of Theorem 1.2 and Corollary 1.4 can be found in Section 4. More precisely, we establish the upper bound of dimHW(T,Ψ,{fn})\dim_{\mathrm{H}}W(T,\Psi,\{f_{n}\}) in Section 4.1, and obtain the lower bound of dimHW(T,Ψ,{fn})\dim_{\mathrm{H}}W(T,\Psi,\{f_{n}\}) in Section 4.2. Section 4.3 gives the proof of Corollary 1.4. The proof of Theorem 1.6 is presented in Sections 5.

2. Preliminaries

Let β>1\beta>1. Define the β\beta-transformation Tβ:[0,1)[0,1)T_{\beta}:[0,1)\rightarrow[0,1) by

Tβ(x)=βxβx,T_{\beta}(x)=\beta x-\lfloor\beta x\rfloor,

where ζ\lfloor\zeta\rfloor stands for the largest integer no more than ζ\zeta. The system ([0,1),Tβ)([0,1),T_{\beta}) is called β\beta-dynamical system. Then every real number x[0,1)x\in[0,1) can be expressed uniquely as a finite or an infinite series

(2.1) x=ϵ1(x,β)β++ϵn(x,β)βn+,x=\frac{\epsilon_{1}(x,\beta)}{\beta}+\cdots+\frac{\epsilon_{n}(x,\beta)}{\beta^{n}}+\cdots,

where, for n1n\geq 1, ϵn(x,β)=βTβn1x\epsilon_{n}(x,\beta)=\lfloor\beta T_{\beta}^{n-1}x\rfloor is called nn-th digit of xx (with respect to base β\beta). Then formula (2.1) or the digit sequence ε(x,β):=(ϵ1(x,β),ϵ2(x,β),)\varepsilon(x,\beta):=(\epsilon_{1}(x,\beta),\epsilon_{2}(x,\beta),\dots) is called the β\beta-expansion of xx. Sometimes we rewrite (2.1) as

x=(ϵ1(x,β),,ϵn(x,β),).x=(\epsilon_{1}(x,\beta),\dots,\epsilon_{n}(x,\beta),\dots).

It is clear that, for n1n\geq 1, the nn-th digit ϵn(x,β)𝒜β={0,1,,β1}\epsilon_{n}(x,\beta)\in\mathcal{A}_{\beta}=\{0,1,\dots,\lceil\beta-1\rceil\}, where β1=min{j:jβ1}\lceil\beta-1\rceil=\min\{j\in\mathbb{N}:j\geq\beta-1\}. While, not all sequence ω𝒜β\omega\in\mathcal{A}^{\mathbb{N}}_{\beta} would be a β\beta-expansion of some x[0,1]x\in[0,1]. We call a finite or an infinite sequence (ϵ1,ϵ2,)(\epsilon_{1},\epsilon_{2},\dots) admissible if there exists an x[0,1)x\in[0,1) such that the β\beta-expansion of xx begins with (ϵ1,ϵ2,)(\epsilon_{1},\epsilon_{2},\dots). For n1n\geq 1, let Σβn\Sigma_{\beta}^{n} be the set of all admissible sequences of length nn.

The following widely recognized result from Rényi.

Lemma 2.1 ([25]).

Let β>1\beta>1. Then for any n1n\geq 1,

βn#Σβnβn+1β1,\beta^{n}\leq\#\Sigma_{\beta}^{n}\leq\frac{\beta^{n+1}}{\beta-1},

where #\# denotes the cardinality of a finite set.

Definition 2.2.

For any (ε1,ε2,,εn)Σβn(\varepsilon_{1},\varepsilon_{2},\dots,\varepsilon_{n})\in\Sigma_{\beta}^{n}, the set

In,β(ε1,ε2,,εn)={x[0,1):εi(x,β)=εi,1in}I_{n,\beta}(\varepsilon_{1},\varepsilon_{2},\dots,\varepsilon_{n})=\{x\in[0,1):\varepsilon_{i}(x,\beta)=\varepsilon_{i},1\leq i\leq n\}

is called a cylinder of order nn (with respect to base β\beta).

Remark 2.3.

The set In,β(ε1,ε2,,εn)I_{n,\beta}(\varepsilon_{1},\varepsilon_{2},\dots,\varepsilon_{n}) is a left-closed and right-open interval. Moreover, the length of In,β(ε1,ε2,,εn)I_{n,\beta}(\varepsilon_{1},\varepsilon_{2},\dots,\varepsilon_{n}) satisfies |In,β(ε1,ε2,,εn)|1βn|I_{n,\beta}(\varepsilon_{1},\varepsilon_{2},\dots,\varepsilon_{n})|\leq\frac{1}{\beta^{n}}, where the |||\cdot| denotes the length of a cylinder.

Definition 2.4.

Let 𝚠Σβn\mathtt{w}\in\Sigma^{n}_{\beta}. Then In,β(𝚠)I_{n,\beta}(\mathtt{w}) is called a full cylinder of order nn if |In,β(𝚠)|=1βn|I_{n,\beta}(\mathtt{w})|=\frac{1}{\beta^{n}}.

The following property of full cylinders plays an important role in the proofs of Theorem 1.2.

Lemma 2.5.

([8, Theorem 1.2]) For each n1n\geq 1, there exists at least one full cylinder among every n+1n+1 consecutive cylinders of order nn.

We can get the following lemma by similar idea as in the proof of [32, Lemma 4].

Lemma 2.6.

([32, lemma 4]) Let {gn}n1\{g_{n}\}_{n\geq 1} be a sequence of functions on 𝕋\mathbb{T} with a uniform Lipsitz constant. Then for any full cylinder In(𝚠)I_{n}(\mathtt{w}) and for any ε>0\varepsilon>0, there exists a point xn,𝚠In(𝚠)x_{n,\mathtt{w}}\in I_{n}(\mathtt{w}) such that

|Tβnxn,𝚠gn(xn,𝚠)|<ε.\big{|}T^{n}_{\beta}x_{n,\mathtt{w}}-g_{n}(x_{n,\mathtt{w}})\big{|}<\varepsilon.

The following lemma shows that the Hausdorff dimension of a set is invariant under bi-Lipschitz maps.

Lemma 2.7 ([11]).

Let XX be a subset of d\mathbb{R}^{d} and gg be a bi-Lipschitz map, i.e., there exist 0<c1c2<0<c_{1}\leq c_{2}<\infty such that for any x,yXx,y\in X,

c1|xy||g(x)g(y)|c2|xy|.c_{1}|x-y|\leq|g(x)-g(y)|\leq c_{2}|x-y|.

Then dimHg(X)=dimHX\dim_{\mathrm{H}}g(X)=\dim_{\mathrm{H}}X.

Now we will introduce the Mass Transference Principle for rectangles that is useful to get the lower bound of dimHW(T,Ψ,{fn})\dim_{\mathrm{H}}W(T,\Psi,\{f_{n}\}) in Theorem 1.2. For our purpose, we only need the following special case of [30, Theorem 3.4].

Lemma 2.8.

([30, Theorem 3.4]) Let 𝕋d\mathbb{T}^{d} be dd-dimensional torus and d\mathcal{L}^{d} be the dd-dimensional Lebesgue measure on 𝕋d\mathbb{T}^{d}. For any 1id1\leq i\leq d and n1n\geq 1, let xi,n𝕋x_{i,n}\in\mathbb{T}, ri,n>0r_{i,n}>0 and B(xi,n,ri,n)B(x_{i,n},r_{i,n}) be a ball. Suppose that ri,n0r_{i,n}\to 0 as nn\to\infty for each i1i\geq 1. If

(2.2) d(lim supni=1dB(xi,n,ri,nai)))=d(𝕋d),\mathcal{L}^{d}(\limsup_{n\to\infty}\prod_{i=1}^{d}B(x_{i,n},r_{i,n}^{a_{i}})))=\mathcal{L}^{d}(\mathbb{T}^{d}),

where ai0a_{i}\geq 0 for all 1id1\leq i\leq d. Then for any choice of (ui,vi)(u_{i},v_{i}) with ui,vi0u_{i},v_{i}\geq 0 and uiui+vi=ai\frac{u_{i}}{u_{i}+v_{i}}=a_{i}, 1id1\leq i\leq d (if ui=vi=0u_{i}=v_{i}=0, then ai=0a_{i}=0),

dimH(lim supni=1dB(xi,n,ri,n))minq𝒜s(q),\dim_{\mathrm{H}}(\limsup_{n\to\infty}\prod_{i=1}^{d}B(x_{i,n},r_{i,n}))\geq\min_{q\in\mathcal{A}}s(q),

where 𝒜={ui+vi,1id},\mathcal{A}=\{u_{i}+v_{i},1\leq i\leq d\}, and for each q𝒜q\in\mathcal{A},

s(q):=i𝒬1(q)1+i𝒬2(q)(1viq)+i𝒬3(q)uiqs(q):=\sum_{i\in\mathcal{Q}^{1}(q)}1+\sum_{i\in\mathcal{Q}^{2}(q)}(1-\frac{v_{i}}{q})+\sum_{i\in\mathcal{Q}^{3}(q)}\frac{u_{i}}{q}

the sets 𝒬1(q)\mathcal{Q}^{1}(q),𝒬2(q)\mathcal{Q}^{2}(q), 𝒬3(q)\mathcal{Q}^{3}(q) form a partition of {1,,d}\{1,\dots,d\} defined as

𝒬1(q)={1id:uiq},𝒬2(q)={1id:ui+viq}\𝒬1(q)\mathcal{Q}^{1}(q)=\{1\leq i\leq d:u_{i}\geq q\},\hskip 40.00006pt\mathcal{Q}^{2}(q)=\{1\leq i\leq d:u_{i}+v_{i}\leq q\}\backslash\mathcal{Q}^{1}(q)

and

𝒬3(q)={1id}\(𝒬1(q)𝒬2(q)).\ \mathcal{Q}^{3}(q)=\{1\leq i\leq d\}\backslash(\mathcal{Q}^{1}(q)\cup\mathcal{Q}^{2}(q)).

3. Proof of the Theorem 1.1

We begin by presenting some lemma that we will use to prove Theorem 1.1.

Lemma 3.1.

Let β>1\beta>1 and 𝚠Σβn\mathtt{w}\in\Sigma^{n}_{\beta} with n1n\geq 1. For any n>logβ2n>\log_{\beta}2 and any 0δ1<δ20\leq\delta_{1}<\delta_{2}, the set

En,β(𝚠,δ1,δ2):={xIn,β(𝚠):δ1|Tβnxx|δ2}E_{n,\beta}(\mathtt{w},\delta_{1},\delta_{2}):=\big{\{}x\in I_{n,\beta}(\mathtt{w}):\delta_{1}\leq|T_{\beta}^{n}x-x|\leq\delta_{2}\big{\}}

can be covered by 44 intervals of length (δ2δ1)βn(\delta_{2}-\delta_{1})\beta^{-n}.

Proof.

Note that inside the cylinder In,β(𝚠)I_{n,\beta}(\mathtt{w}),

Tβnxx=βn(xw1βw2βn)x,T_{\beta}^{n}x-x=\beta^{n}\Big{(}x-\frac{w_{1}}{\beta}-\cdots-\frac{w_{2}}{\beta^{n}}\Big{)}-x,

is a linear map with slope βn1\beta^{n}-1, where x=(w1,w2,,wn,)x=(w_{1},w_{2},\dots,w_{n},\dots). Thus, for any n>logβ2n>\log_{\beta}2, En,β(𝚠,δ1,δ2)E_{n,\beta}(\mathtt{w},\delta_{1},\delta_{2}) consists of at most two intervals of length

δ2δ1βn12(δ2δ1)βn.\frac{\delta_{2}-\delta_{1}}{\beta^{n}-1}\leq 2(\delta_{2}-\delta_{1})\beta^{-n}.

Let δ>0\delta>0 and define

Hd(δ)={𝐲=(y1,,yd)[0,1]d:i=1dyiδ}.H_{d}(\delta)=\Big{\{}\mathbf{y}=(y_{1},\cdots,y_{d})\in[0,1]^{d}:\prod_{i=1}^{d}y_{i}\leq\delta\Big{\}}.

The following result is important in the proofs of Theorem 1.1.

Lemma 3.2.

([7, Lemma 1]) Let dd\in\mathbb{N} and δ\delta be a sufficiently small positive number. Let nn be a sufficiently large integer. Then, for any s(d1,d)s\in(d-1,d), the set HδH_{\delta} has a covering \mathcal{B} by dd-dimensional cubes BB such that

B|B|sδsd+1,\sum_{B\in\mathcal{B}}|B|^{s}\ll\delta^{s-d+1},

where |B||B| is the length of a side of BB and \ll implies an inequality with a factor independent of δ\delta.

For a cube B𝕋dB\subset\mathbb{T}^{d}, write it as

B=[aB,bB]d,with bBaB=|B|.B=[a_{B},b_{B}]^{d},\ \text{with }b_{B}-a_{B}=|B|.

Define

En(δ)={𝚡=(x1,x2,,xd)𝕋d:i=1d|Tβin(xi)xi|<δ}.E_{n}(\delta)=\Big{\{}\mathtt{x}=(x_{1},x_{2},\dots,x_{d})\in\mathbb{T}^{d}:\prod_{i=1}^{d}|T^{n}_{\beta_{i}}(x_{i})-x_{i}|<\delta\Big{\}}.

By Lemma 3.2, we obtain a cover of En(δ)E_{n}(\delta) in the following Lemma 3.3.

Lemma 3.3.

With the same notation given in Lemma 3.2, we have

(3.1) En(δ)B𝚠1Σβ1n,,𝚠dΣβdni=1dEn,βi(𝚠i,aB,bB).E_{n}(\delta)\subset\bigcup_{B\in\mathcal{B}}\bigcup_{\mathtt{w}_{1}\in\Sigma_{\beta_{1}}^{n},\cdots,\mathtt{w}_{d}\in\Sigma_{\beta_{d}}^{n}}\prod_{i=1}^{d}E_{n,\beta_{i}}(\mathtt{w}_{i},a_{B},b_{B}).
Proof.

For each 𝚡En(δ)\mathtt{x}\in E_{n}(\delta), it is direct that

(|Tβ1n(x1)x1|,,|Tβdn(xd)xd|)Hd(δ).\big{(}|T^{n}_{\beta_{1}}(x_{1})-x_{1}|,\cdots,|T^{n}_{\beta_{d}}(x_{d})-x_{d}|\big{)}\in H_{d}(\delta).

Thus for some BB\in\mathcal{B},

aB|Tβin(xi)xi|bB, for  all 1id.a_{B}\leq|T^{n}_{\beta_{i}}(x_{i})-x_{i}|\leq b_{B},\text{\ for \ all \ }1\leq i\leq d.

This gives that

𝚡\displaystyle\mathtt{x} i=1d{xi[0,1):aB|Tβin(xi)xi|bB}\displaystyle\in\prod_{i=1}^{d}\big{\{}x_{i}\in[0,1):a_{B}\leq|T^{n}_{\beta_{i}}(x_{i})-x_{i}|\leq b_{B}\big{\}}
=𝚠1Σβ1n,,𝚠dΣβdni=1dEn,βi(𝚠i,aB,bB).\displaystyle=\bigcup_{\mathtt{w}_{1}\in\Sigma_{\beta_{1}}^{n},\cdots,\mathtt{w}_{d}\in\Sigma_{\beta_{d}}^{n}}\prod_{i=1}^{d}E_{n,\beta_{i}}(\mathtt{w}_{i},a_{B},b_{B}).

We now begin to prove Theorem 1.1. Recall that

Hd(T,ψ)={𝚡𝕋d:i=1d|Tβinxixi|ψ(n) for  i.m. n}.\displaystyle H_{d}(T,\psi)=\bigg{\{}\mathtt{x}\in\mathbb{T}^{d}:\prod_{i=1}^{d}|T_{\beta_{i}}^{n}x_{i}-x_{i}|\leq\psi(n)\text{\ for \ i.m. \ }n\in\mathbb{N}\bigg{\}}.

Let

En(ψ)={𝚡𝕋d:i=1d|Tβinxixi|<ψ(n)}.E_{n}(\psi)=\bigg{\{}\mathtt{x}\in\mathbb{T}^{d}:\prod_{i=1}^{d}|T_{\beta_{i}}^{n}x_{i}-x_{i}|<\psi(n)\bigg{\}}.

Then Hd(T,ψ)=lim supnEn(ψ)H_{d}(T,\psi)=\limsup_{n\to\infty}E_{n}(\psi).

We divided the proof into two parts: the upper bound and the lower bound, as is typical when calculating the Hausdorff dimension of a set.

As usual, the upper bound is obtained by finding an efficient cover of Hd(T,ψ)H_{d}(T,\psi). First, for sufficiently large nn, we find an efficient cover of En(ψ)E_{n}(\psi). By Lemmas 3.2 and 3.3, with δ=ψ(n)\delta=\psi(n) and n>logβ12n>\log_{\beta_{1}}2, for any s(d1,d)s\in(d-1,d), there exists a collection \mathcal{B} of cubes BB such that

(3.2) En(ψ)B𝚠1Σβ1n,,𝚠dΣβdni=1dEn,βi(𝚠i,aB,bB).E_{n}(\psi)\subset\bigcup_{B\in\mathcal{B}}\bigcup_{\mathtt{w}_{1}\in\Sigma_{\beta_{1}}^{n},\cdots,\mathtt{w}_{d}\in\Sigma_{\beta_{d}}^{n}}\prod_{i=1}^{d}E_{n,\beta_{i}}(\mathtt{w}_{i},a_{B},b_{B}).

and

(3.3) B|B|s(ψ(n))sd+1.\sum_{B\in\mathcal{B}}|B|^{s}\ll(\psi(n))^{s-d+1}.

By Lemma 3.1, we obtain that En,βi(𝚠i,aB,bB)E_{n,\beta_{i}}(\mathtt{w}_{i},a_{B},b_{B}) can be covered by 44 intervals of length (bBaB)βin(b_{B}-a_{B})\beta_{i}^{-n} for any 1id1\leq i\leq d. Thus, i=1dEn,βi(𝚠i,aB,bB)\prod_{i=1}^{d}E_{n,\beta_{i}}(\mathtt{w}_{i},a_{B},b_{B}) can be covered by 4d4^{d} hyperrectangles, and the side length of these hyperrectangles in the direction of the ii-th axis is (bBaB)βin=|B|βin(b_{B}-a_{B})\beta^{-n}_{i}=|B|\beta_{i}^{-n}.

We now cover i=1dEn,βi(𝚠i,aB,bB)\prod_{i=1}^{d}E_{n,\beta_{i}}(\mathtt{w}_{i},a_{B},b_{B}) by balls with diameter equal to βdn\beta_{d}^{-n}. Note that for any 1id1\leq i\leq d, βinβdn\beta_{i}^{-n}\geq\beta_{d}^{-n}, then we can find a collection 𝒞n\mathcal{C}_{n} of balls with diameter βdn|B|\beta_{d}^{-n}|B| that cover i=1dEn,βi(𝚠i,aB,bB)\prod_{i=1}^{d}E_{n,\beta_{i}}(\mathtt{w}_{i},a_{B},b_{B}) with

#𝒞n4di=1d(βin|B|βdn|B|+1)=4di=1d(βinβdn+1)8di=1dβinβdn.\#\mathcal{C}_{n}\leq 4^{d}\prod_{i=1}^{d}\bigg{(}\frac{\beta_{i}^{-n}|B|}{\beta_{d}^{-n}|B|}+1\bigg{)}=4^{d}\prod_{i=1}^{d}\bigg{(}\frac{\beta_{i}^{-n}}{\beta_{d}^{-n}}+1\bigg{)}\leq 8^{d}\prod_{i=1}^{d}\frac{\beta_{i}^{-n}}{\beta_{d}^{-n}}.

Hence for any N>logβ12N>\log_{\beta_{1}}2,

Hd(T,ψ)n=NB𝚠1Σβ1n,,𝚠dΣβdnB^𝒞n(B^)s=n=NB𝚠1Σβ1n,,𝚠dΣβdnB^𝒞n(βdn|B|)s.H_{d}(T,\psi)\subseteq\bigcup_{n=N}^{\infty}\bigcup_{B\in\mathcal{B}}\bigcup_{\mathtt{w}_{1}\in\Sigma_{\beta_{1}}^{n},\cdots,\mathtt{w}_{d}\in\Sigma_{\beta_{d}}^{n}}\bigcup_{\hat{B}\in\mathcal{C}_{n}}(\hat{B})^{s}=\bigcup_{n=N}^{\infty}\bigcup_{B\in\mathcal{B}}\bigcup_{\mathtt{w}_{1}\in\Sigma_{\beta_{1}}^{n},\cdots,\mathtt{w}_{d}\in\Sigma_{\beta_{d}}^{n}}\bigcup_{\hat{B}\in\mathcal{C}_{n}}(\beta_{d}^{-n}|B|)^{s}.

Given ε>0\varepsilon>0, we choose NN large enough so that for any nmax{N,logβ12}n\geq\max\{N,\log_{\beta_{1}}2\} and any ball BB\in\mathcal{B}, βdn|B|<ε\beta_{d}^{-n}|B|<\varepsilon. Then, according to the definition of the ss-dimensional Hausdorff measure, for any s>0s>0

εs(Hd(T,ψ))\displaystyle\mathcal{H}_{\varepsilon}^{s}(H_{d}(T,\psi)) n=NB(i=1d#Σβin)#𝒞n(βdn|B|)s\displaystyle\leq\sum_{n=N}^{\infty}\sum_{B\in\mathcal{B}}\Big{(}\prod_{i=1}^{d}\#\Sigma^{n}_{\beta_{i}}\Big{)}\cdot\#\mathcal{C}_{n}\cdot\big{(}\beta_{d}^{-n}|B|\big{)}^{s}
(3.4) n=NB(i=1d#Σβin)8di=1dβinβdn(βdn|B|)s.\displaystyle\leq\sum_{n=N}^{\infty}\sum_{B\in\mathcal{B}}\Big{(}\prod_{i=1}^{d}\#\Sigma^{n}_{\beta_{i}}\Big{)}\cdot 8^{d}\prod_{i=1}^{d}\frac{\beta_{i}^{-n}}{\beta_{d}^{-n}}\cdot\big{(}\beta_{d}^{-n}|B|\big{)}^{s}.

On the one hand, by Lemma 2.1, #Σβnβn+1β1\#\Sigma^{n}_{\beta}\leq\frac{\beta^{n+1}}{\beta-1}. This together with (3.3) and (3) implies there exists cc\in\mathbb{R} such that for any s(d1,d)s\in(d-1,d) and sufficiently large NN

εs(Hd(T,ψ))\displaystyle\mathcal{H}_{\varepsilon}^{s}(H_{d}(T,\psi)) n=Ni=1dβin+1βi1(8di=1dβinβdn)βdnsc(ψ(n))sd+1\displaystyle\leq\sum_{n=N}^{\infty}\prod_{i=1}^{d}\frac{\beta_{i}^{n+1}}{\beta_{i}-1}\bigg{(}8^{d}\prod_{i=1}^{d}\frac{\beta_{i}^{-n}}{\beta_{d}^{-n}}\bigg{)}\beta_{d}^{-ns}c(\psi(n))^{s-d+1}
4dn=Nβdn(ds)cψ(n)sd+1\displaystyle\leq 4^{d}\sum_{n=N}^{\infty}\beta_{d}^{n(d-s)}c\psi(n)^{s-d+1}
=4dcn=Nexp(n(dlogβd(d1)logψ(n)ns(logβdlogψ(n)n))).\displaystyle=4^{d}c\sum_{n=N}^{\infty}\exp\bigg{(}n\Big{(}d\log\beta_{d}-(d-1)\frac{\log\psi(n)}{n}-s(\log\beta_{d}-\frac{\log\psi(n)}{n})\Big{)}\bigg{)}.

Therefore, for any

s>d1+logβdlogβd+τ,s>d-1+\frac{\log\beta_{d}}{\log\beta_{d}+\tau},

s(Hd(T,ψ))=0\mathcal{H}^{s}(H_{d}(T,\psi))=0, which implies that

dimHHd(T,ψ)d1+logβdlogβd+τ.\dim_{\mathrm{H}}H_{d}(T,\psi)\leq d-1+\frac{\log\beta_{d}}{\log\beta_{d}+\tau}.

Now, we will give the proof of the lower bound of dimHHd(T,ψ)\dim_{\mathrm{H}}H_{d}(T,\psi).

Lemma 3.4 ([11]).

Let FF be a subset of d\mathbb{R}^{d} and EE be a subset of the xdx_{d}-axis. Assume that for all xEx\in E

dimHFLxt\dim_{\mathrm{H}}F\cap L_{x}\geq t

where LxL_{x} is the plane parallel to all other axis through the point (0,,0,x).(0,\dots,0,x). Then

dimHFt+dimHE.\dim_{\mathrm{H}}F\geq t+\dim_{\mathrm{H}}E.

For any n1n\geq 1, letting fn(x)=xf_{n}(x)=x and d=1d=1 in Theorem 1.2, we have that

dimHH1(T,ψ)=dimH{x𝕋:|Tβdnxx|ψ(n) for i.m. n}=logβdlogβd+τ,\dim_{\mathrm{H}}H_{1}(T,\psi)=\dim_{\mathrm{H}}\{x\in\mathbb{T}:|T_{\beta_{d}}^{n}x-x|\leq\psi(n)\text{\ for\ i.m.\ }n\in\mathbb{N}\}=\frac{\log\beta_{d}}{\log\beta_{d}+\tau},

where τ=lim infnlogψ(n)n\tau=\liminf_{n\to\infty}\frac{-\log\psi(n)}{n}.

For any xdH1(T,ψ)x_{d}\in H_{1}(T,\psi),

([0,1)d1×H1(T,ψ))Lxd=[0,1)d1,\big{(}[0,1)^{d-1}\times H_{1}(T,\psi)\big{)}\cap L_{x_{d}}=[0,1)^{d-1},

which follows that

dimH(([0,1)d1×H1(T,ψ))Lxd)d1.\dim_{\mathrm{H}}\Big{(}\big{(}[0,1)^{d-1}\times H_{1}(T,\psi)\big{)}\cap L_{x_{d}}\Big{)}\geq d-1.

By Lemma 3.4, we arrive at

(3.5) dimH([0,1)d1×H1(T,ψ))d1+logβdlogβd+τ.\dim_{\mathrm{H}}\Big{(}[0,1)^{d-1}\times H_{1}(T,\psi)\Big{)}\geq d-1+\frac{\log\beta_{d}}{\log\beta_{d}+\tau}.

Recalling the definition of Hd(T,ψ)H_{d}(T,\psi), we obtain that

(3.6) [0,1)d1×H1(T,ψ)Hd(T,ψ).[0,1)^{d-1}\times H_{1}(T,\psi)\subset H_{d}(T,\psi).

Therefore, by (3.5) and (3.6), we have

dimHHd(T,ψ)d1+logβdlogβd+τ.\dim_{\mathrm{H}}H_{d}(T,\psi)\geq d-1+\frac{\log\beta_{d}}{\log\beta_{d}+\tau}.

4. Proof of Theorem 1.2 and Corollary 1.4

We first provide the upper and lower bounds of dimHW(T,Ψ,fn)\dim_{\mathrm{H}}W(T,\Psi,{f_{n}}) separately in Sections 4.1 and 4.2. Then we will give the proof of Corollary 1.4 in Section 4.3.

Suppose TT is a diagonal matrix, there exist β1,,βd+\beta_{1},\dots,\beta_{d}\in\mathbb{R}^{+} such that T=diag(β1,β2,,βd)T=\text{diag}(\beta_{1},\beta_{2},\dots,\beta_{d}). Then

W(T,Ψ,{fn})={𝚡𝕋d:|Tβin(xi)fn(i)(xi)|ψi(n)(1id) for   i.m. n},W(T,\Psi,\{f_{n}\})=\big{\{}\mathtt{x}\in\mathbb{T}^{d}:|T_{\beta_{i}}^{n}(x_{i})-f^{(i)}_{n}(x_{i})|\leq\psi_{i}(n)(1\leq i\leq d)\text{\ for \ i.m.\ }n\in\mathbb{N}\big{\}},

where TβiT_{\beta_{i}} is the standard β\beta-transformation with β=βi\beta=\beta_{i}.

4.1. The upper bound part

Recall that 𝒞(Ψ)\mathcal{C}(\Psi) is the set of accumulation point 𝐭=(t1,,td)\mathbf{t}=(t_{1},\dots,t_{d}) of the sequence {logψ1(n)n,,logψd(n)n}n1\{\frac{-\log\psi_{1}(n)}{n},\dots,\frac{-\log\psi_{d}(n)}{n}\}_{n\geq 1}.

We first assume that 𝒞(Ψ)\mathcal{C}(\Psi) contains only one point, then for any 1id1\leq i\leq d,

limnlogψi(n)n=ti.\lim_{n\to\infty}\frac{-\log\psi_{i}(n)}{n}=t_{i}.

For any 𝚠iΣβin\mathtt{w}_{i}\in\Sigma_{\beta_{i}}^{n}, 1id1\leq i\leq d, let

Jn,βi(𝚠i)={xiIn,βi(𝚠i):|Tβnxifn(i)(xi)|<ψi(n)}.J_{n,\beta_{i}}(\mathtt{w}_{i})=\big{\{}x_{i}\in I_{n,\beta_{i}}(\mathtt{w}_{i}):|T^{n}_{\beta}x_{i}-f^{(i)}_{n}(x_{i})|<\psi_{i}(n)\big{\}}.

Then we have

(4.1) W(T,Ψ,{fn})=lim supn𝚠1Σβ1n𝚠dΣβdnJn,β1(𝚠1)×Jn,β2(𝚠2)××Jn,βd(𝚠d).W(T,\Psi,\{f_{n}\})=\limsup_{n\to\infty}\bigcup_{\mathtt{w}_{1}\in\Sigma_{\beta_{1}}^{n}}\cdots\bigcup_{\mathtt{w}_{d}\in\Sigma_{\beta_{d}}^{n}}J_{n,\beta_{1}}(\mathtt{w}_{1})\times J_{n,\beta_{2}}(\mathtt{w}_{2})\times\cdots\times J_{n,\beta_{d}}(\mathtt{w}_{d}).

For any xi,xiJn,βi(𝚠i)x_{i},x_{i}^{\prime}\in J_{n,\beta_{i}}(\mathtt{w}_{i}), we have

2ψi(n)\displaystyle 2\psi_{i}(n) |Tβinxifn(i)(xi)|+|Tβinxifn(i)(xi)|\displaystyle\geq|T^{n}_{\beta_{i}}x_{i}-f^{(i)}_{n}(x_{i})|+|T^{n}_{\beta_{i}}x^{\prime}_{i}-f^{(i)}_{n}(x^{\prime}_{i})|
|TβinxiTβinxi||fn(i)(xi)fn(i)(xi)|\displaystyle\geq|T^{n}_{\beta_{i}}x_{i}-T^{n}_{\beta_{i}}x^{\prime}_{i}|-|f^{(i)}_{n}(x_{i})-f^{(i)}_{n}(x^{\prime}_{i})|
(βinc)|xixi|.\displaystyle\geq(\beta_{i}^{n}-c)|x_{i}-x^{\prime}_{i}|.

Therefore, for sufficiently large nn, we obtain that for all 1id1\leq i\leq d,

(4.2) |Jn,βi(𝚠i)|4ψi(n)βin.|J_{n,\beta_{i}}(\mathtt{w}_{i})|\leq 4\psi_{i}(n)\beta_{i}^{-n}.

By (4.1), for any N1N\geq 1,

(4.3) W(T,Ψ,{fn})n=N𝒟n,W(T,\Psi,\{f_{n}\})\subset\bigcup_{n=N}^{\infty}\mathcal{D}_{n},

where

𝒟n=𝚠1Σβ1n𝚠dΣβdnJn,β1(𝚠1)×Jn,β2(𝚠2)××Jn,βd(𝚠d).\mathcal{D}_{n}=\bigcup_{\mathtt{w}_{1}\in\Sigma_{\beta_{1}}^{n}}\cdots\bigcup_{\mathtt{w}_{d}\in\Sigma_{\beta_{d}}^{n}}J_{n,\beta_{1}}(\mathtt{w}_{1})\times J_{n,\beta_{2}}(\mathtt{w}_{2})\times\cdots\times J_{n,\beta_{d}}(\mathtt{w}_{d}).

The upper bound of dimHW(T,Ψ,{fn})\dim_{\text{H}}W(T,\Psi,\{f_{n}\}) can be proven using the (4.2) and (4.3) in a manner similar to [21, Proposition 4].

4.2. The lower bound part

In this section, we will prove that

(4.4) dimHW(T,Ψ,{fn})sup𝐭𝒞(Ψ)min1id{λi(𝐭)}.\dim_{\text{H}}W(T,\Psi,\{f_{n}\})\geq\sup_{\mathbf{t}\in\mathcal{C}(\Psi)}\min_{1\leq i\leq d}\{\lambda_{i}(\mathbf{t})\}.

Now we will construct a subset of Jn,βi(𝚠i)J_{n,\beta_{i}}(\mathtt{w}_{i}) for all full cylinder In,βi(𝚠i)I_{n,\beta_{i}}(\mathtt{w}_{i}). Denote

(4.5) Σ¯βn:={uΣβn:In,β(u) is  a full  cylinder }.\bar{\Sigma}_{\beta}^{n}:=\{u\in\Sigma_{\beta}^{n}:I_{n,\beta}(u)\text{ is \ a\ full \ cylinder }\}.

For any full cylinder In,βi(𝚠i)I_{n,\beta_{i}}(\mathtt{w}_{i}), by Lemma 2.6, there exists a point xn,𝚠iIn,βi(𝚠i)x_{n,\mathtt{w}_{i}}\in I_{n,\beta_{i}}(\mathtt{w}_{i}) such that

|Tβinxn,𝚠ifn(i)(xn,𝚠i)|<12ψi(n).|T^{n}_{\beta_{i}}x_{n,\mathtt{w}_{i}}-f^{(i)}_{n}(x_{n,\mathtt{w}_{i}})|<\frac{1}{2}\psi_{i}(n).

Then for any nlogclogβin\geq\frac{\log c}{\log\beta_{i}}, xIn,βi(𝚠i)x\in I_{n,\beta_{i}}(\mathtt{w}_{i}) and |xxn,𝚠i|14βinψi(n)|x-x_{n,\mathtt{w}_{i}}|\leq\frac{1}{4}\beta_{i}^{-n}\psi_{i}(n),

|Tβinxfn(i)(x)|\displaystyle|T^{n}_{\beta_{i}}x-f^{(i)}_{n}(x)| |Tβ1nxTβinxn,𝚠i|+|Tβinxn,𝚠ifn(i)(xn,𝚠i)|+|fn(i)(xn,𝚠i)fn(i)(x)|\displaystyle\leq|T^{n}_{\beta_{1}}x-T^{n}_{\beta_{i}}x_{n,\mathtt{w}_{i}}|+|T^{n}_{\beta_{i}}x_{n,\mathtt{w}_{i}}-f^{(i)}_{n}(x_{n,\mathtt{w}_{i}})|+|f^{(i)}_{n}(x_{n,\mathtt{w}_{i}})-f^{(i)}_{n}(x)|
(βin+c)|xxn,𝚠i|+12ψi(n)\displaystyle\leq(\beta_{i}^{n}+c)|x-x_{n,\mathtt{w}_{i}}|+\frac{1}{2}\psi_{i}(n)
ψi(n).\displaystyle\leq\psi_{i}(n).

Let aa and bb be the left and right endpoints of the cylinder In,βi(𝚠i)I_{n,\beta_{i}}(\mathtt{w}_{i}). If

max{|xn,𝚠ia|,|xn,𝚠ib|}14βinψi(n),\max\big{\{}|x_{n,\mathtt{w}_{i}}-a|,|x_{n,\mathtt{w}_{i}}-b|\big{\}}\leq\frac{1}{4}\beta_{i}^{-n}\psi_{i}(n),

then we can choose a point xn,𝚠iIn,βi(𝚠i)x_{n,\mathtt{w}_{i}}^{*}\in I_{n,\beta_{i}}(\mathtt{w}_{i}) such that

|xn,𝚠ixn,𝚠i|18βinψi(n)andB(xn,𝚠i,18βinψi(n))Jn,βi(𝚠i).|x_{n,\mathtt{w}_{i}}^{*}-x_{n,\mathtt{w}_{i}}|\leq\frac{1}{8}\beta_{i}^{-n}\psi_{i}(n)\ \text{and}\ B(x_{n,\mathtt{w}_{i}}^{*},\frac{1}{8}\beta_{i}^{-n}\psi_{i}(n))\subset J_{n,\beta_{i}}(\mathtt{w}_{i}).

If min{|xn,𝚠ia|,|xn,𝚠ib|}>14βinψi(n),\min\big{\{}|x_{n,\mathtt{w}_{i}}-a|,|x_{n,\mathtt{w}_{i}}-b|\big{\}}>\frac{1}{4}\beta_{i}^{-n}\psi_{i}(n), let xn,𝚠i:=xn,𝚠ix_{n,\mathtt{w}_{i}}^{*}:=x_{n,\mathtt{w}_{i}}. Therefore,

W(T,Ψ,{fn})\displaystyle W(T,\Psi,\{f_{n}\}) lim supn𝚠1Σ¯β1n𝚠2Σ¯β2n𝚠dΣ¯βdnB(xn,w1,18β1nψ1(n))\displaystyle\supset\limsup_{n\to\infty}\bigcup_{\mathtt{w}_{1}\in\bar{\Sigma}_{\beta_{1}}^{n}}\bigcup_{\mathtt{w}_{2}\in\bar{\Sigma}_{\beta_{2}}^{n}}\cdots\bigcup_{\mathtt{w}_{d}\in\bar{\Sigma}_{\beta_{d}}^{n}}B(x_{n,w_{1}}^{*},\frac{1}{8}\beta_{1}^{-n}\psi_{1}(n))
×B(xn,𝚠2,18β2nψ2(n))××B(xn,𝚠d,18βdnψd(n)).\displaystyle\hskip 70.0001pt\times B(x_{n,\mathtt{w}_{2}}^{*},\frac{1}{8}\beta_{2}^{-n}\psi_{2}(n))\times\cdots\times B(x_{n,\mathtt{w}_{d}}^{*},\frac{1}{8}\beta_{d}^{-n}\psi_{d}(n)).

By Lemmas 2.3 and 2.5, we know that the distance between any consecutive nn-th full cylinder along the ii-th axis is less than (n+3)βin(n+3)\beta_{i}^{n}, which implies that

(4.6) 𝕋{B(xn,𝚠i,(n+3)βin):𝚠iΣ¯βin}.\mathbb{T}\subset\big{\{}B(x_{n,\mathtt{w}_{i}},(n+3)\beta_{i}^{-n}):\mathtt{w}_{i}\in\bar{\Sigma}_{\beta_{i}}^{n}\big{\}}.

With inequalities (4.4)-(4.6) and Lemma 2.8, the lower bound of dimHW(T,Ψ,{fn})\dim_{\text{H}}W(T,\Psi,\{f_{n}\}) can be proved in the similar way as [21, Proposition 5].

4.3. The proof of Corollary 1.4

Recall that 𝒞(Ψ)\mathcal{C}(\Psi) is the set of accumulation points 𝐭=(t1,,td)\mathbf{t}=(t_{1},\dots,t_{d}) of the sequence {logψ1(n)n,,logψd(n)n}n1\Big{\{}\frac{-\log\psi_{1}(n)}{n},\dots,\frac{-\log\psi_{d}(n)}{n}\Big{\}}_{n\geq 1}. If ψ1=ψ2==ψd=ψ\psi_{1}=\psi_{2}=\dots=\psi_{d}=\psi, we use 𝒞(ψ)\mathcal{C}(\psi) instead of 𝒞(Ψ)\mathcal{C}(\Psi). Thus, for any 𝐭𝒞(ψ)\mathbf{t}\in\mathcal{C}(\psi), 𝐭={t,t,,t}\mathbf{t}=\{t,t,\dots,t\}.

If τ=lim infnlogψ(n)n<\tau=\liminf_{n\to\infty}\frac{-\log\psi(n)}{n}<\infty, then 𝒞(ψ)\mathcal{C}(\psi) is bounded. By Theorem 1.2,

dimHW(T,ψ,{fn})=sup𝐭𝒞(Ψ)min1id{λi(𝐭)}=sup𝐭𝒞(Ψ)min1id{λi(t)},\dim_{\mathrm{H}}W(T,\psi,\{f_{n}\})=\sup_{\mathbf{t}\in\mathcal{C}(\Psi)}\min_{1\leq i\leq d}\{\lambda_{i}(\mathbf{t})\}=\sup_{\mathbf{t}\in\mathcal{C}(\Psi)}\min_{1\leq i\leq d}\{\lambda_{i}(t)\},

for any 1id1\leq i\leq d,

(4.7) λi(t)\displaystyle\lambda_{i}(t) =j:βj>βiet1+j:βjβilogβilogβi+t+j:βietβj>βilogβjlogβi+t.\displaystyle=\sum_{j:\beta_{j}>\beta_{i}e^{t}}1+\sum_{j:\beta_{j}\leq\beta_{i}}\frac{\log\beta_{i}}{\log\beta_{i}+t}+\sum_{j:\beta_{i}e^{t}\geq\beta_{j}>\beta_{i}}\frac{\log\beta_{j}}{\log\beta_{i}+t}.

Note that λi(t)\lambda_{i}(t) is a decreasing function in tt, then

sup𝐭𝒞(ψ)min1id{λi(t)}=min1id{ilogβij:βj>βieτ(logβjlogβiτ)+j>iβjτ+logβi}.\sup_{\mathbf{t}\in\mathcal{C}(\psi)}\min_{1\leq i\leq d}\{\lambda_{i}(t)\}=\min_{1\leq i\leq d}\Bigg{\{}\frac{i\log\beta_{i}-\sum_{j:\beta_{j}>\beta_{i}e^{\tau}}(\log\beta_{j}-\log\beta_{i}-\tau)+\sum_{j>i}\beta_{j}}{\tau+\log\beta_{i}}\Bigg{\}}.

If τ=\tau=\infty, for any M>0M>0, let ψM:++:xexM\psi_{M}:\mathbb{R}^{+}\to\mathbb{R}^{+}:x\to e^{-xM}. Then 𝒞(ψM)={M}\mathcal{C}(\psi_{M})=\{M\}. We can choose MM sufficiently large such that

W(T,ψ,{fn})W(T,ψM,{fn}),W(T,\psi,\{f_{n}\})\subset W(T,\psi_{M},\{f_{n}\}),

which yields that

(4.8) 0dimHW(T,ψ,{fn})dimHW(T,ψM,{fn})min1idλi(M),0\leq\dim_{\mathrm{H}}W(T,\psi,\{f_{n}\})\leq\dim_{\mathrm{H}}W(T,\psi_{M},\{f_{n}\})\leq\min_{1\leq i\leq d}\lambda_{i}(M),

where

λi(M)=j:βj>βieM1+j:βjβilogβilogβi+M+j:βieMβj>βilogβjlogβi+M.\lambda_{i}(M)=\sum_{j:\beta_{j}>\beta_{i}e^{M}}1+\sum_{j:\beta_{j}\leq\beta_{i}}\frac{\log\beta_{i}}{\log\beta_{i}+M}+\sum_{j:\beta_{i}e^{M}\geq\beta_{j}>\beta_{i}}\frac{\log\beta_{j}}{\log\beta_{i}+M}.

Then we obtain for any 1id1\leq i\leq d, limMλi(M)=0.\lim_{M\to\infty}\lambda_{i}(M)=0. Therefore,

(4.9) dimHW(T,ψ,{fn})=0.\dim_{\mathrm{H}}W(T,\psi,\{f_{n}\})=0.

5. Proof of Theorem 1.6

Recall that

W(T,ψ,{fn})={𝚡𝕋d:Tn(𝚡)B(fn(𝚡),ψ(n)) for   i. m. n},W(T,\psi,\{f_{n}\})=\big{\{}\mathtt{x}\in\mathbb{T}^{d}:T^{n}(\mathtt{x})\in B(f_{n}(\mathtt{x}),\psi(n))\text{\ for \ i.\ m.\ }n\in\mathbb{N}\big{\}},

and TT is diagonalizable over \mathbb{Z} with the eigenvalues 1<β1β2βd1<\beta_{1}\leq\beta_{2}\leq\dots\leq\beta_{d}. Then, there exists a diagonal integer matrix DD and an invertible mapping ϕ\phi satisfying ϕT=Dϕ\phi\circ T=D\circ\phi. Note that ϕ\phi is a bi-Lipschitz map, there exist two constants 0<c1c2<0<c_{1}\leq c_{2}<\infty such that for any x,y𝕋dx,y\in\mathbb{T}^{d},

(5.1) c1|xy||ϕ(x)ϕ(y)|c2|xy|.c_{1}|x-y|\leq|\phi(x)-\phi(y)|\leq c_{2}|x-y|.

Let

S:={𝚡𝕋d:Tn(𝚡)B(fn(ϕ(𝚡)),c2c1ψ(n)) for   i.m.n}S:=\big{\{}\mathtt{x}\in\mathbb{T}^{d}:T^{n}(\mathtt{x})\in B\big{(}f_{n}(\phi(\mathtt{x})),\frac{c_{2}}{c_{1}}\psi(n)\big{)}\text{ \ for \ i.m.}\ n\in\mathbb{N}\big{\}}

and

Sj={𝚡𝕋d:Dn(𝚡)B(ϕ(fn(𝚡)),c22cjψ(n)) i.m.n} for j=1,2.S_{j}=\big{\{}\mathtt{x}\in\mathbb{T}^{d}:D^{n}(\mathtt{x})\in B(\phi(f_{n}(\mathtt{x})),\frac{c_{2}^{2}}{c_{j}}\psi(n))\ \text{ i.m.}\ n\in\mathbb{N}\big{\}}\text{ \ for\ }j=1,2.

Since {fn}\{f_{n}\} is a uniform Lipschitz sequence and ϕ\phi is a bi-Lipschitz map, {ϕfn}\{\phi\circ f_{n}\} is also a uniform Lipschitz sequence. By Corollary 1.4, we can obtain that

dimHS1=dimHS2=min1id{ilogβij:βj>βieτ(logβjlogβiτ)+j>iβjτ+logβi},\dim_{\mathrm{H}}S_{1}=\dim_{\mathrm{H}}S_{2}=\min_{1\leq i\leq d}\Bigg{\{}\frac{i\log\beta_{i}-\sum_{j:\beta_{j}>\beta_{i}e^{\tau}}(\log\beta_{j}-\log\beta_{i}-\tau)+\sum_{j>i}\beta_{j}}{\tau+\log\beta_{i}}\Bigg{\}},

which implies that the Hausdorff dimension of SjS_{j} is independent of the uniform Lipschitz sequence {fn}\{f_{n}\}. We claim that

(5.2) S2ϕ(S)S1,\displaystyle S_{2}\subset\phi(S)\subset S_{1},

then dimHS1=dimHS2=dimHϕ(S)\dim_{\mathrm{H}}S_{1}=\dim_{\mathrm{H}}S_{2}=\dim_{\mathrm{H}}\phi(S). By Lemma 1.2 and the definition of ϕ\phi, we can obtain dimHϕ(S)=dimHS\dim_{\mathrm{H}}\phi(S)=\dim_{\mathrm{H}}S. Therefore, we need only to prove the claim (5.2).

For any yϕ(S)y\in\phi(S), there exists a point x0Sx_{0}\in S such that y=ϕ(x0)y=\phi(x_{0}). Due to the fact that ϕT=Dϕ\phi\circ T=D\circ\phi and (5.1),

|Dnϕ(x0)ϕ(fn(ϕ(x0)))|=|ϕ(Tnx0)ϕ(fn(ϕ(x0)))|c2|Tnx0fn(ϕ(x0))|.|D^{n}\phi(x_{0})-\phi(f_{n}(\phi(x_{0})))|=|\phi(T^{n}x_{0})-\phi(f_{n}(\phi(x_{0})))|\leq c_{2}|T^{n}x_{0}-f_{n}(\phi(x_{0}))|.

Note that x0Sx_{0}\in S, then |Tnx0fn(ϕ(x0))|<c2c1ψ(n)|T^{n}x_{0}-f_{n}(\phi(x_{0}))|<\frac{c_{2}}{c_{1}}\psi(n) for infinity many nn\in\mathbb{N}, which implies that

|Dn(y)ϕ(fn(y))|=|Dnϕ(x0)ϕ(fn(ϕ(x0)))|c22c1ψ(n).|D^{n}(y)-\phi(f_{n}(y))|=|D^{n}\phi(x_{0})-\phi(f_{n}(\phi(x_{0})))|\leq\frac{c_{2}^{2}}{c_{1}}\psi(n).

Thus, y=ϕ(x0)S1y=\phi(x_{0})\in S_{1}, which implies that ϕ(S)S1\phi(S)\subset S_{1}.

For any zS2z\in S_{2}, there exists x1𝕋dx_{1}\in\mathbb{T}^{d} such that z=ϕ(x1)z=\phi(x_{1}), which yields that

|Dnϕ(x1)ϕ(fn(ϕ(x1)))|=|ϕ(Tnx1)ϕ(fn(ϕ(x1)))|c2ψ(n),|D^{n}\phi(x_{1})-\phi(f_{n}(\phi(x_{1})))|=|\phi(T^{n}x_{1})-\phi(f_{n}(\phi(x_{1})))|\leq c_{2}\psi(n),

for infinity many nn\in\mathbb{N}. This together with

|ϕ(Tnx1)ϕ(fn(ϕ(x1)))|c1|Tnx1fn(ϕ(x1))||\phi(T^{n}x_{1})-\phi(f_{n}(\phi(x_{1})))|\geq c_{1}|T^{n}x_{1}-f_{n}(\phi(x_{1}))|

implies that x1Sx_{1}\in S and z=ϕ(x1)ϕ(S)z=\phi(x_{1})\in\phi(S), then S2ϕ(S)S_{2}\subset\phi(S).

Thus, we complete the proof of the claim.

Acknowledgements

This work was supported partially by Guangdong Natural Science Foundation 2023A1515010691 and China Scholarship Council.

References

  • [1] D. Allen, S. Baker, and B. Bárány, Recurrence rates for shifts of finite type, (2022), preprint, arxiv:2209.01919.
  • [2] S. Baker and M. Farmer, Quantitative recurrence properties for self-conformal sets., Proc. Amer. Math. Soc. 149 (2021), no. 3, 1127–1138.
  • [3] B. Bárány and M. Rams, Shrinking targets on Bedford–McMullen carpets, Proc. Lond. Math. Soc. 117 (2018), no. 5, 951–995.
  • [4] B. Bárány and S. Troscheit, Dynamically defined subsets of generic self-affine sets, Nonlinearity 35 (2022), no. 10, 4986–5013.
  • [5] L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys. 219 (2001), no. 2, 443–463.
  • [6] M. D. Boshernitzan, Quantitative recurrence results, Invent. Math. 113 (1993), no. 3, 617–631.
  • [7] J. D. Bovey and M. M. Dodson, The fractional dimension of sets whose simultaneous rational approximations have errors with a small product, Bull. London Math. Soc. 10 (1978), no. 2, 213–218.
  • [8] Y. Bugeaud and B.-W. Wang, Distribution of full cylinders and the diophantine properties of the orbits in β\beta-expansions, J. Fractal Geom. 1 (2014), no. 2, 221–241.
  • [9] Y.-Y. Chang, M. Wu, and W. Wu, Quantitative recurrence properties and homogeneous self-similar sets, Proc. Amer. Math. Soc. 147 (2019), no. 4, 1453–1465.
  • [10] N. Chernov and D. Kleinbock, Dynamical borel-cantelli lemmas for gibbs measures, Israel J. Math. 122 (2001), no. 1, 1–27.
  • [11] K. J. Falconer, Fractal geometry-mathematical foundations and application, Wiley, New York, 1990.
  • [12] Y.-B He and L.-M. Liao, Quantitative recurrence properties for piecewise expanding map on [0,1]d[0,1]^{d}, (2023), arxiv.2302.05149.
  • [13] R. Hill and S. L. Velani, The ergodic theory of shrinking targets, Invent. Math. 119 (1995), no. 1, 175–198.
  • [14] by same author, Metric Diophantine approximation in julia sets of expanding rational maps, Publ. Math. Inst. Hautes Études Sci. 85 (1997), no. 1, 193–216.
  • [15] by same author, The shrinking target problem for matrix transformations of tori, J. London Math. Soc. 60 (1999), no. 2, 381–398.
  • [16] by same author, A zero–infinity law for well-approximable points in Julia sets, Ergodic Theory and Dynam. Systems 22 (2002), no. 6, 1773–1782.
  • [17] M. Hussain, B. Li, D. Simmons, and B.-W. Wang, Dynamical Borel-Cantelli lemma for recurrence theory, Ergodic Theory Dynam. Systems 42 (2022), no. 6, 1994–2008.
  • [18] M. Hussain and W.-L Wang, Two dimensional shrinking target problem in beta dynamical systems, Bull. Aust. Math. Soc. 97 (2017), no. 1, 33–42.
  • [19] M. Kirsebom, P. Kunde, and T. Persson, On shrinking targets and self-returning points, Ann. Sc. Norm. Super. Pisa Cl. Sci 24 (2023), no. 3, 1499–1535.
  • [20] D. Kleinbock and J.-J. Zheng, Dynamical Borel-Cantelli lemma for recurrence under Lipschitz twists, Nonlinearity 36 (2023), no. 2, 1434–1460.
  • [21] B. Li, L.-M. Liao, S. Velani, and E. Zorin, The shrinking target problem for matrix transformations of tori: Revisiting the standard problem, Adv. Math. 421 (2023), 108994.
  • [22] B. Li, B.-W. Wang, J. Wu, and J. Xu, The shrinking target problem in the dynamical system of continued fractions, Proc. Lond. Math. Soc. 108 (2014), no. 1, 159–186.
  • [23] T. Persson and M. Rams, On shrinking targets for piecewise expanding interval maps, Ergodic Theory Dynam. Systems 37 (2017), no. 2, 646–663.
  • [24] H. W. Reeve, Shrinking targets for countable Markov maps, (2011), preprint, arxiv.1107.4736.
  • [25] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493.
  • [26] S. Seuret and B.-W. Wang, Quantitative recurrence properties in conformal iterated function systems, Adv. Math. 280 (2015), 472–505.
  • [27] L.-M. Shen and B.-W. Wang, Shrinking target problems for beta-dynamical system, Sci. China Math. 56 (2013), no. 1, 91–104.
  • [28] Z.-P. Shen, Modified shrinking target problems on self-conformal sets, J. Math. Anal. Appl. 517 (2023), no. 2, 126659.
  • [29] B. Tan and B.-W. Wang, Quantitative recurrence properties for beta-dynamical system, Adv. Math. 228 (2011), no. 4, 2071–2097.
  • [30] B.-W. Wang and J. Wu, Mass transference principle from rectangles to rectangles in diophantine approximation, Math. Ann. 381 (2021), no. 1-2, 243–317.
  • [31] W.-L. Wang, Modified shrinking target problem in beta dynamical systems, J. Math. Anal. Appl. 468 (2018), no. 1, 423–435.
  • [32] Y.-F. Wu, Inhomogeneous and simultaneous Diophantine approximation in beta dynamical systems, J. Math. Anal. Appl. 519 (2023), no. 1, 126781.
  • [33] Y.-L. Wu and N. Yuan, Recurrent set on some Bedford-McMullen carpets, (2022), preprint, arxiv:2209.07315.
  • [34] N. Yuan and B. Li, Hausdorff dimensions of recurrent and shrinking target sets under Lipschitz functions for expanding Markov maps, Dyn. Syst. 38 (2023), no. 3, 365–394.