This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Modal completeness of sublogics of the interpretability logic ๐ˆ๐‹\mathbf{IL}

Taishi Kurahashi and Yuya Okawa
Abstract

We study modal completeness and incompleteness of several sublogics of the interpretability logic ๐ˆ๐‹\mathbf{IL}. We introduce the sublogic ๐ˆ๐‹โˆ’\mathbf{IL}^{-}, and prove that ๐ˆ๐‹โˆ’\mathbf{IL}^{-} is sound and complete with respect to Veltman prestructures which are introduced by Visser. Moreover, we prove the modal completeness of twelve logics between ๐ˆ๐‹โˆ’\mathbf{IL}^{-} and ๐ˆ๐‹\mathbf{IL} with respect to Veltman prestructures. On the other hand, we prove that eight natural sublogics of ๐ˆ๐‹\mathbf{IL} are modally incomplete. Finally, we prove that these incomplete logics are complete with respect to generalized Veltman prestructures. As a consequence of these investigations, we obtain that the twenty logics studied in this paper are all decidable.

1 Introduction

The notion of formalized provability is well-studied in the framework of modal logic. The provability logic of Peano Arithmetic ๐๐€\mathbf{PA} is the set of all modal formulas that are verifiable in ๐๐€\mathbf{PA} when the modal operator โ–ก\Box is interpreted as the provability predicate Pr๐๐€โ€‹(x)\mathrm{Pr}_{\mathbf{PA}}(x) of ๐๐€\mathbf{PA}. Solovayโ€™s arithmetical completeness theorem [12] states that the provability logic of ๐๐€\mathbf{PA} is exactly axiomatized by the modal logic ๐†๐‹\mathbf{GL} that is obtained from the smallest normal modal logic ๐Š\mathbf{K} by adding the axiom scheme โ–กโ€‹(โ–กโ€‹Aโ†’A)โ†’โ–กโ€‹A\Box(\Box A\to A)\to\Box A. Segerberg [10] proved that the logic ๐†๐‹\mathbf{GL} is sound and complete with respect to the class of all transitive and conversely well-founded finite Kripke frames.

The interpretability logic ๐ˆ๐‹\mathbf{IL} is the base logic for modal logical investigations of the notion of relative interpretability. The language of ๐ˆ๐‹\mathbf{IL} is that of ๐†๐‹\mathbf{GL} with the additional binary modal operator โŠณ\rhd. The binary modal operator โŠณ\rhd binds stronger than โ†’\to, but weaker than ยฌ\lnot, โˆง\land, โˆจ\lor and โ–ก\Box. The intended meaning of the formula AโŠณBA\rhd B is โ€œ๐๐€+B\mathbf{PA}+B is relatively interpretable in ๐๐€+A\mathbf{PA}+Aโ€. The inference rules of ๐ˆ๐‹\mathbf{IL} are the same as those of ๐†๐‹\mathbf{GL}, and the axioms of ๐ˆ๐‹\mathbf{IL} are those of ๐†๐‹\mathbf{GL} together with the following axioms:

๐‰๐Ÿ\mathbf{J1}

โ–กโ€‹(Aโ†’B)โ†’AโŠณB\Box(A\to B)\to A\rhd B;

๐‰๐Ÿ\mathbf{J2}

(AโŠณB)โˆง(BโŠณC)โ†’AโŠณC(A\rhd B)\land(B\rhd C)\to A\rhd C;

๐‰๐Ÿ‘\mathbf{J3}

(AโŠณC)โˆง(BโŠณC)โ†’(AโˆจB)โŠณC(A\rhd C)\land(B\rhd C)\to(A\lor B)\rhd C;

๐‰๐Ÿ’\mathbf{J4}

AโŠณBโ†’(โ—‡โ€‹Aโ†’โ—‡โ€‹B)A\rhd B\to(\Diamond A\to\Diamond B);

๐‰๐Ÿ“\mathbf{J5}

โ—‡โ€‹AโŠณA\Diamond A\rhd A.

The logic ๐ˆ๐‹\mathbf{IL} is not arithmetically complete by itself. The logic ๐ˆ๐‹๐Œ\mathbf{ILM} is obtained from ๐ˆ๐‹\mathbf{IL} by adding Montagnaโ€™s Principle AโŠณBโ†’(Aโˆงโ–กโ€‹C)โŠณ(Bโˆงโ–กโ€‹C)A\rhd B\to(A\land\Box C)\rhd(B\land\Box C), then Berarducci [1] and Shavrukov [11] independently proved that ๐ˆ๐‹๐Œ\mathbf{ILM} is arithmetically sound and complete with respect to arithmetical interpretations for ๐๐€\mathbf{PA}. Also let ๐ˆ๐‹๐\mathbf{ILP} be the logic ๐ˆ๐‹\mathbf{IL} with the Persistence Principle AโŠณBโ†’โ–กโ€‹(AโŠณB)A\rhd B\to\Box(A\rhd B). Visser [15] proved the arithmetical completeness theorem of the logic ๐ˆ๐‹๐\mathbf{ILP} with respect to arithmetical interpretations for suitable finitely axiomatized fragments of ๐๐€\mathbf{PA}.

These logics have Kripkean semantics. A triple โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle is said to be an ๐ˆ๐‹\mathbf{IL}-frame or a Veltman frame if โŸจW,RโŸฉ\langle W,R\rangle is a Kripke frame of ๐†๐‹\mathbf{GL} and for each xโˆˆWx\in W, SxS_{x} is a transitive and reflexive binary relation on Rโ€‹[x]:={yโˆˆW:xโ€‹Rโ€‹y}R[x]:=\{y\in W:xRy\} satisfying the following property: (โˆ—)(\ast) โˆ€y,zโˆˆWโ€‹(xโ€‹Rโ€‹y&yโ€‹Rโ€‹zโ‡’yโ€‹Sxโ€‹z)\forall y,z\in W(xRy\ \&\ yRz\Rightarrow yS_{x}z). De Jongh and Veltman [3] proved that ๐ˆ๐‹\mathbf{IL} is sound and complete with respect to all finite ๐ˆ๐‹\mathbf{IL}-frames. Also they proved that the logics ๐ˆ๐‹๐Œ\mathbf{ILM} and ๐ˆ๐‹๐\mathbf{ILP} are sound and complete with respect to corresponding classes of finite ๐ˆ๐‹\mathbf{IL}-frames, respectively.

The logic ๐ˆ๐‹\mathbf{IL} and its extensions are not only arithmetically significant. It is known that for extensions of ๐๐€\mathbf{PA}, relative interpretability is equivalent to ฮ 1\Pi_{1}-conservativity, and this equivalence is provable in ๐๐€\mathbf{PA} (see [8]). Therefore the logic ๐ˆ๐‹๐Œ\mathbf{ILM} is also the logic of ฮ 1\Pi_{1}-conservativity for ๐๐€\mathbf{PA} (see also [5]). On the other hand, when we consider the logics of ฮ“\Gamma-conservativity for ฮ“โ‰ ฮ 1\Gamma\neq\Pi_{1}, the principle ๐‰๐Ÿ“\mathbf{J5} is no longer arithmetically valid. Ignatiev [6] introduced the logic of conservativity ๐‚๐‹\mathbf{CL} which is obtained from ๐ˆ๐‹\mathbf{IL} by removing ๐‰๐Ÿ“\mathbf{J5}, and he proved that the extensions ๐’๐›๐‚๐‹๐Œ\mathbf{SbCLM} and ๐’๐‚๐‹\mathbf{SCL} of ๐‚๐‹\mathbf{CL} are exactly the logic of ฮ 2\Pi_{2}-conservativity and the logic of ฮ“\Gamma-conservativity for ฮ“โˆˆ{ฮฃn,ฮ n:nโ‰ฅ3}\Gamma\in\{\Sigma_{n},\Pi_{n}:n\geq 3\}, respectively.

Ignatiev also proved that ๐‚๐‹\mathbf{CL} is complete with respect to Kripkean semantics. A triple โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle is said to be a ๐‚๐‹\mathbf{CL}-frame if it is a structure with all properties of ๐ˆ๐‹\mathbf{IL}-frame but (โˆ—)(\ast). Then ๐‚๐‹\mathbf{CL} is sound and complete with respect to the class of all finite ๐‚๐‹\mathbf{CL}-frames. The correspondence between ๐‰๐Ÿ“\mathbf{J5} and the property (โˆ—)(\ast) is explained in the framework of ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames. A triple โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle is called an ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame or a Veltman prestructure if โŸจW,RโŸฉ\langle W,R\rangle is a frame of ๐†๐‹\mathbf{GL} and for each xโˆˆWx\in W, SxS_{x} is a binary relation on WW with โˆ€y,zโˆˆWโ€‹(yโ€‹Sxโ€‹zโ‡’xโ€‹Rโ€‹y)\forall y,z\in W(yS_{x}z\Rightarrow xRy). Then Visser [14] stated that for any ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame, the validity of the scheme ๐‰๐Ÿ“\mathbf{J5} is equivalent to the property (โˆ—)(\ast).

Visser also showed, for example, that for any ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame, the validity of ๐‰๐Ÿ’\mathbf{J4} is equivalent to the property โˆ€x,y,zโˆˆWโ€‹(yโ€‹Sxโ€‹zโ‡’xโ€‹Rโ€‹z)\forall x,y,z\in W(yS_{x}z\Rightarrow xRz). However, systematic study of sublogics of ๐ˆ๐‹\mathbf{IL} through ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames has not been done so far. In this paper, we do this study, and prove the modal completeness and incompleteness of several sublogics of ๐ˆ๐‹\mathbf{IL}.

In Section 2, we introduce the logic ๐ˆ๐‹โˆ’\mathbf{IL}^{-} that is valid in all ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames. We introduce the notion of ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames that serves a wider class of models than ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames. Then we show that ๐ˆ๐‹โˆ’\mathbf{IL}^{-} is also valid in all ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames. In Section 3, we investigate several axiom schemata and extensions of ๐ˆ๐‹โˆ’\mathbf{IL}^{-}. Section 4 is devoted to proving lemmas used to prove our modal completeness theorems. Our modal completeness theorem with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames is proved in Section 5. In Section 6, we prove several natural sublogics of ๐ˆ๐‹\mathbf{IL} are incomplete with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames. In Section 7, we prove these incomplete logics are complete with respect to ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames. Finally, Section 8 concludes the present paper with a few words.

2 The logic ๐ˆ๐‹โˆ’\mathbf{IL}^{-}

In this section, we introduce and investigate the logic ๐ˆ๐‹โˆ’\mathbf{IL}^{-}. The language of ๐ˆ๐‹โˆ’\mathbf{IL}^{-} consists of countably many propositional variables p,q,r,โ€ฆp,q,r,\ldots, logical constants โŠค\top, โŠฅ\bot, connectives ยฌ\neg, โˆง\land, โˆจ\lor, โ†’\to and modal operators โ–ก\Box, โŠณ\rhd. The expression โ—‡โ€‹A\Diamond A is an abbreviation for ยฌโ–กโ€‹ยฌA\lnot\Box\lnot A. We show that every theorem of ๐ˆ๐‹โˆ’\mathbf{IL}^{-} is valid in all ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames defined below (see Definition 2.2). In fact, we will prove in Section 5 that ๐ˆ๐‹โˆ’\mathbf{IL}^{-} is sound and complete with respect to the class of all (finite) ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames. The logic ๐ˆ๐‹โˆ’\mathbf{IL}^{-} is the basis for our logics discussed in this paper.

First, we introduce the logic ๐ˆ๐‹โˆ’\mathbf{IL}^{-}. Note that the axioms and rules of the logic ๐ˆ๐‹โˆ’\mathbf{IL}^{-} are intended to characterize the logic of the class of all ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames.

Definition 2.1.

The axiom schemata of the logic ๐ˆ๐‹โˆ’\mathbf{IL}^{-} are as follows:

๐‹๐Ÿ\mathbf{L1}

All tautologies in the language of ๐ˆ๐‹โˆ’\mathbf{IL}^{-};

๐‹๐Ÿ\mathbf{L2}

โ–กโ€‹(Aโ†’B)โ†’(โ–กโ€‹Aโ†’โ–กโ€‹B)\Box(A\to B)\to(\Box A\to\Box B);

๐‹๐Ÿ‘\mathbf{L3}

โ–กโ€‹(โ–กโ€‹Aโ†’A)โ†’โ–กโ€‹A\Box(\Box A\to A)\to\Box A;

๐‰๐Ÿ‘\mathbf{J3}

(AโŠณC)โˆง(BโŠณC)โ†’(AโˆจB)โŠณC(A\rhd C)\land(B\rhd C)\to(A\lor B)\rhd C;

๐‰๐Ÿ”\mathbf{J6}

โ–กAโ†”(ยฌA)โŠณโŠฅ\Box A\leftrightarrow(\neg A)\rhd\bot.

The inference rules of ๐ˆ๐‹โˆ’\mathbf{IL}^{-} are Modus Ponens AAโ†’BB\dfrac{A\ \ \ A\to B}{B}, Necessitation Aโ–กโ€‹A\dfrac{A}{\Box A}, ๐‘๐Ÿ\mathbf{R1} and ๐‘๐Ÿ\mathbf{R2}. Here the rules ๐‘๐Ÿ\mathbf{R1} and ๐‘๐Ÿ\mathbf{R2} are defined as follows:

๐‘๐Ÿ\mathbf{R1}

Aโ†’BCโŠณAโ†’CโŠณB\dfrac{A\to B}{C\rhd A\to C\rhd B};

๐‘๐Ÿ\mathbf{R2}

Aโ†’BBโŠณCโ†’AโŠณC\dfrac{A\to B}{B\rhd C\to A\rhd C}.

The logic ๐†๐‹\mathbf{GL} consists of the axiom schemata ๐‹๐Ÿ,๐‹๐Ÿ\mathbf{L1},\mathbf{L2} and ๐‹๐Ÿ‘\mathbf{L3}, and of the inference rules Modus Ponens and Necessitation (in the language without โŠณ\rhd). Hence ๐ˆ๐‹โˆ’\mathbf{IL}^{-} is an extension of ๐†๐‹\mathbf{GL}. In Subsection 3.5, we prove that ๐ˆ๐‹\mathbf{IL} proves the axiom ๐‰๐Ÿ”\mathbf{J6} and admits the rules ๐‘๐Ÿ\mathbf{R1} and ๐‘๐Ÿ\mathbf{R2} (see Proposition 3.20). Therefore ๐ˆ๐‹โˆ’\mathbf{IL}^{-} is a sublogic of ๐ˆ๐‹\mathbf{IL}.

We introduce ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames that are originally introduced by Visser [14] as Veltman prestructures.

Definition 2.2.

We say that a triple โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle is an ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame if it satisfies the following conditions:

  1. 1.

    WW is a non-empty set;

  2. 2.

    RR is a transitive and conversely well-founded binary relation on WW;

  3. 3.

    For each xโˆˆWx\in W, SxS_{x} is a binary relation on WW satisfying โˆ€y,zโˆˆWโ€‹(yโ€‹Sxโ€‹zโ‡’xโ€‹Rโ€‹y)\forall y,z\in W(yS_{x}z\Rightarrow xRy).

A quadruple โŸจW,R,{Sx}xโˆˆW,โŠฉโŸฉ\langle W,R,\{S_{x}\}_{x\in W},\Vdash\rangle is called an ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-model if โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle is an ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame and โŠฉ\Vdash is a binary relation between WW and the set of all formulas satisfying the usual conditions for satisfaction with the following conditions:

  • โ€ข

    xโŠฉโ–กโ€‹Aโ‡”โˆ€yโˆˆWโ€‹(xโ€‹Rโ€‹yโ‡’yโŠฉA)x\Vdash\Box A\iff\forall y\in W(xRy\Rightarrow y\Vdash A).

  • โ€ข

    xโŠฉAโŠณBโ‡”โˆ€yโˆˆWโ€‹(xโ€‹Rโ€‹y&yโŠฉAโ‡’โˆƒzโˆˆWโ€‹(yโ€‹Sxโ€‹z&zโŠฉB))x\Vdash A\rhd B\iff\forall y\in W(xRy\ \&\ y\Vdash A\Rightarrow\exists z\in W(yS_{x}z\ \&\ z\Vdash B)).

A formula AA is said to be valid in an ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle if for all satisfaction relations โŠฉ\Vdash on the frame and all xโˆˆWx\in W, xโŠฉAx\Vdash A.

For each xโˆˆWx\in W, let Rโ€‹[x]:={yโˆˆW:xโ€‹Rโ€‹y}R[x]:=\{y\in W:xRy\}. In this notation, the third clause in the definition of ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames states that SxS_{x} is a relation on Rโ€‹[x]ร—WR[x]\times W. Note that this clause can be removed from the definition because it is not forced by axiom schemata of ๐ˆ๐‹โˆ’\mathbf{IL}^{-} and does not affect the definition of โŠฉ\Vdash. We impose this clause to simplify our arguments.

We prove that ๐ˆ๐‹โˆ’\mathbf{IL}^{-} is sound with respect to the class of all ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames.

Proposition 2.3.

Every theorem of ๐ˆ๐‹โˆ’\mathbf{IL}^{-} is valid in all ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames.

Proof.

We prove the claim by induction on the length of proofs in ๐ˆ๐‹โˆ’\mathbf{IL}^{-}. Since the modal logic ๐†๐‹\mathbf{GL} is sound with respect to the class of all transitive and conversely well-founded Kripke frames (see [2]), all theorems of ๐†๐‹\mathbf{GL} in the language of ๐ˆ๐‹โˆ’\mathbf{IL}^{-} are valid in all ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames. That is, ๐‹๐Ÿ\mathbf{L1}, ๐‹๐Ÿ\mathbf{L2} and ๐‹๐Ÿ‘\mathbf{L3} are valid in all ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames, and the rules Modus Ponens and Necessitation preserve the validity. Then it suffices to prove that ๐‰๐Ÿ‘\mathbf{J3} and ๐‰๐Ÿ”\mathbf{J6} are valid in all ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames, and the rules ๐‘๐Ÿ\mathbf{R1} and ๐‘๐Ÿ\mathbf{R2} preserve the validity.

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be an ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame, xโˆˆWx\in W be any element and โŠฉ\Vdash be any satisfaction relation on FF.

๐‰๐Ÿ‘\mathbf{J3}: Suppose xโŠฉ(AโŠณC)โˆง(BโŠณC)x\Vdash(A\rhd C)\land(B\rhd C). Let yโˆˆWy\in W be any element with xโ€‹Rโ€‹yxRy and yโŠฉAโˆจBy\Vdash A\lor B. In either case of yโŠฉAy\Vdash A and yโŠฉBy\Vdash B, there exists zโˆˆWz\in W such that yโ€‹Sxโ€‹zyS_{x}z and zโŠฉCz\Vdash C. Thus we obtain xโŠฉ(AโˆจB)โŠณCx\Vdash(A\lor B)\rhd C.

๐‰๐Ÿ”\mathbf{J6}: (โ†’)(\rightarrow): Suppose xโŠฉโ–กโ€‹Ax\Vdash\Box A. Then there is no yโˆˆWy\in W such that xโ€‹Rโ€‹yxRy and yโŠฉยฌAy\Vdash\neg A. Hence xโŠฉ(ยฌA)โŠณโŠฅx\Vdash(\neg A)\rhd\bot.

(โ†)(\leftarrow): Suppose xโŠฉ(ยฌA)โŠณโŠฅx\Vdash(\neg A)\rhd\bot. If there were yโˆˆWy\in W with xโ€‹Rโ€‹yxRy and yโŠฉยฌAy\Vdash\neg A, then there would be some zโˆˆWz\in W such that zโŠฉโŠฅz\Vdash\bot, a contradiction. Thus if xโ€‹Rโ€‹yxRy, then yโŠฉAy\Vdash A, and this means xโŠฉโ–กโ€‹Ax\Vdash\Box A.

๐‘๐Ÿ\mathbf{R1}: Assume Aโ†’BA\to B is valid in FF. Suppose xโŠฉCโŠณAx\Vdash C\rhd A and let yโˆˆWy\in W be such that xโ€‹Rโ€‹yxRy and yโŠฉCy\Vdash C. Then there exists zโˆˆWz\in W such that yโ€‹Sxโ€‹zyS_{x}z and zโŠฉAz\Vdash A. By the assumption, zโŠฉBz\Vdash B. Then we obtain xโŠฉCโŠณBx\Vdash C\rhd B.

๐‘๐Ÿ\mathbf{R2}: Assume Aโ†’BA\to B is valid in FF. Suppose xโŠฉBโŠณCx\Vdash B\rhd C and let yโˆˆWy\in W be such that xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A. By the assumption, yโŠฉBy\Vdash B, and hence there exists zโˆˆWz\in W such that yโ€‹Sxโ€‹zyS_{x}z and zโŠฉCz\Vdash C. Thus we have xโŠฉAโŠณCx\Vdash A\rhd C. โˆŽ

By the rules ๐‘๐Ÿ\mathbf{R1} and ๐‘๐Ÿ\mathbf{R2}, we immediately obtain the following proposition.

Proposition 2.4.

Let LL be a logic with the inference rules ๐‘๐Ÿ\mathbf{R1} and ๐‘๐Ÿ\mathbf{R2}. If LโŠขA0โ†”A1L\vdash A_{0}\leftrightarrow A_{1} and LโŠขB0โ†”B1L\vdash B_{0}\leftrightarrow B_{1}, then LโŠขA0โŠณB0โ†”A1โŠณB1L\vdash A_{0}\rhd B_{0}\leftrightarrow A_{1}\rhd B_{1}.

In this paper, we freely use Proposition 2.4 without any mention. In ๐ˆ๐‹โˆ’\mathbf{IL}^{-}, the inference rule ๐‘๐Ÿ\mathbf{R2} is strengthened as follows.

Proposition 2.5.
  1. 1.

    ๐ˆ๐‹โˆ’โŠขโ–กโ€‹ยฌAโ†’AโŠณB\mathbf{IL}^{-}\vdash\Box\neg A\to A\rhd B.

  2. 2.

    ๐ˆ๐‹โˆ’โŠขโ–กโ€‹(Aโ†’B)โ†’(BโŠณCโ†’AโŠณC)\mathbf{IL}^{-}\vdash\Box(A\to B)\to(B\rhd C\to A\rhd C).

Proof.

1. Since ๐ˆ๐‹โˆ’โŠขโŠฅโ†’B\mathbf{IL}^{-}\vdash\bot\to B, we have ๐ˆ๐‹โˆ’โŠขAโŠณโŠฅโ†’AโŠณB\mathbf{IL}^{-}\vdash A\rhd\bot\to A\rhd B by the rule ๐‘๐Ÿ\mathbf{R1}. By the axiom ๐‰๐Ÿ”\mathbf{J6}, we obtain ๐ˆ๐‹โˆ’โŠขโ–กโ€‹ยฌAโ†’AโŠณB\mathbf{IL}^{-}\vdash\Box\neg A\to A\rhd B.

2. Since ๐ˆ๐‹โˆ’โŠขโ–กโ€‹(Aโ†’B)โ†’โ–กโ€‹ยฌ(AโˆงยฌB)\mathbf{IL}^{-}\vdash\Box(A\to B)\to\Box\neg(A\land\neg B), we have ๐ˆ๐‹โˆ’โŠขโ–กโ€‹(Aโ†’B)โ†’(AโˆงยฌB)โŠณC\mathbf{IL}^{-}\vdash\Box(A\to B)\to(A\land\neg B)\rhd C by 1. Then ๐ˆ๐‹โˆ’โŠขโ–กโ€‹(Aโ†’B)โˆง(BโŠณC)โ†’((AโˆงยฌB)โˆจB)โŠณC\mathbf{IL}^{-}\vdash\Box(A\to B)\land(B\rhd C)\to((A\land\neg B)\lor B)\rhd C by the axiom ๐‰๐Ÿ‘\mathbf{J3}. Since ๐ˆ๐‹โˆ’โŠขAโ†’(AโˆงยฌB)โˆจB\mathbf{IL}^{-}\vdash A\to(A\land\neg B)\lor B, we have ๐ˆ๐‹โˆ’โŠข((AโˆงยฌB)โˆจB)โŠณCโ†’AโŠณC\mathbf{IL}^{-}\vdash((A\land\neg B)\lor B)\rhd C\to A\rhd C by the rule ๐‘๐Ÿ\mathbf{R2}. Therefore we conclude ๐ˆ๐‹โˆ’โŠขโ–กโ€‹(Aโ†’B)โˆง(BโŠณC)โ†’AโŠณC\mathbf{IL}^{-}\vdash\Box(A\to B)\land(B\rhd C)\to A\rhd C. โˆŽ

Thus ๐ˆ๐‹โˆ’\mathbf{IL}^{-} is deductively equivalent to the system obtained from ๐ˆ๐‹โˆ’\mathbf{IL}^{-} by replacing the rule ๐‘๐Ÿ\mathbf{R2} by the axiom scheme โ–กโ€‹(Aโ†’B)โ†’(BโŠณCโ†’AโŠณC)\Box(A\to B)\to(B\rhd C\to A\rhd C).

In Section 5, we will prove that several extensions of ๐ˆ๐‹โˆ’\mathbf{IL}^{-} are complete with respect to corresponding classes of ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames. On the other hand, we will also prove that several logics are not complete. To prove this incompleteness, we use the notion of ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames that is a general notion of ๐ˆ๐‹set\mathbf{IL}_{\mathrm{set}}-frames or generalized Veltman frames introduced by Verbrugge [13] (see also [16, 9]).

Definition 2.6.

A tuple โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle is called an ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame if it satisfies the following conditions:

  1. 1.

    WW is a non-empty set;

  2. 2.

    RR is a transitive and conversely well-founded binary relation on WW;

  3. 3.

    For each xโˆˆWx\in W, SxS_{x} is a relation on Wร—(๐’ซโ€‹(W)โˆ–{โˆ…})W\times(\mathcal{P}(W)\setminus\{\emptyset\}) such that โˆ€yโˆˆW,โˆ€VโІWโ€‹(yโ€‹Sxโ€‹Vโ‡’xโ€‹Rโ€‹y)\forall y\in W,\forall V\subseteq W(yS_{x}V\Rightarrow xRy);

  4. 4.

    (Monotonicity) โˆ€x,yโˆˆW,โˆ€V,UโІWโ€‹(yโ€‹Sxโ€‹V&VโІUโ‡’yโ€‹Sxโ€‹U)\forall x,y\in W,\forall V,U\subseteq W(yS_{x}V\ \&\ V\subseteq U\Rightarrow yS_{x}U).

As in the definition of ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames, we can define ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-models โŸจW,R,{Sx}xโˆˆW,โŠฉโŸฉ\langle W,R,\{S_{x}\}_{x\in W},\Vdash\rangle with the following clause:

  • โ€ข

    xโŠฉAโŠณBโ‡”โˆ€yโˆˆWโ€‹(xโ€‹Rโ€‹y&yโŠฉAโ‡’โˆƒVโІWโ€‹(yโ€‹Sxโ€‹V&โˆ€zโˆˆVโ€‹(zโŠฉB)))x\Vdash A\rhd B\iff\forall y\in W(xRy\ \&\ y\Vdash A\Rightarrow\exists V\subseteq W(yS_{x}V\ \&\ \forall z\in V(z\Vdash B))).

Let M=โŸจW,R,{Sx}xโˆˆW,โŠฉโŸฉM=\langle W,R,\{S_{x}\}_{x\in W},\Vdash\rangle be an ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-model. For each xโˆˆWx\in W, we define the relation Sxโ€ฒโІWร—(๐’ซโ€‹(W)โˆ–{โˆ…})S_{x}^{\prime}\subseteq W\times(\mathcal{P}(W)\setminus\{\emptyset\}) by ySxโ€ฒV:โ‡”โˆƒzโˆˆV(ySxz)yS_{x}^{\prime}V:\iff\exists z\in V(yS_{x}z). Then it is shown that โŸจW,R,{Sxโ€ฒ}xโˆˆWโŸฉ\langle W,R,\{S_{x}^{\prime}\}_{x\in W}\rangle is an ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame. Let โŠฉโ€ฒ\Vdash^{\prime} be the unique satisfaction relation on this ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame satisfying that for any xโˆˆWx\in W and any propositional variable pp, xโŠฉโ€ฒpx\Vdash^{\prime}p if and only if xโŠฉpx\Vdash p. Then โŸจW,R,{Sxโ€ฒ}xโˆˆW,โŠฉโ€ฒโŸฉ\langle W,R,\{S_{x}^{\prime}\}_{x\in W},\Vdash^{\prime}\rangle is an ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-model, and for any xโˆˆWx\in W and any formula AA, xโŠฉAx\Vdash A if and only if xโŠฉโ€ฒAx\Vdash^{\prime}A. Therefore, in this sense, every ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame (resp.ย model) can be recognized as an ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame (resp.ย model). We strengthen Proposition 2.3.

Proposition 2.7.

Every theorem of ๐ˆ๐‹โˆ’\mathbf{IL}^{-} is valid in all ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames.

Proof.

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be an ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame, xโˆˆWx\in W be any element and โŠฉ\Vdash be any satisfaction relation on FF. As in the proof of Proposition 2.3, we only prove the cases ๐‰๐Ÿ‘\mathbf{J3}, ๐‰๐Ÿ”\mathbf{J6}, ๐‘๐Ÿ\mathbf{R1} and ๐‘๐Ÿ\mathbf{R2}.

๐‰๐Ÿ‘\mathbf{J3}: Suppose xโŠฉ(AโŠณC)โˆง(BโŠณC)x\Vdash(A\rhd C)\land(B\rhd C). Let yโˆˆWy\in W be any element such that xโ€‹Rโ€‹yxRy and yโŠฉAโˆจBy\Vdash A\lor B. In either case that yโŠฉAy\Vdash A and yโŠฉBy\Vdash B, there exists VโІWV\subseteq W such that yโ€‹Sxโ€‹VyS_{x}V and โˆ€zโˆˆVโ€‹(zโŠฉC)\forall z\in V(z\Vdash C). Therefore xโŠฉ(AโˆจB)โŠณCx\Vdash(A\lor B)\rhd C.

๐‰๐Ÿ”\mathbf{J6}: This follows from the following equivalences:

xโŠฉโ–กโ€‹A\displaystyle x\Vdash\Box A โ‡”โˆ€yโ€‹(xโ€‹Rโ€‹yโ‡’yโŠฉA),\displaystyle\iff\forall y(xRy\Rightarrow y\Vdash A),
โ‡”โˆ€yโ€‹(xโ€‹Rโ€‹y&yโŠฉยฌAโ‡’โˆƒVโ€‹(Vโ‰ โˆ…&yโ€‹Sxโ€‹V&โˆ€zโˆˆVโ€‹(zโŠฉโŠฅ))),\displaystyle\iff\forall y(xRy\ \&\ y\Vdash\neg A\Rightarrow\exists V(V\neq\emptyset\ \&\ yS_{x}V\ \&\ \forall z\in V(z\Vdash\bot))),
โ‡”xโŠฉ(ยฌA)โŠณโŠฅ.\displaystyle\iff x\Vdash(\neg A)\rhd\bot.

๐‘๐Ÿ\mathbf{R1}: Assume that Aโ†’BA\to B is valid in FF. Suppose xโŠฉCโŠณAx\Vdash C\rhd A. Let yโˆˆWy\in W be such that xโ€‹Rโ€‹yxRy and yโŠฉCy\Vdash C. Then there exists VโІWV\subseteq W such that yโ€‹Sxโ€‹VyS_{x}V and โˆ€zโˆˆVโ€‹(zโŠฉA)\forall z\in V(z\Vdash A). For each zโˆˆVz\in V, zโŠฉBz\Vdash B by the assumption. Therefore we conclude xโŠฉCโŠณBx\Vdash C\rhd B.

๐‘๐Ÿ\mathbf{R2}: Assume that Aโ†’BA\to B is valid in FF. Suppose xโŠฉBโŠณCx\Vdash B\rhd C and let yโˆˆWy\in W be any element with xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A. Then yโŠฉBy\Vdash B by the assumption, and hence there exists VโІWV\subseteq W such that yโ€‹Sxโ€‹VyS_{x}V and โˆ€zโˆˆVโ€‹(zโŠฉC)\forall z\in V(z\Vdash C). Thus we have xโŠฉAโŠณCx\Vdash A\rhd C.

โˆŽ

Remark 2.8.

In the proof of Proposition 2.7, Monotonicity of ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames is not used at all. As in the case of ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames, conditions 3 and 4 in Definition 2.6 are introduced because they are useful properties to have.

In usual definition of ๐ˆ๐‹set\mathbf{IL}_{\mathrm{set}}-frame โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle, each SxS_{x} is a relation on Rโ€‹[x]ร—(๐’ซโ€‹(Rโ€‹[x])โˆ–{โˆ…})R[x]\times(\mathcal{P}(R[x])\setminus\{\emptyset\}). Therefore ๐ˆ๐‹set\mathbf{IL}_{\mathrm{set}}-frames are not ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames because of our definition of Monotonicity. On the other hand, from Proposition 3.10 below, when we deal with logics containing ๐‰๐Ÿ’+\mathbf{J4}_{+}, we can restrict conditions 3 and 4 in Definition 2.6 so that SxS_{x} is a relation on Rโ€‹[x]ร—(๐’ซโ€‹(Rโ€‹[x])โˆ–{โˆ…})R[x]\times(\mathcal{P}(R[x])\setminus\{\emptyset\}).

3 Extensions of ๐ˆ๐‹โˆ’\mathbf{IL}^{-}

In this section, we investigate several additional axiom schemata and several extensions of ๐ˆ๐‹โˆ’\mathbf{IL}^{-}. Let ฮฃ1,โ€ฆ,ฮฃn\Sigma_{1},\ldots,\Sigma_{n} be axiom schemata. Then ๐ˆ๐‹โˆ’โ€‹(ฮฃ1,โ€ฆ,ฮฃn)\mathbf{IL}^{-}(\Sigma_{1},\ldots,\Sigma_{n}) is the logic ๐ˆ๐‹โˆ’\mathbf{IL}^{-} together with the axiom schemata ฮฃ1,โ€ฆ,ฮฃn\Sigma_{1},\ldots,\Sigma_{n}. Let LL be an extension of ๐ˆ๐‹โˆ’\mathbf{IL}^{-}. We say that LL is complete with respect to finite ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames (resp.ย ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames) if for any formula AA, LโŠขAL\vdash A if and only if AA is valid in all finite ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames (resp.ย ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames) where all axioms of LL are valid.

3.1 The axiom scheme ๐‰๐Ÿ\mathbf{J1}

In this subsection, we investigate the axiom scheme ๐‰๐Ÿ\mathbf{J1}.

๐‰๐Ÿ\mathbf{J1}

โ–กโ€‹(Aโ†’B)โ†’AโŠณB\Box(A\to B)\to A\rhd B.

First, we show that the following axiom scheme ๐‰๐Ÿโ€ฒ\mathbf{J1}^{\prime} is equivalent to ๐‰๐Ÿ\mathbf{J1} over ๐ˆ๐‹โˆ’\mathbf{IL}^{-}.

๐‰๐Ÿโ€ฒ\mathbf{J1}^{\prime}

AโŠณAA\rhd A.

Proposition 3.1.

The logics ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J1}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿโ€ฒ)\mathbf{IL}^{-}(\mathbf{J1}^{\prime}) are deductively equivalent.

Proof.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)โŠข๐‰๐Ÿโ€ฒ\mathbf{IL}^{-}(\mathbf{J1})\vdash\mathbf{J1}^{\prime}: This is because ๐ˆ๐‹โˆ’โŠขโ–กโ€‹(Aโ†’A)\mathbf{IL}^{-}\vdash\Box(A\to A) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)โŠขโ–กโ€‹(Aโ†’A)โ†’AโŠณA\mathbf{IL}^{-}(\mathbf{J1})\vdash\Box(A\to A)\to A\rhd A.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿโ€ฒ)โŠข๐‰๐Ÿ\mathbf{IL}^{-}(\mathbf{J1}^{\prime})\vdash\mathbf{J1}: By Proposition 2.5.2, ๐ˆ๐‹โˆ’โŠขโ–กโ€‹(Aโ†’B)โ†’(BโŠณBโ†’AโŠณB)\mathbf{IL}^{-}\vdash\Box(A\to B)\to(B\rhd B\to A\rhd B). Since ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿโ€ฒ)โŠขBโŠณB\mathbf{IL}^{-}(\mathbf{J1}^{\prime})\vdash B\rhd B, we obtain the desired result. โˆŽ

Therefore, in this paper, we sometimes identify the axiom schemata ๐‰๐Ÿ\mathbf{J1} and ๐‰๐Ÿโ€ฒ\mathbf{J1}^{\prime}. The following proposition is stated in Visser.

Proposition 3.2 (Visser [14]).

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be any ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame. Then the following are equivalent:

  1. 1.

    ๐‰๐Ÿ\mathbf{J1} is valid in FF.

  2. 2.

    โˆ€x,yโˆˆWโ€‹(xโ€‹Rโ€‹yโ‡’yโ€‹Sxโ€‹y)\forall x,y\in W(xRy\Rightarrow yS_{x}y).

Proof.

(1โ‡’2)(1\Rightarrow 2): Assume that ๐‰๐Ÿ\mathbf{J1} is valid in FF. Suppose xโ€‹Rโ€‹yxRy. Let โŠฉ\Vdash be any satisfaction relation on FF satisfying that for any uโˆˆWu\in W, uโŠฉpu\Vdash p if and only if u=yu=y for some fixed propositional variable pp. Then yโŠฉpy\Vdash p. Since xโ€‹Rโ€‹yxRy and xโŠฉpโŠณpx\Vdash p\rhd p, there exists a zโˆˆWz\in W such that yโ€‹Sxโ€‹zyS_{x}z and zโŠฉpz\Vdash p. By the definition of โŠฉ\Vdash, z=yz=y, and hence yโ€‹Sxโ€‹yyS_{x}y.

(2โ‡’1)(2\Rightarrow 1): Assume โˆ€x,yโˆˆWโ€‹(xโ€‹Rโ€‹yโ‡’yโ€‹Sxโ€‹y)\forall x,y\in W(xRy\Rightarrow yS_{x}y). Let yโˆˆWy\in W be such that xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A. Then yโ€‹Sxโ€‹yyS_{x}y, and thus we conclude xโŠฉAโŠณAx\Vdash A\rhd A. โˆŽ

We prove a similar equivalence concerning ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames.

Proposition 3.3.

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be any ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame. Then the following are equivalent:

  1. 1.

    ๐‰๐Ÿ\mathbf{J1} is valid in FF.

  2. 2.

    โˆ€x,yโˆˆWโ€‹(xโ€‹Rโ€‹yโ‡’yโ€‹Sxโ€‹{y})\forall x,y\in W(xRy\Rightarrow yS_{x}\{y\}).

Proof.

(1โ‡’2)(1\Rightarrow 2): Assume that ๐‰๐Ÿ\mathbf{J1} is valid in FF. Suppose xโ€‹Rโ€‹yxRy. Let โŠฉ\Vdash be a satisfaction relation on FF satisfying for any uโˆˆWu\in W, uโŠฉpu\Vdash p if and only if u=yu=y for some fixed propositional variable pp. Then yโŠฉpy\Vdash p. Since xโ€‹Rโ€‹yxRy and xโŠฉpโŠณpx\Vdash p\rhd p, there exists VโІWV\subseteq W such that yโ€‹Sxโ€‹VyS_{x}V and โˆ€zโˆˆVโ€‹(zโŠฉp)\forall z\in V(z\Vdash p). By the definition of โŠฉ\Vdash, V={y}V=\{y\} because VV is non-empty. We obtain yโ€‹Sxโ€‹{y}yS_{x}\{y\}.

(2โ‡’1)(2\Rightarrow 1): Assume โˆ€x,yโˆˆWโ€‹(xโ€‹Rโ€‹yโ‡’yโ€‹Sxโ€‹{y})\forall x,y\in W(xRy\Rightarrow yS_{x}\{y\}). Let yโˆˆWy\in W be such that xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A. Then yโ€‹Sxโ€‹{y}yS_{x}\{y\} and โˆ€zโˆˆ{y}โ€‹(zโŠฉA)\forall z\in\{y\}(z\Vdash A). Thus we conclude xโŠฉAโŠณAx\Vdash A\rhd A. โˆŽ

3.2 The axiom scheme ๐‰๐Ÿ’\mathbf{J4}

This subsection is devoted to investigating the axiom scheme ๐‰๐Ÿ’\mathbf{J4}.

๐‰๐Ÿ’\mathbf{J4}

(AโŠณB)โ†’(โ—‡โ€‹Aโ†’โ—‡โ€‹B)(A\rhd B)\to(\Diamond A\to\Diamond B).

First, we prove that ๐‰๐Ÿ’\mathbf{J4} is equivalent to the following axiom scheme ๐‰๐Ÿ’โ€ฒ\mathbf{J4}^{\prime} over ๐ˆ๐‹โˆ’\mathbf{IL}^{-}. The principle ๐‰๐Ÿ’โ€ฒ\mathbf{J4}^{\prime} is introduced in Visser [14].

๐‰๐Ÿ’โ€ฒ\mathbf{J4}^{\prime}

(AโŠณB)โ†’(BโŠณโŠฅโ†’AโŠณโŠฅ)(A\rhd B)\to(B\rhd\bot\to A\rhd\bot).

Proposition 3.4.

The logics ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’)\mathbf{IL}^{-}(\mathbf{J4}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’โ€ฒ)\mathbf{IL}^{-}(\mathbf{J4}^{\prime}) are deductively equivalent.

Proof.

This is because ๐ˆ๐‹โˆ’โŠข(โ—‡Aโ†’โ—‡B)โ†”(BโŠณโŠฅโ†’AโŠณโŠฅ)\mathbf{IL}^{-}\vdash(\Diamond A\to\Diamond B)\leftrightarrow(B\rhd\bot\to A\rhd\bot) by ๐‰๐Ÿ”\mathbf{J6}. โˆŽ

Since ๐‰๐Ÿ’โ€ฒ\mathbf{J4}^{\prime} is a particular instance of the axiom scheme ๐‰๐Ÿ\mathbf{J2}, we obtain the following corollary.

Corollary 3.5.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)โŠข๐‰๐Ÿ’\mathbf{IL}^{-}(\mathbf{J2})\vdash\mathbf{J4}.

The axiom scheme ๐‰๐Ÿ’\mathbf{J4} does not behave well by itself in the sense of modal completeness. In fact, we will prove in Section 6 that for instance, ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’)\mathbf{IL}^{-}(\mathbf{J4}) is not complete with respect to corresponding class of ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames. Thus we introduce a well-behaved axiom scheme ๐‰๐Ÿ’+\mathbf{J4}_{+} whose corresponding class of ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames is same as that of ๐‰๐Ÿ’\mathbf{J4}. The principle ๐‰๐Ÿ’+\mathbf{J4}_{+} is originally introduced in Visser [14]. We also introduce the schemata ๐‰๐Ÿ’+โ€ฒ\mathbf{J4}_{+}^{\prime} and ๐‰๐Ÿ’+โ€ฒโ€ฒ\mathbf{J4}_{+}^{\prime\prime} as follows:

๐‰๐Ÿ’+\mathbf{J4}_{+}

โ–กโ€‹(Aโ†’B)โ†’(CโŠณAโ†’CโŠณB)\Box(A\to B)\to(C\rhd A\to C\rhd B).

๐‰๐Ÿ’+โ€ฒ\mathbf{J4}_{+}^{\prime}

โ–กโ€‹Aโ†’(CโŠณ(Aโ†’B)โ†’CโŠณB)\Box A\to(C\rhd(A\to B)\to C\rhd B).

๐‰๐Ÿ’+โ€ฒโ€ฒ\mathbf{J4}_{+}^{\prime\prime}

โ–กโ€‹Aโ†’(CโŠณBโ†’CโŠณ(AโˆงB))\Box A\to(C\rhd B\to C\rhd(A\land B)).

Proposition 3.6.

The logics ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+)\mathbf{IL}^{-}(\mathbf{J4}_{+}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+โ€ฒ)\mathbf{IL}^{-}(\mathbf{J4}_{+}^{\prime}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+โ€ฒโ€ฒ)\mathbf{IL}^{-}(\mathbf{J4}_{+}^{\prime\prime}) are deductively equivalent.

Proof.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+)โŠข๐‰๐Ÿ’+โ€ฒ\mathbf{IL}^{-}(\mathbf{J4}_{+})\vdash\mathbf{J4}_{+}^{\prime}: Since ๐ˆ๐‹โˆ’โŠขAโ†’((Aโ†’B)โ†’B)\mathbf{IL}^{-}\vdash A\to((A\to B)\to B), ๐ˆ๐‹โˆ’โŠขโ–กโ€‹Aโ†’โ–กโ€‹((Aโ†’B)โ†’B)\mathbf{IL}^{-}\vdash\Box A\to\Box((A\to B)\to B). Then we have ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+)โŠขโ–กโ€‹Aโ†’(CโŠณ(Aโ†’B)โ†’CโŠณB)\mathbf{IL}^{-}(\mathbf{J4}_{+})\vdash\Box A\to(C\rhd(A\to B)\to C\rhd B).

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+โ€ฒ)โŠข๐‰๐Ÿ’+โ€ฒโ€ฒ\mathbf{IL}^{-}(\mathbf{J4}_{+}^{\prime})\vdash\mathbf{J4}_{+}^{\prime\prime}: Since ๐ˆ๐‹โˆ’โŠขBโ†’(Aโ†’AโˆงB)\mathbf{IL}^{-}\vdash B\to(A\to A\land B), ๐ˆ๐‹โˆ’โŠขCโŠณBโ†’CโŠณ(Aโ†’AโˆงB)\mathbf{IL}^{-}\vdash C\rhd B\to C\rhd(A\to A\land B) by the rule ๐‘๐Ÿ\mathbf{R1}. Then ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+โ€ฒ)โŠขโ–กโ€‹Aโ†’(CโŠณBโ†’CโŠณ(AโˆงB))\mathbf{IL}^{-}(\mathbf{J4}_{+}^{\prime})\vdash\Box A\to(C\rhd B\to C\rhd(A\land B)).

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+โ€ฒโ€ฒ)โŠข๐‰๐Ÿ’+\mathbf{IL}^{-}(\mathbf{J4}_{+}^{\prime\prime})\vdash\mathbf{J4}_{+}: By the axiom ๐‰๐Ÿ’+โ€ฒโ€ฒ\mathbf{J4}_{+}^{\prime\prime}, we have ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+โ€ฒโ€ฒ)โŠขโ–กโ€‹(Aโ†’B)โ†’(CโŠณAโ†’CโŠณ((Aโ†’B)โˆงA))\mathbf{IL}^{-}(\mathbf{J4}_{+}^{\prime\prime})\vdash\Box(A\to B)\to(C\rhd A\to C\rhd((A\to B)\land A)). Since ๐ˆ๐‹โˆ’โŠข(Aโ†’B)โˆงAโ†’B\mathbf{IL}^{-}\vdash(A\to B)\land A\to B, we have ๐ˆ๐‹โˆ’โŠขCโŠณ((Aโ†’B)โˆงA)โ†’CโŠณB\mathbf{IL}^{-}\vdash C\rhd((A\to B)\land A)\to C\rhd B by the rule ๐‘๐Ÿ\mathbf{R1}. Thus ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+โ€ฒโ€ฒ)โŠขโ–กโ€‹(Aโ†’B)โ†’(CโŠณAโ†’CโŠณB)\mathbf{IL}^{-}(\mathbf{J4}_{+}^{\prime\prime})\vdash\Box(A\to B)\to(C\rhd A\to C\rhd B). โˆŽ

The axiom scheme ๐‰๐Ÿ’+\mathbf{J4}_{+} is a strengthening of the inference rule ๐‘๐Ÿ\mathbf{R1}, and hence in extensions of ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+)\mathbf{IL}^{-}(\mathbf{J4}_{+}), the inference rule ๐‘๐Ÿ\mathbf{R1} is redundant.

We show that ๐‰๐Ÿ’+\mathbf{J4}_{+} implies ๐‰๐Ÿ’\mathbf{J4} over ๐ˆ๐‹โˆ’\mathbf{IL}^{-}.

Proposition 3.7.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+)โŠข๐‰๐Ÿ’\mathbf{IL}^{-}(\mathbf{J4}_{+})\vdash\mathbf{J4}.

Proof.

Since ๐ˆ๐‹โˆ’โŠขBโŠณโŠฅโ†’โ–กยฌB\mathbf{IL}^{-}\vdash B\rhd\bot\to\Box\neg B by ๐‰๐Ÿ”\mathbf{J6}, ๐ˆ๐‹โˆ’โŠขBโŠณโŠฅโ†’โ–ก(Bโ†’โŠฅ)\mathbf{IL}^{-}\vdash B\rhd\bot\to\Box(B\to\bot). Then by ๐‰๐Ÿ’+\mathbf{J4}_{+}, we have ๐ˆ๐‹โˆ’(๐‰๐Ÿ’+)โŠขAโŠณBโ†’(BโŠณโŠฅโ†’AโŠณโŠฅ)\mathbf{IL}^{-}(\mathbf{J4}_{+})\vdash A\rhd B\to(B\rhd\bot\to A\rhd\bot). By Proposition 3.4, we conclude ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+)โŠข๐‰๐Ÿ’\mathbf{IL}^{-}(\mathbf{J4}_{+})\vdash\mathbf{J4}. โˆŽ

We prove that ๐‰๐Ÿ’\mathbf{J4} and ๐‰๐Ÿ’+\mathbf{J4}_{+} have the same frame condition with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames. This is stated in Visser [14].

Proposition 3.8 (Visser [14]).

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be any ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame. Then the following are equivalent:

  1. 1.

    ๐‰๐Ÿ’+\mathbf{J4}_{+} is valid in FF.

  2. 2.

    ๐‰๐Ÿ’\mathbf{J4} is valid in FF.

  3. 3.

    โˆ€x,y,zโˆˆWโ€‹(yโ€‹Sxโ€‹zโ‡’xโ€‹Rโ€‹z)\forall x,y,z\in W(yS_{x}z\Rightarrow xRz).

Proof.

(1โ‡’2)(1\Rightarrow 2): By Proposition 3.7.

(2โ‡’3)(2\Rightarrow 3): Assume that ๐‰๐Ÿ’\mathbf{J4} is valid in FF. Suppose yโ€‹Sxโ€‹zyS_{x}z. Let โŠฉ\Vdash be a satisfaction relation on FF such that for any uโˆˆWu\in W, uโŠฉpu\Vdash p if and only if u=yu=y, and uโŠฉqu\Vdash q if and only if u=zu=z for some fixed propositional variables pp and qq. Then xโŠฉpโŠณqx\Vdash p\rhd q by the definition of โŠฉ\Vdash and our supposition. Since xโ€‹Rโ€‹yxRy and yโŠฉpy\Vdash p, we have xโŠฉโ—‡โ€‹px\Vdash\Diamond p. Then by the validity of ๐‰๐Ÿ’\mathbf{J4}, xโŠฉโ—‡โ€‹qx\Vdash\Diamond q. Hence there exists uโˆˆWu\in W such that xโ€‹Rโ€‹uxRu and uโŠฉqu\Vdash q. By the definition of โŠฉ\Vdash, we obtain xโ€‹Rโ€‹zxRz.

(3โ‡’1)(3\Rightarrow 1): Assume that โˆ€x,y,zโˆˆWโ€‹(yโ€‹Sxโ€‹zโ‡’xโ€‹Rโ€‹z)\forall x,y,z\in W(yS_{x}z\Rightarrow xRz). Suppose xโŠฉAโŠณBx\Vdash A\rhd B and xโŠฉโ—‡โ€‹Ax\Vdash\Diamond A. Then there exists yโˆˆWy\in W such that xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A and hence there exists zโˆˆWz\in W such that yโ€‹Sxโ€‹zyS_{x}z and zโŠฉBz\Vdash B. By the assumption xโ€‹Rโ€‹zxRz and therefore we obtain xโŠฉโ—‡โ€‹Bx\Vdash\Diamond B. That is, ๐‰๐Ÿ’+\mathbf{J4_{+}} is valid in FF. โˆŽ

On the other hand, ๐‰๐Ÿ’\mathbf{J4} and ๐‰๐Ÿ’+\mathbf{J4}_{+} can be distinguished by considering ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames. That is, these logics have different frame conditions with respect to ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames.

Proposition 3.9.

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be any ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame. Then the following are equivalent:

  1. 1.

    ๐‰๐Ÿ’\mathbf{J4} is valid in FF.

  2. 2.

    โˆ€x,yโˆˆW,โˆ€VโІWโ€‹(yโ€‹Sxโ€‹Vโ‡’โˆƒzโˆˆVโ€‹(xโ€‹Rโ€‹z))\forall x,y\in W,\forall V\subseteq W(yS_{x}V\Rightarrow\exists z\in V(xRz)).

Proof.

(1โ‡’2)(1\Rightarrow 2): Assume that ๐‰๐Ÿ’\mathbf{J4} is valid in FF, and suppose yโ€‹Sxโ€‹VyS_{x}V. Let โŠฉ\Vdash be a satisfaction relation on FF such that for any uโˆˆWu\in W, uโŠฉpu\Vdash p if and only if u=yu=y, and uโŠฉqu\Vdash q if and only if uโˆˆVu\in V for some fixed propositional variables pp and qq. Then xโŠฉpโŠณqx\Vdash p\rhd q because VV is non-empty. Since xโ€‹Rโ€‹yxRy and yโŠฉpy\Vdash p, we have xโŠฉโ—‡โ€‹px\Vdash\Diamond p. Then by the validity of ๐‰๐Ÿ’\mathbf{J4}, xโŠฉโ—‡โ€‹qx\Vdash\Diamond q. Hence there exists zโˆˆWz\in W such that xโ€‹Rโ€‹zxRz and zโŠฉqz\Vdash q. By the definition of โŠฉ\Vdash, we obtain zโˆˆVz\in V.

(2โ‡’1)(2\Rightarrow 1): Assume โˆ€x,yโˆˆW,โˆ€VโІWโ€‹(yโ€‹Sxโ€‹Vโ‡’โˆƒzโˆˆVโ€‹(xโ€‹Rโ€‹z))\forall x,y\in W,\forall V\subseteq W(yS_{x}V\Rightarrow\exists z\in V(xRz)). Suppose xโŠฉ(AโŠณB)โˆงโ—‡โ€‹Ax\Vdash(A\rhd B)\land\Diamond A. Then there exists yโˆˆWy\in W such that xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A, and also there exists a VโІWV\subseteq W such that yโ€‹Sxโ€‹VyS_{x}V and โˆ€zโˆˆVโ€‹(zโŠฉB)\forall z\in V(z\Vdash B). By the assumption, xโ€‹Rโ€‹zxRz for some zโˆˆVz\in V. Hence xโŠฉโ—‡โ€‹Bx\Vdash\Diamond B. This shows that ๐‰๐Ÿ’\mathbf{J4} is valid in FF. โˆŽ

Proposition 3.10.

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be any ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame. Then the following are equivalent:

  1. 1.

    ๐‰๐Ÿ’+\mathbf{J4}_{+} is valid in FF.

  2. 2.

    โˆ€x,yโˆˆW,โˆ€VโІWโ€‹(yโ€‹Sxโ€‹Vโ‡’yโ€‹Sxโ€‹(VโˆฉRโ€‹[x]))\forall x,y\in W,\forall V\subseteq W(yS_{x}V\Rightarrow yS_{x}(V\cap R[x])).

Proof.

(1โ‡’2)(1\Rightarrow 2): Assume that ๐‰๐Ÿ’+\mathbf{J4}_{+} is valid in FF. Suppose yโ€‹Sxโ€‹VyS_{x}V. Let โŠฉ\Vdash be a satisfaction relation on FF such that for any uโˆˆWu\in W, uโŠฉpu\Vdash p if and only if u=yu=y, uโŠฉqu\Vdash q if and only if uโˆˆVu\in V, and uโŠฉru\Vdash r if and only if (uโˆˆVu\in V and xโ€‹Rโ€‹uxRu), for some fixed propositional variables p,qp,q and rr. Then xโŠฉpโŠณqx\Vdash p\rhd q because VV is non-empty. Let yโˆˆWy\in W be any element such that xโ€‹Rโ€‹yxRy and yโŠฉqy\Vdash q, then yโˆˆVy\in V and xโ€‹Rโ€‹yxRy. This means yโŠฉry\Vdash r. Therefore xโŠฉโ–กโ€‹(qโ†’r)x\Vdash\Box(q\to r). By the validity of ๐‰๐Ÿ’+\mathbf{J4}_{+}, we obtain xโŠฉpโŠณrx\Vdash p\rhd r. Since xโ€‹Rโ€‹yxRy and yโŠฉpy\Vdash p, there exists a UโІWU\subseteq W such that yโ€‹Sxโ€‹UyS_{x}U and โˆ€zโˆˆUโ€‹(zโŠฉr)\forall z\in U(z\Vdash r). By the definition of โŠฉ\Vdash, for each zโˆˆUz\in U, zโˆˆVz\in V and xโ€‹Rโ€‹zxRz. That is, UโІVโˆฉRโ€‹[x]U\subseteq V\cap R[x]. By Monotonicity, we conclude yโ€‹Sxโ€‹(VโˆฉRโ€‹[x])yS_{x}(V\cap R[x]).

(2โ‡’1)(2\Rightarrow 1): Assume โˆ€x,yโˆˆW,โˆ€VโІWโ€‹(yโ€‹Sxโ€‹Vโ‡’yโ€‹Sxโ€‹(VโˆฉRโ€‹[x]))\forall x,y\in W,\forall V\subseteq W(yS_{x}V\Rightarrow yS_{x}(V\cap R[x])). Suppose xโŠฉ(AโŠณB)โˆงโ–กโ€‹(Bโ†’C)x\Vdash(A\rhd B)\land\Box(B\to C). Let yโˆˆWy\in W be such that xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A, then there exists a VโІWV\subseteq W such that yโ€‹Sxโ€‹VyS_{x}V and โˆ€zโˆˆVโ€‹(zโŠฉB)\forall z\in V(z\Vdash B). By the assumption, yโ€‹Sxโ€‹(VโˆฉRโ€‹[x])yS_{x}(V\cap R[x]). In particular, for each zโˆˆVโˆฉRโ€‹[x]z\in V\cap R[x], zโŠฉBz\Vdash B and zโŠฉBโ†’Cz\Vdash B\to C, and hence zโŠฉCz\Vdash C. We have shown xโŠฉAโŠณCx\Vdash A\rhd C. Therefore ๐‰๐Ÿ’+\mathbf{J4}_{+} is valid in FF. โˆŽ

By Proposition 3.10, when we consider logics containing ๐‰๐Ÿ’+\mathbf{J4}_{+}, for each ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle, we may assume that for every xโˆˆWx\in W, SxS_{x} is a relation on Rโ€‹[x]ร—(๐’ซโ€‹(Rโ€‹[x])โˆ–{โˆ…})R[x]\times(\mathcal{P}(R[x])\setminus\{\emptyset\}). This is required in the usual definition of ๐ˆ๐‹set\mathbf{IL}_{\textrm{set}}-frames (see [16, 9]).

3.3 The axiom scheme ๐‰๐Ÿ\mathbf{J2}

In this subsection, we discuss the axiom scheme ๐‰๐Ÿ\mathbf{J2}.

๐‰๐Ÿ\mathbf{J2}

(AโŠณB)โˆง(BโŠณC)โ†’AโŠณC(A\rhd B)\land(B\rhd C)\to A\rhd C.

As in the case of the axiom ๐‰๐Ÿ’\mathbf{J4}, we introduce the following new axiom schemata ๐‰๐Ÿ+\mathbf{J2}_{+} and ๐‰๐Ÿ+โ€ฒ\mathbf{J2}_{+}^{\prime} which are stronger than ๐‰๐Ÿ\mathbf{J2}.

๐‰๐Ÿ+\mathbf{J2}_{+}

(AโŠณ(BโˆจC))โˆง(BโŠณC)โ†’AโŠณC(A\rhd(B\lor C))\land(B\rhd C)\to A\rhd C.

๐‰๐Ÿ+โ€ฒ\mathbf{J2}_{+}^{\prime}

(AโŠณB)โˆง((BโˆงยฌC)โŠณC)โ†’AโŠณC(A\rhd B)\land((B\land\neg C)\rhd C)\to A\rhd C.

Proposition 3.11.

The logics ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+)\mathbf{IL}^{-}(\mathbf{J2}_{+}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+โ€ฒ)\mathbf{IL}^{-}(\mathbf{J2}_{+}^{\prime}) are deductively equivalent.

Proof.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+)โŠข๐‰๐Ÿ+โ€ฒ\mathbf{IL}^{-}(\mathbf{J2}_{+})\vdash\mathbf{J2}_{+}^{\prime}: Since ๐ˆ๐‹โˆ’โŠขBโ†’(BโˆงยฌC)โˆจC\mathbf{IL}^{-}\vdash B\to(B\land\neg C)\lor C, we have ๐ˆ๐‹โˆ’โŠขAโŠณBโ†’AโŠณ((BโˆงยฌC)โˆจC)\mathbf{IL}^{-}\vdash A\rhd B\to A\rhd((B\land\neg C)\lor C) by the rule ๐‘๐Ÿ\mathbf{R1}. Then ๐ˆ๐‹โˆ’โŠข(AโŠณB)โˆง((BโˆงยฌC)โŠณC)โ†’(AโŠณ((BโˆงยฌC)โˆจC))โˆง((BโˆงยฌC)โŠณC)\mathbf{IL}^{-}\vdash(A\rhd B)\land((B\land\neg C)\rhd C)\to(A\rhd((B\land\neg C)\lor C))\land((B\land\neg C)\rhd C). Thus ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+)โŠข(AโŠณB)โˆง((BโˆงยฌC)โŠณC)โ†’AโŠณC\mathbf{IL}^{-}(\mathbf{J2}_{+})\vdash(A\rhd B)\land((B\land\neg C)\rhd C)\to A\rhd C.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+โ€ฒ)โŠข๐‰๐Ÿ+\mathbf{IL}^{-}(\mathbf{J2}_{+}^{\prime})\vdash\mathbf{J2}_{+}: Since ๐ˆ๐‹โˆ’โŠข(BโˆจC)โˆงยฌCโ†’B\mathbf{IL}^{-}\vdash(B\lor C)\land\neg C\to B, ๐ˆ๐‹โˆ’โŠขBโŠณCโ†’((BโˆจC)โˆงยฌC)โŠณC\mathbf{IL}^{-}\vdash B\rhd C\to((B\lor C)\land\neg C)\rhd C by the rule ๐‘๐Ÿ\mathbf{R2}. Then ๐ˆ๐‹โˆ’โŠข(AโŠณ(BโˆจC))โˆง(BโŠณC)โ†’(AโŠณ(BโˆจC))โˆง((BโˆจC)โˆงยฌC)โŠณC\mathbf{IL}^{-}\vdash(A\rhd(B\lor C))\land(B\rhd C)\to(A\rhd(B\lor C))\land((B\lor C)\land\neg C)\rhd C. Therefore we conclude ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+โ€ฒ)โŠข(AโŠณ(BโˆจC))โˆง(BโŠณC)โ†’AโŠณC\mathbf{IL}^{-}(\mathbf{J2}_{+}^{\prime})\vdash(A\rhd(B\lor C))\land(B\rhd C)\to A\rhd C. โˆŽ

The axiom scheme ๐‰๐Ÿ+\mathbf{J2}_{+} is slightly stronger than ๐‰๐Ÿ\mathbf{J2}. In fact, the following proposition shows that ๐‰๐Ÿ\mathbf{J2} and ๐‰๐Ÿ+\mathbf{J2}_{+} are equivalent over the logic ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J1}).

Proposition 3.12.
  1. 1.

    ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+)โŠข๐‰๐Ÿ\mathbf{IL}^{-}(\mathbf{J2}_{+})\vdash\mathbf{J2}.

  2. 2.

    ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)โŠข๐‰๐Ÿ+\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2})\vdash\mathbf{J2}_{+}.

Proof.

1. This is because ๐ˆ๐‹โˆ’โŠขAโŠณBโ†’AโŠณ(BโˆจC)\mathbf{IL}^{-}\vdash A\rhd B\to A\rhd(B\lor C).

2. Since ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)โŠขBโŠณCโ†’(BโˆจC)โŠณC\mathbf{IL}^{-}(\mathbf{J1})\vdash B\rhd C\to(B\lor C)\rhd C by ๐‰๐Ÿ\mathbf{J1} and ๐‰๐Ÿ‘\mathbf{J3}, we have ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)โŠข(AโŠณ(BโˆจC))โˆง(BโŠณC)โ†’AโŠณC\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2})\vdash(A\rhd(B\lor C))\land(B\rhd C)\to A\rhd C. โˆŽ

We proved in Corollary 3.5 that ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J2}) proves ๐‰๐Ÿ’\mathbf{J4}. Analogously, we prove that ๐‰๐Ÿ+\mathbf{J2}_{+} is stronger than ๐‰๐Ÿ’+\mathbf{J4}_{+} over ๐ˆ๐‹โˆ’\mathbf{IL}^{-}.

Proposition 3.13.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+)โŠข๐‰๐Ÿ’+\mathbf{IL}^{-}(\mathbf{J2}_{+})\vdash\mathbf{J4}_{+}.

Proof.

Since ๐ˆ๐‹โˆ’โŠขโ–กโ€‹(Aโ†’B)โ†’โ–กโ€‹ยฌ(AโˆงยฌB)\mathbf{IL}^{-}\vdash\Box(A\to B)\to\Box\neg(A\land\neg B), we have ๐ˆ๐‹โˆ’โŠขโ–กโ€‹(Aโ†’B)โ†’(AโˆงยฌB)โŠณB\mathbf{IL}^{-}\vdash\Box(A\to B)\to(A\land\neg B)\rhd B by Proposition 2.5.1. Then ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+โ€ฒ)โŠขโ–กโ€‹(Aโ†’B)โ†’(CโŠณAโ†’CโŠณB)\mathbf{IL}^{-}(\mathbf{J2}_{+}^{\prime})\vdash\Box(A\to B)\to(C\rhd A\to C\rhd B). By Proposition 3.11, we obtain ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+)โŠข๐‰๐Ÿ’+\mathbf{IL}^{-}(\mathbf{J2}_{+})\vdash\mathbf{J4}_{+}. โˆŽ

The following corollary is straightforward from Propositions 3.12.2 and 3.13.

Corollary 3.14.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)โŠข๐‰๐Ÿ’+\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2})\vdash\mathbf{J4}_{+}.

We prove that ๐‰๐Ÿ\mathbf{J2} and ๐‰๐Ÿ+\mathbf{J2}_{+} have the same frame condition with respect to the ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames.

Proposition 3.15.

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be any ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame. Then the following are equivalent:

  1. 1.

    ๐‰๐Ÿ+\mathbf{J2}_{+} is valid in FF.

  2. 2.

    ๐‰๐Ÿ\mathbf{J2} is valid in FF.

  3. 3.

    ๐‰๐Ÿ’\mathbf{J4} is valid in FF and for any xโˆˆWx\in W, SxS_{x} is transitive.

Proof.

(1โ‡’2)(1\Rightarrow 2): By Proposition 3.12.1.

(2โ‡’3)(2\Rightarrow 3): This is proved in Visser [14].

(3โ‡’1)(3\Rightarrow 1): Assume that ๐‰๐Ÿ’\mathbf{J4} is valid in FF and for any xโˆˆWx\in W, SxS_{x} is transitive. Suppose xโŠฉ(AโŠณ(BโˆจC))โˆง(BโŠณC)x\Vdash(A\rhd(B\lor C))\land(B\rhd C). Let yโˆˆWy\in W be any element such that xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A. Then there exists zโˆˆWz\in W such that yโ€‹Sxโ€‹zyS_{x}z and zโŠฉBโˆจCz\Vdash B\lor C. We shall show that there exists uโˆˆWu\in W such that yโ€‹Sxโ€‹uyS_{x}u and uโŠฉCu\Vdash C. If zโŠฉCz\Vdash C, then this is done. If zโŠฎCz\nVdash C, then zโŠฉBz\Vdash B. Since xโ€‹Rโ€‹zxRz, by our supposition, there exists uโˆˆWu\in W such that zโ€‹Sxโ€‹uzS_{x}u and uโŠฉCu\Vdash C. By the transitivity of SxS_{x}, we obtain yโ€‹Sxโ€‹uyS_{x}u.

Therefore we conclude xโŠฉAโŠณCx\Vdash A\rhd C. That is to say, ๐‰๐Ÿ+\mathbf{J2}_{+} is valid in FF. โˆŽ

We prove that ๐‰๐Ÿ\mathbf{J2} and ๐‰๐Ÿ+\mathbf{J2}_{+} have different frame conditions with respect to ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames.

Proposition 3.16.

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be an ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame. Then the following are equivalent:

  1. 1.

    ๐‰๐Ÿ\mathbf{J2} is valid in FF.

  2. 2.

    ๐‰๐Ÿ’\mathbf{J4} is valid in FF and

    โˆ€x,yโˆˆW,โˆ€VโІWโ€‹(yโ€‹Sxโ€‹V&โˆ€zโˆˆVโˆฉRโ€‹[x]โ€‹(zโ€‹Sxโ€‹Uz)โ‡’yโ€‹Sxโ€‹(โ‹ƒzโˆˆVโˆฉRโ€‹[x]Uz)).\forall x,y\in W,\forall V\subseteq W\left(yS_{x}V\ \&\ \forall z\in V\cap R[x](zS_{x}U_{z})\Rightarrow yS_{x}\left(\bigcup_{z\in V\cap R[x]}U_{z}\right)\right).
Proof.

(1โ‡’2)(1\Rightarrow 2): Assume that ๐‰๐Ÿ\mathbf{J2} is valid in FF. Then by Corollary 3.5, ๐‰๐Ÿ’\mathbf{J4} is valid in FF. Suppose yโ€‹Sxโ€‹VyS_{x}V and โˆ€zโˆˆVโˆฉRโ€‹[x]โ€‹(zโ€‹Sxโ€‹Uz)\forall z\in V\cap R[x](zS_{x}U_{z}). Let โŠฉ\Vdash be a satisfaction relation on FF such that for any uโˆˆWu\in W, uโŠฉpu\Vdash p if and only if u=yu=y, uโŠฉqu\Vdash q if and only if uโˆˆVu\in V, and uโŠฉru\Vdash r if and only if โˆƒzโˆˆVโˆฉRโ€‹[x]โ€‹(uโˆˆUz)\exists z\in V\cap R[x](u\in U_{z}). Then xโŠฉpโŠณqx\Vdash p\rhd q and xโŠฉqโŠณrx\Vdash q\rhd r. By the validity of ๐‰๐Ÿ\mathbf{J2}, xโŠฉpโŠณrx\Vdash p\rhd r. Since xโ€‹Rโ€‹yxRy and yโŠฉpy\Vdash p, there exists a UโІWU\subseteq W such that yโ€‹Sxโ€‹UyS_{x}U and โˆ€wโˆˆUโ€‹(wโŠฉr)\forall w\in U(w\Vdash r). By the definition of โŠฉ\Vdash, UโІโ‹ƒzโˆˆVโˆฉRโ€‹[x]UzU\subseteq\bigcup_{z\in V\cap R[x]}U_{z}. By Monotonicity, yโ€‹Sxโ€‹(โ‹ƒzโˆˆVโˆฉRโ€‹[x]Uz)yS_{x}(\bigcup_{z\in V\cap R[x]}U_{z}).

(2โ‡’1)(2\Rightarrow 1): Assume that ๐‰๐Ÿ’\mathbf{J4} is valid in FF and โˆ€x,yโˆˆW,โˆ€VโІWโ€‹(yโ€‹Sxโ€‹V&โˆ€zโˆˆVโˆฉRโ€‹[x]โ€‹(zโ€‹Sxโ€‹Uz)โ‡’yโ€‹Sxโ€‹(โ‹ƒzโˆˆVโˆฉRโ€‹[x]Uz))\forall x,y\in W,\forall V\subseteq W(yS_{x}V\ \&\ \forall z\in V\cap R[x](zS_{x}U_{z})\Rightarrow yS_{x}(\bigcup_{z\in V\cap R[x]}U_{z})). Suppose xโŠฉ(AโŠณB)โˆง(BโŠณC)x\Vdash(A\rhd B)\land(B\rhd C). Let yโˆˆWy\in W be any element with xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A. Then there exists a VโІWV\subseteq W such that yโ€‹Sxโ€‹VyS_{x}V and โˆ€zโˆˆVโ€‹(zโŠฉB)\forall z\in V(z\Vdash B). Since ๐‰๐Ÿ’\mathbf{J4} is valid in FF, we have VโˆฉRโ€‹[x]โ‰ โˆ…V\cap R[x]\neq\emptyset. Then for each zโˆˆVโˆฉRโ€‹[x]z\in V\cap R[x], there exists UzโІWU_{z}\subseteq W such that zโ€‹Sxโ€‹UzzS_{x}U_{z} and โˆ€wโˆˆUzโ€‹(wโŠฉC)\forall w\in U_{z}(w\Vdash C). By the assumption, yโ€‹Sxโ€‹(โ‹ƒzโˆˆVโˆฉRโ€‹[x]Uz)yS_{x}(\bigcup_{z\in V\cap R[x]}U_{z}) because the set โ‹ƒzโˆˆVโˆฉRโ€‹[x]Uz\bigcup_{z\in V\cap R[x]}U_{z} is non-empty. Also โˆ€wโˆˆโ‹ƒzโˆˆVโˆฉRโ€‹[x]Uzโ€‹(wโŠฉC)\forall w\in\bigcup_{z\in V\cap R[x]}U_{z}(w\Vdash C). We have shown wโŠฉAโŠณCw\Vdash A\rhd C. Hence ๐‰๐Ÿ\mathbf{J2} is valid in FF. โˆŽ

The condition โˆ€x,yโˆˆW,โˆ€VโІWโ€‹(yโ€‹Sxโ€‹V&โˆ€zโˆˆVโˆฉRโ€‹[x]โ€‹(zโ€‹Sxโ€‹Uz)โ‡’yโ€‹Sxโ€‹(โ‹ƒzโˆˆVโˆฉRโ€‹[x]Uz))\forall x,y\in W,\forall V\subseteq W(yS_{x}V\ \&\ \forall z\in V\cap R[x](zS_{x}U_{z})\Rightarrow yS_{x}(\bigcup_{z\in V\cap R[x]}U_{z})) stated in Proposition 3.16 is required in the usual definition of ๐ˆ๐‹set\mathbf{IL}_{\textrm{set}}-frames.

Proposition 3.17.

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be any ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame. Then the following are equivalent:

  1. 1.

    ๐‰๐Ÿ+\mathbf{J2}_{+} is valid in FF.

  2. 2.

    ๐‰๐Ÿ’\mathbf{J4} is valid in FF and

    โˆ€x,yโˆˆW,โˆ€V0,V1โІWโ€‹(yโ€‹Sxโ€‹(V0โˆชV1)&โˆ€zโˆˆV0โˆฉRโ€‹[x]โ€‹(zโ€‹Sxโ€‹Uz)โ‡’yโ€‹Sxโ€‹(โ‹ƒzโˆˆV0โˆฉRโ€‹[x]UzโˆชV1)).\forall x,y\in W,\forall V_{0},V_{1}\subseteq W\left(yS_{x}(V_{0}\cup V_{1})\ \&\ \forall z\in V_{0}\cap R[x](zS_{x}U_{z})\Rightarrow yS_{x}\left(\bigcup_{z\in V_{0}\cap R[x]}U_{z}\cup V_{1}\right)\right).
Proof.

(1โ‡’2)(1\Rightarrow 2): Assume ๐‰๐Ÿ+\mathbf{J2}_{+} is valid in FF. Since ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+)โŠข๐‰๐Ÿ’\mathbf{IL}^{-}(\mathbf{J2}_{+})\vdash\mathbf{J4}, ๐‰๐Ÿ’\mathbf{J4} is also valid in FF. Suppose yโ€‹Sxโ€‹(V0โˆชV1)yS_{x}(V_{0}\cup V_{1}) and โˆ€zโˆˆV0โˆฉRโ€‹[x]โ€‹(zโ€‹Sxโ€‹Uz)\forall z\in V_{0}\cap R[x](zS_{x}U_{z}). Let โŠฉ\Vdash be a satisfaction relation on FF such that for any uโˆˆWu\in W, uโŠฉpu\Vdash p if and only if u=yu=y, uโŠฉqu\Vdash q if and only if uโˆˆV0u\in V_{0}, and uโŠฉru\Vdash r if and only if (โˆƒzโˆˆV0โˆฉRโ€‹[x]โ€‹(uโˆˆUz)\exists z\in V_{0}\cap R[x](u\in U_{z}) or uโˆˆV1u\in V_{1}). Then xโŠฉpโŠณ(qโˆจr)x\Vdash p\rhd(q\lor r) and xโŠฉqโŠณrx\Vdash q\rhd r. By the validity of ๐‰๐Ÿ+\mathbf{J2}_{+}, xโŠฉpโŠณrx\Vdash p\rhd r. Since xโ€‹Rโ€‹yxRy and yโŠฉpy\Vdash p, there exists a UโІWU\subseteq W such that yโ€‹Sxโ€‹UyS_{x}U and โˆ€wโˆˆUโ€‹(wโŠฉr)\forall w\in U(w\Vdash r). Then by the definition of โŠฉ\Vdash, we have UโІโ‹ƒzโˆˆV0โˆฉRโ€‹[x]UzโˆชV1U\subseteq\bigcup_{z\in V_{0}\cap R[x]}U_{z}\cup V_{1}. By Monotonicity, yโ€‹Sxโ€‹(โ‹ƒzโˆˆV0โˆฉRโ€‹[x]UzโˆชV1)yS_{x}(\bigcup_{z\in V_{0}\cap R[x]}U_{z}\cup V_{1}).

(2โ‡’1)(2\Rightarrow 1): Assume that ๐‰๐Ÿ’\mathbf{J4} is valid in FF and โˆ€x,yโˆˆW,โˆ€V0,V1โІWโ€‹(yโ€‹Sxโ€‹(V0โˆชV1)&โˆ€zโˆˆV0โˆฉRโ€‹[x]โ€‹(zโ€‹Sxโ€‹Uz)โ‡’yโ€‹Sxโ€‹(โ‹ƒzโˆˆV0โˆฉRโ€‹[x]UzโˆชV1))\forall x,y\in W,\forall V_{0},V_{1}\subseteq W(yS_{x}(V_{0}\cup V_{1})\ \&\ \forall z\in V_{0}\cap R[x](zS_{x}U_{z})\Rightarrow yS_{x}(\bigcup_{z\in V_{0}\cap R[x]}U_{z}\cup V_{1})). Let xโŠฉ(AโŠณ(BโˆจC))โˆง(BโŠณC)x\Vdash(A\rhd(B\lor C))\land(B\rhd C). Let yโˆˆWy\in W be such that xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A, then there exists a VโІWV\subseteq W such that yโ€‹Sxโ€‹VyS_{x}V and โˆ€zโˆˆVโ€‹(zโŠฉBโˆจC)\forall z\in V(z\Vdash B\lor C). Since ๐‰๐Ÿ’\mathbf{J4} is valid, we have VโˆฉRโ€‹[x]โ‰ โˆ…V\cap R[x]\neq\emptyset. Let V0:={zโˆˆV:zโŠฉB}V_{0}:=\{z\in V:z\Vdash B\} and V1:={zโˆˆV:zโŠฉC}V_{1}:=\{z\in V:z\Vdash C\}, then V=V0โˆชV1V=V_{0}\cup V_{1}. In particular, for each zโˆˆV0โˆฉRโ€‹[x]z\in V_{0}\cap R[x], there exists a UzโІWU_{z}\subseteq W such that zโ€‹Sxโ€‹UzzS_{x}U_{z} and โˆ€wโˆˆUzโ€‹(wโŠฉC)\forall w\in U_{z}(w\Vdash C). By the assumption, we have yโ€‹Sxโ€‹(โ‹ƒzโˆˆV0โˆฉRโ€‹[x]UzโˆชV1)yS_{x}(\bigcup_{z\in V_{0}\cap R[x]}U_{z}\cup V_{1}) because โ‹ƒzโˆˆV0โˆฉRโ€‹[x]UzโˆชV1\bigcup_{z\in V_{0}\cap R[x]}U_{z}\cup V_{1} is non-empty. Since โˆ€wโˆˆโ‹ƒzโˆˆV0โˆฉRโ€‹[x]UzโˆชV1โ€‹(wโŠฉC)\forall w\in\bigcup_{z\in V_{0}\cap R[x]}U_{z}\cup V_{1}(w\Vdash C), we obtain wโŠฉAโŠณCw\Vdash A\rhd C. Therefore ๐‰๐Ÿ+\mathbf{J2}_{+} is valid in FF. โˆŽ

3.4 The axiom scheme ๐‰๐Ÿ“\mathbf{J5}

We investigate ๐‰๐Ÿ“\mathbf{J5}.

๐‰๐Ÿ“\mathbf{J5}

โ—‡โ€‹AโŠณA\Diamond A\rhd A.

The following proposition is stated in Visser [14].

Proposition 3.18 (Visser [14]).

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be any ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame. The following are equivalent:

  1. 1.

    ๐‰๐Ÿ“\mathbf{J5} is valid in FF.

  2. 2.

    โˆ€x,y,zโˆˆWโ€‹(xโ€‹Rโ€‹y&yโ€‹Rโ€‹zโ‡’yโ€‹Sxโ€‹z)\forall x,y,z\in W(xRy\ \&\ yRz\Rightarrow yS_{x}z).

Proof.

(1โ‡’2)(1\Rightarrow 2): Assume that ๐‰๐Ÿ“\mathbf{J5} is valid in FF. Suppose xโ€‹Rโ€‹yxRy and yโ€‹Rโ€‹zyRz. Let โŠฉ\Vdash be a satisfaction relation on FF such that for any uโˆˆWu\in W, uโŠฉpu\Vdash p if and only if u=zu=z for some fixed propositional variable pp. Then yโ€‹Rโ€‹zyRz and zโŠฉpz\Vdash p, and hence yโŠฉโ—‡โ€‹py\Vdash\Diamond p. Since xโ€‹Rโ€‹yxRy and xโŠฉโ—‡โ€‹pโŠณpx\Vdash\Diamond p\rhd p, there exists uโˆˆWu\in W such that yโ€‹Sxโ€‹uyS_{x}u and uโŠฉp)u\Vdash p). By the definition of โŠฉ\Vdash, we have u=zu=z. Therefore yโ€‹Sxโ€‹zyS_{x}z.

(2โ‡’1)(2\Rightarrow 1): Assume that โˆ€x,y,zโˆˆWโ€‹(xโ€‹Rโ€‹y&yโ€‹Rโ€‹zโ‡’yโ€‹Sxโ€‹z)\forall x,y,z\in W(xRy\ \&\ yRz\Rightarrow yS_{x}z). Let โŠฉ\Vdash be any satisfaction relation on FF. Let yโˆˆWy\in W be any element such that xโ€‹Rโ€‹yxRy and yโŠฉโ—‡โ€‹Ay\Vdash\Diamond A. Then there exists zโˆˆWz\in W such that yโ€‹Rโ€‹zyRz and zโŠฉAz\Vdash A. By the assumption, yโ€‹Sxโ€‹zyS_{x}z and hence we obtain xโŠฉโ—‡โ€‹AโŠณAx\Vdash\Diamond A\rhd A. That is, ๐‰๐Ÿ“\mathbf{J5} is valid in FF. โˆŽ

Proposition 3.19.

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be any ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame. Then the following are equivalent:

  1. 1.

    ๐‰๐Ÿ“\mathbf{J5} is valid in FF.

  2. 2.

    โˆ€x,y,zโˆˆWโ€‹(xโ€‹Rโ€‹y&yโ€‹Rโ€‹zโ‡’yโ€‹Sxโ€‹{z})\forall x,y,z\in W(xRy\ \&\ yRz\Rightarrow yS_{x}\{z\}).

Proof.

(1โ‡’2)(1\Rightarrow 2): Assume that ๐‰๐Ÿ“\mathbf{J5} is valid in FF. Suppose xโ€‹Rโ€‹yxRy and yโ€‹Rโ€‹zyRz. Let โŠฉ\Vdash be a satisfaction relation on FF such that for any uโˆˆWu\in W, uโŠฉpu\Vdash p if and only if u=zu=z for some fixed propositional variable pp. Then yโ€‹Rโ€‹zyRz and zโŠฉpz\Vdash p, and hence yโŠฉโ—‡โ€‹py\Vdash\Diamond p. Since xโ€‹Rโ€‹yxRy and xโŠฉโ—‡โ€‹pโŠณpx\Vdash\Diamond p\rhd p, there exists a VโІWV\subseteq W such that yโ€‹Sxโ€‹VyS_{x}V and โˆ€wโˆˆVโ€‹(wโŠฉp)\forall w\in V(w\Vdash p). By the definition of โŠฉ\Vdash, we have V={z}V=\{z\}. Therefore yโ€‹Sxโ€‹{z}yS_{x}\{z\}.

(2โ‡’1)(2\Rightarrow 1): Assume โˆ€x,y,zโˆˆWโ€‹(xโ€‹Rโ€‹y&yโ€‹Rโ€‹zโ‡’yโ€‹Sxโ€‹{z})\forall x,y,z\in W(xRy\ \&\ yRz\Rightarrow yS_{x}\{z\}). Let yโˆˆWy\in W be any element such that xโ€‹Rโ€‹yxRy and yโŠฉโ—‡โ€‹Ay\Vdash\Diamond A. Then there exists zโˆˆWz\in W such that yโ€‹Rโ€‹zyRz and zโŠฉAz\Vdash A. By the assumption, yโ€‹Sxโ€‹{z}yS_{x}\{z\}. Since โˆ€wโˆˆ{z}โ€‹(wโŠฉA)\forall w\in\{z\}(w\Vdash A), we obtain xโŠฉโ—‡โ€‹AโŠณAx\Vdash\Diamond A\rhd A. That is, ๐‰๐Ÿ“\mathbf{J5} is valid in FF. โˆŽ

The condition stated in the second clause in Proposition 3.19 is required in the original definition of ๐ˆ๐‹set\mathbf{IL}_{\textrm{set}}-frames.

3.5 The logics ๐‚๐‹\mathbf{CL} and ๐ˆ๐‹\mathbf{IL}

In this subsection, we show that the logics ๐‚๐‹\mathbf{CL} and ๐ˆ๐‹\mathbf{IL} are exactly ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2},\mathbf{J5}), respectively. Since ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2},\mathbf{J5}) proves ๐‰๐Ÿ’\mathbf{J4}, ๐‰๐Ÿ’+\mathbf{J4}_{+} and ๐‰๐Ÿ+\mathbf{J2}_{+} by Propositions 3.7, 3.12 and Corollary 3.14, our logics studied in this paper are actually sublogics of ๐ˆ๐‹\mathbf{IL}. The logic ๐‚๐‹\mathbf{CL} is ๐†๐‹\mathbf{GL} plus ๐‰๐Ÿ\mathbf{J1}, ๐‰๐Ÿ\mathbf{J2}, ๐‰๐Ÿ‘\mathbf{J3} and ๐‰๐Ÿ’\mathbf{J4}. Also the logic ๐ˆ๐‹\mathbf{IL} is ๐‚๐‹\mathbf{CL} plus ๐‰๐Ÿ“\mathbf{J5}.

Proposition 3.20.
  1. 1.

    ๐‚๐‹โŠขโ–กAโ†”(ยฌA)โŠณโŠฅ\mathbf{CL}\vdash\Box A\leftrightarrow(\neg A)\rhd\bot.

  2. 2.

    ๐‚๐‹โŠขโ–กโ€‹(Aโ†’B)โ†’(CโŠณAโ†’CโŠณB)\mathbf{CL}\vdash\Box(A\to B)\to(C\rhd A\to C\rhd B).

  3. 3.

    ๐‚๐‹โŠขโ–กโ€‹(Aโ†’B)โ†’(BโŠณCโ†’AโŠณC)\mathbf{CL}\vdash\Box(A\to B)\to(B\rhd C\to A\rhd C).

Proof.

1. (โ†’)(\rightarrow): Since ๐‚๐‹โŠขโ–กโ€‹Aโ†’โ–กโ€‹(ยฌAโ†’โŠฅ)\mathbf{CL}\vdash\Box A\to\Box(\neg A\to\bot), ๐‚๐‹โŠขโ–กAโ†’(ยฌA)โŠณโŠฅ\mathbf{CL}\vdash\Box A\to(\neg A)\rhd\bot by ๐‰๐Ÿ\mathbf{J1}.

(โ†)(\leftarrow): By ๐‰๐Ÿ’\mathbf{J4}, ๐‚๐‹โŠข(ยฌA)โŠณโŠฅโ†’(โ—‡ยฌAโ†’โ—‡โŠฅ)\mathbf{CL}\vdash(\neg A)\rhd\bot\to(\Diamond\neg A\to\Diamond\bot). Since ๐‚๐‹โŠขยฌโ—‡โŠฅ\mathbf{CL}\vdash\neg\Diamond\bot, ๐‚๐‹โŠข(ยฌA)โŠณโŠฅโ†’ยฌโ—‡ยฌA\mathbf{CL}\vdash(\neg A)\rhd\bot\to\neg\Diamond\neg A. That is, ๐‚๐‹โŠข(ยฌA)โŠณโŠฅโ†’โ–กA\mathbf{CL}\vdash(\neg A)\rhd\bot\to\Box A.

2. This is because ๐‚๐‹โŠขโ–กโ€‹(Aโ†’B)โ†’AโŠณB\mathbf{CL}\vdash\Box(A\to B)\to A\rhd B by ๐‰๐Ÿ\mathbf{J1} and ๐‚๐‹โŠข(CโŠณA)โˆง(AโŠณB)โ†’CโŠณB\mathbf{CL}\vdash(C\rhd A)\land(A\rhd B)\to C\rhd B by ๐‰๐Ÿ\mathbf{J2}.

3. This is because ๐‚๐‹โŠขโ–กโ€‹(Aโ†’B)โ†’AโŠณB\mathbf{CL}\vdash\Box(A\to B)\to A\rhd B by ๐‰๐Ÿ\mathbf{J1} and ๐‚๐‹โŠข(AโŠณB)โˆง(BโŠณC)โ†’AโŠณC\mathbf{CL}\vdash(A\rhd B)\land(B\rhd C)\to A\rhd C by ๐‰๐Ÿ\mathbf{J2}. โˆŽ

Proposition 3.21.

The logics ๐‚๐‹\mathbf{CL} and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2}) are deductively equivalent.

Proof.

๐‚๐‹โŠข๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)\mathbf{CL}\vdash\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2}): This follows from Proposition 3.20.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)โŠข๐‚๐‹\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2})\vdash\mathbf{CL}: This is because ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)โŠข๐‰๐Ÿ’\mathbf{IL}^{-}(\mathbf{J2})\vdash\mathbf{J4} by Corollary 3.5. โˆŽ

Corollary 3.22.

The logics ๐ˆ๐‹\mathbf{IL} and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2},\mathbf{J5}) are deductively equivalent.

Then de Jongh and Veltmanโ€™s and Ignatievโ€™s theorems are restated as follows:

Theorem 3.23 (de Jongh and Veltman [3]).

For any formula AA, the following are equivalent:

  1. 1.

    ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ,๐‰๐Ÿ“)โŠขA\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2},\mathbf{J5})\vdash A.

  2. 2.

    AA is valid in all finite ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames where all axioms of ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2},\mathbf{J5}) are valid.

Theorem 3.24 (Ignatiev [6]).

For any formula AA, the following are equivalent:

  1. 1.

    ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)โŠขA\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2})\vdash A.

  2. 2.

    AA is valid in all finite ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames where all axioms of ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2}) are valid.

In the following, we identify ๐‚๐‹\mathbf{CL} with ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2}), and ๐ˆ๐‹\mathbf{IL} with ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J2},\mathbf{J5}).

4 Lemmas for proofs of modal completeness theorems

In this section, we prepare some definitions and lemmas for our proofs of the modal completeness theorems of several logics. In this section, let LL be any consistent logic containing ๐ˆ๐‹โˆ’\mathbf{IL}^{-}. For a set ฮฆ\Phi of formulas, define ฮฆโŠณ:={B:\Phi_{\rhd}:=\{B: there exists a formula CC such that either BโŠณCโˆˆฮฆB\rhd C\in\Phi or CโŠณBโˆˆฮฆ}C\rhd B\in\Phi\}. For each formula AA, let โˆผA:โ‰ก{Bifโ€‹Aโ€‹is of the formโ€‹ยฌBยฌAotherwise{\sim}A:\equiv\begin{cases}B&\text{if}\ A\ \text{is of the form}\ \neg B\\ \neg A&\text{otherwise}\end{cases}. We say a finite set ฮ“\Gamma of formulas is LL-consistent if LโŠฌโ‹€ฮ“โ†’โŠฅL\nvdash\bigwedge\Gamma\to\bot, where โ‹€ฮ“\bigwedge\Gamma is a conjunction of all elements of ฮ“\Gamma. Also we say ฮ“โІฮฆ\Gamma\subseteq\Phi is ฮฆ\Phi-maximally LL-consistent if ฮ“\Gamma is LL-consistent and for any AโˆˆฮฆA\in\Phi, either Aโˆˆฮ“A\in\Gamma or โˆผAโˆˆฮ“{\sim}A\in\Gamma. Notice that if ฮ“\Gamma is ฮฆ\Phi-maximally LL-consistent and LโŠขโ‹€ฮ“โ†’AL\vdash\bigwedge\Gamma\to A for AโˆˆฮฆA\in\Phi, then Aโˆˆฮ“A\in\Gamma.

Definition 4.1.

A set ฮฆ\Phi of formulas is said to be adequate if it satisfies the following conditions:

  1. 1.

    ฮฆ\Phi is closed under taking subformulas and applying โˆผ\sim;

  2. 2.

    โŠฅโˆˆฮฆโŠณ\bot\in\Phi_{\rhd};

  3. 3.

    If B,CโˆˆฮฆโŠณB,C\in\Phi_{\rhd}, then BโŠณCโˆˆฮฆB\rhd C\in\Phi;

  4. 4.

    If BโˆˆฮฆโŠณB\in\Phi_{\rhd}, then โ–กโˆผBโˆˆฮฆ\Box{\sim}B\in\Phi;

  5. 5.

    If B,C1,โ€ฆ,Cm,D1,โ€ฆ,DnโˆˆฮฆโŠณB,C_{1},\ldots,C_{m},D_{1},\ldots,D_{n}\in\Phi_{\rhd}, then โ–กโ€‹(Bโ†’โ‹i=1mCiโˆจโ‹j=1nโ—‡โ€‹Dj)โˆˆฮฆ\Box\left(B\to\bigvee_{i=1}^{m}C_{i}\lor\bigvee_{j=1}^{n}\Diamond D_{j}\right)\in\Phi.

Note that โ–ก\Box is in our language as a symbol, and โ–กโ€‹A\Box A is not an abbreviation for (ยฌA)โŠณโŠฅ(\neg A)\rhd\bot. Then the following proposition holds.

Proposition 4.2.

Every finite set of formulas is contained in some finite adequate set.

Until the end of this section, we fix some finite adequate set ฮฆ\Phi. Let KL:={ฮ“โІฮฆ:ฮ“K_{L}:=\{\Gamma\subseteq\Phi:\Gamma is ฮฆ\Phi-maximally LL-consistent}\}. Then KLK_{L} is also a finite set.

Definition 4.3.

Let ฮ“,ฮ”โˆˆKL\Gamma,\Delta\in K_{L} and CโˆˆฮฆโŠณC\in\Phi_{\rhd}.

  1. 1.

    ฮ“โ‰บฮ”:โ‡”\Gamma\prec\Delta:\iff 1. for any โ–กโ€‹Bโˆˆฮฆ\Box B\in\Phi, if โ–กโ€‹Bโˆˆฮ“\Box B\in\Gamma, then B,โ–กโ€‹Bโˆˆฮ”B,\Box B\in\Delta and 2. there exists โ–กโ€‹Bโˆˆฮฆ\Box B\in\Phi such that โ–กโ€‹Bโˆ‰ฮ“\Box B\notin\Gamma and โ–กโ€‹Bโˆˆฮ”\Box B\in\Delta.

  2. 2.

    ฮ“โ‰บCฮ”:โ‡”ฮ“โ‰บฮ”\Gamma\prec_{C}\Delta:\iff\Gamma\prec\Delta and for any BโˆˆฮฆB\in\Phi, if BโŠณCโˆˆฮ“B\rhd C\in\Gamma, then โˆผBโˆˆฮ”{\sim}B\in\Delta.

  3. 3.

    ฮ“โ‰บCโˆ—ฮ”:โ‡”ฮ“โ‰บฮ”\Gamma\prec_{C}^{*}\Delta:\iff\Gamma\prec\Delta and for any BโˆˆฮฆB\in\Phi, if BโŠณCโˆˆฮ“B\rhd C\in\Gamma, then โˆผB,โ–กโˆผBโˆˆฮ”{\sim}B,\Box{\sim}B\in\Delta.

The relation โ‰บCโˆ—\prec_{C}^{*} was introduced by de Jongh and Veltman [3], and ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta is read as โ€œฮ”\Delta is a CC-critical successor of ฮ“\Gammaโ€111For every set SS of formulas, more general notion of assuring successor โ‰บS\prec_{S} was introduced and investigated in Goris et al.ย [4]. Then โ‰บCโˆ—\prec_{C}^{*} is exactly โ‰บ{ยฌC}\prec_{\{\neg C\}}. However, in this paper, โ‰บC\prec_{C} and โ‰บCโˆ—\prec_{C}^{*} are sufficient for our purpose. . The relation โ‰บC\prec_{C} was introduced by Ingatiev [6]. Obviously, ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta implies ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta.

Lemma 4.4.

For ฮ“,ฮ”โˆˆKL\Gamma,\Delta\in K_{L}, if ฮ“โ‰บฮ”\Gamma\prec\Delta, then ฮ“โ‰บโŠฅโˆ—ฮ”\Gamma\prec_{\bot}^{*}\Delta.

Proof.

Suppose ฮ“โ‰บฮ”\Gamma\prec\Delta. If BโŠณโŠฅโˆˆฮ“B\rhd\bot\in\Gamma, then โ–กโˆผBโˆˆฮ“\Box{\sim}B\in\Gamma by ๐‰๐Ÿ”\mathbf{J6}. Then โˆผB,โ–กโˆผBโˆˆฮ”{\sim}B,\Box{\sim}B\in\Delta. This means ฮ“โ‰บโŠฅโˆ—ฮ”\Gamma\prec_{\bot}^{*}\Delta. โˆŽ

Lemma 4.5.

Let ฮ“,ฮ”,ฮ˜โˆˆKL\Gamma,\Delta,\Theta\in K_{L} and CโˆˆฮฆโŠณC\in\Phi_{\rhd}. If ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta and ฮ”โ‰บฮ˜\Delta\prec\Theta, then ฮ“โ‰บCโˆ—ฮ˜\Gamma\prec_{C}^{*}\Theta.

Proof.

Suppose ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta and ฮ”โ‰บฮ˜\Delta\prec\Theta. If BโŠณCโˆˆฮ“B\rhd C\in\Gamma, then โ–กโˆผBโˆˆฮ”\Box{\sim}B\in\Delta. Then โˆผB,โ–กโˆผBโˆˆฮ˜{\sim}B,\Box{\sim}B\in\Theta. Therefore ฮ“โ‰บCโˆ—ฮ˜\Gamma\prec_{C}^{*}\Theta. โˆŽ

Lemma 4.6.

Let ฮ“โˆˆKL\Gamma\in K_{L} and D,EโˆˆฮฆโŠณD,E\in\Phi_{\rhd}. If DโŠณEโˆ‰ฮ“D\rhd E\notin\Gamma, then there exists ฮ”โˆˆKL\Delta\in K_{L} such that Dโˆˆฮ”D\in\Delta and ฮ“โ‰บEฮ”\Gamma\prec_{E}\Delta. Moreover:

  1. a.

    If LL contains ๐‰๐Ÿ“\mathbf{J5}, then we can find ฮ”\Delta such that in addition โ–กโˆผEโˆˆฮ”\Box{\sim}E\in\Delta holds.

  2. b.

    If LL contains ๐‰๐Ÿ\mathbf{J2} and ๐‰๐Ÿ“\mathbf{J5}, then we can find ฮ”\Delta such that in addition ฮ“โ‰บEโˆ—ฮ”\Gamma\prec_{E}^{*}\Delta and โ–กโˆผEโˆˆฮ”\Box{\sim}E\in\Delta hold.

Proof.

Suppose DโŠณEโˆ‰ฮ“D\rhd E\notin\Gamma. Let X:={G:GโŠณEโˆˆฮ“}X:=\{G:G\rhd E\in\Gamma\}. Then โ–กโ€‹(Dโ†’โ‹X)โˆˆฮฆ\Box(D\to\bigvee X)\in\Phi. By ๐‰๐Ÿ‘\mathbf{J3}, we have ๐ˆ๐‹โˆ’โŠขโ‹€ฮ“โ†’โ‹XโŠณE\mathbf{IL}^{-}\vdash\bigwedge\Gamma\to\bigvee X\rhd E.

  • โ€ข

    Suppose, for the contradiction, that โ–กโ€‹(Dโ†’โ‹X)โˆˆฮ“\Box(D\to\bigvee X)\in\Gamma. Then ๐ˆ๐‹โˆ’โŠขโ‹€ฮ“โ†’(โ‹XโŠณEโ†’DโŠณE)\mathbf{IL}^{-}\vdash\bigwedge\Gamma\to(\bigvee X\rhd E\to D\rhd E) by Proposition 2.5.2. Hence ๐ˆ๐‹โˆ’โŠขโ‹€ฮ“โ†’DโŠณE\mathbf{IL}^{-}\vdash\bigwedge\Gamma\to D\rhd E, and thus DโŠณEโˆˆฮ“D\rhd E\in\Gamma. This contradicts our supposition. Therefore โ–กโ€‹(Dโ†’โ‹X)โˆ‰ฮ“\Box(D\to\bigvee X)\notin\Gamma.

    Let

    Y0:={B,โ–กB:โ–กBโˆˆฮ“}โˆช{D,โ–ก(Dโ†’โ‹X)}โˆช{โˆผG:GโˆˆX},Y_{0}:=\{B,\Box B:\Box B\in\Gamma\}\cup\{D,\Box(D\to\bigvee X)\}\cup\{{\sim}G:G\in X\},

    then Y0โІฮฆY_{0}\subseteq\Phi. Suppose that the set Y0Y_{0} were LL-inconsistent. Then for some โ–กโ€‹B1,โ€ฆ,โ–กโ€‹Bkโˆˆฮ“\Box B_{1},\ldots,\Box B_{k}\in\Gamma,

    L\displaystyle L โŠขโ‹€i=1k(Biโˆงโ–กโ€‹Bi)โ†’(โ–กโ€‹(Dโ†’โ‹X)โ†’(Dโ†’โ‹X)),\displaystyle\vdash\bigwedge_{i=1}^{k}(B_{i}\land\Box B_{i})\to(\Box(D\to\bigvee X)\to(D\to\bigvee X)),
    L\displaystyle L โŠขโ‹€i=1kโ–กโ€‹Biโ†’โ–กโ€‹(โ–กโ€‹(Dโ†’โ‹X)โ†’(Dโ†’โ‹X)),\displaystyle\vdash\bigwedge_{i=1}^{k}\Box B_{i}\to\Box(\Box(D\to\bigvee X)\to(D\to\bigvee X)),
    L\displaystyle L โŠขโ‹€ฮ“โ†’โ–กโ€‹(Dโ†’โ‹X).\displaystyle\vdash\bigwedge\Gamma\to\Box(D\to\bigvee X).

    Thus โ–กโ€‹(Dโ†’โ‹X)โˆˆฮ“\Box(D\to\bigvee X)\in\Gamma, and this is a contradiction. We have shown that Y0Y_{0} is LL-consistent.

    Let ฮ”โˆˆKL\Delta\in K_{L} be such that Y0โІฮ”Y_{0}\subseteq\Delta. Then Dโˆˆฮ”D\in\Delta. Since โ–กโ€‹(Dโ†’โ‹X)โˆˆฮ”โˆ–ฮ“\Box(D\to\bigvee X)\in\Delta\setminus\Gamma, ฮ“โ‰บฮ”\Gamma\prec\Delta. Moreover, if GโŠณEโˆˆฮ“G\rhd E\in\Gamma, then GโˆˆXG\in X, and hence โˆผGโˆˆฮ”{\sim}G\in\Delta. This means ฮ“โ‰บEฮ”\Gamma\prec_{E}\Delta.

  • โ€ข

    a. Assume that LL contains ๐‰๐Ÿ“\mathbf{J5}. Let X1:=Xโˆช{โ—‡โ€‹E}X_{1}:=X\cup\{\Diamond E\}. Then โ–กโ€‹(Dโ†’โ‹X1)โˆˆฮฆ\Box(D\to\bigvee X_{1})\in\Phi. If โ–กโ€‹(Dโ†’โ‹X1)โˆˆฮ“\Box(D\to\bigvee X_{1})\in\Gamma, then ๐ˆ๐‹โˆ’โŠขโ‹€ฮ“โ†’(โ‹X1โŠณEโ†’DโŠณE)\mathbf{IL}^{-}\vdash\bigwedge\Gamma\to(\bigvee X_{1}\rhd E\to D\rhd E). Since ๐ˆ๐‹โˆ’โŠขโ‹€ฮ“โ†’โ‹XโŠณE\mathbf{IL}^{-}\vdash\bigwedge\Gamma\to\bigvee X\rhd E and LโŠขโ—‡โ€‹EโŠณEL\vdash\Diamond E\rhd E by ๐‰๐Ÿ“\mathbf{J5}, we obtain LโŠขโ‹€ฮ“โ†’โ‹X1โŠณEL\vdash\bigwedge\Gamma\to\bigvee X_{1}\rhd E. Thus LโŠขโ‹€ฮ“โ†’DโŠณEL\vdash\bigwedge\Gamma\to D\rhd E and DโŠณEโˆˆฮ“D\rhd E\in\Gamma. This is a contradiction. Therefore โ–กโ€‹(Dโ†’โ‹X1)โˆ‰ฮ“\Box(D\to\bigvee X_{1})\notin\Gamma.

    Let

    Y1:={B,โ–กB:โ–กBโˆˆฮ“}โˆช{D,โ–ก(Dโ†’โ‹X1)}โˆช{โˆผG:GโˆˆX}โˆช{โ–กโˆผE}.Y_{1}:=\{B,\Box B:\Box B\in\Gamma\}\cup\{D,\Box(D\to\bigvee X_{1})\}\cup\{{\sim}G:G\in X\}\cup\{\Box{\sim}E\}.

    Then it can be proved that Y1Y_{1} is also an LL-consistent subset of ฮฆ\Phi as above. Let ฮ”โˆˆKL\Delta\in K_{L} be such that Y1โІฮ”Y_{1}\subseteq\Delta. Then ฮ”\Delta satisfies the required conditions.

  • โ€ข

    b. Assume that LL contains ๐‰๐Ÿ\mathbf{J2} and ๐‰๐Ÿ“\mathbf{J5}. Let X2:=Xโˆช{โ—‡โ€‹G:GโˆˆX}โˆช{โ—‡โ€‹E}X_{2}:=X\cup\{\Diamond G:G\in X\}\cup\{\Diamond E\}. Then โ–กโ€‹(Dโ†’โ‹X2)โˆˆฮฆ\Box(D\to\bigvee X_{2})\in\Phi. For each GโˆˆXG\in X, we have LโŠขโ‹€ฮ“โ†’(โ—‡โ€‹GโŠณG)โˆง(GโŠณE)L\vdash\bigwedge\Gamma\to(\Diamond G\rhd G)\land(G\rhd E) by ๐‰๐Ÿ“\mathbf{J5}. Then by ๐‰๐Ÿ\mathbf{J2}, LโŠขโ‹€ฮ“โ†’โ—‡โ€‹GโŠณEL\vdash\bigwedge\Gamma\to\Diamond G\rhd E. Therefore we obtain LโŠขโ‹€ฮ“โ†’โ‹€GโˆˆX(โ—‡โ€‹GโŠณE)L\vdash\bigwedge\Gamma\to\bigwedge_{G\in X}(\Diamond G\rhd E). Since we also have ๐ˆ๐‹โˆ’โŠขโ‹€ฮ“โ†’โ‹XโŠณE\mathbf{IL}^{-}\vdash\bigwedge\Gamma\to\bigvee X\rhd E and LโŠขโ—‡โ€‹EโŠณEL\vdash\Diamond E\rhd E, we get LโŠขโ‹€ฮ“โ†’โ‹X2โŠณEL\vdash\bigwedge\Gamma\to\bigvee X_{2}\rhd E. This implies โ–กโ€‹(Dโ†’โ‹X2)โˆ‰ฮ“\Box(D\to\bigvee X_{2})\notin\Gamma.

    Let

    Y2:={B,โ–กB:โ–กBโˆˆฮ“}โˆช{D,โ–ก(Dโ†’โ‹X2)}โˆช{โˆผG,โ–กโˆผG:GโˆˆX}โˆช{โ–กโˆผE}.Y_{2}:=\{B,\Box B:\Box B\in\Gamma\}\cup\{D,\Box(D\to\bigvee X_{2})\}\cup\{{\sim}G,\Box{\sim}G:G\in X\}\cup\{\Box{\sim}E\}.

    Then Y2Y_{2} is also an LL-consistent subset of ฮฆ\Phi, and any ฮ”โˆˆKL\Delta\in K_{L} with Y2โІฮ”Y_{2}\subseteq\Delta is a desired set.

โˆŽ

Lemma 4.7.

Let ฮ“,ฮ”โˆˆKL\Gamma,\Delta\in K_{L} and D,E,FโˆˆฮฆโŠณD,E,F\in\Phi_{\rhd}. If DโŠณEโˆˆฮ“D\rhd E\in\Gamma, ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta and Dโˆˆฮ”D\in\Delta, then there exists ฮ˜โˆˆKL\Theta\in K_{L} such that Eโˆˆฮ˜E\in\Theta and โˆผFโˆˆฮ˜{\sim}F\in\Theta. Moreover:

  1. a.

    If LL contains ๐‰๐Ÿ’+\mathbf{J4}_{+}, then we can find ฮ˜\Theta such that in addition ฮ“โ‰บฮ˜\Gamma\prec\Theta holds.

  2. b.

    If LL contains ๐‰๐Ÿ+\mathbf{J2}_{+}, then we can find ฮ˜\Theta such that in addition ฮ“โ‰บFฮ˜\Gamma\prec_{F}\Theta holds.

  3. c.

    If LL contains ๐‰๐Ÿ+\mathbf{J2}_{+} and ๐‰๐Ÿ“\mathbf{J5}, then we can find ฮ˜\Theta such that in addition ฮ“โ‰บFโˆ—ฮ˜\Gamma\prec_{F}^{*}\Theta and โ–กโˆผFโˆˆฮ˜\Box{\sim}F\in\Theta hold.

Proof.

Suppose DโŠณEโˆˆฮ“D\rhd E\in\Gamma, ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta and Dโˆˆฮ”D\in\Delta.

  • โ€ข

    Suppose, towards a contradiction, that the set {E,โˆผF}\{E,{\sim}F\} is LL-inconsistent. Then LโŠขEโ†’FL\vdash E\to F. By the rule ๐‘๐Ÿ\mathbf{R1}, we have LโŠขDโŠณEโ†’DโŠณFL\vdash D\rhd E\to D\rhd F, and hence DโŠณFโˆˆฮ“D\rhd F\in\Gamma. Since ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta, we have โˆผDโˆˆฮ”{\sim}D\in\Delta. This contradicts the LL-consistency of ฮ”\Delta. Therefore {E,โˆผF}\{E,{\sim}F\} is LL-consistent. Let ฮ˜โˆˆKL\Theta\in K_{L} be such that {E,โˆผF}โІฮ˜\{E,{\sim}F\}\subseteq\Theta, and then ฮ˜\Theta satisfies the required conditions.

  • โ€ข

    a. Assume that LL contains ๐‰๐Ÿ’+\mathbf{J4}_{+}. If โ–กโ€‹(Eโ†’F)โˆˆฮ“\Box(E\to F)\in\Gamma, then by ๐‰๐Ÿ’+\mathbf{J4}_{+}, LโŠขโ‹€ฮ“โ†’(DโŠณEโ†’DโŠณF)L\vdash\bigwedge\Gamma\to(D\rhd E\to D\rhd F). Since DโŠณEโˆˆฮ“D\rhd E\in\Gamma, we obtain DโŠณFโˆˆฮ“D\rhd F\in\Gamma. Then โˆผDโˆˆฮ”{\sim}D\in\Delta because ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta, and this is a contradiction. Therefore โ–กโ€‹(Eโ†’F)โˆ‰ฮ“\Box(E\to F)\notin\Gamma.

    Suppose Y1:={B,โ–กB:โ–กBโˆˆฮ“}โˆช{E,โˆผF,โ–ก(Eโ†’F)}Y_{1}:=\{B,\Box B:\Box B\in\Gamma\}\cup\{E,{\sim}F,\Box(E\to F)\} were LL-inconsistent. Then there would be โ–กโ€‹B1,โ€ฆ,โ–กโ€‹Bkโˆˆฮ“\Box B_{1},\ldots,\Box B_{k}\in\Gamma such that

    L\displaystyle L โŠขโ‹€i=1k(Biโˆงโ–กโ€‹Bi)โ†’(โ–กโ€‹(Eโ†’F)โ†’(Eโ†’F)),\displaystyle\vdash\bigwedge_{i=1}^{k}(B_{i}\land\Box B_{i})\to(\Box(E\to F)\to(E\to F)),
    L\displaystyle L โŠขโ‹€i=1kโ–กโ€‹Biโ†’โ–กโ€‹(โ–กโ€‹(Eโ†’F)โ†’(Eโ†’F)),\displaystyle\vdash\bigwedge_{i=1}^{k}\Box B_{i}\to\Box(\Box(E\to F)\to(E\to F)),
    L\displaystyle L โŠขโ‹€ฮ“โ†’โ–กโ€‹(Eโ†’F).\displaystyle\vdash\bigwedge\Gamma\to\Box(E\to F).

    Then โ–กโ€‹(Eโ†’F)โˆˆฮ“\Box(E\to F)\in\Gamma, and this is a contradiction. Thus Y1Y_{1} is LL-consistent. Let ฮ˜โˆˆKL\Theta\in K_{L} be such that Y1โІฮ˜Y_{1}\subseteq\Theta. Then โ–กโ€‹(Eโ†’F)โˆˆฮ˜โˆ–ฮ“\Box(E\to F)\in\Theta\setminus\Gamma, and hence we conclude ฮ“โ‰บฮ˜\Gamma\prec\Theta.

  • โ€ข

    b. Assume that LL contains ๐‰๐Ÿ+\mathbf{J2}_{+}. Let X:={G:GโŠณFโˆˆฮ“}X:=\{G:G\rhd F\in\Gamma\}. If โ–กโ€‹(Eโ†’โ‹XโˆจF)โˆˆฮ“\Box(E\to\bigvee X\lor F)\in\Gamma, then LโŠขโ‹€ฮ“โ†’โ–กโ€‹(EโˆงยฌFโ†’โ‹X)L\vdash\bigwedge\Gamma\to\Box(E\land\neg F\to\bigvee X), and hence LโŠขโ‹€ฮ“โ†’(โ‹XโŠณFโ†’(EโˆงยฌF)โŠณF)L\vdash\bigwedge\Gamma\to(\bigvee X\rhd F\to(E\land\neg F)\rhd F) by Proposition 2.5.2. Since LโŠขโ‹€ฮ“โ†’โ‹XโŠณFL\vdash\bigwedge\Gamma\to\bigvee X\rhd F, we have LโŠขโ‹€ฮ“โ†’(EโˆงยฌF)โŠณFL\vdash\bigwedge\Gamma\to(E\land\neg F)\rhd F. Since DโŠณEโˆˆฮ“D\rhd E\in\Gamma, LโŠขโ‹€ฮ“โ†’DโŠณFL\vdash\bigwedge\Gamma\to D\rhd F by ๐‰๐Ÿ+โ€ฒ\mathbf{J2}_{+}^{\prime}. Thus DโŠณFโˆˆฮ“D\rhd F\in\Gamma. Then โˆผFโˆˆฮ”{\sim}F\in\Delta because ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta, and this is a contradiction. Hence โ–กโ€‹(Eโ†’โ‹XโˆจF)โˆ‰ฮ“\Box(E\to\bigvee X\lor F)\notin\Gamma.

    Let

    Y2:={B,โ–กB:โ–กBโˆˆฮ“}โˆช{E,โˆผF,โ–ก(Eโ†’โ‹XโˆจF)}โˆช{โˆผG:GโˆˆX},Y_{2}:=\{B,\Box B:\Box B\in\Gamma\}\cup\{E,{\sim}F,\Box(E\to\bigvee X\lor F)\}\cup\{{\sim}G:G\in X\},

    then Y2Y_{2} is LL-consistent. Let ฮ˜โˆˆKL\Theta\in K_{L} be such that Y2โІฮ˜Y_{2}\subseteq\Theta. Then โ–กโ€‹(Eโ†’โ‹XโˆจF)โˆˆฮ˜โˆ–ฮ“\Box(E\to\bigvee X\lor F)\in\Theta\setminus\Gamma, and hence ฮ“โ‰บฮ˜\Gamma\prec\Theta. Moreover, ฮ“โ‰บFฮ˜\Gamma\prec_{F}\Theta.

  • โ€ข

    c. Assume that LL contains ๐‰๐Ÿ+\mathbf{J2}_{+} and ๐‰๐Ÿ“\mathbf{J5}. Let X:={G:GโŠณFโˆˆฮ“}X:=\{G:G\rhd F\in\Gamma\} and X1:=Xโˆช{โ—‡โ€‹G:GโˆˆX}โˆช{โ—‡โ€‹F}X_{1}:=X\cup\{\Diamond G:G\in X\}\cup\{\Diamond F\}. Then โ–กโ€‹(Eโ†’โ‹X1โˆจF)โˆˆฮฆ\Box(E\to\bigvee X_{1}\lor F)\in\Phi. For each GโˆˆXG\in X, LโŠขโ‹€ฮ“โ†’(โ—‡โ€‹GโŠณG)โˆง(GโŠณF)L\vdash\bigwedge\Gamma\to(\Diamond G\rhd G)\land(G\rhd F) by ๐‰๐Ÿ“\mathbf{J5}. Then LโŠขโ‹€ฮ“โ†’โ—‡โ€‹GโŠณFL\vdash\bigwedge\Gamma\to\Diamond G\rhd F by ๐‰๐Ÿ\mathbf{J2}. Since LโŠขโ‹€ฮ“โ†’โ‹XโŠณFL\vdash\bigwedge\Gamma\to\bigvee X\rhd F and LโŠขโ—‡โ€‹FโŠณFL\vdash\Diamond F\rhd F, we obtain LโŠขโ‹€ฮ“โ†’โ‹X1โŠณFL\vdash\bigwedge\Gamma\to\bigvee X_{1}\rhd F.

    Suppose, towards a contradiction, โ–กโ€‹(Eโ†’โ‹X1โˆจF)โˆˆฮ“\Box(E\to\bigvee X_{1}\lor F)\in\Gamma. Then LโŠขโ‹€ฮ“โ†’โ–กโ€‹(EโˆงยฌFโ†’โ‹X1)L\vdash\bigwedge\Gamma\to\Box(E\land\neg F\to\bigvee X_{1}), and thus LโŠขโ‹€ฮ“โ†’(โ‹X1โŠณFโ†’(EโˆงยฌF)โŠณF)L\vdash\bigwedge\Gamma\to(\bigvee X_{1}\rhd F\to(E\land\neg F)\rhd F) by Proposition 2.5.2. Hence LโŠขโ‹€ฮ“โ†’(EโˆงยฌF)โŠณFL\vdash\bigwedge\Gamma\to(E\land\neg F)\rhd F. Since DโŠณEโˆˆฮ“D\rhd E\in\Gamma, by ๐‰๐Ÿ+โ€ฒ\mathbf{J2}_{+}^{\prime}, we have LโŠขโ‹€ฮ“โ†’DโŠณFL\vdash\bigwedge\Gamma\to D\rhd F. Thus DโŠณFโˆˆฮ“D\rhd F\in\Gamma. Then โˆผFโˆˆฮ”{\sim}F\in\Delta because ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta. This is a contradiction. Hence we obtain โ–กโ€‹(Eโ†’โ‹X1โˆจF)โˆ‰ฮ“\Box(E\to\bigvee X_{1}\lor F)\notin\Gamma.

    Let

    Y3:={B,โ–กB:โ–กBโˆˆฮ“}โˆช{E,โˆผF,โ–ก(Eโ†’โ‹X1โˆจF)}โˆช{โˆผG,โ–กโˆผG:GโˆˆX}โˆช{โ–กโˆผF},Y_{3}:=\{B,\Box B:\Box B\in\Gamma\}\cup\{E,{\sim}F,\Box(E\to\bigvee X_{1}\lor F)\}\cup\{{\sim}G,\Box{\sim}G:G\in X\}\cup\{\Box{\sim}F\},

    then we can prove that Y3Y_{3} is LL-consistent. Let ฮ˜โˆˆKL\Theta\in K_{L} be such that Y3โІฮ˜Y_{3}\subseteq\Theta. Then โ–กโ€‹(Eโ†’โ‹X1โˆจF)โˆˆฮ˜โˆ–ฮ“\Box(E\to\bigvee X_{1}\lor F)\in\Theta\setminus\Gamma, and hence ฮ“โ‰บฮ˜\Gamma\prec\Theta. Moreover, ฮ“โ‰บFโˆ—ฮ˜\Gamma\prec_{F}^{*}\Theta.

โˆŽ

Lemma 4.8.

Assume that LL contains ๐‰๐Ÿ’\mathbf{J4}. Let ฮ“,ฮ”โˆˆKL\Gamma,\Delta\in K_{L} and D,EโˆˆฮฆโŠณD,E\in\Phi_{\rhd}. If DโŠณEโˆˆฮ“D\rhd E\in\Gamma, ฮ“โ‰บฮ”\Gamma\prec\Delta and Dโˆˆฮ”D\in\Delta, then there exists ฮ˜โˆˆKL\Theta\in K_{L} such that ฮ“โ‰บฮ˜\Gamma\prec\Theta and Eโˆˆฮ˜E\in\Theta.

Proof.

Since DโŠณEโˆˆฮ“D\rhd E\in\Gamma, LโŠขโ‹€ฮ“โ†’(โ—‡โ€‹Dโ†’โ—‡โ€‹E)L\vdash\bigwedge\Gamma\to(\Diamond D\to\Diamond E) by ๐‰๐Ÿ’\mathbf{J4}. If โ–กโˆผEโˆˆฮ“\Box{\sim}E\in\Gamma, then โ–กโˆผDโˆˆฮ“\Box{\sim}D\in\Gamma. Since ฮ“โ‰บฮ”\Gamma\prec\Delta, we have โˆผDโˆˆฮ”{\sim}D\in\Delta, a contradiction. Thus โ–กโˆผEโˆ‰ฮ“\Box{\sim}E\notin\Gamma.

Let Y:={B,โ–กโ€‹B:โ–กโ€‹Bโˆˆฮ“}โˆช{E,โ–กโˆผE}Y:=\{B,\Box B:\Box B\in\Gamma\}\cup\{E,\Box{\sim}E\}, then it is proved that YY is LL-consistent. Thus for some ฮ˜โˆˆKL\Theta\in K_{L}, YโІฮ˜Y\subseteq\Theta. Since โ–กโˆผEโˆˆฮ˜โˆ–ฮ“\Box{\sim}E\in\Theta\setminus\Gamma, we obtain ฮ“โ‰บฮ˜\Gamma\prec\Theta. โˆŽ

Lemma 4.9.

Assume that LL contains ๐‰๐Ÿ\mathbf{J2}. Let ฮ“,ฮ”โˆˆKL\Gamma,\Delta\in K_{L} and D,E,FโˆˆฮฆโŠณD,E,F\in\Phi_{\rhd}. If DโŠณEโˆˆฮ“D\rhd E\in\Gamma, ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta and Dโˆˆฮ”D\in\Delta, then there exists ฮ˜โˆˆKL\Theta\in K_{L} such that ฮ“โ‰บFฮ˜\Gamma\prec_{F}\Theta and Eโˆˆฮ˜E\in\Theta. Moreover:

  1. a.

    If LL contains ๐‰๐Ÿ“\mathbf{J5}, then we can find ฮ˜\Theta such that in addition ฮ“โ‰บFโˆ—ฮ˜\Gamma\prec_{F}^{*}\Theta and โ–กโˆผFโˆˆฮ˜\Box{\sim}F\in\Theta hold.

Proof.

Let X:={G:GโŠณFโˆˆฮ“}X:=\{G:G\rhd F\in\Gamma\}. Suppose, towards a contradiction, that โ–กโ€‹(Eโ†’โ‹X)โˆˆฮ“\Box(E\to\bigvee X)\in\Gamma. Then by Proposition 2.5.2, ๐ˆ๐‹โˆ’โŠขโ‹€ฮ“โ†’(โ‹XโŠณFโ†’EโŠณF)\mathbf{IL}^{-}\vdash\bigwedge\Gamma\to(\bigvee X\rhd F\to E\rhd F). Since ๐ˆ๐‹โˆ’โŠขโ‹€ฮ“โ†’โ‹XโŠณF\mathbf{IL}^{-}\vdash\bigwedge\Gamma\to\bigvee X\rhd F, ๐ˆ๐‹โˆ’โŠขโ‹€ฮ“โ†’EโŠณF\mathbf{IL}^{-}\vdash\bigwedge\Gamma\to E\rhd F. Also since DโŠณEโˆˆฮ“D\rhd E\in\Gamma, we obtain LโŠขโ‹€ฮ“โ†’DโŠณFL\vdash\bigwedge\Gamma\to D\rhd F by ๐‰๐Ÿ\mathbf{J2}. Thus DโŠณFโˆˆฮ“D\rhd F\in\Gamma. Since ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta, โˆผDโˆˆฮ”{\sim}D\in\Delta and hence this contradicts the LL-consistency of ฮ”\Delta. Therefore โ–กโ€‹(Eโ†’โ‹X)โˆ‰ฮ“\Box(E\to\bigvee X)\notin\Gamma.

Let Y0:={B,โ–กB:โ–กBโˆˆฮ“}โˆช{E,โ–ก(Eโ†’โ‹X)}โˆช{โˆผG:GโˆˆX}Y_{0}:=\{B,\Box B:\Box B\in\Gamma\}\cup\{E,\Box(E\to\bigvee X)\}\cup\{{\sim}G:G\in X\}, then Y0Y_{0} is LL-consistent. Let ฮ˜โˆˆKL\Theta\in K_{L} be such that Y0โІฮ˜Y_{0}\subseteq\Theta. Then ฮ˜\Theta is a desired set.

a. Assume that LL contains ๐‰๐Ÿ“\mathbf{J5}. Let X1:=Xโˆช{โ—‡โ€‹G:GโˆˆX}โˆช{โ—‡โ€‹F}X_{1}:=X\cup\{\Diamond G:G\in X\}\cup\{\Diamond F\}. If โ–กโ€‹(Eโ†’โ‹X1)โˆˆฮ“\Box(E\to\bigvee X_{1})\in\Gamma, then EโŠณFโˆˆฮ“E\rhd F\in\Gamma as in the proof of Lemma 4.6.b. Since DโŠณEโˆˆฮ“D\rhd E\in\Gamma, we have DโŠณFโˆˆฮ“D\rhd F\in\Gamma by applying ๐‰๐Ÿ\mathbf{J2}. This contradicts ฮ“โ‰บFฮ˜\Gamma\prec_{F}\Theta and Eโˆˆฮ˜E\in\Theta. Therefore โ–กโ€‹(Eโ†’โ‹X1)\Box(E\to\bigvee X_{1}) is not in ฮ“\Gamma. Let Y1:={B,โ–กB:โ–กBโˆˆฮ“}โˆช{E,โ–ก(Eโ†’โ‹X1)}โˆช{โˆผG,โ–กโˆผG:GโˆˆX}โˆช{โ–กโˆผF}Y_{1}:=\{B,\Box B:\Box B\in\Gamma\}\cup\{E,\Box(E\to\bigvee X_{1})\}\cup\{{\sim}G,\Box{\sim}G:G\in X\}\cup\{\Box{\sim}F\}. Then Y1Y_{1} is LL-consistent. Let ฮ˜โˆˆKL\Theta\in K_{L} be such that Y1โІฮ˜Y_{1}\subseteq\Theta. โˆŽ

Eโˆˆฮ˜E\in\Theta โˆผFโˆˆฮ˜{\sim}F\in\Theta ฮ“โ‰บฮ˜\Gamma\prec\Theta ฮ“โ‰บFฮ˜\Gamma\prec_{F}\Theta
ฮ“โ‰บFโˆ—ฮ˜\Gamma\prec_{F}^{*}\Theta
& โ–กโˆผFโˆˆฮ˜\Box{\sim}F\in\Theta
โœ“\checkmark โœ“\checkmark Lemma 4.7
๐‰๐Ÿ’\mathbf{J4} โœ“\checkmark โœ“\checkmark Lemma 4.8
๐‰๐Ÿ’+\mathbf{J4}_{+} โœ“\checkmark โœ“\checkmark โœ“\checkmark Lemma 4.7.a
๐‰๐Ÿ\mathbf{J2} โœ“\checkmark โœ“\checkmark Lemma 4.9
๐‰๐Ÿ\mathbf{J2}, ๐‰๐Ÿ“\mathbf{J5} โœ“\checkmark โœ“\checkmark Lemma 4.9.a
๐‰๐Ÿ+\mathbf{J2}_{+} โœ“\checkmark โœ“\checkmark โœ“\checkmark Lemma 4.7.b
๐‰๐Ÿ+\mathbf{J2}_{+}, ๐‰๐Ÿ“\mathbf{J5} โœ“\checkmark โœ“\checkmark โœ“\checkmark Lemma 4.7.c
Table 1: Conclusions of Lemmas 4.7, 4.8 and 4.9

Lemmas 4.7 and 4.9 state that if DโŠณED\rhd E, ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta and Dโˆˆฮ”D\in\Delta, then there exists ฮ˜โˆˆKL\Theta\in K_{L} having several properties depending on each logic LL. The statement of Lemma 4.8 is similar except that ฮ“โ‰บฮ”\Gamma\prec\Delta is assumed instead of ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta. To compare the properties that ฮ˜\Theta is assured to have, we summarize conclusions of these lemmas in Table 1. For example, the fifth line of the table shows that if LL contains ๐‰๐Ÿ\mathbf{J2}, then such a set ฮ˜\Theta satisfying Eโˆˆฮ˜E\in\Theta and ฮ“โ‰บFฮ˜\Gamma\prec_{F}\Theta is obtained by Lemma 4.9. Note that the assumptions of each lemma are omitted in the table for the sake of simplicity.

5 Modal completeness with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames

In the previous sections, we dealt with the additional axioms ๐‰๐Ÿ\mathbf{J1}, ๐‰๐Ÿ\mathbf{J2}, ๐‰๐Ÿ+\mathbf{J2}_{+}, ๐‰๐Ÿ’\mathbf{J4}, ๐‰๐Ÿ’+\mathbf{J4}_{+} and ๐‰๐Ÿ“\mathbf{J5}. From Corollary 3.5 and Propositions 3.7, 3.12 and 3.13, we know that there are twenty different logics obtained by adding some of these axioms to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}. In this section, we prove modal completeness theorems with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames for twelve of them. Figure 1 represents the interrelations between these twelve logics. In the figure, each line segment shows that the logic on the right side is a proper extension of the logic on the left side, where properness comes from our investigations in Section 3. It follows that no more line segments can be drawn in the figure. The remaining eight logics are investigated in Sections 6 and 7.

๐ˆ๐‹โˆ’\mathbf{IL}^{-}๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J5})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J1})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+)\mathbf{IL}^{-}(\mathbf{J4}_{+})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J5})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J4}_{+},\mathbf{J5})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4}_{+})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+)\mathbf{IL}^{-}(\mathbf{J2}_{+})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4}_{+},\mathbf{J5})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2}_{+},\mathbf{J5})๐‚๐‹\mathbf{CL}๐ˆ๐‹\mathbf{IL}
Figure 1: Sublogics of ๐ˆ๐‹\mathbf{IL} complete with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames

First, we prove the completeness theorem for logics in Figure 1 other than ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2}_{+},\mathbf{J5}) and ๐ˆ๐‹\mathbf{IL}. Secondly, we prove the completeness theorem for logics ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2}_{+},\mathbf{J5}) and ๐ˆ๐‹\mathbf{IL}. Our proof technique of the second completeness theorem is essentially same as in the proof of de Jongh and Veltman [3]. However, the detail of our proof is different from that of proofs presented in [3] and [8]. Furthermore, our proof of the first completeness theorem admits a simpler technique than that of the second theorem. More precisely, in the proof of the second theorem, the universe of a countermodel is defined as a set of tuples โŸจฮ“,ฯ„โŸฉ\langle\Gamma,\tau\rangle where ฮ“\Gamma is a ฮฆ\Phi-maximal LL-consistent subset of a finite adequate set ฮฆ\Phi and ฯ„\tau is a finite sequence of formulas in ฮฆ\Phi. On the other hand, in our proof of the first theorem, we simply consider tuples โŸจฮ“,BโŸฉ\langle\Gamma,B\rangle where BB is a formula in ฮฆ\Phi to define a countermodel. As a consequence, our proof of the completeness theorem of the logic ๐‚๐‹\mathbf{CL} is simpler than Ignatievโ€™s proof in [6].

First, we prove the completeness theorem for logics other than ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2}_{+},\mathbf{J5}) and ๐ˆ๐‹\mathbf{IL}.

Theorem 5.1.

Let LL be one of the logics ๐ˆ๐‹โˆ’\mathbf{IL}^{-}, ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+)\mathbf{IL}^{-}(\mathbf{J4}_{+}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J1}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J5}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+)\mathbf{IL}^{-}(\mathbf{J2}_{+}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4}_{+}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J4}_{+},\mathbf{J5}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J5}), ๐‚๐‹\mathbf{CL} and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4}_{+},\mathbf{J5}). Then for any formula AA, the following are equivalent:

  1. 1.

    LโŠขAL\vdash A.

  2. 2.

    AA is valid in all (finite) ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames where all axioms of LL are valid.

Proof.

(1โ‡’2)(1\Rightarrow 2): Obvious.

(2โ‡’1)(2\Rightarrow 1): Suppose LโŠฌAL\nvdash A. Let ฮฆ\Phi be a finite adequate set of formulas with โˆผAโˆˆฮฆ{\sim}A\in\Phi. The existence of such a set ฮฆ\Phi is guaranteed by Proposition 4.2. By the supposition, there exists ฮ“0โˆˆKL\Gamma_{0}\in K_{L} such that โˆผAโˆˆฮ“0{\sim}A\in\Gamma_{0}.

Let M=โŸจW,R,{Sx}xโˆˆW,โŠฉโŸฉM=\langle W,R,\{S_{x}\}_{x\in W},\Vdash\rangle be a model satisfying the following clauses:

  1. 1.

    W={โŸจฮ“,BโŸฉ:ฮ“โˆˆKLW=\{\langle\Gamma,B\rangle:\Gamma\in K_{L} and BโˆˆฮฆโŠณ}B\in\Phi_{\rhd}\};

  2. 2.

    โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ”,CโŸฉโ‡”ฮ“โ‰บฮ”\langle\Gamma,B\rangle R\langle\Delta,C\rangle\iff\Gamma\prec\Delta;

  3. 3.

    โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹โŸจฮ˜,DโŸฉโ‡”โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ”,CโŸฉ\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}\langle\Theta,D\rangle\iff\langle\Gamma,B\rangle R\langle\Delta,C\rangle and the condition ๐’žL\mathcal{C}_{L} which is defined below holds;

  4. 4.

    โŸจฮ“,BโŸฉโŠฉpโ‡”pโˆˆฮ“\langle\Gamma,B\rangle\Vdash p\iff p\in\Gamma.

The condition ๐’žL\mathcal{C}_{L} depends on LL as follows:

  • โ€ข

    Lโˆˆ{๐ˆ๐‹โˆ’,๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)}L\in\{\mathbf{IL}^{-},\mathbf{IL}^{-}(\mathbf{J1})\}: If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta, then โˆผCโˆˆฮ˜{\sim}C\in\Theta.

  • โ€ข

    Lโˆˆ{๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+),๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)}L\in\{\mathbf{IL}^{-}(\mathbf{J4}_{+}),\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4}_{+})\}: โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ˜,DโŸฉ\langle\Gamma,B\rangle R\langle\Theta,D\rangle and if ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta, then โˆผCโˆˆฮ˜{\sim}C\in\Theta.

  • โ€ข

    Lโˆˆ{๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+),๐‚๐‹}L\in\{\mathbf{IL}^{-}(\mathbf{J2}_{+}),\mathbf{CL}\}: โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ˜,DโŸฉ\langle\Gamma,B\rangle R\langle\Theta,D\rangle and if ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta, then Dโ‰กCD\equiv C, ฮ“โ‰บCฮ˜\Gamma\prec_{C}\Theta and โˆผCโˆˆฮ˜{\sim}C\in\Theta.

  • โ€ข

    Lโˆˆ{๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ“),๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ“)}L\in\{\mathbf{IL}^{-}(\mathbf{J5}),\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J5})\}: If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta, then โˆผCโˆˆฮ˜{\sim}C\in\Theta.

  • โ€ข

    Lโˆˆ{๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+,๐‰๐Ÿ“),๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)}L\in\{\mathbf{IL}^{-}(\mathbf{J4}_{+},\mathbf{J5}),\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4}_{+},\mathbf{J5})\}: โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ˜,DโŸฉ\langle\Gamma,B\rangle R\langle\Theta,D\rangle and if ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta, then โˆผCโˆˆฮ˜{\sim}C\in\Theta.

Here Dโ‰กCD\equiv C means that formulas DD and CC are identical. Since โŠฅโˆˆฮฆโŠณ\bot\in\Phi_{\rhd}, we have โŸจฮ“0,โŠฅโŸฉโˆˆW\langle\Gamma_{0},\bot\rangle\in W and therefore WW is non-empty. Also WW is finite and RR is a transitive and conversely well-founded binary relation on WW. Thus โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle is an ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame.

Lemma 5.2.

Every axiom of LL is valid in the frame F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle of MM.

Proof.

We distinguish the following several cases:

  • โ€ข

    L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)L=\mathbf{IL}^{-}(\mathbf{J1}): Suppose โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ”,CโŸฉ\langle\Gamma,B\rangle R\langle\Delta,C\rangle. If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta, then โˆผCโˆˆฮ”{\sim}C\in\Delta because CโŠณCโˆˆฮ“C\rhd C\in\Gamma. Thus โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹โŸจฮ”,CโŸฉ\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}\langle\Delta,C\rangle by the definition of ๐’žL\mathcal{C}_{L}. Therefore ๐‰๐Ÿ\mathbf{J1} is valid in FF by Proposition 3.2.

  • โ€ข

    L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+)L=\mathbf{IL}^{-}(\mathbf{J4}_{+}): If โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹โŸจฮ˜,DโŸฉ\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}\langle\Theta,D\rangle, then โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ˜,DโŸฉ\langle\Gamma,B\rangle R\langle\Theta,D\rangle. By Proposition 3.8, ๐‰๐Ÿ’+\mathbf{J4}_{+} is valid in FF.

  • โ€ข

    L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+)L=\mathbf{IL}^{-}(\mathbf{J2}_{+}): As in the case of ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+)\mathbf{IL}^{-}(\mathbf{J4}_{+}), ๐‰๐Ÿ’+\mathbf{J4}_{+} is valid in FF. Suppose โŸจฮ”0,C0โŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹โŸจฮ”1,C1โŸฉ\langle\Delta_{0},C_{0}\rangle S_{\langle\Gamma,B\rangle}\langle\Delta_{1},C_{1}\rangle and โŸจฮ”1,C1โŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹โŸจฮ”2,C2โŸฉ\langle\Delta_{1},C_{1}\rangle S_{\langle\Gamma,B\rangle}\langle\Delta_{2},C_{2}\rangle. Then โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ”2,C2โŸฉ\langle\Gamma,B\rangle R\langle\Delta_{2},C_{2}\rangle. If ฮ“โ‰บC0ฮ”0\Gamma\prec_{C_{0}}\Delta_{0}, then C1โ‰กC0C_{1}\equiv C_{0} and ฮ“โ‰บC0ฮ”1\Gamma\prec_{C_{0}}\Delta_{1}. Since โŸจฮ”1,C0โŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹โŸจฮ”2,C2โŸฉ\langle\Delta_{1},C_{0}\rangle S_{\langle\Gamma,B\rangle}\langle\Delta_{2},C_{2}\rangle and ฮ“โ‰บC0ฮ”1\Gamma\prec_{C_{0}}\Delta_{1}, we have C2โ‰กC0C_{2}\equiv C_{0}, ฮ“โ‰บC0ฮ”2\Gamma\prec_{C_{0}}\Delta_{2} and โˆผC0โˆˆฮ”2{\sim}C_{0}\in\Delta_{2}. Thus we obtain โŸจฮ”0,C0โŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹โŸจฮ”2,C2โŸฉ\langle\Delta_{0},C_{0}\rangle S_{\langle\Gamma,B\rangle}\langle\Delta_{2},C_{2}\rangle. Therefore ๐‰๐Ÿ+\mathbf{J2}_{+} is valid in FF by Proposition 3.15.

  • โ€ข

    L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ“)L=\mathbf{IL}^{-}(\mathbf{J5}): Suppose โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ”,CโŸฉ\langle\Gamma,B\rangle R\langle\Delta,C\rangle and โŸจฮ”,CโŸฉโ€‹Rโ€‹โŸจฮ˜,DโŸฉ\langle\Delta,C\rangle R\langle\Theta,D\rangle. If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta, then โˆผCโˆˆฮ˜{\sim}C\in\Theta because ฮ”โ‰บฮ˜\Delta\prec\Theta. Thus โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹โŸจฮ˜,DโŸฉ\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}\langle\Theta,D\rangle holds. Then by Proposition 3.18, ๐‰๐Ÿ“\mathbf{J5} is valid in FF.

  • โ€ข

    For other cases, the lemma is proved in a similar way as above.

โˆŽ

Lemma 5.3 (Truth Lemma).

For any formula CโˆˆฮฆC\in\Phi and any โŸจฮ“,BโŸฉโˆˆW\langle\Gamma,B\rangle\in W, Cโˆˆฮ“C\in\Gamma if and only if โŸจฮ“,BโŸฉโŠฉC\langle\Gamma,B\rangle\Vdash C.

Proof.

We prove by induction on the construction of CC. We only give a proof of the case Cโ‰ก(DโŠณE)C\equiv(D\rhd E).

(โ‡’)(\Rightarrow): Assume DโŠณEโˆˆฮ“D\rhd E\in\Gamma. Let โŸจฮ”,FโŸฉ\langle\Delta,F\rangle be any element of WW such that โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ”,FโŸฉ\langle\Gamma,B\rangle R\langle\Delta,F\rangle and โŸจฮ”,FโŸฉโŠฉD\langle\Delta,F\rangle\Vdash D. Then by induction hypothesis, Dโˆˆฮ”D\in\Delta. We distinguish the following two cases.

  • โ€ข

    If ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta, then by Lemma 4.7, there exists ฮ˜โˆˆKL\Theta\in K_{L} such that Eโˆˆฮ˜E\in\Theta and โˆผFโˆˆฮ˜{\sim}F\in\Theta. Moreover, if LโŠข๐‰๐Ÿ’+L\vdash\mathbf{J4}_{+}, ฮ“โ‰บฮ˜\Gamma\prec\Theta holds. Also if LโŠข๐‰๐Ÿ+L\vdash\mathbf{J2}_{+}, ฮ“โ‰บFฮ˜\Gamma\prec_{F}\Theta holds.

  • โ€ข

    If ฮ“โŠ€Fฮ”\Gamma\nprec_{F}\Delta, by Lemma 4.7, there exists ฮ˜โˆˆKL\Theta\in K_{L} such that Eโˆˆฮ˜E\in\Theta because ฮ“โ‰บโŠฅฮ”\Gamma\prec_{\bot}\Delta. Moreover, if LโŠข๐‰๐Ÿ’+L\vdash\mathbf{J4}_{+}, ฮ“โ‰บฮ˜\Gamma\prec\Theta holds.

In either case, we have โŸจฮ˜,FโŸฉโˆˆW\langle\Theta,F\rangle\in W. Also Eโˆˆฮ˜E\in\Theta and โŸจฮ”,FโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹โŸจฮ˜,FโŸฉ\langle\Delta,F\rangle S_{\langle\Gamma,B\rangle}\langle\Theta,F\rangle. Then by induction hypothesis, โŸจฮ˜,FโŸฉโŠฉE\langle\Theta,F\rangle\Vdash E. Therefore we conclude โŸจฮ“,BโŸฉโŠฉDโŠณE\langle\Gamma,B\rangle\Vdash D\rhd E.

(โ‡)(\Leftarrow): Assume DโŠณEโˆ‰ฮ“D\rhd E\notin\Gamma. By Lemma 4.6, there exists ฮ”โˆˆKL\Delta\in K_{L} such that Dโˆˆฮ”D\in\Delta and ฮ“โ‰บEฮ”\Gamma\prec_{E}\Delta. Moreover, if LL contains ๐‰๐Ÿ“\mathbf{J5}, then โ–กโˆผEโˆˆฮ”\Box{\sim}E\in\Delta also holds. Since โŸจฮ”,EโŸฉโˆˆW\langle\Delta,E\rangle\in W, โŸจฮ”,EโŸฉโŠฉD\langle\Delta,E\rangle\Vdash D by induction hypothesis. Let โŸจฮ˜,FโŸฉ\langle\Theta,F\rangle be any element of WW with โŸจฮ”,EโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹โŸจฮ˜,FโŸฉ\langle\Delta,E\rangle S_{\langle\Gamma,B\rangle}\langle\Theta,F\rangle. By the definitions of the relations SโŸจฮ“,BโŸฉS_{\langle\Gamma,B\rangle} and the condition ๐’žL\mathcal{C}_{L}, we have โˆผEโˆˆฮ˜{\sim}E\in\Theta in all cases of LL. By induction hypothesis, โŸจฮ˜,FโŸฉโŠฎE\langle\Theta,F\rangle\nVdash E. Therefore we obtain โŸจฮ“,BโŸฉโŠฎDโŠณE\langle\Gamma,B\rangle\nVdash D\rhd E. โˆŽ

Since โŸจฮ“0,โŠฅโŸฉโˆˆW\langle\Gamma_{0},\bot\rangle\in W and Aโˆ‰ฮ“0A\notin\Gamma_{0}, โŸจฮ“0,โŠฅโŸฉโŠฎA\langle\Gamma_{0},\bot\rangle\nVdash A by Truth Lemma. Therefore AA is not valid in the frame of MM. โˆŽ

Our proof of Theorem 5.1 cannot be applied to logics containing both ๐‰๐Ÿ\mathbf{J2} and ๐‰๐Ÿ“\mathbf{J5}. For example, for L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)L=\mathbf{IL}^{-}(\mathbf{J2}_{+},\mathbf{J5}), the condition ๐’žL\mathcal{C}_{L} which is used to define the relations SโŸจฮ“,BโŸฉS_{\langle\Gamma,B\rangle} might be as follows: โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ˜,DโŸฉ\langle\Gamma,B\rangle R\langle\Theta,D\rangle and if ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta, then Dโ‰กCD\equiv C, ฮ“โ‰บCฮ˜\Gamma\prec_{C}\Theta and โˆผCโˆˆฮ˜{\sim}C\in\Theta. Then ๐‰๐Ÿ“\mathbf{J5} is no longer valid in the resulting frame โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle. To avoid this obstacle, as mentioned above, for the modal completeness of such logics, we consider tuples โŸจฮ“,ฯ„โŸฉ\langle\Gamma,\tau\rangle as members of the universe of our countermodel, where ฯ„\tau is a finite sequence of formulas.

For finite sequences ฯ„\tau and ฯƒ\sigma of formulas, ฯ„โІฯƒ\tau\subseteq\sigma denotes that ฯ„\tau is an initial segment of ฯƒ\sigma. Also ฯ„โŠŠฯƒ\tau\subsetneq\sigma denotes that ฯ„\tau is a proper initial segment of ฯƒ\sigma, that is, ฯ„โІฯƒ\tau\subseteq\sigma and |ฯ„|<|ฯƒ||\tau|<|\sigma|, where |ฯ„||\tau| is the length of ฯ„\tau. Let ฯ„โˆ—โŸจBโŸฉ\tau\ast\langle B\rangle be the sequence obtained from ฯ„\tau by concatenating BB as the last element.

Theorem 5.4.

Let LL be one of the logics ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2}_{+},\mathbf{J5}) and ๐ˆ๐‹\mathbf{IL}. Then for any formula AA, the following are equivalent:

  1. 1.

    LโŠขAL\vdash A.

  2. 2.

    AA is valid in all (finite) ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames where all axioms of LL are valid.

Proof.

(1โ‡’2)(1\Rightarrow 2): Obvious.

(2โ‡’1)(2\Rightarrow 1): Suppose LโŠฌAL\nvdash A. Let ฮฆ\Phi be any finite adequate set with โˆผAโˆˆฮฆ{\sim}A\in\Phi. Let ฮ“0โˆˆKL\Gamma_{0}\in K_{L} be such that โˆผAโˆˆฮ“0{\sim}A\in\Gamma_{0}.

For each ฮ“โˆˆKL\Gamma\in K_{L}, we define the rank of ฮ“\Gamma (write rankโ€‹(ฮ“)\mathrm{rank}(\Gamma)) as follows: rankโ€‹(ฮ“):=sup{rankโ€‹(ฮ”)+1:ฮ“โ‰บฮ”}\mathrm{rank}(\Gamma):=\sup\{\mathrm{rank}(\Delta)+1:\Gamma\prec\Delta\}, where supโˆ…=0\sup\emptyset=0. This is well-defined because โ‰บ\prec is conversely well-founded.

Let M=โŸจW,R,{Sx}xโˆˆW,โŠฉโŸฉM=\langle W,R,\{S_{x}\}_{x\in W},\Vdash\rangle be a model satisfying the following clauses:

  1. 1.

    W={โŸจฮ“,ฯ„โŸฉ:ฮ“โˆˆKLW=\{\langle\Gamma,\tau\rangle:\Gamma\in K_{L} and ฯ„\tau is a finite sequence of elements of ฮฆโŠณ\Phi_{\rhd} with rank(ฮ“)+|ฯ„|โ‰คrank(ฮ“0)}\mathrm{rank}(\Gamma)+|\tau|\leq\mathrm{rank}(\Gamma_{0})\};

  2. 2.

    โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ”,ฯƒโŸฉโ‡”ฮ“โ‰บฮ”\langle\Gamma,\tau\rangle R\langle\Delta,\sigma\rangle\iff\Gamma\prec\Delta and ฯ„โŠŠฯƒ\tau\subsetneq\sigma;

  3. 3.

    โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹โŸจฮ˜,ฯโŸฉโ‡”โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ”,ฯƒโŸฉ\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}\langle\Theta,\rho\rangle\iff\langle\Gamma,\tau\rangle R\langle\Delta,\sigma\rangle, โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ˜,ฯโŸฉ\langle\Gamma,\tau\rangle R\langle\Theta,\rho\rangle and if ฯ„โˆ—โŸจCโŸฉโІฯƒ\tau\ast\langle C\rangle\subseteq\sigma, ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta, then ฯ„โˆ—โŸจCโŸฉโІฯ\tau\ast\langle C\rangle\subseteq\rho, ฮ“โ‰บCโˆ—ฮ˜\Gamma\prec_{C}^{*}\Theta and โˆผC,โ–กโˆผCโˆˆฮ˜{\sim}C,\Box{\sim}C\in\Theta;

  4. 4.

    โŸจฮ“,ฯ„โŸฉโŠฉpโ‡”pโˆˆฮ“\langle\Gamma,\tau\rangle\Vdash p\iff p\in\Gamma.

Let ฯต\epsilon be the empty sequence. Then rankโ€‹(ฮ“0)+|ฯต|=rankโ€‹(ฮ“0)\mathrm{rank}(\Gamma_{0})+|\epsilon|=\mathrm{rank}(\Gamma_{0}), and hence โŸจฮ“0,ฯตโŸฉโˆˆW\langle\Gamma_{0},\epsilon\rangle\in W. Therefore WW is a non-empty set. Also WW is finite because of the condition rankโ€‹(ฮ“)+|ฯ„|โ‰คrankโ€‹(ฮ“0)\mathrm{rank}(\Gamma)+|\tau|\leq\mathrm{rank}(\Gamma_{0}). Then โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle is an ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame.

Lemma 5.5.

Every axiom of LL is valid in the frame F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle of MM.

Proof.

๐‰๐Ÿ+\mathbf{J2}_{+}: By the definition of SS, ๐‰๐Ÿ’\mathbf{J4} is obviously valid in FF. Assume โŸจฮ”0,ฯƒ0โŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹โŸจฮ”1,ฯƒ1โŸฉ\langle\Delta_{0},\sigma_{0}\rangle S_{\langle\Gamma,\tau\rangle}\langle\Delta_{1},\sigma_{1}\rangle and โŸจฮ”1,ฯƒ1โŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹โŸจฮ”2,ฯƒ2โŸฉ\langle\Delta_{1},\sigma_{1}\rangle S_{\langle\Gamma,\tau\rangle}\langle\Delta_{2},\sigma_{2}\rangle. Suppose ฯ„โˆ—โŸจCโŸฉโІฯƒ0\tau\ast\langle C\rangle\subseteq\sigma_{0}, ฮ“โ‰บCโˆ—ฮ”0\Gamma\prec_{C}^{*}\Delta_{0} and โ–กโˆผCโˆˆฮ”0\Box{\sim}C\in\Delta_{0}. Then ฯ„โˆ—โŸจCโŸฉโІฯƒ1\tau\ast\langle C\rangle\subseteq\sigma_{1}, ฮ“โ‰บCโˆ—ฮ”1\Gamma\prec_{C}^{*}\Delta_{1} and โ–กโˆผCโˆˆฮ”1\Box{\sim}C\in\Delta_{1} because โŸจฮ”0,ฯƒ0โŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹โŸจฮ”1,ฯƒ1โŸฉ\langle\Delta_{0},\sigma_{0}\rangle S_{\langle\Gamma,\tau\rangle}\langle\Delta_{1},\sigma_{1}\rangle. Then also ฯ„โˆ—โŸจCโŸฉโІฯƒ2\tau\ast\langle C\rangle\subseteq\sigma_{2}, ฮ“โ‰บCโˆ—ฮ”2\Gamma\prec_{C}^{*}\Delta_{2} and โˆผC,โ–กโˆผCโˆˆฮ”2{\sim}C,\Box{\sim}C\in\Delta_{2} because โŸจฮ”1,ฯƒ1โŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹โŸจฮ”2,ฯƒ2โŸฉ\langle\Delta_{1},\sigma_{1}\rangle S_{\langle\Gamma,\tau\rangle}\langle\Delta_{2},\sigma_{2}\rangle. Thus we obtain โŸจฮ”0,ฯƒ0โŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹โŸจฮ”2,ฯƒ2โŸฉ\langle\Delta_{0},\sigma_{0}\rangle S_{\langle\Gamma,\tau\rangle}\langle\Delta_{2},\sigma_{2}\rangle. Therefore ๐‰๐Ÿ+\mathbf{J2}_{+} is valid in FF by Proposition 3.17.

๐‰๐Ÿ“\mathbf{J5}: Assume that โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ”,ฯƒโŸฉ\langle\Gamma,\tau\rangle R\langle\Delta,\sigma\rangle and โŸจฮ”,ฯƒโŸฉโ€‹Rโ€‹โŸจฮ˜,ฯโŸฉ\langle\Delta,\sigma\rangle R\langle\Theta,\rho\rangle. Suppose ฯ„โˆ—โŸจCโŸฉโІฯƒ\tau\ast\langle C\rangle\subseteq\sigma, ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta. Since ฯƒโŠŠฯ\sigma\subsetneq\rho, we have ฯ„โˆ—โŸจCโŸฉโІฯ\tau\ast\langle C\rangle\subseteq\rho. Since ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta and ฮ”โ‰บฮ˜\Delta\prec\Theta, ฮ“โ‰บCโˆ—ฮ˜\Gamma\prec_{C}^{*}\Theta by Lemma 4.5. Also we have โˆผC,โ–กโˆผCโˆˆฮ˜{\sim}C,\Box{\sim}C\in\Theta because ฮ”โ‰บฮ˜\Delta\prec\Theta. Therefore we obtain โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹โŸจฮ˜,ฯโŸฉ\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}\langle\Theta,\rho\rangle. By Proposition 3.18, ๐‰๐Ÿ“\mathbf{J5} is valid in FF.

At last, we assume L=๐ˆ๐‹L=\mathbf{IL} and show that ๐‰๐Ÿ\mathbf{J1} is valid in FF. Suppose โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ”,ฯƒโŸฉ\langle\Gamma,\tau\rangle R\langle\Delta,\sigma\rangle, ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta. Since CโŠณCโˆˆฮ“C\rhd C\in\Gamma, โˆผCโˆˆฮ”{\sim}C\in\Delta. Thus we have โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹โŸจฮ”,ฯƒโŸฉ\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}\langle\Delta,\sigma\rangle. By Proposition 3.2, ๐‰๐Ÿ\mathbf{J1} is valid in FF. โˆŽ

Lemma 5.6 (Truth Lemma).

For any formula CโˆˆฮฆC\in\Phi and any โŸจฮ“,ฯ„โŸฉโˆˆW\langle\Gamma,\tau\rangle\in W, Cโˆˆฮ“C\in\Gamma if and only if โŸจฮ“,ฯ„โŸฉโŠฉC\langle\Gamma,\tau\rangle\Vdash C.

Proof.

This is proved by induction on the construction of CC, and we prove only for Cโ‰ก(DโŠณE)C\equiv(D\rhd E).

(โ‡’)(\Rightarrow): Assume DโŠณEโˆˆฮ“D\rhd E\in\Gamma. Let โŸจฮ”,ฯƒโŸฉ\langle\Delta,\sigma\rangle be any element of WW such that โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ”,ฯƒโŸฉ\langle\Gamma,\tau\rangle R\langle\Delta,\sigma\rangle and โŸจฮ”,ฯƒโŸฉโŠฉD\langle\Delta,\sigma\rangle\Vdash D. Then by induction hypothesis, Dโˆˆฮ”D\in\Delta. We distinguish the following two cases.

  • โ€ข

    If ฯ„โˆ—โŸจFโŸฉโІฯƒ\tau\ast\langle F\rangle\subseteq\sigma, ฮ“โ‰บFโˆ—ฮ”\Gamma\prec_{F}^{*}\Delta and โ–กโˆผFโˆˆฮ”\Box{\sim}F\in\Delta for some FF, then by Lemma 4.7, there exists ฮ˜โˆˆKL\Theta\in K_{L} such that Eโˆˆฮ˜E\in\Theta, ฮ“โ‰บFโˆ—ฮ˜\Gamma\prec_{F}^{*}\Theta and โˆผF,โ–กโˆผFโˆˆฮ˜{\sim}F,\Box{\sim}F\in\Theta. Let ฯ:=ฯ„โˆ—โŸจFโŸฉ\rho:=\tau\ast\langle F\rangle.

  • โ€ข

    If not, by Lemma 4.7, there exists ฮ˜โˆˆKL\Theta\in K_{L} such that Eโˆˆฮ˜E\in\Theta and ฮ“โ‰บฮ˜\Gamma\prec\Theta because ฮ“โ‰บโŠฅฮ”\Gamma\prec_{\bot}\Delta. Let ฯ:=ฯ„โˆ—โŸจโŠฅโŸฉ\rho:=\tau\ast\langle\bot\rangle.

In either case, we have rankโ€‹(ฮ˜)+1โ‰คrankโ€‹(ฮ“)\mathrm{rank}(\Theta)+1\leq\mathrm{rank}(\Gamma) and |ฯ|=|ฯ„|+1|\rho|=|\tau|+1. Then we obtain

rankโ€‹(ฮ˜)+|ฯ|=rankโ€‹(ฮ˜)+1+|ฯ„|โ‰คrankโ€‹(ฮ“)+|ฯ„|โ‰คrankโ€‹(ฮ“0).\mathrm{rank}(\Theta)+|\rho|=\mathrm{rank}(\Theta)+1+|\tau|\leq\mathrm{rank}(\Gamma)+|\tau|\leq\mathrm{rank}(\Gamma_{0}).

It follows โŸจฮ˜,ฯโŸฉโˆˆW\langle\Theta,\rho\rangle\in W. By the definition of SS, we have โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹โŸจฮ˜,ฯโŸฉ\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}\langle\Theta,\rho\rangle. Also by induction hypothesis, โŸจฮ˜,ฯโŸฉโŠฉE\langle\Theta,\rho\rangle\Vdash E. Therefore we conclude โŸจฮ“,ฯ„โŸฉโŠฉDโŠณE\langle\Gamma,\tau\rangle\Vdash D\rhd E.

(โ‡)(\Leftarrow): Assume DโŠณEโˆ‰ฮ“D\rhd E\notin\Gamma. By Lemma 4.6, there exists ฮ”โˆˆKL\Delta\in K_{L} such that Dโˆˆฮ”D\in\Delta, ฮ“โ‰บEโˆ—ฮ”\Gamma\prec_{E}^{*}\Delta and โ–กโˆผEโˆˆฮ”\Box{\sim}E\in\Delta. Let ฯƒ:=ฯ„โˆ—โŸจEโŸฉ\sigma:=\tau\ast\langle E\rangle, then it is proved that โŸจฮ”,ฯƒโŸฉ\langle\Delta,\sigma\rangle is an element of WW as above. Then โŸจฮ”,ฯƒโŸฉโŠฉD\langle\Delta,\sigma\rangle\Vdash D by induction hypothesis.

Let โŸจฮ˜,ฯโŸฉ\langle\Theta,\rho\rangle be any element of WW with โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹โŸจฮ˜,ฯโŸฉ\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}\langle\Theta,\rho\rangle. Since ฯ„โˆ—โŸจEโŸฉ=ฯƒ\tau\ast\langle E\rangle=\sigma, ฮ“โ‰บEโˆ—ฮ”\Gamma\prec_{E}^{*}\Delta and โ–กโˆผEโˆˆฮ”\Box{\sim}E\in\Delta, we have โˆผEโˆˆฮ˜{\sim}E\in\Theta by the definition of SS. By induction hypothesis, โŸจฮ˜,ฯโŸฉโŠฎE\langle\Theta,\rho\rangle\nVdash E. Therefore we conclude โŸจฮ“,ฯ„โŸฉโŠฎDโŠณE\langle\Gamma,\tau\rangle\nVdash D\rhd E. โˆŽ

Since โŸจฮ“0,ฯตโŸฉโˆˆW\langle\Gamma_{0},\epsilon\rangle\in W and Aโˆ‰ฮ“0A\notin\Gamma_{0}, โŸจฮ“0,ฯตโŸฉโŠฎA\langle\Gamma_{0},\epsilon\rangle\nVdash A by Truth Lemma. Therefore AA is not valid in the frame of MM. โˆŽ

As a corollary to Theorems 5.1 and 5.4, we have the decidability of these logics.

Corollary 5.7.

Every logic shown in Figure 1 is decidable.

Since every ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame can be transformed into an ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame, we obtain the following corollary.

Corollary 5.8.

Let LL be one of twelve logics in Figure 1 and let AA be any formula. Then the following are equivalent:

  1. 1.

    LโŠขAL\vdash A.

  2. 2.

    AA is valid in all (finite) ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames in which all axioms of LL are valid.

6 Modal incompleteness with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames

In this section, we prove the modal incompleteness of eight logics shown in Figure 2 with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames. As in Figure 1, no more line segments can be drawn in the figure.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’)\mathbf{IL}^{-}(\mathbf{J4})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J4},\mathbf{J5})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J2})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4},\mathbf{J5})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J5})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+})๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+},\mathbf{J5})
Figure 2: Sublogics of ๐ˆ๐‹\mathbf{IL} incomplete with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames

First, we prove incompleteness of the logics ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J2}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J5}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+},\mathbf{J5}).

Proposition 6.1.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)โŠฌ๐‰๐Ÿ+\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+},\mathbf{J5})\nvdash\mathbf{J2}_{+}.

Proof.

Let F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle be the ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame defined as follows:

  1. 1.

    W:={x,y0,y1,y2}W:=\{x,y_{0},y_{1},y_{2}\};

  2. 2.

    R:={(x,y0),(x,y1),(x,y2)}R:=\{(x,y_{0}),(x,y_{1}),(x,y_{2})\};

  3. 3.

    y0SxV:โ‡”VโЇ{y1,y2}y_{0}S_{x}V:\iff V\supseteq\{y_{1},y_{2}\};
    y1SxV:โ‡”VโЇ{y2}y_{1}S_{x}V:\iff V\supseteq\{y_{2}\};
    y2SxV:โ‡”VโЇ{y0,y1,y2}y_{2}S_{x}V:\iff V\supseteq\{y_{0},y_{1},y_{2}\}.

xxy0y_{0}y1y_{1}y2y_{2}

By Monotonicity of SxS_{x}, FF is actually an ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame. First, we prove that ๐‰๐Ÿ\mathbf{J2}, ๐‰๐Ÿ’+\mathbf{J4}_{+} and ๐‰๐Ÿ“\mathbf{J5} are valid in FF.

  • โ€ข

    ๐‰๐Ÿ’+\mathbf{J4}_{+}: If yโ€‹Sxโ€‹VyS_{x}V, then VโˆฉRโ€‹[x]=Vโˆ–{x}V\cap R[x]=V\setminus\{x\}. By the definition of SxS_{x}, we have yโ€‹Sxโ€‹(Vโˆ–{x})yS_{x}(V\setminus\{x\}). Thus yโ€‹Sxโ€‹(VโˆฉRโ€‹[x])yS_{x}(V\cap R[x]). By Proposition 3.10, ๐‰๐Ÿ’+\mathbf{J4}_{+} is valid in FF.

  • โ€ข

    ๐‰๐Ÿ\mathbf{J2}: Since ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’+)โŠข๐‰๐Ÿ’\mathbf{IL}^{-}(\mathbf{J4}_{+})\vdash\mathbf{J4}, ๐‰๐Ÿ’\mathbf{J4} is also valid in FF. Suppose yโ€‹Sxโ€‹VyS_{x}V and โˆ€zโˆˆVโˆฉRโ€‹[x]โ€‹(zโ€‹Sxโ€‹Uz)\forall z\in V\cap R[x](zS_{x}U_{z}). Then y2โˆˆVy_{2}\in V if yy is either y0y_{0}, y1y_{1} or y2y_{2}. Also since y2โˆˆVโˆฉRโ€‹[x]y_{2}\in V\cap R[x], there exists Uy2โІWU_{y_{2}}\subseteq W such that y2โ€‹Sxโ€‹Uy2y_{2}S_{x}U_{y_{2}}. By the definition of SxS_{x}, Uy2โЇ{y0,y1,y2}U_{y_{2}}\supseteq\{y_{0},y_{1},y_{2}\}. Thus โ‹ƒzโˆˆVโˆฉRโ€‹[x]UzโЇ{y0,y1,y2}\bigcup_{z\in V\cap R[x]}U_{z}\supseteq\{y_{0},y_{1},y_{2}\}. Then we have yโ€‹Sxโ€‹(โ‹ƒzโˆˆVโˆฉRโ€‹[x]Uz)yS_{x}(\bigcup_{z\in V\cap R[x]}U_{z}) if yy is either y0y_{0}, y1y_{1} or y2y_{2}. Therefore ๐‰๐Ÿ\mathbf{J2} is valid in FF by Proposition 3.16.

  • โ€ข

    ๐‰๐Ÿ“\mathbf{J5}: Since there are no y,zโˆˆWy,z\in W such that xโ€‹Rโ€‹yxRy and yโ€‹Rโ€‹zyRz, by Proposition 3.19, ๐‰๐Ÿ“\mathbf{J5} is trivially valid in FF.

It suffices to show that ๐‰๐Ÿ+\mathbf{J2}_{+} is not valid in FF. Let V0={y1}V_{0}=\{y_{1}\} and V1={y2}V_{1}=\{y_{2}\}, then y0โ€‹Sxโ€‹(V0โˆชV1)y_{0}S_{x}(V_{0}\cup V_{1}). Also let Uy1={y2}U_{y_{1}}=\{y_{2}\}, then โˆ€zโˆˆV0โˆฉRโ€‹[x]โ€‹(zโ€‹Sxโ€‹Uz)\forall z\in V_{0}\cap R[x](zS_{x}U_{z}). On the other hand, since โ‹ƒzโˆˆV0โˆฉRโ€‹[x]UzโˆชV1=Uy1โˆชV1={y2}โˆช{y2}={y2}\bigcup_{z\in V_{0}\cap R[x]}U_{z}\cup V_{1}=U_{y_{1}}\cup V_{1}=\{y_{2}\}\cup\{y_{2}\}=\{y_{2}\}, y0โ€‹Sxโ€‹(โ‹ƒzโˆˆV0โˆฉRโ€‹[x]UzโˆชV1)y_{0}S_{x}(\bigcup_{z\in V_{0}\cap R[x]}U_{z}\cup V_{1}) does not hold. Therefore ๐‰๐Ÿ+\mathbf{J2}_{+} is not valid in FF by Proposition 3.17. โˆŽ

Corollary 6.2.

Let LL be any logic with ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)โІLโІ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2})\subseteq L\subseteq\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+},\mathbf{J5}). Then LL is not complete with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames.

Proof.

Let FF be any ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frame in which all axioms of LL are valid. Then ๐‰๐Ÿ\mathbf{J2} is valid in FF, and hence ๐‰๐Ÿ+\mathbf{J2}_{+} is also valid in FF by Proposition 3.15. However, by Proposition 6.1, LโŠฌ๐‰๐Ÿ+L\nvdash\mathbf{J2}_{+}. Therefore LL is not complete with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames. โˆŽ

Secondly, we prove incompleteness of the logics ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’)\mathbf{IL}^{-}(\mathbf{J4}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J4},\mathbf{J5}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4},\mathbf{J5}).

Proposition 6.3.

๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’,๐‰๐Ÿ“)โŠฌ๐‰๐Ÿ’+\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4},\mathbf{J5})\nvdash\mathbf{J4}_{+}.

Proof.

We define the ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle as follows:

  1. 1.

    W:={x,y0,y1,y2}W:=\{x,y_{0},y_{1},y_{2}\};

  2. 2.

    R:={(x,y0),(x,y1)}R:=\{(x,y_{0}),(x,y_{1})\};

  3. 3.

    y0SxV:โ‡”VโЇ{y0}y_{0}S_{x}V:\iff V\supseteq\{y_{0}\} or VโЇ{y1,y2}V\supseteq\{y_{1},y_{2}\};
    y1SxV:โ‡”VโЇ{y1}y_{1}S_{x}V:\iff V\supseteq\{y_{1}\}.

xxy0y_{0}y1y_{1}y2y_{2}

Indeed, FF is an ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame. We show ๐‰๐Ÿ\mathbf{J1}, ๐‰๐Ÿ’\mathbf{J4} and ๐‰๐Ÿ“\mathbf{J5} are valid in FF.

  • โ€ข

    ๐‰๐Ÿ\mathbf{J1}: Since y0โ€‹Sxโ€‹{y0}y_{0}S_{x}\{y_{0}\} and y1โ€‹Sxโ€‹{y1}y_{1}S_{x}\{y_{1}\}, ๐‰๐Ÿ\mathbf{J1} is valid by Proposition 3.3.

  • โ€ข

    ๐‰๐Ÿ’\mathbf{J4}: Suppose yโ€‹Sxโ€‹VyS_{x}V. Then whatever yy is, either y0โˆˆVy_{0}\in V or y1โˆˆVy_{1}\in V. Thus there exists zโˆˆVz\in V such that xโ€‹Rโ€‹zxRz. Hence ๐‰๐Ÿ’\mathbf{J4} is valid in FF by Proposition 3.9.

  • โ€ข

    ๐‰๐Ÿ“\mathbf{J5}: As in the proof of Proposition 6.1, ๐‰๐Ÿ“\mathbf{J5} is trivially valid in FF.

Then we show that ๐‰๐Ÿ’+\mathbf{J4}_{+} is not valid in FF. Let V={y1,y2}V=\{y_{1},y_{2}\}, then y0โ€‹Sxโ€‹Vy_{0}S_{x}V. On the other hand, since VโˆฉRโ€‹[x]={y1}V\cap R[x]=\{y_{1}\}, y0โ€‹Sxโ€‹(VโˆฉRโ€‹[x])y_{0}S_{x}(V\cap R[x]) does not hold. Therefore ๐‰๐Ÿ’+\mathbf{J4}_{+} is not valid in FF by Proposition 3.10. โˆŽ

Corollary 6.4.

Let LL be any logic with ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’)โІLโІ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J4})\subseteq L\subseteq\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4},\mathbf{J5}). Then LL is incomplete with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames.

7 Modal completeness with respect to ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames

In this section, we prove eight logics shown in Figure 2 are complete with respect to ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames. As in Section 5, at first we prove the completeness theorem of logics other than ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J5}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+},\mathbf{J5}).

Theorem 7.1.

Let LL be one of the logics ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’)\mathbf{IL}^{-}(\mathbf{J4}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J4},\mathbf{J5}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4},\mathbf{J5}), ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J2}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+}). Then for any formula AA, the following are equivalent:

  1. 1.

    LโŠขAL\vdash A.

  2. 2.

    AA is valid in all (finite) ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames where all axioms of LL are valid.

Proof.

(1โ‡’2)(1\Rightarrow 2): Obvious.

(2โ‡’1)(2\Rightarrow 1): Assume LโŠฌAL\nvdash A. Let ฮฆ\Phi be any finite adequate set of formulas containing {โˆผA}\{{\sim}A\}. Let ฮ“0โˆˆKL\Gamma_{0}\in K_{L} be such that โˆผAโˆˆฮ“0{\sim}A\in\Gamma_{0}.

We define a model M=โŸจW,R,{Sx}xโˆˆW,โŠฉโŸฉM=\langle W,R,\{S_{x}\}_{x\in W},\Vdash\rangle as follows:

  1. 1.

    W={โŸจฮ“,BโŸฉ:ฮ“โˆˆKLW=\{\langle\Gamma,B\rangle:\Gamma\in K_{L} and BโˆˆฮฆโŠณ}B\in\Phi_{\rhd}\};

  2. 2.

    โŸจฮ“,BโŸฉRโŸจฮ”,CโŸฉ:โ‡”ฮ“โ‰บฮ”\langle\Gamma,B\rangle R\langle\Delta,C\rangle:\iff\Gamma\prec\Delta;

  3. 3.

    โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹V:โ‡”\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}V:\iff

    1. (a)

      โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ”,CโŸฉ\langle\Gamma,B\rangle R\langle\Delta,C\rangle;

    2. (b)

      For some โŸจฮ˜,DโŸฉโˆˆV\langle\Theta,D\rangle\in V, โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ˜,DโŸฉ\langle\Gamma,B\rangle R\langle\Theta,D\rangle;

    3. (c)

      The condition ๐’žL\mathcal{C}_{L} holds.

  4. 4.

    โŸจฮ“,BโŸฉโŠฉp:โ‡”pโˆˆฮ“\langle\Gamma,B\rangle\Vdash p:\iff p\in\Gamma.

The condition ๐’žL\mathcal{C}_{L} depends on LL as follows:

  • โ€ข

    Lโˆˆ{๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’),๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’)}L\in\{\mathbf{IL}^{-}(\mathbf{J4}),\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4})\}: If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta, then there exists โŸจฮ›,GโŸฉโˆˆV\langle\Lambda,G\rangle\in V such that โˆผCโˆˆฮ›{\sim}C\in\Lambda.

  • โ€ข

    Lโˆˆ{๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’,๐‰๐Ÿ“),๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’,๐‰๐Ÿ“)}L\in\{\mathbf{IL}^{-}(\mathbf{J4},\mathbf{J5}),\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4},\mathbf{J5})\}: If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta, then there exists โŸจฮ›,GโŸฉโˆˆV\langle\Lambda,G\rangle\in V such that โˆผCโˆˆฮ›{\sim}C\in\Lambda.

  • โ€ข

    L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)L=\mathbf{IL}^{-}(\mathbf{J2}): If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta, then there exist โŸจฮ›0,GโŸฉ,โŸจฮ›1,CโŸฉโˆˆV\langle\Lambda_{0},G\rangle,\langle\Lambda_{1},C\rangle\in V such that โˆผCโˆˆฮ›0{\sim}C\in\Lambda_{0} and ฮ“โ‰บCฮ›1\Gamma\prec_{C}\Lambda_{1}.

  • โ€ข

    L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)L=\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+}): If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta, then there exist โŸจฮ›0,GโŸฉ,โŸจฮ›1,CโŸฉโˆˆV\langle\Lambda_{0},G\rangle,\langle\Lambda_{1},C\rangle\in V such that ฮ“โ‰บฮ›0\Gamma\prec\Lambda_{0}, โˆผCโˆˆฮ›0{\sim}C\in\Lambda_{0} and ฮ“โ‰บCฮ›1\Gamma\prec_{C}\Lambda_{1}.

Since โŠฅโˆˆฮฆโŠณ\bot\in\Phi_{\rhd}, โŸจฮ“0,โŠฅโŸฉโˆˆW\langle\Gamma_{0},\bot\rangle\in W. Therefore WW is non-empty. The set WW is finite and the relation RR is transitive and conversely well-founded. Moreover, by Monotonicity of SxS_{x}, F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle is an ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame.

Lemma 7.2.

Every axiom of LL is valid in FF.

Proof.

If โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹V\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}V, then for some โŸจฮ˜,DโŸฉโˆˆV\langle\Theta,D\rangle\in V, โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ˜,DโŸฉ\langle\Gamma,B\rangle R\langle\Theta,D\rangle. Thus ๐‰๐Ÿ’\mathbf{J4} is valid in FF by Proposition 3.9.

We distinguish the following five cases:

  • โ€ข

    L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’)L=\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4}): Suppose โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ”,CโŸฉ\langle\Gamma,B\rangle R\langle\Delta,C\rangle. If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta, then โˆผCโˆˆฮ”{\sim}C\in\Delta because CโŠณCโˆˆฮ“C\rhd C\in\Gamma. Hence โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹{โŸจฮ”,CโŸฉ}\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}\{\langle\Delta,C\rangle\}. We conclude that ๐‰๐Ÿ\mathbf{J1} is valid in FF by Proposition 3.3.

  • โ€ข

    L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)L=\mathbf{IL}^{-}(\mathbf{J2}): Assume that โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹V\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}V and for any โŸจฮ”โ€ฒ,Cโ€ฒโŸฉโˆˆVโˆฉRโ€‹[โŸจฮ“,BโŸฉ]\langle\Delta^{\prime},C^{\prime}\rangle\in V\cap R[\langle\Gamma,B\rangle], โŸจฮ”โ€ฒ,Cโ€ฒโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹UโŸจฮ”โ€ฒ,Cโ€ฒโŸฉ\langle\Delta^{\prime},C^{\prime}\rangle S_{\langle\Gamma,B\rangle}U_{\langle\Delta^{\prime},C^{\prime}\rangle}. We distinguish the following two cases:

    • โ€“

      If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta, then for some โŸจฮ›1,CโŸฉโˆˆV\langle\Lambda_{1},C\rangle\in V, we have ฮ“โ‰บCฮ›1\Gamma\prec_{C}\Lambda_{1}. Then โŸจฮ›1,CโŸฉโˆˆVโˆฉRโ€‹[โŸจฮ“,BโŸฉ]\langle\Lambda_{1},C\rangle\in V\cap R[\langle\Gamma,B\rangle]. Since โŸจฮ›1,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹UโŸจฮ›1,CโŸฉ\langle\Lambda_{1},C\rangle S_{\langle\Gamma,B\rangle}U_{\langle\Lambda_{1},C\rangle} and ฮ“โ‰บCฮ›1\Gamma\prec_{C}\Lambda_{1}, there exist โŸจฮ›0โ€ฒ,GโŸฉ,โŸจฮ›1โ€ฒ,CโŸฉโˆˆUโŸจฮ›1,CโŸฉ\langle\Lambda_{0}^{\prime},G\rangle,\langle\Lambda_{1}^{\prime},C\rangle\in U_{\langle\Lambda_{1},C\rangle} such that โˆผCโˆˆฮ›0โ€ฒ{\sim}C\in\Lambda_{0}^{\prime} and ฮ“โ‰บCฮ›1โ€ฒ\Gamma\prec_{C}\Lambda_{1}^{\prime} by the definition of SS. Therefore โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹UโŸจฮ›1,CโŸฉ\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}U_{\langle\Lambda_{1},C\rangle}.

    • โ€“

      If ฮ“โŠ€Cฮ”\Gamma\nprec_{C}\Delta, then for some โŸจฮ˜,DโŸฉโˆˆV\langle\Theta,D\rangle\in V, โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ˜,DโŸฉ\langle\Gamma,B\rangle R\langle\Theta,D\rangle, and hence โŸจฮ˜,DโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹UโŸจฮ˜,DโŸฉ\langle\Theta,D\rangle S_{\langle\Gamma,B\rangle}U_{\langle\Theta,D\rangle}. Then there exists โŸจฮ˜โ€ฒ,Dโ€ฒโŸฉโˆˆUโŸจฮ˜,DโŸฉ\langle\Theta^{\prime},D^{\prime}\rangle\in U_{\langle\Theta,D\rangle} such that โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ˜โ€ฒ,Dโ€ฒโŸฉ\langle\Gamma,B\rangle R\langle\Theta^{\prime},D^{\prime}\rangle. Therefore, we have โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹UโŸจฮ˜,DโŸฉ\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}U_{\langle\Theta,D\rangle}.

    In either case, we obtain โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹(โ‹ƒโŸจฮ”โ€ฒ,Cโ€ฒโŸฉโˆˆVโˆฉRโ€‹[โŸจฮ“,BโŸฉ]UโŸจฮ”โ€ฒ,Cโ€ฒโŸฉ)\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}(\bigcup_{\langle\Delta^{\prime},C^{\prime}\rangle\in V\cap R[\langle\Gamma,B\rangle]}U_{\langle\Delta^{\prime},C^{\prime}\rangle}) by Monotonicity. Thus we conclude that ๐‰๐Ÿ\mathbf{J2} is valid in FF by Proposition 3.16.

  • โ€ข

    L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)L=\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+}): As in the case of ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ)\mathbf{IL}^{-}(\mathbf{J2}), ๐‰๐Ÿ\mathbf{J2} is valid in FF.

    Suppose โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹V\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}V. We distinguish the following two cases:

    • โ€“

      If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta, then there exist โŸจฮ›0,GโŸฉ,โŸจฮ›1,CโŸฉโˆˆV\langle\Lambda_{0},G\rangle,\langle\Lambda_{1},C\rangle\in V such that ฮ“โ‰บฮ›0\Gamma\prec\Lambda_{0}, โˆผCโˆˆฮ›0{\sim}C\in\Lambda_{0} and ฮ“โ‰บCฮ›1\Gamma\prec_{C}\Lambda_{1}. Let Vโ€ฒ:={โŸจฮ›0,GโŸฉ,โŸจฮ›1,CโŸฉ}V^{\prime}:=\{\langle\Lambda_{0},G\rangle,\langle\Lambda_{1},C\rangle\}.

    • โ€“

      If ฮ“โŠ€Cฮ”\Gamma\nprec_{C}\Delta, then for some โŸจฮ˜,DโŸฉโˆˆV\langle\Theta,D\rangle\in V with โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ˜,DโŸฉ\langle\Gamma,B\rangle R\langle\Theta,D\rangle, let Vโ€ฒ:={โŸจฮ˜,DโŸฉ}V^{\prime}:=\{\langle\Theta,D\rangle\}.

    In either case, we have โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹Vโ€ฒ\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}V^{\prime}. Also we have Vโ€ฒโІVโˆฉRโ€‹[โŸจฮ“,BโŸฉ]V^{\prime}\subseteq V\cap R[\langle\Gamma,B\rangle]. Then โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹(VโˆฉRโ€‹[โŸจฮ“,BโŸฉ])\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}(V\cap R[\langle\Gamma,B\rangle]) by Monotonicity. Therefore ๐‰๐Ÿ’+\mathbf{J4}_{+} is valid in FF by Proposition 3.10.

  • โ€ข

    L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’,๐‰๐Ÿ“)L=\mathbf{IL}^{-}(\mathbf{J4},\mathbf{J5}): Suppose โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ”,CโŸฉ\langle\Gamma,B\rangle R\langle\Delta,C\rangle and โŸจฮ”,CโŸฉโ€‹Rโ€‹โŸจฮ˜,DโŸฉ\langle\Delta,C\rangle R\langle\Theta,D\rangle. Let V:={โŸจฮ˜,DโŸฉ}V:=\{\langle\Theta,D\rangle\}, then โŸจฮ˜,DโŸฉโˆˆVโˆฉRโ€‹[โŸจฮ“,BโŸฉ]\langle\Theta,D\rangle\in V\cap R[\langle\Gamma,B\rangle]. If ฮ“โ‰บCฮ”\Gamma\prec_{C}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta, then โˆผCโˆˆฮ˜{\sim}C\in\Theta because ฮ”โ‰บฮ˜\Delta\prec\Theta. Thus โŸจฮ”,CโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹V\langle\Delta,C\rangle S_{\langle\Gamma,B\rangle}V. By Proposition 3.19, ๐‰๐Ÿ“\mathbf{J5} is valid in FF.

  • โ€ข

    L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’,๐‰๐Ÿ“)L=\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4},\mathbf{J5}): As in the cases of ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’)\mathbf{IL}^{-}(\mathbf{J1},\mathbf{J4}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ’,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J4},\mathbf{J5}), the axiom schemata ๐‰๐Ÿ\mathbf{J1}, ๐‰๐Ÿ’\mathbf{J4} and ๐‰๐Ÿ“\mathbf{J5} are valid in FF.

โˆŽ

Lemma 7.3 (Truth Lemma).

For any CโˆˆฮฆC\in\Phi and any โŸจฮ“,BโŸฉโˆˆW\langle\Gamma,B\rangle\in W, Cโˆˆฮ“C\in\Gamma if and only if โŸจฮ“,BโŸฉโŠฉC\langle\Gamma,B\rangle\Vdash C.

Proof.

We prove by induction on CC, and we only give a proof of the case Cโ‰ก(DโŠณE)C\equiv(D\rhd E).

(โ‡’)(\Rightarrow): Assume DโŠณEโˆˆฮ“D\rhd E\in\Gamma. Let โŸจฮ”,FโŸฉ\langle\Delta,F\rangle be any element of WW such that โŸจฮ“,BโŸฉโ€‹Rโ€‹โŸจฮ”,FโŸฉ\langle\Gamma,B\rangle R\langle\Delta,F\rangle and โŸจฮ”,FโŸฉโŠฉD\langle\Delta,F\rangle\Vdash D. By induction hypothesis, Dโˆˆฮ”D\in\Delta. Since LL contains ๐‰๐Ÿ’\mathbf{J4}, by Lemma 4.8, there exists ฮ˜โˆˆKL\Theta\in K_{L} such that ฮ“โ‰บฮ˜\Gamma\prec\Theta and Eโˆˆฮ˜E\in\Theta.

  • โ€ข

    If ฮ“โ‰บFฮ”\Gamma\prec_{F}\Delta, then by Lemma 4.7, there exists ฮ›โˆˆKL\Lambda\in K_{L} such that Eโˆˆฮ›E\in\Lambda and โˆผFโˆˆฮ›{\sim}F\in\Lambda. In particular, if L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)L=\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+}), then ฮ“โ‰บฮ›\Gamma\prec\Lambda holds. Moreover, if Lโˆˆ{๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ),๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)}L\in\{\mathbf{IL}^{-}(\mathbf{J2}),\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+})\}, then we may assume ฮ“โ‰บFฮ˜\Gamma\prec_{F}\Theta by Lemma 4.9. Let V:={โŸจฮ˜,FโŸฉ,โŸจฮ›,FโŸฉ}V:=\{\langle\Theta,F\rangle,\langle\Lambda,F\rangle\}.

  • โ€ข

    If ฮ“โŠ€Fฮ”\Gamma\nprec_{F}\Delta, then let V:={โŸจฮ˜,FโŸฉ}V:=\{\langle\Theta,F\rangle\}.

In either case, โŸจฮ”,FโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹V\langle\Delta,F\rangle S_{\langle\Gamma,B\rangle}V. By induction hypothesis, โŸจฮ˜,FโŸฉโŠฉE\langle\Theta,F\rangle\Vdash E and โŸจฮ›,FโŸฉโŠฉE\langle\Lambda,F\rangle\Vdash E. We conclude โŸจฮ“,BโŸฉโŠฉDโŠณE\langle\Gamma,B\rangle\Vdash D\rhd E.

(โ‡)(\Leftarrow): Assume DโŠณEโˆ‰ฮ“D\rhd E\notin\Gamma. Then by Lemma 4.6, there exists ฮ”โˆˆKL\Delta\in K_{L} such that Dโˆˆฮ”D\in\Delta and ฮ“โ‰บEฮ”\Gamma\prec_{E}\Delta. Moreover if LL contains ๐‰๐Ÿ“\mathbf{J5}, then โ–กโˆผEโˆˆฮ”\Box{\sim}E\in\Delta also holds. We have โŸจฮ”,EโŸฉโŠฉD\langle\Delta,E\rangle\Vdash D by induction hypothesis. Let VV be any subset of WW such that โŸจฮ”,EโŸฉโ€‹SโŸจฮ“,BโŸฉโ€‹V\langle\Delta,E\rangle S_{\langle\Gamma,B\rangle}V. By the definition of SS, there exists โŸจฮ›,GโŸฉโˆˆV\langle\Lambda,G\rangle\in V such that โˆผEโˆˆฮ›{\sim}E\in\Lambda. Then by induction hypothesis, โŸจฮ›,GโŸฉโŠฎE\langle\Lambda,G\rangle\nVdash E. Thus we obtain โŸจฮ“,BโŸฉโŠฎDโŠณE\langle\Gamma,B\rangle\nVdash D\rhd E. โˆŽ

Since โŸจฮ“0,โŠฅโŸฉโˆˆW\langle\Gamma_{0},\bot\rangle\in W and Aโˆ‰ฮ“0A\notin\Gamma_{0}, it follows from Truth Lemma that โŸจฮ“0,โŠฅโŸฉโŠฎA\langle\Gamma_{0},\bot\rangle\nVdash A. Thus AA is not valid in the frame of MM. โˆŽ

At last, we prove the completeness of the logics ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J5}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+},\mathbf{J5}) with respect to ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames.

Theorem 7.4.

Let LL be one of ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J5}) and ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+},\mathbf{J5}). Then for any formula AA, the following are equivalent:

  1. 1.

    LโŠขAL\vdash A.

  2. 2.

    AA is valid in all (finite) ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames where all axioms of LL are valid.

Proof.

(1โ‡’2)(1\Rightarrow 2): Straightforward.

(2โ‡’1)(2\Rightarrow 1): Suppose LโŠฌAL\nvdash A. Let ฮฆ\Phi be any finite adequate set containing โˆผA{\sim}A. Let ฮ“0โˆˆKL\Gamma_{0}\in K_{L} be such that โˆผAโˆˆฮ“0{\sim}A\in\Gamma_{0}. For each ฮ“โˆˆKL\Gamma\in K_{L}, rankโ€‹(ฮ“)\mathrm{rank}(\Gamma) is defined as in the proof of Theorem 5.4. Let k:=maxโก{rankโ€‹(ฮ“):ฮ“โˆˆKL}k:=\max\{\mathrm{rank}(\Gamma):\Gamma\in K_{L}\}.

We define the model M:=โŸจW,R,{Sx}xโˆˆW,โŠฉโŸฉM:=\langle W,R,\{S_{x}\}_{x\in W},\Vdash\rangle as follows:

  1. 1.

    W={โŸจฮ“,ฯ„โŸฉ:ฮ“โˆˆKLW=\{\langle\Gamma,\tau\rangle:\Gamma\in K_{L} and ฯ„\tau is a finite sequence of elements of ฮฆโŠณ\Phi_{\rhd} with rank(ฮ“)+|ฯ„|โ‰คk}\mathrm{rank}(\Gamma)+|\tau|\leq k\};

  2. 2.

    โŸจฮ“,ฯ„โŸฉRโŸจฮ”,ฯƒโŸฉ:โ‡”ฮ“โ‰บฮ”\langle\Gamma,\tau\rangle R\langle\Delta,\sigma\rangle:\iff\Gamma\prec\Delta and ฯ„โŠŠฯƒ\tau\subsetneq\sigma;

  3. 3.

    โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹V:โ‡”\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}V:\iff

    1. (a)

      โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ”,ฯƒโŸฉ\langle\Gamma,\tau\rangle R\langle\Delta,\sigma\rangle;

    2. (b)

      For some โŸจฮ˜,ฯโŸฉโˆˆV\langle\Theta,\rho\rangle\in V, โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ˜,ฯโŸฉ\langle\Gamma,\tau\rangle R\langle\Theta,\rho\rangle;

    3. (c)

      If ฯ„โˆ—โŸจCโŸฉโІฯƒ\tau\ast\langle C\rangle\subseteq\sigma, ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta, then the condition ๐’žL\mathcal{C}_{L} holds.

  4. 4.

    โŸจฮ“,ฯ„โŸฉโŠฉp:โ‡”pโˆˆฮ“\langle\Gamma,\tau\rangle\Vdash p:\iff p\in\Gamma.

The condition ๐’žL\mathcal{C}_{L} depends on LL as follows:

  • โ€ข

    ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J5}): There exist โŸจฮ›1,ฯ1โŸฉ,โŸจฮ›2,ฯ2โŸฉโˆˆV\langle\Lambda_{1},\rho_{1}\rangle,\langle\Lambda_{2},\rho_{2}\rangle\in V such that ฯ„โˆ—โŸจCโŸฉโІฯ2\tau\ast\langle C\rangle\subseteq\rho_{2}, โˆผCโˆˆฮ›1{\sim}C\in\Lambda_{1}, ฮ“โ‰บCโˆ—ฮ›2\Gamma\prec_{C}^{*}\Lambda_{2} and โ–กโˆผCโˆˆฮ›2\Box{\sim}C\in\Lambda_{2}.

  • โ€ข

    ๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+},\mathbf{J5}): There exist โŸจฮ›1,ฯ1โŸฉ,โŸจฮ›2,ฯ2โŸฉโˆˆV\langle\Lambda_{1},\rho_{1}\rangle,\langle\Lambda_{2},\rho_{2}\rangle\in V such that ฯ„โˆ—โŸจCโŸฉโІฯ1\tau\ast\langle C\rangle\subseteq\rho_{1}, ฯ„โˆ—โŸจCโŸฉโІฯ2\tau\ast\langle C\rangle\subseteq\rho_{2}, ฮ“โ‰บฮ›1\Gamma\prec\Lambda_{1}, โˆผCโˆˆฮ›1{\sim}C\in\Lambda_{1}, ฮ“โ‰บCโˆ—ฮ›2\Gamma\prec_{C}^{*}\Lambda_{2} and โ–กโˆผCโˆˆฮ›2\Box{\sim}C\in\Lambda_{2}.

Let ฯต\epsilon be the empty sequence. Then rankโ€‹(ฮ“0)+|ฯต|โ‰คk\mathrm{rank}(\Gamma_{0})+|\epsilon|\leq k, and hence โŸจฮ“0,ฯตโŸฉโˆˆW\langle\Gamma_{0},\epsilon\rangle\in W. Therefore WW is a non-empty set. Then โŸจW,R,{Sx}xโˆˆWโŸฉ\langle W,R,\{S_{x}\}_{x\in W}\rangle is a finite ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frame.

Lemma 7.5.

Every axiom of LL is valid in the frame F=โŸจW,R,{Sx}xโˆˆWโŸฉF=\langle W,R,\{S_{x}\}_{x\in W}\rangle of MM.

Proof.

๐‰๐Ÿ\mathbf{J2}: It is easy to show that ๐‰๐Ÿ’\mathbf{J4} is valid in FF (see Proposition 3.9). Suppose โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹V\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}V and for any โŸจฮ”โ€ฒ,ฯƒโ€ฒโŸฉโˆˆVโˆฉRโ€‹[โŸจฮ“,ฯ„โŸฉ]\langle\Delta^{\prime},\sigma^{\prime}\rangle\in V\cap R[\langle\Gamma,\tau\rangle], โŸจฮ”โ€ฒ,ฯƒโ€ฒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹UโŸจฮ”โ€ฒ,ฯƒโ€ฒโŸฉ\langle\Delta^{\prime},\sigma^{\prime}\rangle S_{\langle\Gamma,\tau\rangle}U_{\langle\Delta^{\prime},\sigma^{\prime}\rangle}.

  • โ€ข

    If ฯ„โˆ—โŸจCโŸฉโІฯƒ\tau\ast\langle C\rangle\subseteq\sigma, ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta, then there exists โŸจฮ›2,ฯ2โŸฉโˆˆV\langle\Lambda_{2},\rho_{2}\rangle\in V such that ฯ„โˆ—โŸจCโŸฉโІฯ2\tau\ast\langle C\rangle\subseteq\rho_{2}, ฮ“โ‰บCโˆ—ฮ›2\Gamma\prec_{C}^{*}\Lambda_{2} and โ–กโˆผCโˆˆฮ›2\Box{\sim}C\in\Lambda_{2}. Since โŸจฮ›2,ฯ2โŸฉโˆˆVโˆฉRโ€‹[โŸจฮ“,ฯ„โŸฉ]\langle\Lambda_{2},\rho_{2}\rangle\in V\cap R[\langle\Gamma,\tau\rangle], we have โŸจฮ›2,ฯ2โŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹UโŸจฮ›2,ฯ2โŸฉ\langle\Lambda_{2},\rho_{2}\rangle S_{\langle\Gamma,\tau\rangle}U_{\langle\Lambda_{2},\rho_{2}\rangle}. Since ฯ„โˆ—โŸจCโŸฉโІฯ2\tau\ast\langle C\rangle\subseteq\rho_{2}, ฮ“โ‰บCโˆ—ฮ›2\Gamma\prec_{C}^{*}\Lambda_{2} and โ–กโˆผCโˆˆฮ›2\Box{\sim}C\in\Lambda_{2}, by the definition of SS, the set UโŸจฮ›2,ฯ2โŸฉU_{\langle\Lambda_{2},\rho_{2}\rangle} satisfies the condition ๐’žL\mathcal{C}_{L}. Thus we obtain โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹UโŸจฮ›2,ฯ2โŸฉ\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}U_{\langle\Lambda_{2},\rho_{2}\rangle}.

  • โ€ข

    If not, then let โŸจฮ˜,ฯโŸฉโˆˆV\langle\Theta,\rho\rangle\in V be such that โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ˜,ฯโŸฉ\langle\Gamma,\tau\rangle R\langle\Theta,\rho\rangle. We have โŸจฮ˜,ฯโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹UโŸจฮ˜,ฯโŸฉ\langle\Theta,\rho\rangle S_{\langle\Gamma,\tau\rangle}U_{\langle\Theta,\rho\rangle} because โŸจฮ˜,ฯโŸฉโˆˆVโˆฉRโ€‹[โŸจฮ“,ฯ„โŸฉ]\langle\Theta,\rho\rangle\in V\cap R[\langle\Gamma,\tau\rangle]. In particular, โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹UโŸจฮ˜,ฯโŸฉ\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}U_{\langle\Theta,\rho\rangle}.

In either case, by Monotonicity, โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹(โ‹ƒโŸจฮ”โ€ฒ,ฯƒโ€ฒโŸฉโˆˆVโˆฉRโ€‹[โŸจฮ“,ฯ„โŸฉ]UโŸจฮ”โ€ฒ,ฯƒโ€ฒโŸฉ)\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}(\bigcup_{\langle\Delta^{\prime},\sigma^{\prime}\rangle\in V\cap R[\langle\Gamma,\tau\rangle]}U_{\langle\Delta^{\prime},\sigma^{\prime}\rangle}). Therefore ๐‰๐Ÿ\mathbf{J2} is valid in FF by Proposition 3.16.

๐‰๐Ÿ“\mathbf{J5}: Suppose โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ”,ฯƒโŸฉ\langle\Gamma,\tau\rangle R\langle\Delta,\sigma\rangle and โŸจฮ”,ฯƒโŸฉโ€‹Rโ€‹โŸจฮ˜,ฯโŸฉ\langle\Delta,\sigma\rangle R\langle\Theta,\rho\rangle. If there exists CC such that ฯ„โˆ—โŸจCโŸฉโІฯƒ\tau\ast\langle C\rangle\subseteq\sigma, ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta, then ฯ„โˆ—โŸจCโŸฉโІฯ\tau\ast\langle C\rangle\subseteq\rho because ฯƒโŠŠฯ\sigma\subsetneq\rho. Since ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta and ฮ”โ‰บฮ˜\Delta\prec\Theta, we have ฮ“โ‰บCโˆ—ฮ˜\Gamma\prec_{C}^{*}\Theta by Lemma 4.5. Also โˆผC,โ–กโˆผCโˆˆฮ˜{\sim}C,\Box{\sim}C\in\Theta because ฮ”โ‰บฮ˜\Delta\prec\Theta. Therefore we obtain โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹{โŸจฮ˜,ฯโŸฉ}\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}\{\langle\Theta,\rho\rangle\}. By Proposition 3.19, ๐‰๐Ÿ“\mathbf{J5} is valid in FF.

At last, when L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)L=\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+},\mathbf{J5}), we prove that ๐‰๐Ÿ’+\mathbf{J4}_{+} is valid in FF. Suppose โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹V\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}V. Then there exists โŸจฮ˜,ฯโŸฉโˆˆV\langle\Theta,\rho\rangle\in V such that โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ˜,ฯโŸฉ\langle\Gamma,\tau\rangle R\langle\Theta,\rho\rangle, and hence โŸจฮ˜,ฯโŸฉโˆˆVโˆฉRโ€‹[โŸจฮ“,ฯ„โŸฉ]\langle\Theta,\rho\rangle\in V\cap R[\langle\Gamma,\tau\rangle]. If ฯ„โˆ—โŸจCโŸฉโІฯƒ\tau\ast\langle C\rangle\subseteq\sigma, ฮ“โ‰บCโˆ—ฮ”\Gamma\prec_{C}^{*}\Delta and โ–กโˆผCโˆˆฮ”\Box{\sim}C\in\Delta for some CC, then there exist โŸจฮ›1,ฯ1โŸฉ,โŸจฮ›2,ฯ2โŸฉโˆˆV\langle\Lambda_{1},\rho_{1}\rangle,\langle\Lambda_{2},\rho_{2}\rangle\in V such that ฯ„โˆ—โŸจCโŸฉโІฯ1\tau\ast\langle C\rangle\subseteq\rho_{1}, ฯ„โˆ—โŸจCโŸฉโІฯ2\tau\ast\langle C\rangle\subseteq\rho_{2}, ฮ“โ‰บฮ›1\Gamma\prec\Lambda_{1}, โˆผCโˆˆฮ›1{\sim}C\in\Lambda_{1}, ฮ“โ‰บCโˆ—ฮ›2\Gamma\prec_{C}^{*}\Lambda_{2} and โ–กโˆผCโˆˆฮ›2\Box{\sim}C\in\Lambda_{2}. In particular, โŸจฮ›1,ฯ1โŸฉ,โŸจฮ›2,ฯ2โŸฉโˆˆVโˆฉRโ€‹[โŸจฮ“,ฯ„โŸฉ]\langle\Lambda_{1},\rho_{1}\rangle,\langle\Lambda_{2},\rho_{2}\rangle\in V\cap R[\langle\Gamma,\tau\rangle]. Thus we obtain โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹(VโˆฉRโ€‹[โŸจฮ“,ฯ„โŸฉ])\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}(V\cap R[\langle\Gamma,\tau\rangle]). By Proposition 3.10, ๐‰๐Ÿ’+\mathbf{J4}_{+} is valid in FF. โˆŽ

Lemma 7.6 (Truth Lemma).

For any formula CโˆˆฮฆC\in\Phi and any โŸจฮ“,ฯ„โŸฉโˆˆW\langle\Gamma,\tau\rangle\in W, Cโˆˆฮ“C\in\Gamma if and only if โŸจฮ“,ฯ„โŸฉโŠฉC\langle\Gamma,\tau\rangle\Vdash C.

Proof.

We prove the lemma by induction on the construction of CC, and we give a proof only for Cโ‰ก(DโŠณE)C\equiv(D\rhd E).

(โ‡’)(\Rightarrow): Assume DโŠณEโˆˆฮ“D\rhd E\in\Gamma. Let โŸจฮ”,ฯƒโŸฉ\langle\Delta,\sigma\rangle be any element of WW such that โŸจฮ“,ฯ„โŸฉโ€‹Rโ€‹โŸจฮ”,ฯƒโŸฉ\langle\Gamma,\tau\rangle R\langle\Delta,\sigma\rangle and โŸจฮ”,ฯƒโŸฉโŠฉD\langle\Delta,\sigma\rangle\Vdash D. Then by induction hypothesis, Dโˆˆฮ”D\in\Delta. We distinguish the following two cases.

  • โ€ข

    If ฯ„โˆ—โŸจFโŸฉโІฯƒ\tau\ast\langle F\rangle\subseteq\sigma, ฮ“โ‰บFโˆ—ฮ”\Gamma\prec_{F}^{*}\Delta and โ–กโˆผFโˆˆฮ”\Box{\sim}F\in\Delta, then there exists ฮ›1โˆˆKL\Lambda_{1}\in K_{L} such that E,โˆผFโˆˆฮ›1E,{\sim}F\in\Lambda_{1} by Lemma 4.7. Moreover, if L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)L=\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+},\mathbf{J5}), ฮ“โ‰บฮ›1\Gamma\prec\Lambda_{1} also holds. By Lemma 4.9, there exists ฮ›2โˆˆKL\Lambda_{2}\in K_{L} such that ฮ“โ‰บFโˆ—ฮ›2\Gamma\prec_{F}^{*}\Lambda_{2} and E,โ–กโˆผFโˆˆฮ›2E,\Box{\sim}F\in\Lambda_{2}. Let ฯ1:={ฯตifโ€‹L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ“),ฯ„โˆ—โŸจFโŸฉifโ€‹L=๐ˆ๐‹โˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\rho_{1}:=\begin{cases}\epsilon&\ \text{if}\ L=\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J5}),\\ \tau\ast\langle F\rangle&\ \text{if}\ L=\mathbf{IL}^{-}(\mathbf{J2},\mathbf{J4}_{+},\mathbf{J5})\end{cases} and let ฯ2:=ฯ„โˆ—โŸจFโŸฉ\rho_{2}:=\tau\ast\langle F\rangle. Then it is easy to see that โŸจฮ›1,ฯ1โŸฉ,โŸจฮ›2,ฯ2โŸฉโˆˆW\langle\Lambda_{1},\rho_{1}\rangle,\langle\Lambda_{2},\rho_{2}\rangle\in W. Let V:={โŸจฮ›1,ฯ1โŸฉ,โŸจฮ›2,ฯ2โŸฉ}V:=\{\langle\Lambda_{1},\rho_{1}\rangle,\langle\Lambda_{2},\rho_{2}\rangle\}, then โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹V\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}V by the definition of SS. By induction hypothesis, โŸจฮ›1,ฯ1โŸฉโŠฉE\langle\Lambda_{1},\rho_{1}\rangle\Vdash E and โŸจฮ›2,ฯ2โŸฉโŠฉE\langle\Lambda_{2},\rho_{2}\rangle\Vdash E. We conclude โŸจฮ“,ฯ„โŸฉโŠฉDโŠณE\langle\Gamma,\tau\rangle\Vdash D\rhd E.

  • โ€ข

    If not, then there exists ฮ˜โˆˆKL\Theta\in K_{L} such that ฮ“โ‰บฮ˜\Gamma\prec\Theta and Eโˆˆฮ˜E\in\Theta by Lemma 4.8. Let ฯ:=ฯ„โˆ—โŸจEโŸฉ\rho:=\tau\ast\langle E\rangle, then โŸจฮ˜,ฯโŸฉโˆˆW\langle\Theta,\rho\rangle\in W. By induction hypothesis, โŸจฮ˜,ฯโŸฉโŠฉE\langle\Theta,\rho\rangle\Vdash E. Let V:={โŸจฮ˜,ฯโŸฉ}V:=\{\langle\Theta,\rho\rangle\}, then โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹V\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}V. We conclude โŸจฮ“,ฯ„โŸฉโŠฉDโŠณE\langle\Gamma,\tau\rangle\Vdash D\rhd E.

(โ‡)(\Leftarrow): Assume DโŠณEโˆ‰ฮ“D\rhd E\notin\Gamma. By Lemma 4.6, there exists ฮ”โˆˆKL\Delta\in K_{L} such that Dโˆˆฮ”D\in\Delta, ฮ“โ‰บEโˆ—ฮ”\Gamma\prec_{E}^{*}\Delta and โ–กโˆผEโˆˆฮ”\Box{\sim}E\in\Delta. Let ฯƒ:=ฯ„โˆ—โŸจEโŸฉ\sigma:=\tau\ast\langle E\rangle, then โŸจฮ”,ฯƒโŸฉโˆˆW\langle\Delta,\sigma\rangle\in W. We have โŸจฮ”,ฯƒโŸฉโŠฉD\langle\Delta,\sigma\rangle\Vdash D by induction hypothesis.

Let VV be any subset of WW with โŸจฮ”,ฯƒโŸฉโ€‹SโŸจฮ“,ฯ„โŸฉโ€‹V\langle\Delta,\sigma\rangle S_{\langle\Gamma,\tau\rangle}V. Since ฯ„โˆ—โŸจEโŸฉ=ฯƒ\tau\ast\langle E\rangle=\sigma, ฮ“โ‰บEโˆ—ฮ”\Gamma\prec_{E}^{*}\Delta and โ–กโˆผEโˆˆฮ”\Box{\sim}E\in\Delta, there exists โŸจฮ›1,ฯ1โŸฉโˆˆV\langle\Lambda_{1},\rho_{1}\rangle\in V such that โˆผEโˆˆฮ›1{\sim}E\in\Lambda_{1} by the definition of SS. By induction hypothesis, โŸจฮ›1,ฯ1โŸฉโŠฎE\langle\Lambda_{1},\rho_{1}\rangle\nVdash E. Therefore we conclude โŸจฮ“,ฯ„โŸฉโŠฎDโŠณE\langle\Gamma,\tau\rangle\nVdash D\rhd E. โˆŽ

Since โŸจฮ“0,ฯตโŸฉโˆˆW\langle\Gamma_{0},\epsilon\rangle\in W and Aโˆ‰ฮ“0A\notin\Gamma_{0}, we obtain โŸจฮ“0,ฯตโŸฉโŠฎA\langle\Gamma_{0},\epsilon\rangle\nVdash A by Truth Lemma. Therefore AA is not valid in the frame of MM. โˆŽ

Corollary 7.7.

Every logic shown in Figure 2 is decidable.

8 Concluding Remarks

In the previous sections, we investigated the twenty natural sublogics of ๐ˆ๐‹\mathbf{IL} shown in Figures 1 and 2. We proved that twelve of them are complete with respect to ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames, but the remaining eight are not. Finally, in Section 7, we proved that these eight logics are also complete with respect to ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames. Consequently, all these twenty logics are also complete with respect to ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames. In this situation, one of the referees proposed the following interesting problem.

Problem 8.1.

Does there exist an extension of ๐ˆ๐‹โˆ’\mathbf{IL}^{-} incomplete with respect to ๐ˆ๐‹setโˆ’\mathbf{IL}^{-}_{\mathrm{set}}-frames?

We introduced these twenty logics to investigate ๐ˆ๐‹โˆ’\mathbf{IL}^{-}-frames in detail. As a result of our research in the present paper, it can be said that our understanding of the fine structure of ๐ˆ๐‹\mathbf{IL} has improved in terms of semantical and syntactical aspects. Our framework would be useful for finer investigations of some known results of ๐ˆ๐‹\mathbf{IL} and its extensions. In addition, investigating whether these newly introduced logics satisfy natural logical properties is an interesting subject in itself. Along these lines, a research following the present paper is proceeding by the authors (see [7]).

Acknowledgement

The authors are grateful to Joost J. Joosten for his helpful comments. The author would like to thank the anonymous referees for careful reading and valuable comments. The work was supported by JSPS KAKENHI Grant Number JP19K14586.

References

  • [1] Alessandro Berarducci. The interpretability logic of Peano arithmetic. The Journal of Symbolic Logic, 55(3):1059โ€“1089, 1990.
  • [2] George Boolos. The Logic of Provability. Cambridge University Press, Cambridge, 1993.
  • [3] Dick deย Jongh and Frank Veltman. Provability logics for relative interpretability. In P.P. Petkov, editor, Mathematical logic, pages 31โ€“42. Plenum Press, New York, 1990.
  • [4] Evan Goris, Marta Bรญlkovรก, Joostย J. Joosten, and Luka Mikec. Assuring and critical labels for relations between maximal consistent sets for interpretability logics. arXiv: 2003.04623, 2020.
  • [5] Petr Hรกjek and Franco Montagna. The logic of ฮ 1\Pi_{1}-conservativity. Archive for Mathematical Logic, 30(2):113โ€“123, 1990.
  • [6] Konstantinย N. Ignatiev. Partial conservativity and modal logics. ITLI Publication Series X-91-04, 1991.
  • [7] Sohei Iwata, Taishi Kurahashi, and Yuya Okawa. The fixed point and the Craig interpolation properties for sublogics of ๐ˆ๐‹\mathbf{IL}. submitted. arXiv:2007.05427, 2020.
  • [8] Giorgi Japaridze and Dick deย Jongh. The logic of provability. In Handbook of proof theory, volume 137 of Studies in Logic and the Foundations of Mathematics, chapterย 7, pages 475โ€“546. North-Holland, Amsterdam, 1998.
  • [9] Joostย J. Joosten. Towards the interpretability logic of all reasonable arithmetical theories. Masterโ€™s thesis, University of Amsterdam, 1998.
  • [10] Krister Segerberg. An essay in classical modal logic. Filosofiska Fรถreningen och Filosofiska Institutionen vid Uppsala Universitet, 1971.
  • [11] V.ย Yu. Shavrukov. The logic of relative interpretability over Peano arithmetic (in Russian). Technical Reportย 5, Stekhlov Mathematical Institute, Moscow, 1988.
  • [12] Robertย M. Solovay. Provability interpretations of modal logic. Israel Journal of Mathematics, 25(3-4):287โ€“304, 1976.
  • [13] L.ย C. Verbrugge. Verzamelingen-Veltman frames en modellen (Set Veltman frames and models). Unpublished manuscript, 1992.
  • [14] Albert Visser. Preliminary notes on interpretability logic. Technical Reportย 29, Department of Philosophy, Utrecht University, 1988.
  • [15] Albert Visser. Interpretability logic. In P.P. Petkov, editor, Mathematical Logic, pages 175โ€“208. Plenum Press, New York, 1990.
  • [16] Mladen Vukoviฤ‡. Some correspondences of principles of interpretability logic. Glasnik Matematiฤki, 31(2):193โ€“200, 1996.