This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Model-theoretic Elekes-Szabó for stable and o-minimal hypergraphs

Artem Chernikov Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA Ya’acov Peterzil Department of Mathematics, University of Haifa, Haifa, Israel  and  Sergei Starchenko Department of Mathematics, University of Notre Dame, Notre Dame, IN, 46656, USA
Abstract.

A theorem of Elekes and Szabó recognizes algebraic groups among certain complex algebraic varieties with maximal size intersections with finite grids. We establish a generalization to relations of any arity and dimension, definable in: 1) stable structures with distal expansions (includes algebraically and differentially closed fields of characteristic 0); and 2) oo-minimal expansions of groups. Our methods provide explicit bounds on the power saving exponent in the non-group case. Ingredients of the proof include: a higher arity generalization of the abelian group configuration theorem in stable structures, along with a purely combinatorial variant characterizing Latin hypercubes that arise from abelian groups; and Zarankiewicz-style bounds for hypergraphs definable in distal structures.

2010 Mathematics Subject Classification:
03C45, 52C10

1. Introduction

1.1. History, and a special case of the main theorem

Erdős and Szemerédi [erdHos1983sums] observed the following sum-product phenomenon: there exists c>0c\in\mathbb{R}_{>0} such that for any finite set AA\subseteq\mathbb{R},

max{|A+A|,|AA|}|A|1+c.\max\left\{|A+A|,|A\cdot A|\right\}\geq|A|^{1+c}.

They conjectured that this holds with c=1εc=1-\varepsilon for an arbitrary ε>0\varepsilon\in\mathbb{R}_{>0}, and by the work of Solymosi [MR2538014] and Konyagin and Shkredov [MR3488800] it is known to hold with c=13+εc=\frac{1}{3}+\varepsilon for some sufficiently small ε\varepsilon. Elekes and Rónyai [elekes2000combinatorial] generalized this by showing that for any polynomial f(x,y)[x,y]f(x,y)\in\mathbb{R}[x,y] there exists c>0c>0 such that for every finite set AA\subseteq\mathbb{R} we have

|f(A×A)||A|1+c,|f(A\times A)|\geq|A|^{1+c},

unless ff is either additive or multiplicative, i.e. of the form g(h(x)+i(y))g(h(x)+i(y)) or g(h(x)i(y))g(h(x)\cdot i(y)) for some univariate polynomials g,h,ig,h,i respectively. The bound was improved to Ωdegf(|A|116)\Omega_{\deg f}\left(|A|^{\frac{11}{6}}\right) in [raz].

Elekes and Szabó [ES] established a conceptual generalization of this result explaining the exceptional role played by the additive and multiplicative forms: for any irreducible polynomial Q(x,y,z)Q(x,y,z) over \mathbb{C} depending on all of its coordinates and such that its set zero set has dimension 22, either there exists some ε>0\varepsilon>0 such that FF has at most O(n2ε)O(n^{2-\varepsilon}) zeroes on all finite n×n×nn\times n\times n grids, or FF is in a coordinate-wise finite-to-finite correspondence with the graph of multiplication of an algebraic group (see Theorem (B) below for a more precise statement). In the special Elekes-Rónyai case above, taking QQ to be the graph of the polynomial function ff, the resulting group is either the additive or the multiplicative group of the field. Several generalizations, refinements and variants of this influential result were obtained recently [MR3577370, ES4d, jing2019minimal, MR4181764, bukh2012sum, tao2015expanding, hrushovski2013pseudo], in particular for complex algebraic relations of higher dimension and arity by Bays and Breuillard [Bays].

In this paper we obtain a generalization of the Elekes-Szabó theorem to hypergraphs of any arity and dimension definable in stable structures admitting distal expansions (this class includes algebraically and differentially closed fields of characteristic 0 and compact complex manifolds); as well as for arbitrary oo-minimal structures. Before explaining our general theorems, we state two very special corollaries.

Theorem (A).

(Corollary 6.21) Assume s3s\geq 3 and QsQ\subseteq\mathbb{R}^{s} is semi-algebraic, of description complexity DD (i.e. given by at most DD polynomial (in-)equalities, with all polynomials of degree at most DD, and sDs\leq D), such that the projection of QQ to any s1s-1 coordinates is finite-to-one. Then exactly one of the following holds.

  1. (1)

    There exists a constant cc, depending only on ss and DD, such that: for any nn\in\mathbb{N} and finite AiA_{i}\subseteq\mathbb{R} with |Ai|=n|A_{i}|=n for i[s]i\in[s] we have

    |Q(A1××As)|cns1γ,|Q\cap(A_{1}\times\ldots\times A_{s})|\leq cn^{s-1-\gamma},

    where γ=13\gamma=\frac{1}{3} if s4s\geq 4, and γ=16\gamma=\frac{1}{6} if s=3s=3.

  2. (2)

    There exist open sets Ui,i[s]U_{i}\subseteq\mathbb{R},i\in[s], an open set VV\subseteq\mathbb{R} containing 0, and analytic bijections with analytic inverses πi:UiV\pi_{i}:U_{i}\to V such that

    π1(x1)++πs(xs)=0Q(x1,,xs)\pi_{1}(x_{1})+\cdots+\pi_{s}(x_{s})=0\Leftrightarrow Q(x_{1},\ldots,x_{s})

    for all xiUi,i[s]x_{i}\in U_{i},i\in[s].

Theorem (B).

(Corollary 5.51) Assume s3s\geq 3, and let QsQ\subseteq\mathbb{C}^{s} be an irreducible algebraic variety so that for each i[s]i\in[s], the projection of QQ to any s1s-1 coordinates is generically finite. Then exactly one of the following holds.

  1. (1)

    There exist cc depending only on s,deg(Q)s,\deg(Q) such that: for any nn\in\mathbb{N} and AiiA_{i}\subseteq\mathbb{C}_{i} with |Ai|=n|A_{i}|=n for i[s]i\in[s] we have

    |Q(A1××As)|cns1γ|Q\cap(A_{1}\times\ldots\times A_{s})|\leq cn^{s-1-\gamma}

    where γ=111\gamma=\frac{1}{11} if s4s\geq 4, and γ=122\gamma=\frac{1}{22} if s=3s=3.

  2. (2)

    For GG one of (,+)(\mathbb{C},+), (,×)(\mathbb{C},\times) or an elliptic curve group, QQ is in coordinate-wise correspondence (see Section 5.8) with

    Q:={(x1,,xs)Gs:x1xs=1G}.Q^{\prime}:=\left\{(x_{1},\ldots,x_{s})\in G^{s}:x_{1}\cdot\ldots\cdot x_{s}=1_{G}\right\}.
Remark 1.1.

Theorem (B) is similar to the codimension 11 case of [Bays, Theorem 1.4], however our method provides an explicit bound on the exponent in Clause (1).

Remark 1.2.

Theorems (A) and (B) correspond to the 11-dimensional case of Corollaries 6.20 and 5.48, respectively, which allow Qi[s]XiQ\subseteq\prod_{i\in[s]}X_{i} with dim(Xi)=d\dim(X_{i})=d for an arbitrary dd\in\mathbb{N}.

Remark 1.3.

Note the important difference — Theorem (A) is local, i.e. we can only obtain a correspondence of QQ to a subset of a group after restricting to some open subsets UiU_{i}. This is unavoidable in an ordered structure since the high count in Theorem (A.2) might be the result of a local phenomenon in QQ. E.g. when QQ is the union of Q1={x¯:x1++xs=0}(ε,ε)sQ_{1}=\{\bar{x}:x_{1}+\cdots+x_{s}=0\}\cap(-\varepsilon,\varepsilon)^{s}, for some ε>0\varepsilon>0, and another set Q2Q_{2} for which the count is low.

1.2. The Elekes-Szabó principle

We now describe the general setting of our main results. We let =(M,)\mathcal{M}=(M,\ldots) be an arbitrary first-order structure, in the sense of model theory, i.e. a set MM equipped with some distinguished functions and relations. As usual, a subset of MdM^{d} is definable if it is the set of tuples satisfying a formula (with parameters). Two key examples to keep in mind are (,+,×,0,1)(\mathbb{C},+,\times,0,1) (in which definable sets are exactly the constructible ones, i.e. boolean combinations of the zero-sets of polynomials, by Tarski’s quantifier elimination) and (,+,×,<,0,1)(\mathbb{R},+,\times,<,0,1) (in which definable sets are exactly the semialgebraic ones, by Tarski-Seidenberg quantifier elimination). We refer to [MR1924282] for an introduction to model theory and the details of the aforementioned quantifier elimination results.

From now on, we fix a structure \mathcal{M}, ss\in\mathbb{N}, definable sets XiMdi,i[s]X_{i}\subseteq M^{d_{i}},i\in[s], and a definable relation QX¯=X1××XsQ\subseteq\bar{X}=X_{1}\times\ldots\times X_{s}. We write AinXiA_{i}\subseteq_{n}X_{i} if AiXiA_{i}\subseteq X_{i} with |Ai|n\left|A_{i}\right|\leq n. By a grid on X¯\bar{X} we mean a set A¯X¯\bar{A}\subseteq\bar{X} with A¯=A1××As\bar{A}=A_{1}\times\ldots\times A_{s} and AiXiA_{i}\subseteq X_{i}. By an nn-grid on X¯\bar{X} we mean a grid A¯=A1××As\bar{A}=A_{1}\times\ldots\times A_{s} with AinXiA_{i}\subseteq_{n}X_{i}.

Definition 1.4.

For dd\in\mathbb{N}, we say that a relation QX1×X2××XsQ\subseteq X_{1}\times X_{2}\times\dotsc\times X_{s} is fiber-algebraic, of degree dd if for any i[s]i\in[s] we have

x1X1xi1Xi1xi+1Xi+1xsXs\displaystyle\forall x_{1}\in X_{1}\dotsc\forall x_{i-1}\in X_{i-1}\forall x_{i+1}\in X_{i+1}\dotsc\forall x_{s}\in X_{s}
dxiXi(x1,,xs)Q.\displaystyle\exists^{\leq d}x_{i}\in X_{i}\,\,(x_{1},\dotsc,x_{s})\in Q.

We say that QX1×X2××XsQ\subseteq X_{1}\times X_{2}\times\dotsc\times X_{s} is fiber-algebraic if it is fiber-algebraic of degree dd for some dd\in\mathbb{N}.

In other words, fiber algebraicity means that the projection of QQ onto any s1s-1 coordinates is finite-to-one. For example, if QX1×X2×X3Q\subseteq X_{1}\times X_{2}\times X_{3} is fiber-algebraic of degree dd, then for any AinXiA_{i}\subseteq_{n}X_{i} we have |QA1×A2×A3|dn2\left|Q\cap A_{1}\times A_{2}\times A_{3}\right|\leq dn^{2}. Conversely, let Q3Q\subseteq\mathbb{C}^{3} be given by x1+x2x3=0x_{1}+x_{2}-x_{3}=0, and let A1=A2=A3={0,,n1}A_{1}=A_{2}=A_{3}=\left\{0,\ldots,n-1\right\}. Then |QA1×A2×A3|=n(n+1)2=Ω(n2)\left|Q\cap A_{1}\times A_{2}\times A_{3}\right|=\frac{n\left(n+1\right)}{2}=\Omega\left(n^{2}\right). This indicates that the upper and lower bounds match for the graph of addition in an abelian group (up to a constant) — and the Elekes-Szabó principle suggests that in many situations this is the only possibility. Before making this precise, we introduce some notation.

1.2.1. Grids in general position.

From now on we will assume that \mathcal{M} is equipped with some notion of integer-valued dimension on definable sets, to be specified later. A good example to keep in mind is Zariski dimension on constructible subsets of d\mathbb{C}^{d}, or the topological dimension on semialgebraic subsets of d\mathbb{R}^{d}.

Definition 1.5.
  1. (1)

    Let XX be a definable set in \mathcal{M}, and let \mathcal{F} be a definable family of subsets of XX. For ν\nu\in\mathbb{N}, we say that a set AXA\subseteq X is in (,ν)(\mathcal{F},\nu)-general position if |AF|ν|A\cap F|\leq\nu for every FF\in\mathcal{F} with dim(F)<dim(X)\dim(F)<\dim(X).

  2. (2)

    Let XiX_{i}, i=1,,si=1,\ldots,s, be definable sets in \mathcal{M}. Let ¯=(1,,s)\bar{\mathcal{F}}=(\mathcal{F}_{1},\ldots,\mathcal{F}_{s}), where i\mathcal{F}_{i} is a definable family of subsets of XiX_{i}. For ν\nu\in\mathbb{N} we say that a grid A¯\bar{A} on X¯\bar{X} is in (¯,ν)(\bar{\mathcal{F}},\nu)-general position if each AiA_{i} is in (i,ν)(\mathcal{F}_{i},\nu)-general position.

For example, when \mathcal{M} is the field \mathbb{C}, a subset of d\mathbb{C}^{d} is in a (,ν)(\mathcal{F},\nu)-general position if any variety of smaller dimension and bounded degree (determined by the formula defining \mathcal{F}) can cut out only ν\nu points from it (see the proof of Corollary 5.48). Also, if \mathcal{F} is any definable family of subsets of \mathbb{C}, then for any large enough ν\nu, every AXA\subseteq X is in (,ν)(\mathcal{F},\nu)-general position. On the other hand, let X=2X=\mathbb{C}^{2} and let d\mathcal{F}_{d} be the family of algebraic curves of degree less than dd. If νd+1\nu\leq d+1, then any set AXA\subseteq X with |A|ν|A|\geq\nu is not in (d,ν1)(\mathcal{F}_{d},\nu-1)-general position.

1.2.2. Generic correspondence with group multiplication.

We assume that \mathcal{M} is a sufficiently saturated structure, and let QX¯Q\subseteq\bar{X} be a definable relation and (G,,1G)(G,\cdot,1_{G}) a connected type-definable group in eq\mathcal{M}^{\textrm{eq}}. Type-definability means that the underlying set GG of the group is given by the intersection of a small (but possibly infinite) collection of definable sets, and the multiplication and inverse operations are relatively definable. Such a group is connected if it contains no proper type-definable subgroup of small index (see e.g. [MR1924282, Chapter 7.5]). And eq\mathcal{M}^{\mathrm{eq}} is the structure obtained from \mathcal{M} by adding sorts for the quotients of definable sets by definable equivalence relations in \mathcal{M} (see e.g. [MR1924282, Chapter 1.3]). In the case when \mathcal{M} is the field \mathbb{C}, connected type-definable groups are essentially just the complex algebraic groups connected in the sense of Zariski topology (see Section 5.8 for a discussion and further references).

Definition 1.6.

We say that QQ is in a generic correspondence with multiplication in GG if there exist a small set AMA\subseteq M and elements g1,,gsGg_{1},\ldots,g_{s}\in G such that:

  1. (1)

    g1gs=1Gg_{1}\cdot\dotsc\cdot g_{s}=1_{G};

  2. (2)

    g1,,gs1g_{1},\dotsc,g_{s-1} are independent generics in GG over AA (i.e. each gig_{i} does not belong to any definable set of dimension smaller than GG definable over A{g1,,gi1,gi+1,,gs1}A\cup\{g_{1},\ldots,g_{i-1},g_{i+1},\ldots,g_{s-1}\});

  3. (3)

    For each i=1,,si=1,\dotsc,s there is a generic element aiXia_{i}\in X_{i} inter-algebraic with gig_{i} over 𝒜\mathcal{A} (i.e. aiacl(gi,A)a_{i}\in\operatorname{acl}(g_{i},A) and giacl(ai,A)g_{i}\in\operatorname{acl}(a_{i},A), where acl\operatorname{acl} is the model-theoretic algebraic closure), such that (a1,,as)Q(a_{1},\ldots,a_{s})\in Q.

Remark 1.7.

There are several variants of “generic correspondence with a group” considered in the literature around the Elekes-Szabó theorem. The one that we use arises naturally at the level of generality we work with, and as we discuss in Sections 5.8 and 6.4 it easily specializes to the notions considered previously in several cases of interest (e.g. the algebraic coordinate-wise finite-to-finite correspondence in the case of constructible sets in Theorem (B), or coordinate-wise analytic bijections on a neighborhood in the case of semialgebraic sets in Theorem (A)).

1.2.3. The Elekes-Szabó principle

Let s3,ks\geq 3,k\in\mathbb{N} and X1,,XsX_{1},\ldots,X_{s} be definable sets in a sufficiently saturated structure \mathcal{M} with dim(Xi)=k\dim(X_{i})=k.

Definition 1.8.

We say that X1,,XsX_{1},\ldots,X_{s} satisfy the Elekes-Szabó principle if for any fiber-algebraic definable relation QX¯Q\subseteq\bar{X}, one of the following holds:

  1. (1)

    QQ admits power saving: there exist some γ>0\gamma\in\mathbb{R}_{>0} and some definable families i\mathcal{F}_{i} on XiX_{i} such that: for any ν\nu\in\mathbb{N} and any nn-grid A¯X¯\bar{A}\subseteq\bar{X} in (F¯,ν)(\bar{F},\nu)-general position, we have |QA¯|=Oν(n(s1)γ)|Q\cap\bar{A}|=O_{\nu}\left(n^{(s-1)-\gamma}\right);

  2. (2)

    there exists a type-definable subset of QQ of full dimension that is in a generic correspondence with multiplication in some type-definable abelian group GG of dimension kk.

The following are the previously known cases of the Elekes-Szabó principle:

  1. (1)

    [ES] =(,+,×)\mathcal{M}=\left(\mathbb{C},+,\times\right), s=3s=3, kk arbitrary (no explicit exponent γ\gamma in power saving; no abelianity of the algebraic group for k>1k>1);

  2. (2)

    [MR3577370] =(,+,×)\mathcal{M}=\left(\mathbb{C},+,\times\right), s=3s=3, k=1k=1 (explicit γ\gamma in power saving);

  3. (3)

    [ES4d] =(,+,×)\mathcal{M}=\left(\mathbb{C},+,\times\right), s=4s=4, k=1k=1 (explicit γ\gamma in power saving);

  4. (4)

    [MR4181764] =(,+,×)\mathcal{M}=\left(\mathbb{C},+,\times\right), k=1k=1, QQ is the graph of an ss-ary polynomial function for an arbitrary ss (i.e. this is a generalization of Elekes-Rónyai to an arbitrary number of variables);

  5. (5)

    [Bays] =(,+,×)\mathcal{M}=\left(\mathbb{C},+,\times\right), ss and kk arbitrary, abelianity of the group for k>1k>1 (they work with a more relaxed notion of general position and arbitrary codimension, however no bounds on γ\gamma);

  6. (6)

    [StrMinES] \mathcal{M} is any strongly minimal structure interpretable in a distal structure (see Section 2), s=3s=3, k=1k=1.

In the first five cases the dimension is the Zariski dimension, and in the sixth case the Morley rank.

1.3. Main theorem

We can now state the main result of this paper.

Theorem (C).

The Elekes-Szabó principle holds in the following two cases:

  1. (1)

    (Theorem 5.24) \mathcal{M} is a stable structure interpretable in a distal structure, with respect to 𝔭\mathfrak{p}-dimension (see Section 5.1, and below).

  2. (2)

    (Theorem 6.4) \mathcal{M} is an oo-minimal structure expanding a group, with respect to the topological dimension. In this case, on a type-definable generic subset of X¯\bar{X}, we get a definable coordinate-wise bijection of QQ with the graph of multiplication of an abelian type-definable group GG (we stress that this GG is a priori unrelated to the underlying group that \mathcal{M} expands).

Moreover, the power saving bound is explicit in (2) (see the statement of Theorem 6.4), and is explicitly calculated from a given distal cell decomposition for QQ in (1) (see Theorem 5.27).

Examples of structures satisfying the assumption of Theorem (C.1) include: algebraically closed fields of characteristic 0, differentially closed fields of characteristic 0 with finitely many commuting derivations, compact complex manifolds. In particular, Theorem (B) follows from Theorem (C.1) with k=1k=1, combined with some basic model theory of algebraically closed fields (see Section 5.8). We refer to [pillay1996geometric] for a detailed treatment of stability, and to [tent2012course, Chapter 8] for a quick introduction. See Section 2 for a discussion of distality.

Examples of oo-minimal structures include real closed fields (in particular, Theorem (A) follows from Theorem (C.2) with k=1k=1 combined with some basic oo-minimality, see Section 6.4), exp=(,+,×,ex)\mathbb{R}_{\operatorname{exp}}=(\mathbb{R},+,\times,e^{x}), an=(,+,×,f[0,1]k)\mathbb{R}_{\operatorname{an}}=\left(\mathbb{R},+,\times,f\restriction_{[0,1]^{k}}\right) for kk\in\mathbb{N} and ff ranging over all functions real-analytic on some neighborhood of [0,1]k[0,1]^{k}, or the combination of both an,exp\mathbb{R}_{\operatorname{an,exp}}. We refer to [MR1633348] for a detailed treatment of oo-minimality, or to [MR3728313, Section 3] and reference there for a quick introduction.

Remark 1.9.

The assumption that \mathcal{M} is an oo-minimal expansion of a group in Theorem (C.2) can be relaxed to the more general assumption that \mathcal{M} is an oo-minimal structure with definable Skolem functions (see e.g. [dinis2022definable] for a detailed discussion of Skolem functions and related notions), but possibly with a weaker bound on the power saving exponent than the one stated in Theorem 6.4. Indeed, the γ\gamma in the γ\gamma-power saving stated in Theorem 6.4 depends on γ\gamma in the γ\gamma-ST property, and hence on t=2d12t=2d_{1}-2, in Fact 2.15(2) — the proof of which uses that \mathcal{M} is an oo-minimal expansion of a group. However, Fact 2.15(2) is known to hold in an arbitrary oo-minimal structure with (at least) the weaker bound t=2d11t=2d_{1}-1 (see [DistCellDecompBounds, Theorem 4.1]). To carry out the rest of the arguments in the proof of Theorem 6.4 in Section 6 we only use the existence of definable Skolem functions. Thus any oo-minimal structure with definable Skolem functions satisfies the conclusion of Theorem 6.4 with γ=18m3\gamma=\frac{1}{8m-3} if s4s\geq 4 and γ=116m6\gamma=\frac{1}{16m-6} if s=3s=3.

1.4. Outline of the paper

In this section we outline the structure of the paper, and highlight some of the key ingredients of the proof of the main theorem. The proofs of (1) and (2) in Theorem (C) have similar strategy at the general level, however there are considerable technical differences. In each of the cases, the proof consists of the following key ingredients.

  1. (1)

    Zarankiewicz-type bounds for distal relations (Section 2, used for both Theorem (C.1) and (C.2)).

  2. (2)

    A higher arity generalization of the abelian group configuration theorem (Section 3 for the oo-minimal case Theorem (C.2), and Section 4 for the stable case Theorem (C.1)).

  3. (3)

    The dichotomy between an incidence configuration, in which case the bounds from (1) give power saving, and existence of a family of functions (or finite-to-finite correspondences) associated to QQ closed under generic composition, in which case a correspondence of QQ to an abelian group is obtained using (2). This is Section 5 for the stable case (C.1) and Section 6 for the oo-minimal case (C.2).

We provide some further details for each of these ingredients, and discuss some auxiliary results of independent interest.

1.4.1. Zarankiewicz-type bounds for distal relations (Section 2)

Distal structures constitute a subclass of purely unstable NIP structures [simon2013distal] that contains all oo-minimal structures, various expansions of the field p\mathbb{Q}_{p}, and many other valued fields and related structures [DistValFields] (we refer to the introduction of [distal] for a general discussion of distality in connection to combinatorics and references). Distality of a graph can be viewed as a strengthening of finiteness of its VC-dimension retaining stronger combinatorial properties of semialgebraic graphs. In particular, it is demonstrated in [chernikov2015externally, distal, chernikov2016cutting] that many of the results in semialgebraic incidence combinatorics generalize to relations definable in distal structures. In Section 2 we discuss distality, in particular proving the following generalized “Szemerédi-Trotter” theorem:

Theorem (D).

(Theorem 2.8) For every d,t2d\in\mathbb{N},t\in\mathbb{N}_{\geq 2} and cc\in\mathbb{R} there exists some C=C(d,t,c)C=C(d,t,c)\in\mathbb{R} satisfying the following.

Assume that EX×YE\subseteq X\times Y admits a distal cell decomposition 𝒯\mathcal{T} such that |𝒯(B)|c|B|t|\mathcal{T}(B)|\leq c|B|^{t} for all finite BYB\subseteq Y. Then, taking γ1:=(t1)dtd1,γ2:=tdttd1\gamma_{1}:=\frac{(t-1)d}{td-1},\gamma_{2}:=\frac{td-t}{td-1} we have: for all ν2\nu\in\mathbb{N}_{\geq 2} and AmX,BnYA\subseteq_{m}X,B\subseteq_{n}Y such that E(A×B)E\cap(A\times B) is Kd,νK_{d,\nu}-free,

|E(A×B)|Cν(mγ1nγ2+m+n).\left|E\cap(A\times B)\right|\leq C\nu\left(m^{\gamma_{1}}n^{\gamma_{2}}+m+n\right).

In particular, if EU×VE\subseteq U\times V is a binary relation definable in a distal structure and EE is Ks,2K_{s,2}-free for some ss\in\mathbb{N}, then there is some γ>0\gamma>0 such that: for all AnU,BnVA\subseteq_{n}U,B\subseteq_{n}V we have |EA×B|=O(n32γ)\left|E\cap A\times B\right|=O(n^{\frac{3}{2}-\gamma}). The exponent strictly less that 32\frac{3}{2} requires distality, and is strictly better than e.g. the optimal bound Ω(n32)\Omega(n^{\frac{3}{2}}) for the point-line incidence relation on the affine plane over a field of positive characteristic. In the proof of Theorem (C), we will see how this γ\gamma translates to the power saving exponent in the non-group case. More precisely, for our analysis of the higher arity relation QQ, we introduce the so-called γ\gamma-Szemerédi-Trotter property, or γ\gamma-ST property (Definition 2.12), capturing an iterated variant of Theorem (D), and show in Proposition 2.14 that Theorem (D) implies that every binary relation definable in a distal structure satisfies the γ\gamma-ST property for some γ>0\gamma>0 calculated in terms of its distal cell decomposition. We conclude Section 2 with a discussion of the explicit bounds on γ\gamma for the γ\gamma-ST property in several particular structures of interest needed to deduce the explicit bounds on the power saving in Theorems (A) and (B).

1.4.2. Reconstructing an abelian group from a family of bijections (Section 3)

Assume that (G,+,0)(G,+,0) is an abelian group, and consider the ss-ary relation Qi[s]GQ\subseteq\prod_{i\in[s]}G given by x1++xs=0x_{1}+\ldots+x_{s}=0. Then QQ is easily seen to satisfy the following two properties, for any permutation of the variables of QQ:

(P1) x1,,xs1!xsQ(x1,,xs),\displaystyle\forall x_{1},\ldots,\forall x_{s-1}\exists!x_{s}Q(x_{1},\ldots,x_{s}),
(P2) x1,x2y3,ysy3,,ys(Q(x¯,y¯)Q(x¯,y¯)\displaystyle\forall x_{1},x_{2}\forall y_{3},\ldots y_{s}\forall y^{\prime}_{3},\ldots,y^{\prime}_{s}\Big{(}Q(\bar{x},\bar{y})\land Q(\bar{x},\bar{y}^{\prime})\rightarrow
(x1,x2Q(x¯,y¯)Q(x¯,y¯))).\displaystyle\big{(}\forall x^{\prime}_{1},x^{\prime}_{2}Q(\bar{x}^{\prime},\bar{y})\leftrightarrow Q(\bar{x}^{\prime},\bar{y}^{\prime})\big{)}\Big{)}.

In Section 3 we show a converse, assuming s4s\geq 4:

Theorem (E).

(Theorem 3.21) Assume s4s\in\mathbb{N}_{\geq 4}, X1,,XsX_{1},\ldots,X_{s} and Qi[s]XiQ\subseteq\prod_{i\in[s]}X_{i} are sets, so that QQ satisfies (P1) and (P2) for any permutation of the variables. Then there exists an abelian group (G,+,0G)(G,+,0_{G}) and bijections πi:XiG\pi_{i}:X_{i}\to G such that for every (a1,,as)i[s]Xi(a_{1},\ldots,a_{s})\in\prod_{i\in[s]}X_{i} we have

Q(a1,,as)π1(a1)++πs(as)=0G.Q(a_{1},\ldots,a_{s})\iff\pi_{1}(a_{1})+\ldots+\pi_{s}(a_{s})=0_{G}.

Moreover, if QQ is definable and XiX_{i} are type-definable in a sufficiently saturated structure \mathcal{M}, then we can take GG to be type-definable and the bijections πi\pi_{i} relatively definable in \mathcal{M}.

On the one hand, this can be viewed as a purely combinatorial higher arity variant of the Abelian Group Configuration theorem (see below) in the case when the definable closure in \mathcal{M} is equal to the algebraic closure (e.g. when \mathcal{M} is oo-minimal). On the other hand, if X1==XsX_{1}=\ldots=X_{s}, property (P1) is equivalent to saying that the relation QQ is an (s1)(s-1)-dimensional permutation on the set X1X_{1}, or a Latin (s1)(s-1)-hypercube, as studied by Linial and Luria in [linial2014upper, linial2016discrepancy] (where Latin 22-hypercube is just a Latin square). Thus the condition (P2) in Theorem (E) characterizes, for s3s\geq 3, those Latin ss-hypercubes that are given by the relation “x1++xs1=xsx_{1}+\ldots+x_{s-1}=x_{s}” in an abelian group. We remark that for s=2s=2 there is a known “quadrangle condition” due to Brandt characterizing those Latin squares that represent the multiplication table of a group, see e.g. [gowers2020partial, Proposition 1.4].

1.4.3. Reconstructing a group from an abelian ss-gon in stable structures (Section 4)

Here we consider a generalization of the group reconstruction method from a fiber-algebraic QQ of degree 11 to a fiber-algebraic QQ of arbitrary degree, which moreover only satisfies (P2) generically, and restricting to QQ definable in a stable structure.

Working in a stable theory, it is convenient to formulate this in the language of generic points. By an ss-gon over a set of parameters AA we mean a tuple a1,,asa_{1},\ldots,a_{s} such that any s1s-1 of its elements are (forking-) independent over AA, and any element in it is in the algebraic closure of the other ones and AA. We say that an ss-gon is abelian if, after any permutation of its elements, we have

a1a2aclA(a1a2)aclA(a3am)a3am.a_{1}a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\operatorname{acl}_{A}(a_{1}a_{2})\cap\operatorname{acl}_{A}(a_{3}\ldots a_{m})}a_{3}\ldots a_{m}.

Note that this condition corresponds to the definition of a 11-based stable theory, but localized to the elements of the ss-gon.

If (G,+)(G,+) is a type-definable abelian group, g1,,gs1g_{1},\ldots,g_{s-1} are independent generics in GG and gs:=g1++gs1g_{s}:=g_{1}+\ldots+g_{s-1}, then g1,,gsg_{1},\ldots,g_{s} is an abelian ss-gon (associated to GG). In Section 4 we prove a converse:

Theorem (F).

(Theorem 4.6) Let a1,,asa_{1},\ldots,a_{s} be an abelian ss-gon, s4s\geq 4, in a sufficiently saturated stable structure \mathcal{M}. Then there is a type-definable (in eq\mathcal{M}^{\textrm{eq}}) connected abelian group (G,+)(G,+) and an abelian ss-gon g1,,gsg_{1},\ldots,g_{s} associated to GG, such that after a base change each gig_{i} is inter-algebraic with aia_{i}.

It is not hard to see that a 44-gon is essentially equivalent to the usual abelian group configuration, so Theorem (F) is a higher arity generalization. After this work was completed, we have learned that independently Hrushovski obtained a similar (but incomparable) unpublished result [HrushovskiUnpubl, HruOber].

1.4.4. Elekes-Szabó principle in stable structures with distal expansions — proof of Theorem (C.1) (Section 5)

We introduce and study the notion of 𝔭{\mathfrak{p}}-dimension in Section 5.1, imitating the topological definition of dimension in oo-minimal structures, but localized at a given tuple of commuting definable global types. Assume we are given 𝔭\mathfrak{p}-pairs (Xi,𝔭i)(X_{i},\mathfrak{p}_{i}) for 1is1\leq i\leq s, i.e. XiX_{i} is an \mathcal{M}-definable set and 𝔭iS()\mathfrak{p}_{i}\in S(\mathcal{M}) is a complete stationary type on XiX_{i} for each 1is1\leq i\leq s (see Definition 5.2). We say that a definable set YX1××XsY\subseteq X_{1}\times\ldots\times X_{s} is 𝔭\mathfrak{p}-generic, where 𝔭{\mathfrak{p}} refers to the tuple (𝔭1,,𝔭s)({\mathfrak{p}}_{1},\ldots,{\mathfrak{p}}_{s}), if Y(𝔭1𝔭s)|𝕄Y\in\left(\mathfrak{p}_{1}\otimes\ldots\otimes\mathfrak{p}_{s}\right)|_{\mathbb{M}}. Finally, we define the 𝔭\mathfrak{p}-dimension via dim𝔭(Y)k\dim_{\mathfrak{p}}(Y)\geq k if for some projection π\pi of X¯\bar{X} onto kk components, π(Y)\pi(Y) is 𝔭\mathfrak{p}-generic. We show that 𝔭\mathfrak{p}-dimension enjoys definability and additivity properties crucial for our arguments that may fail for Morley rank in general ω\omega-stable theories such as DCF0\textrm{DCF}_{0}. However, if XX is a definable subset of finite Morley rank kk and degree one, taking 𝔭X\mathfrak{p}_{X} to be the unique type on XX of Morley rank kk, we have that kdim𝔭=MRk\cdot\dim_{\mathfrak{p}}=\textrm{MR} (this is used to deduce Theorem (B) from Theorem (C.1)).

In Section 5.2 we consider the notion of irreducibility and show that every fiber-algebraic relation is a union of finitely many absolutely 𝔭{\mathfrak{p}}-irreducible sets. In Section 5.3 we consider finite grids in general position with respect to 𝔭{\mathfrak{p}}-dimension and prove some preliminary power-saving bounds. In Section 5.4 we state a more informative version of Theorem (C.1) (Theorem 5.24 + Theorem 5.27 concerning the bound γ\gamma in power saving) and make some preliminary reductions. In particular, we may assume dim(Q)=s1\dim(Q)=s-1, and let a¯=(a1,,as)\bar{a}=(a_{1},\ldots,a_{s}) be a generic tuple in QQ. As QQ is fiber-algebraic, a¯\bar{a} is an ss-gon. We then establish the following key structural dichotomy.

Theorem (G).

(Theorem 5.35 and its proof) Assuming s3s\geq 3, one of the following is true:

  1. (1)

    For u=(a1,a2)u=(a_{1},a_{2}) and v=(a3,,as)v=(a_{3},\ldots,a_{s}) we have uacl(u)acl(v)vu\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\operatorname{acl}(u)\cap\operatorname{acl}(v)}v.

  2. (2)

    QQ, as a binary relation on U×VU\times V, for U=X1×X2U=X_{1}\times X_{2} and V=X3××XsV=X_{3}\times\ldots\times X_{s}, is a “pseudo-plane”. By which we mean here that, ignoring a smaller dimensional (dim𝔭<s2\dim_{\mathfrak{p}}<s-2) set of vVv\in V, every fiber QvUQ_{v}\subseteq U has a zero-dimensional intersection QvQvQ_{v}\cap Q_{v^{\prime}} for all vVv^{\prime}\in V outside a smaller dimensional set (more precisely, the 𝔭{\mathfrak{p}}-dimension of the set ZZ defined in terms of QQ in Section 5.5 is <s2<s-2).

This notion of a “pseudo-plane” generalizes the usual definition requiring that any two “lines” in VV intersect on finitely many “points” in UU, viewing QQ as the incidence relation.

In case (2) the relation QQ satisfies the assumption on the intersection of its fibers in Definition 2.12, hence the incidence bound from Theorem (D) can be applied inductively to obtain power saving for QQ (see Section 5.5). Thus we may assume that for any permutation of {1,,s}\{1,\ldots,s\} we have

a1a2acl(a1a2)acl(a3as)a3as,a_{1}a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\operatorname{acl}(a_{1}a_{2})\cap\operatorname{acl}(a_{3}\ldots a_{s})}a_{3}\ldots a_{s},

i.e. the ss-gon a¯\bar{a} is abelian. Assuming that s4s\geq 4, Theorem (F) can be applied to establish a generic correspondence with a type-definable abelian group (Section 5.6). The case s=3s=3 of Theorem (C.1) is treated separately in Section 5.7 by reducing it to the case s=4s=4 (similar to the approach in [MR3577370]).

In Section 5.8 we combine Theorem (C.1) with some standard model theory of algebraically closed fields to deduce Theorem (B) and its higher dimensional version.

1.4.5. Elekes-Szabó principle in oo-minimal structures — proof of Theorem (C.2) (Section 6)

Our proof of the oo-minimal case is overall similar to the stable case, but is independent from it. In Section 6.1 we formulate a more informative version of Theorem (C.2) with explicit bounds on power saving (Theorem 6.4) and reduce it to Theorem 6.9 — which is an appropriate analog of Theorem (G): (1) either QQ is a “pseudo-plane”, or (2) it contains a subset QQ^{*} of full dimension so that the property (P2) from Theorem (E) holds in a neighborhood of every point of QQ^{*}. In Case (1), considered in Section 6.2, we show that QQ satisfies the required power saving using Theorem (D) (or rather, its refinement for oo-minimal structures from Fact 2.15). In Case (2), we show in Section 6.3 that one can choose a generic tuple (a1,,as)(a_{1},\ldots,a_{s}) in QQ and (type-definable) infinitesimal neighborhoods μi\mu_{i} of aia_{i} so that the relation Q(μ1××μs)Q\cap(\mu_{1}\times\ldots\times\mu_{s}) satisfies (P1) and (P2) from Theorem (E) — applying it we obtain a generic correspondence with a type-definable abelian group, concluding the proof of Theorem (C.2) for s4s\geq 4. The case s=3s=3 is reduced to s=4s=4 similarly to the stable case.

Finally, in Section 6.4 we obtain a Corollary of Theorem (C.2) that holds in an arbitrary oo-minimal structure, not necessarily a saturated one - replacing a type-definable group by a definable local group (Theorem 6.19). Combining this with the solution of the Hilbert’s 5th problem for local groups [goldbring2010hilbert] (in fact, only in the much easier abelian case, see Theorem 8.5 there), we can improve “local group” to a “Lie group” in the case when the underlying set of the oo-minimal structure \mathcal{M} is \mathbb{R} and deduce Theorem (A) and its higher dimensional analog (Theorem 6.20, see also Remark 6.22). We also observe that for semi-linear relations, in the non-group case we have (1ε)(1-\varepsilon)-power saving for any ε>0\varepsilon>0 (Remark 6.24).

1.5. Acknowledgements

We are very grateful to the referees for their detailed and insightful reports and many valuable suggestions on improving the paper. We thank Saugata Basu, Martin Bays, Emmanuel Breuillard, Jim Freitag, Rahim Moosa, Tom Scanlon, Pierre Simon, Chieu-Minh Tran and Frank Wagner for some helpful conversations. We thank Institut Henri Poincaré in Paris for its hospitality during the “Model theory, Combinatorics and valued fields” term in the Spring trimester of 2018. Chernikov was partially supported by the NSF CAREER grant DMS-1651321 and by a Simons Fellowship. He thanks Lior Pachter, Michael Kinyon, and Math Twitter for the motivation in the final effort of finishing this paper. Peterzil was partially supported by the Israel Science Foundation grant 290/19. Starchenko was partially supported by the NSF grant DMS-1800806. The results of this paper were announced in [breuillard2021model].

2. Zarankiewicz-type bounds for distal relations

We begin by recalling some of the notions and results about distality and generalized “incidence bounds” for distal relations from [chernikov2016cutting], and refer to that article for further details. The following definition captures a combinatorial “shadow” of the existence of a nice topological cell decomposition (as e.g. in oo-minimal theories or in the pp-adics).

Definition 2.1.

[chernikov2016cutting, Section 2] Let X,YX,Y be infinite sets, and EX×YE\subseteq X\times Y a binary relation.

  1. (1)

    Let AXA\subseteq X. For bYb\in Y, we say that Eb={aX:(a,b)E}E_{b}=\left\{a\in X:(a,b)\in E\right\} crosses AA if EbAE_{b}\cap A\neq\emptyset and (XEb)A\left(X\setminus E_{b}\right)\cap A\neq\emptyset.

  2. (2)

    A set AXA\subseteq X is EE-complete over BYB\subseteq Y if AA is not crossed by any EbE_{b} with bBb\in B.

  3. (3)

    A family \mathcal{F} of subsets of XX is a cell decomposition for EE over BYB\subseteq Y if XX\subseteq\bigcup\mathcal{F} and every AA\in\mathcal{F} is EE-complete over BB.

  4. (4)

    A cell decomposition for EE is a map 𝒯:B𝒯(B)\mathcal{T}:B\mapsto\mathcal{T}(B) such that for each finite BYB\subseteq Y, 𝒯(B)\mathcal{T}\left(B\right) is a cell decomposition for EE over BB.

  5. (5)

    A cell decomposition 𝒯\mathcal{T} is distal if there exist kk\in\mathbb{N} and a relation DX×YkD\subseteq X\times Y^{k} such that for all finite BYB\subseteq Y, 𝒯(B)={D(b1,,bk):b1,,bkB and D(b1,,bk) is E-complete over B}\mathcal{T}\left(B\right)=\{D_{\left(b_{1},\ldots,b_{k}\right)}:b_{1},\ldots,b_{k}\in B\mbox{ and }D_{\left(b_{1},\ldots,b_{k}\right)}\mbox{ is }E\mbox{-complete over }B\}.

  6. (6)

    For t>0t\in\mathbb{R}_{>0}, we say that a cell decomposition 𝒯\mathcal{T} has exponent t\leq t if there exists some c>0c\in\mathbb{R}_{>0} such that |𝒯(B)|c|B|t|\mathcal{T}(B)|\leq c|B|^{t} for all finite sets BYB\subseteq Y.

Remark 2.2.

Note that if 𝒯\mathcal{T} is a distal cell decomposition, then it has exponent k\leq k for kk as in Definition 2.1(5).

Remark 2.3.

Assume that the binary relation EX×(Y×Z)E\subseteq X\times(Y\times Z) admits a distal cell decomposition 𝒯\mathcal{T} with |𝒯(B^)|c|B^|t|\mathcal{T}(\hat{B})|\leq c|\hat{B}|^{t} for every finite B^Y×Z\hat{B}\subseteq Y\times Z. Then for every zZz\in Z, the binary relation EzX×YE_{z}\subseteq X\times Y admits a distal cell decomposition 𝒯z\mathcal{T}_{z} with |𝒯z(B)|c|B|t|\mathcal{T}_{z}(B)|\leq c|B|^{t} for all finite BYB\subseteq Y.

Proof.

Indeed, assume that DX×(Y×Z)kD\subseteq X\times(Y\times Z)^{k} is witnessing that 𝒯\mathcal{T} is distal, i.e. for any finite B^Y×Z\hat{B}\subseteq Y\times Z we have

𝒯(B^)={D(b1,,bk):b1,,bkB^ and D(b1,,bk) is E-complete over B^}.\mathcal{T}\left(\hat{B}\right)=\{D_{\left(b_{1},\ldots,b_{k}\right)}:b_{1},\ldots,b_{k}\in\hat{B}\mbox{ and }D_{\left(b_{1},\ldots,b_{k}\right)}\mbox{ is }E\mbox{-complete over }\hat{B}\}.

Fix zZz\in Z, and let

Dz:={(x;y1,,yk)X×Yk:(x;y1,z,,yk,z)D}X×Yk.D_{z}:=\left\{(x;y_{1},\ldots,y_{k})\in X\times Y^{k}:(x;y_{1},z,\ldots,y_{k},z)\in D\right\}\subseteq X\times Y^{k}.

Given a finite BYB\subseteq Y, we define 𝒯z(B)\mathcal{T}_{z}\left(B\right) as

{(Dz)(b1,,bk):b1,,bkB and (Dz)(b1,,bk) is Ez-complete over B}.\displaystyle\left\{\left(D_{z}\right)_{\left(b_{1},\ldots,b_{k}\right)}:b_{1},\ldots,b_{k}\in B\mbox{ and }\left(D_{z}\right)_{\left(b_{1},\ldots,b_{k}\right)}\mbox{ is }E_{z}\mbox{-complete over }B\right\}.

Then 𝒯z(B)=𝒯(B×{z})\mathcal{T}_{z}\left(B\right)=\mathcal{T}\left(B\times\{z\}\right), hence 𝒯z\mathcal{T}_{z} is a distal cell decomposition for EzE_{z} and |𝒯z(B)|=|𝒯(B×{z})|c|B|t|\mathcal{T}_{z}(B)|=|\mathcal{T}(B\times\{z\})|\leq c|B|^{t}. ∎

Existence of “strong honest definitions” established in [chernikov2015externally] shows that every relation definable in a distal structure admits a distal cell decomposition (of some exponent).

Fact 2.4.

(see [chernikov2016cutting, Fact 2.9]) Assume that the relation EE is definable in a distal structure \mathcal{M}. Then EE admits a distal cell decomposition (of some exponent tt\in\mathbb{N}). Moreover, in this case the relation DD in Definition 2.1(5) is also definable in \mathcal{M}.

The following definition abstracts from the notion of cuttings in incidence geometry (see the introduction of [chernikov2016cutting] for an extended discussion).

Definition 2.5.

Let X,YX,Y be infinite sets, EX×YE\subseteq X\times Y. We say that EE admits cuttings with exponent tt\in\mathbb{R} if there is some constant c>0c\in\mathbb{R}_{>0} satisfying the following. For any BYB\subseteq Y with |B|=n\left|B\right|=n and any rr\in\mathbb{R} with 1<r<n1<r<n there are some sets X1,,XsXX_{1},\ldots,X_{s}\subseteq X covering XX with scrts\leq cr^{t} and such that for each i[s]i\in[s] there are at most nr\frac{n}{r} elements bBb\in B so that XiX_{i} is crossed by EbE_{b}.

In the case r>nr>n in Definition 2.5, an rr-cutting is equivalent to a distal cell decomposition (sets in the covering are not crossed at all). And for rr varying between 11 and nn, rr-cutting allows to control the trade-off between the number of cells in a covering and the number of times each cell is allowed to be crossed.

Fact 2.6.

(Distal cutting lemma, [chernikov2016cutting, Theorem 3.2]) Assume EX×YE\subseteq X\times Y admits a distal cell decomposition 𝒯\mathcal{T} of exponent t\leq t. Then EE admits cuttings with exponent t\leq t and with the constant coefficient depending only on tt and the constant coefficient of 𝒯\mathcal{T} (the latter is not stated there explicitly, but follows from the proof). Moreover, every set in this cutting is an intersection of at most two cells in 𝒯\mathcal{T}.

Remark 2.7.

We stress that in the Definition 2.5 of an rr-cutting, some of the fibers Eb,bBE_{b},b\in B might be equal to each other. This is stated correctly on page 22 of the introduction of [chernikov2016cutting], but is ambiguous in [chernikov2016cutting, Definition 3.1] (the family \mathcal{F} there is allowed to have repeated sets, so it is a multi-set of sets) and in the statement of [chernikov2016cutting, Theorem 3.2] (again, the family {φ(M;a):aH}\left\{\varphi(M;a):a\in H\right\} there should be viewed as a family of sets with repetitions — this is how it is understood in the proof of Theorem 3.2 there).

The next theorem can be viewed as an abstract variant of the Szemerédi-Trotter theorem. It generalizes (and strengthens) the incidence bound due to Elekes and Szabó [ES, Theorem 9] to arbitrary graphs admitting a distal cell decomposition, and is crucial to obtain power saving in the non-group case of our main theorem. Our proof below closely follows the proof of [StrMinES, Theorem 2.6] (which in turn is a generalization of [fox2014semi, Theorem 3.2] and [pach1992repeated, Theorem 4]) making the dependence on ss explicit. We note that the fact that the bound in Theorem 2.8 is sub-linear in ss was first observed in a special case in [shefferincidence].

As usual, given d,νd,\nu\in\mathbb{N} we say that a bipartite graph EU×VE\subseteq U\times V is Kd,νK_{d,\nu}-free if it does not contain a copy of the complete bipartite graph Kd,νK_{d,\nu} with its parts of size dd and ν\nu, respectively.

Theorem 2.8.

For every d,t2d,t\in\mathbb{N}_{\geq 2} and c>0c\in\mathbb{R}_{>0} there exists some C=C(d,t,c)C=C(d,t,c)\in\mathbb{R} satisfying the following.

Assume that EX×YE\subseteq X\times Y admits a distal cell decomposition 𝒯\mathcal{T} such that |𝒯(B)|c|B|t|\mathcal{T}(B)|\leq c|B|^{t} for all finite BYB\subseteq Y. Then, taking γ1:=(t1)dtd1,γ2:=tdttd1\gamma_{1}:=\frac{(t-1)d}{td-1},\gamma_{2}:=\frac{td-t}{td-1} we have: for all ν2\nu\in\mathbb{N}_{\geq 2} and AmX,BnYA\subseteq_{m}X,B\subseteq_{n}Y such that E(A×B)E\cap(A\times B) is Kd,νK_{d,\nu}-free,

|E(A×B)|Cν(mγ1nγ2+m+n).\left|E\cap(A\times B)\right|\leq C\nu\left(m^{\gamma_{1}}n^{\gamma_{2}}+m+n\right).

Before giving its proof we recall a couple of weaker general bounds that will be used. First, a classical fact from [kovari1954problem] giving a bound on the number of edges in Kd,νK_{d,\nu}-free graphs without any additional assumptions (see e.g. [MR2078877, Chapter VI.2, Theorem 2.2] for the stated version):

Fact 2.9.

Assume EA×BE\subseteq A\times B is Kd,νK_{d,\nu}-free, for some d,ν1d,\nu\in\mathbb{N}_{\geq 1} and A,BA,B finite. Then |EA×B|ν1d|A||B|11d+d|B||E\cap A\times B|\leq\nu^{\frac{1}{d}}|A||B|^{1-\frac{1}{d}}+d|B|.

Given a set YY and a family \mathcal{F} of subsets of YY, the shatter function π:\pi_{\mathcal{F}}:\mathbb{N}\to\mathbb{N} of \mathcal{F} is defined as

π(z):=max{|B|:BY,|B|=z},\pi_{\mathcal{F}}(z):=\max\{|\mathcal{F}\cap B|:B\subseteq Y,|B|=z\},

where B={SB:S}\mathcal{F}\cap B=\{S\cap B:S\in\mathcal{F}\}.

Second, the following bound for graphs of bounded VC-density is only stated in [fox2014semi] for Kd,νK_{d,\nu}-free graphs with d=νd=\nu (and with the sides of the bipartite graph exchanged), but the more general statement below, as well as the linear dependence of the bound on ν\nu, follow from its proof.

Fact 2.10.

[fox2014semi, Theorem 2.1] For every cc\in\mathbb{R} and t,dt,d\in\mathbb{N} there is some constant C=C(c,t,d)C=C(c,t,d) such that the following holds.

Let EX×YE\subseteq X\times Y be a bipartite graph such that the family ={Ea:aX}\mathcal{F}=\{E_{a}:a\in X\} of subsets of YY satisfies π(z)czt\pi_{\mathcal{F}}(z)\leq cz^{t} for all zz\in\mathbb{N} (where Ea={bY:(a,b)E}E_{a}=\{b\in Y:(a,b)\in E\}). Then, for any AmX,BnYA\subseteq_{m}X,B\subseteq_{n}Y so that E(A×B)E\cap(A\times B) is Kd,νK_{d,\nu}-free, we have

|E(A×B)|Cν(m11tn+m).|E\cap(A\times B)|\leq C\nu(m^{1-\frac{1}{t}}n+m).
Remark 2.11.

If EX×YE\subseteq X\times Y admits a distal cell decomposition 𝒯\mathcal{T} with |𝒯(B)|c|B|t|\mathcal{T}(B)|\leq c|B|^{t} for all BYB\subseteq Y, then for ={Ea:aX}\mathcal{F}=\{E_{a}:a\in X\} we have π(z)czt\pi_{\mathcal{F}}(z)\leq cz^{t} for all zz\in\mathbb{N}.

Indeed, by Definition 2.1, given any finite BYB\subseteq Y and Δ𝒯(B)\Delta\in\mathcal{T}(B), BEa=BEaB\cap E_{a}=B\cap E_{a^{\prime}} for any a,aΔa,a^{\prime}\in\Delta (and the sets in 𝒯(B)\mathcal{T}(B) give a covering of XX), hence at most |𝒯(B)||\mathcal{T}(B)| different subsets of BB are cut out by the fibers of EE.

Proof of Theorem 2.8.

Let AmX,BnYA\subseteq_{m}X,B\subseteq_{n}Y so that E(A×B)E\cap(A\times B) is Kd,νK_{d,\nu}-free be given.

If nmdn\geq m^{d}, then by Fact 2.9 we have

(2.1) |E(A×B)|ν1dmn11d+dndν(n1dn11d+n)=2dνn.\displaystyle|E\cap(A\times B)|\leq\nu^{\frac{1}{d}}mn^{1-\frac{1}{d}}+dn\leq d\nu(n^{\frac{1}{d}}n^{1-\frac{1}{d}}+n)=2d\nu n.

Hence we assume n<mdn<m^{d} from now on.

Let r:=mdtd1n1td1r:=\frac{m^{\frac{d}{td-1}}}{n^{\frac{1}{td-1}}} (note that r>1r>1 as md>nm^{d}>n), and consider the family Σ=(Eb:bB)\Sigma=\left(E_{b}:b\in B\right) of subsets of XX (some of the sets in it might be repeated). By assumption and Fact 2.6, there is a family 𝒞\mathcal{C} of subsets of XX giving a 1r\frac{1}{r}-cutting for the family Σ\Sigma. That is, XX is covered by the union of the sets in 𝒞\mathcal{C}, any of the sets C𝒞C\in\mathcal{C} is crossed by at most |B|/r|B|/r elements from Σ\Sigma, and |𝒞|α1rt|\mathcal{C}|\leq\alpha_{1}r^{t} for some α1=α1(c,t)\alpha_{1}=\alpha_{1}(c,t).

Then there is a set C𝒞C\in\mathcal{C} containing at least mα1rt=nttd1α1m1td1\frac{m}{\alpha_{1}r^{t}}=\frac{n^{\frac{t}{td-1}}}{\alpha_{1}m^{\frac{1}{td-1}}} points from AA. Let AACA^{\prime}\subseteq A\cap C be a subset of size exactly nttd1α1m1td1\left\lceil\frac{n^{\frac{t}{td-1}}}{\alpha_{1}m^{\frac{1}{td-1}}}\right\rceil.

If |A|d|A^{\prime}|\leq d, we have nttd1α1m1td1|A|d\frac{n^{\frac{t}{td-1}}}{\alpha_{1}m^{\frac{1}{td-1}}}\leq|A^{\prime}|\leq d, so ndtd1tα1td1tm1tn\leq d^{\frac{td-1}{t}}\alpha_{1}^{\frac{td-1}{t}}m^{\frac{1}{t}}. By assumption, Remark 2.11 and Fact 2.10, for some α2=α2(c,t,d)\alpha_{2}=\alpha_{2}(c,t,d) we have

|E(A×B)|α2ν(nm11t+m)α2ν(dtd1tα1td1tm1tm11t+m),|E\cap(A\times B)|\leq\alpha_{2}\nu(nm^{1-\frac{1}{t}}+m)\leq\alpha_{2}\nu(d^{\frac{td-1}{t}}\alpha_{1}^{\frac{td-1}{t}}m^{\frac{1}{t}}m^{1-\frac{1}{t}}+m),

hence

(2.2) |E(A×B)|α3νm for some α3=α3(c,t,d).\displaystyle|E\cap(A\times B)|\leq\alpha_{3}\nu m\textrm{ for some }\alpha_{3}=\alpha_{3}(c,t,d).

Hence from now on we assume that |A|>d|A^{\prime}|>d. Let BB^{\prime} be the set of all points bBb\in B such that EbE_{b} crosses CC. We know that

|B||B|rnn1td1mdtd1=ntdtd1mdtd1α1d|A|d.|B^{\prime}|\leq\frac{|B|}{r}\leq\frac{nn^{\frac{1}{td-1}}}{m^{\frac{d}{td-1}}}=\frac{n^{\frac{td}{td-1}}}{m^{\frac{d}{td-1}}}\leq\alpha_{1}^{d}|A^{\prime}|^{d}.

Again by Fact 2.9 we get

|E(A×B)|dν(|A||B|11d+|B|)\displaystyle|E\cap(A^{\prime}\times B^{\prime})|\leq d\nu(|A^{\prime}||B^{\prime}|^{1-\frac{1}{d}}+|B^{\prime}|)
dν(|A|α1d1|A|d1+α1d|A|d)α4ν|A|d\displaystyle\leq d\nu(|A^{\prime}|\alpha_{1}^{d-1}|A^{\prime}|^{d-1}+\alpha_{1}^{d}|A^{\prime}|^{d})\leq\alpha_{4}\nu|A^{\prime}|^{d}

for some α4=α4(c,t,d)\alpha_{4}=\alpha_{4}(c,t,d). Hence there is a point aAa\in A^{\prime} such that |EaB|α4ν|A|d1|E_{a}\cap B^{\prime}|\leq\alpha_{4}\nu|A^{\prime}|^{d-1}.

Since E(A×B)E\cap(A\times B) is Kd,νK_{d,\nu}-free, there are at most ν1\nu-1 points in BBB\setminus B^{\prime} from EaE_{a} (otherwise, since none of the sets Eb,bBBE_{b},b\in B\setminus B^{\prime} crosses CC and CC contains AA^{\prime}, which is of size d\geq d, we would have a copy of Kd,νK_{d,\nu}). And we have |A|nttd1α1m1td1+12α1nttd1m1td1|A^{\prime}|\leq\frac{n^{\frac{t}{td-1}}}{\alpha_{1}m^{\frac{1}{td-1}}}+1\leq\frac{2}{\alpha_{1}}\frac{n^{\frac{t}{td-1}}}{m^{\frac{1}{td-1}}} as |A|>d1|A|^{\prime}>d\geq 1. Hence

|EaB||EaB|+|Ea(BB)|α4ν|A|d1+(ν1)\displaystyle|E_{a}\cap B|\leq|E_{a}\cap B^{\prime}|+|E_{a}\cap(B\setminus B^{\prime})|\leq\alpha_{4}\nu|A^{\prime}|^{d-1}+(\nu-1)
α42d1α1d1νnt(d1)td1md1td1+(ν1)α5νnt(d1)td1md1td1+(ν1)\displaystyle\leq\frac{\alpha_{4}2^{d-1}}{\alpha_{1}^{d-1}}\nu\frac{n^{\frac{t(d-1)}{td-1}}}{m^{\frac{d-1}{td-1}}}+(\nu-1)\leq\alpha_{5}\nu\frac{n^{\frac{t(d-1)}{td-1}}}{m^{\frac{d-1}{td-1}}}+(\nu-1)

for some α5:=α5(c,t,d)\alpha_{5}:=\alpha_{5}(c,t,d). We remove aa and repeat the argument until (2.1) or (2.2) applies. This shows:

|E(A×B)|(2dν+α3ν)(n+m)+i=n1dm(α5νnt(d1)td1id1td1+(ν1))\displaystyle|E\cap(A\times B)|\leq(2d\nu+\alpha_{3}\nu)(n+m)+\sum_{i=n^{\frac{1}{d}}}^{m}\left(\alpha_{5}\nu\frac{n^{\frac{t(d-1)}{td-1}}}{i^{\frac{d-1}{td-1}}}+(\nu-1)\right)
(2d+α3)ν(n+m)+α5νnt(d1)td1i=n1dm1id1td1+(ν1)m.\displaystyle\leq(2d+\alpha_{3})\nu(n+m)+\alpha_{5}\nu n^{\frac{t(d-1)}{td-1}}\sum_{i=n^{\frac{1}{d}}}^{m}\frac{1}{i^{\frac{d-1}{td-1}}}+(\nu-1)m.

Note that

i=n1dm1id1td1n1d1mdxxd1td1=m1d1td11d1td1(n1d1)1d1td11d1td1\displaystyle\sum_{i=n^{\frac{1}{d}}}^{m}\frac{1}{i^{\frac{d-1}{td-1}}}\leq\int_{n^{\frac{1}{d}}-1}^{m}\frac{dx}{x^{\frac{d-1}{td-1}}}=\frac{m^{1-\frac{d-1}{td-1}}}{1-\frac{d-1}{td-1}}-\frac{\left(n^{\frac{1}{d}}-1\right)^{1-\frac{d-1}{td-1}}}{1-\frac{d-1}{td-1}}
td1(t1)dm1d1td1\displaystyle\leq\frac{td-1}{(t-1)d}m^{1-\frac{d-1}{td-1}}

using d,t2d,t\geq 2 and that the second term is non-negative for n1n\geq 1.

Taking C:=3max{2d+α3,td1(t1)dα5}C:=3\max\{2d+\alpha_{3},\frac{td-1}{(t-1)d}\alpha_{5}\} — which only depends on c,t,dc,t,d — we thus have

|E(A×B)|C3ν(n+m)+C3νnt(d1)td1m1d1td1+C3νm|E\cap(A\times B)|\leq\frac{C}{3}\nu(n+m)+\frac{C}{3}\nu n^{\frac{t(d-1)}{td-1}}m^{1-\frac{d-1}{td-1}}+\frac{C}{3}\nu m
Cν(m(t1)dtd1ntdttd1+m+n)\leq C\nu(m^{\frac{(t-1)d}{td-1}}n^{\frac{td-t}{td-1}}+m+n)

for all m,nm,n. ∎

For our applications to hypergraphs, we will need to consider a certain iterated variant of the bound in Theorem 2.8.

Definition 2.12.

Let \mathcal{E} be a family of subsets of X×YX\times Y and γ\gamma\in\mathbb{R}. We say that \mathcal{E} satisfies the γ\gamma-Szemerédi-Trotter property, or γ\gamma-ST property, if for any function C:1C:\mathbb{N}\to\mathbb{N}_{\geq 1} there exists a function C:1C^{\prime}:\mathbb{N}\to\mathbb{N}_{\geq 1} so that: for every EE\in\mathcal{E}, s4,ν2,ns\in\mathbb{N}_{\geq 4},\nu\in\mathbb{N}_{\geq 2},n\in\mathbb{N} and AX,BYA\subseteq X,B\subseteq Y with |A|ns2,|B|n2|A|\leq n^{s-2},|B|\leq n^{2}, if for every aAa\in A there are at most C(ν)ns4C(\nu)n^{s-4} elements aAa^{\prime}\in A with |EaEaB|ν|E_{a}\cap E_{a^{\prime}}\cap B|\geq\nu, then |E(A×B)|C(ν)n(s1)γ|E\cap(A\times B)|\leq C^{\prime}(\nu)n^{(s-1)-\gamma}.

We say that a relation EX×YE\subseteq X\times Y satisfies the γ\gamma-ST property if the family :={E}\mathcal{E}:=\{E\} does.

Lemma 2.1.

Assume that \mathcal{E} is a family of subsets of X×YX\times Y and γ\gamma\in\mathbb{R}.

  1. (1)

    Assume that X,YX^{\prime},Y^{\prime} are some sets and f:XX,g:YYf:X\to X^{\prime},g:Y\to Y^{\prime} are bijections. For EE\in\mathcal{E}, let E:={(x,y)X×Y:(f1(x),g1(y))E}E^{\prime}:=\left\{(x,y)\in X^{\prime}\times Y^{\prime}:\left(f^{-1}(x),g^{-1}(y)\right)\in E\right\}, and let :={E:E}\mathcal{E}^{\prime}:=\left\{E^{\prime}:E\in\mathcal{E}\right\}, a family of subsets of X×YX^{\prime}\times Y^{\prime}. Then \mathcal{E} satisfies the γ\gamma-ST property if and only if \mathcal{E}^{\prime} satisfies the γ\gamma-ST property.

  2. (2)

    Assume that for some k,k,\ell\in\mathbb{N} we have X=i[k]Xi,Y=j[]YiX=\bigsqcup_{i\in[k]}X_{i},Y=\bigsqcup_{j\in[\ell]}Y_{i}, and let Ei,j:=E(Xi×Yj)E_{i,j}:=E\cap(X_{i}\times Y_{j}), i,j:={Ei,j:E}\mathcal{E}_{i,j}:=\left\{E_{i,j}:E\in\mathcal{E}\right\}. Assume that each i,j\mathcal{E}_{i,j} satisfies the γ\gamma-ST property. Then \mathcal{E} also satisfies the γ\gamma-ST property.

Proof.

(1) is immediate from the definition. In (2), given C:1C:\mathbb{N}\to\mathbb{N}_{\geq 1}, assume Ci,j:1C^{\prime}_{i,j}:\mathbb{N}\to\mathbb{N}_{\geq 1} witnesses that i,j\mathcal{E}_{i,j} satisfies the γ\gamma-ST property. Then C:=(i,j)[k]×[]Ci,jC^{\prime}:=\sum_{(i,j)\in[k]\times[\ell]}C^{\prime}_{i,j} witnesses that \mathcal{E} satisfies the γ\gamma-ST property. ∎

Lemma 2.13.

Assume that 𝒫(X×Y)\mathcal{E}\subseteq\mathcal{P}\left(X\times Y\right), γ1,γ2>0\gamma_{1},\gamma_{2}\in\mathbb{R}_{>0} with γ1,γ21,γ1+γ21\gamma_{1},\gamma_{2}\leq 1,\gamma_{1}+\gamma_{2}\geq 1 and C0:C_{0}:\mathbb{N}\to\mathbb{R} satisfy:

  • ()(*)

    for every EE\in\mathcal{E}, ν2\nu\in\mathbb{N}_{\geq 2} and finite AmX,BnYA\subseteq_{m}X,B\subseteq_{n}Y, if E(A×B)E\cap(A\times B) is K2,νK_{2,\nu}-free, then |E(A×B)|C0(ν)(mγ1nγ2+m+n)|E\cap(A\times B)|\leq C_{0}(\nu)(m^{\gamma_{1}}n^{\gamma_{2}}+m+n).

Then \mathcal{E} satisfies the γ\gamma-ST property with γ:=32(γ1+γ2)1\gamma:=3-2(\gamma_{1}+\gamma_{2})\leq 1 and C(ν):=2C0(ν)(C(ν)+2)C^{\prime}(\nu):=2C_{0}(\nu)(C(\nu)+2).

Proof.

Given EE\in\mathcal{E} and finite sets A,BA,B satisfying the assumption of the γ\gamma-ST property, we consider the finite graph with the vertex set AA and the edge relation RR defined by aRa|EaEaB|νaRa^{\prime}\iff|E_{a}\cap E_{a^{\prime}}\cap B|\geq\nu for all a,aAa,a^{\prime}\in A. By the assumption of the γ\gamma-ST property, this graph has degree at most r:=C(ν)ns4r:=C(\nu)n^{s-4}, so it is (r+1)(r+1)-colorable by a standard fact in graph theory. For each i[r+1]i\in[r+1], let AiAA_{i}\subseteq A be the set of vertices corresponding to the iith color. Then the sets AiA_{i} give a partition of AA, and for each i[r+1]i\in[r+1] the restriction of EE to Ai×BA_{i}\times B is K2,νK_{2,\nu}-free.

For any fixed ii, applying the assumption on EE to Ai×BA_{i}\times B, we have

|E(Ai×B)|C0(ν)(|Ai|γ1|B|γ2+|Ai|+|B|).|E\cap(A_{i}\times B)|\leq C_{0}(\nu)\left(|A_{i}|^{\gamma_{1}}|B|^{\gamma_{2}}+|A_{i}|+|B|\right).

Then we have

|E(A×B)|i[r+1]|E(Ai×B)|\displaystyle|E\cap(A\times B)|\leq\sum_{i\in[r+1]}|E\cap(A_{i}\times B)|
i[r+1]C0(ν)(|Ai|γ1|B|γ2+|Ai|+|B|)\displaystyle\leq\sum_{i\in[r+1]}C_{0}(\nu)\left(|A_{i}|^{\gamma_{1}}|B|^{\gamma_{2}}+|A_{i}|+|B|\right)
(2.3) C0(ν)(i[r+1]|Ai|γ1|B|γ2+i[r+1]|Ai|+i[r+1]|B|).\displaystyle\leq C_{0}(\nu)\left(\sum_{i\in[r+1]}|A_{i}|^{\gamma_{1}}|B|^{\gamma_{2}}+\sum_{i\in[r+1]}|A_{i}|+\sum_{i\in[r+1]}|B|\right).

For the first sum, applying Hölder’s inequality with p=1γ1p=\frac{1}{\gamma_{1}}, we have

i[r+1]|Ai|γ1|B|γ2=|B|γ2i[r+1]|Ai|γ1\displaystyle\sum_{i\in[r+1]}|A_{i}|^{\gamma_{1}}|B|^{\gamma_{2}}=|B|^{\gamma_{2}}\sum_{i\in[r+1]}|A_{i}|^{\gamma_{1}}
|B|γ2(i[r+1]|Ai|)γ1(i[r+1]1)1γ1\displaystyle\leq|B|^{\gamma_{2}}\left(\sum_{i\in[r+1]}|A_{i}|\right)^{\gamma_{1}}\left(\sum_{i\in[r+1]}1\right)^{1-\gamma_{1}}
=|B|γ2|A|γ1(r+1)1γ1n2γ2n(s2)γ1(C(ν)ns4+1)1γ1\displaystyle=|B|^{\gamma_{2}}|A|^{\gamma_{1}}(r+1)^{1-\gamma_{1}}\leq n^{2\gamma_{2}}n^{(s-2)\gamma_{1}}\left(C(\nu)n^{s-4}+1\right)^{1-\gamma_{1}}
n2γ2n(s2)γ1(C(ν)+1)1γ1n(s4)(1γ1)\displaystyle\leq n^{2\gamma_{2}}n^{(s-2)\gamma_{1}}\left(C(\nu)+1\right)^{1-\gamma_{1}}n^{(s-4)(1-\gamma_{1})}
(C(ν)+1)n(s4)+2(γ1+γ2)=(C(ν)+1)n(s1)γ\displaystyle\leq(C(\nu)+1)n^{(s-4)+2(\gamma_{1}+\gamma_{2})}=(C(\nu)+1)n^{(s-1)-\gamma}

for all nn (by definition of γ\gamma and as s4,C(ν)1,0<γ11s\geq 4,C(\nu)\geq 1,0<\gamma_{1}\leq 1).

For the second sum, we have

i[r+1]|Ai|=|A|ns2\sum_{i\in[r+1]}|A_{i}|=|A|\leq n^{s-2}

for all nn. For the third sum we have

i[r+1]|B|(r+1)|B|(C(ν)ns4+1)n2(C(ν)+1)ns2\sum_{i\in[r+1]}|B|\leq(r+1)|B|\leq(C({\nu})n^{s-4}+1)n^{2}\leq(C(\nu)+1)n^{s-2}

for all nn. Substituting these bounds into (2.3), as γ1\gamma\leq 1 we get

|E(A×B)|2C0(ν)(C(ν)+2)n(s1)γ.|E\cap(A\times B)|\leq 2C_{0}(\nu)(C(\nu)+2)n^{(s-1)-\gamma}.\qed

We note that the γ\gamma-ST property is non-trivial only if γ>0\gamma>0. Lemma 2.13 shows that if \mathcal{E} satisfies the condition in Lemma 2.13()(*) with γ1+γ2<32\gamma_{1}+\gamma_{2}<\frac{3}{2}, then \mathcal{E} satisfies the γ\gamma-ST property for some γ>0\gamma>0. By Theorem 2.8 this condition on γ1+γ2\gamma_{1}+\gamma_{2} is satisfied for any relation admitting a distal cell decomposition, leading to the following.

Proposition 2.14.
  1. (1)

    Assume that t2t\in\mathbb{N}_{\geq 2} and EX×YE\subseteq X\times Y admits a distal cell decomposition 𝒯\mathcal{T} such that |𝒯(B)|c|B|t|\mathcal{T}(B)|\leq c|B|^{t} for all finite BYB\subseteq Y. Then EE satisfies the γ\gamma-ST property with γ:=12t1>0\gamma:=\frac{1}{2t-1}>0 and C:1C^{\prime}:\mathbb{N}\to\mathbb{N}_{\geq 1} depending only on t,c,Ct,c,C.

  2. (2)

    In particular, if the binary relation EX×(Y×Z)E\subseteq X\times(Y\times Z) admits a distal cell decomposition 𝒯\mathcal{T} of exponent tt, then the family of fibers

    :={EzX×Y:zZ}𝒫(X×Y)\mathcal{E}:=\left\{E_{z}\subseteq X\times Y:z\in Z\right\}\subseteq\mathcal{P}(X\times Y)

    satisfies the γ\gamma-ST property γ:=12t1\gamma:=\frac{1}{2t-1}.

Proof.

(1) By assumption and Theorem 2.8 with d:=2d:=2, there exists some c=c(t,c)c^{\prime}=c^{\prime}(t,c)\in\mathbb{R} such that, taking γ1:=2t22t1,γ2:=t2t1\gamma_{1}:=\frac{2t-2}{2t-1},\gamma_{2}:=\frac{t}{2t-1}, for all ν2,m,n\nu\in\mathbb{N}_{\geq 2},m,n\in\mathbb{N} and AmX,BnYA\subseteq_{m}X,B\subseteq_{n}Y with E(A×B)E\cap(A\times B) is K2,νK_{2,\nu}-free we have

|E(A×B)|cν(mγ1nγ2+m+n).\left|E\cap(A\times B)\right|\leq c^{\prime}\nu\left(m^{\gamma_{1}}n^{\gamma_{2}}+m+n\right).

Then, by Lemma 2.13, EE satisfies the γ\gamma-ST property γ:=32(γ1+γ2)=323t22t1=12t1>0\gamma:=3-2(\gamma_{1}+\gamma_{2})=3-2\frac{3t-2}{2t-1}=\frac{1}{2t-1}>0 and C(ν):=2cν(C(ν)+2)C^{\prime}(\nu):=2c^{\prime}\nu(C(\nu)+2).

(2) Combining (1) and Remark 2.3. ∎

The γ\gamma in Proposition 2.14 will correspond to the power saving in the main theorem. Stronger upper bounds on γ1,γ2\gamma_{1},\gamma_{2} in Lemma 2.13()(*) (than the ones given by Theorem 2.8) are known in some particular distal structures of interest and can be used to improve the bound on γ\gamma in Proposition 2.14, and hence in the main theorem. We summarize some of these results relevant for our applications.

Fact 2.15.

Let =(M,<,)\mathcal{M}=(M,<,\ldots) be an oo-minimal expansion of a group.

  1. (1)

    Let \mathcal{E} be a definable family of subsets of M2×Md2,d2M^{2}\times M^{d_{2}},d_{2}\in\mathbb{N}, i.e. ={Eb:bZ}\mathcal{E}=\{E_{b}:b\in Z\} for some d3d_{3}\in\mathbb{N} and definable sets EM2×Md2×Md3,ZMd3E\subseteq M^{2}\times M^{d_{2}}\times M^{d_{3}},Z\subseteq M^{d_{3}}. The definable relation EE viewed as a binary relation on M2×Md2+d3M^{2}\times M^{d_{2}+d_{3}} admits a distal cell decomposition with exponent t=2t=2 by [chernikov2016cutting, Theorem 4.1]. Then Proposition 2.14(2) implies that \mathcal{E} satisfies the γ\gamma-ST property with γ:=13\gamma:=\frac{1}{3}. (See also [basu2017minimal] for an alternative approach.)

  2. (2)

    For general d1,d22d_{1},d_{2}\in\mathbb{N}_{\geq 2}, every definable relation EMd1×Md2+d3E\subseteq M^{d_{1}}\times M^{d_{2}+d_{3}} admits a distal cell decomposition with exponent t=2d12t=2d_{1}-2 by [DistCellDecompBounds] (this improves on the weaker bound in [barone2013some, Section 4] and generalizes the semialgebraic case in [chazelle1991singly]). As in (1), Proposition 2.14(2) implies that any definable family \mathcal{E} of subsets of Md1×Md2M^{d_{1}}\times M^{d_{2}} satisfies the γ\gamma-ST property with γ:=14d15\gamma:=\frac{1}{4d_{1}-5}.

In particular this implies the following bounds for semialgebraic and constructible sets of bounded description complexity:

Corollary 2.16.
  1. (1)

    If d1,d2,D2,d_{1},d_{2},D\in\mathbb{N}_{\geq 2}, and D\mathcal{E}_{D} is the family of semialgebraic subsets of d1×d2\mathbb{R}^{d_{1}}\times\mathbb{R}^{d_{2}} of description complexity DD (i.e. every EE\in\mathcal{E} is defined by a Boolean combination of at most DD polynomial (in-)equalities with real coefficients, with all polynomials of degree at most DD), then D\mathcal{E}_{D} satisfies the γ\gamma-ST property with γ:=14d15\gamma:=\frac{1}{4d_{1}-5} (noting that for a fixed DD, the family D\mathcal{E}_{D} is definable in the oo-minimal structure (,+,×,<)\left(\mathbb{R},+,\times,<\right) and using Fact 2.15(2)).

  2. (2)

    If d1,d2,D2d_{1},d_{2},D\in\mathbb{N}_{\geq 2} and D\mathcal{E}_{D} is the family of constructible subsets of d1×d2\mathbb{C}^{d_{1}}\times\mathbb{C}^{d_{2}} of description complexity DD (i.e. every EE\in\mathcal{E} is defined by a Boolean combination of at most DD polynomial equations with complex coefficients, with all polynomials of degree at most DD), then D\mathcal{E}_{D} satisfies the γ\gamma-ST property with γ:=18d15\gamma:=\frac{1}{8d_{1}-5} (noting that for a fixed DD, every EDE\in\mathcal{E}_{D} can be viewed as a constructible, and hence semialgebraic, subset of 2d1×2d2\mathbb{R}^{2d_{1}}\times\mathbb{R}^{2d_{2}} of description complexity DD, and using (1)).

We note that a stronger bound is known for algebraic sets over \mathbb{R} and \mathbb{C}, however in the proof of the main theorem over \mathbb{C} we require a bound for more general families of constructible sets:

Fact 2.17.
  1. (1)

    ([fox2014semi, Theorem 1.2], [walsh2018polynomial, Corollary 1.7]) If d1,d22d_{1},d_{2}\in\mathbb{N}_{\geq 2} and Ed1×d2E\subseteq\mathbb{R}^{d_{1}}\times\mathbb{R}^{d_{2}} is algebraic with each Eb,bd2E_{b},b\in\mathbb{R}^{d_{2}} an algebraic variety of degree DD in d1\mathbb{R}^{d_{1}}, then EE satisfies the condition in Lemma 2.13()(*) with γ1=2(d11)2d11,γ2=d12d11\gamma_{1}=\frac{2(d_{1}-1)}{2d_{1}-1},\gamma_{2}=\frac{d_{1}}{2d_{1}-1} and some function C0C_{0} depending on d2,Dd_{2},D. Hence, by Lemma 2.13, EE satisfies the γ\gamma-ST property with γ:=12d11\gamma:=\frac{1}{2d_{1}-1}.

  2. (2)

    If d1,d22d_{1},d_{2}\in\mathbb{N}_{\geq 2} and Ed1×d2E\subseteq\mathbb{C}^{d_{1}}\times\mathbb{C}^{d_{2}} is algebraic with each Eb,bd2E_{b},b\in\mathbb{C}^{d_{2}} an algebraic variety of degree DD, it can be viewed as an algebraic subset of 2d1×2d2\mathbb{R}^{2d_{1}}\times\mathbb{R}^{2d_{2}} with all fibers algebraic varieties of fixed degree, which implies by (1) that EE satisfies the γ\gamma-ST property with γ:=14d11\gamma:=\frac{1}{4d_{1}-1}. (This improves the bound in [ES, Theorem 9].)

Problem 2.18.

We expect that the same bound on γ\gamma as in Fact 2.17(2) should hold for an arbitrary constructible family D\mathcal{E}_{D} over \mathbb{C} in Corollary 2.16(2), and the same bound on γ\gamma as in Fact 2.17(1) should hold for an arbitrary definable family \mathcal{E} in an oo-minimal structure in Fact 2.15(2). However, the polynomial method used to obtain these stronger bounds for high dimensions in the algebraic case does not immediately generalize to constructible sets, and is not available for general oo-minimal structures (see [basu2018zeroes]).

Fact 2.19.

Assume that d1,d2,sd_{1},d_{2},s\in\mathbb{N} and \mathcal{E} is a family of semilinear subsets of d1×d2\mathbb{R}^{d_{1}}\times\mathbb{R}^{d_{2}} so that each EE\in\mathcal{E} is defined by a Boolean combination of ss linear equalities and inequalities (with real coefficients). Then by [basit2020zarankiewicz, Theorem (C)], for every ε>0\varepsilon\in\mathbb{R}_{>0} the family \mathcal{E} satisfies the condition in Lemma 2.13()(*) with γ1+γ21+ε\gamma_{1}+\gamma_{2}\leq 1+\varepsilon (and some function C0C_{0} depending on ss and ε\varepsilon). It follows that \mathcal{E} satisfies the (1ε)(1-\varepsilon)-ST property for every ε>0\varepsilon>0 (which is the best possible bound up to ε\varepsilon).

Fact 2.20.

It has been shown in [DistValFields] that every differentially closed field (with one or several commuting derivations) of characteristic 0 admits a distal expansion. Hence by Fact 2.4, every definable relation admits a distal cell decomposition of some finite exponent tt, hence by Proposition 2.14(2) any definable family \mathcal{E} of subsets of Md1×Md2\subseteq M^{d_{1}}\times M^{d_{2}} in a differentially closed field \mathcal{M} of characteristic 0 satisfies the γ\gamma-ST property for some γ>0\gamma>0.

Fact 2.21.

The theory of compact complex manifolds, or CCM, is the theory of the structure containing a separate sort for each compact complex variety, with each Zariski closed subset of the cartesian products of the sorts named by a predicate (see [moosa] for a survey). This is an ω\omega-stable theory of finite Morley rank, and it is interpretable in the oo-minimal structure an\mathbb{R}_{\textrm{an}}. Hence, by Fact 2.4 and Proposition 2.14(2), every definable family \mathcal{E} admits a distal cell decomposition of some finite exponent tt, and hence satisfies the γ\gamma-ST property for some γ>0\gamma>0.

We remark that in differentially closed fields it is not possible to bound tt in terms of d1d_{1} alone. Indeed, the dp-rank of the formula “x=xx=x” is n\geq n for all nn\in\mathbb{N} (since the field of constants is definable, and MM is an infinite dimensional vector space over it, see [chernikov2014valued, Remark 5.3]). This implies that the VC-density of a definable relation EM×MnE\subseteq M\times M^{n} cannot be bounded independent of nn (see e.g. [kaplan2013additivity]), and since tt gives an upper bound on the VC-density (see Remark 2.11), it cannot be bounded either.

Problem 2.22.

Obtain explicit bounds on the distal cell decomposition and incidence counting for relations EE definable in DCF0 (e.g., are they bounded in terms of the Morley rank of the relation EE?).

3. Reconstructing an abelian group from a family of bijections

In this and the following sections we provide two higher arity variants of the group configuration theorem of Zilber-Hrushovski (see e.g [pillay1996geometric, Chapter 5.4]). From a model-theoretic point of view, our result can be viewed as a construction of a type-definable abelian group in the non-trivial local locally modular case, i.e. local modularity is only assumed for the given relation, as opposed to the whole theory, based on a relation of arbitrary arity 4\geq 4.

In this section, as a warm-up, we begin with a purely combinatorial abelian group configuration for the case of bijections as opposed to finite-to-finite correspondences. It illustrates some of the main ideas and is sufficient for the application in the oo-minimal case of the main theorem in Section 6.

In the next Section 4, we generalize the construction to allow finite-to-finite correspondences instead of bijections (model-theoretically, algebraic closure instead of the definable closure) in the stable case, which requires additional forking calculus arguments.

3.1. QQ-relations or arity 44

Throughout this section, we fix some sets A,B,C,DA,B,C,D and a quaternary relation QA×B×C×DQ\subseteq A{\times}B{\times}C{\times}D. We assume that QQ satisfies the following two properties.

  • (P1)

    If we fix any 33 variables, then there is exactly one value for the 4th variable satisfying QQ.

  • (P2)

    If

    (α,β;γ,δ),(α,β;γ,δ),(α,β;γ,δ)Q,(\alpha,\beta;\gamma,\delta),(\alpha^{\prime},\beta^{\prime};\gamma,\delta),(\alpha^{\prime},\beta^{\prime};\gamma^{\prime},\delta^{\prime})\in Q,

    then

    (α,β;γ,δ)Q;(\alpha,\beta;\gamma^{\prime},\delta^{\prime})\in Q;

    and the same is true under any other partition of the variables into two groups each of size two.

Intuitively, the first condition says that QQ induces a family of bijective functions between any two of its coordinates, and the second condition says that this family of bijections satisfies the “abelian group configuration” condition in a strong sense. Our goal is to show that under these assumption there exist an abelian group for which QQ is in a coordinate-wise bijective correspondence with the relation defined by αβ=γδ\alpha\cdot\beta=\gamma\cdot\delta.

First, we can view the relation QQ as a 22-parametric family of bijections as follows. Note that for every pair (c,d)C×D(c,d)\in C\times D, the corresponding fiber {(a,b)A×B:(a,b,c,d)Q}\{(a,b)\in A\times B:(a,b,c,d)\in Q\} is the graph of a function from AA to BB by (P1). Let \mathcal{F} be the set of all functions from AA to BB whose graph is a fiber of QQ.

Similarly, let 𝒢\mathcal{G} be the set of all functions from CC to DD whose graph is a fiber of QQ (for some (a,b)A×B(a,b)\in A\times B). Note that all functions in \mathcal{F} and in 𝒢\mathcal{G} are bijections, again by (P1).

Claim 3.1.

For every (a,b)A×B(a,b)\in A\times B there is a unique ff\in\mathcal{F} with f(a)=bf(a)=b, and similarly for 𝒢\mathcal{G}.

Proof.

We only check this for \mathcal{F}, the argument for 𝒢\mathcal{G} is analogous. Let (a,b)A×B(a,b)\in A\times B be fixed. Existence: let cCc\in C be arbitrary, then by (P1) there exists some dDd\in D with (a,b,c,d)Q(a,b,c,d)\in Q, hence the function corresponding to the fiber of QQ at (c,d)(c,d) satisfies the requirement. Uniqueness follows from (P2) for the appropriate partition of the variables: if (a,b;c,d),(a,b;c1,d1)Q(a,b;c,d),(a,b;c_{1},d_{1})\in Q for some (c,d),(c1,d1)C×D(c,d),(c_{1},d_{1})\in C\times D, then for all (x,y)A×B(x,y)\in A\times B we have (x,y,c,d)Q(x,y;c1,d1)Q(x,y,c,d)\in Q\iff(x,y;c_{1},d_{1})\in Q. ∎

Claim 3.2.

For every ff\in\mathcal{F} and (x,u)(x,u) in A×CA\times C there exists a unique g𝒢g\in\mathcal{G} such that (x,f(x),u,g(u))Q(x,f(x),u,g(u))\in Q (which then satisfies (x,f(x),u,g(u))Q(x^{\prime},f(x^{\prime}),u^{\prime},g(u^{\prime}))\in Q for all (x,u)A×C(x^{\prime},u^{\prime})\in A\times C).

And similarly exchanging the roles of \mathcal{F} and 𝒢\mathcal{G}.

Proof.

As x,f(x),ux,f(x),u are given, by (P1) there is a unique choice for the fourth coordinate of a tuple in QQ determining the image of gg on uu. There is only one such g𝒢g\in\mathcal{G} by Claim 3.1 with respect to 𝒢\mathcal{G}. ∎

For ff\in\mathcal{F}, we will denote by ff^{\perp} the unique g𝒢g\in\mathcal{G} as in Claim 3.2. Similarly, for g𝒢g\in\mathcal{G}, we will denote by gg^{\perp} the unique ff\in\mathcal{F} as in Claim 3.2.

Remark 3.3.

Note that (f)=f(f^{\perp})^{\perp}=f and (g)=g(g^{\perp})^{\perp}=g for all f,g𝒢f\in\mathcal{F},g\in\mathcal{G}.

Claim 3.4.

Let f1,f2,f3f_{1},f_{2},f_{3}\in\mathcal{F}, and gi:=fi𝒢g_{i}:=f_{i}^{\perp}\in\mathcal{G} for i[3]i\in[3]. Then f3f21f1f_{3}\circ f_{2}^{-1}\circ f_{1}\in\mathcal{F}, g3g21g1𝒢g_{3}\circ g_{2}^{-1}\circ g_{1}\in\mathcal{G} and (f3f21f1)=g3g21g1(f_{3}\circ f_{2}^{-1}\circ f_{1})^{\perp}=g_{3}\circ g_{2}^{-1}\circ g_{1}.

Proof.

We first observe the following: given any aAa\in A and cCc\in C, if we take b:=(f3f21f1)(a)Bb:=(f_{3}\circ f_{2}^{-1}\circ f_{1})(a)\in B and d:=(g3g21g1)(c)Dd:=(g_{3}\circ g_{2}^{-1}\circ g_{1})(c)\in D, then (a,b,c,d)Q(a,b,c,d)\in Q. Indeed, let b1:=f1(a)b_{1}:=f_{1}(a), a2:=f21(b1)a_{2}:=f_{2}^{-1}(b_{1}), then b=f3(a2)b=f_{3}(a_{2}). Similarly, let d1:=g1(c)d_{1}:=g_{1}(c), c2:=g21(d1)c_{2}:=g_{2}^{-1}(d_{1}), then d=g3(c2)d=g_{3}(c_{2}). By the definition of \perp we then have

(a,b1,c,d1)Q,(a2,b1,c2,d1)Q,(a2,b,c2,d)Q.(a,b_{1},c,d_{1})\in Q,(a_{2},b_{1},c_{2},d_{1})\in Q,(a_{2},b,c_{2},d)\in Q.

Applying (P2) for the partition {1,3}{2,4}\{1,3\}\cup\{2,4\}, this implies (a,b,c,d)Q(a,b,c,d)\in Q, as wanted.

Now fix an arbitrary cCc\in C and take the corresponding dd, varying aAa\in A the observation implies that the graph of f3f21f1f_{3}\circ f_{2}^{-1}\circ f_{1} is given by the fiber Q(c,d)Q_{(c,d)}. Similarly, the graph of g3g21g1g_{3}\circ g_{2}^{-1}\circ g_{1} is given by the fiber Q(a,b)Q_{(a,b)} for an arbitrary aAa\in A and the corresponding bb; and (f3f21f1)=g3g21g1(f_{3}\circ f_{2}^{-1}\circ f_{1})^{\perp}=g_{3}\circ g_{2}^{-1}\circ g_{1} follows. ∎

Claim 3.5.

For any f1,f2,f3f_{1},f_{2},f_{3}\in\mathcal{F} we have f3f21f1=f1f21f3f_{3}\circ f_{2}^{-1}\circ f_{1}=f_{1}\circ f_{2}^{-1}\circ f_{3}, and similarly for 𝒢\mathcal{G}.

Proof.

Let aAa\in A be arbitrary. We define b1:=f1(a)b_{1}:=f_{1}(a), a2:=f21(b1)a_{2}:=f_{2}^{-1}(b_{1}) and b3:=f3(a2)b_{3}:=f_{3}(a_{2}), so we have (f3f21f1)(a)=b3(f_{3}\circ f_{2}^{-1}\circ f_{1})(a)=b_{3}. Let also b4:=f3(a)b_{4}:=f_{3}(a), a4:=f21(b4)a_{4}:=f_{2}^{-1}(b_{4}) and b5:=f1(a4)b_{5}:=f_{1}(a_{4}), so we have (f1f21f3)(a)=b5(f_{1}\circ f_{2}^{-1}\circ f_{3})(a)=b_{5}.

We need to show that b5=b3b_{5}=b_{3}.

Let c1Cc_{1}\in C be arbitrary. By (P1) there exists some d1Dd_{1}\in D such that

(3.1) (a,b1,c1,d1)Q.\displaystyle(a,b_{1},c_{1},d_{1})\in Q.

Applying (P1) again, there exists some c2Cc_{2}\in C such that

(3.2) (a2,b1,c2,d1)Q,\displaystyle(a_{2},b_{1},c_{2},d_{1})\in Q,

and then some d2Dd_{2}\in D such that

(3.3) (a2,b3,c2,d2)Q.\displaystyle(a_{2},b_{3},c_{2},d_{2})\in Q.

Using (P2) for the partition {1,3}{2,4}\{1,3\}\cup\{2,4\}, it follows from (3.1), (3.2), (3.3) that

(3.4) (a,b3,c1,d2)Q.(a,b_{3},c_{1},d_{2})\in Q.

On the other hand, by the choice of b1,a2,b3b_{1},a_{2},b_{3}, (3.1), (3.2), (3.3) and Claim 3.1 we have: Q(c1,d1)Q_{(c_{1},d_{1})} is the graph of f1f_{1}, Q(c2,d1)Q_{(c_{2},d_{1})} is the graph of f2f_{2} and Q(c2,d2)Q{(c_{2},d_{2})} is the graph of f3f_{3}. Hence we also have

(a,b4,c2,d2)Q,(a4,b4,c2,d1)Q,(a4,b5,c1,d1)Q.(a,b_{4},c_{2},d_{2})\in Q,(a_{4},b_{4},c_{2},d_{1})\in Q,(a_{4},b_{5},c_{1},d_{1})\in Q.

Applying (P2) for the partition {1,4}{2,3}\{1,4\}\cup\{2,3\} this implies

(a,b5,c1,d2)Q,(a,b_{5},c_{1},d_{2})\in Q,

and combining with (3.4) and (P1) we obtain b3=b5b_{3}=b_{5}. ∎

Claim 3.6.

Given an arbitrary element f0f_{0}\in\mathcal{F}, for every pair f,ff,f^{\prime}\in\mathcal{F} we define

f+f:=ff01f.f+f^{\prime}:=f\circ f_{0}^{-1}\circ f^{\prime}.

Then (,+)(\mathcal{F},+) is an abelian group, with the identity element f0f_{0}.

Proof.

Note that for every f,ff,f^{\prime}\in\mathcal{F}, f+ff+f^{\prime}\in\mathcal{F} by Claim 3.4. Associativity follows from the associativity of the composition of functions. For any ff\in\mathcal{F} we have f+f0=ff01f0=ff+f_{0}=f\circ f^{-1}_{0}\circ f_{0}=f, f0f1f0f_{0}\circ f^{-1}\circ f_{0}\in\mathcal{F} by Claim 3.4 and f+(f0f1f0)=ff01(f0f1f0)=f0f+(f_{0}\circ f^{-1}\circ f_{0})=f\circ f_{0}^{-1}\circ(f_{0}\circ f^{-1}\circ f_{0})=f_{0}, hence f0f_{0} is the right identity and f0f1f0f_{0}\circ f^{-1}\circ f_{0} is the right inverse of ff. Finally, by Claim 3.5 we have f+f=f+ff+f^{\prime}=f^{\prime}+f for any f,ff,f^{\prime}\in\mathcal{F}, hence (,+)(\mathcal{F},+) is an abelian group. ∎

Remark 3.7.

Moreover, if we also fix g0:=f0g_{0}:=f_{0}^{\perp} in 𝒢\mathcal{G}, then similarly we obtain an abelian group on 𝒢\mathcal{G} with the identity element g0g_{0}, so that (,+)(\mathcal{F},+) is isomorphic to (𝒢,+)(\mathcal{G},+) via the map fff\mapsto f^{\perp} (it is a homomorphism as for any f1,f2f_{1},f_{2}\in\mathcal{F} we have (f1f01f2)=f1g01f2(f_{1}\circ f_{0}^{-1}\circ f_{2})^{\perp}=f_{1}^{\perp}\circ g_{0}^{-1}\circ f_{2}^{\perp} by Claim 3.4, and its inverse is g𝒢gg\in\mathcal{G}\mapsto g^{\perp} by Remark 3.3).

Next we establish a connection of these groups and the relation QQ. We fix arbitrary a0Aa_{0}\in A, b0Bb_{0}\in B, c0Cc_{0}\in C and d0Dd_{0}\in D with (a0,b0,c0,d0)Q(a_{0},b_{0},c_{0},d_{0})\in Q. By Claim 3.1, let f0f_{0}\in\mathcal{F} be unique with f0(a0)=b0f_{0}(a_{0})=b_{0}, and let g0𝒢g_{0}\in\mathcal{G} be unique with g0(c0)=d0g_{0}(c_{0})=d_{0}. Then g0=f0g_{0}=f_{0}^{\perp} by Claim 3.2, and by Remark 3.7 we have isomorphic groups on \mathcal{F} and on 𝒢\mathcal{G}. We will denote this common group by G:=(,+)G:=(\mathcal{F},+).

We consider the following bijections between each of A,B,C,DA,B,C,D and GG, using our identification of GG with both \mathcal{F} and 𝒢\mathcal{G} and Claim 3.1:

  • let πA:A\pi_{A}\colon A\to\mathcal{F} be the bijection that assigns to aAa\in A the unique faf_{a}\in\mathcal{F} with fa(a)=b0f_{a}(a)=b_{0};

  • let πB:B\pi_{B}\colon B\to\mathcal{F} be the bijection that assigns to bBb\in B the unique fbf_{b}\in\mathcal{F} with fb(a0)=bf_{b}(a_{0})=b;

  • let πC:C𝒢\pi_{C}\colon C\to\mathcal{G} be the bijection that assigns to cCc\in C the unique gc𝒢g_{c}\in\mathcal{G} with gc(c)=d0g_{c}(c)=d_{0};

  • let πD:D𝒢\pi_{D}\colon D\to\mathcal{G} be the bijection that assigns to dDd\in D the unique gd𝒢g_{d}\in\mathcal{G} with gd(c0)=dg_{d}(c_{0})=d.

Claim 3.8.

For any aAa\in A and bBb\in B, πA(a)+πB(b)\pi_{A}(a)+\pi_{B}(b) is the unique function ff\in\mathcal{F} with f(a)=bf(a)=b.

Similarly, for any cCc\in C and dDd\in D, πC(a)+πD(b)\pi_{C}(a)+\pi_{D}(b) is the unique function g𝒢g\in\mathcal{G} with g(c)=dg(c)=d.

Proof.

Let (a,b)A×B(a,b)\in A\times B be arbitrary, and let f:=πA(a)+πB(b)=πB(b)+πA(a)=πB(b)f01πA(a)f:=\pi_{A}(a)+\pi_{B}(b)=\pi_{B}(b)+\pi_{A}(a)=\pi_{B}(b)\circ f_{0}^{-1}\circ\pi_{A}(a). Note that, from the definitions, πA(a):ab0\pi_{A}(a)\colon a\mapsto b_{0}, f01:b0a0f_{0}^{-1}\colon b_{0}\mapsto a_{0} and πB(b):a0b\pi_{B}(b)\colon a_{0}\mapsto b, hence f(a)=bf(a)=b. The second claim is analogous. ∎

Proposition 3.9.

For any (a,b,c,d)A×B×C×D(a,b,c,d)\in A\times B\times C\times D, (a,b,c,d)Q(a,b,c,d)\in Q if and only if πA(a)+πB(b)=πC(c)+πD(d)\pi_{A}(a)+\pi_{B}(b)=\pi_{C}(c)^{\perp}+\pi_{D}(d)^{\perp} (in GG).

Proof.

Given (a,b,c,d)(a,b,c,d), by Claim 3.8 we have: πA(a)+πB(b)\pi_{A}(a)+\pi_{B}(b) is the function ff\in\mathcal{F} with f(a)=bf(a)=b, and πC(c)+πD(d)\pi_{C}(c)+\pi_{D}(d) is the function g𝒢g\in\mathcal{G} with g(c)=dg(c)=d. Then, by Claim 3.2, (a,b,c,d)Q(a,b,c,d)\in Q if and only if f=gf=g^{\perp}, and since \perp is an isomorphism this happens if and only f=πC(c)+πD(d)f=\pi_{C}(c)^{\perp}+\pi_{D}(d)^{\perp}. ∎

3.2. QQ-relation of any arity for dcl

Now we extend the construction of an abelian group to relations of arbitrary arity 4\geq 4. Assume that we are given m4m\in\mathbb{N}_{\geq 4}, sets X1,,XmX_{1},\ldots,X_{m} and a relation QX1××XmQ\subseteq X_{1}\times\cdots\times X_{m} satisfying the following two conditions (corresponding to the conditions in Section 3.1 when m=4m=4).

  • (P1)

    For any permutation of the variables of QQ we have:

    x1,,xm1!xmQ(x1,,xm).\forall x_{1},\ldots,\forall x_{m-1}\exists!x_{m}Q(x_{1},\ldots,x_{m}).
  • (P2)

    For any permutation of the variables of QQ we have:

    x1,x2y3,ymy3,,ym(Q(x¯,y¯)Q(x¯,y¯)\displaystyle\forall x_{1},x_{2}\forall y_{3},\ldots y_{m}\forall y^{\prime}_{3},\ldots,y^{\prime}_{m}\Big{(}Q(\bar{x},\bar{y})\land Q(\bar{x},\bar{y}^{\prime})\rightarrow
    (x1,x2Q(x¯,y¯)Q(x¯,y¯))),\displaystyle\big{(}\forall x^{\prime}_{1},x^{\prime}_{2}Q(\bar{x}^{\prime},\bar{y})\leftrightarrow Q(\bar{x}^{\prime},\bar{y}^{\prime})\big{)}\Big{)},

    where x¯=(x1,x2),y¯=(y3,,ym)\bar{x}=(x_{1},x_{2}),\bar{y}=(y_{3},\ldots,y_{m}), Q(x¯,y¯)Q(\bar{x},\bar{y}) evaluates QQ on the concatenated tuple (x1,x2,y3,,ym)(x_{1},x_{2},y_{3},\ldots,y_{m}), and similarly for x¯,y¯\bar{x}^{\prime},\bar{y}^{\prime}.

We let \mathcal{F} be the set of all functions f:X1X2f:X_{1}\to X_{2} whose graph is given by the set of pairs (x1,x2)X1×X2(x_{1},x_{2})\in X_{1}\times X_{2} satisfying Q(x1,x2,b¯)Q(x_{1},x_{2},\bar{b}) for some b¯X3××Xm\bar{b}\in X_{3}\times\ldots\times X_{m}.

Remark 3.10.
  1. (1)

    Every ff\in\mathcal{F} is a bijection, by (P1).

  2. (2)

    For every a1X1,a2X2a_{1}\in X_{1},a_{2}\in X_{2} there exists a unique ff\in\mathcal{F} such that f(a1)=a2f(a_{1})=a_{2} (existence by (P1), uniqueness by (P2)). We will denote it as fa1,a2f_{a_{1},a_{2}}.

Lemma 3.11.

For every ciXi,4imc_{i}\in X_{i},4\leq i\leq m and ff\in\mathcal{F} there exists some c3X3c_{3}\in X_{3} such that Q(x1,x2,c3,c4,,cm)Q(x_{1},x_{2},c_{3},c_{4},\ldots,c_{m}) is the graph of ff.

Proof.

Choose any a1X1a_{1}\in X_{1}, let a2:=f(a1)a_{2}:=f(a_{1}). Choose c3X3c_{3}\in X_{3} such that Q(a1,a2,c3,,cm)Q(a_{1},a_{2},c_{3},\ldots,c_{m}) holds by (P1). Then Q(x1,x2,c3,c4,,cm)Q(x_{1},x_{2},c_{3},c_{4},\ldots,c_{m}) defines the graph of ff by Remark 3.10(2). ∎

Lemma 3.12.

For any f1,f2,f3f_{1},f_{2},f_{3}\in\mathcal{F} there exists some f4f_{4}\in\mathcal{F} such that f1f21f3=f3f21f1=f4f_{1}\circ f_{2}^{-1}\circ f_{3}=f_{3}\circ f_{2}^{-1}\circ f_{1}=f_{4}.

Proof.

Choose any ciXi,5imc_{i}\in X_{i},5\leq i\leq m and consider the quaternary relation QX1××X4Q^{\prime}\subseteq X_{1}\times\cdots\times X_{4} defined by Q(x1,,x4):=Q(x1,,x4,c¯)Q^{\prime}(x_{1},\ldots,x_{4}):=Q(x_{1},\ldots,x_{4},\bar{c}). Hence QQ^{\prime} also satisfies (P1) and (P2), and the graph of every ff\in\mathcal{F} is given by Q(x1,x2,b3,b4)Q^{\prime}(x_{1},x_{2},b_{3},b_{4}) for some b3X3,b4X4b_{3}\in X_{3},b_{4}\in X_{4}, by Lemma 3.11. Then the conclusion of the lemma follows from Claims 3.4 and 3.5 applied to QQ^{\prime}. ∎

Definition 3.13.

We fix arbitrary elements eiXi,i=1,,me_{i}\in X_{i},i=1,\ldots,m so that Q(e1,,em)Q(e_{1},\ldots,e_{m}) holds. Let f0f_{0}\in\mathcal{F} be the function whose graph is given by Q(x1,x2,e3,,em)Q(x_{1},x_{2},e_{3},\ldots,e_{m}), i.e. f0=fe1,e2f_{0}=f_{e_{1},e_{2}}. We define +:×+:\mathcal{F}\times\mathcal{F}\to\mathcal{F} by taking f1+f2:=f1f01f2f_{1}+f_{2}:=f_{1}\circ f_{0}^{-1}\circ f_{2}.

As in Claim 3.6, from Lemma 3.12 we get:

Lemma 3.14.

G:=(,+)G:=(\mathcal{F},+) is an abelian group with the identity element f0f_{0}.

Definition 3.15.

We define the map π1:X1G\pi_{1}:X_{1}\to G by π1(a):=fa,e2\pi_{1}(a):=f_{a,e_{2}} for all aX1a\in X_{1}, and the map π2:X2G\pi_{2}:X_{2}\to G by π2(b):=fe1,b\pi_{2}(b):=f_{e_{1},b} for all bX2b\in X_{2}.

Note that both π1\pi_{1} and π2\pi_{2} are bijections by Remark 3.10.

Lemma 3.16.

For any aX1a\in X_{1} and bX2b\in X_{2} we have π1(a)+π2(b)=fa,b\pi_{1}(a)+\pi_{2}(b)=f_{a,b}.

Proof.

Let f1:=π1(a),f2:=π2(b)f_{1}:=\pi_{1}(a),f_{2}:=\pi_{2}(b). Note that f1(a)=e2f_{1}(a)=e_{2}, f01(e2)=e1f_{0}^{-1}(e_{2})=e_{1} and f2(e1)=bf_{2}(e_{1})=b, hence (f1+f2)(a)=(f2+f1)(a)=f2f01f1(a)=b(f_{1}+f_{2})(a)=(f_{2}+f_{1})(a)=f_{2}\circ f_{0}^{-1}\circ f_{1}(a)=b, so f1+f2=fa,bf_{1}+f_{2}=f_{a,b}. ∎

Definition 3.17.

For any set S{3,,m}S\subseteq\{3,\ldots,m\}, we define the map πS:iSXiG\pi_{S}:\prod_{i\in S}X_{i}\to G as follows: for a¯=(ai:iS)iSXi\bar{a}=(a_{i}:i\in S)\in\prod_{i\in S}X_{i}, let πS(a¯)\pi_{S}(\bar{a}) be the function in \mathcal{F} whose graph is given by Q(x1,x2,c3,,cm)Q(x_{1},x_{2},c_{3},\ldots,c_{m}) with cj:=ajc_{j}:=a_{j} for jSj\in S and cj:=ejc_{j}:=e_{j} for jSj\notin S. We write πj\pi_{j} for π{j}\pi_{\{j\}}.

Remark 3.18.

For each i{3,,m}i\in\{3,\ldots,m\}, the map πi:XiG\pi_{i}:X_{i}\to G is a bijection (by (P2)).

Lemma 3.19.

Fix some S{3,,m}S\subsetneq\{3,\ldots,m\} and j0{3,,m}Sj_{0}\in\{3,\ldots,m\}\setminus S. Let S0:=S{j0}S_{0}:=S\cup\{j_{0}\}. Then for any a¯iSXi\bar{a}\in\prod_{i\in S}X_{i} and aj0Xj0a_{j_{0}}\in X_{j_{0}} we have πS(a¯)+πj0(aj0)=πS0(a¯aj0)\pi_{S}(\bar{a})+\pi_{j_{0}}(a_{j_{0}})=\pi_{S_{0}}(\bar{a}^{\frown}a_{j_{0}}).

Proof.

Without loss of generality we have S={3,,k}S=\{3,\ldots,k\} and j0=k+1mj_{0}=k+1\leq m for some kk. Take any a¯=(a3,,ak)3ikXi\bar{a}=(a_{3},\ldots,a_{k})\in\prod_{3\leq i\leq k}X_{i} and ak+1Xk+1a_{k+1}\in X_{k+1}. Then, from the definitions:

  • the graph of f1:=πS(a¯)f_{1}:=\pi_{S}(\bar{a}) is given by Q(x1,x2,a3,,ak,ek+1,e¯)Q(x_{1},x_{2},a_{3},\ldots,a_{k},e_{k+1},\bar{e}^{\prime}), where e¯:=(ek+2,,em)\bar{e}^{\prime}:=(e_{k+2},\ldots,e_{m});

  • the graph of f2:=πk+1(ak+1)f_{2}:=\pi_{k+1}(a_{k+1}) is given by Q(x1,x2,e3,,ek,ak+1,e¯)Q(x_{1},x_{2},e_{3},\ldots,e_{k},a_{k+1},\bar{e}^{\prime});

  • the graph of f3:=πS0(a¯ak+1)f_{3}:=\pi_{S_{0}}(\bar{a}^{\frown}a_{k+1}) is given by Q(x1,x2,a3,,ak,ak+1,e¯)Q(x_{1},x_{2},a_{3},\ldots,a_{k},a_{k+1},\bar{e}^{\prime}).

Let c1X1c_{1}\in X_{1} be such that f1(c1)=e2f_{1}(c_{1})=e_{2} and let c2X2c_{2}\in X_{2} be such that f2(e1)=c2f_{2}(e_{1})=c_{2}. Then (f1+f2)(c1)=(f2+f1)(c1)=f2f01f1(c1)=c2(f_{1}+f_{2})(c_{1})=(f_{2}+f_{1})(c_{1})=f_{2}\circ f_{0}^{-1}\circ f_{1}(c_{1})=c_{2}. On the other hand, the following also hold:

  • Q(c1,e2,a3,,ak,ek+1,e¯)Q(c_{1},e_{2},a_{3},\ldots,a_{k},e_{k+1},\bar{e}^{\prime});

  • Q(e1,e2,e3,,ek,ek+1,e¯)Q(e_{1},e_{2},e_{3},\ldots,e_{k},e_{k+1},\bar{e}^{\prime});

  • Q(e1,c2,e3,,ek,ak+1,e¯)Q(e_{1},c_{2},e_{3},\ldots,e_{k},a_{k+1},\bar{e}^{\prime}).

Applying (P2) with respect to the coordinates (2,k+1)(2,k+1) and the rest, this implies that Q(c1,c2,a3,,ak,ak+1,e¯)Q(c_{1},c_{2},a_{3},\ldots,a_{k},a_{k+1},\bar{e}^{\prime}) holds, i.e. f3(c1)=c2f_{3}(c_{1})=c_{2}. Hence f1+f2=f3f_{1}+f_{2}=f_{3} by Remark 3.10(2), as wanted.

Proposition 3.20.

For any a¯=(a1,,am)i[m]Xi\bar{a}=(a_{1},\ldots,a_{m})\in\prod_{i\in[m]}X_{i} we have

Q(a1,,am)π1(a1)+π2(a2)=π3(a3)++πm(am).Q(a_{1},\ldots,a_{m})\iff\pi_{1}(a_{1})+\pi_{2}(a_{2})=\pi_{3}(a_{3})+\ldots+\pi_{m}(a_{m}).
Proof.

Let a¯=(a1,,am)i[m]Xi\bar{a}=(a_{1},\ldots,a_{m})\in\prod_{i\in[m]}X_{i} be arbitrary. By Lemma 3.16, π1(a1)+π2(a2)=fa1,a2\pi_{1}(a_{1})+\pi_{2}(a_{2})=f_{a_{1},a_{2}}. Applying Lemma 3.19 inductively, we have

π3,,m(a3,,am)=π3(a3)++πm(am).\pi_{3,\ldots,m}(a_{3},\ldots,a_{m})=\pi_{3}(a_{3})+\ldots+\pi_{m}(a_{m}).

And by definition, the graph of the function π3,,m(a3,,am)\pi_{3,\ldots,m}(a_{3},\ldots,a_{m}) is given by Q(x1,x2,a3,,am)Q(x_{1},x_{2},a_{3},\ldots,a_{m}). Combining and using Remark 3.10(2), we get Q(a1,,am)π1(a1)+π2(a2)=π3,,m(a3,,am)π1(a1)+π2(a2)=π3(a3)++πm(am)Q(a_{1},\ldots,a_{m})\iff\pi_{1}(a_{1})+\pi_{2}(a_{2})=\pi_{3,\ldots,m}(a_{3},\ldots,a_{m})\iff\pi_{1}(a_{1})+\pi_{2}(a_{2})=\pi_{3}(a_{3})+\ldots+\pi_{m}(a_{m}). ∎

We are ready to prove the main theorem of the section.

Theorem 3.21.

Given m4m\in\mathbb{N}_{\geq 4}, sets X1,,XmX_{1},\ldots,X_{m} and Qi[m]XiQ\subseteq\prod_{i\in[m]}X_{i} satisfying (P1) and (P2), there exists an abelian group (G,+,0G)(G,+,0_{G}) and bijections πi:XiG\pi^{\prime}_{i}:X_{i}\to G such that for every (a1,,am)i[m]Xi(a_{1},\ldots,a_{m})\in\prod_{i\in[m]}X_{i} we have

Q(a1,,am)π1(a1)++πm(am)=0G.Q(a_{1},\ldots,a_{m})\iff\pi^{\prime}_{1}(a_{1})+\ldots+\pi^{\prime}_{m}(a_{m})=0_{G}.

Moreover, if we have first-order structures 𝒩\mathcal{M}\preceq\mathcal{N} so that 𝒩\mathcal{N} is ||+|\mathcal{M}|^{+}-saturated, each Xi,i[m]X_{i},i\in[m] is type-definable (respectively, definable) in 𝒩\mathcal{N} over \mathcal{M} and Q=Fi[m]XiQ=F\cap\prod_{i\in[m]}X_{i} for a relation FF definable in 𝒩\mathcal{N} over \mathcal{M}, then given an arbitrary tuple e¯Q\bar{e}\in Q, we can take GG to be type-definable (respectively, definable) and the bijections πi,i[m]\pi^{\prime}_{i},i\in[m] to be definable in 𝒩\mathcal{N}, in both cases only using parameters from \mathcal{M} and e¯\bar{e}, so that πi(ei)=0G\pi^{\prime}_{i}(e_{i})=0_{G} for all i[m]i\in[m].

Proof.

By Proposition 3.20, for any a¯=(a1,,am)i[m]Xi\bar{a}=(a_{1},\ldots,a_{m})\in\prod_{i\in[m]}X_{i} we have

(3.5) Q(a1,,am)\displaystyle Q(a_{1},\ldots,a_{m})\iff
π1(a1)+π2(a2)=π3(a3)++πm(am)\displaystyle\pi_{1}(a_{1})+\pi_{2}(a_{2})=\pi_{3}(a_{3})+\ldots+\pi_{m}(a_{m})\iff
π1(a1)+π2(a2)+(π3(a3))++(πm(am))=0G,\displaystyle\pi_{1}(a_{1})+\pi_{2}(a_{2})+(-\pi_{3}(a_{3}))+\ldots+(-\pi_{m}(a_{m}))=0_{G},

hence the bijections π1:=π1,π2:=π2\pi^{\prime}_{1}:=\pi_{1},\pi^{\prime}_{2}:=\pi_{2} and πi:XiG,πi(x):=πi(x)\pi^{\prime}_{i}:X_{i}\to G,\pi^{\prime}_{i}(x):=-\pi_{i}(x) for 3im3\leq i\leq m satisfy the requirement.

Assume now that, for each i[m]i\in[m], XiX_{i} is type-definable in 𝒩\mathcal{N} over \mathcal{M}, i.e. XiX_{i} is the set of solutions in 𝒩\mathcal{N} of some partial type μi(xi)\mu_{i}(x_{i}) over \mathcal{M}; and that Q=Fi[m]XiQ=F\cap\prod_{i\in[m]}X_{i} for some \mathcal{M}-definable relation FF. Then from (P1) and (P2) for QQ, for any permutation of the variables of QQ we have in 𝒩\mathcal{N}:

μm(xm)μm(xm)1im1μi(xi)\displaystyle\mu_{m}(x_{m})\land\mu_{m}(x^{\prime}_{m})\land\bigwedge_{1\leq i\leq m-1}\mu_{i}\left(x_{i}\right)\land
F(x1,,xm1,xm)F(x1,,xm1,xm)xm=xm,\displaystyle\land F(x_{1},\ldots,x_{m-1},x_{m})\land F(x_{1},\ldots,x_{m-1},x^{\prime}_{m})\rightarrow x_{m}=x^{\prime}_{m},
i[m]μi(xi)i[m]μi(xi)F(x1,x2,x3,,xm)F(x1,x2,x3,,xm)\displaystyle\bigwedge_{i\in[m]}\mu_{i}\left(x_{i}\right)\land\bigwedge_{i\in[m]}\mu_{i}\left(x^{\prime}_{i}\right)\land F(x_{1},x_{2},x_{3},\ldots,x_{m})\land F(x_{1},x_{2},x^{\prime}_{3},\ldots,x^{\prime}_{m})\land
F(x1,x2,x3,,xm)F(x1,x2,x3,,xm).\displaystyle\land F(x^{\prime}_{1},x^{\prime}_{2},x_{3},\ldots,x_{m})\rightarrow F(x^{\prime}_{1},x^{\prime}_{2},x^{\prime}_{3},\ldots,x^{\prime}_{m}).

By ||+|\mathcal{M}|^{+}-saturation of 𝒩\mathcal{N}, in each of these implications μi\mu_{i} can be replaced by a finite conjunction of formulas in it. Hence, taking a finite conjunction over all permutations of the variables, we conclude that there exist some \mathcal{M}-definable sets XiXi,i[m]X^{\prime}_{i}\supseteq X_{i},i\in[m] so that Q:=Fi[m]XiQ^{\prime}:=F\cap\prod_{i\in[m]}X^{\prime}_{i} satisfies (P2) and

  • (P1)

    For any permutation of the variables of QQ^{\prime}, for any xiXi,1im1x_{i}\in X^{\prime}_{i},1\leq i\leq m-1, there exists at most one (but possibly none) xmXmx_{m}\in X^{\prime}_{m} satisfying Q(x1,,xm)Q^{\prime}(x_{1},\ldots,x_{m}).

We proceed to type-definability of GG. Let (e1,,em)Q(e_{1},\ldots,e_{m})\in Q (so in 𝒩\mathcal{N}) be as above (see Definition 3.13). We identify X2X_{2} with \mathcal{F}, the domain of GG, via the bijection π2\pi_{2} above mapping a2X2a_{2}\in X_{2} to fe1,a2f_{e_{1},a_{2}} (in an analogous manner we could identify the domain of GG with any of the type-definable sets Xi,i[s]X_{i},i\in[s]). Under this identification, the graph of addition in GG is given by

R+:={(a2,a2,a2′′)X2×X2×X2:a2′′=fe1,a2fe1,e21fe1,a2(e1)}\displaystyle R_{+}:=\left\{(a_{2},a^{\prime}_{2},a^{\prime\prime}_{2})\in X_{2}\times X_{2}\times X_{2}:a^{\prime\prime}_{2}=f_{e_{1},a_{2}}\circ f_{e_{1},e_{2}}^{-1}\circ f_{e_{1},a^{\prime}_{2}}(e_{1})\right\}
={(a2,a2,a2′′)X2×X2×X2:a2′′=fe1,a2fe1,e21(a2)}.\displaystyle=\left\{(a_{2},a^{\prime}_{2},a^{\prime\prime}_{2})\in X_{2}\times X_{2}\times X_{2}:a^{\prime\prime}_{2}=f_{e_{1},a_{2}}\circ f_{e_{1},e_{2}}^{-1}(a^{\prime}_{2})\right\}.

We have the following claim.

Claim 3.22.
  • For any a1X1,a2X2a_{1}\in X_{1},a_{2}\in X_{2} and b¯3imXi\bar{b}\in\prod_{3\leq i\leq m}X^{\prime}_{i}, if F(a1,a2,b¯)F(a_{1},a_{2},\bar{b}) holds then Fb¯X1×X2F_{\bar{b}}\restriction_{X_{1}\times X_{2}} defines the graph of fa1,a2f_{a_{1},a_{2}} (since QQ^{\prime} satisfies (P2)).

  • For any b¯3imXi\bar{b}\in\prod_{3\leq i\leq m}X^{\prime}_{i}, if Fb¯X1×X2F_{\bar{b}}\restriction_{X_{1}\times X_{2}} coincides with the graph of some function ff\in\mathcal{F}, then using that QQ^{\prime} satisfies (P1) we have:

    • for any a1X1a_{1}\in X_{1}, f(a1)f(a_{1}) is the unique element in X2X^{\prime}_{2} satisfying F(a1,x2,b¯)F(a_{1},x_{2},\bar{b});

    • for any a2X2a_{2}\in X_{2}, f1(a2)f^{-1}(a_{2}) is the unique element in X1X^{\prime}_{1} satisfying F(x1,a2,b¯)F(x_{1},a_{2},\bar{b}).

Using Claim 3.22, we have

R+=R+i[m]Xi,R_{+}=R^{\prime}_{+}\restriction\prod_{i\in[m]}X_{i},

where R+R^{\prime}_{+} is a definable relation in 𝒩\mathcal{N} (with parameters in {e1,e2}\mathcal{M}\cup\{e_{1},e_{2}\}) given by

R+(x2,x2,x2′′):y¯,y¯,z(y¯3imXiy¯3imXizX1\displaystyle R^{\prime}_{+}(x_{2},x^{\prime}_{2},x^{\prime\prime}_{2}):\iff\exists\bar{y},\bar{y}^{\prime},z\Big{(}\bar{y}\in\prod_{3\leq i\leq m}X^{\prime}_{i}\land\bar{y}^{\prime}\in\prod_{3\leq i\leq m}X^{\prime}_{i}\land z\in X^{\prime}_{1}\land
F(e1,e2,y¯)F(z,x2,y¯)F(e1,x2,y¯)F(z,x2′′,y¯)).\displaystyle F(e_{1},e_{2},\bar{y}^{\prime})\land F(z,x^{\prime}_{2},\bar{y}^{\prime})\land F(e_{1},x_{2},\bar{y})\land F(z,x^{\prime\prime}_{2},\bar{y})\Big{)}.

This shows that (G,+)(G,+) is type-definable over {e1,e2}\mathcal{M}\cup\{e_{1},e_{2}\}. It remains to show definability of the bijections πi:Xi\pi^{\prime}_{i}:X_{i}\to\mathcal{F}, where \mathcal{F} is identified with X2X_{2} as above (i.e. to show that the graph of πi\pi^{\prime}_{i} is given by some 𝒩\mathcal{N}-definable relation Pi(xi,x2)P_{i}(x_{i},x_{2}) intersected with Xi×X2X_{i}\times X_{2}).

We have π1:a1X1fa1,e2\pi^{\prime}_{1}:a_{1}\in X_{1}\mapsto f_{a_{1},e_{2}}\in\mathcal{F}, hence we need to show that the relation

{(a1,a2)X1×X2:fa1,e2(e1)=a2}\left\{(a_{1},a_{2})\in X_{1}\times X_{2}:f_{a_{1},e_{2}}(e_{1})=a_{2}\right\}

is of the form P1(x1,x2)X1×X2P_{1}(x_{1},x_{2})\restriction X_{1}\times X_{2} for some relation P1P_{1} definable in 𝒩\mathcal{N}. Using Claim 3.22, we can take

P1(x1,x2):y¯(y¯3imXiF(x1,e2,y¯)F(e1,x2,y¯)).\displaystyle P_{1}(x_{1},x_{2}):\iff\exists\bar{y}\left(\bar{y}\in\prod_{3\leq i\leq m}X^{\prime}_{i}\land F(x_{1},e_{2},\bar{y})\land F(e_{1},x_{2},\bar{y})\right).

We have π2:a2X2fe1,a2\pi^{\prime}_{2}:a_{2}\in X_{2}\mapsto f_{e_{1},a_{2}}\in\mathcal{F}, hence the corresponding definable relation P2(x2,x2)P_{2}(x_{2},x_{2}) is just the graph of the equality.

Finally, given 3im3\leq i\leq m, πi\pi_{i} maps aiXia_{i}\in X_{i} to the function in \mathcal{F} with the graph given by Q(x1,x2,e3,,ei1,ai,ei+1,,em)Q(x_{1},x_{2},e_{3},\ldots,e_{i-1},a_{i},e_{i+1},\ldots,e_{m}). Hence, remembering that the identity of GG is fe1,e2f_{e_{1},e_{2}}, which corresponds to e2X2e_{2}\in X_{2}, and using Claim 3.22, the graph of πi:aiXiπi(ai)(e1)X2\pi^{\prime}_{i}:a_{i}\in X_{i}\mapsto-\pi_{i}(a_{i})(e_{1})\in X_{2} is given by the intersection of Xi×X2X_{i}\times X_{2} with the definable relation

Pi(xi,x2):z(zX2F(e1,z,e3,,ei1,xi,ei+1,,em)\displaystyle P_{i}(x_{i},x_{2}):\iff\exists z\Big{(}z\in X^{\prime}_{2}\land F(e_{1},z,e_{3},\ldots,e_{i-1},x_{i},e_{i+1},\ldots,e_{m})\land
R+(x2,z,e2)).\displaystyle R^{\prime}_{+}(x_{2},z,e_{2})\Big{)}.\qed

4. Reconstructing an abelian group from an abelian mm-gon

Let T=TeqT=T^{\mathrm{eq}} be a stable theory in a language \mathcal{L} and 𝕄\mathbb{M} a monster model of TT. By “independence” we mean independence in the sense of forking, unless stated otherwise, and write acba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{c}b to denote that tp(a/bc)\mathrm{tp}(a/bc) does not fork over cc. We assume some familiarity with the properties of forking in stable theories (see e.g. [MR3888974] for a concise introduction to model-theoretic stability, and [pillay1996geometric] for a detailed treatment). We say that a subset AA of \mathcal{M} is small if |A||||A|\leq|\mathcal{L}|.

4.1. Abelian mm-gons

For a small set AA, as usual by its aclA\operatorname{acl}_{A}-closure we mean the algebraic closure over AA, i.e. for a set XX its aclA\operatorname{acl}_{A}-closure is aclA(X):=acl(AX)\operatorname{acl}_{A}(X):=\operatorname{acl}(A\cup X).

Definition 4.1.
111An analogous notion in the context of geometric theories was introduced in [berenstein2016geometric] under the name of an algebraic mm-gon, and it was also used in [chernikov2019n, Section 7].

We say that a tuple (a1,,am)(a_{1},\ldots,a_{m}) is an mm-gon over a set AA if each type tp(ai/A)\mathrm{tp}(a_{i}/A) is not algebraic, any m1m-1 elements of the tuple are independent over AA, and every element is in the aclA\operatorname{acl}_{A}-closure of the rest. We refer to a 33-gon as a triangle.

Definition 4.2.

We say that an mm-gon (a1,,am)(a_{1},\ldots,a_{m}) over AA with m4m\geq 4 is abelian if for any ij[m]i{\neq j}\in[m], taking a¯ij:=(ak)k[m]{i,j}\bar{a}_{ij}:=(a_{k})_{k\in[m]\setminus\{i,j\}}, we have

aiajaclA(aiaj)aclA(a¯ij)a¯ij.a_{i}a_{j}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\operatorname{acl}_{A}(a_{i}a_{j})\cap\operatorname{acl}_{A}(\bar{a}_{ij})}\bar{a}_{ij}.
Example 4.3.

Let AA be a small set and let (G,,1G)(G,\cdot,1_{G}) be an abelian group type-definable over AA. Let g1,,gm1Gg_{1},\dotsc,g_{m-1}\in G be independent generic elements over AA, and let gmg_{m} be such that g1gm=1Gg_{1}{\cdot}\dotsc{\cdot g_{m}}=1_{G}. Then (g1,,gm)(g_{1},\dotsc,g_{m}) is an abelian mm-gon over AA associated to GG.

Indeed, by assumption we have g1g2dcl(g1,g2)dcl(g3,,gm)g_{1}\cdot g_{2}\in\operatorname{dcl}(g_{1},g_{2})\cap\operatorname{dcl}(g_{3},\ldots,g_{m}). Also g1g2Ag3gm1g_{1}g_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{A}g_{3}\ldots g_{m-1}, hence g1g2A,g1g2g3gm1g_{1}g_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{A,g_{1}\cdot g_{2}}g_{3}\ldots g_{m-1}, which together with gmdcl(g1g2,g3,,gm1)g_{m}\in\operatorname{dcl}(g_{1}\cdot g_{2},g_{3},\ldots,g_{m-1}) implies g1g2A,g1g2g3gmg_{1}g_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{A,g_{1}\cdot g_{2}}g_{3}\ldots g_{m}. As the group GG is abelian, the same holds for any ij[m]i\neq j\in[m] instead of i=1,j=2i=1,j=2.

Definition 4.4.

Given two tuples a¯=(a1,,am)\bar{a}=(a_{1},\dots,a_{m}), a¯=(a1,,am)\bar{a}^{\prime}=(a_{1},\dotsc,a_{m}) and a small set AA we say that a¯\bar{a} and a¯\bar{a}^{\prime} are acl\operatorname{acl}-equivalent over AA if aclA(ai)=aclA(ai)\operatorname{acl}_{A}(a_{i})=\operatorname{acl}_{A}(a_{i}^{\prime}) for all i[m]i\in[m]. As usual if A=A=\emptyset we omit it.

Remark 4.5.

Note that the condition “a¯,a¯\bar{a},\bar{a}^{\prime} are acl\operatorname{acl}-equivalent” is stronger than “the tuples a¯,a¯\bar{a},\bar{a}^{\prime} are inter-algebraic”, as it requires inter-algebraicity component-wise.

In this section we prove the following theorem.

Theorem 4.6.

Let a¯=(a1,,am)\bar{a}=(a_{1},\ldots,a_{m}) be an abelian mm-gon, over some small set AA. Then there is a finite set CC with a¯AC\bar{a}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{A}{C}, a type-definable (in 𝕄eq\mathbb{M}^{\mathrm{eq}}) over acl(CA)\operatorname{acl}(C\cup A) connected (i.e. G=G0G=G^{0}) abelian group (G,)(G,\cdot) and an abelian mm-gon g¯=(g1,,gm)\bar{g}=(g_{1},\ldots,g_{m}) over acl(CA)\operatorname{acl}(C\cup A) associated to GG such that a¯\bar{a} and g¯\bar{g} are acl\operatorname{acl}-equivalent over acl(CA)\operatorname{acl}(C\cup A).

Remark 4.7.

After this work was completed, we have learned that independently Hrushovski obtained a similar (but incomparable) result [HrushovskiUnpubl, HruOber].

Remark 4.8.

In the case m=4m=4, Theorem 4.6 follows from the Abelian Group Configuration Theorem (see [bays2017model, Theorem C.2]).

In the rest of the section we prove Theorem 4.6, following the presentation of Hrushovski’s Group Configuration Theorem in [bays2018geometric, Theorem 6.1] with appropriate modifications.

First note that, adding to the language new constants naming the elements of acl(A)\operatorname{acl}(A), we may assume without loss of generality that A=A=\emptyset in Theorem 4.6, and that all types over the empty set are stationary.

Given a tuple a¯=(a1,am)\bar{a}=(a_{1},\dotsc a_{m}) we will often modify it by applying the following two operations:

  • for a finite set BB with a¯B\bar{a}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}B we expand the language by constants for the elements of acl(B)\operatorname{acl}(B), and refer to this as “base change to BB.

  • we replace a¯\bar{a} with an acl\operatorname{acl}-equivalent tuple a¯\bar{a}^{\prime} (over \emptyset), and refer to this as “inter-algebraic replacing”.

It is not hard to see that these two operations transform an (abelian) mm-gon to an (abelian) mm-gon, and we will freely apply them to the mm-gon a¯\bar{a} in the proof of Theorem 4.6.

Definition 4.9.

We say that a tuple (a1,,am,ξ)(a_{1},\dotsc,a_{m},\xi) is an expanded abelian mm-gon if (a1,,am)(a_{1},\dotsc,a_{m}) is an abelian mm-gon, ξacl(a1,a2)acl(a3,,am)\xi\in\operatorname{acl}(a_{1},a_{2})\cap\operatorname{acl}(a_{3},\dotsc,a_{m}) and a1a2ξa3ama_{1}a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi}a_{3}\dotsc a_{m}.

We remark that the tuple ξ\xi might be infinite even if all of the tuples aia_{i}’s are finite. Similarly, base change and inter-algebraic replacement transform an expanded abelian mm-gon to an expanded abelian mm-gon.

From now on, we fix an abelian mm-gon a=(a1,,am)\vec{a}=(a_{1},\dotsc,a_{m}). We also fix ξacl(a1,a2)acl(a3,,am)\xi\in\operatorname{acl}(a_{1},a_{2})\cap\operatorname{acl}(a_{3},\dotsc,a_{m}) such that a1a2ξa3ama_{1}a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi}a_{3}\dotsc a_{m} (exists by the definition of abelianity).

Claim 4.10.

(a1,a2,ξ)(a_{1},a_{2},\xi) is a triangle and (ξ,a3,,am)(\xi,a_{3},\dotsc,a_{m}) is an (m1)(m-1)-gon.

Proof.

For i=1,2i=1,2, since aia3,,ama_{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}a_{3},\dotsc,a_{m} and ξacl(a3,,am)\xi\in\operatorname{acl}(a_{3},\dotsc,a_{m}) we have aiξa_{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\xi. Also a1a2a_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}a_{2}. Thus the set {a1,a2,ξ}\{a_{1},a_{2},\xi\} is pairwise independent. We also have ξacl(a1,a2)\xi\in\operatorname{acl}(a_{1},a_{2}). From a1a2ξa3ama_{1}a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi}a_{3}\dotsc a_{m} we obtain a1ξa2a3ama_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi a_{2}}a_{3}\dotsc a_{m}. Since a1acl(a2,,am)a_{1}\in\operatorname{acl}(a_{2},\dotsc,a_{m}) we obtain a1acl(ξ,a2)a_{1}\in\operatorname{acl}(\xi,a_{2}). Similarly a2acl(ξ,a1)a_{2}\in\operatorname{acl}(\xi,a_{1}), thus (a1,a2,ξ)(a_{1},a_{2},\xi) is a triangle.

The proof that (ξ,a3,,am)(\xi,a_{3},\dotsc,a_{m}) is an (m1)(m-1)-gon is similar. ∎

4.2. Step 1. Obtaining a pair of interdefinable elements

After applying finitely many base changes and inter-algebraic replacements we may assume that a1a_{1} and a2a_{2} are interdefinable over ξ\xi, i.e. a1dcl(ξ,a2)a_{1}\in\operatorname{dcl}(\xi,a_{2}) and a2dcl(ξ,a1).a_{2}\in\operatorname{dcl}(\xi,a_{1}).

Our proof of Step 1 follows closely the proof of the corresponding step in the proof of [bays2018geometric, Theorem 6.1], but in order to keep track of the additional parameters we work with enhanced group configurations.

Definition 4.11.

An enhanced group configuration is a tuple

(a,b,c,x,y,z,d,e)(a,b,c,x,y,z,d,e)

satisfying the following diagram.

aabbccxxyyzzddee

That is,

  • (a,b,c)(a,b,c) is a triangle over dede;

  • (c,z,x)(c,z,x) is a triangle over dd;

  • (y,x,a)(y,x,a) is a triangle over ee;

  • (y,z,b)(y,z,b) is a triangle;

  • for any non-collinear triple in (a,b,c,x,y,z)(a,b,c,x,y,z), the set given by it and dede is independent over \emptyset.

If e=e=\emptyset we omit it from the diagram:

aabbccxxyyzzdd

In order to complete Step 1 we first show a few lemmas.

Lemma 4.12.

Let (a,b,c,x,y,z,d,e)(a,b,c,x,y,z,d,e) be an enhanced group configuration. Let z~𝕄eq\tilde{z}\in\mathbb{M}^{\mathrm{eq}} be the imaginary representing the finite set {z1,,zk}\{z_{1},\ldots,z_{k}\} of all conjugates of zz over bcxydbcxyd. Then z~\tilde{z} is inter-algebraic with zz.

Proof.

It suffices to show that acl(zi)=acl(zj)\operatorname{acl}(z_{i})=\operatorname{acl}(z_{j}) for all 1i,jk1\leq i,j\leq k. Indeed, then z~acl(z1,,zk)=acl(z)\tilde{z}\in\operatorname{acl}(z_{1},\ldots,z_{k})=\operatorname{acl}(z), and zacl(z~)z\in\operatorname{acl}(\tilde{z}) as it satisfies the algebraic formula “zz~z\in\tilde{z}”.

We have cdyzcd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}yz, so cdzycd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{z}y, so cdxzbycdx\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{z}by. Let B:=acl(cdx)acl(by)B:=\operatorname{acl}(cdx)\cap\operatorname{acl}(by), then BzBB\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{z}B, so Bacl(z)B\subseteq\operatorname{acl}(z). But zBz\in B, so B=acl(z)B=\operatorname{acl}(z). Then we also have acl(zi)=B\operatorname{acl}(z_{i})=B since for each ziz_{i} there is an automorphism σ\sigma of 𝕄\mathbb{M} with σ(z)=zi\sigma(z)=z_{i} and σ(B)=B\sigma(B)=B. ∎

Lemma 4.13.

Assume that (a,b,c,x,y,z,d,e)(a,b,c,x,y,z,d,e) is an enhanced group configuration. Then after a base change it is acl\operatorname{acl}-equivalent to an enhanced group configuration (a,b1,c,x,y1,z1,d,e)(a,b_{1},c,x,y_{1},z_{1},d,e) such that z1dcl(b1y1)z_{1}\in\operatorname{dcl}(b_{1}y_{1}). Moreover, bdcl(b1)b\in\operatorname{dcl}(b_{1}) and ydcl(y1)y\in\operatorname{dcl}(y_{1}).

Proof.

Recall that by our assumption all types over the empty set are stationary.

Let adetp(ade)|abcdexyza^{\prime}d^{\prime}e^{\prime}\models\mathrm{tp}(ade)|_{abcdexyz}. We have adeyzade\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}yz, hence adeyzbade\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}yzb. Then by stationarity we have adeyzbadea^{\prime}d^{\prime}e^{\prime}\equiv_{yzb}ade. Let x,cx^{\prime},c^{\prime} be such that adexcyzbadexca^{\prime}d^{\prime}e^{\prime}x^{\prime}c^{\prime}\equiv_{yzb}adexc. So (a,b,c,x,y,z,d,e)(a^{\prime},b,c^{\prime},x^{\prime},y,z,d^{\prime},e^{\prime}) is also an enhanced group configuration. Applying Lemma 4.12 to it, the set z~\tilde{z}^{\prime} of conjugates of zz over ybxcdybx^{\prime}c^{\prime}d^{\prime} is inter-algebraic with zz, and z~dcl(ybxcd)\tilde{z}^{\prime}\in\operatorname{dcl}(ybx^{\prime}c^{\prime}d^{\prime}).

We add acl(ade)\operatorname{acl}(a^{\prime}d^{\prime}e^{\prime}) to the base, and take y1:=yxy_{1}:=yx^{\prime}, b1:=bcb_{1}:=bc^{\prime}, z1:=z~z_{1}:=\tilde{z}^{\prime}. Then (a,b1,c,x,y1,z1,d,e)(a,b_{1},c,x,y_{1},z_{1},d,e) is an enhanced group configuration satisfying the conclusion of the lemma. ∎

Lemma 4.14.

Let (a,b,c,x,y,z,d,e)(a,b,c,x,y,z,d,e) be an enhanced group configuration with edcl()e\in\operatorname{dcl}(\emptyset). Then, applying finitely many base changes and inter-algebraic replacements, it can be transformed to a configuration

(a1,b1,c1,x1,y1,z1,d,e)(a_{1},b_{1},c_{1},x_{1},y_{1},z_{1},d,e)

such that y1y_{1} and z1z_{1} are interdefinable over b1b_{1}. (Notice that dd and ee remain unchanged.)

Proof.

Applying Lemma 4.13, after a base change and an inter-algebraic replacement we may assume zdcl(by)z\in\operatorname{dcl}(by).

Next observe that, since edcl()e\in\operatorname{dcl}(\emptyset), the tuple (b,a,c,z,y,x,d,e)(b,a,c,z,y,x,d,e) is also an enhanced group configuration.

bbaacczzyyxxddee

By Lemma 4.13, after a base change, it is acl\operatorname{acl}-equivalent to a configuration (b,a1,c,z,y1,x1,d,e)(b,a_{1},c,z,y_{1},x_{1},d,e) with x1dcl(a1,y1)x_{1}\in\operatorname{dcl}(a_{1},y_{1}) and ydcl(y1)y\in\operatorname{dcl}(y_{1}). Thus after an inter-algebraic replacement we may assume that xdcl(ay)x\in\operatorname{dcl}(ay) and zdcl(by)z\in\operatorname{dcl}(by).

Finally, observe that (c,b,a,x,z,y,e,d)(c,b,a,x,z,y,e,d) is an enhanced group configuration.

ccbbaaxxzzyyeedd

Applying the proof of Lemma 4.13 to it, after base change to an independent copy cdec^{\prime}d^{\prime}e^{\prime} of cdecde, let axcdeybzaxcdea^{\prime}x^{\prime}c^{\prime}d^{\prime}e^{\prime}\equiv_{ybz}axcde, let y~\tilde{y}^{\prime} be the set of conjugates of yy over bazxeba^{\prime}zx^{\prime}e^{\prime}, equivalently over bazxba^{\prime}zx^{\prime} since edcl()e^{\prime}\in\operatorname{dcl}(\emptyset). So ydcl(bazx)y^{\prime}\in\operatorname{dcl}(ba^{\prime}zx^{\prime}).

Now since xdcl(ay)x^{\prime}\in\operatorname{dcl}(a^{\prime}y) and zdcl(by)z\in\operatorname{dcl}(by) (since this was satisfied on the previous step), we have zxdcl(bay)zx^{\prime}\in\operatorname{dcl}(ba^{\prime}y). But then zxdcl(bay)zx^{\prime}\in\operatorname{dcl}(ba^{\prime}y^{\prime}) for any yy^{\prime} a conjugate of yy over bazxba^{\prime}zx^{\prime}, and so zxdcl(bay~)zx^{\prime}\in\operatorname{dcl}(ba^{\prime}\tilde{y}^{\prime}). We take b1:=bab_{1}:=ba^{\prime}, z1:=zxz_{1}:=zx^{\prime} and y1:=y~y_{1}:=\tilde{y}^{\prime}. Then y1dcl(b1z1)y_{1}\in\operatorname{dcl}(b_{1}z_{1}), and also z1dcl(b1y1)z_{1}\in\operatorname{dcl}(b_{1}y_{1}), and the tuple (a,b1,c,x,y1,z1,d,e)(a,b_{1},c,x,y_{1},z_{1},d,e) satisfies the conclusion of the lemma. ∎

We can now finish Step 1.

Let (a1,,am,ξ)(a_{1},\dotsc,a_{m},\xi) be an expanded abelian mm-gon. Let a~:=a5am\tilde{a}:=a_{5}\ldots a_{m} and η:=acl(a1a3)acl(a2a4am)\eta:=\operatorname{acl}(a_{1}a_{3})\cap\operatorname{acl}(a_{2}a_{4}\dotsc a_{m})

It is easy to check that (a3,ξ,a4,η,a1,a2,a~,)(a_{3},\xi,a_{4},\eta,a_{1},a_{2},\tilde{a},\emptyset) is an enhanced group configuration.

a3a_{3}ξ\xia4a_{4}η\etaa1a_{1}a2a_{2}a~\tilde{a}

Applying Lemma 4.14, after a base change it is acl\operatorname{acl}-equivalent to an enhanced group configuration (a3,ξ,a4,η,a1,a2,a~,)(a_{3}^{\prime},\xi^{\prime},a_{4}^{\prime},\eta^{\prime},a_{1}^{\prime},a_{2}^{\prime},\tilde{a},\emptyset) such that a1a^{\prime}_{1} and a2a^{\prime}_{2} are interdefinable over ξ\xi^{\prime}. Replacing a1,a2,a3,a4a_{1},a_{2},a_{3},a_{4} with a1,a2,a3,a4a_{1}^{\prime},a_{2}^{\prime},a_{3}^{\prime},a_{4}^{\prime}, respectively, and ξ\xi with ξ\xi^{\prime} we complete Step 1.

Reduction 1. From now on we assume that in the expanded abelian mm-gon (a1,,am,ξ)(a_{1},\ldots,a_{m},\xi\,) we have that a1a_{1} and a2a_{2} are interdefinable over ξ\xi.

4.3. Step 2. Obtaining a group from an expanded abelian mm-gon.

As in Hrushovski’s Group Configuration Theorem, we will construct a group using germs of definable functions. We begin by recalling some definitions (see e.g. [bays2018geometric, Section 5.1]).

Let p(x)p(x) be a stationary type over a set AA. By a definable function on p(x)p(x) we mean a (partial) function f(x)f(x) definable over a set BB such that every element ap|ABa\models p|_{AB} is in the domain of ff.

If ff and gg are two definable functions on p(x)p(x), defined over sets BB and CC respectively, then we say that they have the same germ at p(x)p(x), and write fpgf\sim_{p}g, if for all (equivalently, some) ap|ABCa\models p|_{ABC} we have f(a)=g(a)f(a)=g(a). We may omit pp and write fgf\sim g if no confusion arises.

The germ of a definable function ff at pp is the equivalence class of ff under this equivalence relation, and we denote it by f~\tilde{f}.

If p(x)p(x) and q(y)q(y) are stationary types over \emptyset, we write f~:pq\tilde{f}:p\to q if for some (any) representative ff of f~\tilde{f} definable over BB and ap|Ba\models p|_{B} we have f(a)qf(a)\models q. We say that f~\tilde{f} is invertible if there exists a germ g~:qp\tilde{g}:q\to p and for some (any) representative gg definable over CC and ap|BCa\models p|_{BC} we have g(f(a))=ag(f(a))=a. We denote g~\tilde{g} by f~1\tilde{f}^{-1}.

By a type-definable family of functions from pp to qq we mean an \emptyset-definable family of functions fzf_{z} and a stationary type s(z)s(z) over \emptyset such that for any cs(z)c\models s(z) the function fcf_{c} is a definable function on pp, and for any ap|ca\models p|_{c} we have fc(a)q(y)|cf_{c}(a)\models q(y)|_{c}. We will denote such a family as fs:pqf_{s}\colon p\to q, and the family of the corresponding germs as f~s:pq\tilde{f}_{s}\colon p\to q.

Let p,q,sp,q,s be stationary types over \emptyset and fs:pqf_{s}\colon p\to q a type-definable family of functions. This family is generically transitive if fc(a)af_{c}(a)\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}a for any (equivalently, some) csc\models s and ap|ca\models p|c. This family is canonical if for any c,csc,c^{\prime}\models s we have fcfcc=cf_{c}\sim f_{c^{\prime}}\Leftrightarrow c=c^{\prime}.

We now return to our expanded abelian mm-gon (a,ξ)(\vec{a},\xi).

Let pi(xi):=tp(ai/)p_{i}(x_{i}):=\mathrm{tp}(a_{i}/\emptyset) for i{1,2}i\in\{1,2\}, and let q(y):=tp(ξ/)q(y):=\mathrm{tp}(\xi/\emptyset).

Since a1a_{1} and a2a_{2} are interdefinable over ξ\xi and ξacl(a1,a2)\xi\in\operatorname{acl}(a_{1},a_{2}), there exists a formula φ(x1,x2,y)tp(a1,a2,ξ)\varphi(x_{1},x_{2},y)\in\mathrm{tp}\left(a_{1},a_{2},\xi\right) such that

yx11x2φ(x1,x2,y),yx21x1φ(x1,x2,y),\displaystyle\models\forall y\forall x_{1}\exists^{\leq 1}x_{2}\varphi(x_{1},x_{2},y),\models\forall y\forall x_{2}\exists^{\leq 1}x_{1}\varphi(x_{1},x_{2},y),
x1x2dφ(x1,x2,y),\displaystyle\models\forall x_{1}\forall x_{2}\exists^{\leq d}\varphi(x_{1},x_{2},y),

for some dd\in\mathbb{N}, and also

φ(a1,a2,y)tp(ξ/a1a2).\varphi(a_{1},a_{2},y)\vdash\mathrm{tp}(\xi/a_{1}a_{2}).

It follows that φ(x1,x2,r),rq\varphi(x_{1},x_{2},r),r\models q gives a type-definable family of invertible germs f~q:p1p2\tilde{f}_{q}\colon p_{1}\to p_{2} with fξ(a1)=a2f_{\xi}(a_{1})=a_{2}.

Remark 4.15.

Let rqr\models q, b1p1|rb_{1}\models p_{1}|r and b2:=fr(b1)b_{2}:=f_{r}(b_{1}). By stationarity of types over \emptyset we then have b1ra1ξb_{1}r\equiv a_{1}\xi, and as φ(b1,x2,r)\varphi(b_{1},x_{2},r) has a unique solution this implies b1b2ra1a2ξb_{1}b_{2}r\equiv a_{1}a_{2}\xi, so b1b2b_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}b_{2}, b1dcl(b2,r)b_{1}\in\operatorname{dcl}(b_{2},r) and racl(b1,b2)r\in\operatorname{acl}(b_{1},b_{2}).

In particular f~q:p1p2\tilde{f}_{q}\colon p_{1}\to p_{2} is a generically transitive invertible family.

Consider the equivalence relation E(y,y)E(y,y^{\prime}) on the set of realizations of qq given by rErfrfrrEr^{\prime}\Leftrightarrow f_{r}\sim f_{r^{\prime}}. By the definability of types it is relatively definable, i.e. it is an intersection of an \emptyset-definable equivalence relation with q(y)q(y)q(y)\cup q(y^{\prime}). Assume ξq\xi^{\prime}\models q with ξEξ\xi E\xi^{\prime}. We choose b1p1|ξξb_{1}\models p_{1}|\xi\xi^{\prime} and let b2:=fξ(b1)=fξ(b1)b_{2}:=f_{\xi}(b_{1})=f_{\xi^{\prime}}(b_{1}). By the choice of φ\varphi we have ξ,ξacl(b1,b2)\xi,\xi^{\prime}\in\operatorname{acl}(b_{1},b_{2}), hence ξ\xi and ξ\xi^{\prime} are inter-algebraic over b1b_{1}. Since b1ξξb_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\xi\xi^{\prime} it follows that ξ\xi and ξ\xi^{\prime} are inter-algebraic over \emptyset: as b1ξξb_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi}\xi^{\prime} and ξacl(b1ξ)\xi^{\prime}\in\operatorname{acl}(b_{1}\xi) implies ξξξ\xi^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi}\xi^{\prime}, hence ξacl(ξ)\xi^{\prime}\in\operatorname{acl}(\xi); and similarly ξacl(ξ)\xi\in\operatorname{acl}(\xi^{\prime}). Hence the EE-class of ξ\xi is finite. Replacing ξ\xi by ξ/E\xi/E, if needed, we will assume that the family f~q:p1p2\tilde{f}_{q}\colon p_{1}\to p_{2} is canonical.

We now consider the type-definable family of germs f~r11f~r2:p1p1\tilde{f}_{r_{1}}^{-1}{\circ}\tilde{f}_{r_{2}}\colon p_{1}\to p_{1}, (r1,r2)q(2)(r_{1},r_{2})\models q^{(2)}. Again let EE be a relatively definable equivalence relation on q(2)q^{(2)} defined as (r1,r2)E(r3,r4)(r_{1},r_{2})E(r_{3},r_{4}) if and only if fr11fr2fr31fr4f_{r_{1}}^{-1}{\circ}f_{r_{2}}\sim f_{r_{3}}^{-1}{\circ}\ f_{r_{4}}. Let s(z)s(z) be the type q(2)/Eq^{(2)}/E. We then have (by e.g. [MR2264318, Remark 3.3.1(1)]) a canonical family of germs h~s:p1p1\tilde{h}_{s}\colon p_{1}\to p_{1} such that for every (r1,r2)q(2)(r_{1},r_{2})\models q^{(2)} there is unique cs(z)c\models s(z) with h~c=f~r11f~r2\tilde{h}_{c}=\tilde{f}_{r_{1}}^{-1}{\circ}\tilde{f}_{r_{2}}. We will denote this cc as c=fr11fr2c=\lceil f_{r_{1}}^{-1}{\circ}f_{r_{2}}\rceil. Clearly cdcl(r1,r2)c\in\operatorname{dcl}(r_{1},r_{2}), r1dcl(c,r2)r_{1}\in\operatorname{dcl}(c,r_{2}) and r2dcl(c,r1)r_{2}\in\operatorname{dcl}(c,r_{1}).

Lemma 4.16.

For any (r1,r2)q(2)(r_{1},r_{2})\models q^{(2)} and c:=fr11fr2c:=\lceil f_{r_{1}}^{-1}{\circ}f_{r_{2}}\rceil we have r1cr_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}c and r2cr_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}c.

Proof.

It is sufficient to prove the lemma for some (r1,r2)q(2)(r_{1},r_{2})\models q^{(2)}. We take r1:=ξr_{1}:=\xi from our abelian expanded mm-gon (a,ξ)(\vec{a},\xi) and let r2q|a1,,amr_{2}\models q|_{a_{1},\dotsc,a_{m}}. Let c:=fξ1fr2c:=\lceil f_{\xi}^{-1}{\circ}f_{r_{2}}\rceil.

Let a~:=(a5,,am)\tilde{a}:=(a_{5},\dotsc,a_{m}) and η:=acl(a1a3)acl(a2a4am)\eta:=\operatorname{acl}(a_{1}a_{3})\cap\operatorname{acl}(a_{2}a_{4}\dotsc a_{m}). We have an enhanced group configuration

a3a_{3}ξ\xia4a_{4}η\etaa1a_{1}a2a_{2}a~\tilde{a}

In particular (a3,ξ,a4,η,a1,a2)(a_{3},\xi,a_{4},\eta,a_{1},a_{2}) form a group configuration over a~\tilde{a}, i.e. we have a group configuration

a3a_{3}ξ\xia4a_{4}η\etaa1a_{1}a2a_{2}

where any three distinct collinear points form a triangle over a~\tilde{a}, and any three distinct non-collinear points form an independent set over a~\tilde{a}.

It follows from the proof of the Group Configuration Theorem (e.g. see Step (II) in the proof of [bays2018geometric, Theorem 6.1]) that ca~ξc\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\tilde{a}}\xi and ca~r2c\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\tilde{a}}r_{2}.

We also have r2a1amr_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}a_{1}\ldots a_{m}, hence r2a1a2a~r_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{a_{1}a_{2}}\tilde{a}, and as a1a2a~a_{1}a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\tilde{a} this implies r2a1a2a~r_{2}a_{1}a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\tilde{a}, which together with ξacl(a1a2)\xi\in\operatorname{acl}(a_{1}a_{2}) implies ξr2a~\xi r_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\tilde{a}. Hence cξc\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\xi and cr2c\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}r_{2}. ∎

This shows that the families of germs f~q:p1p2,h~s:p1p1\tilde{f}_{q}:p_{1}\to p_{2},\tilde{h}_{s}:p_{1}\to p_{1} satisfy the assumptions of the Hrushovski-Weil theorem for bijections (see [bays2018geometric, Lemma 5.4]), applying which we obtain the following.

  1. (a)

    The family of germs h~s:p1p1\tilde{h}_{s}\colon p_{1}\to p_{1} is closed under generic composition and inverse, i.e. for any independent c1,c2s(z)c_{1},c_{2}\models s(z) there exists cs(z)c\models s(z) with h~c=h~c1h~c2\tilde{h}_{c}=\tilde{h}_{c_{1}}{\circ}\tilde{h}_{c_{2}}, and also there is c3s(z)c_{3}\models s(z) with h~c3=h~c11\tilde{h}_{c_{3}}=\tilde{h}_{c_{1}}^{-1}.

  2. (b)

    There is a type-definable connected group (G,)(G,\cdot) and a type-definable set SS with a relatively definable faithful transitive action of GG on SS that we will denote by :G×SS*:G\times S\to S, so that GG, SS and the action are defined over the empty set.

  3. (c)

    There is a definable embedding of s(z)s(z) into GG as its unique generic type, and a definable embedding of p1(x1)p_{1}(x_{1}) into SS as its unique generic type, such that the generic action of the family hsh_{s} on p1p_{1} agrees with that of GG on SS, i.e. for any cs(z)c\models s(z) and ap1(x)|ca\models p_{1}(x)|c we have hc(a)=cah_{c}(a)=c*a.

Reduction 2. Let r1,r2r_{1},r_{2} be independent realizations of q(y)q(y), c:=fr11fr2c:=\lceil f_{r_{1}}^{-1}{\circ}f_{r_{2}}\rceil and s(z):=tp(c/)s(z):=\mathrm{tp}(c/\emptyset).

From now on we assume that s(z)s(z) is the generic type of a type-definable connected group (G,)(G,\cdot), the group GG relatively definably acts faithfully and transitively on a type-definable set SS, the type p1(x1)p_{1}(x_{1}) is the generic type of SS, and generically the action of hsh_{s} on p1p_{1} agrees with the action of GG on SS, and GG, SS and the action are definable over the empty set.

4.4. Step 3. Finishing the proof

We fix an independent copy (e,ξe)(\vec{e},\xi_{e}) of (a,ξ)(\vec{a},\xi), i.e. (e,ξe)(a,ξ)(\vec{e},\xi_{e})\equiv(\vec{a},\xi) and eξeaξ\vec{e}\xi_{e}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\vec{a}\xi.

We denote by π\pi the map π:q(y)|ξes(z)|ξe\pi\colon q(y)|_{\xi_{e}}\to s(z)|_{\xi_{e}} given by π:rfξe1fr\pi\colon r\mapsto\lceil f_{\xi_{e}}^{-1}{\circ}f_{r}\rceil. Note that π\pi is relatively definable over acl(e)\operatorname{acl}(\vec{e}). Let

t(x3,,xm):=tp(a3,,am/),\displaystyle t(x_{3},\dotsc,x_{m}):=\mathrm{tp}(a_{3},\dotsc,a_{m}/\emptyset),
tξ(y,x3,,xm):=tp(ξ,a3,,am/).\displaystyle t_{\xi}(y,x_{3},\dotsc,x_{m}):=\mathrm{tp}(\xi,a_{3},\dotsc,a_{m}/\emptyset).

Note that by Claim 4.10 every tuple realizing tξt_{\xi} is an (m1)(m-1)-gon.

Notation 4.17.

For a tuple c¯=(c3,,cm)\bar{c}=(c_{3},\dotsc,c_{m}), j{3,,m}j\in\{3,\dotsc,m\} and {<,,>,}\square\in\{<,\leq,>,\geq\}, we will denote by c¯j\bar{c}_{\square j} the tuple c¯j=(ci:3imij)\bar{c}_{\square j}=(c_{i}:3\leq i\leq m\land i\square j). For example, c¯<j=(c3,,cj1)\bar{c}_{<j}=(c_{3},\dotsc,c_{j-1}). We will typically omit the concatenation sign: e.g., for c¯=(c3,,cm)\bar{c}=(c_{3},\dotsc,c_{m}), b¯=(b3,,bm)\bar{b}=(b_{3},\dotsc,b_{m}) and j{3,,m}j\in\{3,\dotsc,m\} we denote by c¯<j,bj,c¯>j\bar{c}_{<j},b_{j},\bar{c}_{>j} the tuple (c3,,cj1,bj,cj+1,,cm)(c_{3},\dotsc,c_{j-1},b_{j},c_{j+1},\dotsc,c_{m}).

Also in the proof of the next proposition we let a¯:=(a3,,am)\bar{a}:=(a_{3},\dotsc,a_{m}), e¯:=(e3,,em)\bar{e}:=(e_{3},\dotsc,e_{m}), and continue using a\vec{a} and e\vec{e} to denote the corresponding mm-tuples.

Proposition 4.18.

For each j{3,,m}j\in\{3,\dotsc,m\} there exists rjq(y)|ξer_{j}\models q(y)|_{\xi_{e}} such that tξ(rj,e¯<j,aj,e¯>j)\models t_{\xi}(r_{j},\bar{e}_{<j},a_{j},\bar{e}_{>j}) and π(ξ)=π(rm)π(rm1)π(r3)\pi(\xi)=\pi(r_{m})\cdot\pi(r_{m-1})\cdot\dotsc\cdot\pi(r_{3}).

We will choose such rjr_{j} by reverse induction on jj. Before proving Proposition 4.18 we first establish the following lemma and its corollary that will provide the induction step.

Lemma 4.19.

For j{4,,m}j\in\{4,\dotsc,m\} there exist r<j,rj,rjr_{<j},r_{j},r_{\leq j}, each realizing q(y)|ξeq(y)|_{\xi_{e}}, such that

tξ(r<j,a¯<j,e¯j),tξ(rj,e¯<j,aj,e¯>j),tξ(rj,a¯j,e¯>j)\models t_{\xi}(r_{<j},\bar{a}_{<j},\bar{e}_{\geq j}),\models t_{\xi}(r_{j},\bar{e}_{<j},a_{j},\bar{e}_{>j}),\models t_{\xi}(r_{\leq j},\bar{a}_{\leq j},\bar{e}_{>j})

and π(rj)=π(rj)π(r<j)\pi(r_{\leq j})=\pi(r_{j})\cdot\pi(r_{<j}).

Proof.

First we note that the condition r<j,rj,rjq(y)|ξer_{<j},r_{j},r_{\leq j}\models q(y)|_{\xi_{e}} can be relaxed to r<j,rj,rjq(y)r_{<j},r_{j},r_{\leq j}\models q(y) by stationarity of qq, since for j{4,,m}j\in\{4,\dotsc,m\} and rq(y)r\models q(y) satisfying one of tξ(r,a¯<j,e¯j)\models t_{\xi}(r,\bar{a}_{<j},\bar{e}_{\geq j}), tξ(r,e¯<j,aj,e¯>j)\models t_{\xi}(r,\bar{e}_{<j},a_{j},\bar{e}_{>j}), tξ(r,a¯j,e¯>j)\models t_{\xi}(r,\bar{a}_{\leq j},\bar{e}_{>j}) we have rξer\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\xi_{e}. Indeed, assume e.g. tξ(r,a¯<j,e¯j)\models t_{\xi}(r,\bar{a}_{<j},\bar{e}_{\geq j}). We have racl(a¯<j,e¯j)r\in\operatorname{acl}(\bar{a}_{<j},\bar{e}_{\geq j}) and ξeacl(e3,,em)\xi_{e}\in\operatorname{acl}(e_{3},\dotsc,e_{m}). By assumption

{e3,,em,a3,,am}\{e_{3},\dotsc,e_{m},a_{3},\dotsc,a_{m}\}

is an independent set, hence we obtain re¯jξer\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\bar{e}_{\geq j}}\xi_{e}. Using ξee¯j\xi_{e}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\bar{e}_{\geq j} we conclude rξer\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\xi_{e}. The other two cases are similar.

Let η:=acle¯>j(e1,ej)acle¯>j(e2,e3,,ej1)\eta:=\operatorname{acl}_{\bar{e}_{>j}}(e_{1},e_{j})\cap\operatorname{acl}_{{\bar{e}_{>j}}}(e_{2},e_{3},\dotsc,e_{j-1}). Note that acl(η)=η\operatorname{acl}(\eta)=\eta, hence all types over η\eta are stationary, and e¯>jη{\bar{e}}_{>j}\in\eta.

Then one verifies by basic forking calculus that

(4.1) eje_{j}ξe\xi_{e}ej1e_{j-1}η\etae1e_{1}e2e_{2}e¯<j1\bar{e}_{<j-1}

is an enhanced group configuration over e¯>j{\bar{e}_{>j}}. Namely,

  • (ej,ξe,ej1)(e_{j},\xi_{e},e_{j-1}) and (η,e2,ej1)(\eta,e_{2},e_{j-1}) are triangles over e¯<j1,e¯>j\bar{e}_{<j-1},{\bar{e}_{>j}};

  • (e1,η,ej)(e_{1},\eta,e_{j}) and (e1,e2,ξe)(e_{1},e_{2},\xi_{e}) are triangles over e¯>j{\bar{e}_{>j}};

  • for any non-collinear triple in e1,e2,ej1,ej,η,ξee_{1},e_{2},e_{j-1},e_{j},\eta,\xi_{e}, the set given by it and e¯<j1\bar{e}_{<j-1} is independent over e¯>j{\bar{e}_{>j}}.

In addition, e1e2ξee¯>je_{1}e_{2}\xi_{e}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}{\bar{e}_{>j}} and fξe(e1)=e2f_{\xi_{e}}(e_{1})=e_{2}.

The triple η,ej,ej1\eta,e_{j},e_{j-1} is non-collinear, hence ηe¯>je3ej\eta\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{{\bar{e}_{>j}}}e_{3}\dotsc e_{j}. Since

e¯>je3ej,{\bar{e}_{>j}}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}e_{3}\dotsc e_{j},

this implies ηe3ej\eta\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}e_{3}\dotsc e_{j}. Since also ηa3aj\eta\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}a_{3}\dotsc a_{j}, by stationarity of types over \emptyset we have a3ajηe3eja_{3}\dotsc a_{j}\equiv_{\eta}e_{3}\dotsc e_{j}. Hence there exist rjr_{\leq j}, b1b_{1}, b2b_{2} such that the diagram

(4.2) aja_{j}rjr_{\leq j}aj1a_{j-1}η\etab1b_{1}b2b_{2}a¯<j1\bar{a}_{<j-1}

is isomorphic over η\eta to the diagram (4.1). I.e., there is an automorphism of 𝕄\mathbb{M} fixing η\eta (hence also e¯>j{\bar{e}_{>j}}) and mapping (4.2) to (4.1).

It follows from the choice of the tuple (e,ξe)(\vec{e},\xi_{e}), diagrams (4.1), (4.2) and their isomorphism over η\eta that e1ejηe2ej1e_{1}e_{j}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\eta}e_{2}\dotsc e_{j-1} and b1ajηe1ejb_{1}a_{j}\equiv_{\eta}e_{1}e_{j}. Since aje1ema_{j}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}e_{1}\dotsc e_{m} we have ajηe2ej1a_{j}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\eta}e_{2}\dotsc e_{j-1}. As b1acl(ajη)b_{1}\in\operatorname{acl}(a_{j}\eta), we have

b1ajηe2ej1.b_{1}a_{j}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\eta}e_{2}\dotsc e_{j-1}.

Since all types over η\eta are stationary, this implies

b1aje2ej1ηe1eje2ej1,b_{1}a_{j}e_{2}\dotsc e_{j-1}\equiv_{\eta}e_{1}e_{j}e_{2}\dotsc e_{j-1},

hence there exists rjr_{j} such that the diagram

(4.3) aja_{j}rjr_{j}ej1e_{j-1}η\etab1b_{1}e2e_{2}e¯<j1\bar{e}_{<j-1}

is isomorphic to the diagram (4.1) over η\eta.

A similar argument with the roles of the aa’s and the ee’s interchanged shows that e1eja2ajiηb1aja2aj1e_{1}e_{j}a_{2}\dotsc a_{j-i}\equiv_{\eta}b_{1}a_{j}a_{2}\dotsc a_{j-1}, hence there exists r<jr_{<j} such that the diagram

(4.4) eje_{j}r<jr_{<j}aj1a_{j-1}η\etae1e_{1}b2b_{2}a¯<j1\bar{a}_{<j-1}

is isomorphic to the diagram (4.1) over η\eta.

From the choice of (e,ξe)(\vec{e},\xi_{e}) and the isomorphisms of the diagrams we have

(4.5) (fr<jfξe1frj)(b1)=b2=frj(b1).(f_{r_{<j}}\circ f_{\xi_{e}}^{-1}\circ f_{r_{j}})(b_{1})=b_{2}=f_{r_{\leq j}}(b_{1}).

We claim that b1r<j,ξe,rj,rjb_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}r_{<j},\xi_{e},r_{j},r_{\leq j}. Indeed, as

r<j,ξe,rj,rjacl(a3,,am,e3,em) and\displaystyle r_{<j},\xi_{e},r_{j},r_{\leq j}\in\operatorname{acl}(a_{3},\dotsc,a_{m},e_{3},\dotsc e_{m})\textrm{ and}
e2a3,,am,e3,em,\displaystyle e_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}a_{3},\dotsc,a_{m},e_{3},\dotsc e_{m},

we obtain e2r<j,ξe,rj,rje_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}r_{<j},\xi_{e},r_{j},r_{\leq j}, hence e2rjr<j,ξe,rje_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{r_{j}}r_{<j},\xi_{e},r_{\leq j}. As b1acl(e2,rj)b_{1}\in\operatorname{acl}(e_{2},r_{j}) we have b1rjr<j,ξe,rjb_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{r_{j}}r_{<j},\xi_{e},r_{\leq j}. Using b1rjb_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}r_{j} we conclude

(4.6) b1r<j,ξe,rj,rj.b_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}r_{<j},\xi_{e},r_{j},r_{\leq j}.

It follows from (4.5) and (4.6) that

f~r<jf~ξe1f~rj=f~rj,\tilde{f}_{r_{<j}}\circ\tilde{f}_{\xi_{e}}^{-1}\circ\tilde{f}_{r_{j}}=\tilde{f}_{r_{\leq j}},

and hence

(4.7) ((f~ξe1f~r<j)(f~ξe1f~rj))=f~ξe1f~rj.\Bigl{(}(\tilde{f}_{\xi_{e}}^{-1}\circ\tilde{f}_{r_{<j}})\circ(\tilde{f}_{\xi_{e}}^{-1}\circ\tilde{f}_{r_{j}})\Bigr{)}=\tilde{f}_{\xi_{e}}^{-1}\circ\tilde{f}_{r_{\leq j}}.

As noted at the beginning of the proof, we have that rj,r<j,rjq(y)|ξer_{j},r_{<j},r_{\leq j}\models q(y)|_{\xi_{e}}, and we define c0,c1,c2s(z)|ξec_{0},c_{1},c_{2}\models s(z)|_{\xi_{e}} as follows:

c0:=π(r<j)=fξe1fr<j,\displaystyle c_{0}:=\pi(r_{<j})=\lceil f_{\xi_{e}}^{-1}{\circ}f_{r_{<j}}\rceil,
c1:=π(rj)=fξe1frj,\displaystyle c_{1}:=\pi(r_{j})=\lceil f_{\xi_{e}}^{-1}{\circ}f_{r_{j}}\rceil,
c2:=π(rj)=fξe1frj.\displaystyle c_{2}:=\pi(r_{\leq j})=\lceil f_{\xi_{e}}^{-1}{\circ}f_{r_{\leq j}}\rceil.

By (4.7), to conclude that c2=c0c1c_{2}=c_{0}\cdot c_{1} in GG and finish the proof of the lemma it is sufficient to show that c0c1c_{0}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}c_{1}.

As r<jacl(a¯<j,e¯j)r_{<j}\in\operatorname{acl}({\bar{a}}_{<j},{\bar{e}}_{\geq j}), rj,ξeacl(e¯,aj)r_{j},\xi_{e}\in\operatorname{acl}(\bar{e},a_{j}), and {e3,,em,aj,a¯<j}\{e_{3},\dotsc,e_{m},a_{j},{\bar{a}}_{<j}\} is an independent set, we have r<je¯jrjξer_{<j}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{{\bar{e}}_{\geq j}}r_{j}\xi_{e}. Since r<je¯jr_{<j}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}{\bar{e}}_{\geq j} (as (r<j,a¯<j,e¯j)(r_{<j},{\bar{a}}_{<j},{\bar{e}}_{\geq j}) is an (m1)(m-1)-gon) we also have r<jξerjr_{<j}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi_{e}}r_{j}. It follows then that c0ξec1c_{0}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi_{e}}c_{1}. Since, by Lemma 4.16, c0ξec_{0}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\xi_{e} we have c0c1c_{0}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}c_{1}.

This concludes the proof of Lemma 4.19. ∎

Corollary 4.20.

For any j{4,,m}j\in\{4,\dotsc,m\}, let rjq(y)|ξer_{\leq j}\models q(y)|_{\xi_{e}} with

tξ(rj,a¯j,e¯>j).\models t_{\xi}(r_{\leq j},\bar{a}_{\leq j},\bar{e}_{>j}).

Then there exist r<j,rjq(y)|ξer_{<j},r_{j}\models q(y)|_{\xi_{e}} such that

tξ(r<j,a¯<j,e¯j),tξ(rj,e¯<j,aj,e¯>j)\models t_{\xi}(r_{<j},\bar{a}_{<j},\bar{e}_{\geq j}),\models t_{\xi}(r_{j},\bar{e}_{<j},a_{j},\bar{e}_{>j})

and π(rj)=π(rj)π(r<j)\pi(r_{\leq j})=\pi(r_{j})\cdot\pi(r_{<j}).

Proof.

It is sufficient to show that for any r,rr,r^{\prime} with tξ(r,a¯j,e¯>j)\models t_{\xi}(r,\bar{a}_{\leq j},\bar{e}_{>j}), tξ(r,a¯j,e¯>j)\models t_{\xi}(r^{\prime},\bar{a}_{\leq j},\bar{e}_{>j}) we have ra¯e¯ra¯e¯r\bar{a}\bar{e}\equiv r^{\prime}\bar{a}\bar{e}. Indeed, given any (rj,rj,r>j)(r^{\prime}_{\leq j},r^{\prime}_{j},r^{\prime}_{>j}) satisfying the conclusion of Lemma 4.19, we then have an automorphism σ\sigma of 𝕄\mathbb{M} fixing a¯e¯\bar{a}\bar{e} with σ(rj)=rj\sigma(r^{\prime}_{\leq j})=r_{\leq j}; as the map π\pi is relatively definable over acl(e¯)\operatorname{acl}(\bar{e}), it then follows that r<j:=σ(r<j),rj:=σ(rj)r_{<j}:=\sigma(r^{\prime}_{<j}),r_{j}:=\sigma(r^{\prime}_{j}) satisfy the requirements.

We have ra¯je¯>jra¯je¯>jr\bar{a}_{\leq j}\bar{e}_{>j}\equiv r^{\prime}\bar{a}_{\leq j}\bar{e}_{>j}. As e¯a¯\bar{e}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\bar{a} and each of e¯,a¯\bar{e},\bar{a} is an (m2)(m-2)-tuple from the corresponding mm-gon, we get a¯je¯>ja¯>je¯j\bar{a}_{\leq j}\bar{e}_{>j}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\bar{a}_{>j}\bar{e}_{\leq j}. Also r,racl(a¯je¯>j)r,r^{\prime}\in\operatorname{acl}(\bar{a}_{\leq j}\bar{e}_{>j}), as any realization of tξt_{\xi} is an (m1)(m-1)-gon, hence

rra¯je¯>ja¯>je¯j.rr^{\prime}\bar{a}_{\leq j}\bar{e}_{>j}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\bar{a}_{>j}\bar{e}_{\leq j}.

As all types over the empty set are stationary, we conclude ra¯e¯ra¯e¯r\bar{a}\bar{e}\equiv r^{\prime}\bar{a}\bar{e}. ∎

We can now finish the proof of Proposition 4.18.

Proof of Proposition 4.18.

We start with rm:=ξr_{\leq m}:=\xi. Applying Corollary 4.20 with j:=mj:=m, we obtain rmr_{m} and r<mr_{<m} with π(ξ)=π(rm)π(r<m)\pi(\xi)=\pi(r_{m})\cdot\pi(r_{<m}).

Applying Corollary 4.20 again with j:=m1j:=m-1 and rm1:=r<mr_{\leq m-1}:=r_{<m} we obtain rm1r_{m-1} and r<m1r_{<m-1} with π(ξ)=π(rm)π(rm1)π(r<m1)\pi(\xi)=\pi(r_{m})\cdot\pi(r_{m-1})\cdot\pi(r_{<m-1}).

Continuing this process with j:=m2,,4j:=m-2,\dotsc,4 we obtain some

rm2,,r4,r<4r_{m-2},\dotsc,r_{4},r_{<4}

with π(ξ)=π(rm)π(r4)π(r<4)\pi(\xi)=\pi(r_{m})\cdot\dotsc\cdot\pi(r_{4})\cdot\pi(r_{<4}). We take r3:=r<4r_{3}:=r_{<4}, which concludes the proof of the proposition. ∎

Proposition 4.21.

There exist r1,r2q(y)|ξer_{1},r_{2}\models q(y)|_{\xi_{e}} such that fr1(a1)=e2f_{r_{1}}(a_{1})=e_{2}, fr2(e1)=a2f_{r_{2}}(e_{1})=a_{2} and π(r2)π(r1)=π(ξ)\pi(r_{2})\cdot\pi(r_{1})=\pi(\xi).

Proof.

We choose r1q(y)r_{1}\models q(y) with fr1(a1)=e2f_{r_{1}}(a_{1})=e_{2} (possible by generic transitivity: as a1e2a_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}e_{2}, hence a1e2a1a2a_{1}e_{2}\equiv a_{1}a_{2} by stationarity of types over \emptyset; and as fξ(a1)=a2f_{\xi}(a_{1})=a_{2}, we can take r1r_{1} to be the image of ξ\xi under the automorphism of 𝕄\mathbb{M} sending (a1,a2)(a_{1},a_{2}) to (a1,e2)(a_{1},e_{2})). We also have r1ξer_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\xi_{e} (a1ea_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\vec{e} and e2e¯e_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\bar{e} by the choice of e\vec{e}, so a1e2e¯a_{1}e_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\bar{e}; as r1acl(a1,e2),ξeacl(e¯)r_{1}\in\operatorname{acl}(a_{1},e_{2}),\xi_{e}\in\operatorname{acl}(\bar{e}), we conclude r1ξer_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\xi_{e}), hence r1q|ξer_{1}\models q|_{\xi_{e}} by stationarity again.

Similarly ξξer1\xi\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\xi_{e}r_{1}, hence ξfr11fξe\xi\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\lceil f_{r_{1}}^{-1}{\circ}f_{\xi_{e}}\rceil. By Lemma 4.16 we also have r1fr11fξer_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\lceil f_{r_{1}}^{-1}{\circ}f_{\xi_{e}}\rceil. By stationarity of qq this implies ξfr11fξer1\xi\equiv_{\lceil f_{r_{1}}^{-1}{\circ}f_{\xi_{e}}\rceil}r_{1}, so there exists some r2qr_{2}\models q such that ξr2fr11fξer1ξe\xi r_{2}\equiv_{\lceil f_{r_{1}}^{-1}{\circ}f_{\xi_{e}}\rceil}r_{1}\xi_{e}. Hence

f~ξ1f~r2=f~r11f~ξe,\tilde{f}_{\xi}^{-1}{\circ}\tilde{f}_{r_{2}}=\tilde{f}_{r_{1}}^{-1}{\circ}\tilde{f}_{\xi_{e}},

equivalently

(4.8) f~r2=f~ξf~r11f~ξe.\tilde{f}_{r_{2}}=\tilde{f}_{\xi}{\circ}\tilde{f}_{r_{1}}^{-1}{\circ}\tilde{f}_{\xi_{e}}.

In particular, r2acl(ξ,r1,ξe)r_{2}\in\operatorname{acl}(\xi,r_{1},\xi_{e}).

We claim that e1r2ξr1ξee_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}r_{2}\xi r_{1}\xi_{e}. Since ξeacl(e1,e2)\xi_{e}\in\operatorname{acl}(e_{1},e_{2}), r1acl(a1,e2)r_{1}\in\operatorname{acl}(a_{1},e_{2}) and {a1,e1,e2}\{a_{1},e_{1},e_{2}\} is an independent set, we have r1e2e1ξer_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{e_{2}}e_{1}\xi_{e}. Using r1e2r_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}e_{2} we deduce r1e1ξer_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}e_{1}\xi_{e}. As ξee1\xi_{e}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}e_{1}, it implies that {r1,e1,ξe}\{r_{1},e_{1},\xi_{e}\} is an independent set. We have r1,e1,ξeacl(a1,e1,e2)r_{1},e_{1},\xi_{e}\in\operatorname{acl}(a_{1},e_{1},e_{2}) and ξacl(a1,a2)\xi\in\operatorname{acl}(a_{1},a_{2}). Using independence of a1,a2,e1,e2a_{1},a_{2},e_{1},e_{2} we obtain ξa1e1ξer1\xi\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{a_{1}}e_{1}\xi_{e}r_{1}. Since ξa1\xi\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}a_{1}, we have that ξe1r1ξe\xi\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}e_{1}r_{1}\xi_{e}, hence {ξ,e1,r1,ξe}\{\xi,e_{1},r_{1},\xi_{e}\} is an independent set and e1ξr1ξee_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\xi r_{1}\xi_{e}. As r2acl(ξ,r1,ξe)r_{2}\in\operatorname{acl}(\xi,r_{1},\xi_{e}) we can conclude e1r2ξr1ξee_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}r_{2}\xi r_{1}\xi_{e}.

It then follows from (4.8) that

fr2(e1)=(fξfr11fξe)(e1)=a2,f_{r_{2}}(e_{1})=(f_{\xi}{\circ}f_{r_{1}}^{-1}{\circ}f_{\xi_{e}})(e_{1})=a_{2},

so fr2(e1)=a2f_{r_{2}}(e_{1})=a_{2}.

It also follows from (4.8) that

((f~ξe1f~r2)(f~ξe1f~r1))=f~ξe1f~ξ.\Bigl{(}(\tilde{f}_{\xi_{e}}^{-1}\circ\tilde{f}_{r_{2}})\circ(\tilde{f}_{\xi_{e}}^{-1}\circ\tilde{f}_{r_{1}})\Bigr{)}=\tilde{f}_{\xi_{e}}^{-1}\circ\tilde{f}_{\xi}.

We let

c1:=π(r1)=fξe1fr1 and c2:=π(r2)=fξe1fr2.c_{1}:=\pi(r_{1})=\lceil f_{\xi_{e}}^{-1}{\circ}f_{r_{1}}\rceil\text{ and }c_{2}:=\pi(r_{2})=\lceil f_{\xi_{e}}^{-1}{\circ}f_{r_{2}}\rceil.

To show that c2c1=π(ξ)c_{2}\cdot c_{1}=\pi(\xi) and finish the proof of the proposition it is sufficient to show that c1c2c_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}c_{2}.

Since r1acl(a1,e2)r_{1}\in\operatorname{acl}(a_{1},e_{2}), r2acl(e1,a2)r_{2}\in\operatorname{acl}(e_{1},a_{2}) (by Remark 4.15, as by the above we have r2q,e1r2r_{2}\models q,e_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}r_{2} and fr2(e1)=a2f_{r_{2}}(e_{1})=a_{2}) and ξeacl(e1,e2)\xi_{e}\in\operatorname{acl}(e_{1},e_{2}), we obtain r1e2r2ξer_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{e_{2}}r_{2}\xi_{e}. Using r1e2r_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}e_{2} we deduce r1r2ξer_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}r_{2}\xi_{e}, hence r1ξer2r_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi_{e}}r_{2}. It follows then that c1ξec2c_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi_{e}}c_{2} and, as c1ξec_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}\xi_{e}, we obtain c1c2c_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}c_{2}. ∎

Combining Propositions 4.21 and 4.18, we obtain some r1,,rmq(y)|ξer_{1},\dotsc,r_{m}\models q(y)|_{\xi_{e}} such that each rir_{i} is inter-algebraic with aia_{i} over {e1,,em}\{e_{1},\dotsc,e_{m}\} and

π(r2)π(r1)=π(rm)π(r3).\pi(r_{2})\cdot\pi(r_{1})=\pi(r_{m})\cdot\dotsc\cdot\pi(r_{3}).

Obviously each rir_{i} is also inter-algebraic over {e1,,em}\{e_{1},\dotsc,e_{m}\} with π(ri)\pi(r_{i}).

Thus, after a base change to {e1,,em}\{e_{1},\dotsc,e_{m}\} and inter-algebraically replacing a1a_{1} with π(r1)1\pi(r_{1})^{-1}, a2a_{2} with π(r2)1\pi(r_{2})^{-1}, and aia_{i} with π(ri)\pi(r_{i}) for i{3,,m}i\in\{3,\dotsc,m\}, and using that permuting the elements of an abelian mm-gon we still obtain an abelian mm-gon, we achieve the following.

Reduction 3. We may assume that a1,,ama_{1},\dotsc,a_{m} realize the generic type s(z)s(z) of a connected group GG that is type-definable over the empty set, with a1a2ama3=1Ga_{1}\cdot a_{2}\cdot a_{m}\cdot\dotsc\cdot a_{3}=1_{G}.

To finish the proof of Theorem 4.6 it only remains to show that the group GG is abelian. We deduce it from the Abelian Group Configuration Theorem, more precisely [bays2017model, Lemma C.1].

Claim 4.22.

Let GG be a connected group type-definable over the empty set, m4m\geq 4 and g1,,gmg_{1},\dotsc,g_{m} are generic elements of GG such that g1,,gmg_{1},\dots,g_{m} form an abelian mm-gon and g1gm=1Gg_{1}\cdot\dotsc\cdot g_{m}=1_{G}. Then the group GG is abelian.

Proof.

Let B:=acl(g5,,gm)B:=\operatorname{acl}(g_{5},\dotsc,g_{m}). We have that g1,,g4g_{1},\ldots,g_{4} are generics of GG over BB, and they form an abelian 44-gon over BB. Since g4g_{4} is inter-algebraic over BB with g1g2g3g_{1}{\cdot}g_{2}{\cdot}g_{3}, we have that g1,g2,g3,g1g2g3g_{1},g_{2},g_{3},g_{1}{\cdot}g_{2}{\cdot}g_{3} form an abelian 44-gon over BB. Let D:=aclB(g1,g3)aclB(g2,g1g2g3)D:=\operatorname{acl}_{B}(g_{1},g_{3})\cap\operatorname{acl}_{B}(g_{2},g_{1}{\cdot}g_{2}{\cdot}g_{3}). We have g1,g3Dg2,g1g2g3g_{1},g_{3}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{D}g_{2},g_{1}{\cdot}g_{2}{\cdot}g_{3}, hence

g1g2g3aclB(g2,D)=aclB(g2,aclB(g1,g3)aclB(g2,g1g2g3)).g_{1}{\cdot}g_{2}{\cdot}g_{3}\in\operatorname{acl}_{B}(g_{2},D)=\operatorname{acl}_{B}\big{(}g_{2},\operatorname{acl}_{B}(g_{1},g_{3})\cap\operatorname{acl}_{B}(g_{2},g_{1}{\cdot}g_{2}{\cdot}g_{3})\big{)}.

By [bays2017model, Lemma C.1], the group GG is abelian. ∎

5. Main theorem in the stable case

Throughout the section we work in a complete theory TT in a language \mathcal{L}. We fix an ||+|\mathcal{L}|^{+}-saturated model =(M,)\mathcal{M}=(M,\ldots) of TT, and also choose a large saturated elementary extension 𝕄\mathbb{M} of \mathcal{M}. We say that a subset AA of \mathcal{M} is small if |A||||A|\leq|\mathcal{L}|. Given a definable set XX in \mathcal{M}, we will often view it as a definable subset of 𝕄\mathbb{M}, and sometimes write explicitly X(𝕄)X(\mathbb{M}) to denote the set of tuples in 𝕄\mathbb{M} realizing the formula defining XX.

5.1. On the notion of 𝔭{\mathfrak{p}}-dimension

We introduce a basic notion of dimension in an arbitrary theory imitating the topological definition of dimension in oo-minimal structures, but localized at a given tuple of commuting definable global types. We will see that it enjoys definability properties that may fail for Morley rank even in nice theories such as DCF0\operatorname{DCF}_{0}.

Definition 5.1.

If XX is a definable set in \mathcal{M} and \mathcal{F} is a family of subsets of XX, we say that \mathcal{F} is a definable family (over a set of parameters AA) if there exists a definable set YY and a definable set DX×YD\subseteq X\times Y (both defined over AA) such that ={Db:bY}\mathcal{F}=\{D_{b}:b\in Y\}, where Db={aX:(a,b)D}D_{b}=\{a\in X:(a,b)\in D\} is the fiber of DD at bb.

Definition 5.2.
  1. (1)

    By a 𝔭{\mathfrak{p}}-pair we mean a pair (X,𝔭X)(X,{\mathfrak{p}}_{X}) where XX is an \emptyset-definable set and 𝔭XS(){\mathfrak{p}}_{X}\in S(\mathcal{M}) is an \emptyset-definable stationary type on XX.

  2. (2)

    Given ss\in\mathbb{N}, we say that (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} is a 𝔭{\mathfrak{p}}-system if each (Xi,𝔭i)(X_{i},{\mathfrak{p}}_{i}) is a 𝔭{\mathfrak{p}}-pair and the types 𝔭1,,𝔭s{\mathfrak{p}}_{1},\ldots,{\mathfrak{p}}_{s} commute, i.e. 𝔭i𝔭j=𝔭j𝔭i{\mathfrak{p}}_{i}\otimes{\mathfrak{p}}_{j}={\mathfrak{p}}_{j}\otimes{\mathfrak{p}}_{i} for all i,j[s]i,j\in[s].

Example 5.3.

Assume TT is a stable theory, (𝔭i)i[s]({\mathfrak{p}}_{i})_{i\in[s]} are arbitrary types over \mathcal{M} and Xi𝔭iX_{i}\in{\mathfrak{p}}_{i} are arbitrary definable sets. By local character we can choose a model 0\mathcal{M}_{0}\preceq\mathcal{M} with |0||||\mathcal{M}_{0}|\leq|\mathcal{L}| such that each 𝔭i{\mathfrak{p}}_{i} is definable (and stationary) over 0\mathcal{M}_{0} and Xi,i[s]X_{i},i\in[s] are definable over 0\mathcal{M}_{0}. The types (𝔭i)i[s]({\mathfrak{p}}_{i})_{i\in[s]} automatically commute in a stable theory. Hence, naming the elements of 0\mathcal{M}_{0} by constants, we obtain a 𝔭{\mathfrak{p}}-system.

Assume now that (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} is a 𝔭{\mathfrak{p}}-system. Given u[s]u\subseteq[s], we let πu:i[s]XiiuXi\pi_{u}:\prod_{i\in[s]}X_{i}\to\prod_{i\in u}X_{i} be the projection map. For i[s]i\in[s], we let πi:=π{i}\pi_{i}:=\pi_{\{i\}}. Given u,v[s]u,v\subseteq[s] with uv=u\cap v=\emptyset, a=(ai:iu)iuXia=(a_{i}:i\in u)\in\prod_{i\in u}X_{i} and b=(bi:iv)ivXib=(b_{i}:i\in v)\in\prod_{i\in v}X_{i}, we write aba\oplus b to denote the tuple c=(ci:iuv)iuvXic=(c_{i}:i\in u\cup v)\in\prod_{i\in u\cup v}X_{i} with ci=aic_{i}=a_{i} for iui\in u and ci=bic_{i}=b_{i} for ivi\in v. Given Yi[s]XiY\subseteq\prod_{i\in[s]}X_{i}, u[s]u\subseteq[s] and aiuXia\in\prod_{i\in u}X_{i}, we write Ya:={bi[s]uXi:abY}Y_{a}:=\{b\in\prod_{i\in[s]\setminus u}X_{i}:a\oplus b\in Y\} to denote the fiber of YY above aa.

Example 5.4.

If \mathcal{F} is a definable family of subsets of i[s]Xi\prod_{i\in[s]}X_{i} and u[s]u\subseteq[s], then {πu(F):F}\left\{\pi_{u}(F):F\in\mathcal{F}\right\} and {Fa:F,ai[s]uXi}\left\{F_{a}:F\in\mathcal{F},a\in\prod_{i\in[s]\setminus u}X_{i}\right\} are definable families of subsets of iuXi\prod_{i\in u}X_{i} (over the same set of parameters).

Definition 5.5.

Let a¯=(a1,,as)X1××Xs\bar{a}=(a_{1},\dotsc,a_{s})\in X_{1}\times\dotsb\times X_{s} and AA a small subset of \mathcal{M}.

  1. (1)

    We say that a¯\bar{a} is 𝔭{\mathfrak{p}}-generic in X1××XsX_{1}\times\dotsb\times X_{s} over AA if (a1,,as)𝔭1𝔭sA(a_{1},\dotsc,a_{s})\models{\mathfrak{p}}_{1}\otimes\dotsb\otimes{\mathfrak{p}}_{s}{\restriction}A.

  2. (2)
    1. (a)

      For ksk\leq s we write dim𝔭(a¯/A)k\dim_{\mathfrak{p}}(\bar{a}/A)\geq k if for some u[s]u\subseteq[s] with |u|k|u|\geq k the tuple πu(a¯)\pi_{u}(\bar{a}) is 𝔭{\mathfrak{p}}-generic (with respect to the corresponding 𝔭{\mathfrak{p}}-system {(Xi,𝔭i):iu}\{(X_{i},{\mathfrak{p}}_{i}):i\in u\}).

    2. (b)

      As usual, we define dim𝔭(a¯/A)=k\dim_{\mathfrak{p}}(\bar{a}/A)=k if dim𝔭(a¯/A)k\dim_{\mathfrak{p}}(\bar{a}/A)\geq k and it is not true that dim𝔭(a¯/A)k+1\dim_{\mathfrak{p}}(\bar{a}/A)\geq k+1.

  3. (3)

    If q(x¯)S(A)q(\bar{x})\in S(A) and q(x¯)x¯X1××Xsq(\bar{x})\vdash\bar{x}\in X_{1}\times\ldots\times X_{s}, we write dim𝔭(q):=dim𝔭(a¯/A)\dim_{{\mathfrak{p}}}(q):=\dim_{{\mathfrak{p}}}(\bar{a}/A) for some (equivalently, any) a¯q\bar{a}\models q.

  4. (4)

    For a subset YX1××XsY\subseteq X_{1}{\times}\dotsb\times X_{s} definable over AA, we define

    dim𝔭(Y):=max{dim𝔭(a¯/A):a¯Y}\displaystyle\dim_{\mathfrak{p}}(Y):=\max\left\{\dim_{\mathfrak{p}}(\bar{a}/A)\colon\bar{a}\in Y\right\}
    =max{dim𝔭(q):qS(A),Yq},\displaystyle=\max\left\{\dim_{\mathfrak{p}}(q)\colon q\in S(A),Y\in q\right\},

    note that this does not depend on the set AA such that YY is AA-definable.

  5. (5)

    As usual, for a definable subset YX1××XsY\subseteq X_{1}{\times}\dotsb\times X_{s} we say that YY is a 𝔭{\mathfrak{p}}-generic subset of X1××XsX_{1}\times\dots\times X_{s} if dim𝔭(Y)=s\dim_{\mathfrak{p}}(Y)=s (equivalently, YY is contained in 𝔭1𝔭s.{\mathfrak{p}}_{1}\otimes\dotsb\otimes{\mathfrak{p}}_{s}.)

If A=A=\emptyset we will omit it.

Remark 5.6.

It follows from the definition that for a definable set YX1××XsY\subseteq X_{1}{\times}\dotsb{\times}X_{s}, dim𝔭(Y)\dim_{\mathfrak{p}}(Y) is the maximal kk such that the projection of YY onto some kk coordinates is 𝔭\mathfrak{p}-generic. As usual, for a definable YX1××XsY\subseteq X_{1}\times\dotsb\times X_{s} and small AA\subseteq\mathcal{M} we say that an element aYa\in Y is generic in YY over AA if dim𝔭(a/A)=dim𝔭(Y)\dim_{\mathfrak{p}}(a/A)=\dim_{\mathfrak{p}}(Y).

Remark 5.7.

It also follows that if 𝒩\mathcal{N}\succeq\mathcal{M} is an arbitrary ||+|\mathcal{L}|^{+}-saturated model and 𝔭i:=𝔭i|𝒩S(𝒩){\mathfrak{p}}^{\prime}_{i}:={\mathfrak{p}}_{i}|_{\mathcal{N}}\in S(\mathcal{N}) is the unique definable extension, for i[s]i\in[s], then (Xi(𝒩),𝔭i)i[s](X_{i}(\mathcal{N}),{\mathfrak{p}}^{\prime}_{i})_{i\in[s]} is a 𝔭{\mathfrak{p}}-system in 𝒩\mathcal{N}, and for every definable subset YX1××XsY\subseteq X_{1}\times\ldots\times X_{s} in \mathcal{M} we have dim𝔭(Y)=dim𝔭(Y(𝒩))\dim_{\mathfrak{p}}(Y)=\dim_{\mathfrak{p}}(Y(\mathcal{N})), where the latter is calculated in 𝒩\mathcal{N} with respect to this 𝔭{\mathfrak{p}}-system.

Claim 5.8.

Let \mathcal{F} be a definable (over AA) family of subsets of X1××XsX_{1}\times\dotsb\times X_{s} and ksk\leq s. Then the family

{F:dim𝔭(F)=k}\left\{F\in\mathcal{F}\colon\dim_{\mathfrak{p}}(F)=k\right\}

is definable (over AA as well).

Proof.

Assume that ={Db:bY}\mathcal{F}=\{D_{b}:b\in Y\} for some definable YY and definable D(X1××Xs)×YD\subseteq(X_{1}\times\ldots\times X_{s})\times Y. Given 0ks0\leq k\leq s, let Yk:={bY:dim𝔭(Db)=k}Y_{k}:=\{b\in Y:\dim_{{\mathfrak{p}}}(D_{b})=k\}, it suffices to show that YkY_{k} is definable. As every 𝔭i{\mathfrak{p}}_{i} is definable, for every u[s]u\subseteq[s], the type 𝔭u=iu𝔭i{\mathfrak{p}}_{u}=\bigotimes_{i\in u}{\mathfrak{p}}_{i} is also definable. In particular, there is a definable (over any set of parameters containing the parameters of YY and DD) set ZuYZ_{u}\subseteq Y such that for any bYb\in Y, πu(Db)𝔭ubZu\pi_{u}(D_{b})\in{\mathfrak{p}}_{u}\iff b\in Z_{u}. Then YkY_{k} is definable as

Yk=(u[s],|u|=kbZu)(u[s],|u|>kbZu).\displaystyle Y_{k}=\left(\bigvee_{u\subseteq[s],|u|=k}b\in Z_{u}\right)\land\left(\bigwedge_{u\subseteq[s],|u|>k}b\notin Z_{u}\right).\qed

The following lemma shows that 𝔭{\mathfrak{p}}-dimension is “super-additive”.

Lemma 5.9.

Let YX1××XsY\subseteq X_{1}\times\dotsb\times X_{s} be definable and u[s]u\subseteq[s]. Assume that 0n[s]0\leq n\leq[s] is such that for every aπu(Y)a\in\pi_{u}(Y) we have dim𝔭(Ya)n\dim_{\mathfrak{p}}(Y_{a})\geq n. Then dim𝔭(Y)dim𝔭(πu(Y))+n\dim_{\mathfrak{p}}(Y)\geq\dim_{\mathfrak{p}}(\pi_{u}(Y))+n.

Proof.

Assume that YY is definable over a small set of parameters AA, and let m:=dim𝔭(πu(Y))m:=\dim_{{\mathfrak{p}}}(\pi_{u}(Y)). Then there is some uu,|u|=mu^{*}\subseteq u,|u^{*}|=m such that

πu(Y)(πu(Y))=πu(Y)𝔭u=iu𝔭i.\pi_{u^{*}}(Y)(\pi_{u}(Y))=\pi_{u^{*}}(Y)\in{\mathfrak{p}}_{u^{*}}=\bigotimes_{i\in u^{*}}{\mathfrak{p}}_{i}.

Let bu=(bi:iu)𝔭u|Ab_{u^{*}}=(b_{i}:i\in u^{*})\models{\mathfrak{p}}_{u^{*}}|_{A}. As buπu(Y)(πu(Y))b_{u^{*}}\in\pi_{u^{*}}(Y)(\pi_{u}(Y)), there exist some (bi:iuu)(b_{i}:i\in u\setminus u^{*}) so that bu:=(bi:iu)πu(Y)b_{u}:=(b_{i}:i\in u)\in\pi_{u}(Y). Then by assumption dim𝔭(Ybu)n\dim_{\mathfrak{p}}(Y_{b_{u}})\geq n, that is for some vv:=[s]uv^{*}\subseteq v:=[s]\setminus u with |v|n|v^{*}|\geq n we have πv(Ybu)𝔭v:=iv𝔭i\pi_{v^{*}}(Y_{b_{u}})\in{\mathfrak{p}}_{v^{*}}:=\bigotimes_{i\in v^{*}}{\mathfrak{p}}_{i}. Let bv=(bi:iv)𝔭v|Abub_{v^{*}}=(b_{i}:i\in v^{*})\models{\mathfrak{p}}_{v^{*}}|_{Ab_{u}}, and let w:=uvw:=u^{*}\sqcup v^{*}. Since the types (𝔭i:iw)({\mathfrak{p}}_{i}:i\in w) are stationary and commuting, it follows that bw:=(bi:iw)𝔭w|Ab_{w}:=(b_{i}:i\in w)\models\mathfrak{p}_{w}|_{A} for pw:=iuv𝔭ip_{w}:=\bigotimes_{i\in u^{*}\sqcup v^{*}}{\mathfrak{p}}_{i}. As bvπv(Ybu)b_{v^{*}}\in\pi_{v^{*}}(Y_{b_{u}}), there exists some (bi:ivv)(b_{i}:i\in v\setminus v^{*}) so that (bi:iv)Ybu(b_{i}:i\in v)\in Y_{b_{u}}, hence (bi:i[s])Y(b_{i}:i\in[s])\in Y. Thus bwπw(Y)b_{w}\in\pi_{w}(Y), hence πw(Y)𝔭w\pi_{w}(Y)\in\mathfrak{p}_{w}, and |w|m+n|w|\geq m+n — which shows that dim𝔭(Y)m+n\dim_{{\mathfrak{p}}}(Y)\geq m+n, as required. ∎

5.2. Fiber-algebraic relations and 𝔭{\mathfrak{p}}-irreducibility

Definition 5.10.

Given a definable set Yi[s]XiY\subseteq\prod_{i\in[s]}X_{i} and a small set of parameters CC\subseteq\mathcal{M} so that YY is defined over CC, we say that YY is 𝔭{\mathfrak{p}}-irreducible over CC if there do not exist disjoint sets Y1,Y2Y_{1},Y_{2} definable over CC with Y=Y1Y2Y=Y_{1}\cup Y_{2} and dim𝔭(Y1)=dim𝔭(Y2)=dim𝔭(Y)\dim_{\mathfrak{p}}(Y_{1})=\dim_{\mathfrak{p}}(Y_{2})=\dim_{\mathfrak{p}}(Y).

We say that YY is absolutely 𝔭{\mathfrak{p}}-irreducible if it is irreducible over any small set CC\subseteq\mathcal{M} such that YY is defined over CC.

Remark 5.11.

It follows from the definition of 𝔭{\mathfrak{p}}-dimension that a definable set YX1××XsY\subseteq X_{1}\times\ldots\times X_{s} is 𝔭{\mathfrak{p}}-irreducible over CC if and only if any two tuples generic in YY over CC have the same type over CC.

Lemma 5.12.

If Q(x¯)X1××XsQ(\bar{x})\subseteq X_{1}\times\dotsc\times X_{s} is fiber-algebraic of degree d\leq d, then the set

{qSx¯():Qq and dim𝔭(q)s1}\displaystyle\left\{q\in S_{\bar{x}}(\mathcal{M}):Q\in q\textrm{ and }\dim_{\mathfrak{p}}(q)\geq s-1\right\}

has cardinality at most sdsd.

Proof.

Assume towards a contradiction that q1,,qsd+1q_{1},\ldots,q_{sd+1} are pairwise different types in this set. Then there exist some formulas ψi(x¯)\psi_{i}(\bar{x}) with parameters in \mathcal{M} such that ψi(x¯)qi\psi_{i}(\bar{x})\in q_{i} and ψi(x¯)¬ψj(x¯)\psi_{i}(\bar{x})\rightarrow\neg\psi_{j}(\bar{x}) for all ij[sd+1]i\neq j\in[sd+1]. Let CC\subseteq\mathcal{M} be the (finite) set of the parameters of QQ and ψi,i[sd+1]\psi_{i},i\in[sd+1]. For each i[sd+1]i\in[sd+1], as (ψi(x¯)Q(x¯))qi\left(\psi_{i}(\bar{x})\land Q(\bar{x})\right)\in q_{i}, we have dim𝔭(ψi(x¯)Q(x¯))s1\dim_{\mathfrak{p}}\left(\psi_{i}(\bar{x})\land Q(\bar{x})\right)\geq s-1, which by definition of 𝔭{\mathfrak{p}}-dimension implies xk(ψi(x¯)Q(x¯))[s]{k}𝔭\exists x_{k}\left(\psi_{i}(\bar{x})\land Q(\bar{x})\right)\in\bigotimes_{\ell\in[s]\setminus\{k\}}{\mathfrak{p}}_{\ell} for at least one k[s]k\in[s]. By pigeonhole, there must exist some k[s]k^{\prime}\in[s] and some u[sd+1]u\subseteq[sd+1] such that |u|d+1|u|\geq d+1 and xk(ψi(x¯)Q(x¯))[s]{k}𝔭\exists x_{k^{\prime}}\left(\psi_{i}(\bar{x})\land Q(\bar{x})\right)\in\bigotimes_{\ell\in[s]\setminus\{k^{\prime}\}}{\mathfrak{p}}_{\ell} for all iui\in u. Now let a¯=(a:[s]{k})\bar{a}=(a_{\ell}:\ell\in[s]\setminus\{k^{\prime}\}) be a tuple in \mathcal{M} satisfying a¯([s]{k}𝔭)|C\bar{a}\models\left(\bigotimes_{\ell\in[s]\setminus\{k^{\prime}\}}{\mathfrak{p}}_{\ell}\right)|_{C}. By the choice of uu, for each iui\in u there exists some bib_{i} in \mathcal{M} such that (ψiQ)(a1,,ak1,bi,ak+1,,as)\left(\psi_{i}\land Q\right)(a_{1},\ldots,a_{k^{\prime}-1},b_{i},a_{k^{\prime}+1},\ldots,a_{s}) holds. By the choice of the formulas ψi\psi_{i}, the elements (bi:iu)(b_{i}:i\in u) are pairwise distinct, and |u|>d|u|>d — contradicting that QQ is fiber-algebraic of degree dd. ∎

Corollary 5.13.

Every fiber-algebraic QX1××XsQ\subseteq X_{1}\times\dotsc\times X_{s} of degree d\leq d is a union of at most sdsd absolutely 𝔭{\mathfrak{p}}-irreducible sets (which are then automatically fiber-algebraic, of degree d\leq d).

Proof.

Let (qi:i[D])(q_{i}:i\in[D]) be an arbitrary enumeration of the set

{qSx¯():Qqdim𝔭(q)s1},\left\{q\in S_{\bar{x}}(\mathcal{M}):Q\in q\land\dim_{\mathfrak{p}}(q)\geq s-1\right\},

we have DsdD\leq sd by Lemma 5.12. We can choose formulas (ψi(x¯):i[D])(\psi_{i}(\bar{x}):i\in[D]) with parameters over \mathcal{M} such that ψi(x¯)qi\psi_{i}(\bar{x})\in q_{i} and ψi(x¯)¬ψj(x¯)\psi_{i}(\bar{x})\rightarrow\neg\psi_{j}(\bar{x}) for all ij[D]i\neq j\in[D]. Let Qi(x¯):=Q(x¯)ψi(x¯)Q_{i}(\bar{x}):=Q(\bar{x})\land\psi_{i}(\bar{x}), then Q=i[D]QiQ=\bigsqcup_{i\in[D]}Q_{i} and each QiQ_{i} is absolutely 𝔭{\mathfrak{p}}-irreducible (by Remark 5.11, as every generic tuple in QiQ_{i} over a small set CC has the type qi|Cq_{i}|_{C}). ∎

Lemma 5.14.

If Qi[s]XiQ\subseteq\prod_{i\in[s]}X_{i} is 𝔭{\mathfrak{p}}-irreducible over a small set of parameters CC and dim𝔭(Q)=s1\dim_{\mathfrak{p}}(Q)=s-1, then for any i[s]i\in[s] and any tuple a¯=(aj:j[s]{i})\bar{a}=(a_{j}:j\in[s]\setminus\{i\}) which is 𝔭{\mathfrak{p}}-generic in j[s]{i}Xj\prod_{j\in[s]\setminus\{i\}}X_{j} over CC (i.e. a¯(j[s]{i}𝔭j)|C\bar{a}\models(\bigotimes_{j\in[s]\setminus\{i\}}{\mathfrak{p}}_{j})|_{C}), if Q(a1,,ai1,xi,ai+1,,as)Q(a_{1},\dotsc,a_{i-1},x_{i},a_{i+1},\dotsc,a_{s}) is consistent then it implies a complete type over C{aj:j[s]{i}}C\cup\left\{a_{j}:j\in[s]\setminus\{i\}\right\}.

Proof.

Otherwise there exist two types rtSxi(Ca¯),t{1,2}r_{t}\in S_{x_{i}}(C\bar{a}),t\in\{1,2\} such that r1r2r_{1}\neq r_{2} and Q(a1,,ai1,xi,ai+1,,as)rtQ(a_{1},\ldots,a_{i-1},x_{i},a_{i+1},\ldots,a_{s})\in r_{t} for both t{1,2}t\in\{1,2\}. Then there exist some formulas φt(x¯),t{1,2}\varphi_{t}(\bar{x}),t\in\{1,2\} with parameters in CC such that φt(a1,,ai1,xi,ai+1,,as)rt\varphi_{t}(a_{1},\ldots,a_{i-1},x_{i},a_{i+1},\ldots,a_{s})\in r_{t}, φ1(x¯)¬φ2(x¯)\varphi_{1}(\bar{x})\rightarrow\neg\varphi_{2}(\bar{x}) and φ2(x¯)¬φ1(x¯)\varphi_{2}(\bar{x})\rightarrow\neg\varphi_{1}(\bar{x}). In particular, by assumption on a¯\bar{a},

dim𝔭(Q(x¯)φt(x¯))s1\dim_{\mathfrak{p}}\left(Q(\bar{x})\land\varphi_{t}(\bar{x})\right)\geq s-1

for both t{1,2}t\in\{1,2\} — contradicting irreducibility of QQ over CC.∎

5.3. On general position

We recall the notion of general position from Definition 1.5, specialized to the case of 𝔭{\mathfrak{p}}-dimension.

Definition 5.15.

Let (X,𝔭)(X,{\mathfrak{p}}) be a 𝔭{\mathfrak{p}}-pair, and let \mathcal{F} be a definable family of subsets of XX. For ν\nu\in\mathbb{N}, we say that a set AXA\subseteq X is in (,ν)(\mathcal{F},\nu)-general position if for every FF\in\mathcal{F} with dim𝔭(F)=0\dim_{\mathfrak{p}}(F)=0 we have |AF|ν|A\cap F|\leq\nu.

We extend this notion to cartesian products of 𝔭{\mathfrak{p}}-pairs.

Definition 5.16.

For sets X1×X2××XsX_{1}{\times}X_{2}{\times}\dotsb{\times}X_{s} and an integer nn\in\mathbb{N}, by an nn-grid on X1××XsX_{1}{\times}\dotsb{\times}X_{s} we mean a set of the form A1×A2××AsA_{1}{\times}A_{2}{\times}\dotsb{\times}A_{s} with AiXiA_{i}\subseteq X_{i} and |Ai|n|A_{i}|\leq n for all i[s]i\in[s].

Definition 5.17.

Let ss\in\mathbb{N} and (Xi,𝔭i)(X_{i},{\mathfrak{p}}_{i}), i[s]i\in[s], be 𝔭{\mathfrak{p}}-pairs. Let \vec{\mathcal{F}} be a definable system of subsets of (Xi)(X_{i}), i[s]i\in[s], i.e. =(1,,s)\vec{\mathcal{F}}=(\mathcal{F}_{1},\dotsc,\mathcal{F}_{s}) where each i\mathcal{F}_{i} is a definable family of subsets of XiX_{i}. For ν\nu\in\mathbb{N}, we say that a grid A1××AsA_{1}\times\dotsb{\times}A_{s} on X1××XsX_{1}{\times}\dotsb{\times}X_{s} is in (,ν)(\vec{\mathcal{F}},\nu)-general position if each AiA_{i} is in (i,ν)(\mathcal{F}_{i},\nu)-general position.

We will need a couple of auxiliary lemmas bounding the size of the intersection of sets in a definable family with finite grids in terms of their 𝔭{\mathfrak{p}}-dimension.

Lemma 5.18.

Let s1s\in\mathbb{N}_{\geq 1}, (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} a 𝔭{\mathfrak{p}}-system, and 𝒢\mathcal{G} a definable family of subsets of X1××XsX_{1}\times\dotsb\times X_{s} such that dim𝔭(G)=0\dim_{\mathfrak{p}}(G)=0 for every G𝒢G\in\mathcal{G}. Then there is a definable system of subsets =(1,,s)\vec{\mathcal{F}}=(\mathcal{F}_{1},\dotsc,\mathcal{F}_{s}) such that: for any finite grid A=A1××AsA=A_{1}\times\dotsb\times A_{s} on X1××XsX_{1}\times\dotsb\times X_{s} in (,ν)(\vec{\mathcal{F}},\nu)-general position and any G𝒢G\in\mathcal{G} we have |GA|νs|G\cap A|\leq\nu^{s}.

Proof.

Assume that 𝒢\mathcal{G} is a definable family of subsets X1××XsX_{1}\times\dotsb\times X_{s} with dim𝔭(G)=0\dim_{\mathfrak{p}}(G)=0 for all G𝒢G\in\mathcal{G}. For i[s]i\in[s] and G𝒢G\in\mathcal{G}, we let Gi:=πi(G)G_{i}:=\pi_{i}(G), note that still dim𝔭(Gi)=0\dim_{\mathfrak{p}}(G_{i})=0. Let i:={Gi:G𝒢}\mathcal{F}_{i}:=\left\{G_{i}:G\in\mathcal{G}\right\}, we claim that then :=(1,,s)\vec{\mathcal{F}}:=\left(\mathcal{F}_{1},\ldots,\mathcal{F}_{s}\right) satisfies the requirements.

Indeed, let A=A1××AsA=A_{1}\times\dotsb\times A_{s} be a finite grid on X1××XsX_{1}\times\dotsb\times X_{s} in (,ν)(\vec{\mathcal{F}},\nu)-general position. Let G𝒢G\in\mathcal{G} be arbitrary. As GiiG_{i}\in\mathcal{F}_{i} with dim𝔭(Gi)=0\dim_{\mathfrak{p}}(G_{i})=0, by assumption we have |GiAi|ν|G_{i}\cap A_{i}|\leq\nu for every i[s]i\in[s]. As Gi[s]GiG\subseteq\prod_{i\in[s]}G_{i}, we have

G(i[s]Ai)(i[s]Gi)(i[s]Ai)=i[s](GiAi),G\cap\left(\prod_{i\in[s]}A_{i}\right)\subseteq\left(\prod_{i\in[s]}G_{i}\right)\cap\left(\prod_{i\in[s]}A_{i}\right)=\prod_{i\in[s]}(G_{i}\cap A_{i}),

hence |Gi[s]Ai|νs\left\lvert G\cap\prod_{i\in[s]}A_{i}\right\rvert\leq\nu^{s}, as required. ∎

Lemma 5.19.

Let s1s\in\mathbb{N}_{\geq 1} and (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} be a 𝔭{\mathfrak{p}}-system, and 𝒢\mathcal{G} a definable family of subsets of X1××XsX_{1}\times\dotsb\times X_{s}. Assume that for some 0ks0\leq k\leq s we have dim𝔭(G)k\dim_{\mathfrak{p}}(G)\leq k for every G𝒢G\in\mathcal{G}. Then there is a definable system =(1,,s)\vec{\mathcal{F}}=(\mathcal{F}_{1},\dotsc,\mathcal{F}_{s}) of subsets of X1××XsX_{1}\times\ldots\times X_{s} such that: for any ν\nu and any nn-grid A=A1××AsA=A_{1}\times\dotsb\times A_{s} on X1××XsX_{1}\times\dotsb\times X_{s} in (,ν)(\vec{\mathcal{F}},\nu)-general position, for every G𝒢G\in\mathcal{G} we have |GA|skνsknk|G\cap A|\leq s^{k}\nu^{s-k}n^{k}.

Proof.

Given sks\geq k and ν\nu, we let C(k,s,ν)C(k,s,\nu) be the smallest number in \mathbb{N} (if it exists) so that the bound |GA|C(k,s,ν)nk|G\cap A|\leq C(k,s,\nu)n^{k} holds (with respect to all possible 𝔭{\mathfrak{p}}-systems (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} and definable families 𝒢\mathcal{G}). We will show that C(k,s,ν)skνskC(k,s,\nu)\leq s^{k}\nu^{s-k} for all sk0s\geq k\geq 0 and ν\nu.

For any s1s\in\mathbb{N}_{\geq 1} and k=0k=0, the claim holds by Lemma 5.18 with C(0,s,ν)=νsC(0,s,\nu)=\nu^{s}. For any s1s\in\mathbb{N}_{\geq 1} and k=sk=s, the claim trivially holds with C(s,s,ν)=1C(s,s,\nu)=1 (and i=,i[s]\mathcal{F}_{i}=\emptyset,i\in[s]).

We fix s>k1s>k\geq 1 and assume that the claim holds for all pairs sk0s^{\prime}\geq k^{\prime}\geq 0 with either s<ss^{\prime}<s or k<kk^{\prime}<k. Assume that dim𝔭(G)k\dim_{{\mathfrak{p}}}(G)\leq k for every G𝒢G\in\mathcal{G}. Given G𝒢G\in\mathcal{G}, let G:={gπ1(G):dim𝔭(Gg)k}G^{\prime}:=\{g\in\pi_{1}(G):\dim_{{\mathfrak{p}}}(G_{g})\geq k\}. Then 1:={G:G𝒢}\mathcal{F}_{1}:=\{G^{\prime}:G\in\mathcal{G}\} is a definable family of subsets of X1X_{1} by Claim 5.8. By assumption and Lemma 5.9 we have dim𝔭(G)=0\dim_{{\mathfrak{p}}}(G^{\prime})=0 for every G𝒢G\in\mathcal{G}. Let

𝒢:={Gg:G𝒢gπ1(G)},\displaystyle\mathcal{G}^{*}:=\{G_{g}:G\in\mathcal{G}\land g\in\pi_{1}(G)\},
𝒢<k:={Gg:G𝒢gπ1(G)dim𝔭(Gg)<k}.\displaystyle\mathcal{G}^{*}_{<k}:=\{G_{g}:G\in\mathcal{G}\land g\in\pi_{1}(G)\land\dim_{{\mathfrak{p}}}(G_{g})<k\}.

Both 𝒢\mathcal{G}^{*} and 𝒢<k\mathcal{G}^{*}_{<k} (by Claim 5.8) are definable families of subsets of 2isXi\prod_{2\leq i\leq s}X_{i}, all sets in 𝒢\mathcal{G}^{*} have 𝔭{\mathfrak{p}}-dimension k\leq k, and all sets in 𝒢<k\mathcal{G}^{*}_{<k} have 𝔭{\mathfrak{p}}-dimension k1\leq k-1. Applying the (k,s1)(k,s-1)-induction hypothesis, let =(i:2is)\vec{\mathcal{F}}^{*}=\left(\mathcal{F}^{*}_{i}:2\leq i\leq s\right) be a definable system of subsets of X2××XsX_{2}\times\ldots\times X_{s} satisfying the conclusion of the lemma with respect to 𝒢\mathcal{G}^{*}. Applying the (k1,s1)(k-1,s-1)-induction hypothesis, let <k=(<k,i:2is)\vec{\mathcal{F}}^{*}_{<k}=\left(\mathcal{F}^{*}_{<k,i}:2\leq i\leq s\right) be a definable system of subsets of X2××XsX_{2}\times\ldots\times X_{s} satisfying the conclusion of the lemma with respect to 𝒢<k\mathcal{G}^{*}_{<k}. We let =(i:i[s])\vec{\mathcal{F}}=(\mathcal{F}_{i}:i\in[s]) be a definable system of subsets of X1××XsX_{1}\times\ldots\times X_{s}, with 1\mathcal{F}_{1} defined above and i:=i<k,i\mathcal{F}_{i}:=\mathcal{F}^{*}_{i}\cup\mathcal{F}^{*}_{<k,i} for 2is2\leq i\leq s.

Let now ν\nu\in\mathbb{N} and A=A1××AsA=A_{1}\times\dotsb\times A_{s} be a finite grid on X1××XsX_{1}\times\dotsb\times X_{s} in (,ν)(\vec{\mathcal{F}},\nu)-general position. Let G𝒢G\in\mathcal{G} be arbitrary. As G0G^{\prime}\in\mathcal{F}_{0}, we have in particular that |GA1|ν|G^{\prime}\cap A_{1}|\leq\nu, and by the choice of \vec{\mathcal{F}}^{*}, for every gGA1g\in G^{\prime}\cap A_{1} we have |Gg(A2××As)|C(k,s1,ν)nk|G_{g}\cap(A_{2}\times\ldots\times A_{s})|\leq C(k,s-1,\nu)n^{k}. And by the choice of <k\vec{\mathcal{F}}^{*}_{<k}, for every gA1Gg\in A_{1}\setminus G^{\prime}, we have |Gg(A2××As)|C(k1,s1,ν)nk1|G_{g}\cap(A_{2}\times\ldots\times A_{s})|\leq C(k-1,s-1,\nu)n^{k-1}. Combining, we get

|G(A1××As)|\displaystyle|G\cap(A_{1}\times\ldots\times A_{s})|\leq
νC(k,s1,ν)nk+(nν)C(k1,s1,ν)nk1\displaystyle\nu C(k,s-1,\nu)n^{k}+(n-\nu)C(k-1,s-1,\nu)n^{k-1}\leq
(νC(k,s1,ν)+C(k1,s1,ν))nk.\displaystyle\big{(}\nu C(k,s-1,\nu)+C(k-1,s-1,\nu)\big{)}n^{k}.

This establishes a recursive bound on C(k,s,ν)C(k,s,\nu). Given sk1s\geq k\geq 1, we can repeatedly apply this recurrence for s,s1,,ks,s-1,\ldots,k, and using that C(s,s,ν)=1C(s,s,\nu)=1 for all s,νs,\nu we get that

C(k,s,ν)νsk+i=1skνi1C(k1,si,ν)C(k,s,\nu)\leq\nu^{s-k}+\sum_{i=1}^{s-k}\nu^{i-1}C(k-1,s-i,\nu)

for any sk1s\geq k\geq 1. Using that C(0,s,ν)=νsC(0,s,\nu)=\nu^{s} for all s,νs,\nu and iterating this inequality for 0,1,,k0,1,\ldots,k, it is not hard to see that C(s,k,ν)skνskC(s,k,\nu)\leq s^{k}\nu^{s-k} for all s,k,νs,k,\nu. ∎

5.4. Main theorem: the statement and some reductions

From now on we will assume additionally that the theory TT is stable and eliminates imaginaries, i.e. T=TeqT=T^{\mathrm{eq}} (we refer to e.g. [tent2012course] for a general exposition of stability). As before, \mathcal{M} is an ||+|\mathcal{L}|^{+}-saturated model of TT, 𝕄\mathbb{M} is a monster model of TT, and we assume that (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} is a 𝔭{\mathfrak{p}}-system in \mathcal{M}, with each 𝔭i{\mathfrak{p}}_{i} non-algebraic. “Definable” means “definable with parameters in \mathcal{M}”. As usual, if XX is a definable set, a family \mathcal{F} of subsets of XX is definable if there exist definable sets Y,FX×YY,F\subseteq X\times Y so that ={Fb:bY}\mathcal{F}=\left\{F_{b}:b\in Y\right\}.

Remark 5.20.

Note that if QX1××XsQ\subseteq X_{1}\times\dotsb\times X_{s} is a fiber-algebraic relation of degree dd, then for any nn-grid Ai[s]XiA\subseteq\prod_{i\in[s]}X_{i} we have

|QA|dns1=Od(ns1).|Q\cap A|\leq dn^{s-1}=O_{d}(n^{s-1}).
Definition 5.21.

Let 𝒬\mathcal{Q} be a definable family of subsets of X1××XsX_{1}\times\dotsb\times X_{s}.

  1. (1)

    Given a real ε>0\varepsilon>0, we say that 𝒬\mathcal{Q} admits ε\varepsilon-power saving if there exist definable families i\mathcal{F}_{i} on XiX_{i}, such that for =(i)is\vec{\mathcal{F}}=(\mathcal{F}_{i})_{i\leq s} and any ν\nu\in\mathbb{N}, for any nn-grid A=A1××AsA=A_{1}\times\dotsb\times A_{s} on X1××XsX_{1}\times\dotsb\times X_{s} in (,ν)(\vec{\mathcal{F}},\nu)-general position and any Q𝒬Q\in\mathcal{Q} we have

    |QA|=Oν(n(s1)ε).|Q\cap A|=O_{\nu}\left(n^{(s{-}1)-\varepsilon}\right).
  2. (2)

    We say that 𝒬\mathcal{Q} admits power saving222We are following the terminology in [Bays]. if it admits ε\varepsilon-power saving for some ε>0\varepsilon>0.

  3. (3)

    We say that a relation QX1××XsQ\subseteq X_{1}\times\ldots\times X_{s} admits (ε(\varepsilon-)power saving if the family 𝒬:={Q}\mathcal{Q}:=\{Q\} does.

  4. (4)

    We say that QQ is special if it is fiber-algebraic and does not admit power-saving.

Lemma 5.1.

Assume 𝒬,𝒬1,,𝒬m\mathcal{Q},\mathcal{Q}_{1},\ldots,\mathcal{Q}_{m} are definable families of subsets of X1××XsX_{1}\times\dotsb\times X_{s} and ε>0\varepsilon>0 is such that each 𝒬t\mathcal{Q}_{t} satisfies ε\varepsilon-power saving. Assume that for every Q𝒬Q\in\mathcal{Q}, Q=t[m]QtQ=\bigcup_{t\in[m]}Q_{t} for some Qt𝒬tQ_{t}\in\mathcal{Q}_{t}. Then 𝒬\mathcal{Q} also satisfies ε\varepsilon-power saving.

Proof.

Assume each 𝒬t,t[m]\mathcal{Q}_{t},t\in[m] satisfies ε\varepsilon-power saving, i.e. there exist definable families t,i\mathcal{F}_{t,i} on XiX_{i} and functions Ct:C_{t}:\mathbb{N}\to\mathbb{N} so that letting t=(t,i)is\vec{\mathcal{F}}_{t}=(\mathcal{F}_{t,i})_{i\leq s}, for every grid AA in (t,ν)\left(\vec{\mathcal{F}}_{t},\nu\right)-general position and every Qt𝒬tQ_{t}\in\mathcal{Q}_{t} we have |QtA|Ct(ν)n(s1)ε|Q_{t}\cap A|\leq C_{t}(\nu)n^{(s{-}1)-\varepsilon}. Let i:=t[m]t,i\mathcal{F}_{i}:=\bigcup_{t\in[m]}\mathcal{F}_{t,i}, =(i)is\vec{\mathcal{F}}=(\mathcal{F}_{i})_{i\leq s} and C:=t[m]CtC:=\sum_{t\in[m]}C_{t}. Then for every grid AA in (,ν)\left(\vec{\mathcal{F}},\nu\right)-general position and every Q𝒬Q\in\mathcal{Q} we have |QA|C(ν)n(s1)ε|Q\cap A|\leq C(\nu)n^{(s{-}1)-\varepsilon}, as required. ∎

We recall Definition 1.6, specializing to 𝔭{\mathfrak{p}}-dimension.

Definition 5.22.

Let Qi[s]XiQ\subseteq\prod_{i\in[s]}X_{i} be a definable relation and (G,,1G)(G,\cdot,1_{G}) a type-definable group in \mathcal{M} (over a small set of parameters AA). We say that QQ is in a 𝔭{\mathfrak{p}}-generic correspondence with GG (over AA) if there exist elements g1,,gsG()g_{1},\ldots,g_{s}\in G(\mathcal{M}) such that:

  1. (1)

    g1gs=1Gg_{1}\cdot\dotsc\cdot g_{s}=1_{G};

  2. (2)

    g1,,gs1g_{1},\dotsc,g_{s-1} are independent generics in GG over AA (in the usual sense of stable group theory);

  3. (3)

    for each i[s]i\in[s] there is a generic element aiXia_{i}\in X_{i} realizing 𝔭i|A{\mathfrak{p}}_{i}|_{A} and inter-algebraic with gig_{i} over AA, such that Q(a1,,as)\mathcal{M}\models Q(a_{1},\ldots,a_{s}).

Remark 5.23.

If QQ is 𝔭{\mathfrak{p}}-irreducible over AA, then (3) holds for all g1,,gsGg_{1},\ldots,g_{s}\in G satisfying (1) and (2), providing a definable generic finite-to-finite correspondence between QQ and the graph of the (s1)(s-1)-fold multiplication in GG.

The following is the main theorem of the section characterizing special fiber-algebraic relations in stable reducts of distal structures.

Theorem 5.24.

Assume that \mathcal{M} is an ||+|\mathcal{L}|^{+}-saturated \mathcal{L}-structure, and Th()\operatorname{Th}(\mathcal{M}) is stable and admits a distal expansion. Assume that s3s\geq 3, (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} is a 𝔭{\mathfrak{p}}-system with each 𝔭i{\mathfrak{p}}_{i} non-algebraic and QX1××XsQ\subseteq X_{1}\times\dotsb\times X_{s} is a definable fiber-algebraic relation. Then at least one of the following holds.

  1. (1)

    QQ admits power saving.

  2. (2)

    QQ is in a 𝔭{\mathfrak{p}}-generic correspondence with an abelian group GG type-definable in eq\mathcal{M}^{\mathrm{eq}} over a set of parameters of cardinality ||\leq|\mathcal{L}|.

The only property of distal structures actually used is that every definable binary relation in \mathcal{M} satisfies the γ\gamma-ST property (Definition 2.12) for some γ>0\gamma>0, by Proposition 2.14 and Fact 2.4. In fact, Theorem 5.24 follows from the following more precise version with the additional uniformity in families and explicit bounds on power saving.

Definition 5.25.

Let 𝒬\mathcal{Q} be a definable family of subsets X1××XsX_{1}\times\dotsb\times X_{s}.

  1. (1)

    We say that 𝒬\mathcal{Q} is a fiber-algebraic family if each Q𝒬Q\in\mathcal{Q} is fiber-algebraic.

  2. (2)

    We say that 𝒬\mathcal{Q} is an absolutely 𝔭{\mathfrak{p}}-irreducible fiber-algebraic family if each Q𝒬Q\in\mathcal{Q} is 𝔭{\mathfrak{p}}-irreducible and fiber-algebraic

Remark 5.26.

Let 𝒬\mathcal{Q} be a definable fiber-algebraic family. By saturation of \mathcal{M} there is dd\in\mathbb{N} such that every Q𝒢Q\in\mathcal{G} has degree d\leq d. In this case we say that 𝒬\mathcal{Q} is of degree d\leq d.

Theorem 5.27.

Assume that \mathcal{M} is an ||+|\mathcal{L}|^{+}-saturated \mathcal{L}-structure and Th()\operatorname{Th}(\mathcal{M}) is stable. Assume that s4s\geq 4, (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} is a 𝔭{\mathfrak{p}}-system with each 𝔭i{\mathfrak{p}}_{i} non-algebraic, and let 𝒬\mathcal{Q} be a fiber-algebraic definable family, and fix 0<γ10<\gamma\leq 1.

  • If s4s\geq 4, assume that there exist mm\in\mathbb{N} and definable families 𝒬i,i[m]\mathcal{Q}_{i},i\in[m] of absolutely 𝔭{\mathfrak{p}}-irreducible sets so that for every Q𝒬Q\in\mathcal{Q} we have Q=i[m]QiQ=\bigcup_{i\in[m]}Q_{i} for some Qi𝒬iQ_{i}\in\mathcal{Q}_{i}. Assume also that for each i[m],t1t2[s]i\in[m],t_{1}\neq t_{2}\in[s], the family 𝒬i\mathcal{Q}_{i} viewed as a definable family of subsets of (Xt1×Xt2)×(k[s]{t1,t2}Xk)\left(X_{t_{1}}\times X_{t_{2}}\right)\times\left(\prod_{k\in[s]\setminus\{t_{1},t_{2}\}}X_{k}\right) satisfies the γ\gamma-ST property.

  • If s=3s=3, for each i[m]i\in[m] and 𝒬i\mathcal{Q}_{i} as above, we additionally consider the definable family 𝒬i:={Q:Q𝒬i}\mathcal{Q}^{*}_{i}:=\left\{Q^{*}:Q\in\mathcal{Q}_{i}\right\} of subsets of X1×X2×X3×X4X_{1}\times X_{2}\times X_{3}\times X_{4}, where

    Q:={(x2,x2,x3,x3)X2×X2×X3×X3:\displaystyle Q^{*}:=\Big{\{}(x_{2},x^{\prime}_{2},x_{3},x^{\prime}_{3})\in X_{2}\times X_{2}\times X_{3}\times X_{3}:
    x1X1((x1,x2,x3)Q(x1,x2,x3)Q)}.\displaystyle\exists x_{1}\in X_{1}\,\big{(}(x_{1},x_{2},x_{3})\in Q\land(x_{1},x^{\prime}_{2},x^{\prime}_{3})\in Q\big{)}\Big{\}}.

    Assume moreover that there exist mi,i[m]m_{i}\in\mathbb{N},i\in[m] and definable families 𝒬i,j\mathcal{Q}_{i,j} for i[m],j[mi]i\in[m],j\in[m_{i}] so that for every i[m],Q𝒬ii\in[m],Q^{*}\in\mathcal{Q}^{*}_{i} we have Q=j[mi]Qi,jQ^{*}=\bigcup_{j\in[m_{i}]}Q_{i,j} for some Qi,j𝒬i,jQ_{i,j}\in\mathcal{Q}_{i,j}. Assume also that for each i[m],j[mi],t1t2[4]i\in[m],j\in[m_{i}],t_{1}\neq t_{2}\in[4], the family 𝒬i,j\mathcal{Q}_{i,j} viewed as a definable family of subsets of (Xt1×Xt2)×(k[4]{t1,t2}Xk)\left(X_{t_{1}}\times X_{t_{2}}\right)\times\left(\prod_{k\in[4]\setminus\{t_{1},t_{2}\}}X_{k}\right) satisfies the 2γ2\gamma-ST property.

Then there is a definable subfamily 𝒬𝒬\mathcal{Q}^{\prime}\subseteq\mathcal{Q} such that the family 𝒬\mathcal{Q}^{\prime} admits γ\gamma-power saving, and for each Q𝒬𝒬Q\in\mathcal{Q}\setminus\mathcal{Q}^{\prime} the relation QQ is in a 𝔭{\mathfrak{p}}-generic correspondence with an abelian group GQG_{Q} type-definable in eq\mathcal{M}^{\mathrm{eq}} over a set of parameters of cardinality ||\leq|\mathcal{L}|.

To see that Theorem 5.24 follows from Theorem 5.27, assume that a definable relation QQ is as in Theorem 5.24, and consider the definable family 𝒬:={Q}\mathcal{Q}:=\left\{Q\right\} consisting of a single element QQ. By Proposition 2.14 and Fact 2.4 every definable family of binary relations in \mathcal{M} satisfies the γ\gamma-ST property (Definition 2.12) for some γ>0\gamma>0. Moreover, by Corollary 5.13, if QX1××XsQ\subseteq X_{1}\times\ldots\times X_{s} is definable and fiber-algebraic of degree d\leq d, we have Q=i[sd]QiQ=\bigcup_{i\in[sd]}Q_{i} for some definable absolutely 𝔭{\mathfrak{p}}-irreducible sets QiQ_{i}. By distality, each QiQ_{i} satisfies the γi\gamma_{i}-ST-property for some γi>0\gamma_{i}>0. Hence, taking 𝒬i:={Qi}\mathcal{Q}_{i}:=\{Q_{i}\}, m:=sdm:=sd and γ:=min{γi:i[m]}>0\gamma:=\min\{\gamma_{i}:i\in[m]\}>0, the assumption of Theorem 5.27 is satisfied for s4s\geq 4. If s=3s=3, note that each QiQ_{i} is still fiber-algebraic of degree dd, hence each QiX1××X4Q^{\prime}_{i}\subseteq X_{1}\times\ldots\times X_{4} is fiber-algebraic, of degree d2\leq d^{2} by Lemma 5.44. By Corollary 5.13 again, for each ii we have Qi=j[4d2]Qi,jQ^{\prime}_{i}=\bigcup_{j\in[4d^{2}]}Q_{i,j} for some definable absolutely 𝔭{\mathfrak{p}}-irreducible sets Qi,jQ_{i,j}, each satisfying the γi,j\gamma_{i,j}-ST-property for some γi,j>0\gamma_{i,j}>0. Hence, taking mi:=4d2m_{i}:=4d^{2}, 𝒬i,j:={Qi,j}\mathcal{Q}_{i,j}:=\left\{Q_{i,j}\right\} and γ:=min{γi,j:i[m],j[mi]}>0\gamma:=\min\{\gamma_{i,j}:i\in[m],j\in[m_{i}]\}>0, the assumption of Theorem 5.27 is satisfied for s=3s=3. In either case, let 𝒬\mathcal{Q}^{\prime} be as given by applying Theorem 5.27. If 𝒬=𝒬\mathcal{Q}^{\prime}=\mathcal{Q}, then QQ is in Case (1) of Theorem 5.24. Otherwise 𝒬=\mathcal{Q}^{\prime}=\emptyset, and QQ is in Case (2) of Theorem 5.24.

In the rest of the section we give a proof of Theorem 5.27 (which will also establish Theorem 5.24). In fact, first we will prove a special case of Theorem 5.27 for definable families of absolutely 𝔭{\mathfrak{p}}-irreducible sets and s4s\geq 4 (Theorem 5.31), and then derive full Theorem 5.27 from it in Section 5.6 (for s4s\geq 4) and Section 5.7 (for s=3s=3). We begin with some auxiliary observations and reductions.

Assumption 1.

For the rest of Section 5, we assume that s3s\in\mathbb{N}_{\geq 3} (even though some of the results below make sense for s1s\in\mathbb{N}_{\geq 1}), \mathcal{M} is ||+|\mathcal{L}|^{+}-saturated, (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} is a 𝔭{\mathfrak{p}}-system with each 𝔭i{\mathfrak{p}}_{i} non-algebraic, and XiX_{i} is a \emptyset-definable. “Definable” will mean “definable with parameters in \mathcal{M}

Lemma 5.28.

If QX1××XsQ\subseteq X_{1}\times\dotsb\times X_{s} is fiber-algebraic then dim𝔭(Q)s1\dim_{{\mathfrak{p}}}(Q)\leq s-1.

Proof.

Let (a1,,as1)i[s1]𝔭i|A(a_{1},\ldots,a_{s-1})\models\bigotimes_{i\in[s-1]}{\mathfrak{p}}_{i}|_{A}, where AA is some finite set such that QQ is AA-definable. The type 𝔭s{\mathfrak{p}}_{s} is non-algebraic by Assumption 1, and Q(a1,,as1,xs)Q(a_{1},\ldots,a_{s-1},x_{s}) has at most dd solutions. Hence necessarily

Q(a1,,as1,xs)𝔭s,Q(a_{1},\ldots,a_{s-1},x_{s})\notin{\mathfrak{p}}_{s},

so Q(x1,,xs)i[s]𝔭iQ(x_{1},\ldots,x_{s})\notin\bigotimes_{i\in[s]}{\mathfrak{p}}_{i}. ∎

The following is straightforward by definition of fiber-algebraicity.

Lemma 5.29.

Let QX1××XsQ\subseteq X_{1}\times\dotsb\times X_{s} be a fiber-algebraic relation of degree d\leq d and u[s]u\subseteq[s] with |u|=s1|u|=s-1. Let πu\pi_{u} be the projection from X1××XsX_{1}\times\dotsb\times X_{s} onto iuXi\prod_{i\in u}X_{i}. Let A=A1××AsA=A_{1}\times\dotsb\times A_{s} be a grid on X1××XsX_{1}\times\dotsb\times X_{s}. Then

|QA|d|πu(Q)iuAi|.|Q\cap A|\leq d\left\lvert\pi_{u}(Q)\cap\prod_{i\in u}A_{i}\right\rvert.
Proposition 5.30.

Let 𝒬\mathcal{Q} be a definable family of fiber-algebraic subsets of X1××XsX_{1}\times\dotsb\times X_{s}. Let u[s]u\subseteq[s] with u=s1u=s-1. Assume that for every Q𝒬Q\in\mathcal{Q} the projection πu(Q)\pi_{u}(Q) onto iuXi\prod_{i\in u}X_{i} is not 𝔭{\mathfrak{p}}-generic. Then 𝒬\mathcal{Q} admits 11-power saving.

Proof.

By Lemma 5.19 there exists a definable system u=(i:iu)\vec{\mathcal{F}}_{u}^{*}=(\mathcal{F}_{i}:i\in u) of subsets of iuXi\prod_{i\in u}X_{i} such that for any ν\nu\in\mathbb{N}, for any nn-grid AA^{*} on iuXi\prod_{i\in u}X_{i} in (u,ν)(\vec{\mathcal{F}}_{u}^{*},\nu)-general position, for any Q𝒬Q\in\mathcal{Q} we have |πu(Q)A|ss2ν2ns2|\pi_{u}(Q)\cap A^{*}|\leq s^{s-2}\nu^{2}n^{s-2}. Let dd\in\mathbb{N} be such that 𝒬\mathcal{Q} is of degree d\leq d. Taking i:=\mathcal{F}_{i}:=\emptyset for i[s]ui\in[s]\setminus u, let u:={i:i[s]}\vec{\mathcal{F}}_{u}:=\{\mathcal{F}_{i}:i\in[s]\}. Then by Lemma 5.29, for any nn-grid AA on i[s]Xi\prod_{i\in[s]}X_{i} in (,ν)(\vec{\mathcal{F}},\nu)-general position, for any Q𝒬Q\in\mathcal{Q} we have |QA|dss2ν2ns2=Oν(ns2)|Q\cap A|\leq ds^{s-2}\nu^{2}n^{s-2}=O_{\nu}(n^{s-2}), hence the family 𝒬\mathcal{Q} admits 11-power saving. ∎

The following is the main theorem for definable families of absolutely irreducible sets:

Theorem 5.31.

Assume that \mathcal{M} is an ||+|\mathcal{L}|^{+}-saturated \mathcal{L}-structure and Th()\operatorname{Th}(\mathcal{M}) is stable. Assume that s4s\geq 4, (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} is a 𝔭{\mathfrak{p}}-system with each 𝔭i{\mathfrak{p}}_{i} non-algebraic, and let 𝒬\mathcal{Q} be a fiber-algebraic definable family of absolutely 𝔭{\mathfrak{p}}-irreducible subsets of X1××XsX_{1}\times\dotsb\times X_{s}. Assume that for some 0<γ10<\gamma\leq 1, for each ij[s]i\neq j\in[s], 𝒬\mathcal{Q} viewed as a definable family of subsets of (Xi×Xj)×(k[s]{i,j}Xk)\left(X_{i}\times X_{j}\right)\times\left(\prod_{k\in[s]\setminus\{i,j\}}X_{k}\right) satisfies the γ\gamma-ST property. Then there is a definable subfamily 𝒬𝒬\mathcal{Q}^{\prime}\subseteq\mathcal{Q} such that the family 𝒬\mathcal{Q}^{\prime} admits γ\gamma-power saving, and for each Q𝒬𝒬Q\in\mathcal{Q}\setminus\mathcal{Q}^{\prime} the relation QQ is in a 𝔭{\mathfrak{p}}-generic correspondence with an abelian group GQG_{Q} type-definable in eq\mathcal{M}^{\mathrm{eq}} over a set of parameters of cardinality ||\leq|\mathcal{L}|.

In the rest of this section we give a proof of Theorem 5.31 (and then of Theorem 5.27).

We fix a fiber-algebraic definable family 𝒬\mathcal{Q} of absolutely 𝔭{\mathfrak{p}}-irreducible subsets of X1××XsX_{1}\times\dotsb\times X_{s}.

Let 𝒬0\mathcal{Q}_{0} be the set of all Q𝒬Q\in\mathcal{Q} such that for some u[s]u\subseteq[s] with |u|=s1|u|=s-1 for the projection πu(Q)\pi_{u}(Q) of QQ onto iuXi\prod_{i\in u}X_{i} we have dim𝔭(πu(Q)<s1\dim_{\mathfrak{p}}(\pi_{u}(Q)<s-1.

By Claim 5.8, the family 𝒬0\mathcal{Q}_{0} is definable and it follows from Proposition 5.30 that the family 𝒬0\mathcal{Q}_{0} admits 11-power saving. Hence replacing 𝒬\mathcal{Q} with 𝒬𝒬0\mathcal{Q}\setminus\mathcal{Q}_{0}, if needed, we will assume the following:

Assumption 2.

𝒬\mathcal{Q} is a fiber-algebraic definable family of absolutely 𝔭{\mathfrak{p}}-irreducible subsets of X1××XsX_{1}\times\dotsb\times X_{s}. For any Q𝒬Q\in\mathcal{Q} the projection of QQ onto any s1s-1 coordinates is 𝔭{\mathfrak{p}}-generic. In particular, dim𝔭(Q)=s1\dim_{\mathfrak{p}}(Q)=s-1 (by Lemma 5.28).

Proposition 5.32.

Let CC be a small set in \mathcal{M}, Q𝒬Q\in\mathcal{Q} and let a¯=(a1,,as)\bar{a}=(a_{1},\dotsc,a_{s}) be a 𝔭{\mathfrak{p}}-generic in QQ over CC (see Remark 5.6 for the definition). Then for any i[s]i\in[s] we have

(aj:j[s]{i})j[s]{i}𝔭j|C.\left(a_{j}:j\in[s]\setminus\{i\}\right)\models\bigotimes_{j\in[s]\setminus\{i\}}{\mathfrak{p}}_{j}|_{C}.
Proof.

Since QQ is absolutely 𝔭{\mathfrak{p}}-irreducible, it has unique 𝔭{\mathfrak{p}}-generic type over CC. By our assumption for any i[s]i\in[s] the projection of QQ onto [s]{i}[s]\setminus\{i\} is 𝔭{\mathfrak{p}}-generic. Hence any realization of j[s]{i}𝔭j|C\bigotimes_{j\in[s]\setminus\{i\}}{\mathfrak{p}}_{j}|_{C} can be extended to a 𝔭{\mathfrak{p}}-generic of QQ. ∎

Next we observe that the assumption that the projection of QQ onto any s1s-1 coordinates is 𝔭{\mathfrak{p}}-generic in Proposition 5.32 was necessary, but could be replaced by the assumption that QQ does not admit 11-power saving (this will not be used in the proof of the main theorem).

Proposition 5.33.

Assume that QQ is absolutely 𝔭{\mathfrak{p}}-irreducible, dim𝔭(Q)=s1\dim_{\mathfrak{p}}(Q)=s-1 (but no assumption on the projections of QQ), and QQ does not admit 11-power saving. Let CC be a small set in \mathcal{M} and let a¯=(a1,,as)\bar{a}=(a_{1},\dotsc,a_{s}) be a generic in QQ over CC. Then for any i[s]i\in[s] we have

(aj:j[s]{i})j[s]{i}𝔭j|C.(a_{j}:j\in[s]\setminus\{i\})\models\bigotimes_{j\in[s]\setminus\{i\}}{\mathfrak{p}}_{j}|_{C}.
Proof.

Let a¯\bar{a} be a generic in QQ over CC. Permuting the variables if necessary and using that the types 𝔭i{\mathfrak{p}}_{i} commute, we may assume

(a1,,as1)𝔭1𝔭s1|C.(a_{1},\dotsc,a_{s-1})\models{\mathfrak{p}}_{1}\otimes\dotsb\otimes{\mathfrak{p}}_{s-1}|_{C}.

We only consider the case i=1i=1, i.e. we need to show that

(a2,,as)𝔭2𝔭s|C,(a_{2},\dotsc,a_{s})\models{\mathfrak{p}}_{2}\otimes\dotsb\otimes{\mathfrak{p}}_{s}|_{C},

the other cases are analogous.

Assume this does not hold, then there is a relation G1X2××XsG_{1}\subseteq X_{2}\times\dotsb\times X_{s} definable over CC such that dim𝔭(G1)<s1\dim_{\mathfrak{p}}(G_{1})<s-1 and (a2,,as)G1(a_{2},\dotsc,a_{s})\in G_{1}.

Since QQ is 𝔭{\mathfrak{p}}-irreducible over CC, the formula Q(a1,,as1,xs)Q(a_{1},\dotsc,a_{s-1},x_{s}) implies a complete type over C{a1,,as1}C\cup\{a_{1},\ldots,a_{s-1}\} by Lemma 5.14. Hence we have

Q(a1,,as1,xs)tp(as/C{a1,,as1}),Q(a_{1},\dotsc,a_{s-1},x_{s})\vdash\mathrm{tp}(a_{s}/C\cup\{a_{1},\dotsc,a_{s-1}\}),

so in particular

Q(a1,,as1,xs)G1(a2,,as1,xs),\displaystyle Q(a_{1},\dotsc,a_{s-1},x_{s})\rightarrow G_{1}(a_{2},\dotsc,a_{s-1},x_{s}),

which implies

{Q(x1,,xs1,xs)}(𝔭1𝔭s1)|C(x1,,xs1)\displaystyle\{Q(x_{1},\dotsc,x_{s-1},x_{s})\}\cup\left({\mathfrak{p}}_{1}\otimes\ldots\otimes{\mathfrak{p}}_{s-1}\right)|_{C}(x_{1},\ldots,x_{s-1})
G1(x2,,xs1,xs).\displaystyle\rightarrow G_{1}(x_{2},\dotsc,x_{s-1},x_{s}).

Then, by saturation of \mathcal{M}, there exists some 𝔭{\mathfrak{p}}-generic set G2X1××Xs1G_{2}\subseteq X_{1}\times\dotsb\times X_{s-1} definable over CC (given by a finite conjunction of formulas from (𝔭1𝔭s1)|C\left({\mathfrak{p}}_{1}\otimes\ldots\otimes{\mathfrak{p}}_{s-1}\right)|_{C}) such that

Q(x1,,xs1,xs)G2(x1,,xs1)G1(x2,,xs1,xs),Q(x_{1},\dotsc,x_{s-1},x_{s})\wedge G_{2}(x_{1},\dotsc,x_{s-1})\rightarrow G_{1}(x_{2},\dotsc,x_{s-1},x_{s}),

hence

Q(x1,,xs1,xs)(¬G2(x1,,xs1)G1(x2,,xs1,xs)).Q(x_{1},\dotsc,x_{s-1},x_{s})\rightarrow\big{(}\neg G_{2}(x_{1},\dotsc,x_{s-1})\vee G_{1}(x_{2},\dotsc,x_{s-1},x_{s})\big{)}.

Let H2:=(¬G2)×XsH_{2}:=(\neg G_{2})\times X_{s} and H1:=X1×G1H_{1}:=X_{1}\times G_{1}. Then dim𝔭(π[s1](H2))=dim𝔭(¬G2)<s1\dim_{{\mathfrak{p}}}\left(\pi_{[s-1]}(H_{2})\right)=\dim_{{\mathfrak{p}}}(\neg G_{2})<s-1 and dim𝔭(π[s]{1}(H1))=dim𝔭(¬G1)<s1\dim_{{\mathfrak{p}}}\left(\pi_{[s]\setminus\{1\}}(H_{1})\right)=\dim_{{\mathfrak{p}}}(\neg G_{1})<s-1. Thus QQ is covered by the union of H1H_{1} and H2H_{2}, each with 11-power saving by Proposition 5.30, which implies that QQ admits 11-power-saving. ∎

Remark 5.34.

The assumption that QQ has no 11-power saving is necessary in Proposition 5.33, and the assumption that the projection of QQ onto any s1s-1 coordinates is 𝔭{\mathfrak{p}}-generic in necessary in Proposition 5.32. For example let s=2s=2 and assume Q(x1,x2)Q(x_{1},x_{2}) is the graph of a bijection from X1X_{1} to some \emptyset-definable set Y2X2Y_{2}\subseteq X_{2} with Y2𝔭2Y_{2}\notin{\mathfrak{p}}_{2}. Then QQ is clearly fiber algebraic, absolutely 𝔭{\mathfrak{p}}-irreducible, with dim𝔭(Q)=1\dim_{\mathfrak{p}}(Q)=1. But for a generic (b1,b2)Q(b_{1},b_{2})\in Q, b2b_{2} does not realize 𝔭2|{\mathfrak{p}}_{2}|_{\emptyset}. Note that QQ has 11-power saving. Indeed, let :=(1,2)\vec{\mathcal{F}}:=(\mathcal{F}_{1},\mathcal{F}_{2}) with 1:=,2:={Y2}\mathcal{F}_{1}:=\emptyset,\mathcal{F}_{2}:=\{Y_{2}\}. Then, given any n,νn,\nu\in\mathbb{N} and an nn-grid A1×A2A_{1}\times A_{2} in (,ν)\left(\vec{\mathcal{F}},\nu\right)-general position, as dim𝔭(Y2)=0\dim_{\mathfrak{p}}(Y_{2})=0 we must have |A2Y2|ν|A_{2}\cap Y_{2}|\leq\nu, hence, by definition of QQ, |Q(A1×A2)|ν=Oν(1)=Oν(n(21)1)|Q\cap(A_{1}\times A_{2})|\leq\nu=O_{\nu}(1)=O_{\nu}\left(n^{(2-1)-1}\right). Also note that π{2}(Q)\pi_{\{2\}}(Q) is not 𝔭\mathfrak{p}-generic.

We can now state the key structural dichotomy at the core of Theorem 5.31:

Theorem 5.35.

Let 𝒬={Qα:αΩ}\mathcal{Q}=\{Q_{\alpha}\colon\alpha\in\Omega\} be a definable family of absolutely 𝔭{\mathfrak{p}}-irreducible fiber-algebraic subsets of isXi\prod_{i\in s}X_{i} satisfying the Assumption 1 above. Assume the family 𝒬\mathcal{Q}, as a family of binary relations on

(i[s2]Xi)×(Xs1×Xs),\left(\prod_{i\in[s-2]}X_{i}\right)\times\left(X_{s-1}\times X_{s}\right),

satisfies the γ\gamma-ST property for some 0<γ10<\gamma\leq 1.

Then there is a definable Ω1Ω\Omega_{1}\subseteq\Omega such that the family {Qα:αΩ1}\{Q_{\alpha}\colon\alpha\in\Omega_{1}\}, admits γ\gamma-power-saving, and for every αΩΩ1\alpha\in\Omega\setminus\Omega_{1}, for every tuple (a1,,as)Qα(a_{1},\dotsc,a_{s})\in Q_{\alpha} generic over α\alpha there exists some tuple

ξacl(a1,,as2,α)acl(as1,as,α)\xi\in\operatorname{acl}(a_{1},\dotsc,a_{s-2},\alpha)\cap\operatorname{acl}(a_{s-1},a_{s},\alpha)

of length at most |||\mathcal{L}| such that

(a1,,as2)ξ(as1,as).(a_{1},\dotsc,a_{s-2})\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi}(a_{s-1},a_{s}).
Remark 5.36.

Theorem 5.35 is trivial for s=3s=3 with Ω1=\Omega_{1}=\emptyset, as a1ξ(a2,a3)a_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi}(a_{2},a_{3}) always holds with ξ:=a1α\xi:=a_{1}\alpha.

First we show how the above theorem, combined with the reconstruction of abelian groups from abelian ss-gons in Theorem 4.6, implies Theorem 5.31. Then we use theorem Theorem 5.31 to deduce Theorem 5.24 for s4s\geq 4 (along with the bound in Theorem 5.27) in Section 5.6. The case s=3s=3 of Theorem 5.24 requires a separate argument reducing to the case s=4s=4 of Theorem 5.24 given in Section 5.7.

Proof of Theorem 5.31.

From the reductions described above, we assume that 𝒬\mathcal{Q} and (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} satisfy Assumptions 1 and 2, and that for some 0<γ10<\gamma\leq 1, for each ij[s]i\neq j\in[s], 𝒬\mathcal{Q} viewed as a definable family of subsets of (Xi×Xj)×(k[s]{i,j}Xk)\left(X_{i}\times X_{j}\right)\times\left(\prod_{k\in[s]\setminus\{i,j\}}X_{k}\right) satisfies the γ\gamma-ST property.

It follows that for every permutation of [s][s], the family 𝒬\mathcal{Q} and the 𝔭{\mathfrak{p}}-system obtained from 𝒬\mathcal{Q} and (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} by permuting the variables accordingly still satisfy the assumption of Theorem 5.35. Applying Theorem 5.35 to every permutation of [s][s], and taking (definable) ΩΩ\Omega^{\prime}\subseteq\Omega to be the union of the corresponding Ω1\Omega_{1}’s, we have that the family 𝒬={Qα:αΩ}\mathcal{Q}^{\prime}=\{Q_{\alpha}\colon\alpha\in\Omega^{\prime}\} admits γ\gamma-power saving and for any αΩΩ\alpha\in\Omega\setminus\Omega^{\prime}, for every tuple (a1,,as)(a_{1},\ldots,a_{s}) generic in QαQ_{\alpha} over α\alpha, after any permutation of [s][s] we have

a1a2acl(a1a2α)acl(a3asα)a3as.a_{1}a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\operatorname{acl}(a_{1}a_{2}\alpha)\cap\operatorname{acl}(a_{3}\ldots a_{s}\alpha)}a_{3}\ldots a_{s}.

Together with fiber-algebraicity of QαQ_{\alpha} this implies that (a1,,as)(a_{1},\ldots,a_{s}) is an abelian ss-gon over α\alpha.

Applying Theorem 4.6, we obtain that for any αΩΩ\alpha\in\Omega\setminus\Omega^{\prime} there exists a small set AαA_{\alpha}\subseteq\mathcal{M} and a connected abelian group GαG_{\alpha} type-definable over AαA_{\alpha} and such that QαQ_{\alpha} is in a 𝔭{\mathfrak{p}}-generic correspondence with GαG_{\alpha} over AαA_{\alpha}. (As stated, Theorem 4.6 only guarantees the existence of an appropriate set of parameters AαA_{\alpha} of size ||\leq|\mathcal{L}| and GαG_{\alpha} in 𝕄\mathbb{M}, however by ||+|\mathcal{L}|^{+}-saturation of \mathcal{M} there exists a set AαA^{\prime}_{\alpha} in \mathcal{M} with the same type as AαA_{\alpha}, hence we obtain the required group applying an automorphism of 𝕄\mathbb{M} sending AαA_{\alpha} to AαA^{\prime}_{\alpha}.) ∎

In the remainder of the section we prove Theorem 5.35.

5.5. Proof of Theorem 5.35

Theorem 5.35 is trivial in the case s=3s=3 by Remark 5.36, so we will assume s4s\geq 4.

Let U:=X1××Xs2U:=X_{1}\times\dotsc\times X_{s-2} and V:=Xs1×XsV:=X_{s-1}\times X_{s}. We view each Q𝒬Q\in\mathcal{Q} as a binary relation QU×VQ\subseteq U\times V.

We fix a formula φ(u;v;w)\varphi(u;v;w)\in\mathcal{L} such that for αΩ\alpha\in\Omega the formula φ(u;v;α)\varphi(u;v;\alpha) defines QαQ_{\alpha}, with the variables uu corresponding to UU and vv to VV.

We also fix dd\in\mathbb{N} such that 𝒬\mathcal{Q} is of degree d\leq d.

Definition 5.37.

For αΩ\alpha\in\Omega and aUa\in U, let Zα(a)Z_{\alpha}(a) be the set

Zα(a):={aU:dim𝔭(φ(a;v;α)φ(a;v;α))=1}.Z_{\alpha}(a):=\left\{a^{\prime}\in U\colon\dim_{\mathfrak{p}}\left(\varphi(a;v;\alpha)\cap\varphi(a^{\prime};v;\alpha)\right)=1\right\}.
Claim 5.38.

The family {Zα(a):αΩ,aU}\{Z_{\alpha}(a)\colon\alpha\in\Omega,a\in U\} is a definable family of subsets of UU.

Proof.

By Claim 5.8, the set

D:={(a,a,α)U×U×Ω:aZα(a)}\displaystyle D:=\{(a,a^{\prime},\alpha)\in U\times U\times\Omega:a^{\prime}\in Z_{\alpha}(a)\}
={(a,a,α)U×U×Ω:dim𝔭(φ(a;v;α)φ(a;v;α))=1}\displaystyle=\left\{(a,a^{\prime},\alpha)\in U\times U\times\Omega\colon\dim_{\mathfrak{p}}\left(\varphi(a;v;\alpha)\cap\varphi(a^{\prime};v;\alpha)\right)=1\right\}

is definable, hence the family {Zα(a):αΩ,aU}\{Z_{\alpha}(a)\colon\alpha\in\Omega,a\in U\} is definable. ∎

Claim 5.39.

For any αΩ\alpha\in\Omega and aUa\in U, we have that Zα(a)Z_{\alpha}(a)\neq\emptyset if and only if aZα(a)a\in Z_{\alpha}(a), if and only if dim𝔭(φ(a;v;α))=1\dim_{\mathfrak{p}}(\varphi(a;v;\alpha))=1.

Proof.

Let αΩ\alpha\in\Omega and aUa\in U. As QαQ_{\alpha} is fiber-algebraic, we also have that the binary relation φ(a;v;α)Xs1×Xs\varphi(a;v;\alpha)\subseteq X_{s-1}\times X_{s} is fiber-algebraic, hence dim𝔭(φ(a;v;α))1\dim_{\mathfrak{p}}(\varphi(a;v;\alpha))\leq 1 (by Lemma 5.28). The claim follows as, by definition of 𝔭{\mathfrak{p}}-dimension, dim𝔭(φ(a;v;α)φ(a;v;α))=dim𝔭(φ(a;v;α))dim𝔭(φ(a;v;α)φ(a;v;α))\dim_{{\mathfrak{p}}}(\varphi(a;v;\alpha)\cap\varphi(a;v;\alpha))=\dim_{{\mathfrak{p}}}(\varphi(a;v;\alpha))\geq\dim_{{\mathfrak{p}}}(\varphi(a;v;\alpha)\cap\varphi(a^{\prime};v;\alpha)) for any aUa^{\prime}\in U. ∎

Claim 5.40.

For every αΩ\alpha\in\Omega and aUa\in U the set Zα(a)X1××Xs2Z_{\alpha}(a)\subseteq X_{1}\times\dotsb\times X_{s-2} is fiber-algebraic, of degree 2d2\leq 2d^{2}.

Proof.

We fix αΩ\alpha\in\Omega and aUa\in U. Assume Zα(a)Z_{\alpha}(a)\neq\emptyset. Since φ(a;v;α)\varphi(a;v;\alpha) is fiber-algebraic of degree d\leq d (by fiber-algebraicity of QαQ_{\alpha}), the set SS of types qSv()q\in S_{v}(\mathcal{M}) with φ(a;v;α)q\varphi(a;v;\alpha)\in q and dim𝔭(q)=1\dim_{\mathfrak{p}}(q)=1 is finite, of size 2d\leq 2d (by Lemma 5.12); and for any aUa^{\prime}\in U we have aZα(a)a^{\prime}\in Z_{\alpha}(a) if and only if φ(a,v;α)\varphi(a^{\prime},v;\alpha) belongs to one of these types (by definition of 𝔭{\mathfrak{p}}-dimension). Thus

Zα(a)={aU:φ(a,v,α)q for some qS}.\displaystyle Z_{\alpha}(a)=\{a^{\prime}\in U\colon\varphi(a^{\prime},v,\alpha)\in q\text{ for some }q\in S\}.

Let q1,,qt,t2dq_{1},\dotsc,q_{t},t\leq 2d list all types in SS. We then have Zα(a)=i[t]dφ(qi)Z_{\alpha}(a)=\bigcup_{i\in[t]}d_{\varphi}(q_{i}), where dφ(qi)={aU:φ(a,v;α)qi}d_{\varphi}(q_{i})=\{a^{\prime}\in U\colon\varphi(a^{\prime},v;\alpha)\in q_{i}\}. It is sufficient to show that each dφ(qi)d_{\varphi}(q_{i}) is fiber-algebraic of degree d\leq d. Choose a realization βi\beta_{i} of qiq_{i} in 𝕄\mathbb{M}. Obviously dφ(qi)φ(𝕄,βi;α)d_{\varphi}(q_{i})\subseteq\varphi(\mathbb{M},\beta_{i};\alpha). As 𝕄\mathcal{M}\preceq\mathbb{M} and α\alpha\in\mathcal{M}, the set φ(𝕄;βi;α)i[s2]Xi(𝕄)\varphi(\mathbb{M};\beta_{i};\alpha)\subseteq\prod_{i\in[s-2]}X_{i}(\mathbb{M}) is fiber-algebraic of degree d\leq d, hence the set dφ(qi)d_{\varphi}(q_{i}) is fiber-algebraic of degree d\leq d as well. ∎

By Claim 5.40 and Lemma 5.28, each Zα(a)Z_{\alpha}(a) is not a 𝔭{\mathfrak{p}}-generic subset of X1××Xs2X_{1}\times\dotsb\times X_{s-2}, hence we have that dim𝔭(Zα(a))s3\dim_{\mathfrak{p}}(Z_{\alpha}(a))\leq s-3 for any αΩ\alpha\in\Omega and aUa\in U.

Definition 5.41.

Let ZαUZ_{\alpha}\subseteq U be the set

Zα:={aU:dim𝔭(Zα(a))=s3}.Z_{\alpha}:=\{a\in U\colon\dim_{\mathfrak{p}}(Z_{\alpha}(a))=s-3\}.

Note that the family {Zα:αΩ}\{Z_{\alpha}:\alpha\in\Omega\} is definable by Claim 5.8.

Let Ω1:={αΩ:dim𝔭(Zα)<s2}\Omega_{1}:=\{\alpha\in\Omega\colon\dim_{\mathfrak{p}}(Z_{\alpha})<s-2\}. By Claim 5.8 the set Ω1\Omega_{1} is definable. We will show that the family 𝒬1:={Qα:αΩ1}\mathcal{Q}_{1}:=\{Q_{\alpha}\colon\alpha\in\Omega_{1}\} admits γ\gamma-power saving for the required γ\gamma.

To show that the family {Qα:αΩ1}\{Q_{\alpha}\colon\alpha\in\Omega_{1}\} admits γ\gamma-power saving, it suffices to show that both families {Qα(Zα×V):αΩ1}\{Q_{\alpha}\cap(Z_{\alpha}\times V)\colon\alpha\in\Omega_{1}\} and {Qα(Z¯α×V):αΩ1}\{Q_{\alpha}\cap(\bar{Z}_{\alpha}\times V)\colon\alpha\in\Omega_{1}\} admit γ\gamma-power saving, where Z¯α:=UZα\bar{Z}_{\alpha}:=U\setminus Z_{\alpha} is the complement of ZαZ_{\alpha} in UU.

Since for any αΩ1\alpha\in\Omega_{1} the set ZαZ_{\alpha} is not a 𝔭{\mathfrak{p}}-generic subset of X1××Xs2X_{1}\times\dotsb\times X_{s-2}, for the projection π[s1]:X1××XsX1××Xs1\pi_{[s-1]}\colon X_{1}\times\dotsb\times X_{s}\to X_{1}\times\dotsb\times X_{s-1} we have that π[s1](Qα(Zα×V))\pi_{[s-1]}(Q_{\alpha}\cap(Z_{\alpha}\times V)) is not a 𝔭{\mathfrak{p}}-generic subset of X1××Xs1X_{1}\times\ldots\times X_{s-1}. Hence, by Proposition 5.30, the family {Qα(Zα×V):αΩ1}\{Q_{\alpha}\cap(Z_{\alpha}\times V)\colon\alpha\in\Omega_{1}\} admits 11-power saving.

Next we show that the family {Qα(Z¯α×V):αΩ1}\{Q_{\alpha}\cap(\bar{Z}_{\alpha}\times V)\colon\alpha\in\Omega_{1}\} admits γ\gamma-power saving. By the definition of ZαZ_{\alpha}, for any αΩ1\alpha\in\Omega_{1} and aZ¯αa\in\bar{Z}_{\alpha} we have dim𝔭(Zα(a))s4\dim_{\mathfrak{p}}(Z_{\alpha}(a))\leq s-4. By Lemma 5.19, there is a definable system of sets 1=(1,,s2)\vec{\mathcal{F}}_{1}=(\mathcal{F}_{1},\ldots,\mathcal{F}_{s-2}) on X1××Xs2X_{1}\times\ldots\times X_{s-2} such that for any nn-grid A1××As2A_{1}\times\dotsb\times A_{s-2} in (1,ν)(\vec{\mathcal{F}}_{1},\nu)-general position we have

|Zα(a)(A1××As2)|(s2)s4ν2ns4,|Z_{\alpha}(a)\cap(A_{1}\times\dotsb\times A_{s-2})|\leq(s-2)^{s-4}\nu^{2}n^{s-4},

for any αΩ1\alpha\in\Omega_{1} and aZ¯αa\in\bar{Z}_{\alpha}.

Applying Lemma 5.18 to the definable family

𝒢:={φ(a1;v;α)φ(a2;v;α):αΩ1,a1,a2U,\displaystyle\mathcal{G}:=\big{\{}\varphi(a_{1};v;\alpha)\cap\varphi(a_{2};v;\alpha)\colon\alpha\in\Omega_{1},a_{1},a_{2}\in U,
dim𝔭(φ(a1;v;α)φ(a2;v;α))=0},\displaystyle\dim_{\mathfrak{p}}(\varphi(a_{1};v;\alpha)\cap\varphi(a_{2};v;\alpha))=0\big{\}},

we obtain that there is a definable system of sets 2=(s1,s)\vec{\mathcal{F}}_{2}=(\mathcal{F}_{s-1},\mathcal{F}_{s}) on Xs1×XsX_{s-1}\times X_{s} such that for any nn-grid As1×AsA_{s-1}\times A_{s} in (2,ν)(\vec{\mathcal{F}}_{2},\nu)-general position and any G𝒢G\in\mathcal{G} we have

|G(As1×As)|ν2.|G\cap\left(A_{s-1}\times A_{s}\right)|\leq\nu^{2}.

Then :=12=(1,s)\vec{\mathcal{F}}:=\vec{\mathcal{F}}_{1}\cup\vec{\mathcal{F}}_{2}=(\mathcal{F}_{1},\dotsc\mathcal{F}_{s}) is a definable system of sets on X1××XsX_{1}\times\dotsb\times X_{s}.

Let A=A1××AsA=A_{1}\times\dotsb\times A_{s} be an nn-grid on X1××XsX_{1}\times\dotsb\times X_{s} in (,ν)(\vec{\mathcal{F}},\nu)-general position and αΩ1\alpha\in\Omega_{1}. We need to estimate from above |Qα(Z¯α×V)A||Q_{\alpha}\cap(\bar{Z}_{\alpha}\times V)\cap A|. Let Au:=A1××As2,Au:=AuZ¯αA_{u}:=A_{1}\times\dotsb\times A_{s-2},A^{\prime}_{u}:=A_{u}\cap\bar{Z}_{\alpha} and Av:=As1×AsA_{v}:=A_{s-1}\times A_{s}, then |Au||Au|ns2|A^{\prime}_{u}|\leq|A_{u}|\leq n^{s-2} and |Av|n2|A_{v}|\leq n^{2}. Let QαQ^{\prime}_{\alpha} be QαQ_{\alpha} viewed as a binary relation on U×VU\times V, we have

|Qα(Z¯α×V)A|=|Qα(Z¯α×V)(Au×Av)||Qα(Au×Av)|,|Q_{\alpha}\cap(\bar{Z}_{\alpha}\times V)\cap A|=|Q^{\prime}_{\alpha}\cap(\bar{Z}_{\alpha}\times V)\cap(A_{u}\times A_{v})|\leq|Q^{\prime}_{\alpha}\cap(A^{\prime}_{u}\times A_{v})|,

so it suffices to obtain the desired upper bound on |Qα(Au×Av)||Q^{\prime}_{\alpha}\cap(A^{\prime}_{u}\times A_{v})|.

From the (,ν)(\vec{\mathcal{F}},\nu)-general position assumption and the choice of \vec{\mathcal{F}} we have: for any aAua\in A^{\prime}_{u} there are at most (s2)s4ν2ns4(s-2)^{s-4}\nu^{2}n^{s-4} elements aAua^{\prime}\in A^{\prime}_{u} such that |Qα(a,v)Qα(a,v)Av|ν2|Q^{\prime}_{\alpha}(a,v)\cap Q^{\prime}_{\alpha}(a^{\prime},v)\cap A_{v}|\geq\nu^{2}.

By assumption on 𝒬\mathcal{Q} the definable family 𝒬1:={Qα:αΩ1}\mathcal{Q}^{\prime}_{1}:=\{Q^{\prime}_{\alpha}:\alpha\in\Omega_{1}\} of subsets of U×VU\times V satisfies the γ\gamma-ST property, and let C:C^{\prime}:\mathbb{N}\to\mathbb{N} be as given by Definition 2.12 for C(ν):=(s2)s4νC(\nu):=(s-2)^{s-4}\nu. Then we have |Qα(Au×Av)|C(ν2)n(s1)γ|Q^{\prime}_{\alpha}\cap(A^{\prime}_{u}\times A_{v})|\leq C^{\prime}(\nu^{2})n^{(s-1)-\gamma} (independently of α\alpha), as required.

Thus the family 𝒬1={Qα:αΩ1}\mathcal{Q}_{1}=\{Q_{\alpha}\colon\alpha\in\Omega_{1}\} admits γ\gamma-power saving.

We now fix αΩΩ1\alpha\in\Omega\setminus\Omega_{1}.

By absolute irreducibility of QαQ_{\alpha} and Remark 5.11 it is sufficient to show that there exists a tuple (a1,as)Qα(a_{1},\dotsc a_{s})\in Q_{\alpha} generic over α\alpha and some tuple ξacl(a1,,as2,α)acl(as1,as,α)\xi\in\operatorname{acl}(a_{1},\dotsc,a_{s-2},\alpha)\cap\operatorname{acl}(a_{s-1},a_{s},\alpha) of length at most |||\mathcal{L}| such that

(a1,,as2)ξ(as1,as).(a_{1},\dotsc,a_{s-2})\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi}(a_{s-1},a_{s}).

We add acl(α)\operatorname{acl}(\alpha) to our language if needed and assume that αdcl()\alpha\in\operatorname{dcl}(\emptyset).

By ||+|\mathcal{L}|^{+}-saturation of \mathcal{M}, let e=(e1,,es2)e=(e_{1},\dotsc,e_{s-2}) be a tuple in \mathcal{M} which is 𝔭{\mathfrak{p}}-generic in ZαZ_{\alpha}, namely eZαe\in Z_{\alpha} with dim𝔭(e/)=s2\dim_{\mathfrak{p}}(e/\emptyset)=s-2 (note that ZαZ_{\alpha} is \emptyset-definable). Let 0=(M0,)\mathcal{M}_{0}=(M_{0},\ldots)\preceq\mathcal{M} be a model containing ee with |0||||\mathcal{M}_{0}|\leq|\mathcal{L}|.

Let β=(β1,,βs2)U\beta=(\beta_{1},\dotsc,\beta_{s-2})\in U be a 𝔭{\mathfrak{p}}-generic point in Zα(e)Z_{\alpha}(e) over M0M_{0}, i.e. βZα(e)\beta\in Z_{\alpha}(e) and dim𝔭(β/M0)=s3\dim_{\mathfrak{p}}(\beta/M_{0})=s-3.

Let δ=(δ1,δ2)\delta=(\delta_{1},\delta_{2}) be a tuple in φ(e,,α)φ(β,,α)\varphi(e,\mathcal{M},\alpha)\cap\varphi(\beta,\mathcal{M},\alpha) with dim𝔭(δ/M0β)=1\dim_{\mathfrak{p}}(\delta/M_{0}\beta)=1. Without loss of generality we assume that dim𝔭(δ1/M0β)=1\dim_{\mathfrak{p}}(\delta_{1}/M_{0}\beta)=1, namely δ1𝔭s1M0β\delta_{1}\models{\mathfrak{p}}_{s-1}\restriction_{M_{0}\beta}. Note that such β\beta and δ\delta can be chosen in \mathcal{M} by ||+|\mathcal{L}|^{+}-saturation.

We now collect some properties of β\beta and δ\delta.

Claim 5.42.
  1. (1)

    (e,δ)(e,\delta) is generic in QαQ_{\alpha} over \emptyset.

  2. (2)

    δ1M0δ2\delta_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M_{0}}\delta_{2} and (δ1,δ2)𝔭s1𝔭s|(\delta_{1},\delta_{2})\models{\mathfrak{p}}_{s-1}\otimes{\mathfrak{p}}_{s}|_{\emptyset}.

  3. (3)

    βM0δ\beta\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M_{0}}\delta.

  4. (4)

    (β,δ)(\beta,\delta) is generic in QαQ_{\alpha} over \emptyset.

Proof.

(1) We have, by our assumption above, that dim𝔭(δ1/M0β)=1\dim_{\mathfrak{p}}(\delta_{1}/M_{0}\beta)=1, hence in particular dim𝔭(δ1/e)=1\dim_{\mathfrak{p}}(\delta_{1}/e)=1. Since dim𝔭(e/)=s2\dim_{\mathfrak{p}}(e/\emptyset)=s-2 we have dim𝔭((e,δ)/)s1\dim_{\mathfrak{p}}((e,\delta)/\emptyset)\geq s-1 (as (e,δ1)(i[s2]𝔭i)𝔭s1|(e,\delta_{1})\models\left(\bigotimes_{i\in[s-2]}{\mathfrak{p}}_{i}\right)\otimes{\mathfrak{p}}_{s-1}|_{\emptyset} using that the types 𝔭i,i[s1]{\mathfrak{p}}_{i},i\in[s-1] commute). Since QαQ_{\alpha} is fiber-algebraic and (e,δ)Qα(e,\delta)\in Q_{\alpha}, we also have dim𝔭((e,δ)/)s1\dim_{\mathfrak{p}}((e,\delta)/\emptyset)\leq s-1 by Lemma 5.28.

(2) Since (e,δ)(e,\delta) is generic in QαQ_{\alpha} over \emptyset by (1), by Proposition 5.32 we have (δ1,δ2)𝔭s1𝔭s|(\delta_{1},\delta_{2})\models{\mathfrak{p}}_{s-1}\otimes{\mathfrak{p}}_{s}|_{\emptyset}.

(3) As βM0δ1\beta\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M_{0}}\delta_{1} and δ2acl(eδ1)acl(M0δ1)\delta_{2}\in\operatorname{acl}(e\delta_{1})\subseteq\operatorname{acl}(M_{0}\delta_{1}), we have βM0(δ1,δ2)\beta\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M_{0}}(\delta_{1},\delta_{2}).

(4) We have (β,δ)Qα(\beta,\delta)\in Q_{\alpha}. Since dim𝔭(β/M0)=s3\dim_{\mathfrak{p}}(\beta/M_{0})=s-3 and βM0δ\beta\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M_{0}}\delta, we have dim𝔭(β/M0δ)=s3\dim_{\mathfrak{p}}(\beta/M_{0}\delta)=s-3 (as βi[s3]𝔭i|M0δ\beta\models\bigotimes_{i\in[s-3]}{\mathfrak{p}}_{i}|_{M_{0}\delta} by stationarity of non-forking over models), hence in particular dim𝔭(β/δ)s3\dim_{\mathfrak{p}}(\beta/\delta)\geq s-3. Also, since dim𝔭(δ/)=2\dim_{\mathfrak{p}}(\delta/\emptyset)=2 by (2), we have dim𝔭((β,δ)/)s1\dim_{\mathfrak{p}}\left((\beta,\delta)/\emptyset\right)\geq s-1. Since QαQ_{\alpha} is fiber-algebraic we also have dim𝔭((β,δ)/)s1\dim_{\mathfrak{p}}((\beta,\delta)/\emptyset)\leq s-1, hence dim𝔭((β,δ)/)=s1\dim_{\mathfrak{p}}\left((\beta,\delta)/\emptyset\right)=s-1. ∎

Let p(u):=tp(β/M0)p(u):=\mathrm{tp}(\beta/M_{0}) and q(v):=tp(δ/M0)q(v):=\mathrm{tp}(\delta/M_{0}), both are definable types over M0M_{0} by stability.

We choose canonical bases ξp\xi_{p} and ξq\xi_{q} of pp and qq, respectively; i.e. ξp,ξq\xi_{p},\xi_{q} are tuples of length ||\leq|\mathcal{L}| in 0eq\mathcal{M}_{0}^{\mathrm{eq}}, and for any automorphism σ\sigma of \mathcal{M} we have σ(p|)=p|\sigma(p|\mathcal{M})=p{|\mathcal{M}} if and only if σ(ξp)=ξp\sigma(\xi_{p})=\xi_{p} (pointwise); and σ(q|)=q|\sigma(q|\mathcal{M})=q|\mathcal{M} if and only if σ(ξq)=ξq\sigma(\xi_{q})=\xi_{q}.

Note that pp does not fork over ξp\xi_{p} and qq does not fork over ξq\xi_{q}.

Claim 5.43.

We have:

  1. (a)

    ξqacl(β)\xi_{q}\in\operatorname{acl}(\beta);

  2. (b)

    ξpacl(δ)\xi_{p}\in\operatorname{acl}(\delta);

  3. (c)

    ξqacl(ξp)\xi_{q}\in\operatorname{acl}(\xi_{p});

  4. (d)

    ξpacl(ξq)\xi_{p}\in\operatorname{acl}(\xi_{q}).

Proof.

(a) Assume not, then the orbit of ξq\xi_{q} under the automorphisms of \mathcal{M} fixing β\beta would be infinite. Hence we can choose a model 𝒩=(N,)\mathcal{N}=(N,\ldots)\preceq\mathcal{M} containing M0βM_{0}\beta with |N||||N|\leq|\mathcal{L}|, and distinct types qiSv(N),iωq_{i}\in S_{v}(N),i\in\omega, each conjugate to q|Nq|N under an automorphism of 𝒩\mathcal{N} fixing β\beta.

Let δ1𝔭s1|N\delta^{\prime}_{1}\models{\mathfrak{p}}_{s-1}|N. For each iωi\in\omega we choose δ2i\delta^{i}_{2} such that (δ1,δ2i)qi(\delta^{\prime}_{1},\delta^{i}_{2})\models q_{i}. We have that (β,δ1,δ2i)Qα(\beta,\delta_{1}^{\prime},\delta_{2}^{i})\in Q_{\alpha}, hence, by fiber-algebraicity, |{δ2i:iω}|d|\{\delta_{2}^{i}\colon i\in\omega\}|\leq d. But all qiq_{i} are pairwise distinct types, a contradiction.

(b) Since dim𝔭(β/M0δ)=s3\dim_{\mathfrak{p}}(\beta/M_{0}\delta)=s-3, permuting variables if needed, we may assume that (β1,,βs3)𝔭1𝔭s3|M0δ(\beta_{1},\dotsc,\beta_{s-3})\models{\mathfrak{p}}_{1}\otimes\dotsb\otimes{\mathfrak{p}}_{s-3}|_{M_{0}\delta}.

Assume (b) fails. Then we can find a model 𝒩,|𝒩|||\mathcal{N}\preceq\mathcal{M},|\mathcal{N}|\leq|\mathcal{L}| containing M0δM_{0}\delta, and distinct types piS(N),iωp_{i}\in S(N),i\in\omega, each conjugate to pNp{\restriction}N under an automorphism of 𝒩\mathcal{N} fixing β\beta. Let

(β1,,βs3)𝔭1𝔭s3|N(\beta^{\prime}_{1},\dotsc,\beta^{\prime}_{s-3})\models{\mathfrak{p}}_{1}\otimes\dotsc\otimes{\mathfrak{p}}_{s-3}|N

in \mathcal{M}. For each iωi\in\omega we choose βs2i\beta^{i}_{s-2} in \mathcal{M} such that

(β1,,βs3,βs2i)pi,(\beta^{\prime}_{1},\dotsc,\beta_{s-3}^{\prime},\beta^{i}_{s-2})\models p_{i},

and get a contradiction as in (a).

(c) Since ξqM0\xi_{q}\in M_{0} and pp does not fork over ξp\xi_{p}, we have ξqξpβ\xi_{q}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi_{p}}\beta, which by part (a) implies ξqacl(ξp)\xi_{q}\in\operatorname{acl}(\xi_{p}).

(d) Similar to (c). ∎

We have that the tuple (β,δ)(\beta,\delta) is generic in QαQ_{\alpha} by Claim 5.42(4). Let ξ:=ξpξq\xi:=\xi_{p}\cup\xi_{q}, then ξacl(β)acl(δ)\xi\in\operatorname{acl}(\beta)\cap\operatorname{acl}(\delta) by Claim 5.43. Finally δM0β\delta\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M_{0}}\beta by Claim 5.42(3), βξpM0\beta\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi_{p}}M_{0} by the choice of ξp\xi_{p}, hence δξpβ\delta\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi_{p}}\beta, and as ξqacl(β)\xi_{q}\in\operatorname{acl}(\beta) we conclude βξδ\beta\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\xi}\delta.

This finishes the proof of Theorem 5.35, and hence of Theorem 5.31.

5.6. Proof of Theorem 5.27 for s4s\geq 4

Let 𝒬={Qα:αΩ}\mathcal{Q}=\left\{Q_{\alpha}:\alpha\in\Omega\right\} be a definable family of subsets of X1××XsX_{1}\times\dotsb\times X_{s} satisfying the assumption of Theorem 5.27, and say 𝒬\mathcal{Q} is fiber-algebraic of degree d\leq d. In particular, there exist mm\in\mathbb{N} and definable families 𝒬i,i[m]\mathcal{Q}_{i},i\in[m] of absolutely 𝔭{\mathfrak{p}}-irreducible subsets of X1××XsX_{1}\times\dotsb\times X_{s}, so that for every Q𝒬Q\in\mathcal{Q} we have Q=i[m]QiQ=\bigcup_{i\in[m]}Q_{i} for some Qi𝒬iQ_{i}\in\mathcal{Q}_{i}. Note that each 𝒬i\mathcal{Q}_{i} is automatically fiber-algebraic, of degree d\leq d. By assumption each 𝒬i\mathcal{Q}_{i} satisfies the γ\gamma-ST property for some fixed γ>0\gamma>0, under any partition of the variables into two groups of size 22 and s2s-2.

For each i[m]i\in[m], let the definable family 𝒬i\mathcal{Q}^{\prime}_{i} be as given by Theorem 5.31 for 𝒬i\mathcal{Q}_{i}. That is, for each i[m]i\in[m] the family 𝒬i\mathcal{Q}^{\prime}_{i} admits γ\gamma-power saving, and for each Qi𝒬i𝒬iQ_{i}\in\mathcal{Q}_{i}\setminus\mathcal{Q}^{\prime}_{i} the relation QiQ_{i} is in a 𝔭{\mathfrak{p}}-generic correspondence with an abelian group GQiG_{Q_{i}} type-definable in eq\mathcal{M}^{\mathrm{eq}} over a set of parameters AiA_{i} of cardinality ||\leq|\mathcal{L}|. Consider the definable family

𝒬:={Q𝒬:Q=i[m]Qi for some Qi𝒬i}𝒬.\mathcal{Q}^{\prime}:=\left\{Q\in\mathcal{Q}:Q=\bigcup_{i\in[m]}Q_{i}\textrm{ for some }Q_{i}\in\mathcal{Q}^{\prime}_{i}\right\}\subseteq\mathcal{Q}.

By Lemma 5.1, 𝒬\mathcal{Q}^{\prime} satisfies γ\gamma-power saving. On the other hand, from Definition 5.22, if Q𝒬Q\in\mathcal{Q}, Q=i[m]QiQ=\bigcup_{i\in[m]}Q_{i} with Qi𝒬iQ_{i}\in\mathcal{Q}_{i}, and at least one of the QiQ_{i} is in a 𝔭{\mathfrak{p}}-generic correspondence with a type-definable group, then QQ is also in a 𝔭{\mathfrak{p}}-generic correspondence with the same group. Hence every element Q𝒬𝒬Q\in\mathcal{Q}\setminus\mathcal{Q}^{\prime} is in a 𝔭{\mathfrak{p}}-generic correspondence with a group type-definable over some A:=i[m]Ai,|A|||A:=\bigcup_{i\in[m]}A_{i},|A|\leq|\mathcal{L}|.

5.7. Proof of Theorem 5.27 for ternary QQ

In this subsection we reduce the remaining case s=3s=3 of Theorem 5.27 to the case s=4s=4.

Let (Xi,𝔭i)i[3](X_{i},{\mathfrak{p}}_{i})_{i\in[3]} and a definable fiber-algebraic (say, of degree d\leq d) family 𝒬\mathcal{Q} of subsets of X1×X2×X3X_{1}\times X_{2}\times X_{3} satisfy the assumption of Theorem 5.27 with some fixe γ>0\gamma>0. In particular, there exist mm\in\mathbb{N} and fiber-algebraic (of degree d\leq d) definable families 𝒬i,i[m]\mathcal{Q}_{i},i\in[m] of absolutely 𝔭{\mathfrak{p}}-irreducible subsets of X1××XsX_{1}\times\dotsb\times X_{s}, so that for every Q𝒬Q\in\mathcal{Q} we have Q=i[m]QiQ=\bigcup_{i\in[m]}Q_{i} for some Qi𝒬iQ_{i}\in\mathcal{Q}_{i}. By the same reduction as in Section 5.6, it suffices to establish the theorem separately for each 𝒬i\mathcal{Q}_{i}, so we may assume from now on that additionally all sets in 𝒬\mathcal{Q} are absolutely 𝔭{\mathfrak{p}}-irreducible.

Consider the definable family 𝒬:={Q:Q𝒬}\mathcal{Q}^{*}:=\left\{Q^{*}:Q\in\mathcal{Q}\right\} of subsets of X1×X2×X3×X4X_{1}\times X_{2}\times X_{3}\times X_{4}, where

Q:={(x2,x2,x3,x3)X2×X2×X3×X3:\displaystyle Q^{*}:=\Big{\{}(x_{2},x^{\prime}_{2},x_{3},x^{\prime}_{3})\in X_{2}\times X_{2}\times X_{3}\times X_{3}:
x1X1((x1,x2,x3)Q(x1,x2,x3)Q)}.\displaystyle\exists x_{1}\in X_{1}\,\big{(}(x_{1},x_{2},x_{3})\in Q\land(x_{1},x^{\prime}_{2},x^{\prime}_{3})\in Q\big{)}\Big{\}}.
Lemma 5.44.

The definable family 𝒬\mathcal{Q}^{*} of subsets of X2×X2×X3×X3X_{2}\times X_{2}\times X_{3}\times X_{3} is fiber algebraic, of degree d2\leq d^{2}.

Proof.

We consider the case of fixing the first three coordinates of Q𝒬Q^{*}\in\mathcal{Q}^{*}, all other cases are similar. Let Q𝒬Q\in\mathcal{Q}, (a2,a2)X2×X2(a_{2},a^{\prime}_{2})\in X_{2}\times X_{2} and a3X3a_{3}\in X_{3} be fixed. As QQ is fiber algebraic of degree d\leq d, there are at most dd elements x1X1x_{1}\in X_{1} such that (x1,a2,a3)Q(x_{1},a_{2},a_{3})\in Q; and for each such x1x_{1}, there are at most dd elements x3X3x_{3}^{\prime}\in X_{3} such that (x1,a2,x3)Q(x_{1},a^{\prime}_{2},x^{\prime}_{3})\in Q. Hence, by definition of QQ^{*}, there are at most d2d^{2} elements x3X3x^{\prime}_{3}\in X_{3} such that (a2,a2,a3,x3)Q(a_{2},a^{\prime}_{2},a_{3},x^{\prime}_{3})\in Q^{*}. ∎

Remark 5.45.

Note that (Xi,𝔭i)i[4]\left(X^{\prime}_{i},{\mathfrak{p}}^{\prime}_{i}\right)_{i\in[4]} with X1=X2:=X2,X3=X4:=X3X^{\prime}_{1}=X^{\prime}_{2}:=X_{2},X^{\prime}_{3}=X^{\prime}_{4}:=X_{3} and 𝔭1=𝔭2:=𝔭2,𝔭3=𝔭4:=𝔭3{\mathfrak{p}}^{\prime}_{1}={\mathfrak{p}}^{\prime}_{2}:={\mathfrak{p}}_{2},{\mathfrak{p}}^{\prime}_{3}={\mathfrak{p}}^{\prime}_{4}:={\mathfrak{p}}_{3} is a 𝔭{\mathfrak{p}}-system with each 𝔭{\mathfrak{p}} non-algebraic.

The following lemma will be used to show that power saving for 𝒬\mathcal{Q}^{*} implies power saving for 𝒬\mathcal{Q} (this is a version of [StrMinES, Proposition 3.10] for families, which in turn is essentially [raz, Lemma 2.2]). We include a proof for completeness.

Lemma 5.46.

For any finite AiXi,i[3]A_{i}\subseteq X_{i},i\in[3] and Q𝒬Q\in\mathcal{Q}, taking Q~:=Q(A1×A2×A3)\tilde{Q}:=Q\cap\left(A_{1}\times A_{2}\times A_{3}\right) and Q~:=Q(A2×A2×A3×A3)\tilde{Q}^{*}:=Q^{*}\cap\left(A_{2}\times A_{2}\times A_{3}\times A_{3}\right) we have

|Q~|d|A1|12|Q~|12.\displaystyle\left\lvert\tilde{Q}\right\rvert\leq d\left\lvert A_{1}\right\rvert^{\frac{1}{2}}\left\lvert\tilde{Q}^{*}\right\rvert^{\frac{1}{2}}.
Proof.

Consider the (definable) set

W:={(x1,x2,x2,x3,x3)X1×X22×X32:\displaystyle W:=\big{\{}(x_{1},x_{2},x^{\prime}_{2},x_{3},x^{\prime}_{3})\in X_{1}\times X^{2}_{2}\times X_{3}^{2}:
(x1,x2,x3)Q(x1,x2,x3)Q},\displaystyle(x_{1},x_{2},x_{3})\in Q\land(x_{1},x^{\prime}_{2},x^{\prime}_{3})\in Q\big{\}},

and let W~:=W(A1×A22×A32)\tilde{W}:=W\cap\left(A_{1}\times A_{2}^{2}\times A_{3}^{2}\right). As usual, for arbitrary sets SB×CS\subseteq B\times C and bBb\in B, we denote by SbS_{b} the fiber Sb={cC:(b,c)S}S_{b}=\{c\in C:(b,c)\in S\}.

Note that |Q~|=a1A1|Q~a1||\tilde{Q}|=\sum_{a_{1}\in A_{1}}|\tilde{Q}_{a_{1}}| and |W~|=a1A1|Q~a1|2|\tilde{W}|=\sum_{a_{1}\in A_{1}}|\tilde{Q}_{a_{1}}|^{2}, which by the Cauchy-Schwarz inequality implies

|Q~||A1|12(a1A1|Q~a1|2)12=|A1|12|W~|12.\displaystyle|\tilde{Q}|\leq|A_{1}|^{\frac{1}{2}}\left(\sum_{a_{1}\in A_{1}}|\tilde{Q}_{a_{1}}|^{2}\right)^{\frac{1}{2}}=|A_{1}|^{\frac{1}{2}}|\tilde{W}|^{\frac{1}{2}}.

For any tuple a¯:=(a2,a2,a3,a3)Q~\bar{a}:=(a_{2},a^{\prime}_{2},a_{3},a^{\prime}_{3})\in\tilde{Q}^{*}, the fiber W~a¯A1\tilde{W}_{\bar{a}}\subseteq A_{1} has size at most dd by fiber algebraicity of QQ. Hence |W~|d|Q~||\tilde{W}|\leq d|\tilde{Q}^{*}|, and so |Q~|d|A1|12|Q~|12|\tilde{Q}|\leq d|A_{1}|^{\frac{1}{2}}|\tilde{Q}^{*}|^{\frac{1}{2}}. ∎

Lemma 5.47.

Assume that γ>0\gamma^{\prime}>0 and 𝒬\mathcal{Q}^{*} admits γ\gamma^{\prime}-power saving (with respect to the 𝔭{\mathfrak{p}}-system (Xi,𝔭i)i[4](X^{\prime}_{i},{\mathfrak{p}}^{\prime}_{i})_{i\in[4]} in Remark 5.45). Then 𝒬\mathcal{Q} admits γ\gamma-power saving for γ:=γ2\gamma:=\frac{\gamma^{\prime}}{2}.

Proof.

By assumption there exist =(i)i[4]\vec{\mathcal{F}}^{\prime}=(\mathcal{F}^{\prime}_{i})_{i\in[4]} with 1,2\mathcal{F}^{\prime}_{1},\mathcal{F}^{\prime}_{2} definable families on X2X_{2} and 3,4\mathcal{F}^{\prime}_{3},\mathcal{F}^{\prime}_{4} definable families on X3X_{3}, and a function C:C^{\prime}:\mathbb{N}\to\mathbb{N}, such that for any Q𝒬,ν,nQ^{*}\in\mathcal{Q}^{*},\nu,n\in\mathbb{N} and an nn-grid A=i[4]AiA^{\prime}=\prod_{i\in[4]}A^{\prime}_{i} on X2×X2×X3×X3X_{2}\times X_{2}\times X_{3}\times X_{3} in (,ν)(\vec{\mathcal{F}}^{\prime},\nu)-general position we have |QA|C(ν)n3γ|Q^{*}\cap A^{\prime}|\leq C^{\prime}(\nu)n^{3-\gamma^{\prime}}.

We take 1:=\mathcal{F}_{1}:=\emptyset, 2:=12\mathcal{F}_{2}:=\mathcal{F}^{\prime}_{1}\cup\mathcal{F}^{\prime}_{2}, 3:=34\mathcal{F}_{3}:=\mathcal{F}^{\prime}_{3}\cup\mathcal{F}^{\prime}_{4}, C(ν):=dC(ν)12C(\nu):=d\cdot C^{\prime}(\nu)^{\frac{1}{2}} and γ:=γ2\gamma:=\frac{\gamma^{\prime}}{2}.

Assume we are given Q𝒬,ν,nQ\in\mathcal{Q},\nu,n\in\mathbb{N} and AiXi,i[3]A_{i}\subseteq X_{i},i\in[3] with |Ai|=n|A_{i}|=n in (,ν)(\vec{\mathcal{F}},\nu)-general position. By the choice of \vec{\mathcal{F}} it follows that the grid A2×A2×A3×A3A_{2}\times A_{2}\times A_{3}\times A_{3} is in \vec{\mathcal{F}}^{\prime}-general position, hence |Q(A22×A32)|C(ν)n3γ|Q^{*}\cap(A_{2}^{2}\times A_{3}^{2})|\leq C^{\prime}(\nu)n^{3-\gamma^{\prime}}. By Lemma 5.46 this implies

|Q(A1×A2×A3)|d|A1|12|Q(A22×A32)|12\displaystyle|Q\cap(A_{1}\times A_{2}\times A_{3})|\leq d|A_{1}|^{\frac{1}{2}}|Q^{*}\cap(A_{2}^{2}\times A_{3}^{2})|^{\frac{1}{2}}
dn12C(ν)12n32γ2C(ν)n2γ.\displaystyle\leq dn^{\frac{1}{2}}C^{\prime}(\nu)^{\frac{1}{2}}n^{\frac{3}{2}-\frac{\gamma^{\prime}}{2}}\leq C(\nu)n^{2-\gamma}.

Hence 𝒬\mathcal{Q} satisfies γ\gamma-power saving. ∎

We are ready to finish the proof of Theorem 5.27 (and hence of Theorem 5.24), the required bound on power saving follows from the proof.

Proof of Theorem 5.27 for s=3s=3.

By the reduction explained above we may assume that 𝒬\mathcal{Q} is a definable family of absolutely 𝔭{\mathfrak{p}}-irreducible sets and does not satisfy 11-power saving. Applying the case s=4s=4 of Theorem 5.27 to the family 𝒬\mathcal{Q}^{*} (note that 𝒬\mathcal{Q}^{*} satisfies the assumption of Theorem 5.27 by the reduction above and since 𝒬\mathcal{Q} satisfies the s=3s=3 assumption of Theorem 5.27), we find a definable subfamily (𝒬)𝒬\left(\mathcal{Q}^{*}\right)^{\prime}\subseteq\mathcal{Q}^{*} such that the family (𝒬)\left(\mathcal{Q}^{*}\right)^{\prime} admits γ\gamma-power saving, and for each Q𝒬(𝒬)Q^{*}\in\mathcal{Q}^{*}\setminus\left(\mathcal{Q}^{*}\right)^{\prime} the relation QQ^{*} is in a 𝔭{\mathfrak{p}}-generic correspondence with an abelian group GQG_{Q^{*}} type-definable in eq\mathcal{M}^{\mathrm{eq}} over a set of parameters of cardinality ||\leq|\mathcal{L}|.

Let 𝒬0\mathcal{Q}_{0} be the set of all Q𝒬Q\in\mathcal{Q} such that for some u[3]u\subseteq[3] with |u|=2|u|=2 for the projection πu(Q)\pi_{u}(Q) of QQ onto iuXi\prod_{i\in u}X_{i} we have dim𝔭(πu(Q))<2\dim_{\mathfrak{p}}(\pi_{u}(Q))<2. By Claim 5.8, the family 𝒬0\mathcal{Q}_{0} is definable and it follows from Proposition 5.30 that the family 𝒬0\mathcal{Q}_{0} admits 11-power saving.

Consider the definable subfamily 𝒬:={Q𝒬:Q(𝒬)}𝒬0\mathcal{Q}^{\prime}:=\left\{Q\in\mathcal{Q}:Q^{*}\in\left(\mathcal{Q}^{*}\right)^{\prime}\right\}\cup\mathcal{Q}_{0} of 𝒬\mathcal{Q}. By Lemma 5.47, as γ1\gamma\leq 1, 𝒬\mathcal{Q}^{\prime} admits γ2\frac{\gamma}{2}-power saving. On the other hand, if Q𝒬𝒬Q\in\mathcal{Q}\setminus\mathcal{Q}^{\prime}, then Q𝒬(𝒬)Q^{*}\in\mathcal{Q}^{*}\setminus\left(\mathcal{Q}^{*}\right)^{\prime}, hence there exists a small set AMA\subseteq M and an abelian group (G,,1G)(G,\cdot,1_{G}) type-definable over AA so that QQ^{*} is in a 𝔭{\mathfrak{p}}-generic correspondence with GG.

This means that there exists a tuple (g2,g2,g3,g3)G4(g_{2},g^{\prime}_{2},g_{3},g^{\prime}_{3})\in G^{4} so that g2g2g3g3=1Gg_{2}\cdot g^{\prime}_{2}\cdot g_{3}\cdot g^{\prime}_{3}=1_{G}, g2,g3,g3g_{2},g_{3},g^{\prime}_{3} are independent generics over AA and a tuple (a2,a2,a3,a3)Q(a_{2},a^{\prime}_{2},a_{3},a^{\prime}_{3})\in Q^{*} so that each of the elements a2,a2,a3,a3a_{2},a^{\prime}_{2},a_{3},a^{\prime}_{3} is 𝔭{\mathfrak{p}}-generic over AA and each of the pairs (g2,a2),(g2,a2),(g3,a3),(g3,a3)(g_{2},a_{2}),(g^{\prime}_{2},a^{\prime}_{2}),(g_{3},a_{3}),(g^{\prime}_{3},a^{\prime}_{3}) is inter-algebraic over AA.

By definition of QQ^{*} there exists some a1X1a_{1}\in X_{1} such that (a1,a2,a3)Q(a_{1},a_{2},a_{3})\in Q and (a1,a2,a3)Q(a_{1},a^{\prime}_{2},a^{\prime}_{3})\in Q. We let A:=Aa3A^{\prime}:=Aa^{\prime}_{3} and g1:=g2g3g_{1}:=g^{\prime}_{2}\cdot g^{\prime}_{3}, and make the following observations.

  1. (1)

    g1g2g3=1Gg_{1}\cdot g_{2}\cdot g_{3}=1_{G} (using that GG is abelian).

  2. (2)

    Each of the pairs (a1,g1),(a2,g2),(a3,g3)(a_{1},g_{1}),(a_{2},g_{2}),(a_{3},g_{3}) is inter-algebraic over AA^{\prime}.

    The pairs (a2,g2),(a3,g3)(a_{2},g_{2}),(a_{3},g_{3}) are inter-algebraic over AA by assumption. Note that a1a_{1} and a2a^{\prime}_{2} are inter-algebraic over AA^{\prime} as QQ is fiber-algebraic, so it suffices to show that a2a^{\prime}_{2} and g1g_{1} are inter-algebraic over AA^{\prime}. By definition g1acl(g2,g3)acl(a2,a3,A)acl(a2,A)g_{1}\in\operatorname{acl}(g^{\prime}_{2},g^{\prime}_{3})\subseteq\operatorname{acl}(a^{\prime}_{2},a^{\prime}_{3},A)\subseteq\operatorname{acl}(a^{\prime}_{2},A^{\prime}). Conversely, as g2acl(g2g3,g3)acl(g1,A)g^{\prime}_{2}\in\operatorname{acl}(g^{\prime}_{2}\cdot g^{\prime}_{3},g^{\prime}_{3})\subseteq\operatorname{acl}(g_{1},A^{\prime}), we have a2acl(g2,A)acl(g1,A)a^{\prime}_{2}\in\operatorname{acl}(g^{\prime}_{2},A)\subseteq\operatorname{acl}(g_{1},A^{\prime}).

  3. (3)

    g2g_{2} and g3g_{3} are independent generics in GG over AA^{\prime}.

    By assumption g2Ag3g3g_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{A}g_{3}g^{\prime}_{3} and a3a^{\prime}_{3} is inter-algebraic with g3g^{\prime}_{3} over AA, hence g2Ag3g_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{A^{\prime}}g_{3}.

  4. (4)

    ai𝔭i|Aa_{i}\models{\mathfrak{p}}_{i}|_{A^{\prime}} for all i[3]i\in[3].

    For i{2,3}i\in\{2,3\}: as giAg3g_{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{A}g^{\prime}_{3} and g3g^{\prime}_{3} is inter-algebraic with a3a^{\prime}_{3} over AA, we have aiAa3a_{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{A}a^{\prime}_{3}, which by stationarity of 𝔭i{\mathfrak{p}}_{i} implies ai𝔭i|Aa_{i}\models{\mathfrak{p}}_{i}|_{A^{\prime}}.

    For i=1i=1: as ai𝔭i|Aa_{i}\models{\mathfrak{p}}_{i}|_{A^{\prime}} for i{2,3}i\in\{2,3\} and a2Aa3a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{A^{\prime}}a_{3}, it follows that (a2,a3)(𝔭2𝔭3)|A(a_{2},a_{3})\models({\mathfrak{p}}_{2}\otimes{\mathfrak{p}}_{3})|_{A^{\prime}} and the tuple (a1,a2,a3)(a_{1},a_{2},a_{3}) is generic in QQ over AA^{\prime} (as dim𝔭(Q)=2\dim_{\mathfrak{p}}(Q)=2 by the choice of 𝒬\mathcal{Q}^{\prime}). But then a1𝔭1|Aa_{1}\models{\mathfrak{p}}_{1}|_{A^{\prime}} by the assumption on QQ and Proposition 5.32 (can be applied by absolute irreducibility of QQ and the choice of 𝒬\mathcal{Q}^{\prime}).

It follows that QQ is in a 𝔭{\mathfrak{p}}-generic correspondence with GG over AA^{\prime}, witnessed by the tuples (g1,g2,g3)(g_{1},g_{2},g_{3}) and (a1,a2,a3)(a_{1},a_{2},a_{3}). ∎

5.8. Discussion and some applications

First we observe how Theorem 5.24, along with some standard facts from model theory of algebraically closed fields, implies a higher arity generalization of the Elekes-Szabó theorem for algebraic varieties over \mathbb{C} similar to [Bays]. Recall from [Bays] that a generically finite algebraic correspondence between irreducible varieties VV and VV^{\prime} over \mathbb{C} is a closed irreducible subvariety CV×VC\subseteq V\times V^{\prime} such that the projections CVC\to V and CVC\to V^{\prime} are generically finite and dominant (hence necessarily dim(V)=dim(V)\dim(V)=\dim(V^{\prime})). And assuming that Wi,WiW_{i},W^{\prime}_{i} and Vi[s]Wi,Vi[s]WiV\subseteq\prod_{i\in[s]}W_{i},V^{\prime}\subseteq\prod_{i\in[s]}W^{\prime}_{i} are irreducible algebraic varieties over \mathbb{C}, we say that VV and VV^{\prime} are in coordinate-wise correspondence if there is a generically finite algebraic correspondence CV×VC\subseteq V\times V^{\prime} such that for each i[s]i\in[s], the closure of the projection (πi×πi)(C)Wi×Wi(\pi_{i}\times\pi^{\prime}_{i})(C)\subseteq W_{i}\times W^{\prime}_{i} is a generically finite algebraic correspondence between the closure of πi(V)\pi_{i}(V) and the closure of πi(V)\pi^{\prime}_{i}(V^{\prime}).

Corollary 5.48.

Assume that s3s\geq 3, and Ximi,i[s]X_{i}\subseteq\mathbb{C}^{m_{i}},i\in[s] and Qi[s]XiQ\subseteq\prod_{i\in[s]}X_{i} are irreducible algebraic varieties, with dim(Xi)=d\dim(X_{i})=d. Assume also that for each i[s]i\in[s], the projection Qj[s]{i}XiQ\to\prod_{j\in[s]\setminus\{i\}}X_{i} is dominant and generically finite. Let m:=(m1,,ms)m:=(m_{1},...,m_{s}), t:=max{deg(Q),deg(X1),,deg(Xs)}t:=\max\{\deg(Q),\deg(X_{1}),...,\deg(X_{s})\}. Then one of the following holds.

  1. (1)

    For every ν\nu there exist D=D(d,s,t,m)D=D(d,s,t,m) and c=c(d,s,t,m,ν)c=c(d,s,t,m,\nu) such that: for any nn and finite AiXi,|Ai|=nA_{i}\subseteq X_{i},|A_{i}|=n such that |AiYi|ν|A_{i}\cap Y_{i}|\leq\nu for every algebraic subsets YiY_{i} of XiX_{i} of dimension <d<d and degree D\leq D, we have

    |QA|cns1γ|Q\cap A|\leq cn^{s-1-\gamma}

    for γ=116d5\gamma=\frac{1}{16d-5} if s4s\geq 4, and γ=12(16d5)\gamma=\frac{1}{2(16d-5)} if s=3s=3.

  2. (2)

    There exists a connected abelian complex algebraic group (G,)(G,\cdot) with dim(G)=d\dim(G)=d such that QQ is in a coordinate-wise correspondence with

    Q:={(x1,,xs)Gs:x1xs=1G}.Q^{\prime}:=\left\{(x_{1},\ldots,x_{s})\in G^{s}:x_{1}\cdot\ldots\cdot x_{s}=1_{G}\right\}.

The above Corollary 5.48 immediately follows from the following slightly more general statement:

Corollary 5.49.

Assume that s3s\geq 3, and Ximi,i[s]X_{i}\subseteq\mathbb{C}^{m_{i}},i\in[s] are irreducible algebraic varieties with dim(Xi)=d\dim(X_{i})=d, and let 𝒬\mathcal{Q} be a definable family of subsets of i[s]Xi\prod_{i\in[s]}X_{i}, each of Morley degree 11. Assume also that for each Q𝒬Q\in\mathcal{Q}, i[s]i\in[s], the projection Qj[s]{i}XiQ\to\prod_{j\in[s]\setminus\{i\}}X_{i} is Zariski dense and is generically finite to one. Then there is a definable family 𝒬𝒬\mathcal{Q}^{\prime}\subseteq\mathcal{Q} such that:

  1. (1)

    𝒬\mathcal{Q}^{\prime} admits γ\gamma-power saving for γ=116d5\gamma=\frac{1}{16d-5} if s4s\geq 4, and γ=12(16d5)\gamma=\frac{1}{2(16d-5)} if s=3s=3.

  2. (2)

    For every Q𝒬𝒬Q\in\mathcal{Q}\setminus\mathcal{Q}^{\prime} there exists a connected abelian complex algebraic group (G,)(G,\cdot) with dim(G)=d\dim(G)=d such that for some independent generics g1,,gs1Gg_{1},\dotsc,g_{s-1}\in G and generic (q1,,qs)Q(q_{1},\dotsc,q_{s})\in Q we have that gig_{i} is inter-algebraic with qiq_{i} for i<si<s and qsq_{s} inter-algebraic with (g1g2gs1)1(g_{1}\cdot g_{2}\cdot\dotsc\cdot g_{s-1})^{-1}.

It is not hard to see that Corollary 5.49 implies 5.48. Indeed, if QQ is an irreducible variety then it has Morley degree one. Let 𝒬\mathcal{Q} be the family of all irreducible algebraic varieties contained in i[s]Xi\prod_{i\in[s]}X_{i} of degree degQ\deg{Q}, Morley rank MR(Q)\operatorname{MR}(Q) and with all projections Zariski dense and generically finite to one. It is a definable family in \mathcal{M} by definability of Morley rank and irreducibility (see e.g. [freitag2017differential, Theorem A.7]), defined by a formula depending only on m,t,s,dm,t,s,d; and Q𝒬Q\in\mathcal{Q}. Applying Corollary 5.49 we can conclude depending on whether Q𝒬Q\in\mathcal{Q}^{\prime} or Q𝒬𝒬Q\in\mathcal{Q}\setminus\mathcal{Q}^{\prime}.

Proof of Corollary 5.49.

Let :=(,+,×,0,1)ACF\mathcal{M}:=(\mathbb{C},+,\times,0,1)\models\operatorname{ACF}, then ||=0|\mathcal{L}|=\aleph_{0} and \mathcal{M} is an ||+|\mathcal{L}|^{+}-saturated structure. We recall that \mathcal{M} is a strongly minimal structure, in particular it is ω\omega-stable and has additive Morley rank MR\operatorname{MR} coinciding with the Zariski dimension (see e.g. [MR1678602]).

For each ii, as XiX_{i} is irreducible, i.e. has Morley degree 11, let 𝔭iSxi(){\mathfrak{p}}_{i}\in S_{x_{i}}(\mathcal{M}) be the unique type in XiX_{i} with MR(𝔭i)=MR(Xi)=d\operatorname{MR}({\mathfrak{p}}_{i})=\operatorname{MR}(X_{i})=d. By stability, types are definable, commute and are stationary after naming a countable elementary submodel of \mathcal{M} so that all of the XiX_{i}’s are defined over it.

Hence (Xi,𝔭i)i[s](X_{i},{\mathfrak{p}}_{i})_{i\in[s]} is a 𝔭{\mathfrak{p}}-system; and by the additivity of Morley rank we see that MR(Y)ddim𝔭(Y)\operatorname{MR}(Y)\geq d\dim_{\mathfrak{p}}(Y) for any definable Yi[s]XiY\subseteq\prod_{i\in[s]}X_{i}.

For any Q𝒬Q\in\mathcal{Q}, since the projection of QQ onto i=1s1Xi\prod_{i=1}^{s-1}X_{i} is Zariski dense and generically finite, we have MR(Q)=d(s1)\operatorname{MR}(Q)=d(s-1).

Let QQQ^{\prime}\subseteq Q be a definable set with RM(Q)=d(s1)\operatorname{RM}(Q^{\prime})=d(s-1). Since QQ and QQ^{\prime} have the same generic points, the item (2) is equivalent for QQ and QQ^{\prime}. Obviously γ\gamma-power saving for QQ implies γ\gamma-power saving for QQ^{\prime}, and we observe that γ\gamma-power saving for QQ^{\prime} with 0<γ<10<\gamma<1 implies γ\gamma-power saving for QQ. Let Q′′:=QQQ^{\prime\prime}:=Q\setminus Q^{\prime}. Then, as QQ has Morley degree 11, MR(Q′′)<d(s1)\operatorname{MR}(Q^{\prime\prime})<d(s-1), hence dim𝔭(Q′′)s2\dim_{\mathfrak{p}}(Q^{\prime\prime})\leq s-2. Applying Lemma 5.19 to 𝒢:={Y′′}\mathcal{G}:=\{Y^{\prime\prime}\} we obtain that Y′′Y^{\prime\prime} has 11-power saving. Since γ<1\gamma<1, it follows that Y=YY′′Y=Y^{\prime}\cup Y^{\prime\prime} also has γ\gamma-power saving.

As by assumption every Q𝒬Q\in\mathcal{Q} has generically finite projections, after removing a subset of smaller Morley rank we may assume that QQ is fiber-algebraic. This can be done uniformly for the family by [freitag2017differential, Theorem A.7] (however, on this step we have to pass from a family of algebraic sets to a family of constructible sets, that is why we can only use bounds from Corollary 2.16(2) but not from Fact 2.17 in the following), hence we may assume that the family 𝒬\mathcal{Q} consists of fiber algebraic sets of fixed degree.

As dim(Xi)=d\dim(X_{i})=d, it follows that XiX_{i} has a generically finite-to-one projection onto d\mathbb{C}^{d}, hence, after possibly a coordinate-wise correspondence, we may assume that Qi[s]dQ\subseteq\prod_{i\in[s]}\mathbb{C}^{d} — again, uniformly for the whole family 𝒬\mathcal{Q}. By Corollary 2.16(2), every definable family of sets Y2d×(s2)dY\subseteq\mathbb{C}^{2d}\times\mathbb{C}^{(s-2)d} satisfies the (18d1)\left(\frac{1}{8d-1}\right)-ST property. Applying Theorem 5.27 (we are using once more that irreducible components are uniformly definable in families in ACF\operatorname{ACF}, see [freitag2017differential, Theorem A.7]) we find a definable subfamily 𝒬\mathcal{Q}^{\prime} with γ\gamma-power saving for the stated γ\gamma.

Every type-definable group in eq\mathcal{M}^{\mathrm{eq}} is actually definable (by ω\omega-stability, see e.g. [MR1924282, Theorem 7.5.3]), and every group interpretable in an algebraically closed field is definably isomorphic to an algebraic group (see e.g. [MR1678602, Proposition 4.12 + Corollary 1.8]). Thus, for Q𝒬𝒬Q\in\mathcal{Q}\setminus\mathcal{Q}^{\prime}, there exists an abelian connected complex algebraic group (G,)(G,\cdot), independent generic elements g1,,gs1Gg_{1},\ldots,g_{s-1}\in G and gsGg_{s}\in G such that g1gs=1g_{1}\cdot\ldots\cdot g_{s}=1 and generic aiXia_{i}\in X_{i} inter-algebraic with gig_{i}, such that (a1,,as)Q(a_{1},\ldots,a_{s})\in Q. In particular, dim(G)=dim(Xi)=d\dim(G)=\dim(X_{i})=d. And, by irreducibility of QQ, hence uniqueness of the generic type, such aia_{i}’s exist for any independent generics g1,,gs1g_{1},\ldots,g_{s-1}. As the model-theoretic algebraic closure coincides with the field-theoretic algebraic closure, by saturation of \mathcal{M} this gives the desired coordinate-wise correspondence. ∎

Remark 5.50.

Failure of power saving on arbitrary grids, not necessarily in a general position, does not guarantee coordinate-wise correspondence with an abelian group in Corollary 5.48. For example, let (H,)(H,\cdot) be the Heisenberg group of 3×33\times 3 matrices over \mathbb{C}, viewed as a definable group in :=(,+,×)\mathcal{M}:=(\mathbb{C},+,\times). For nn\in\mathbb{N}, consider the subset of HH given by

An:={(1n1n301n2001):n1,n2,n3,n1,n2<n,n3<n2}.\displaystyle A_{n}:=\left\{\begin{pmatrix}1&n_{1}&n_{3}\\ 0&1&n_{2}\\ 0&0&1\end{pmatrix}\colon n_{1},n_{2},n_{3}\in\mathbb{N},n_{1},n_{2}<n,n_{3}<n^{2}\right\}.

It is not hard to see that |An|=n4|A_{n}|=n^{4}. For the definable fiber-algebraic relation Q(x1,x2,x3,x4)Q(x_{1},x_{2},x_{3},x_{4}) on H4H^{4} given by x1x2=x3x4x_{1}\cdot x_{2}=x_{3}\cdot x_{4} we have |QAn4|116(n4)3=Ω(|An|3)|Q\cap A_{n}^{4}|\geq\frac{1}{16}(n^{4})^{3}=\Omega(|A_{n}|^{3}).

However, QQ is not in a generic correspondence with an abelian group. Indeed, the sets AnH,nA_{n}\subseteq H,n\in\mathbb{N} are not in an (,ν)(\mathcal{F},\nu)-general position for any ν\nu, with respect to the definable family ={u1u2=c:c}\mathcal{F}=\{u_{1}-u_{2}=c:c\in\mathbb{C}\} of subsets of HH.

However, restricting further to the case dim(Xi)=1\dim(X_{i})=1 for all i[s]i\in[s], the general position requirement is satisfied automatically: for any definable set YXiY\subseteq X_{i}, dim(Y)<1\dim(Y)<1 if and only if YY is finite; and for every definably family i\mathcal{F}_{i} of subsets of XiX_{i} there exists some ν0\nu_{0} such that for any YiY\in\mathcal{F}_{i}, if YY has cardinality greater than ν0\nu_{0} then it is infinite. Hence (using the classification of one-dimensional connected complex algebraic groups) we obtain the following simplified statement.

Corollary 5.51.

Assume s3s\geq 3, and let QsQ\subseteq\mathbb{C}^{s} be an irreducible algebraic variety so that for each i[s]i\in[s], the projection Qj[s]{i}sQ\to\prod_{j\in[s]\setminus\{i\}}\mathbb{C}^{s} is generically finite. Then exactly one of the following holds.

  1. (1)

    There exist cc depending only on s,deg(Q)s,\deg(Q) such that: for any nn and Aii,|Ai|=nA_{i}\subseteq\mathbb{C}_{i},|A_{i}|=n we have

    |QA|cns1γ|Q\cap A|\leq cn^{s-1-\gamma}

    for γ=111\gamma=\frac{1}{11} if s4s\geq 4, and γ=122\gamma=\frac{1}{22} if s=3s=3.

  2. (2)

    For GG one of (,+)(\mathbb{C},+), (,×)(\mathbb{C},\times) or an elliptic curve, QQ is in a coordinate-wise correspondence with

    Q:={(x1,,xs)Gs:x1xs=1G}.Q^{\prime}:=\left\{(x_{1},\ldots,x_{s})\in G^{s}:x_{1}\cdot\ldots\cdot x_{s}=1_{G}\right\}.
Remark 5.52.

We expect that the two cases in Corollary 5.48 are not mutually exclusive (a potential example is suggested in [breuillard2021model, Remark 7.14]), however they are mutually exclusive in the 11-dimensional case in Corollary 5.51. The proof of this for s=3s=3 is given in [StrMinES, Proposition 1.7], and the argument generalizes in a straightforward manner to an arbitrary ss.

We remark that the case of complex algebraic varieties corresponds to a rather special case of our general Theorem 5.24 which also applies e.g. to the theories of differentially closed fields or compact complex manifolds (see Facts 2.20 and 2.21). For example:

Remark 5.53.

Given definable strongly minimal sets Xi,i[s]X_{i},i\in[s] and a fiber-algebraic Qi[s]XiQ\subseteq\prod_{i\in[s]}X_{i} in a differentially closed field \mathcal{M} of characteristic 0, we conclude that either QQ has power saving (however, we do not have an explicit exponent here, see Problem 2.22), or that QQ is in correspondence with one of the following strongly minimal differential-algebraic groups: the additive, multiplicative or elliptic curve groups over the field of constants 𝒞\mathcal{C}_{\mathcal{M}} of \mathcal{M}, or a Manin kernel of a simple abelian variety AA that does not descend to 𝒞\mathcal{C}_{\mathcal{M}} (i.e. the Kolchin closure of the torsion subgroup of AA; we rely here on the Hrushovski-Sokolovic trichotomy theorem, see e.g. [MR3641651, Section 2.1]).

6. Main theorem in the oo-minimal case

6.1. Main theorem and some reductions

In this section we will assume that =(M,)\mathcal{M}=(M,\ldots) is an o-minimal, 0\aleph_{0}-saturated \mathcal{L}-structure expanding a group (or just with definable Skolem functions). We shall use several times the following basic property of o-minimal structures:

Fact 6.1.

[peterzil2019minimalist, Fact 2.1] Assume that aMna\in M^{n} and ABMA\subseteq B\subseteq M are small sets. For every definable open neighborhood UU of aa (defined over arbitrary parameters), there exists CAC\supseteq A, acl\operatorname{acl}-independent from aBaB over AA, and a CC-definable open WUW\subseteq U containing aa. In particular, dim(a/A)=dim(a/C)\dim(a/A)=\dim(a/C) and dim(aB/C)=dim(aB/A)\dim(aB/C)=\dim(aB/A).

For the rest of the section we assume that s3s\geq 3 and for i=1,,si=1,\ldots,s, we have \emptyset-definable sets XiX_{i} with dimXi=m\dim X_{i}=m for all i[s]i\in[s] (throughout the section, dim\dim refers to the standard notion of dimension in oo-minimal structures). We also have an \emptyset-definable set QX¯:=X1××XsQ\subseteq\overline{X}:=X_{1}\times\cdots\times X_{s}, with dimQ=(s1)m\dim Q=(s-1)m, and such that QQ is fiber algebraic of degree dd, for some dd\in\mathbb{N} (see Definition 1.4).

The following is the equivalent of Definitions 5.17 and 5.21 in the oo-minimal setting.

Definition 6.2.

For γ>0\gamma\in\mathbb{R}_{>0}, we say that QX¯Q\subseteq\overline{X} satisfies γ\gamma-power saving if there are definable families =(1,,s)\overrightarrow{\mathcal{F}}=(\mathcal{F}_{1},\ldots,\mathcal{F}_{s}), where each i\mathcal{F}_{i} consists of subsets of XiX_{i} of dimension smaller than mm, such that for every ν\nu\in\mathbb{N} there exists a constant C=C(ν)C=C(\nu) such that: for every nn\in\mathbb{N} and every nn-grid A¯:=A1××AkX¯,|Ai|=n\overline{A}:=A_{1}\times\cdots\times A_{k}\subseteq\overline{X},|A_{i}|=n in (,ν)(\overrightarrow{\mathcal{F}},\nu)-general position (i.e. for every i[s]i\in[s] and SiS\in\mathcal{F}_{i} we have |AiS|ν|A_{i}\cap S|\leq\nu) we have

|QA¯|Cn(s1)γ.|Q\cap\overline{A}|\leq Cn^{(s-1)-\gamma}.

It is easy to verify that if Q1,Q2X¯Q_{1},Q_{2}\subseteq\overline{X} satisfy γ\gamma-power saving then so does Q1Q2Q_{1}\cup Q_{2}. Before stating our main theorem in the oo-minimal case, we define:

Definition 6.3.

Given a finite tuple aa in an o-minimal structure \mathcal{M}, we let μ(a)\mu_{\mathcal{M}}(a) be the infinitesimal neighborhood of aa, namely the intersection of all \mathcal{M}-definable open neighborhoods of aa. It can be viewed as a partial type over \mathcal{M}, or we can identify it with the set of its realizations in an elementary extension of \mathcal{M}.

Theorem 6.4.

Under the above assumptions, one of the following holds.

  1. (1)

    The set QQ has γ\gamma-power saving, for γ=18m5\gamma=\frac{1}{8m-5} if s4s\geq 4, and γ=116m10\gamma=\frac{1}{16m-10} if s=3s=3.

  2. (2)

    There exist (i) a tuple a¯=(a1,,as)\bar{a}=(a_{1},\ldots,a_{s}) in \mathcal{M} generic in QQ, (ii) a substructure 0:=dcl(a¯)\mathcal{M}_{0}:=\operatorname{dcl}(\bar{a}) of \mathcal{M} of cardinality ||\leq|\mathcal{L}| (iii) a type-definable abelian group (G,+)(G,+) of dimension mm, defined over M0M_{0} and (iv) M0M_{0}-definable bijections πi:μ0(ai)XiG,i[s]\pi_{i}:\mu_{\mathcal{M}_{0}}(a_{i})\cap X_{i}\to G,i\in[s], sending aia_{i} to 0=0G0=0_{G}, such that

    π1(x1)++πs(xs)=0Q(x1,,xs)\pi_{1}(x_{1})+\cdots+\pi_{s}(x_{s})=0\Leftrightarrow Q(x_{1},\ldots,x_{s})

    for all xiμ0(ai)Xi,i[s]x_{i}\in\mu_{\mathcal{M}_{0}}(a_{i})\cap X_{i},i\in[s].

We begin working towards a proof of Theorem 6.4.

Notation

  1. (1)

    For i,j[s]i,j\in[s], we write X¯i,j\overline{X}_{i,j} for the set i,jX\prod_{\ell\neq i,j}X_{\ell}.

  2. (2)

    For zX1×X2z\in X_{1}\times X_{2} and VX¯1,2V\subseteq\overline{X}_{1,2} we write

    Q(z,V):={wV:(z,w)Q}.Q(z,V):=\{w\in V:(z,w)\in Q\}.

    We similarly write Q(U,w)Q(U,w), for UX1×X2U\subseteq X_{1}\times X_{2} and wX¯1,2w\in\overline{X}_{1,2}.

Lemma 6.5.

The following are easy to verify:

  1. (1)

    For every zX1×X2z\in X_{1}\times X_{2}, dimQ(z,X¯1,2)(s3)m\dim Q(z,\overline{X}_{1,2})\leq(s-3)m.

  2. (2)

    If α=(z,w)(X1×X2)×X¯1,2\alpha=(z,w)\in(X_{1}\times X_{2})\times\overline{X}_{1,2} is generic in QQ then for every neighborhood U×VU\times V of α\alpha, dimQ(z,V)=(s3)m\dim Q(z,V)=(s-3)m and dimQ(U,w)=m\dim Q(U,w)=m.

We will need to consider a certain local variant of the property (P2) from Section 3.2.

Definition 6.6.

Assume that α=(z,w)Q(X1×X2)×X¯1,2\alpha=(z,w)\in Q\cap(X_{1}\times X_{2})\times\overline{X}_{1,2}.

  • We say that QQ has the (P2)1,2(P2)_{1,2} property near α\alpha if for all UX1×X2U^{\prime}\subseteq X_{1}\times X_{2} and VX¯1,2V^{\prime}\subseteq\overline{X}_{1,2} neighborhoods of z,wz,w respectively,

    (6.1) dimQ(U,w)=m and dimQ(z,V)=(s3)m,\dim Q(U^{\prime},w)=m\mbox{ and }\dim Q(z,V^{\prime})=(s-3)m,

    and there are open neighborhoods U×V(z,w)U\times V\ni(z,w) in (X1×X2)×X¯i,j(X_{1}\times X_{2})\times\overline{X}_{i,j} such that

    (6.2) Q(U,w)×Q(z,V)Q,Q(U,w)\times Q(z,V)\subseteq Q,

    (namely, for every z1Uz_{1}\in U and w1Vw_{1}\in V, if (z1,w),(z,w1)Q(z_{1},w),(z,w_{1})\in Q then (z1,w1)Q(z_{1},w_{1})\in Q).

  • We say that QQ satisfies the (P2)i,j(P2)_{i,j}-property near α\alpha, for 1i<js1\leq i<j\leq s, if the above holds under the coordinate permutation of 1,21,2 and i,ji,j, respectively.

  • We say that QQ satisfies the (P2)(P2)-property near α\alpha if it has the (P2)i,j(P2)_{i,j}-property for all 1i<js1\leq i<j\leq s.

Remark 6.7.

Note that if U,VU,V satisfy (6.2), then also every U1UU_{1}\subseteq U and V1VV_{1}\subseteq V satisfy it. Note also that under the above assumptions, we have dim(Q(U,w)×Q(z,V))=(s2)m\dim(Q(U,w)\times Q(z,V))=(s-2)m.

Definition 6.8.
  • Let Qi,jQ_{i,j}^{*} be the set of all αQ\alpha\in Q such that QQ satisfies (P2)i,j(P2)_{i,j} near α\alpha.

  • Let Q=ijQi,jQ^{*}=\bigcap_{i\neq j}Q_{i,j}^{*} be the set of all αQ\alpha\in Q near which QQ satisfies (P2)(P2).

Clearly, Qi,jQ^{*}_{i,j} and QQ^{*} are \emptyset-definable sets.

The main ingredient towards the proof of Theorem 6.4 is the following:

Theorem 6.9.

Assume that QQ does not satisfy γ\gamma-power saving for γ\gamma as in Theorem 6.4(1). Then dimQ=dimQ=(s1)m\dim Q^{*}=\dim Q=(s-1)m.

6.2. The proof of Theorem 6.9

The following is an analog of Lemma 5.19 in the oo-minimal setting.

Lemma 6.10.

Let {Zt:tT}\{Z_{t}:t\in T\} be a definable family of subsets of X¯\overline{X}, each fiber-algebraic of degree d\leq d with dim(Zt)<(s1)m\dim(Z_{t})<(s-1)m. Then there exist definable families i\mathcal{F}_{i}, i[s]i\in[s], each consisting of subsets of XiX_{i} of dimension smaller than mm, such that for every ν\nu\in\mathbb{N}, if A¯X¯\bar{A}\subseteq\overline{X} is an nn-grid in (,ν)(\overrightarrow{\mathcal{F}},\nu)-general position then for every tTt\in T,

|A¯Zt|sd(ν1)ns2.|\bar{A}\cap Z_{t}|\leq sd(\nu-1)n^{s-2}.

In particular, each Zt,tTZ_{t},t\in T satisfies 11-power saving.

Proof.

For tTt\in T and a1X1a_{1}\in X_{1} we let

Zta1:={(a2,,as)X2××Xs:(a1,a2,,as)Zt}.Z_{ta_{1}}:=\{(a_{2},\ldots,a_{s})\in X_{2}\times\cdots\times X_{s}:(a_{1},a_{2},\ldots,a_{s})\in Z_{t}\}.

For i[s1]i\in[s-1], we similarly define Zta1aiXi+1××Xs.Z_{ta_{1}\cdots a_{i}}\subseteq X_{i+1}\times\cdots\times X_{s}.

(1) For tTt\in T, we let

Yt1:={a1X1:dim(Zta1)=(s2)m}.Y_{t}^{1}:=\left\{a_{1}\in X_{1}:\dim(Z_{t{a_{1}}})=(s-2)m\right\}.

By our assumption on dimZt\dim Z_{t}, dimYt1<m\dim Y_{t}^{1}<m. Let 1:={Yt1:tT}\mathcal{F}_{1}:=\{Y_{t}^{1}:t\in T\}.

(2) For tTt\in T and a1Yt1a_{1}\notin Y_{t}^{1}, let

Yta12:={a2X2:dim(Zta1a2)=(s3)m}.Y^{2}_{ta_{1}}:=\{a_{2}\in X_{2}:\dim(Z_{ta_{1}a_{2}})=(s-3)m\}.

Then define 2:={Yta12:tT,a1Yt1}.\mathcal{F}_{2}:=\left\{Y^{2}_{ta_{1}}:t\in T,a_{1}\notin Y_{t}^{1}\right\}. Note that whenever a1Yt1a_{1}\notin Y^{1}_{t}, dim(Zta1)<(s2)m\dim(Z_{ta_{1}})<(s-2)m and therefore the set Yta12Y^{2}_{ta_{1}} has dimension smaller than mm.

For i=1,,s2i=1,\ldots,s-2, we continue in this way to define a family i={Yta1ai1i}\mathcal{F}_{i}=\{Y^{i}_{ta_{1}\cdots a_{i-1}}\} of subsets of XiX_{i} as follows: for a1Yt1a_{1}\notin Y_{t}^{1}, a2Yta12a_{2}\notin Y^{2}_{ta_{1}}, a3Yta1a23,,ai1Yta1ai2i1a_{3}\notin Y^{3}_{ta_{1}a_{2}},\ldots,a_{i-1}\notin Y^{i-1}_{ta_{1}\cdots a_{i-2}}, we let

Yta1ai1i:={aiXi:dim(Zta1ai)=(s(i+1))m},Y^{i}_{ta_{1}\cdots a_{i-1}}:=\{a_{i}\in X_{i}:\dim(Z_{ta_{1}\cdots a_{i}})=(s-(i+1))m\},

and let

i:={Yta1ai1i:tT,a1Yt1,a2Yta12,,ai1Yta1ai2i1}.\mathcal{F}_{i}:=\left\{Y^{i}_{ta_{1}\cdots a_{i-1}}:t\in T,a_{1}\notin Y^{1}_{t},a_{2}\notin Y^{2}_{ta_{1}},\ldots,a_{i-1}\notin Y^{i-1}_{ta_{1}\cdots a_{i-2}}\right\}.

Finally, for a1,,as2a_{1},\ldots,a_{s-2} such that aiYta1ai1ia_{i}\notin Y^{i}_{ta_{1}\cdots a_{i-1}} for i=1,,s2i=1,\ldots,s-2, we let

Yta1as2s1:=πs1(Zta1as2)Xs1,Y^{s-1}_{ta_{1}\cdots a_{s-2}}:=\pi_{s-1}(Z_{ta_{1}\ldots a_{s-2}})\subseteq X_{s-1},

and let

s1:={Yta1as2s1:tT,a1Yt1,,as2Yta1as3s2}.\mathcal{F}_{s-1}:=\left\{Y^{s-1}_{ta_{1}\cdots a_{s-2}}:t\in T,a_{1}\notin Y_{t}^{1},\ldots,a_{s-2}\notin Y^{s-2}_{ta_{1}\cdots a_{s-3}}\right\}.

We provide some details on why the families :=(i:i[s])\vec{\mathcal{F}}:=(\mathcal{F}_{i}:i\in[s]) satisfy the requirement.

Assume that n,νn,\nu\in\mathbb{N} and A¯X¯\bar{A}\subseteq\overline{X} is an nn-grid which is in (,ν)(\overrightarrow{\mathcal{F}},\nu)-general position, and fix tTt\in T.

Because |A1Yt1|<ν|A_{1}\cap Y_{t}^{1}|<\nu there are at most ν1\nu-1 elements a1π1(ZtA¯)Yt1a_{1}\in\pi_{1}(Z_{t}\cap\bar{A})\cap Y_{t}^{1}, and for each such a1a_{1} there are at most dns2dn^{s-2} elements in ZA¯Z\cap\bar{A} which project to it. Indeed, this is true because Zta1Z_{ta_{1}} is fiber-algebraic of degree d\leq d, so for every tuple (a2,,as1)A2×As1(a_{2},\ldots,a_{s-1})\in A_{2}\times\cdots A_{s-1} (and there are at most ns2n^{s-2} such tuples) there are d\leq d elements asAsa_{s}\in A_{s} such that (a2,,as1,as)(A2××As)Zta1(a_{2},\ldots,a_{s-1},a_{s})\in\left(A_{2}\times\cdots\times A_{s}\right)\cap Z_{ta_{1}}.

So, altogether there are at most d(ν1)ns2d(\nu-1)n^{s-2} elements (a1,,as)A¯Zt(a_{1},\ldots,a_{s})\in\bar{A}\cap Z_{t} for which a1Y1ta_{1}\in Y_{1}^{t}. On the other hand, there are at most nνnn-\nu\leq n elements a1Yt1a_{1}\notin Y^{1}_{t}. We now compute for how many a¯A¯Zt\bar{a}\in\bar{A}\cap Z_{t} we have a1Yt1a_{1}\notin Y^{1}_{t}.

By definition, dim(Zta1)<(s2)m\dim(Z_{ta_{1}})<(s-2)m, so now we consider two cases, a2Yta12a_{2}\in Y^{2}_{ta_{1}} and a2Yta12a_{2}\notin Y^{2}_{ta_{1}}. In the first case, there are at most ν1\nu-1 such a2a_{2}, by general position, and as above, for each such a2a_{2} there are at most dns3dn^{s-3} tuples (a3,,as)A3××As(a_{3},\ldots,a_{s})\in A_{3}\times\cdots\times A_{s} such that (a2,a3,,as)Zta1(a_{2},a_{3},\ldots,a_{s})\in Z_{ta_{1}}. Thus all together there are n(ν1)dns3=d(ν1)ns2n(\nu-1)dn^{s-3}=d(\nu-1)n^{s-2} elements a¯A¯Zt\bar{a}\in\bar{A}\cap Z_{t} such that a1Yt1a_{1}\notin Y_{t}^{1} and a2Yt2a_{2}\in Y_{t}^{2}. There are at most (nν)n(n-\nu)\leq n elements a2A2a_{2}\in A_{2} which are not in Yta12Y^{2}_{ta_{1}}. Of course, there are at most n2n^{2} pairs (a1,a2)(a_{1},a_{2}) such that a1Yt1a_{1}\notin Y^{1}_{t} and a2Yta12a_{2}\notin Y^{2}_{ta_{1}}, and we now want to compute how many a¯A¯Zt\bar{a}\in\bar{A}\cap Z_{t} project onto such (a1,a2)(a_{1},a_{2}). Repeating the same process along the other coordinates, we see that there are at most (s2)d(ν1)ns4(s-2)d(\nu-1)n^{s-4} elements which project into each such (a1,a2)(a_{1},a_{2}), so all together there are at most (s2)d(ν1)ns2(s-2)d(\nu-1)n^{s-2} tuples a¯A¯Zt\bar{a}\in\bar{A}\cap Z_{t} for which a1Yt1a_{1}\notin Y_{t}^{1} and a2Yta12a_{2}\notin Y^{2}_{ta_{1}}. If we add it all we get at most sd(ν1)ns2sd(\nu-1)n^{s-2} elements in A¯Zt\bar{A}\cap Z_{t}, which concludes the proof of the lemma. ∎

Corollary 6.11.

Assume that QX¯Q\subseteq\overline{X} does not satisfy 11-power saving and that ZQZ\subseteq Q is a definable set with dimZ<(s1)m\dim Z<(s-1)m. Then Q:=QZQ^{\prime}:=Q\setminus Z also does not satisfy 11-power saving.

Proof.

Indeed, Lemma 6.10 (applied to the constant family) implies that ZZ itself satisfies 11-power saving, and since γ\gamma-power saving is preserved under union then it fails for QQ^{\prime}. ∎

In order to prove Theorem 6.9, it is sufficient to prove the following:

Proposition 6.12.

Let QQQ^{\prime}\subseteq Q be a definable set and assume that there exist ij[s]i\neq j\in[s] such that dim(QQi,j)<(s1)m\dim(Q^{\prime}\cap Q^{*}_{i,j})<(s-1)m. Then QQ^{\prime} satisfies γ\gamma-power saving for γ\gamma as in Theorem 6.4(1).

Let us first see that indeed Proposition 6.12 quickly implies Theorem 6.9. Let γ\gamma be as in Theorem 6.4(1). Assuming that QQ does not have γ\gamma-power saving, Proposition 6.12 with Q:=QQ^{\prime}:=Q implies that dim(Q1,2)=(s1)m\dim(Q^{*}_{1,2})=(s-1)m. Also, if we take Q′′:=QQ1,2Q^{\prime\prime}:=Q\setminus Q_{1,2}^{*} then clearly Q′′Q1,2=Q^{\prime\prime}\cap Q_{1,2}^{*}=\emptyset and therefore by the same proposition Q′′Q^{\prime\prime} satisfies γ\gamma-power saving, and therefore Q1,2Q_{1,2}^{*} does not satisfy γ\gamma-power saving. We can thus replace QQ by Q1:=Q1,2Q_{1}:=Q^{*}_{1,2} and retain the original properties of QQ together with the fact that Q1Q_{1} has (P2)1,2(P2)_{1,2} at every αQ1\alpha\in Q_{1}. Next we repeat the process with respect to every (i,j)(1,2)(i,j)\neq(1,2) and eventually obtain a definable set QQQ^{\prime}\subseteq Q of dimension (s1)m(s-1)m such that QQ^{\prime} satisfies (P2)(P2) at every point — establishing Theorem 6.9.

Proof of Proposition 6.12.

Let QQQ^{\prime}\subseteq Q and γ\gamma be as in Proposition 6.12. It is sufficient to prove the proposition for Q1,2Q_{1,2}^{*} (the case of arbitrary ij[s]i\neq j\in[s] follows by permuting the coordinates accordingly). If dimQ<(s1)m\dim Q^{\prime}<(s-1)m then by Lemma 6.10 QQ^{\prime} satisfies 11-power saving, hence γ\gamma-power saving. Thus we may assume that dimQ=(s1)m\dim Q^{\prime}=(s-1)m, and hence, by throwing away a set of smaller dimension, we may assume that QQ^{\prime} is open in QQ. It is then easy to verify that (Q)1,2=Q1,2Q(Q^{\prime})^{*}_{1,2}=Q_{1,2}^{*}\cap Q^{\prime}. Hence, without loss of generality, Q=QQ=Q^{\prime}. We now assume that dimQ1,2<(s1)m\dim Q_{1,2}^{*}<(s-1)m and therefore, by Lemma 6.10, Q1,2Q_{1,2}^{*} has γ\gamma-power saving. Thus, in order to show that QQ has γ\gamma-power saving, it is sufficient to prove that QQ1,2Q\setminus Q_{1,2}^{*} has γ\gamma-power saving, so we assume from now on that Q1,2=Q_{1,2}^{*}=\emptyset.

We let U:=X1×X2U:=X_{1}\times X_{2} and V:=X¯1,2V:=\overline{X}_{1,2}.

Claim 6.13.

For every wVw\in V, the set

Xw:={wV:dim(Q(U,w)Q(U,w))=m}X_{w}:=\left\{w^{\prime}\in V:\dim(Q(U,w)\cap Q(U,w^{\prime}))=m\right\}

has dimension strictly smaller than (s3)m(s-3)m. Moreover, the set XwX_{w} is fiber algebraic in X3××XsX_{3}\times\cdots\times X_{s}.

Proof.

We assume that relevant sets thus far (i.e. Xi,Q,U,V,Qi,jX_{i},Q,U,V,Q^{*}_{i,j}) are defined over \emptyset. Now, if dim(Xw)=(s3)m\dim(X_{w})=(s-3)m (it is not hard to see that it cannot be bigger), then by 0\aleph_{0}-saturation of \mathcal{M} we may take ww^{\prime} generic in XwX_{w} over ww, and then uu^{\prime} generic in Q(U,w)Q(U,w)Q(U,w)\cap Q(U,w^{\prime}) over w,ww,w^{\prime}. Note that the fiber-algebraicity of QQ implies that dim(Q(u,V))(s3)m\dim(Q(u^{\prime},V))\leq(s-3)m, and since dim(w/wu)=dim(w/w)=(s3)m\dim(w^{\prime}/wu^{\prime})=\dim(w^{\prime}/w)=(s-3)m it follows that ww^{\prime} is generic in both XwX_{w} and Q(u,V)Q(u^{\prime},V) over wuwu^{\prime}, so in particular, dimXw=dimQ(u,V)=(s3)m\dim X_{w}=\dim Q(u^{\prime},V)=(s-3)m.

We claim that (u,w)Q1,2(u^{\prime},w^{\prime})\in Q_{1,2}^{*}. Indeed, by our assumption,

dim(u/ww)=dim(Q(U,w)Q(U,w))=dimQ(U,w)=m.\dim(u^{\prime}/ww^{\prime})=\dim(Q(U,w)\cap Q(U,w^{\prime}))=\dim Q(U,w)=m.

Thus, there exists an open U0UU_{0}\subseteq U containing uu^{\prime}, such that U0Q(U,w)=U0Q(U,w)U_{0}\cap Q(U,w)=U_{0}\cap Q(U,w^{\prime}), or, said differently, Q(U0,w)=Q(U0,w)Q(U_{0},w)=Q(U_{0},w^{\prime}). By Fact 6.1, we may assume that the tuple (w,w,u)(w,w^{\prime},u^{\prime}) is independent from the parameters defining U0U_{0} over \emptyset. Thus, without loss of generality, U0U_{0} is definable over \emptyset. The set W1:={vV:Q(U0,w)Q(U,v)}W_{1}:=\{v\in V:Q(U_{0},w)\subseteq Q(U,v)\} is defined over ww and the set Q(u,V)Q(u^{\prime},V) is defined over uu^{\prime}, and both contain ww^{\prime}. Since dim(w/w,u)=(s3)m\dim(w^{\prime}/w,u^{\prime})=(s-3)m then dim(W1Q(u,V))=(s3)m\dim(W_{1}\cap Q(u^{\prime},V))=(s-3)m. We can therefore find an open V0VV_{0}\subseteq V such that Q(u,V0)W1Q(u^{\prime},V_{0})\subseteq W_{1}. Now, by the definition of W1W_{1}, we have Q(U0,w)×W1QQ(U_{0},w)\times W_{1}\subseteq Q, and hence Q(U0,w)×Q(u,V0)QQ(U_{0},w)\times Q(u^{\prime},V_{0})\subseteq Q and therefore (since Q(U0,w)=Q(U0,w)Q(U_{0},w)=Q(U_{0},w^{\prime})), Q(U0,w)×Q(u,V0)QQ(U_{0},w^{\prime})\times Q(u,V_{0})\subseteq Q. This shows that (uprime,w)Q1,2(u^{\prime},w^{\prime})\in Q^{*}_{1,2}, contradicting our assumption that Q1,2=Q_{1,2}^{*}=\emptyset.

To see that XwX_{w} is fiber algebraic, assume towards contradiction that there exists a tuple (a3,,as1)X3××Xs1(a_{3},\ldots,a_{s-1})\in X_{3}\times\cdots\times X_{s-1} for which there are infinitely many asXsa_{s}\in X_{s} such that (a3,,as)Xw(a_{3},\dots,a_{s})\in X_{w} (the other coordinates are treated similarly). We can now pick such asa_{s} generic over w,a3,,as1w,a_{3},\ldots,a_{s-1} and then pick (a1,a2)Q(U,w)Q(U,a3,,as)(a_{1},a_{2})\in Q(U,w)\cap Q(U,a_{3},\ldots,a_{s}) generic over w,a3,,asw,a_{3},\ldots,a_{s}. Because dim(a1,a2/w)=dim(a1,a2/w,a3,,as)\dim(a_{1},a_{2}/w)=\dim(a_{1},a_{2}/w,a_{3},\ldots,a_{s}) it follows by the additivity of dimension that for any subtuple aa^{\prime} of a3,,asa_{3},\ldots,a_{s} we have dim(a/w,a1,a2)=dim(a/w)\dim(a^{\prime}/w,a_{1},a_{2})=\dim(a^{\prime}/w). It follows that

0<dim(as/w,a3,,as1)=dim(as/w,a1,a2,a3,,as1).0<\dim(a_{s}/w,a_{3},\ldots,a_{s-1})=\dim(a_{s}/w,a_{1},a_{2},a_{3},\ldots,a_{s-1}).

Since Q(a1,a2,a3,,as)Q(a_{1},a_{2},a_{3},\ldots,a_{s}) holds, it follows that Q(a1,a2,a3,,as1,Xn)Q(a_{1},a_{2},a_{3},\ldots,a_{s-1},X_{n}) is infinite — contradicting the fiber-algebraicity of QQ. ∎

We similarly have:

Claim 6.14.

For every uUu\in U, the set

Xu:={uU:dim(Q(u,V)Q(u,V))=(s3)m}X^{u}:=\left\{u^{\prime}\in U:\dim(Q(u,V)\cap Q(u^{\prime},V))=(s-3)m\right\}

has dimension strictly smaller than mm. Moreover, the set XuX^{u} is fiber-algebraic in X1×X2X_{1}\times X_{2}.

Lemma 6.15.

There exist ss definable families =(1,,s)\vec{\mathcal{F}}=(\mathcal{F}_{1},\ldots,\mathcal{F}_{s}) of subsets of X1,,XsX_{1},\ldots,X_{s}, respectively, each containing only sets of dimension strictly smaller than mm, such that for every ν\nu\in\mathbb{N} and every nn-grid A¯X¯\bar{A}\subseteq\overline{X} in (,ν)(\vec{\mathcal{F}},\nu)-general position, we have the following.

  1. (1)

    For all w,wA3××Asw,w^{\prime}\in A_{3}\times\cdots\times A_{s}, if |Q(A1×A2,w)Q(A1×A2,w)|dν|Q(A_{1}\times A_{2},w)\cap Q(A_{1}\times A_{2},w^{\prime})|\geq d\nu then wXww^{\prime}\in X_{w}.

  2. (2)

    For all wA3××Asw\in A_{3}\times\cdots\times A_{s}, there are at most C(ν)ns4C(\nu)n^{s-4} elements wA3××Asw^{\prime}\in A_{3}\times\cdots\times A_{s} such that |Q(A1×A2,w)Q(A1×A2,w)|dν|Q(A_{1}\times A_{2},w)\cap Q(A_{1}\times A_{2},w^{\prime})|\geq d\nu.

  3. (3)

    |A¯Q|C(ν)n(s1)γ|\bar{A}\cap Q|\leq C^{\prime}(\nu)n^{(s-1)-\gamma}.

Proof.

We choose the definable families in \vec{\mathcal{F}} as follows. Let

1:={π1(Q(U,w)Q(U,w)):\displaystyle\mathcal{F}_{1}:=\big{\{}\pi_{1}(Q(U,w)\cap Q(U,w^{\prime})):
w,wV&dim(Q(U,w)Q(U,w))<m},\displaystyle w,w^{\prime}\in V\,\&\,\dim\left(Q(U,w)\cap Q(U,w^{\prime})\right)<m\big{\}},

and 2:={}\mathcal{F}_{2}:=\{\emptyset\}. Clearly, each set in 1\mathcal{F}_{1} has dimension smaller than mm. Because QQ is fiber algebraic of degree d\leq d, it is easy to verify that (1) holds independently of the other families.

For the other families, we first recall that by Claim 6.13, for each wX¯1,2w\in\overline{X}_{1,2}, the set XwX¯1,2X_{w}\subseteq\overline{X}_{1,2} has dimension smaller than (s3)m(s-3)m.

We now apply Lemma 6.10 to the family {Xw:wX¯1,2}\{X_{w}:w\in\overline{X}_{1,2}\} (note that ss from Lemma 6.10 is replaced here by s2s-2), and obtain definable families =(3,,,s)\vec{\mathcal{F}}^{\prime}=(\mathcal{F}_{3},,\ldots,\mathcal{F}_{s}), each i\mathcal{F}_{i} consisting of subsets of XiX_{i} of dimension smaller than mm, such that for every ν\nu and every nn-grid A3××AsX¯1,2A_{3}\times\cdots\times A_{s}\subseteq\overline{X}_{1,2} in (,ν)(\vec{\mathcal{F}}^{\prime},\nu)-general position and every wX¯1,2w\in\overline{X}_{1,2} we have

|(A3××As)Xw|C(ν)ns4.|\left(A_{3}\times\cdots\times A_{s}\right)\cap X_{w}|\leq C(\nu)n^{s-4}.

Let :=(1,2,)\vec{\mathcal{F}}:=(\mathcal{F}_{1},\mathcal{F}_{2},\vec{\mathcal{F}}^{\prime}) and assume that A¯\bar{A} is in (,ν)(\vec{\mathcal{F}},\nu)-general position. It follows that for every wA3××Asw\in A_{3}\times\cdots\times A_{s} there are at most C(ν)ns4C(\nu)n^{s-4} elements wA3××Asw^{\prime}\in A_{3}\times\cdots\times A_{s} such that |Q(A1×A2,w)Q(A1×A2,w)|dν|Q(A_{1}\times A_{2},w)\cap Q(A_{1}\times A_{2},w^{\prime})|\geq d\nu. This proves (2).

We claim that the relation QQ, viewed as a binary relation on (X1×X2)×X¯1,2(X_{1}\times X_{2})\times\overline{X}_{1,2}, satisfies the γ\gamma-ST property. Indeed, for i[s]i\in[s], let Xi=[ki]Xi,X_{i}=\bigsqcup_{\ell\in[k_{i}]}X_{i,\ell} be an oo-minimal cell decomposition of XiX_{i}, for some kik_{i}\in\mathbb{N}, we have m=dim(Xi)=max{dim(Xi,):[ki]}m=\dim(X_{i})=\max\left\{\dim(X_{i,\ell}):\ell\in[k_{i}]\right\}. Then each (definable) cell Xi,X_{i,\ell} is in a definable bijection with a definable subset of Mdim(Xi,)M^{\dim\left(X_{i,\ell}\right)} (namely, the projection on the appropriate coordinates is a homeomorphism), hence in a definable bijection with a definable subset of MmM^{m}. For ¯=(1,,s)[k1]××[ks]\bar{\ell}=(\ell_{1},\ldots,\ell_{s})\in[k_{1}]\times\ldots\times[k_{s}], let Q¯:=Qi[s]Xi,iQ_{\bar{\ell}}:=Q\cap\prod_{i\in[s]}X_{i,\ell_{i}}. Applying these definable bijections coordinate-wise, by Lemma 2.1(1) we may assume Q¯i[s]MmQ_{\bar{\ell}}\subseteq\prod_{i\in[s]}M^{m} and apply Fact 2.15 to conclude that for each ¯\bar{\ell}, Q¯Q_{\bar{\ell}} satisfies the γ\gamma-ST property. But then, by Lemma 2.1(2), QQ also satisfies the γ\gamma-ST property. Finally, given an nn-grid A¯(X1×X2)×X¯1,2\bar{A}\subseteq(X_{1}\times X_{2})\times\overline{X}_{1,2} in (,ν)(\vec{\mathcal{F}},\nu)-general position, we thus have by the γ\gamma-ST property that (2) implies (3).∎

This shows that QQ has γ\gamma-power saving, in contradiction to our assumption, thus completing the proof of Proposition 6.12, and with it Theorem 6.9.

6.3. Obtaining a nice QQ-relation

By Theorem 6.9 we may assume that dimQ=dimQ\dim Q=\dim Q^{*}. Thus, in order to prove Theorem 6.4, we may replace QQ by QQ^{*}, and assume from now on that Q=QQ=Q^{*}.

Using oo-minimal cell decomposition, we may partition QQ into finitely many definable sets such that each is fiber-definable, namely for each tuple (a1,,as1)A1××As1(a_{1},\ldots,a_{s-1})\in A_{1}\times\cdots\times A_{s-1}, there exists at most one

as=f(a1,,as1)Xsa_{s}=f(a_{1},\ldots,a_{s-1})\in X_{s}

such that (a1,,as1,as)Q(a_{1},\ldots,a_{s-1},a_{s})\in Q, and furthermore ff is a continuous function on its domain. We can do the same for all permutations of the variables. Since QQ does not satisfy γ\gamma-power saving by assumption, one of these finitely many sets, of dimension (s1)m(s-1)m, also does not satisfy γ\gamma-power saving.

Hence from now on we assume that QQ is the graph of a continuous partial function from any of its s1s-1 variables to the remaining one.

By further partitioning QQ and changing the sets up to definable bijections, we may assume that each XiX_{i} is an open subset of MmM^{m}. Fix e¯=(e1,,es)\bar{e}=(e_{1},\ldots,e_{s}) in \mathcal{M} generic in QQ, and let 0:=dcl(e¯)\mathcal{M}_{0}:=\operatorname{dcl}(\bar{e}). Note that for each (a3,,as)(a_{3},\ldots,a_{s}) in a neighborhood of (e3,,es)(e_{3},\ldots,e_{s}), the set Q(x1,x2,a3,,as)Q(x_{1},x_{2},a_{3},\ldots,a_{s}) is the graph of a homeomorphism between neighborhoods of e1e_{1} and e2e_{2}. We let μi:=μ0(ei)\mu_{i}:=\mu_{\mathcal{M}_{0}}(e_{i}) (see Definition 6.3) and identify these partial types over 0\mathcal{M}_{0} with their sets of realizations in \mathcal{M}.

Lemma 6.16.

There exist 0\mathcal{M}_{0}-definable relatively open sets UX1×X2U\subseteq X_{1}\times X_{2} and VX¯1,2V\subseteq\bar{X}_{1,2}, containing (e1,e2)(e_{1},e_{2}) and (e3,,es)(e_{3},\ldots,e_{s}), respectively, and a relatively open WQW\subseteq Q, containing e¯\bar{e}, such that for every (u,v)W(u,v)\in W, Q(u,V)×Q(U,v)QQ(u,V)\times Q(U,v)\subseteq Q.

In particular, for any u,uμ0(e1,e2)(X1×X2)u,u^{\prime}\in\mu_{\mathcal{M}_{0}}(e_{1},e_{2})\cap\left(X_{1}\times X_{2}\right) and any v,vμ0(e3,,es)X¯1,2v,v^{\prime}\in\mu_{\mathcal{M}_{0}}(e_{3},\ldots,e_{s})\cap\bar{X}_{1,2} we have

(u,v),(u,v),(u,v)Q(u,v)Q.(u,v),(u,v^{\prime}),(u^{\prime},v)\in Q\Rightarrow(u^{\prime},v^{\prime})\in Q.
Proof.

Because the properties of U,VU,V and WW are first-order expressible over e¯\bar{e}, it is sufficient to prove the existence of U,V,WU,V,W in any elementary extension of 0\mathcal{M}_{0}.

Because e¯Q=Q\bar{e}\in Q=Q^{*}, there are definable, relatively open neighborhoods UX1×X2U\subseteq X_{1}\times X_{2} and VX¯1,2V\subseteq\bar{X}_{1,2} of (e1,e2)(e_{1},e_{2}) and (e3,,es)(e_{3},\ldots,e_{s}), respectively, such that

Q(U,e3,,es)×Q(e1,e2,V)Q.Q(U,e_{3},\ldots,e_{s})\times Q(e_{1},e_{2},V)\subseteq Q.

By Fact 6.1, we may assume that U,VU,V are definable over AMA\subseteq M such that e¯\bar{e} is still generic in QQ over AA. It follows that there exists a relatively open WQW\subseteq Q, containing e¯\bar{e}, such that for every (u,v)W(u,v)\in W (so, uX1×X2u\in X_{1}\times X_{2} and vX¯1,2v\in\bar{X}_{1,2}), we have Q(U,v)×Q(u,V)QQ(U,v)\times Q(u,V)\subseteq Q. As already noted, we now can find such U,VU,V and WW defined over 0\mathcal{M}_{0}.

Note that μ0(e1,e2)(X1×X2)U\mu_{\mathcal{M}_{0}}(e_{1},e_{2})\cap(X_{1}\times X_{2})\subseteq U and μ0(e3,,en)X¯1,2V\mu_{\mathcal{M}_{0}}(e_{3},\ldots,e_{n})\cap\overline{X}_{1,2}\subseteq V, and μ0(e¯)W\mu_{\mathcal{M}_{0}}(\bar{e})\subseteq W. Let us see how the last clause follows: assume that u,uμ0(e1,e2)(X1×X2)u,u^{\prime}\in\mu_{\mathcal{M}_{0}}(e_{1},e_{2})\cap(X_{1}\times X_{2}), v,vμ0(e3,,en)X¯1,2v,v^{\prime}\in\mu_{\mathcal{M}_{0}}(e_{3},\ldots,e_{n})\cap\overline{X}_{1,2}, and (u,v),(u,v),(u,v)Q(u,v),(u,v^{\prime}),(u^{\prime},v)\in Q. We have u,uUu,u^{\prime}\in U, v,vVv,v^{\prime}\in V and

(u,v),(u,v),(u,v)W.(u,v),(u,v^{\prime}),(u^{\prime},v)\in W.

By the choice of U,V,WU,V,W, we thus have (u,v)Q(u^{\prime},v^{\prime})\in Q. ∎

Lemma 6.17.

The definable relation QQ satisfies properties (P1) and (P2) from Section 3.2 with respect to the 0\mathcal{M}_{0}-type-definable sets μiXi,i[s]\mu_{i}\cap X_{i},i\in[s], namely:

(P1) For any (a1,,as1)μ1××μs1(a_{1},\ldots,a_{s-1})\in\mu_{1}\times\cdots\times\mu_{s-1}, there exists exactly one asμsa_{s}\in\mu_{s} with (a1,,as1,as)Q(a_{1},\ldots,a_{s-1},a_{s})\in Q, and this remains true under any coordinate permutation.

(P2) Let U~:=μ1×μ2X1×X2\tilde{U}:=\mu_{1}\times\mu_{2}\cap X_{1}\times X_{2} and V~:=μ3××μsX¯1,2\tilde{V}:=\mu_{3}\times\ldots\times\mu_{s}\cap\bar{X}_{1,2}. Then for every u,uU~u,u^{\prime}\in\tilde{U} and w,wV~w,w^{\prime}\in\tilde{V},

(u;w),(u;w),(u;w)Q(u;w)Q.(u;w),(u^{\prime};w),(u;w^{\prime})\in Q\Rightarrow(u^{\prime};w^{\prime})\in Q.

The same is true when (1,2)(1,2) is replaced by any (i,j)(i,j) with ij[s]i\neq j\in[s].

Proof.

By continuity of the function given by QQ, for every tuple

(a1,,as1)μ1××μs1(a_{1},\ldots,a_{s-1})\in\mu_{1}\times\cdots\times\mu_{s-1}

there exists a unique asμsa_{s}\in\mu_{s} such that (a1,,as)Q(a_{1},\ldots,a_{s})\in Q. The same is true for any permutation of the variables. This shows (P1).

Property (P2) holds by Lemma 6.16 for the (1,2)(1,2)-coordinates. The same proof works for the other pairs (i,j)(i,j). ∎

Let us see how Theorem 6.4 follows. Assume first that s4s\geq 4, and that QQ does not have γ\gamma-power saving for γ=116s10\gamma=\frac{1}{16s-10}. By Theorem 6.9 and the resulting Lemma 6.17 (see also the choice of the parameters before Lemma 6.16), there is e¯=(e1,,es)\bar{e}=(e_{1},\ldots,e_{s}) generic in QQ and a substructure 0=dcl(e¯)\mathcal{M}_{0}=\operatorname{dcl}(\bar{e}) of cardinality |||\mathcal{L}| such that Qi[s](μ0(ei)Xi)Q\cap\prod_{i\in[s]}\left(\mu_{\mathcal{M}_{0}}(e_{i})\cap X_{i}\right) satisfies (P1)(P1) and (P2)(P2) of Theorem 3.21. Note that μ0(ei)\mu_{\mathcal{M}_{0}}(e_{i}) is a partial type over 0\mathcal{M}_{0} for i[s]i\in[s], e¯\bar{e} satisfies the relation, and e¯\bar{e} is contained in 0\mathcal{M}_{0}. Thus, by the “moreover” clause of Theorem 3.21, there exists a type definable abelian group GG over 0\mathcal{M}_{0} and 0\mathcal{M}_{0}-definable bijections πi:μ0(ei)XiG\pi^{\prime}_{i}:\mu_{\mathcal{M}_{0}}(e_{i})\cap X_{i}\to G each sending eie_{i} to 0G0_{G} and satisfying:

Q(a1,,an)π1(a1)++πm(am)=0Q(a_{1},\ldots,a_{n})\Leftrightarrow\pi^{\prime}_{1}(a_{1})+\cdots+\pi^{\prime}_{m}(a_{m})=0

for all aiμ0(ei)Xia_{i}\in\mu_{\mathcal{M}_{0}}(e_{i})\cap X_{i}. This is exactly the second clause of Theorem 6.4.

Finally, the case s=3s=3 of Theorem 6.4 reduces to the case s=4s=4 as in the stable case, Section 5.7, with the obvious modifications.

6.4. Discussion and some applications

We discuss some variants and corollaries of the main theorem. In particular, we will deduce a variant that holds in an arbitrary oo-minimal structure, i.e. without the saturation assumption on \mathcal{M} used in Theorem 6.4.

Definition 6.18.

(see [goldbring2010hilbert, Definition 2.1]) A local group is a tuple (Γ,1,ι,p)(\Gamma,1,\iota,p), where Γ\Gamma is a Hausdorff topological space, ι:ΛΓ\iota:\Lambda\to\Gamma (the inversion map) and p:ΩΓp:\Omega\to\Gamma (the product map) are continuous functions, with ΛΓ\Lambda\subseteq\Gamma and ΩΓ2\Omega\subseteq\Gamma^{2} open subsets, such that 1Λ1\in\Lambda, {1}×Γ,Γ×{1}Ω\{1\}\times\Gamma,\Gamma\times\{1\}\subseteq\Omega and for all x,y,zΓx,y,z\in\Gamma:

  1. (1)

    p(x,1)=p(1,x)=xp(x,1)=p(1,x)=x;

  2. (2)

    if xΛx\in\Lambda then (x,ι(x)),(ι(x),x)Ω(x,\iota(x)),(\iota(x),x)\in\Omega and p(x,ι(x))=p(ι(x),x)=1p(x,\iota(x))=p(\iota(x),x)=1;

  3. (3)

    if (x,y),(y,z)Ω(x,y),(y,z)\in\Omega and (p(x,y),z),(x,p(y,z))Ω(p(x,y),z),(x,p(y,z))\in\Omega, then

    p((p(x,y),z)=p(x,p(y,z)).p((p(x,y),z)=p(x,p(y,z)).

Our goal is to show that in Theorem 6.4 we can replace the type-definable group with a definable local group. Namely,

Corollary 6.19.

Let \mathcal{M} be an 0\aleph_{0}-saturated oo-minimal expansion of a group, s3s\geq 3, QX1××XsQ\subseteq X_{1}\times\cdots\times X_{s} are \emptyset-definable with dim(Xi)=m\dim(X_{i})=m, and QQ is fiber algebraic. Then one of the following holds.

  1. (1)

    The set QQ has γ\gamma-power saving, for γ=18m5\gamma=\frac{1}{8m-5} if s4s\geq 4, and γ=116m10\gamma=\frac{1}{16m-10} if s=3s=3.

  2. (2)

    There exist (i) a finite set AMA\subseteq M and a structure 0=dcl(A)\mathcal{M}_{0}=\operatorname{dcl}(A) (ii) a definable local abelian group Γ\Gamma with dim(Γ)=m\dim(\Gamma)=m, defined over M0M_{0}, (iii) definable relatively open UiXiU_{i}\subseteq X_{i}, a definable open neighborhood VΓV\subseteq\Gamma of 0=0Γ0=0_{\Gamma}, and (iv) definable homeomorphisms πi:UiV\pi_{i}:U_{i}\to V, i[s]i\in[s], such that for all xiUix_{i}\in U_{i},

    π1(x1)++πs(xs)=0Q(x1,,xs).\pi_{1}(x_{1})+\cdots+\pi_{s}(x_{s})=0\Leftrightarrow Q(x_{1},\ldots,x_{s}).
Proof.

We assume that (1) fails and apply Theorem 6.4 to obtain a¯\bar{a} generic in QQ, 0=dcl(a¯)\mathcal{M}_{0}=\operatorname{dcl}(\bar{a}), a type-definable abelian group GG over 0\mathcal{M}_{0}, and bijections πi:μ0(ai)G\pi_{i}:\mu_{\mathcal{M}_{0}}(a_{i})\to G sending aia_{i} to 0, such that for all i[s]i\in[s], and xiμ0(ai)x_{i}\in\mu_{\mathcal{M}_{0}}(a_{i}),

π1(x1)++πs(xs)=0Q(x1,,xs).\pi_{1}(x_{1})+\cdots+\pi_{s}(x_{s})=0\Leftrightarrow Q(x_{1},\ldots,x_{s}).

By pulling back the group operations via, say, π1\pi_{1}, we may assume that the domain of GG is μ0(a1)\mu_{\mathcal{M}_{0}}(a_{1}). We denote this pull-back of the addition and the inverse operations by xyx\oplus y and y\ominus y, respectively. Let us see that \oplus and \ominus are continuous with respect to the induced topology on μ0(a1)X1\mu_{\mathcal{M}_{0}}(a_{1})\subseteq X_{1}. Because a¯\bar{a} is generic in QQ, and QQ is fiber algebraic, it follows from oo-minimality that the set Q(x1,x2,x3,a4,,as)Q(x_{1},x_{2},x_{3},a_{4},\ldots,a_{s}) defines a continuous function from any two of the coordinates x1,x2,x3x_{1},x_{2},x_{3} to the third one, on the corresponding infinitesimal types μ0(ai)×μ0(aj)\mu_{\mathcal{M}_{0}}(a_{i})\times\mu_{\mathcal{M}_{0}}(a_{j}).

The following is easy to verify: for x,x,xμ0(a1)x^{\prime},x^{\prime\prime},x^{\prime\prime\prime}\in\mu_{\mathcal{M}_{0}}(a_{1}), xx=xx^{\prime}\oplus x^{\prime\prime}=x^{\prime\prime\prime} if and only if there exist x2μ0(a2)x_{2}\in\mu_{\mathcal{M}_{0}}(a_{2}) and x3,x3μ0(a3)x_{3},x_{3}^{\prime}\in\mu_{\mathcal{M}_{0}}(a_{3}) such that

Q(x,x2,x3,a4,,as),Q(x,a2,x3,a4,,as) and Q(x,a2,x3,a4,,as),Q(a1,x2,x3,a4,,as).\begin{array}[]{lll}Q\left(x^{\prime},x_{2},x_{3},a_{4},\ldots,a_{s}\right),&Q\left(x^{\prime\prime\prime},a_{2},x_{3},a_{4},\ldots,a_{s}\right)&\mbox{ and }\\ Q(x^{\prime\prime},a_{2},x_{3}^{\prime},a_{4},\ldots,a_{s}),&Q(a_{1},x_{2},x_{3}^{\prime},a_{4},\ldots,a_{s}).&\end{array}

By the above comments, \oplus can thus be obtained as a composition of continuous maps, thus it is continuous. We similarly show that \ominus is continuous.

Applying logical compactness, we may now replace the type-definable GG with an 0\mathcal{M}_{0}-definable ΓG=μ0(a1)\Gamma\supseteq G=\mu_{\mathcal{M}_{0}}(a_{1}), with partial continuous group operations, which make Γ\Gamma into a local group (we note that in general, any type-definable group is contained in a definable local group by logical compactness, except for the topological conditions). Similarly, we find Uiμ0(ai)U_{i}\supseteq\mu_{\mathcal{M}_{0}}(a_{i}), VΓV\subseteq\Gamma and πi:UiV\pi_{i}:U_{i}\to V as needed. ∎

Note that if omin\mathbb{R}_{\operatorname{o-min}} is an o-minimal expansion of the field of reals and the XiX_{i}’s and QQ are definable in omin\mathbb{R}_{\operatorname{o-min}}, with QQ not satisfying Clause (1) of Corollary 6.19, then taking a sufficiently saturated elementary extension omin\mathcal{M}\succeq\mathbb{R}_{\operatorname{o-min}}, Q()Q(\mathcal{M}) still does not satisfy Clause (1) in \mathcal{M}. Hence we may deduce that Clause (2) of Corollary 6.19 holds for QQ in \mathcal{M}, possibly over additional parameters from \mathcal{M}. However, the definition of a local group is first-order in the parameters defining Γ\Gamma, ι\iota and pp. Thus, by elementarity, we obtain that Clause (2) of Corollary 6.19 holds for Q()Q(\mathbb{R}), with Γ\Gamma and the functions πi\pi_{i} definable in the original structure omin\mathbb{R}_{\operatorname{o-min}}.

By Goldbring’s solution [goldbring2010hilbert] to the Hilbert’s 5th problem for local groups, if Γ\Gamma is a locally Euclidean local group (i.e. there is an open neighborhood of 11 homeomorphic to an open subset of n\mathbb{R}^{n}, for some nn), then there is a neighborhood UU of 11 such that UU is isomorphic, as a local group, to an open subset of an actual Lie group GG. Clearly, if the local group is abelian then the connected component of GG is also abelian. Combining these observations with Corollary 6.19 we conclude:

Corollary 6.20.

Let omin\mathbb{R}_{\operatorname{o-min}} be an o-minimal expansion of the field of reals. Assume s3s\geq 3, QX1××XsQ\subseteq X_{1}\times\cdots\times X_{s} are \emptyset-definable with dim(Xi)=m\dim(X_{i})=m, and QQ is fiber-algebraic. Then one of the following holds.

  1. (1)

    The set QQ satisfies γ\gamma-power saving, for γ=18m5\gamma=\frac{1}{8m-5} if s4s\geq 4, and γ=116m10\gamma=\frac{1}{16m-10} if s=3s=3.

  2. (2)

    There exist definable relatively open sets UiXiU_{i}\subseteq X_{i}, i[s]i\in[s], an abelian Lie group (G,+)(G,+) of dimension mm and an open neighborhood VGV\subseteq G of 0, and definable homeomorphisms πi:UiV\pi_{i}:U_{i}\to V, i[s]i\in[s], such that for all xiUi,i[s]x_{i}\in U_{i},i\in[s]

    π1(x1)++πs(xs)=0Q(x1,,xs).\pi_{1}(x_{1})+\cdots+\pi_{s}(x_{s})=0\Leftrightarrow Q(x_{1},\ldots,x_{s}).

Finally, this takes a particularly explicit form when dim(Xi)=1\dim(X_{i})=1 for all i[s]i\in[s].

Corollary 6.21.

Let omin\mathbb{R}_{\operatorname{o-min}} be an o-minimal expansion of the field of reals. Assume s3s\geq 3 and QsQ\subseteq\mathbb{R}^{s} is definable and fiber-algebraic. Then exactly one of the following holds.

  1. (1)

    There exists a constant cc, depending only on the formula defining QQ (and not on its parameters), such that: for any finite AiA_{i}\subseteq\mathbb{R} with |Ai|=n|A_{i}|=n for i[s]i\in[s] we have

    |Q(A1××As)|cns1γ,|Q\cap(A_{1}\times\ldots\times A_{s})|\leq cn^{s-1-\gamma},

    where γ=13\gamma=\frac{1}{3} if s4s\geq 4, and γ=16\gamma=\frac{1}{6} if s=3s=3.

  2. (2)

    There exist definable open sets Ui,i[s]U_{i}\subseteq\mathbb{R},i\in[s], an open set VV\subseteq\mathbb{R} containing 0, and homeomorphisms πi:UiV\pi_{i}:U_{i}\to V such that

    π1(x1)++πs(xs)=0Q(x1,,xs)\pi_{1}(x_{1})+\cdots+\pi_{s}(x_{s})=0\Leftrightarrow Q(x_{1},\ldots,x_{s})

    for all xiUi,i[s]x_{i}\in U_{i},i\in[s].

Proof.

Corollary 6.20 can be applied to QQ.

Assume we are in Clause (1). As the proof of Theorem 6.4 demonstrates, we can take any γ\gamma such that QQ satisfies the γ\gamma-ST property (as a binary relation, under any partition of its variables into two and the rest) if s4s\geq 4; and such that QQ^{\prime} (as defined in Section 5.7) satisfies the γ\gamma-ST property if s=3s=3. Applying the stronger bound for definable subsets of 2×d2\mathbb{R}^{2}\times\mathbb{R}^{d_{2}} from Fact 2.15(1), we get the desired γ\gamma-power saving. Note that in the 11-dimensional case, the general position requirement is satisfied automatically: for any definable set YY\subseteq\mathbb{R}, dim(Y)<1\dim(Y)<1 if and only if YY is finite; and for every definable family i\mathcal{F}_{i} of subsets of \mathbb{R}, by oo-minimality there exists some ν0\nu_{0} such that for any YiY\in\mathcal{F}_{i}, if YY has cardinality greater than ν0\nu_{0} then it is infinite.

In Clause (2), we use that every connected 11-dimensional Lie group GG is isomorphic to either (,+)(\mathbb{R},+) or S1S^{1}, and in the latter case we can restrict to a neighborhood of 0 and compose the πi\pi_{i}’s with a local isomorphism from S1S^{1} to (,+)(\mathbb{R},+).

Finally, the two clauses are mutually exclusive as in Remark 5.52. ∎

Remark 6.22.

In the case that definable sets in omin\mathbb{R}_{\operatorname{o-min}} admit analytic cell decomposition (e.g. in the oo-minimal structure an,exp\mathbb{R}_{\operatorname{an,exp}}, see [van1994real, Section 8]) then one can strengthen Clause (2) in Corollaries 6.20 and 6.21, so that the UiU_{i}’s are analytic submanifolds and the maps πi\pi_{i} are analytic bijections with analytic inverses.

Remark 6.23.

If QQ is semialgebraic (which corresponds to the case omin=\mathbb{R}_{\operatorname{o-min}}=\mathbb{R} of Corollary 6.21), of description complexity DD (i.e. defined by at most DD polynomial (in-)equalities, with all polynomials of degree at most DD), then in Clause (1) the constant cc depends only on ss and DD (as all QQ’s are defined by the instances of a single formula depending only on ss and DD).

Remark 6.24.

If QQ is semilinear, then by Fact 2.19 it satisfies (1ε)(1-\varepsilon)-ST property, for any ε>0\varepsilon>0. In this case, in Clause (1) of Corollary 6.21 for s4s\geq 4 we get (1ε)(1-\varepsilon)-power saving — which is essentially the best possible bound. See [makhul2020constructions] concerning the lower bounds on power saving.

References