This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\DeclareSourcemap\maps

[datatype=bibtex] \map[overwrite=true] \step[fieldset=url, null] \step[fieldset=doi, null] \step[fieldset=isbn, null] \step[fieldset=issn, null]

Model-completeness for the lattice of finite unions of closed intervals of a dense linear order

Deacon Linkhorn The University of Manchester, School of Mathematics, Oxford Road, Manchester, M13 9PL, UK deacon.linkhorn@manchester.ac.uk

1. Introduction

Let 𝕀\mathbb{I} be any dense linear order with left endpoint but no right endpoint. We consider 𝒫fci​(𝕀)\mathcal{P}_{\operatorname{fci}}(\mathbb{I}), the collection of finite unions of closed intervals of 𝕀\mathbb{I}. This collection arises naturally in the setting of o-minimality, as precisely the lattice of closed definable sets in any o-minimal expansion of 𝕀\mathbb{I}. Our main result is theorem 7.1 which says that L⁑(𝕀)\operatorname{L}(\mathbb{I}), the expansion of the lattice (𝒫fci​(𝕀),βˆͺ,∩)(\mathcal{P}_{\operatorname{fci}}(\mathbb{I}),\cup,\cap) by constants for the empty set and {0}\{0\} (here 0 is the left endpoint of 𝕀\mathbb{I}) as well as four unary functions, is model-complete.

The proof makes use of previous results regarding the weak monadic second order theory of 𝕀\mathbb{I} from the authors PhD thesis [Lin21].

2. Definitions and setup

Throughout the note we fix a dense linear order 𝕀\mathbb{I}, which has a left endpoint but no right endpoint. By the fact that any completion of the theory of dense linear orders is β„΅0\aleph_{0}-categorical, and using Proposition 2.7 from [Tre17], it follows that our results do not depend the particular choice of 𝕀\mathbb{I}.

Our logical notation, where not explicitly defined, is taken from [Hod93].

Definition 2.1.

Let SS be a set. We write 𝒫​(S)\mathcal{P}(S) for the powerset of SS. We write 𝒫fin​(S)\mathcal{P}_{\operatorname{fin}}(S) for the collection of finite subsets of SS.

Definition 2.2.

Let Ξ±\alpha be any linear order. A closed interval of Ξ±\alpha is a subset SβŠ†Ξ±S\subseteq\alpha of one of the following forms,

  1. (1)

    [i,j]≔{k∈α:i≀k≀j}[i,j]\coloneqq\{k\in\alpha:i\leq k\leq j\} for i,j∈αi,j\in\alpha,

  2. (2)

    [i,+∞)≔{k∈α:i≀k}[i,+\infty)\coloneqq\{k\in\alpha:i\leq k\} for i∈αi\in\alpha,

  3. (3)

    (βˆ’βˆž,j]≔{k∈α:k≀j}(-\infty,j]\coloneqq\{k\in\alpha:k\leq j\} for j∈αj\in\alpha.

We will write 𝒫fci​(Ξ±)\mathcal{P}_{\operatorname{fci}}(\alpha) for the set of finite unions of closed intervals of Ξ±\alpha.

Note that 𝒫fin​(Ξ±)βŠ†π’«fci​(Ξ±)βŠ†π’«β€‹(Ξ±)\mathcal{P}_{\operatorname{fin}}(\alpha)\subseteq\mathcal{P}_{\operatorname{fci}}(\alpha)\subseteq\mathcal{P}(\alpha).

Definition 2.3.

Let Ξ±\alpha be a discrete linear order with endpoints (i.e. Ξ±\alpha is finite, or has order type β„•+Ξ“β‹…β„€+β„•op\mathbb{N}+\Gamma\cdot\mathbb{Z}+\mathbb{N}^{\operatorname{op}} for some linear order type Ξ“\Gamma).

We will write sΞ±\operatorname{s}_{\alpha} for the successor function Ξ±βˆ–max⁑(Ξ±)β†’Ξ±\alpha\setminus\max(\alpha)\rightarrow\alpha and pΞ±\operatorname{p}_{\alpha} for the predecessor function Ξ±βˆ–min⁑(Ξ±)β†’Ξ±\alpha\setminus\min(\alpha)\rightarrow\alpha.

We will moreover write sΞ±βˆ’1\operatorname{s}^{-1}_{\alpha} for the function 𝒫​(Ξ±)→𝒫​(Ξ±)\mathcal{P}(\alpha)\rightarrow\mathcal{P}(\alpha) sending AβŠ†Ξ±A\subseteq\alpha to {i∈α:sα⁑(i)∈A}\{i\in\alpha:\operatorname{s}_{\alpha}(i)\in A\}, and pΞ±βˆ’1\operatorname{p}^{-1}_{\alpha} for the function 𝒫​(Ξ±)→𝒫​(Ξ±)\mathcal{P}(\alpha)\rightarrow\mathcal{P}(\alpha) sending AβŠ†Ξ±A\subseteq\alpha to {i∈α:pα⁑(i)∈A}\{i\in\alpha:\operatorname{p}_{\alpha}(i)\in A\}.

Definition 2.4.

Let Ξ±\alpha be any linear order. We call Aβˆˆπ’«β€‹(Ξ±)A\in\mathcal{P}(\alpha) discrete if the restriction of Ξ±\alpha to AA is a discrete linear order.

For AβŠ†Ξ±A\subseteq\alpha discrete we will write sA\operatorname{s}_{A} (respectively pA\operatorname{p}_{A}) for the successor (respectively predecessor) function on the restriction of Ξ±\alpha to a linear ordering on AA. Note that every finite subset of Ξ±\alpha is discrete.

3. W⁑(𝕀)\operatorname{W}(\mathbb{I}), the weak monadic second order version of 𝕀\mathbb{I}

Recall that 𝕀\mathbb{I} is a dense linear order with left endpoint but no right endpoint that we fixed at the outset.

Definition 3.1.

We write 0 for the left endpoint of 𝕀\mathbb{I}, i.e. the smallest element with respect to the ordering. We write β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}} for the signature {βˆͺ,∩,βŠ₯,𝟎,min,max,π”°βˆ’1}\{\cup,\cap,\bot,\mathbf{0},\min,\max,\mathfrak{s}^{-1}\}.111This comprises in order, two binary function symbols, two constants, two unary function symbols, and a binary function symbol. Then W⁑(𝕀)\operatorname{W}(\mathbb{I}) is the β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-structure with,

  1. (1)

    universe 𝒫fin​(𝕀)\mathcal{P}_{\operatorname{fin}}(\mathbb{I}), the collection of finite subsets of 𝕀\mathbb{I},

  2. (2)

    βˆͺ,∩\cup,\cap interpreted as the operations of union and intersection,

  3. (3)

    βŠ₯\bot interpreted as the empty set,

  4. (4)

    𝟎\mathbf{0} interpreted as {0}\{0\},

  5. (5)

    min\min and max\max interpreted as the operations taking a non-empty finite set to the singleton containing its minimum and maximum respectively, with respect to the ordering of 𝕀\mathbb{I} (and both fixing βŠ₯\bot),

  6. (6)

    π”°βˆ’1\mathfrak{s}^{-1} being the binary function given by,

    π”°βˆ’1​(A,B)={i∈A:sA⁑(i)∈B},\mathfrak{s}^{-1}(A,B)=\{i\in A:\operatorname{s}_{A}(i)\in B\},

    i.e. π”°βˆ’1\mathfrak{s}^{-1} is a single binary function which encodes the (preimage map associated to) the family of successor functions on finite subsets of 𝕀\mathbb{I}.

Notation 3.2.

As is conventional, we will sometimes use XβŠ†YX\subseteq Y as a shorthand for the formula X∩Y=XX\cap Y=X. Note that in doing so we conceal an unnested atomic formula, so this shorthand will never lead us to mistake an existential formula for a quantifier-free formula.

Lemma 3.3.

The following are equivalent for each Aβˆˆπ’«fin​(𝕀)A\in\mathcal{P}_{\operatorname{fin}}(\mathbb{I}),

  1. (1)

    Aβ‰ βŠ₯A\neq\bot,

  2. (2)

    A=𝟎A=\mathbf{0} or πŸŽβŠ†π”°βˆ’1​(Aβˆͺ𝟎,A)\mathbf{0}\subseteq\mathfrak{s}^{-1}(A\cup\mathbf{0},A).

Proof.

(1)β‡’(2)(1)\Rightarrow(2): If Aβ‰ βŠ₯A\neq\bot and Aβ‰ πŸŽA\neq\mathbf{0} then it is immediate that Aβˆ–πŸŽA\setminus\mathbf{0} is not βŠ₯\bot. This gives us that sAβˆͺ𝟎⁑(0)\operatorname{s}_{A\cup\mathbf{0}}(0) is defined (i.e. 0βˆˆπ•€0\in\mathbb{I} has a successor in 𝟎βˆͺA\mathbf{0}\cup A). Then sAβˆͺ𝟎⁑(0)∈A\operatorname{s}_{A\cup\mathbf{0}}(0)\in A which by definition gives us πŸŽβŠ†π”°βˆ’1​(Aβˆͺ𝟎,A)\mathbf{0}\subseteq\mathfrak{s}^{-1}(A\cup\mathbf{0},A).

(2)β‡’(1)(2)\Rightarrow(1): Suppose A=βŠ₯A=\bot. From this it follows immediately that Aβ‰ πŸŽA\neq\mathbf{0}. Moreover π”°βˆ’1​(Aβˆͺ𝟎,A)=π”°βˆ’1​(𝟎,βŠ₯)\mathfrak{s}^{-1}(A\cup\mathbf{0},A)=\mathfrak{s}^{-1}(\mathbf{0},\bot) which is βŠ₯\bot, hence πŸŽβŠˆπ”°βˆ’1​(Aβˆͺ𝟎,A)\mathbf{0}\not\subseteq\mathfrak{s}^{-1}(A\cup\mathbf{0},A). ∎

Definition 3.4.

Recall that for sets AA and BB, the relative complement of BB inside AA, denoted by Aβˆ–BA\setminus B, is the set {i∈A:iβˆ‰B}\{i\in A:i\notin B\}.

Proposition 3.5.

Every quantifier-free β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula is equivalent to a positive (i.e. negation free) existential β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula over the the theory of W⁑(𝕀)\operatorname{W}(\mathbb{I}).

Proof.

First note that for each A,Bβˆˆπ’«fin​(𝕀)A,B\in\mathcal{P}_{\operatorname{fin}}(\mathbb{I}), Aβˆ–B=CA\setminus B=C if and only if,

(A∩B)βˆͺC=A​ and β€‹B∩C=βŠ₯.(A\cap B)\cup C=A\text{ and }B\cap C=\bot.

Therefore every positive existential (β„’W⁑(𝕀)βˆͺ{βˆ–})(\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}\cup\{\setminus\})-formula is equivalent to a positive existential β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula (working in W⁑(𝕀)\operatorname{W}(\mathbb{I}), with βˆ–\setminus a binary function symbol interpreted as relative complement). So it is enough to check that every quantifier-free β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula is equivalent to a positive existential (β„’W⁑(𝕀)βˆͺ{βˆ–})(\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}\cup\{\setminus\})-formula. It is enough to check that the negation of an atomic (β„’W⁑(𝕀)βˆͺ{βˆ–})(\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}\cup\{\setminus\})-formula is equivalent to a positive existential (β„’W⁑(𝕀)βˆͺ{βˆ–})(\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}\cup\{\setminus\})-formula in W⁑(𝕀)\operatorname{W}(\mathbb{I}). Atomic formulas are all of the form q1​(XΒ―)=q2​(XΒ―)q_{1}(\bar{X})=q_{2}(\bar{X}) for β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-terms q1,q2q_{1},q_{2}. Let Δ​(q1​(XΒ―),q2​(XΒ―))\Delta(q_{1}(\bar{X}),q_{2}(\bar{X})) be shorthand for (q1​(XΒ―)βˆ–q2​(XΒ―))βˆͺ(q2​(XΒ―)βˆ–q1​(XΒ―))(q_{1}(\bar{X})\setminus q_{2}(\bar{X}))\cup(q_{2}(\bar{X})\setminus q_{1}(\bar{X})), i.e. the symmetric difference of q1q_{1} and q2q_{2}. The formula Β¬(q1​(XΒ―)=q2​(XΒ―))\neg(q_{1}(\bar{X})=q_{2}(\bar{X})) is equivalent over W⁑(𝕀)\operatorname{W}(\mathbb{I}) to,

βˆƒY(Yβ‰ βŠ₯∧YβŠ†Ξ”(q1(XΒ―),q2(XΒ―))),\exists Y(Y\neq\bot\wedge Y\subseteq\Delta(q_{1}(\bar{X}),q_{2}(\bar{X}))),

but using lemma 3.3 this in turn is equivalent over W⁑(𝕀)\operatorname{W}(\mathbb{I}) to,

βˆƒY​((Y=πŸŽβˆ¨πŸŽβŠ†π”°βˆ’1​(Yβˆͺ𝟎,Y))​ and β€‹YβŠ†Ξ”β€‹(q1​(XΒ―),q2​(XΒ―))),\exists Y((Y=\mathbf{0}\vee\mathbf{0}\subseteq\mathfrak{s}^{-1}(Y\cup\mathbf{0},Y))\text{ and }Y\subseteq\Delta(q_{1}(\bar{X}),q_{2}(\bar{X}))),

which is positive existential as required. ∎

Theorem 3.6.

W⁑(𝕀)\operatorname{W}(\mathbb{I}) is positive-model-complete in the signature β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}.

Proof.

That W⁑(𝕀)\operatorname{W}(\mathbb{I}) is model-complete is proved in my thesis [Lin21] (see theorem 5.4.7 on page 141). The result then follows immediately from proposition 3.5. ∎

4. L⁑(𝕀)\operatorname{L}(\mathbb{I}), finite unions of closed intervals of 𝕀\mathbb{I}

Definition 4.1.

We write β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}} for the signature {βˆͺ,∩,βŠ₯,𝟎,min,max,l,r}\{\cup,\cap,\bot,\mathbf{0},\min,\max,l,r\}.222This comprises in order, two binary function symbols, two constants, and four unary function symbols.

L⁑(𝕀)\operatorname{L}(\mathbb{I}) is the β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-structure with,

  1. (1)

    universe 𝒫fci​(𝕀)\mathcal{P}_{\operatorname{fci}}(\mathbb{I}), the collection of finite unions of closed intervals of 𝕀\mathbb{I},

  2. (2)

    βˆͺ,∩\cup,\cap interpreted as the operations of union and intersection,

  3. (3)

    βŠ₯\bot interpreted as the empty set,

  4. (4)

    𝟎\mathbf{0} interpreted as {0}\{0\},

  5. (5)

    min\min and max\max interpreted as the operations taking an element of 𝒫fci​(𝕀)\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) to the singleton containing its minimum and maximum respectively, with respect to the ordering of 𝕀\mathbb{I} (we set min⁑(βŠ₯)=max⁑(βŠ₯)=βŠ₯\min(\bot)=\max(\bot)=\bot, and in the case Aβˆˆπ’«fci​(𝕀)A\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) is unbounded we set max⁑(A)=βŠ₯\max(A)=\bot),

  6. (6)

    ll and rr are interpreted as the operations taking an element of 𝒫fci​(𝕀)\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) to the set of its left and right endpoints respectively.

Notation 4.2.

For Aβˆˆπ’«fci​(𝕀)A\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) we will sometimes write AlA_{l} and ArA_{r} in place of l​(A)l(A) and r​(A)r(A) respectively. We will write Aβˆ‚A^{\partial} as shorthand for AlβˆͺArA_{l}\cup A_{r}.

Lemma 4.3.

The bounded elements of 𝒫fci​(𝕀)\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) form a definable subset in L⁑(𝕀)\operatorname{L}(\mathbb{I}), which we will denote by Bd\operatorname{Bd}.

Proof.

Under our interpretation, an element Aβˆˆπ’«fci​(𝕀)A\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) is bounded if and only if A=βŠ₯A=\bot or max⁑(A)β‰ βŠ₯\max(A)\neq\bot. Conversely the unbounded elements are precisely those Aβˆˆπ’«fci​(𝕀)A\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) for which Aβ‰ βŠ₯A\neq\bot and max⁑(A)=βŠ₯\max(A)=\bot.

Therefore Bd\operatorname{Bd} is in fact a quantifier-free definable set in L⁑(𝕀)\operatorname{L}(\mathbb{I}). ∎

5. Interpreting W⁑(𝕀)\operatorname{W}(\mathbb{I}) in L⁑(𝕀)\operatorname{L}(\mathbb{I})

Proposition 5.1.

The set 𝒫fin​(𝕀)\mathcal{P}_{\operatorname{fin}}(\mathbb{I}) is quantifier-free definable in L⁑(𝕀)\operatorname{L}(\mathbb{I}).

Proof.

The formula l​(X)=r​(X)l(X)=r(X) defines 𝒫fin​(𝕀)\mathcal{P}_{\operatorname{fin}}(\mathbb{I}) in L⁑(𝕀)\operatorname{L}(\mathbb{I}). ∎

We will use this as the foundation for our interpretation of W⁑(𝕀)\operatorname{W}(\mathbb{I}) in L⁑(𝕀)\operatorname{L}(\mathbb{I}).

In the remainder of this section we will outline how to define the remaining β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-structure carried by W⁑(𝕀)\operatorname{W}(\mathbb{I}) within L⁑(𝕀)\operatorname{L}(\mathbb{I}) on the set 𝒫fin​(𝕀)\mathcal{P}_{\operatorname{fin}}(\mathbb{I}).

It will be important for us, when transferring model-completeness from W⁑(𝕀)\operatorname{W}(\mathbb{I}) to L⁑(𝕀)\operatorname{L}(\mathbb{I}) in section 7, that existential β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-formulae are used to do so.

Remark 5.2.

If Ο•\phi is an unnested atomic formulae in the signature β„’W⁑(𝕀)βˆ©β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}\cap\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}, i.e. {βˆͺ,∩,βŠ₯,𝟎,min,max}\{\cup,\cap,\bot,\mathbf{0},\min,\max\}, we have that,

ϕ​(W⁑(𝕀))=ϕ​(L⁑(𝕀))βˆ©π’«fin​(𝕀).\phi(\operatorname{W}(\mathbb{I}))=\phi(\operatorname{L}(\mathbb{I}))\cap\mathcal{P}_{\operatorname{fin}}(\mathbb{I}).

As such for unnested atomic formulae in this reduct, we need do nothing when giving the interpretation. Here we use unnested atomic β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-formulas, which a fortiori are existential.

All that is left is to produce an β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-formula which defines π”°βˆ’1\mathfrak{s}^{-1} in L⁑(𝕀)\operatorname{L}(\mathbb{I}).

Remark 5.3.

Let A,Bβˆˆπ’«fin​(𝕀)A,B\in\mathcal{P}_{\operatorname{fin}}(\mathbb{I}). If A=βŠ₯A=\bot or B=βŠ₯B=\bot then π”°βˆ’1​(A,B)=βŠ₯\mathfrak{s}^{-1}(A,B)=\bot. Therefore in defining π”°βˆ’1\mathfrak{s}^{-1} we can assume that A,Bβ‰ βŠ₯A,B\neq\bot.

Moreover we have that π”°βˆ’1​(A,B)=π”°βˆ’1​(A,B∩A)\mathfrak{s}^{-1}(A,B)=\mathfrak{s}^{-1}(A,B\cap A). From this it is clear that it is sufficient to define the relation π”°βˆ’1​(A,B)=C\mathfrak{s}^{-1}(A,B)=C in the case where BβŠ†AB\subseteq A.

Proposition 5.4.

Let A,B,Cβˆˆπ’«fin​(𝕀)A,B,C\in\mathcal{P}_{\operatorname{fin}}(\mathbb{I}) with βŠ₯⊊BβŠ†A\bot\subsetneq B\subseteq A. Then π”°βˆ’1​(A,B)=C\mathfrak{s}^{-1}(A,B)=C if and only if there exists Dβˆˆπ’«fci​(𝕀)D\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) such that one of the following holds,

  1. (1)

    min⁑(A)βŠ†B\min(A)\subseteq B, l​(D)=(Bβˆ–min⁑(B))βˆͺ𝟎l(D)=(B\setminus\min(B))\cup\mathbf{0}, r​(D)=Cr(D)=C, and CβŠ†AβŠ†DC\subseteq A\subseteq D, or,

  2. (2)

    min⁑(A)⊈B\min(A)\not\subseteq B, l​(D)=Bβˆͺ𝟎l(D)=B\cup\mathbf{0}, r​(D)=Cr(D)=C, and CβŠ†AβŠ†DC\subseteq A\subseteq D.

Proof.

First suppose that π”°βˆ’1​(A,B)=C\mathfrak{s}^{-1}(A,B)=C, we will show that one of the two conditions must then hold. Let EE be the union of all of the open intervals of 𝕀\mathbb{I} of the form (i,j)(i,j) for some i∈Ci\in C and j∈Bj\in B such that sA⁑(i)=j\operatorname{s}_{A}(i)=j. Now take D=π•€βˆ–Eβˆˆπ’«fci​(𝕀)D=\mathbb{I}\setminus E\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}).

By definition we get that CβŠ†AC\subseteq A. Then AβŠ†DA\subseteq D follows from the choice that EE be made up from intervals (i,j)(i,j) where sA⁑(i)=j\operatorname{s}_{A}(i)=j. For if A⊈DA\not\subseteq D then we get k∈Ak\in A such that for some i,ji,j with sA⁑(i)=j\operatorname{s}_{A}(i)=j we have i<k<ji<k<j, a contradiction.

For our choice of EE, it is easy to check that l​(E)=Cl(E)=C and r​(E)r(E) is either,

  1. (i)

    Bβˆ–min⁑(B)B\setminus\min(B) if min⁑(A)βŠ†B\min(A)\subseteq B, or,

  2. (ii)

    BB if min⁑(A)⊈B\min(A)\not\subseteq B.

Taking the complement, we interchange left and right endpoints, and introduce 0 as a left endpoint. This gives us precisely that (1)(1) or (2)(2) hold for our choice of DD.

Now for the other direction, suppose that Dβˆˆπ’«fci​(𝕀)D\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) exists such that (2)(2) holds. We want to show that π”°βˆ’1​(A,B)=C\mathfrak{s}^{-1}(A,B)=C. Let iβˆˆπ”°βˆ’1​(A,B)i\in\mathfrak{s}^{-1}(A,B), so i∈Ai\in A is such that sA⁑(i)∈BβŠ†l​(D)\operatorname{s}_{A}(i)\in B\subseteq l(D). Now iβˆ‰C=r​(D)i\notin C=r(D) implies that i∈Aβˆ–Di\in A\setminus D, contradicting our assumption that AβŠ†DA\subseteq D. So we have established that π”°βˆ’1​(A,B)βŠ†C\mathfrak{s}^{-1}(A,B)\subseteq C follows from (2)(2). Let i∈Ci\in C, so by (2)(2) we have i∈r​(D)i\in r(D). Suppose towards a contradiction that sA⁑(i)βˆ‰B\operatorname{s}_{A}(i)\notin B. Then moreover si⁑(A)βˆ‰Bβˆͺ𝟎=l​(D)\operatorname{s}_{i}(A)\notin B\cup\mathbf{0}=l(D). This again gives us that i∈Aβˆ–Di\in A\setminus D, contradicting our assumption that AβŠ†DA\subseteq D. Therefore we have shown that π”°βˆ’1​(A,B)=C\mathfrak{s}^{-1}(A,B)=C follows from (2)(2).

We leave the checking of details in showing that π”°βˆ’1​(A,B)=C\mathfrak{s}^{-1}(A,B)=C follows from (1)(1) to the reader. ∎

Corollary 5.5.

There is an existential β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-formula ϕ​(X,Y,Z)\phi(X,Y,Z) such that for all A,B,Cβˆˆπ’«fin​(𝕀)A,B,C\in\mathcal{P}_{\operatorname{fin}}(\mathbb{I}), L⁑(𝕀)βŠ§Ο•β€‹(A,B,C)\operatorname{L}(\mathbb{I})\models\phi(A,B,C) if and only if π”°βˆ’1​(A,B)=C\mathfrak{s}^{-1}(A,B)=C.

Corollary 5.6.

For each β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula ϕ​(XΒ―)\phi(\bar{X}) there is an β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-formula Οˆβ€‹(YΒ―)\psi(\bar{Y}) (with XΒ―\bar{X} and YΒ―\bar{Y} having the same length) such that for each AΒ―βˆˆπ’«fin​(𝕀)\bar{A}\in\mathcal{P}_{\operatorname{fin}}(\mathbb{I}),

W⁑(𝕀)βŠ§Ο•β€‹(AΒ―)⟺L⁑(𝕀)βŠ§Οˆβ€‹(AΒ―).\operatorname{W}(\mathbb{I})\models\phi(\bar{A})\Longleftrightarrow\operatorname{L}(\mathbb{I})\models\psi(\bar{A}).

Moreover Οˆβ€‹(YΒ―)\psi(\bar{Y}) can always be chosen to be an existential β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-formula.

6. Interpreting L⁑(𝕀)\operatorname{L}(\mathbb{I}) in W⁑(𝕀)\operatorname{W}(\mathbb{I})

To make things more easily digestible, we will use (𝒫fci​(𝕀),βŠ†)(\mathcal{P}_{\operatorname{fci}}(\mathbb{I}),\subseteq) as an intermediary between L⁑(𝕀)\operatorname{L}(\mathbb{I}) and W⁑(𝕀)\operatorname{W}(\mathbb{I}).

It is straightforward, using modified versions of arguments from [Tre17], to show that (𝒫fci​(𝕀),βŠ†)(\mathcal{P}_{\operatorname{fci}}(\mathbb{I}),\subseteq) and L⁑(𝕀)\operatorname{L}(\mathbb{I}) have the same definable subsets. Using this result, together with the interpretation of (𝒫fci​(𝕀),βŠ†)(\mathcal{P}_{\operatorname{fci}}(\mathbb{I}),\subseteq) in W⁑(𝕀)\operatorname{W}(\mathbb{I}) which we are about to give, we will indicate a particular interpretation of L⁑(𝕀)\operatorname{L}(\mathbb{I}) in W⁑(𝕀)\operatorname{W}(\mathbb{I}).

Lemma 6.1.

Let B,Cβˆˆπ’«fin​(𝕀)B,C\in\mathcal{P}_{\operatorname{fin}}(\mathbb{I}). The following are equivalent,

  1. (1)

    there is Aβˆˆπ’«fci​(𝕀)βˆ–{βŠ₯}A\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I})\setminus\{\bot\} such that Al=BA_{l}=B and Ar=CA_{r}=C,

  2. (2)

    Bβ‰ βŠ₯B\neq\bot, min⁑(BβˆͺC)βŠ†B\min(B\cup C)\subseteq B, and one of the following holds,

    1. (a)

      max⁑(BβˆͺC)βŠ†C​ and β€‹π”°βˆ’1​(BβˆͺC,Cβˆ–B)=Bβˆ–C\max(B\cup C)\subseteq C\text{ and }\mathfrak{s}^{-1}(B\cup C,C\setminus B)=B\setminus C,

    2. (b)

      max⁑(BβˆͺC)βŠ†Bβˆ–C​ and β€‹π”°βˆ’1​(BβˆͺC,Cβˆ–B)βˆͺmax⁑(BβˆͺC)=Bβˆ–C\max(B\cup C)\subseteq B\setminus C\text{ and }\mathfrak{s}^{-1}(B\cup C,C\setminus B)\cup\max(B\cup C)=B\setminus C.

Proof.

Suppose (1)(1) holds. Then we can rewrite (2)(2) as follows,

  1. (2)

    Alβ‰ βŠ₯A_{l}\neq\bot, min⁑(AlβˆͺAr)βŠ†Al\min(A_{l}\cup A_{r})\subseteq A_{l}, and one of the following holds,

    1. (a)

      max⁑(AlβˆͺAr)βŠ†Ar​ and β€‹π”°βˆ’1​(AlβˆͺAr,Arβˆ–Al)=Alβˆ–Ar\max(A_{l}\cup A_{r})\subseteq A_{r}\text{ and }\mathfrak{s}^{-1}(A_{l}\cup A_{r},A_{r}\setminus A_{l})=A_{l}\setminus A_{r},

    2. (b)

      max⁑(AlβˆͺAr)βŠ†Alβˆ–Ar​ and β€‹π”°βˆ’1​(AlβˆͺAr,Arβˆ–Al)βˆͺmax⁑(AlβˆͺAr)=Alβˆ–Ar\max(A_{l}\cup A_{r})\subseteq A_{l}\setminus A_{r}\text{ and }\mathfrak{s}^{-1}(A_{l}\cup A_{r},A_{r}\setminus A_{l})\cup\max(A_{l}\cup A_{r})=A_{l}\setminus A_{r}.

Intuitively then, (2) first says that AA has at least one left endpoint, and that the smallest endpoint of AA is a left endpoint. Then both (a) and (b) simply say that the proper left endpoints and proper right endpoints appear in pairs, with proper right endpoints immediately preceded by proper left endpoints. An exception is needed simply for the case where AA is unbounded, in which case the largest endpoint is a proper left endpoint which is not the predecessor of a proper right endpoint (this is dealt with by (b)).

Conversely, suppose that (2)(2) holds. It is straightforward to construct Aβˆˆπ’«fci​(𝕀)A\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) such that Al=BA_{l}=B and Ar=CA_{r}=C. ∎

This lemma gives us the universe for our interpretation of (𝒫fci​(𝕀),βŠ†)(\mathcal{P}_{\operatorname{fci}}(\mathbb{I}),\subseteq) in W⁑(𝕀)\operatorname{W}(\mathbb{I}). We will identify an element Aβˆˆπ’«fci​(𝕀)A\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) with the pair (Al,Ar)βˆˆπ’«fin​(𝕀)(A_{l},A_{r})\in\mathcal{P}_{\operatorname{fin}}(\mathbb{I}). The lemma tells us precisely that the image of the map 𝒫fci​(𝕀)→𝒫fin​(𝕀)2\mathcal{P}_{\operatorname{fci}}(\mathbb{I})\rightarrow\mathcal{P}_{\operatorname{fin}}(\mathbb{I})^{2} given by A↦(Al,Ar)A\mapsto(A_{l},A_{r}) is definable in W⁑(𝕀)\operatorname{W}(\mathbb{I}). As moreover this map is injective, our interpretation can make use of the equality in W⁑(𝕀)\operatorname{W}(\mathbb{I}) to interpret equality from L⁑(𝕀)\operatorname{L}(\mathbb{I}), in particular we do not need to take a quotient of the image by a definable equivalence relation.

It remains to show that the relation βŠ†\subseteq on 𝒫fci​(𝕀)\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) is interpretable in W⁑(𝕀)\operatorname{W}(\mathbb{I}).

Lemma 6.2.

There is an β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula Ο•βˆˆβ€‹(Xl,Xr,Z)\phi_{\in}(X_{l},X_{r},Z) such that for any iβˆˆπ•€i\in\mathbb{I} and Aβˆˆπ’«fci​(𝕀)A\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}), i∈Ai\in A if and only if,

W⁑(𝕀)βŠ§Ο•βˆˆβ€‹(Al,Ar,{i}).\operatorname{W}(\mathbb{I})\models\phi_{\in}(A_{l},A_{r},\{i\}).
Proof.

We split into two cases, according to whether Aβˆˆπ’«fci​(𝕀)A\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) is bounded or unbounded (see lemma 4.3). Let Ο•Bd​(Xl,Xr,Z)\phi_{\operatorname{Bd}}(X_{l},X_{r},Z) be the β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula,

π”°βˆ’1​(Xβˆ‚βˆͺZ,Z)βŠ†Xlβˆ–Xr​ and β€‹π”°βˆ’1​(Xβˆ‚βˆͺZ,Xrβˆ–Xl)∩Zβ‰ βŠ₯,\mathfrak{s}^{-1}(X^{\partial}\cup Z,Z)\subseteq X_{l}\setminus X_{r}\text{ and }\mathfrak{s}^{-1}(X^{\partial}\cup Z,X_{r}\setminus X_{l})\cap Z\neq\bot,

this β€˜says’ that the predecessor of ZZ is a proper left endpoint and that ZZ is the predecessor of a right endpoint, Then let ϕ¬Bd​(Xl,Xr,Z)\phi_{\neg\operatorname{Bd}}(X_{l},X_{r},Z) be the β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula,

(π”°βˆ’1​(Xβˆ‚βˆͺZ,Z)βŠ†Xlβˆ–Xr​ and β€‹π”°βˆ’1​(Xβˆ‚βˆͺZ,Xrβˆ–Xl)∩Zβ‰ βŠ₯)​ or β€‹Z=max⁑(Xβˆ‚βˆͺZ),(\mathfrak{s}^{-1}(X^{\partial}\cup Z,Z)\subseteq X_{l}\setminus X_{r}\text{ and }\mathfrak{s}^{-1}(X^{\partial}\cup Z,X_{r}\setminus X_{l})\cap Z\neq\bot)\text{ or }Z=\max(X^{\partial}\cup Z),

this β€˜says’ that the condition in Ο•Bd\phi_{\operatorname{Bd}} holds or that ZZ is greater than or equal to all left and right endpoints. Then for each iβˆˆπ•€i\in\mathbb{I} and Aβˆˆπ’«fci​(𝕀)A\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}) the following are equivalent,

  1. (1)

    i∈Ai\in A,

  2. (2)

    W⁑(𝕀)⊧Aβˆ‚β‰ βŠ₯\operatorname{W}(\mathbb{I})\models A^{\partial}\neq\bot (so that Aβ‰ βŠ₯A\neq\bot) and one of the following holds,

    1. (a)

      W⁑(𝕀)⊧{i}βŠ†Aβˆ‚\operatorname{W}(\mathbb{I})\models\{i\}\subseteq A^{\partial} or,

    2. (b)

      W⁑(𝕀)⊧Bd⁑(A)\operatorname{W}(\mathbb{I})\models\operatorname{Bd}(A) and Ο•Bd​(Al,Ar,{i})\phi_{\operatorname{Bd}}(A_{l},A_{r},\{i\}), or,

    3. (c)

      W⁑(𝕀)⊧¬Bd⁑(A)\operatorname{W}(\mathbb{I})\models\neg\operatorname{Bd}(A) and ϕ¬Bd​(Al,Ar,{i})\phi_{\neg\operatorname{Bd}}(A_{l},A_{r},\{i\}).

In other words i∈Ai\in A if and only if AA is nonempty and either ii is an endpoint of AA, or ii sits between a left and right endpoint of AA, or AA is unbounded and ii sits in the unbounded part of AA. The latter we have shown is definable in W⁑(𝕀)\operatorname{W}(\mathbb{I}) by giving β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formulas, so Ο•βˆˆ\phi_{\in} exists. ∎

Proposition 6.3.

There is an β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula Ο•βŠ†β€‹(Xl,Xr,Yl,Yr)\phi_{\subseteq}(X_{l},X_{r},Y_{l},Y_{r}) such that for any A,Bβˆˆπ’«fci​(𝕀)A,B\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}), AβŠ†BA\subseteq B if and only if,

W⁑(𝕀)βŠ§Ο•βŠ†β€‹(Al,Ar,Bl,Br).\operatorname{W}(\mathbb{I})\models\phi_{\subseteq}(A_{l},A_{r},B_{l},B_{r}).
Proof.

Let At⁑(Z)\operatorname{At}(Z) be the formula Zβ‰ βŠ₯∧Z=min(Z)Z\neq\bot\wedge Z=\min(Z). In W⁑(𝕀)\operatorname{W}(\mathbb{I}) this defines the collection of singletons. Therefore we can take for Ο•βŠ†\phi_{\subseteq} the β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula,

βˆ€Z​(At⁑(Z)β†’(Ο•βˆˆβ€‹(Xl,Xr,Z)β†’Ο•βˆˆβ€‹(Yl,Yr,Z))).\forall Z(\operatorname{At}(Z)\rightarrow(\phi_{\in}(X_{l},X_{r},Z)\rightarrow\phi_{\in}(Y_{l},Y_{r},Z))).

This says that every singleton contained in XX is contained in YY, as required. ∎

Theorem 6.4.

There is an interpretation of L⁑(𝕀)\operatorname{L}(\mathbb{I}) in W⁑(𝕀)\operatorname{W}(\mathbb{I}), for which the co-ordinate map 𝒫fci​(𝕀)→𝒫fin​(𝕀)2\mathcal{P}_{\operatorname{fci}}(\mathbb{I})\rightarrow\mathcal{P}_{\operatorname{fin}}(\mathbb{I})^{2} is given by A↦(Al,Ar)A\mapsto(A_{l},A_{r}).

Corollary 6.5.

For each β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-formula ϕ​(XΒ―)\phi(\bar{X}) there is an β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula Οˆβ€‹(YΒ―)\psi(\bar{Y}) such that for each AΒ―βˆˆπ’«fci​(𝕀)\bar{A}\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}),

L⁑(𝕀)βŠ§Ο•β€‹(AΒ―)⟺W⁑(𝕀)βŠ§Οˆβ€‹(AlΒ―,ArΒ―).\operatorname{L}(\mathbb{I})\models\phi(\bar{A})\Longleftrightarrow\operatorname{W}(\mathbb{I})\models\psi(\bar{A_{l}},\bar{A_{r}}).

7. Transfer of model-completeness from W⁑(𝕀)\operatorname{W}(\mathbb{I}) to L⁑(𝕀)\operatorname{L}(\mathbb{I})

Theorem 7.1.

The β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-structure L⁑(𝕀)\operatorname{L}(\mathbb{I}) is model-complete.

Proof.

Let ϕ​(XΒ―)\phi(\bar{X}) be an β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-formula. We will show that over L⁑(𝕀)\operatorname{L}(\mathbb{I}) the formula Ο•\phi is equivalent to an existential formula Ο•βˆ—\phi^{*}.

Using our interpretation of L⁑(𝕀)\operatorname{L}(\mathbb{I}) in W⁑(𝕀)\operatorname{W}(\mathbb{I}) (in particular corollary 6.5), for each β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-formula ϕ​(XΒ―)\phi(\bar{X}) there is an β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula Οˆβ€‹(YΒ―)\psi(\bar{Y}) such that for each AΒ―βˆˆπ’«fci​(𝕀)\bar{A}\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}),

L⁑(𝕀)βŠ§Ο•β€‹(AΒ―)⟺W⁑(𝕀)βŠ§Οˆβ€‹(AlΒ―,ArΒ―).\operatorname{L}(\mathbb{I})\models\phi(\bar{A})\Longleftrightarrow\operatorname{W}(\mathbb{I})\models\psi(\bar{A_{l}},\bar{A_{r}}).

Without loss of generality we can take Οˆβ€‹(YΒ―)\psi(\bar{Y}) to be a positive existential β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula. This is because theorem 3.6, the positive model-completeness of W⁑(𝕀)\operatorname{W}(\mathbb{I}), tells us precisely that every β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula is equivalent to some positive existential β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula over W⁑(𝕀)\operatorname{W}(\mathbb{I}).

Using our interpretation of W⁑(𝕀)\operatorname{W}(\mathbb{I}) in L⁑(𝕀)\operatorname{L}(\mathbb{I}) (in particular corollary 5.6), for each β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula Οˆβ€‹(YΒ―)\psi(\bar{Y}) there is an β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-formula θ​(YΒ―)\theta(\bar{Y}) such that for each BΒ―βˆˆπ’«fin​(𝕀)\bar{B}\in\mathcal{P}_{\operatorname{fin}}(\mathbb{I}),

W⁑(𝕀)βŠ§Οˆβ€‹(BΒ―)⟺L⁑(𝕀)βŠ§ΞΈβ€‹(BΒ―),\operatorname{W}(\mathbb{I})\models\psi(\bar{B})\Longleftrightarrow\operatorname{L}(\mathbb{I})\models\theta(\bar{B}),

and so in particular taking BΒ―=(AlΒ―,ArΒ―)\bar{B}=(\bar{A_{l}},\bar{A_{r}}) we get,

W⁑(𝕀)βŠ§Οˆβ€‹(AlΒ―,ArΒ―)⟺L⁑(𝕀)βŠ§ΞΈβ€‹(AlΒ―,ArΒ―).\operatorname{W}(\mathbb{I})\models\psi(\bar{A_{l}},\bar{A_{r}})\Longleftrightarrow\operatorname{L}(\mathbb{I})\models\theta(\bar{A_{l}},\bar{A_{r}}).

Moreover, as Οˆβ€‹(YΒ―)\psi(\bar{Y}) is a positive existential β„’W⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{W}(\mathbb{I})}}-formula, corollary 5.6 tells us that θ​(YΒ―)\theta(\bar{Y}) can additionally be chosen to be an existential β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}-formula. Note that without the positive model-completeness of W⁑(𝕀)\operatorname{W}(\mathbb{I}), we could not have taken Οˆβ€‹(YΒ―)\psi(\bar{Y}) positive existential, and therefore could not have taken ΞΈ\theta to be existential.

Combining (​7​)\eqref{star} and (​7​)\eqref{dagger} we get that for each AΒ―βˆˆπ’«fci​(𝕀)\bar{A}\in\mathcal{P}_{\operatorname{fci}}(\mathbb{I}),

L⁑(𝕀)βŠ§Ο•β€‹(AΒ―)⟺L⁑(𝕀)βŠ§ΞΈβ€‹(AlΒ―,ArΒ―).\operatorname{L}(\mathbb{I})\models\phi(\bar{A})\Longleftrightarrow\operatorname{L}(\mathbb{I})\models\theta(\bar{A_{l}},\bar{A_{r}}).

Now, ll and rr are part of the signature β„’L⁑(𝕀)\mathscr{L}_{{\scriptscriptstyle\operatorname{L}(\mathbb{I})}}, so we take Ο•βˆ—β€‹(XΒ―)\phi^{*}(\bar{X}) to be the formula θ​(XlΒ―,XrΒ―)\theta(\bar{X_{l}},\bar{X_{r}}). Our choice of Ο•βˆ—\phi^{*} is clearly existential, as ΞΈ\theta is existential. Putting everything together, we get that,

L(𝕀)βŠ§βˆ€XΒ―(Ο•(XΒ―)β†”Ο•βˆ—(XΒ―)),\operatorname{L}(\mathbb{I})\models\forall\bar{X}(\phi(\bar{X})\leftrightarrow\phi^{*}(\bar{X})),

and hence L⁑(𝕀)\operatorname{L}(\mathbb{I}) is model-complete. ∎

References

  • [Hod93] Wilfrid Hodges β€œModel theory” 42, Encyclopedia of Mathematics and its Applications Cambridge University Press, Cambridge, 1993, pp. xiv+772
  • [Lin21] Deacon V. Linkhorn β€œMonadic Second Order Logic and Linear Orders” Thesis (Ph.D.)–The University of Manchester (United Kingdom) ProQuest LLC, Ann Arbor, MI, 2021, pp. 148
  • [Tre17] Marcus Tressl β€œOn the strength of some topological lattices” In Ordered algebraic structures and related topics 697, Contemp. Math. Amer. Math. Soc., Providence, RI, 2017, pp. 325–347