This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Modeling Cosmological Perturbations of Thermal Inflation

Jeong-Myeong Bae Center for Theoretical Physics, Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea School of Undergraduate Studies, College of Transdisciplinary Studies, DGIST, Daegu 42988, Republic of Korea    Sungwook E. Hong Korea Astronomy and Space Science Institute, Daedeok-daero 776, Yuseong-gu, Daejeon 34055, Republic of Korea Astronomy Campus, University of Science and Technology, Daedeok-daero 776, Yuseong-gu, Daejeon 34055, Republic of Korea    Heeseung Zoe [email protected] Department of Physics, Izmir Institute of Technology, Gulbace, Urla 35430, Izmir, Turkiye Department of Physics Education, Pusan National University, Busan 46241, Republic of Korea Department of Physics Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkiye
Abstract

We consider a simple system consisting of matter, radiation and vacuum components to model the impact of thermal inflation on the evolution of primordial perturbations. The vacuum energy magnifies the primordial modes entering the horizon before its domination, making them potentially observable, and the resulting transfer function reflects the phase changes and energy contents. To determine the transfer function, we follow the curvature perturbation from well outside the horizon during radiation domination to well outside the horizon during vacuum domination and evaluate it on a constant radiation density hypersurface, as is appropriate for the case of thermal inflation. The shape of the transfer function is determined by the ratio of vacuum energy to radiation at matter-radiation equality, which we denote by υ\upsilon, and has two characteristic scales, kak_{\rm a} and kbk_{\rm b}, corresponding to the horizon sizes at matter radiation equality and the beginning of the inflation, respectively. If υ1\upsilon\ll 1, the universe experiences radiation, matter and vacuum domination eras and the transfer function is flat for kkbk\ll k_{\rm b}, oscillates with amplitude 1/51/5 for kbkkak_{\rm b}\ll k\ll k_{\rm a} and oscillates with amplitude 11 for kkak\gg k_{\rm a}. For υ1\upsilon\gg 1, the matter domination era disappears, and the transfer function reduces to being flat for kkbk\ll k_{\rm b} and oscillating with amplitude 11 for kkbk\gg k_{\rm b}.

I Introduction

Inflation provides a theoretical ground for our understanding of the universe [1, 2, 3, 4, 5]. It makes the universe homogeneous, isotropic, and flat and dilutes unwanted or unobserved relics such as monopoles. It has been constrained by observations of the large-scale structure (LSS) and cosmic microwave background (CMB) [6]. In supersymmetric cosmology, however, the moduli fields are dangerous to the big bang nucleosynthesis (BBN), if not effectively removed [7, 8, 9]. There have been attempts to solve the moduli problem by arranging low-energy inflation after the primordial inflation [10], but it is tricky to control the moduli density in the permissible range because the moduli are regenerated after the low-energy inflation.

This moduli problem can be solved by introducing a thermal inflation [11, 12], a brief and secondary inflationary phase after the primordial inflation, being realized by thermal effects on flat directions in supersymmetric theories [13, 14, 15, 16, 17, 18]. The thermal inflation occurs at the primordial dark period between the end of primordial inflation and BBN. Some mechanisms, including reheating/preheating and baryogenesis/leptogenesis, have been suggested for this period. Thermal inflation scenario has a very different post-inflationary history from the standard scenario and provides new predictions about the primordial dark period.

While there are some prospects from gravitational waves [19, 20, 21] and collider physics [22], it is hard to directly probe these post-inflationary mechanisms in “both” standard and thermal inflation scenarios by observations up to now. Thermal inflation, however, gives us a better chance: it magnifies modes that have entered the horizon during the primordial dark period and becomes sensitive to the physics there. In [23], we studied these effects at scales smaller than the horizon size at the beginning of thermal inflation. Thermal inflation suppresses the power spectrum of those modes and hence gives the suppression of CMB μ\mu-distortions [24], the 21-cm hydrogen power spectrum at or before the epoch of reionization, and the formation of galaxy substructures [25].

In this paper, we consider a system consisting of matter, radiation and vacuum components to model the impact of thermal inflation on the evolution of primordial perturbations. By assuming that the primordial inflation generates cosmological perturbations in a standard way, we study the growth of the perturbations affected by the secondary thermal inflation. We demonstrate how the cosmological scenario between the primordial and thermal inflations affects the power spectrum and possibly leaves observable small-scale features. We consider the ratio of vacuum energy to radiation at matter-radiation equality as a key parameter for characterizing the density perturbation, which explains the previous result of [23]. The detail of moduli dynamics during its domination between the two inflations also impacts the power spectrum, but it is beyond the scope of the present paper.

This paper is organized as follows. In section II, we review the thermal inflation scenario and introduce the setting for the perturbation analysis. In section III, we examine a simple system of vacuum energy and radiation to model thermal inflation. In section IV, we study a system of vacuum energy, radiation, and matter to calculate the curvature perturbations for thermal inflation analytically. In section V, we present numerical calculations of the power spectrum according to the initial ratio between matter and radiation. In section VI, we summarize the results and discuss the future work.

II Review of Thermal Inflation

Refer to caption
Figure 1: The cosmological history of thermal inflation and four characteristic scales.

In this section, we briefly review the thermal inflation scenario [11, 12] and introduce density perturbations as a setting for the next sections (for the details, [23]). FIG. 1 shows the cosmological history with thermal inflation, and the universe experiences the following four major phases.

  • Primordial inflation: At t<tat<t_{\rm a}, the primordial inflation generates the scale-invariant power spectrum, and unknown post-inflationary era including the reheating process follows.

  • Moduli domination: In supersymmetric theories, the moduli mass in vacuum is an order of the soft supersymmetry breaking scale, i.e., mmodms103to104GeVm_{\mathrm{mod}}\sim m_{\mathrm{s}}\sim 10^{3}~{}\mathrm{to}~{}10^{4}\mathinner{\mathrm{GeV}}. At ttat\sim t_{\mathrm{a}}, the Hubble scale gets HmsH\sim m_{\mathrm{s}}, and the moduli start dominating over the universe. At t>tat>t_{\mathrm{a}} or H<msH<m_{\mathrm{s}}, the moduli start oscillating with Planckian amplitude, and the oscillation may be long-lived to spoil the BBN.

  • Thermal inflation: At t=tbt=t_{\rm b}, thermal inflation begins to resolve the moduli problem. Thermal inflation is realized by flaton(s) that is trapped by finite temperature potential induced by radiation in the universe. The flaton potential is V(ϕ,T)=V0+12(σ2T2mϕ2ϕ2)+\mathinner{V\mathopen{\left(\phi,T\right)}}=V_{0}+\frac{1}{2}\left(\sigma^{2}T^{2}-m_{\phi}^{2}\phi^{2}\right)+\cdots where the thermal coupling σ\sigma is not small and the flaton mass is mϕmsm_{\phi}\sim m_{\mathrm{s}}. For V01/4105to108GeVV^{1/4}_{0}\sim 10^{5}~{}\mathrm{to}~{}10^{8}\mathinner{\mathrm{GeV}}, thermal inflation has e-folds Nbc10to15N_{\rm bc}\sim 10~{}\mathrm{to}~{}15 and dilute the pre-existing moduli by ΔTIe3Nbc\Delta_{\rm TI}\sim e^{3N_{\rm bc}}.

  • Flaton domination: As the temperature of the universe drops, thermal inflation ends until ttct\sim t_{\mathrm{c}}, and the flaton starts oscillation around its vacuum expectation value ϕvevV0/mϕ\phi_{\rm vev}\sim\sqrt{V_{0}}/m_{\phi} and dominates over the universe as a matter phase at ttct\gtrsim t_{\mathrm{c}}. The moduli can be regenerated after thermal inflation but are diluted further by ΔflatoneNcd\Delta_{\rm flaton}\sim e^{N_{\rm cd}} due to the flaton decay.

  • Radiation domination: At ttdt\sim t_{\mathrm{d}}, flaton decays to yield the standard radiation dominated universe, at the temperature Td102to102GeVT_{\mathrm{d}}\sim 10^{-2}~{}\mathrm{to}~{}10^{2}\mathinner{\mathrm{GeV}}. The universe steps into the standard cosmic history after these radiation domination are recovered.

In summary, three distinct extra eras of thermal inflation - moduli domination, thermal inflation, and flaton domination - are inserted between the primordial inflation and radiation domination of the standard scenario. Therefore, the cosmological perturbation evolves differently from the standard inflation scenario.

We introduce four characteristic scales, kak_{\mathrm{a}}, kbk_{\mathrm{b}}, kck_{\mathrm{c}} and kdk_{\mathrm{d}}, where

kxaxHxk_{x}\equiv a_{x}H_{x} (1)

corresponds to the comoving scale of the horizon at the era boundary txt_{x}. In FIG. 1, modes with k<kbk<k_{\mathrm{b}} remain outside the horizon throughout the thermal inflation eras and are not affected by thermal inflation. Modes with kb<k<kak_{\mathrm{b}}<k<k_{\mathrm{a}} enter the horizon during moduli domination, and their growth is modified. Modes with k>kak>k_{\mathrm{a}} enter the horizon before moduli domination and so probe that unknown era. Modes with k>kdk>k_{\mathrm{d}} reenter the horizon during flaton domination and so will be twice modified. Modes with k>kck>k_{\rm c} never exit the horizon throughout thermal inflation eras.

Now we review the perturbation analysis in [23]. For ttat\lesssim t_{\rm a}, the post-inflationary physics of the reheating and modulogenesis before the moduli domination is unknown. However, for

tat<tc,\displaystyle t_{\mathrm{a}}\ll t<t_{\mathrm{c}}~{}, (2)
kka,\displaystyle k\ll k_{\mathrm{a}}~{}, (3)

we can study the perturbations based on a simple system of moduli matter (m), thermal radiation (r) and vacuum energy (V0V_{0}). The energy density and pressure are

ρ=ρm+ρr+V0\displaystyle\rho=\rho_{\mathrm{m}}+\rho_{\mathrm{r}}+V_{0} (4)
p=13ρrV0.\displaystyle p=\frac{1}{3}\rho_{\mathrm{r}}-V_{0}~{}. (5)

The scalar part of the metric perturbation is [26]

ds~2=(1+2A)dt22B,idtdxi[(1+2)a2(t)δij+2C,ij]dxidxj.\tilde{ds}^{2}=(1+2A)\mathinner{dt}^{2}-2B_{,i}\mathinner{dt}\mathinner{dx^{i}}-\left[(1+2\mathcal{R})\mathinner{a^{2}\mathopen{\left(t\right)}}\delta_{ij}+2C_{,ij}\right]\mathinner{dx^{i}}\mathinner{dx^{j}}~{}. (6)

We describe the perturbations in moduli and radiation by introducing the gauge invariant variables

δρmHρ˙mδρm\displaystyle\mathcal{R}_{\delta\rho_{\mathrm{m}}}\equiv\mathcal{R}-\frac{H}{\dot{\rho}_{\mathrm{m}}}\delta\rho_{\mathrm{m}} (7)
δρrHρ˙rδρr\displaystyle\mathcal{R}_{\delta\rho_{\mathrm{r}}}\equiv\mathcal{R}-\frac{H}{\dot{\rho}_{\mathrm{r}}}\delta\rho_{\mathrm{r}} (8)

where δρm\mathcal{R}_{\delta\rho_{\mathrm{m}}} is the curvature perturbation on constant moduli density hypersurfaces and δρr\mathcal{R}_{\delta\rho_{\mathrm{r}}} is the curvature perturbation on constant radiation density hypersurfaces. We get two coupled equations for scalar perturbations [23]

¨δρm+H(2+ρmρ+p+23q2)˙δρm13q2(ρmρ+p+23q2)δρm\displaystyle\ddot{\mathcal{R}}_{\delta\rho_{\mathrm{m}}}+H\left(2+\frac{\rho_{\mathrm{m}}}{\rho+p+\frac{2}{3}q^{2}}\right)\dot{\mathcal{R}}_{\delta\rho_{\mathrm{m}}}-\frac{1}{3}q^{2}\left(\frac{\rho_{\mathrm{m}}}{\rho+p+\frac{2}{3}q^{2}}\right)\mathcal{R}_{\delta\rho_{\mathrm{m}}}
=43ρrρ+p+23q2(H˙δρr13q2δρr),\displaystyle{}=-\frac{\frac{4}{3}\rho_{\mathrm{r}}}{\rho+p+\frac{2}{3}q^{2}}\left(H\dot{\mathcal{R}}_{\delta\rho_{\mathrm{r}}}-\frac{1}{3}q^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}\right), (9)
¨δρr+H(1+83ρrρ+p+23q2)˙δρr+13q2(183ρrρ+p+23q2)δρr\displaystyle\ddot{\mathcal{R}}_{\delta\rho_{\mathrm{r}}}+H\left(1+\frac{\frac{8}{3}\rho_{\mathrm{r}}}{\rho+p+\frac{2}{3}q^{2}}\right)\dot{\mathcal{R}}_{\delta\rho_{\mathrm{r}}}+\frac{1}{3}q^{2}\left(1-\frac{\frac{8}{3}\rho_{\mathrm{r}}}{\rho+p+\frac{2}{3}q^{2}}\right)\mathcal{R}_{\delta\rho_{\mathrm{r}}}
=2ρmρ+p+23q2(H˙δρm13q2δρm),\displaystyle{}=-\frac{2\rho_{\mathrm{m}}}{\rho+p+\frac{2}{3}q^{2}}\left(H\dot{\mathcal{R}}_{\delta\rho_{\mathrm{m}}}-\frac{1}{3}q^{2}\mathcal{R}_{\delta\rho_{\mathrm{m}}}\right), (10)

where qk/aq\equiv k/a. For tatt_{\mathrm{a}}\ll t, we have

ρrρm\rho_{\mathrm{r}}\ll\rho_{\mathrm{m}} (11)

and simplify Eqs. (II) and (II) to

¨δρm+H(2+ρmρm+23q2)˙δρm13q2(ρmρm+23q2)δρm=0\displaystyle\ddot{\mathcal{R}}_{\delta\rho_{\mathrm{m}}}+H\left(2+\frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{m}}+\frac{2}{3}q^{2}}\right)\dot{\mathcal{R}}_{\delta\rho_{\mathrm{m}}}-\frac{1}{3}q^{2}\left(\frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{m}}+\frac{2}{3}q^{2}}\right)\mathcal{R}_{\delta\rho_{\mathrm{m}}}=0 (12)
¨δρr+H˙δρr+13q2δρr=F\displaystyle\ddot{\mathcal{R}}_{\delta\rho_{\mathrm{r}}}+H\dot{\mathcal{R}}_{\delta\rho_{\mathrm{r}}}+\frac{1}{3}q^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}=F (13)

with

F=2(ρmρm+23q2)(H˙δρm13q2δρm).F=-2\left(\frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{m}}+\frac{2}{3}q^{2}}\right)\left(H\dot{\mathcal{R}}_{\delta\rho_{\mathrm{m}}}-\frac{1}{3}q^{2}\mathcal{R}_{\delta\rho_{\mathrm{m}}}\right). (14)

With the adiabatic condition

δρm\displaystyle\mathcal{R}_{\delta\rho_{\mathrm{m}}} =δρr,\displaystyle=\mathcal{R}_{\delta\rho_{\mathrm{r}}}, (15)
˙δρm\displaystyle{\dot{\mathcal{R}}}_{\delta\rho_{\rm m}} =˙δρr=0\displaystyle={\dot{\mathcal{R}}}_{\delta\rho_{\rm r}}=0 (16)

we solve Eqs. (12) and (13) analytically.

The phase transition of thermal inflation is controlled by the temperature of the radiation of the universe. Hence, the curvature perturbation at the end of thermal inflation is equal to δρr\mathcal{R}_{\delta\rho_{\mathrm{r}}} and gives the power spectrum by

P(k)=Ppri(k)𝒯2(kkb)\mathinner{P\mathopen{\left(k\right)}}=\mathinner{P_{\rm pri}\mathopen{\left(k\right)}}\mathinner{\mathcal{T}^{2}\mathopen{\left(\frac{k}{k_{\rm b}}\right)}} (17)

where Ppri(k)\mathinner{P_{\rm pri}\mathopen{\left(k\right)}} is the power spectrum of the primordial inflation and

𝒯(kkb)=cos[(kkb)0dαα(2+α3)]+6(kkb)0dγγ30γdβ(β2+β3)3/2sin[(kkb)γdαα(2+α3)].\mathinner{\mathcal{T}\mathopen{\left(\frac{k}{k_{\rm b}}\right)}}=\cos\left[\left(\frac{k}{k_{\rm b}}\right)\int_{0}^{\infty}\frac{\mathinner{d\alpha}}{\sqrt{\alpha(2+\alpha^{3})}}\right]\\ +6\left(\frac{k}{k_{\rm b}}\right)\int_{0}^{\infty}\frac{\mathinner{d\gamma}}{\gamma^{3}}\int_{0}^{\gamma}\mathinner{d\beta}\left(\frac{\beta}{2+\beta^{3}}\right)^{3/2}\sin\left[\left(\frac{k}{k_{\rm b}}\right)\int_{\gamma}^{\infty}\frac{\mathinner{d\alpha}}{\sqrt{\alpha(2+\alpha^{3})}}\right]~{}. (18)

is the transfer function summarizing the effects of thermal inflation eras on the evolution of perturbations.

In this paper, we extend the analysis of [23] to ttat\lesssim t_{\rm a} and kkak\gtrsim k_{\rm a} (in contrast to Eqs. (2) and (3)) by treating the moduli as simple matter, ρma3\rho_{m}\propto a^{-3}. We study Eqs. (II) and (II) in the limit kkak\gg k_{\rm a} in section III and IV. We find numerical solutions for Eqs. (II) and (II) in section V (in comparison with the analytic solution of Eq. (18) for Eqs. (12) and (13) in [23]).

III Perturbation for thermal inflation plus radiation

To model thermal inflation, we first consider the minimal system of radiation and vacuum

ρ=ρr+V0.\rho=\rho_{\rm r}+V_{0}\,. (19)

The curvature perturbation on uniform radiation density hypersurfaces satisfies

¨δρr+H(1+4ρr2ρr+q2)˙δρr+13q2(14ρr2ρr+q2)δρr0\displaystyle{\ddot{\mathcal{R}}}_{\delta{\rho}_{\mathrm{r}}}+H\left(1+\frac{4\rho_{\rm r}}{2\rho_{\rm r}+q^{2}}\right){\dot{\mathcal{R}}}_{\delta{\rho}_{\mathrm{r}}}+\frac{1}{3}q^{2}\left(1-\frac{4\rho_{\rm r}}{2\rho_{\rm r}+q^{2}}\right)\mathcal{R}_{\delta\rho_{\mathrm{r}}}\simeq 0 (20)

from Eq. (II) and we take a growing mode initial condition

δρr=0,˙δρr=0\mathcal{R}_{\delta\rho_{\mathrm{r}}}=\mathcal{R}_{0}{\quad,\quad}{\dot{\mathcal{R}}}_{\delta\rho_{\rm r}}=0 (21)

well outside the horizon during radiation domination.

We define the moment when thermal inflation begins, tbt_{\rm b}, by

a¨(tb)0,\mathinner{\ddot{a}\mathopen{\left(t_{\rm b}\right)}}\equiv 0~{}, (22)

or,

ρr(tb)=V0.\mathinner{\rho_{\rm r}\mathopen{\left(t_{\rm b}\right)}}=V_{0}~{}. (23)

From the characteristic scale at t=tbt=t_{\rm b}

kb=abHbk_{\rm b}=a_{\rm b}H_{\rm b} (24)

we introduce new parameters

βaab\beta\equiv\frac{a}{a_{\rm b}} (25)
λkkb,\lambda\equiv\frac{k}{k_{\rm b}}~{}, (26)

the energy density is parametrized by

ρ(β)=V0(1+β4),\mathinner{\rho\mathopen{\left(\beta\right)}}=V_{0}\left(1+\beta^{-4}\right)~{}, (27)

and Eq. (20) becomes

β2d2δρrdβ2+2(111+β4+11+λ23β2)βdδρrdβ+2λ2β23(1+β4)(121+λ23β2)δρr=0.\beta^{2}\frac{d^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\beta^{2}}+2\left(1-\frac{1}{1+\beta^{4}}+\frac{1}{1+\frac{\lambda^{2}}{3}\beta^{2}}\right)\beta\frac{d\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\beta}+\frac{2\lambda^{2}\beta^{2}}{3\left(1+\beta^{4}\right)}\left(1-\frac{2}{1+\frac{\lambda^{2}}{3}\beta^{2}}\right)\mathcal{R}_{\delta\rho_{\mathrm{r}}}=0~{}. (28)

Now we study Eq. (28) on large scale λ1\lambda\ll 1 (kkbk\ll k_{\rm b}) and on small scales λ1\lambda\gg 1 (kkbk\gg k_{\rm b}) as follows.

III.1 Large scales λ1\lambda\ll 1

For modes that remain outside the horizon, Eq. (28) reduces to

β2d2δρrdβ2+2(211+β4)βdδρrdβ2λ2β23(βdδρrdβ+11+β4δρr),\beta^{2}\frac{d^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\beta^{2}}+2\left(2-\frac{1}{1+\beta^{4}}\right)\beta\frac{d\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\beta}\simeq\frac{2\lambda^{2}\beta^{2}}{3}\left(\beta\frac{d\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\beta}+\frac{1}{1+\beta^{4}}\mathcal{R}_{\delta\rho_{\mathrm{r}}}\right)~{}, (29)

which has a solution

δρr=0[1+23λ20βξ2dξ1+ξ4ξβdηη21+η4+𝒪(λ4)].\mathcal{R}_{\delta\rho_{\mathrm{r}}}=\mathcal{R}_{0}\left[1+\frac{2}{3}\lambda^{2}\int_{0}^{\beta}\frac{\xi^{2}d\xi}{\sqrt{1+\xi^{4}}}\int_{\xi}^{\beta}\frac{d\eta}{\eta^{2}\sqrt{1+\eta^{4}}}+\mathinner{\mathcal{O}\mathopen{\left(\lambda^{4}\right)}}\right]~{}. (30)

III.2 Small scales λ1\lambda\gg 1

For modes that enter the horizon during radiation domination, we solve Eq. (28) in two overlapping regimes:

Radiation domination

For β1\beta\ll 1, the modes start well outside the horizon during radiation domination and end well inside the horizon during radiation domination.Eq. (28) reduces to

β2d2δρrdβ2+(21+13λ2β2)βdδρrdβ+23λ2β2(121+13λ2β2)δρr=0,\beta^{2}\frac{d^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\beta^{2}}+\left(\frac{2}{1+\frac{1}{3}\lambda^{2}\beta^{2}}\right)\beta\frac{d\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\beta}+\frac{2}{3}\lambda^{2}\beta^{2}\left(1-\frac{2}{1+\frac{1}{3}\lambda^{2}\beta^{2}}\right)\mathcal{R}_{\delta\rho_{\mathrm{r}}}=0~{}, (31)

which has a solution

δρr=A1[6λβsin(23λβ)cos(23λβ)]+B1[6λβcos(23λβ)+sin(23λβ)].\mathcal{R}_{\delta\rho_{\mathrm{r}}}=A_{1}\left[\frac{\sqrt{6}}{\lambda\beta}\sin\left(\sqrt{\frac{2}{3}}\lambda\beta\right)-\cos\left(\sqrt{\frac{2}{3}}\lambda\beta\right)\right]\\ +B_{1}\left[\frac{\sqrt{6}}{\lambda\beta}\cos\left(\sqrt{\frac{2}{3}}\lambda\beta\right)+\sin\left(\sqrt{\frac{2}{3}}\lambda\beta\right)\right]~{}. (32)

Matching to the initial condition of Eq. (21) at βλ1\beta\ll\lambda^{-1} gives

A1=0,B1=0.A_{1}=\mathcal{R}_{0}{\quad,\quad}B_{1}=0~{}. (33)
Well inside the horizon during radiation domination to vacuum domination

For βλ1\beta\gg\lambda^{-1}, the modes start well inside the horizon during radiation domination and end well outside the horizon during vacuum domination. Eq. (28) reduces to

(1+β4)d2δρrdβ2+2β3dδρrdβ+2λ23δρr=0,\left(1+\beta^{4}\right)\frac{d^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\beta^{2}}+2\beta^{3}\frac{d\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\beta}+\frac{2\lambda^{2}}{3}\mathcal{R}_{\delta\rho_{\mathrm{r}}}=0~{}, (34)

which has a solution

δρr=A2cos[λ230β11+ξ4𝑑ξ]+B2sin[λ230β11+ξ4𝑑ξ].\displaystyle\mathcal{R}_{\delta\rho_{\mathrm{r}}}=A_{2}\cos\left[\lambda\sqrt{\frac{2}{3}}\int_{0}^{\beta}\frac{1}{\sqrt{1+\xi^{4}}}d\xi\right]+B_{2}\sin\left[\lambda\sqrt{\frac{2}{3}}\int_{0}^{\beta}\frac{1}{\sqrt{1+\xi^{4}}}d\xi\right]~{}. (35)

Matching to Eq. (32) at λ1β1\lambda^{-1}\ll\beta\ll 1 gives

A2=A1=0,B2=B1=0.A_{2}=-A_{1}=-\mathcal{R}_{0}{\quad,\quad}B_{2}=B_{1}=0~{}. (36)

IV Perturbations for thermal inflation plus radiation and matter

To model the primordial thermal bath, the moduli generated thereby, and thermal inflation, we consider a system of radiation, matter and vacuum

ρ=ρr+ρm+V0=ρ0(aaa)4+ρ0(aaa)3+V0,\rho=\rho_{\rm r}+\rho_{\rm m}+V_{0}=\rho_{0}\left(\frac{a_{\rm a}}{a}\right)^{4}+\rho_{0}\left(\frac{a_{\rm a}}{a}\right)^{3}+V_{0}~{}, (37)

where subscript “a{\rm a}” indicates the moment when the matter energy density surpasses the radiation energy density. We describe the changes of three phases in the thermal inflation scenario by Eq. (37). The primordial inflation is followed by radiation-dominated phase, and then moduli dominates over the universe leaving a matter phase. Thermal inflation occurs to dilute the moduli matter and drives a vacuum domination. However, Eq. (37) could lead to two phases — radiation and vacuum phases for V0/ρo1V_{0}/\rho_{o}\gg 1 as follows.

Refer to caption
Figure 2: The ratios ka/kbk_{\rm a}/k_{\rm b} and aa/aba_{\rm a}/a_{\rm b} as a function of υ\upsilon.

We introduce a useful parameter

υV0ρ0\upsilon\equiv\frac{V_{0}}{\rho_{0}}~{} (38)

which is the ratio of vacuum energy to radiation at matter-radiation equality. The moment when thermal inflation begins, tbt_{\rm b}, is found by

a¨(tb)0,\mathinner{\ddot{a}\mathopen{\left(t_{\rm b}\right)}}\equiv 0~{}, (39)

giving

2(aaab)4+(aaab)32υ=02\left(\frac{a_{\rm a}}{a_{\rm b}}\right)^{4}+\left(\frac{a_{\rm a}}{a_{\rm b}}\right)^{3}-2\upsilon=0 (40)

and

(2+υ)(kbka)2=(abaa)2[(aaab)4+(aaab)3+υ],\left(2+\upsilon\right)\left(\frac{k_{\rm b}}{k_{\rm a}}\right)^{2}=\left(\frac{a_{\rm b}}{a_{\rm a}}\right)^{2}\left[\left(\frac{a_{\rm a}}{a_{\rm b}}\right)^{4}+\left(\frac{a_{\rm a}}{a_{\rm b}}\right)^{3}+\upsilon\right]~{}, (41)

where

ka=aaHak_{\rm a}=a_{\rm a}H_{\rm a} (42)

and kb=abHbk_{\rm b}=a_{\rm b}H_{\rm b} is already given in Eq. (24). From Eqs. (40) and (41), the relations between υ\upsilon, aa/aba_{\rm a}/a_{\rm b} and ka/kbk_{\rm a}/k_{\rm b} are fixed by the value of υ\upsilon in FIG. 2.

Refer to caption
Figure 3: A diagram showing the evolution of horizon scales for υ1\upsilon\ll 1. The characteristic scales kak_{\rm a} and kbk_{\rm b} are shown with the phase evolution.

For υ1\upsilon\ll 1, Eqs. (40) and (41) produces asymptotic formulae

aaab(2υ)13,kakb(2533υ)16,\frac{a_{\rm a}}{a_{\rm b}}\simeq\left(2\upsilon\right)^{\frac{1}{3}}{\quad,\quad}\frac{k_{\rm a}}{k_{\rm b}}\simeq\left(\frac{2^{5}}{3^{3}\upsilon}\right)^{\frac{1}{6}}~{}, (43)

implying aaaba_{\rm a}\ll a_{\rm b} and kbkak_{\rm b}\ll k_{\rm a}. In this case, we have a radiation phase initially at aaaa\ll a_{\rm a}, a matter phase at aa<a<aba_{\rm a}<a<a_{\rm b}, and then a vacuum phase at a>aba>a_{\rm b} in FIG. 3. These three phases mimic the eras after primordial inflation in thermal inflation scenario. In this limit, Eq. (37) gives ρr(ab)ρm(ab)\mathinner{\rho_{\rm r}\mathopen{\left(a_{\rm b}\right)}}\ll\mathinner{\rho_{\rm m}\mathopen{\left(a_{\rm b}\right)}}, and it reduces to the case of [23].

Refer to caption
Figure 4: A diagram showing the evolution of horizon scales for υ1\upsilon\gg 1. The characteristic scales kak_{\rm a} and kbk_{\rm b} are shown with the phase evolution. Note that matter-domination phase from Eq. (37) does not exist.

For υ1\upsilon\gg 1, Eqs. (40) and (41) produces asymptotic relations

aaabυ14,kakb(υ4)14,\frac{a_{\rm a}}{a_{\rm b}}\simeq\upsilon^{\frac{1}{4}}{\quad,\quad}\frac{k_{\rm a}}{k_{\rm b}}\simeq\left(\frac{\upsilon}{4}\right)^{\frac{1}{4}}~{}, (44)

implying abaaa_{\rm b}\ll a_{\rm a} and kbkak_{\rm b}\ll k_{\rm a}. In this case, we have a radiation phase initially at aaba\ll a_{\rm b} which turns into a vacuum phase at a=aba=a_{\rm b}. At a=aaa=a_{\rm a}, however, Eq. (37) gives ρm+ρrV0\rho_{\rm m}+\rho_{\rm r}\ll V_{0} leaving a vacuum phase. Hence, Eq. (37) describes only two phases of radiation and vacuum in FIG. 4. In this limit, Eq. (37) gives ρr(ab)ρm(ab)\mathinner{\rho_{\rm r}\mathopen{\left(a_{\rm b}\right)}}\gg\mathinner{\rho_{\rm m}\mathopen{\left(a_{\rm b}\right)}}, and it clearly becomes the case of thermal inflation plus radiation discussed in the previous section.

We take the adiabatic growing mode as the initial condition

δρm\displaystyle\mathcal{R}_{\delta\rho_{\mathrm{m}}} =δρr=0,\displaystyle=\mathcal{R}_{\delta\rho_{\mathrm{r}}}=\mathcal{R}_{0}, (45)
˙δρm\displaystyle{\dot{\mathcal{R}}}_{\delta\rho_{\rm m}} =˙δρr=0\displaystyle={\dot{\mathcal{R}}}_{\delta\rho_{\rm r}}=0 (46)

well outside the horizon during radiation domination.

We rewrite the equations by introducing new parameters

α\displaystyle\alpha aaa,\displaystyle\equiv\frac{a}{a_{\rm a}}~{}, (47)
κ\displaystyle\kappa kka.\displaystyle\equiv\frac{k}{k_{\rm a}}~{}. (48)

Then Eq. (II) becomes

α2d2δρrdα2+2(1+11+34α+2+υ6κ2α21+34α1+α+υα4)αdδρrdα+(2+υ3κ2α2)(11+α+υα4)(121+34α+2+υ6κ2α2)δρr=32(α1+34α+2+υ6κ2α2)[αdδρmdα(2+υ3κ2α2)(11+α+υα4)δρm],\alpha^{2}\frac{d^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\alpha^{2}}+2\left(1+\frac{1}{1+\frac{3}{4}\alpha+\frac{2+\upsilon}{6}\kappa^{2}\alpha^{2}}-\frac{1+\frac{3}{4}\alpha}{1+\alpha+\upsilon\alpha^{4}}\right)\alpha\frac{d\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\alpha}\\ +\left(\frac{2+\upsilon}{3}\kappa^{2}\alpha^{2}\right)\left(\frac{1}{1+\alpha+\upsilon\alpha^{4}}\right)\left(1-\frac{2}{1+\frac{3}{4}\alpha+\frac{2+\upsilon}{6}\kappa^{2}\alpha^{2}}\right)\mathcal{R}_{\delta\rho_{\mathrm{r}}}\\ =-\frac{3}{2}\left(\frac{\alpha}{1+\frac{3}{4}\alpha+\frac{2+\upsilon}{6}\kappa^{2}\alpha^{2}}\right)\left[\alpha\frac{d\mathcal{R}_{\delta\rho_{\mathrm{m}}}}{d\alpha}-\left(\frac{2+\upsilon}{3}\kappa^{2}\alpha^{2}\right)\left(\frac{1}{1+\alpha+\upsilon\alpha^{4}}\right)\mathcal{R}_{\delta\rho_{\mathrm{m}}}\right]~{}, (49)

and Eq. (II) becomes

α2d2δρmdα2+(3+34α1+34α+2+υ6κ2α22+32α1+α+υα4)αdδρmdα(2+υ3κ2α2)(11+α+υα4)(34α1+34α+2+υ6κ2α2)δρm=(11+34α+2+υ6κ2α2)[αdδρrdα(2+υ3κ2α2)(11+α+υα4)δρr].\alpha^{2}\frac{d^{2}\mathcal{R}_{\delta\rho_{\mathrm{m}}}}{d\alpha^{2}}+\left(3+\frac{\frac{3}{4}\alpha}{1+\frac{3}{4}\alpha+\frac{2+\upsilon}{6}\kappa^{2}\alpha^{2}}-\frac{2+\frac{3}{2}\alpha}{1+\alpha+\upsilon\alpha^{4}}\right)\alpha\frac{d\mathcal{R}_{\delta\rho_{\mathrm{m}}}}{d\alpha}\\ -\left(\frac{2+\upsilon}{3}\kappa^{2}\alpha^{2}\right)\left(\frac{1}{1+\alpha+\upsilon\alpha^{4}}\right)\left(\frac{\frac{3}{4}\alpha}{1+\frac{3}{4}\alpha+\frac{2+\upsilon}{6}\kappa^{2}\alpha^{2}}\right)\mathcal{R}_{\delta\rho_{\mathrm{m}}}\\ =-\left(\frac{1}{1+\frac{3}{4}\alpha+\frac{2+\upsilon}{6}\kappa^{2}\alpha^{2}}\right)\left[\alpha\frac{d\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\alpha}-\left(\frac{2+\upsilon}{3}\kappa^{2}\alpha^{2}\right)\left(\frac{1}{1+\alpha+\upsilon\alpha^{4}}\right)\mathcal{R}_{\delta\rho_{\mathrm{r}}}\right]~{}. (50)

Now we study the asymptotic behaviors of Eqs. (49) and (50) for both υ1\upsilon\ll 1 and υ1\upsilon\gg 1 on large scale κ1\kappa\ll 1 (kkak\ll k_{\rm a}) and on small scales κ1\kappa\gg 1 (kkak\gg k_{\rm a}) as follows.

IV.1 Large scales κ1\kappa\ll 1

We consider the cases of υ1\upsilon\ll 1 and υ1\upsilon\gg 1 separately in the large scale limit. For

υ1,\upsilon\ll 1~{}, (51)

and for the late time

α1,\alpha\gg 1~{}, (52)

Eqs. (II) and (II) become

(α+υα4)d2δρrdα2+12(1+4υα3)dδρrdα+23κ2δρr=32(134α+13κ2α2)[(α+υα4)dδρmdα23κ2αδρm]\left(\alpha+\upsilon\alpha^{4}\right)\frac{d^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\alpha^{2}}+\frac{1}{2}\left(1+4\upsilon\alpha^{3}\right)\frac{d\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\alpha}+\frac{2}{3}\kappa^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}\\ =-\frac{3}{2}\left(\frac{1}{\frac{3}{4}\alpha+\frac{1}{3}\kappa^{2}\alpha^{2}}\right)\left[\left(\alpha+\upsilon\alpha^{4}\right)\frac{d\mathcal{R}_{\delta\rho_{\mathrm{m}}}}{d\alpha}-\frac{2}{3}\kappa^{2}\alpha\mathcal{R}_{\delta\rho_{\mathrm{m}}}\right] (53)
α2d2δρmdα2+(3+11+49κ2α321+υα3)αdδρmdα(23κ2α1+υα3)(11+49κ2α)δρm=0,\alpha^{2}\frac{d^{2}\mathcal{R}_{\delta\rho_{\mathrm{m}}}}{d\alpha^{2}}+\left(3+\frac{1}{1+\frac{4}{9}\kappa^{2}\alpha}-\frac{\frac{3}{2}}{1+\upsilon\alpha^{3}}\right)\alpha\frac{d\mathcal{R}_{\delta\rho_{\mathrm{m}}}}{d\alpha}\\ -\left(\frac{\frac{2}{3}\kappa^{2}\alpha}{1+\upsilon\alpha^{3}}\right)\left(\frac{1}{1+\frac{4}{9}\kappa^{2}\alpha}\right)\mathcal{R}_{\delta\rho_{\mathrm{m}}}=0~{}, (54)

which have solutions

δρr=Acos[23καiαdξξ+υξ4]+Bsin[23καiαdξξ+υξ4]+92αiα𝑑ξ23κξ+υξ4sin[23κξαdσσ+υσ4][δρm(ξ)Cκ2ξ],\mathcal{R}_{\delta\rho_{\mathrm{r}}}=A\cos\left[\sqrt{\frac{2}{3}}\kappa\int_{\alpha_{i}}^{\alpha}\frac{d\xi}{\sqrt{\xi+\upsilon\xi^{4}}}\right]+B\sin\left[\sqrt{\frac{2}{3}}\kappa\int_{\alpha_{i}}^{\alpha}\frac{d\xi}{\sqrt{\xi+\upsilon\xi^{4}}}\right]\\ +\frac{9}{2}\int_{\alpha_{i}}^{\alpha}d\xi\frac{\sqrt{\frac{2}{3}}\kappa}{\sqrt{\xi+\upsilon\xi^{4}}}\sin\left[\sqrt{\frac{2}{3}}\kappa\int_{\xi}^{\alpha}\frac{d\sigma}{\sqrt{\sigma+\upsilon\sigma^{4}}}\right]\left[\frac{\mathinner{\mathcal{R}_{\delta\rho_{\mathrm{m}}}\mathopen{\left(\xi\right)}}-C}{\kappa^{2}\xi}\right]~{}, (55)

where αi1\alpha_{i}\ll 1 is the initial value, and

δρm=C[1+23κ21+υα3α30α(ξ1+υξ3)32𝑑ξ]+D1+υα3α3.\displaystyle\mathcal{R}_{\delta\rho_{\mathrm{m}}}=C\left[1+\frac{2}{3}\kappa^{2}\sqrt{\frac{1+\upsilon\alpha^{3}}{\alpha^{3}}}\int_{0}^{\alpha}\left(\frac{\xi}{1+\upsilon\xi^{3}}\right)^{\frac{3}{2}}d\xi\right]+D\sqrt{\frac{1+\upsilon\alpha^{3}}{\alpha^{3}}}~{}. (56)

Matching to the initial conditions of Eqs. (45) and (46) at ακ2\alpha\ll\kappa^{-2} gives

A=0,B=0,C=0,D=0A=\mathcal{R}_{0}{\quad,\quad}B=0{\quad,\quad}C=\mathcal{R}_{0}{\quad,\quad}D=0 (57)

reproducing the result of [23].

For υ1\upsilon\gg 1, we return to the case of thermal inflation plus radiation, and Eqs. (II) and (II) reduce to Eq. (20) giving Eq. (30) as the proper solution.

IV.2 Small scales κ1\kappa\gg 1

We study the cases of υ1\upsilon\ll 1 and υ1\upsilon\gg 1 together in the small scale limit. For modes that enter the horizon during radiation domination, we solve Eqs. (49) and (50) in two overlapping regimes:

Radiation domination

For αmin(1,υ14)\alpha\ll\mathinner{{\rm min}\mathopen{\left(1,\upsilon^{-\frac{1}{4}}\right)}}, Eq. (49) becomes

α2d2δρrdα2+(21+2+υ6κ2α2)αdδρrdα+2+υ3κ2α2(121+2+υ6κ2α2)δρr=0,\alpha^{2}\frac{d^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\alpha^{2}}+\left(\frac{2}{1+\frac{2+\upsilon}{6}\kappa^{2}\alpha^{2}}\right)\alpha\frac{d\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\alpha}+\frac{2+\upsilon}{3}\kappa^{2}\alpha^{2}\left(1-\frac{2}{1+\frac{2+\upsilon}{6}\kappa^{2}\alpha^{2}}\right)\mathcal{R}_{\delta\rho_{\mathrm{r}}}=0~{}, (58)

whose solution is given by

δρr=A1[32+υ(2κα)sin(2+υ3κα)cos(2+υ3κα)]+B1[32+υ(2κα)cos(2+υ3κα)+sin(2+υ3κα)].\mathcal{R}_{\delta\rho_{\mathrm{r}}}=A_{1}\left[\sqrt{\frac{3}{2+\upsilon}}\left(\frac{2}{\kappa\alpha}\right)\sin\left(\sqrt{\frac{2+\upsilon}{3}}\kappa\alpha\right)-\cos\left(\sqrt{\frac{2+\upsilon}{3}}\kappa\alpha\right)\right]\\ +B_{1}\left[\sqrt{\frac{3}{2+\upsilon}}\left(\frac{2}{\kappa\alpha}\right)\cos\left(\sqrt{\frac{2+\upsilon}{3}}\kappa\alpha\right)+\sin\left(\sqrt{\frac{2+\upsilon}{3}}\kappa\alpha\right)\right]~{}. (59)

Matching to the initial conditions of Eqs. (45) and (46) at αmin(κ1,κ1υ12)\alpha\ll\mathinner{{\rm min}\mathopen{\left(\kappa^{-1},\kappa^{-1}\upsilon^{-\frac{1}{2}}\right)}} gives

A1=0,B1=0.A_{1}=\mathcal{R}_{0}{\quad,\quad}B_{1}=0~{}. (60)
Well inside the horizon during radiation domination to vacuum domination

For αmin(κ1,κ1υ12)\alpha\gg\mathinner{{\rm min}\mathopen{\left(\kappa^{-1},\kappa^{-1}\upsilon^{-\frac{1}{2}}\right)}}, Eq. (49) becomes

(1+α+υα4)d2δρrdα2+12(1+4υα3)dδρrdα+(2+υ3)κ2δρr=0,\left(1+\alpha+\upsilon\alpha^{4}\right)\frac{d^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\alpha^{2}}+\frac{1}{2}\left(1+4\upsilon\alpha^{3}\right)\frac{d\mathcal{R}_{\delta\rho_{\mathrm{r}}}}{d\alpha}+\left(\frac{2+\upsilon}{3}\right)\kappa^{2}\mathcal{R}_{\delta\rho_{\mathrm{r}}}=0~{}, (61)

whose solution is given by

δρr=A2cos(2+υ3κ0αdξ1+ξ+υξ4)+B2sin(2+υ3κ0αdξ1+ξ+υξ4).\mathcal{R}_{\delta\rho_{\mathrm{r}}}=A_{2}\cos\left(\sqrt{\frac{2+\upsilon}{3}}\kappa\int_{0}^{\alpha}\frac{d\xi}{\sqrt{1+\xi+\upsilon\xi^{4}}}\right)\\ +B_{2}\sin\left(\sqrt{\frac{2+\upsilon}{3}}\kappa\int_{0}^{\alpha}\frac{d\xi}{\sqrt{1+\xi+\upsilon\xi^{4}}}\right)~{}. (62)

Matching to Eq. (59) at min(κ1,κ1υ12)αmin(1,υ14)\mathinner{{\rm min}\mathopen{\left(\kappa^{-1},\kappa^{-1}\upsilon^{-\frac{1}{2}}\right)}}\ll\alpha\ll\mathinner{{\rm min}\mathopen{\left(1,\upsilon^{-\frac{1}{4}}\right)}} gives

A2=A1=0,B2=B1=0.A_{2}=-A_{1}=-\mathcal{R}_{0}{\quad,\quad}B_{2}=B_{1}=0~{}. (63)

For υ1\upsilon\gg 1, we can show that Eq. (62) becomes Eq. (35) by using the relation of Eq. (43).

In the next section, we construct the asymptotic forms of transfer function from the primordial inflationary to thermal inflation power spectrum by using the results of Eqs. (30) and (62) for υ1\upsilon\gg 1 and Eqs. (55) and (62) for υ1\upsilon\ll 1 to study the numerical solution of Eqs. (49) and (50) for various values of υ\upsilon.

V Transfer functions

Refer to caption
Figure 5: Transfer functions of the thermal inflation scenarios with various values of υ\upsilon as a function of k/kbk/k_{\rm b}.

We take the adiabatic condition to calculate the density perturbation in Eqs. (45) and (46). The effects of thermal inflation is summarized by the curvature perturbation on the radiation density hypersurfaces δρr\mathcal{R}_{\delta\rho_{\mathrm{r}}} as

𝒯(k)δρr(k,)δρr(k,0).\mathinner{\mathcal{T}\mathopen{\left(k\right)}}\equiv\frac{\mathinner{\mathcal{R}_{\delta\rho_{\mathrm{r}}}\mathopen{\left(k,\infty\right)}}}{\mathinner{\mathcal{R}_{\delta\rho_{\mathrm{r}}}\mathopen{\left(k,0\right)}}}~{}. (64)

For thermal inflation and radiation, we find the asymptotic form of the transfer function from Eqs. (30) and (35). On large scale, it is almost scale-invariant and has slight enhancement at kkbk\simeq k_{\rm b},

𝒯(k)kkb1+μ0(kkb)2,\mathinner{\mathcal{T}\mathopen{\left(k\right)}}\xrightarrow{k\ll k_{\rm b}}1+\mu_{0}\left(\frac{k}{k_{\rm b}}\right)^{2}, (65)

where

μ0=0ξ2dξ1+ξ4ξdηη21+η40.2393.\mu_{0}=\int_{0}^{\infty}\frac{\xi^{2}d\xi}{\sqrt{1+\xi^{4}}}\int_{\xi}^{\infty}\frac{d\eta}{\eta^{2}\sqrt{1+\eta^{4}}}\simeq 0.2393~{}. (66)

On small scales, it is sinusoidal with an amplitude of unity,

𝒯(k)kkbcos[μ1(kkb)],\mathinner{\mathcal{T}\mathopen{\left(k\right)}}\xrightarrow{k\gg k_{\rm b}}-\cos\left[\mu_{1}\left(\frac{k}{k_{\rm b}}\right)\right]~{}, (67)

where

μ1=230dβ1+β4=Γ(14)226π1.5139.\mu_{1}=\sqrt{\frac{2}{3}}\int_{0}^{\infty}\frac{d\beta}{\sqrt{1+\beta^{4}}}=\frac{\mathinner{\Gamma\mathopen{\left(\frac{1}{4}\right)}}^{2}}{2\sqrt{6\pi}}\simeq 1.5139~{}. (68)
Refer to caption
Figure 6: Transfer functions of the thermal inflation scenarios with various values of υ1\upsilon\lesssim 1 as a function of k/kak/k_{\rm a}.

For thermal inflation, radiation and matter, the transfer function for υ1\upsilon\ll 1 becomes

𝒯(k)=cos[(kkb)0dξξ(2+ξ3)]+6(kkb)0dηη30η𝑑ζ(ζ2+ζ3)32sin[(kkb)ηdξξ(2+ξ3)]\mathinner{\mathcal{T}\mathopen{\left(k\right)}}=\cos\left[\left(\frac{k}{k_{{\rm b}}}\right)\int_{0}^{\infty}\frac{d\xi}{\sqrt{\xi(2+\xi^{3})}}\right]\\ +6\left(\frac{k}{k_{{\rm b}}}\right)\int_{0}^{\infty}\frac{d\eta}{\eta^{3}}\int_{0}^{\eta}d\zeta\left(\frac{\zeta}{2+\zeta^{3}}\right)^{\frac{3}{2}}\sin\left[\left(\frac{k}{k_{{\rm b}}}\right)\int_{\eta}^{\infty}\frac{d\xi}{\sqrt{\xi(2+\xi^{3})}}\right] (69)

from Eq. (55), which is exactly the same form of [23].

On large scales that remain outside the horizon, the transfer function goes to

𝒯(k)1+ν0(kkb)2,\mathinner{\mathcal{T}\mathopen{\left(k\right)}}\longrightarrow 1+\nu_{0}\left(\frac{k}{k_{\rm b}}\right)^{2}~{}, (70)

where

ν0=0dα(α2+α3)32=27/3π3/233/2Γ(16)Γ(13)0.3622.\nu_{0}=\int_{0}^{\infty}\mathinner{d\alpha}\left(\frac{\alpha}{2+\alpha^{3}}\right)^{\frac{3}{2}}=\frac{2^{7/3}\pi^{3/2}}{3^{3/2}\mathinner{\Gamma\mathopen{\left(\frac{1}{6}\right)}}\mathinner{\Gamma\mathopen{\left(\frac{1}{3}\right)}}}\simeq 0.3622~{}. (71)

On smaller scales that enter the horizon during matter domination, kbkkak_{\rm b}\ll k\ll k_{\rm a}, the transfer function goes to

𝒯(k)15cos[ν1(kkb)],\mathinner{\mathcal{T}\mathopen{\left(k\right)}}\longrightarrow-\frac{1}{5}\cos\left[\nu_{1}\left(\frac{k}{k_{\rm b}}\right)\right]~{}, (72)

where

ν1=0dαα(2+α3)=Γ(16)Γ(13)21/33π2.2258.\nu_{1}=\int_{0}^{\infty}\frac{\mathinner{d\alpha}}{\sqrt{\alpha(2+\alpha^{3})}}=\frac{\mathinner{\Gamma\mathopen{\left(\frac{1}{6}\right)}}\mathinner{\Gamma\mathopen{\left(\frac{1}{3}\right)}}}{2^{1/3}3\sqrt{\pi}}\simeq 2.2258~{}. (73)

On much smaller scales that enter the horizon during radiation domination, kkak\gg k_{\rm a}, Eq. (62) gives the transfer function as

𝒯(k)cos[τ0(υ)2+υ3(kka)]{cos[ν1(kkb)]for υ1cos[μ1(kkb)]for υ1,\mathinner{\mathcal{T}\mathopen{\left(k\right)}}\longrightarrow-\cos\left[\mathinner{\tau_{0}\mathopen{\left(\upsilon\right)}}\sqrt{\frac{2+\upsilon}{3}}\left(\frac{k}{k_{\rm a}}\right)\right]\simeq\begin{cases}-\cos\left[\nu_{1}\left(\frac{k}{k_{\rm b}}\right)\right]&\text{for $\upsilon\ll 1$}\\ -\cos\left[\mu_{1}\left(\frac{k}{k_{\rm b}}\right)\right]&\text{for $\upsilon\gg 1$}\end{cases}~{}, (74)

where

τ0(υ)=0dα1+α+υα4{213ν1υ162+𝒪(υ16)for υ132μ1υ1414υ12+𝒪(υ34)for υ1.\mathinner{\tau_{0}\mathopen{\left(\upsilon\right)}}=\int_{0}^{\infty}\frac{d\alpha}{\sqrt{1+\alpha+\upsilon\alpha^{4}}}\simeq\begin{cases}2^{\frac{1}{3}}\nu_{1}\upsilon^{-\frac{1}{6}}-2+\mathinner{\mathcal{O}\mathopen{\left(\upsilon^{\frac{1}{6}}\right)}}&\text{for $\upsilon\ll 1$}\\ \sqrt{\frac{3}{2}}\mu_{1}\upsilon^{-\frac{1}{4}}-\frac{1}{4}\upsilon^{-\frac{1}{2}}+\mathinner{\mathcal{O}\mathopen{\left(-\upsilon^{\frac{3}{4}}\right)}}&\text{for $\upsilon\gg 1$}\end{cases}~{}. (75)

The transfer functions are plotted with k/kbk/k_{\rm b} in FIG. 5, and they are consistent with the asymptotic forms of Eqs. (65), (70), (72) and (74). In FIG. 6, the transfer functions for υ1\upsilon\lesssim 1 are plotted with k/kak/k_{\rm a}, and we can find the envelop of the amplitude of transfer functions

𝒯env(k)0.2+0.396(kka)1.0931+0.396(kka)1.093{0.2,kb<kka0.427,kka1,kak.\mathinner{\mathcal{T}_{\rm env}\mathopen{\left(k\right)}}\simeq\frac{0.2+0.396\left(\frac{k}{k_{\rm a}}\right)^{1.093}}{1+0.396\left(\frac{k}{k_{\rm a}}\right)^{1.093}}\longrightarrow\begin{cases}0.2,&k_{\rm b}<k\ll k_{\rm a}\\ 0.427,&k\simeq k_{\rm a}\\ 1,&k_{\rm a}\ll k\end{cases}~{}. (76)

Note that the oscillating part with the amplitude of 0.20.2 can be found only for υ1\upsilon\ll 1. At kkak\simeq k_{\rm a}, the envelop is more precisely approximated by

𝒯env(k)0.427+0.422log10(kka).\mathinner{\mathcal{T}_{\rm env}\mathopen{\left(k\right)}}\longrightarrow 0.427+0.422\log_{10}\left(\frac{k}{k_{\rm a}}\right)~{}. (77)

VI Conclusion

In this paper, we model density perturbations for thermal inflation by considering a multi-component system of radiation, matter and vacuum energy ρ=ρr+ρm+V0\rho=\rho_{\rm r}+\rho_{\rm m}+V_{0}. The transfer function converting the primordial power spectrum to the model prediction is calculated by tracing the linear evolution of their curvature perturbations in FIG. 5 and FIG. 6. The value of υV0/ρ0\upsilon\equiv V_{0}/\rho_{0} is a key parameter governing the shape of transfer functions. υ\upsilon adjusts the relative ratio between matter and radiation energy densities at the beginning of the second (thermal) inflation. The system equivalently reduces to the case of [23] for υ0\upsilon\rightarrow 0 and to the case of vacuum and radiation for υ\upsilon\rightarrow\infty.

For υ<1.5\upsilon<1.5 (see FIG. 2), we considered the following three kinds of modes: first, the largest modes with k<kbk<k_{\rm b} are always beyond the horizon and their curvature perturbation also remains constant leaving 𝒯1\mathcal{T}\simeq 1. Second, the intermediate modes with kb<k<kak_{\rm b}<k<k_{\rm a} come into the horizon during moduli matter domination and exit the horizon during thermal inflation. For these modes, perturbations are enhanced by 𝒯1.3622\mathcal{T}\simeq 1.3622 at kkbk\simeq k_{\rm b} and suppressed by |𝒯|15\left|\mathcal{T}\right|\rightarrow\frac{1}{5} on smaller scales kkbk\gg k_{\rm b}. Third, the smallest modes with k>kak>k_{\rm a} enter the horizon during radiation domination and exit during thermal inflation. These modes are inside the horizon at radiation domination before the moduli domination and so behave oscillating with the amplitude |𝒯|1\left|\mathcal{T}\right|\rightarrow 1.

For υ1\upsilon\gg 1, the matter component is negligible compared to the radiation at the beginning of thermal inflation. The transfer function is constant on large scales k<kbk<k_{\rm b}, enhanced as 𝒯1.2393\mathcal{T}\simeq 1.2393 at kkbk\simeq k_{\rm b}, and then have sinusoidal oscillations with an amplitude of unity at kkbk\gg k_{\rm b}.

Note that the characteristic scale kbk_{\rm b} is estimated by

kb103Mpc1(e20eN)(V014107GeV)23(TdGeV)13k_{\rm b}\simeq 10^{3}\mathinner{{\rm Mpc}^{-1}}\left(\frac{e^{20}}{e^{N}}\right)\left(\frac{V_{0}^{\frac{1}{4}}}{10^{7}\mathinner{\mathrm{GeV}}}\right)^{\frac{2}{3}}\left(\frac{T_{\rm d}}{\mathinner{\mathrm{GeV}}}\right)^{\frac{1}{3}} (78)

where NN is the e-folds during thermal inflation, the vacuum energy for thermal inflation is 103GeVV014<1011GeV10^{3}\mathinner{\mathrm{GeV}}\ll V_{0}^{\frac{1}{4}}<10^{11}\mathinner{\mathrm{GeV}}, and the reheating temperature for the radiation domination is 102GeVTd102GeV10^{-2}\mathinner{\mathrm{GeV}}\lesssim T_{\rm d}\lesssim 10^{2}\mathinner{\mathrm{GeV}} in [23, 25], and ka/kb10k_{\rm a}/k_{\rm b}\lesssim 10 if 104υ104{10^{-4}}\lesssim\upsilon\lesssim 10^{4} in FIG. 2. Hence, the changes in the transfer functions according to the value of υ\upsilon could be explored by small-scale observations including CMB spectral distortions [24], the substructure of galaxies [25, 27, 28], and the 21-cm hydrogen line [25, 29]. Our results can be applied to the calculation for the density perturbations in multiple inflation scenarios [28, 30, 31].

In this work, we assume the moduli is a simple matter approximated by ρma3\rho_{\rm m}\propto a^{-3} as a baseline model of thermal inflation. The moduli field oscillates around the minimum affecting perturbations during its generation and domination, but its detailed dynamics could not be captured in our assumption. We leave full consideration of moduli dynamics and its observational implications as a future work.

Acknowledgements

The authors thank Ewan Stewart for his helpful discussion and advice. HZ thanks Emre Onur Kahya, and the Department of Physics Engineering at Istanbul Technical University and Korea Astronomy and Space Science Institute for the hospitality. This work was supported by the DGIST-UGRP grant. SEH was supported by the project “Understanding Dark Universe Using Large Scale Structure of the Universe”, funded by the Ministry of Science.

References