This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mixed pairwise cross intersecting families (I)thanks: This work is supported by NSFC (Grant No. 11931002). E-mail addresses: [email protected] (Yang Huang), [email protected] (Yuejian Peng, corresponding author).

Yang Huang, Yuejian Peng
School of Mathematics, Hunan University
Changsha, Hunan, 410082, P.R. China
Abstract

Families 𝒜\mathcal{A} and \mathcal{B} are cross-intersecting if ABA\cap B\neq\emptyset for any A𝒜A\in\mathcal{A} and BB\in\mathcal{B}. If n<k+ln<k+l, all families 𝒜([n]k)\mathcal{A}\subseteq{[n]\choose k} and ([n]l)\mathcal{B}\subseteq{[n]\choose l} are cross intersecting and we say that 𝒜\mathcal{A} and \mathcal{B} are cross intersecting freely. An (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system is a set of non-empty pairwise cross-intersecting families 1([n]k1),2([n]k2),,t([n]kt)\mathcal{F}_{1}\subset{[n]\choose k_{1}},\mathcal{F}_{2}\subset{[n]\choose k_{2}},\dots,\mathcal{F}_{t}\subset{[n]\choose k_{t}} with t2t\geq 2 and k1k2ktk_{1}\geq k_{2}\geq\cdots\geq k_{t}. If an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system contains at least two families which are cross intersecting freely and at least two families which are cross intersecting but not freely, then we say that the cross intersecting system is of mixed type. All previous studies are on non-mixed type, i.e, under the condition that nk1+k2n\geq k_{1}+k_{2}. In this paper, we study for the first interesting mixed type, an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system with k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}, i.e., families i([n]ki)\mathcal{F}_{i}\subseteq{[n]\choose k_{i}} and j([n]kj)\mathcal{F}_{j}\subseteq{[n]\choose k_{j}} are cross intersecting freely if and only if {i,j}={1,2}\{i,j\}=\{1,2\}. Let M(n,k1,,kt)M(n,k_{1},\dots,k_{t}) denote the maximum sum of sizes of families in an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system. We determine M(n,k1,,kt)M(n,k_{1},\dots,k_{t}) and characterize all extremal (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting systems for k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}.

A result of Kruskal-Katona allows us to consider only families i\mathcal{F}_{i} whose elements are the first |i||\mathcal{F}_{i}| elements in lexicographic order (we call them L-initial families). Since n<k1+k2n<k_{1}+k_{2}, 1([n]k1)\mathcal{F}_{1}\subseteq{[n]\choose k_{1}} and 2([n]k2)\mathcal{F}_{2}\subseteq{[n]\choose k_{2}} are cross intersecting freely. Thus, when we try to bound i=1t|i|\sum_{i=1}^{t}{|\mathcal{F}_{i}|} by a function, there are two free variables I1I_{1} (the last element of 1\mathcal{F}_{1}) and I2I_{2} (the last element of 2\mathcal{F}_{2}). This causes more difficulty to analyze properties of the corresponding function comparing to non-mixed type problems (single-variable function). To overcome this difficulty, we introduce new concepts ‘kk-partner’ and ‘parity’, develop some rules to determine whether two L-initial cross intersecting families are maximal to each other, and prove one crucial property that in an extremal L-initial (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system (1\mathcal{F}_{1}, 2\mathcal{F}_{2}, \cdots, t\mathcal{F}_{t}), the last element of 1\mathcal{F}_{1} and the last element of 2\mathcal{F}_{2} are ‘parities’ (see Section 2 for the definition) to each other. This discovery allows us to bound i=1t|i|\sum_{i=1}^{t}{|\mathcal{F}_{i}|} by a single variable function g(I2)g(I_{2}), where I2I_{2} is the last element of 2\mathcal{F}_{2}. Another crucial and challenge part is to verify that g(I2)-g(I_{2}) has unimodality. Comparing to the non-mixed type, we need to overcome more difficulties in showing the unimodality of function g(I2)-g(I_{2}) since there are more terms to be taken care of. We think that the characterization of maximal cross intersecting L-initial families and the unimodality of functions in this paper are interesting in their own, in addition to the extremal result. The most general condition on nn is that nk1+ktn\geq k_{1}+k_{t} (If n<k1+ktn<k_{1}+k_{t}, then 1\mathcal{F}_{1} is cross intersecting freely with any other i\mathcal{F}_{i}, and consequently 1=([n]k1)\mathcal{F}_{1}={[n]\choose k_{1}} in an extremal (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system and we can remove 1\mathcal{F}_{1} .). This paper provides foundation work for the solution to the most general condition nk1+ktn\geq k_{1}+k_{t}.

Key words: Cross intersecting families; Extremal finite sets

2010 Mathematics Subject Classification. 05D05, 05C65, 05D15.

1 Introduction

Let [n]={1,2,,n}[n]=\{1,2,\dots,n\}. For 0kn0\leq k\leq n, let ([n]k){[n]\choose k} denote the family of all kk-subsets of [n][n]. A family 𝒜\mathcal{A} is kk-uniform if 𝒜([n]k)\mathcal{A}\subset{[n]\choose k}. A family 𝒜\mathcal{A} is intersecting if ABA\cap B\neq\emptyset for any AA and B𝒜B\in\mathcal{A}. Many researches in extremal set theory are inspired by the foundational result of Erdős–Ko–Rado [1] showing that a maximum kk-uniform intersecting family is a full star. This result of Erdős–Ko–Rado has many interesting generalizations. Two families 𝒜\mathcal{A} and \mathcal{B} are cross-intersecting if ABA\cap B\neq\emptyset for any A𝒜A\in\mathcal{A} and BB\in\mathcal{B}. Note that 𝒜\mathcal{A} and 𝒜\mathcal{A} are cross-intersecting is equivalent to that 𝒜\mathcal{A} is intersecting. We call tt (t2)(t\geq 2) families 𝒜1,𝒜2,,𝒜t\mathcal{A}_{1},\mathcal{A}_{2},\dots,\mathcal{A}_{t} pairwise cross-intersecting families if 𝒜i\mathcal{A}_{i} and 𝒜j\mathcal{A}_{j} are cross-intersecting when 1i<jt1\leq i<j\leq t. Additionally, if 𝒜j\mathcal{A}_{j}\neq\emptyset for each j[t]j\in[t], then we say that 𝒜1,𝒜2,,𝒜t\mathcal{A}_{1},\mathcal{A}_{2},\dots,\mathcal{A}_{t} are non-empty pairwise cross-intersecting. For given integers n,t,kt,,ktn,t,k_{t},\dots,k_{t}, if families 𝒜1([n]k1),,𝒜t([n]kt)\mathcal{A}_{1}\subseteq{[n]\choose k_{1}},\dots,\mathcal{A}_{t}\subseteq{[n]\choose k_{t}} are non-empty pairwise cross intersecting and k1k2ktk_{1}\geq k_{2}\dots\geq k_{t}, then we call (𝒜1,,𝒜t)(\mathcal{A}_{1},\dots,\mathcal{A}_{t}) an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system.

Define

M(n,k1,,kt)\displaystyle M(n,k_{1},\dots,k_{t}) =max{i=1t|𝒜i|:(𝒜1,,𝒜t) is an (n,k1,,kt)-cross\displaystyle=\max\bigg{\{}\sum_{i=1}^{t}|\mathcal{A}_{i}|:(\mathcal{A}_{1},\dots,\mathcal{A}_{t})\text{ is an }(n,k_{1},\dots,k_{t})\text{-cross}
intersecting system }.\displaystyle\quad\quad\quad\quad\text{intersecting system }\bigg{\}}. (1)

We say that an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system (𝒜1,,𝒜t)(\mathcal{A}_{1},\dots,\mathcal{A}_{t}) is extremal if i=1t|𝒜i|=M(n,k1,,kt)\sum_{i=1}^{t}|\mathcal{A}_{i}|=M(n,k_{1},\dots,k_{t}). In [5] (Theorem 1.1), the authors determined M(n,k1,,kt)M(n,k_{1},\\ \dots,k_{t}) for nk1+k2n\geq k_{1}+k_{2} and characterized the extremal families attaining the bound.

Theorem 1.1 (Huang-Peng [5]).

Let 𝒜1([n]k1),𝒜2([n]k2),,𝒜t([n]kt)\mathcal{A}_{1}\subset{[n]\choose k_{1}},\mathcal{A}_{2}\subset{[n]\choose k_{2}},\dots,\mathcal{A}_{t}\subset{[n]\choose k_{t}} be non-empty pairwise cross intersecting families with t2t\geq 2, k1k2ktk_{1}\geq k_{2}\geq\cdots\geq k_{t}, and nk1+k2n\geq k_{1}+k_{2}. Then

i=1t|𝒜i|max{(nk1)(nktk1)+i=2t(nktkikt),i=1t(n1ki1)}.\sum_{i=1}^{t}{|\mathcal{A}_{i}|}\leq\textup{max}\left\{{n\choose k_{1}}-{n-k_{t}\choose k_{1}}+\sum_{i=2}^{t}{{n-k_{t}\choose k_{i}-k_{t}}},\,\,\sum_{i=1}^{t}{n-1\choose k_{i}-1}\right\}.

The equality holds if and only if one of the following holds.
(i) (nk1)(nktk1)+i=2t(nktkikt)>i=1t(n1ki1){n\choose k_{1}}-{n-k_{t}\choose k_{1}}+\sum_{i=2}^{t}{{n-k_{t}\choose k_{i}-k_{t}}}>\sum_{i=1}^{t}{n-1\choose k_{i}-1}, and there is some ktk_{t}-element set T[n]T\subset[n] such that 𝒜1={F([n]k1):FT}\mathcal{A}_{1}=\{F\in{[n]\choose k_{1}}:F\cap T\neq\emptyset\} and 𝒜j={F([n]kj):TF}\mathcal{A}_{j}=\{F\in{[n]\choose k_{j}}:T\subset F\} for each j[2,t]j\in[2,t];
(ii) (nk1)(nktk1)+i=2t(nktkikt)i=1t(n1ki1){n\choose k_{1}}-{n-k_{t}\choose k_{1}}+\sum_{i=2}^{t}{{n-k_{t}\choose k_{i}-k_{t}}}\leq\sum_{i=1}^{t}{n-1\choose k_{i}-1}, there are some iji\neq j such that n>ki+kjn>k_{i}+k_{j}, and there is some a[n]a\in[n] such that 𝒜j={F([n]kj):aF}\mathcal{A}_{j}=\{F\in{[n]\choose k_{j}}:a\in F\} for each j[t]j\in[t];
(iii) t=2,n=k1+k2t=2,n=k_{1}+k_{2}, 𝒜1([n]k1)\mathcal{A}_{1}\subset{[n]\choose k_{1}} and 𝒜2=([n]k2)𝒜1¯\mathcal{A}_{2}={[n]\choose k_{2}}\setminus\overline{\mathcal{A}_{1}};
(iv) t3,k1=k2==kt=k,n=2kt\geq 3,k_{1}=k_{2}=\cdots=k_{t}=k,n=2k, fix some i[t]i\in[t], 𝒜j=𝒜\mathcal{A}_{j}=\mathcal{A} for all j[t]{i}j\in[t]\setminus\{i\}, where 𝒜\mathcal{A} is an intersecting family with size (n1k1){n-1\choose k-1}, and 𝒜i=([n]k)𝒜¯\mathcal{A}_{i}={[n]\choose k}\setminus\overline{\mathcal{A}}.

Theorem 1.1 generalized the results of Hilton-Milner in [8], Frankl-Tokushige in [4] and Shi-Qian-Frankl in [13]. In Theorem 1.1, taking t=2t=2 and k1=k2k_{1}=k_{2}, we obtain the result of Hilton-Milner in [8]. Taking t=2t=2, we obtain the result of Frankl-Tokushige in [4]. Taking k1=k2==ktk_{1}=k_{2}=\dots=k_{t}, we obtain the result of Shi-Qian-Frankl in [13]. Note that if n<k+n<k+\ell, any family 𝒜([n]k)\mathcal{A}\subseteq{[n]\choose k} and any family ([n])\mathcal{B}\subseteq{[n]\choose\ell} are cross intersecting. In this case, we say that families 𝒜([n]k)\mathcal{A}\subseteq{[n]\choose k} and ([n])\mathcal{B}\subseteq{[n]\choose\ell} are cross intersecting freely. If an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system contains at least two families which are cross intersecting freely and at least two families which are cross intersecting but not freely, then we say that the cross intersecting system is of mixed type. Otherwise, we say that it is of non-mixed type. All previous studies are of non-mixed type, i.e., nk1+k2n\geq k_{1}+k_{2}. It would be interesting to study for mixed type. The first interesting case is to study an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) for k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}. In this case, i([n]ki)\mathcal{F}_{i}\subseteq{[n]\choose k_{i}} and j([n]kj)\mathcal{F}_{j}\subseteq{[n]\choose k_{j}} are cross intersecting freely if and only if {i,j}={1,2}\{i,j\}=\{1,2\}. In this paper, we focus on this case, we determine M(n,k1,,kt)M(n,k_{1},\dots,k_{t}) and characterize all extremal (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting systems. Let us look at the following (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting systems.

Construction 1.2.

Let k1k2ktk_{1}\geq k_{2}\geq\dots\geq k_{t} and k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}. For each i[t]i\in[t], we denote

𝒢i={G([n]ki):1G}.\mathcal{G}_{i}=\left\{G\in{[n]\choose k_{i}}:1\in G\right\}.

Note that

i=1t|𝒢i|=i=1t(n1ki1)=:λ1.\sum_{i=1}^{t}|\mathcal{G}_{i}|=\sum_{i=1}^{t}{n-1\choose k_{i}-1}=:\lambda_{1}.
Construction 1.3.

Let k1k2ktk_{1}\geq k_{2}\geq\dots\geq k_{t} and k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}. For i=1i=1 or 22, let

i={H([n]ki):H[kt]},\mathcal{H}_{i}=\left\{H\in{[n]\choose k_{i}}:H\cap[k_{t}]\neq\emptyset\right\},

and for i[3,t]i\in[3,t], let

i={H([n]ki):[kt]H}.\mathcal{H}_{i}=\left\{H\in{[n]\choose k_{i}}:[k_{t}]\subseteq H\right\}.

Note that

i=1t|i|=i=12((nki)(nktki))+i=3t(nktkikt)=:λ2.\sum_{i=1}^{t}|\mathcal{H}_{i}|=\sum_{i=1}^{2}\left({n\choose k_{i}}-{n-k_{t}\choose k_{i}}\right)+\sum_{i=3}^{t}{{n-k_{t}\choose k_{i}-k_{t}}}=:\lambda_{2}.

Our main result is that an extremal (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system must be isomorphic to Construction 1.2 or Construction 1.3 if k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}.

Theorem 1.4.

Let 1([n]k1),2([n]k2),,t([n]kt)\mathcal{F}_{1}\subset{[n]\choose k_{1}},\mathcal{F}_{2}\subset{[n]\choose k_{2}},\dots,\mathcal{F}_{t}\subset{[n]\choose k_{t}} be non-empty pairwise cross intersecting families with t3t\geq 3, k1k2ktk_{1}\geq k_{2}\geq\cdots\geq k_{t} and k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}. Then

i=1t|i|max{i=1t(n1ki1),i=12((nki)(nktki))+i=3t(nktkikt)}.\sum_{i=1}^{t}{|\mathcal{F}_{i}|}\leq\textup{max}\left\{\sum_{i=1}^{t}{n-1\choose k_{i}-1},\,\,\sum_{i=1}^{2}\left({n\choose k_{i}}-{n-k_{t}\choose k_{i}}\right)+\sum_{i=3}^{t}{{n-k_{t}\choose k_{i}-k_{t}}}\right\}.

The equality holds if and only if (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is isomorphic to (𝒢1,,𝒢t)(\mathcal{G}_{1},\dots,\mathcal{G}_{t}) in Construction 1.2 or (1,,t)(\mathcal{H}_{1},\dots,\mathcal{H}_{t}) in Construction 1.3.

In proving Theorem 1.1 in [5], the authors applied a result of Kruskal-Katona (Theorem 2.1) allowing us to consider only families i\mathcal{F}_{i} whose elements are the first |i||\mathcal{F}_{i}| elements in lexicographic order (we call them L-initial families). We bounded i=1t|i|\sum_{i=1}^{t}{|\mathcal{F}_{i}|} by a function f(R)f(R) of the last element RR in the lexicographic order of an L-initial family 1\mathcal{F}_{1} (RR is called the ID of 1\mathcal{F}_{1} ), and showed that f(R)-f(R) has unimodality. To prove our main result (Theorem 1.4) in this paper, by the result of Kruskal-Katona (Theorem 2.1), we can still consider only pairwise cross-intersecting non-empty L-initial families 1([n]k1),2([n]k2),,t([n]kt)\mathcal{F}_{1}\subset{[n]\choose k_{1}},\mathcal{F}_{2}\subset{[n]\choose k_{2}},\dots,\mathcal{F}_{t}\subset{[n]\choose k_{t}}. However, in this paper, the condition on nn is relaxed to k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}, so 1([n]k1)\mathcal{F}_{1}\subseteq{[n]\choose k_{1}} and 2([n]k2)\mathcal{F}_{2}\subseteq{[n]\choose k_{2}} are cross intersecting freely. When we try to bound i=1t|i|\sum_{i=1}^{t}{|\mathcal{F}_{i}|} by a function, there are two free variables I1I_{1} (the ID of 1\mathcal{F}_{1}) and I2I_{2} (the ID of 2\mathcal{F}_{2}). This causes more difficulty to analyze properties of the corresponding function, comparing to the problem in [5]. To overcome this difficulty, we introduce new concepts ‘kk-partner’ and ‘parity’, develop some rules to determine whether a pair of L-initial cross intersecting families are maximal to each other (see precise definition), and prove one crucial property that for an extremal L-initial (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system (1\mathcal{F}_{1}, 2\mathcal{F}_{2}, \cdots, t\mathcal{F}_{t}), the ID I1I_{1} of 1\mathcal{F}_{1} and the ID I2I_{2} of 2\mathcal{F}_{2} are ‘parities’ to each other (Lemma 3.8). This discovery allows us to bound i=1t|i|\sum_{i=1}^{t}{|\mathcal{F}_{i}|} by a single variable function g(I2)g(I_{2}). Another crucial and challenge part is to verify the unimodality of g(I2)-g(I_{2}) (Lemmas 3.12, 3.13 and 3.14). Comparing to the function in [5], we need to overcome more difficulties in dealing with function g(I2)-g(I_{2}) since there are more ‘mysterious’ terms to be taken care of. We take advantage of some properties of function f(R)f(R) obtained in [5] and come up with some new strategies in estimating the change g(I2)g(I2)g(I^{\prime}_{2})-g(I_{2}) as the ID of 2\mathcal{F}_{2} increases from I2I_{2} to I2I^{\prime}_{2} (Sections 6 and 7).

The most general condition on nn is that nk1+ktn\geq k_{1}+k_{t}. If n<k1+ktn<k_{1}+k_{t}, then 1\mathcal{F}_{1} is cross intersecting freely with any other i\mathcal{F}_{i}, and consequently 1=([n]k1)\mathcal{F}_{1}={[n]\choose k_{1}} in an extremal (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system and 1\mathcal{F}_{1} can be removed. The most general case is more complex and we will deal with it in a forthcoming paper [7]. The work in this paper provides important foundation for the solution to the most general condition nk1+ktn\geq k_{1}+k_{t}.

To obtain the relationship between the ID of 1\mathcal{F}_{1} and the ID of 2\mathcal{F}_{2}, we build some foundation work in Section 2, for example, we come up with new concepts ‘kk-partners’ and ‘parity’, and give a necessary and sufficient condition on maximal cross intersecting L-initial families. In Section 3, we give the proof of Theorem 1.4 by assuming the truth of Lemmas 3.8, 3.12, 3.13 and 3.14. In Section 4, we list some results obtained for non-mixed type in [5] which we will apply. In Sections 6 and 7, we give the proofs of Lemmas 3.8, 3.12, 3.13 and 3.14.

2 Partner and Parity

In this section, we introduce new concepts ‘kk-partner’ and ‘parity’, develop some rules to determine whether a pair of L-initial cross intersecting families are maximal to each other (precise definitions will be given in this section). We prove some properties which are foundation for the proof of our main results.

When we write a set A={a1,a2,,as}[n]A=\{a_{1},a_{2},\ldots,a_{s}\}\subset[n], we always assume that a1<a2<<asa_{1}<a_{2}<\ldots<a_{s} throughout the paper. Let maxA\max A denote the maximum element of AA, let minA\min A denote the minimum element of AA and (A)i(A)_{i} denote the ii-th element of AA. Let us introduce the lexicographic (lex for short) order of subsets of positive integers. Let AA and BB be finite subsets of the set of positive integers >0\mathbb{Z}_{>0}. We say that ABA\prec B if either ABA\supset B or min(AB)<min(BA)\min(A\setminus B)<\min(B\setminus A). In particular, AAA\prec A. Let AA and BB in ([n]k){[n]\choose k} with ABA\precneqq B. We write A<BA<B if there is no other C([n]k)C\in{[n]\choose k} such that ACBA\precneqq C\precneqq B.

Let (n,r,k)\mathcal{L}(n,r,k) denote the first rr subsets in ([n]k){[n]\choose k} in the lex order. Given a set RR, we denote (n,R,k)={F([n]k):FR}\mathcal{L}(n,R,k)=\{F\in{[n]\choose k}:F\prec R\}. Whenever the underlying set [n][n] is clear, we shall ignore it and write (R,k)\mathcal{L}(R,k), (r,k)\mathcal{L}(r,k) for short. Let ([n]k)\mathcal{F}\subset{[n]\choose k} be a family, we say \mathcal{F} is L-initial if =(R,k)\mathcal{F}=\mathcal{L}(R,k) for some kk-set RR. We call RR the ID of \mathcal{F}.

The well-known Kruskal-Katona theorem [11, 12] will allow us to consider only L-initial families. An equivalent formulation of this result was given in [3, 9] as follows.

Theorem 2.1 (Kruskal-Katona theorem [3, 9]).

For 𝒜([n]k)\mathcal{A}\subset{[n]\choose k} and ([n]l)\mathcal{B}\subset{[n]\choose l}, if 𝒜\mathcal{A} and \mathcal{B} are cross intersecting, then (|𝒜|,k)\mathcal{L}(|\mathcal{A}|,k) and (||,l)\mathcal{L}(|\mathcal{B}|,l) are cross intersecting as well.

In [5], we proved the following important result.

Proposition 2.2.

[5] Let a,b,na,b,n are positive integers and a+bna+b\leq n. For P[n]P\subset[n] with |P|a|P|\leq a, let QQ be the partner of PP. Then (Q,b)\mathcal{L}(Q,b) is the maximum L-initial bb-uniform family that are cross intersecting to (P,a)\mathcal{L}(P,a).

In [5], we worked on non-mixed type: Let t2t\geq 2, k1k2ktk_{1}\geq k_{2}\geq\cdots\geq k_{t} and nk1+k2n\geq k_{1}+k_{2} and families 𝒜1([n]k1),𝒜2([n]k2),,𝒜t([n]kt)\mathcal{A}_{1}\subset{[n]\choose k_{1}},\mathcal{A}_{2}\subset{[n]\choose k_{2}},\dots,\mathcal{A}_{t}\subset{[n]\choose k_{t}} be non-empty pairwise cross-intersecting (not freely). Let RR be the ID of 𝒜1\mathcal{A}_{1}, and TT be the partner of RR. In the proof of Theorem 1.1, one important ingredient is that by Proposition 2.2, i=1t|𝒜i|\sum_{i=1}^{t}{|\mathcal{A}_{i}|} can be bounded by a function of RR as following.

f(R)=j=1t|𝒜j||(R,k1)|+j=2t|(T,kj)|.\displaystyle f(R)=\sum_{j=1}^{t}|\mathcal{A}_{j}|\leq|\mathcal{L}(R,k_{1})|+\sum_{j=2}^{t}|\mathcal{L}(T,k_{j})|. (2)

By Theorem 2.1, to prove the quantitative part of Theorem 1.4 we may also assume that i\mathcal{F}_{i} is L-initial, that is, i=(|i|,ki)\mathcal{F}_{i}=\mathcal{L}(|\mathcal{F}_{i}|,k_{i}) for each i[t]i\in[t]. In the rest of this chapter, we assume that (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is an extremal non-empty (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system with t3t\geq 3, k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}, and j\mathcal{F}_{j} is L-initial for each j[t]j\in[t] with ID IjI_{j}.

However, the condition on nn is relaxed to k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}, so 1([n]k1)\mathcal{F}_{1}\subseteq{[n]\choose k_{1}} and 2([n]k2)\mathcal{F}_{2}\subseteq{[n]\choose k_{2}} are cross intersecting freely. When we try to bound i=1t|i|\sum_{i=1}^{t}{|\mathcal{F}_{i}|} by a function, there are two free variables I1I_{1} (the ID of 1\mathcal{F}_{1}) and I2I_{2} (the ID of 2\mathcal{F}_{2}). This causes more difficulty to analyze properties of the corresponding function, comparing to the problem in [5]. To overcome this difficulty, we introduce new concepts ’kk-partner’ and ’parity’, develop some rules to determine whether a pair of L-initial cross intersecting families are maximal to each other (see precise definition).

Let ([n]f)\mathcal{F}\subseteq{[n]\choose f} and 𝒢([n]g)\mathcal{G}\subseteq{[n]\choose g} be cross intersecting families. We say that (,𝒢)(\mathcal{F},\mathcal{G}) is maximal or \mathcal{F} and 𝒢\mathcal{G} are maximal cross intersecting families if whenever ([n]f)\mathcal{F}^{\prime}\subseteq{[n]\choose f} and 𝒢([n]g)\mathcal{G}^{\prime}\subseteq{[n]\choose g} are cross intersecting with \mathcal{F}\subseteq\mathcal{F}^{\prime} and 𝒢𝒢\mathcal{G}\subseteq\mathcal{G}^{\prime}, then =\mathcal{F}=\mathcal{F}^{\prime} and 𝒢=𝒢\mathcal{G}=\mathcal{G}^{\prime}.

Let FF and GG be two subsets of [n][n]. We say (F,G)(F,G) is maximal if there are two L-initial families ([n]|F|)\mathcal{F}\subseteq{[n]\choose|F|} and 𝒢([n]|G|)\mathcal{G}\subseteq{[n]\choose|G|} with IDs FF and GG respectively such that (,𝒢)(\mathcal{F},\mathcal{G}) is maximal. We say two families 𝒜1\mathcal{A}_{1} and 𝒜2\mathcal{A}_{2} are maximal pair families if |𝒜1|=|𝒜2||\mathcal{A}_{1}|=|\mathcal{A}_{2}| and for every A1𝒜1A_{1}\in\mathcal{A}_{1}, there is a unique A2𝒜2A_{2}\in\mathcal{A}_{2} such that (A1,A2)(A_{1},A_{2}) is maximal.

Let F={x1,x2,,xk}[n]F=\{x_{1},x_{2},\dots,x_{k}\}\subseteq[n]. We denote

(F)={max{x:[nx+1,n]F},if maxF=n;0,if maxF<n.\ell(F)=\begin{cases}\max\{x:[n-x+1,n]\subseteq F\},&\text{if $\max F=n$};\\ 0,&\text{if $\max F<n$}.\end{cases}

Let F[n]F\subseteq[n] be a set. We denote

Ft={,if (F)=0;[n(F)+1,n],if (F)1.F^{\mathrm{t}}=\begin{cases}\emptyset,&\text{if $\ell(F)=0$};\\ [n-\ell(F)+1,n],&\text{if $\ell(F)\geq 1$}.\end{cases}

Let FF and HH be two subsets of [n][n] with size |F|=f|F|=f and |H|=h|H|=h. We say that FF and HH strongly intersect at their last element if there is an element qq such that FH={q}F\cap H=\{q\} and FH=[q]F\cup H=[q]. We also say FF is the partner of HH, or HH is the partner of FF. Let knfk\leq n-f be an integer, we define the kk-partner KK of FF as follows. For k=hk=h, let K=HK=H. If k>hk>h, then let K=H{nk+h+1,,n}K=H\cup\{n-k+h+1,\dots,n\}. We can see that |K|=k|K|=k. Indeed, since FF and HH intersect at their last element, n=maxH=f+h1<nk+h+1n^{\prime}=\max H=f+h-1<n-k+h+1, so |K|=|H{nk+h+1,,n}|=k|K|=|H\cup\{n-k+h+1,\dots,n\}|=k. If k<hk<h, then let KK be the last kk-set in ([n]k){[n]\choose k} such that KHK\prec H, in other words, there is no kk-set KK^{\prime} satisfying KKHK\precneqq K^{\prime}\precneqq H. By the definition of kk-partner, we have the following remark.

Remark 2.3.

Let F[n]F\subseteq[n] with |F|=f|F|=f and knfk\leq n-f. Suppose that HH is the partner of FF, and KK is the k-partner of FF, then we have (H,k)=(K,k)\mathcal{L}(H,k)=\mathcal{L}(K,k).

Fact 2.4.

Let F[n]F\subseteq[n] with |F|=f|F|=f and knfk\leq n-f. Then the kk-partner of FF is the same as the kk-partner of FFtF\setminus F^{\mathrm{t}}.

Proof.

If (F)=0\ell(F)=0, then we are fine. Suppose (F)>0\ell(F)>0 and F={x1,,xy}{n(F)+1,,n}F=\{x_{1},\dots,x_{y}\}\cup\{n-\ell(F)+1,\dots,n\}. Let HH and HH^{\prime} be the partners of FF and F{n(F)+1,,n}F\setminus\{n-\ell(F)+1,\dots,n\} respectively. Then |H|>nf|H|>n-f, consequently k<|H|k<|H|, H=H[xy1][xy+1,n(F)]{n}H=H\cap[x_{y}-1]\cup[x_{y}+1,n-\ell(F)]\cup\{n\} and H=H[xy1]{xy}H^{\prime}=H\cap[x_{y}-1]\cup\{x_{y}\}. Suppose that KK and KK^{\prime} are the kk-partners of FF and F{n(F)+1,,n}F\setminus\{n-\ell(F)+1,\dots,n\} respectively. By the definition of kk-partner, we can see that if k|H[xy1]|k\leq|H\cap[x_{y}-1]|, then K=KK=K^{\prime}, as desired; if k=|H|k=|H^{\prime}|, then K=HK^{\prime}=H^{\prime} and K=H[xy1]{xy}=HK=H\cap[x_{y}-1]\cup\{x_{y}\}=H^{\prime}, as desired; if k>|H|k>|H^{\prime}|, then K=H[nk+|H|+1,n]K^{\prime}=H^{\prime}\cup[n-k+|H^{\prime}|+1,n] and K=H[xy1]{xy}[nk+|H|+1,n]=KK=H\cap[x_{y}-1]\cup\{x_{y}\}\cup[n-k+|H^{\prime}|+1,n]=K^{\prime}, as desired. ∎

By Remark 2.3 and Proposition 2.2, we have the following fact.

Fact 2.5.

Let a,b,na,b,n be positive integers and na+bn\geq a+b. For A[n]A\subset[n] with |A|=a|A|=a, let BB be the bb-partner of AA, then (B,b)\mathcal{L}(B,b) is the maximum L-initial bb-uniform family that are cross intersecting to (A,a)\mathcal{L}(A,a). We also say that (B,b)\mathcal{L}(B,b) is maximal to (A,a)\mathcal{L}(A,a), or say BB is maximal to AA.

Remark 2.6.

Note that families (A,a)\mathcal{L}(A,a) and (B,b)\mathcal{L}(B,b) which mentioned in Fact 2.5 may not be maximal cross intersecting, since we don’t know whether (A,a)\mathcal{L}(A,a) is maximal to (B,b)\mathcal{L}(B,b). For example, let n=9n=9, a=3a=3, b=4b=4 and A={2,4,7}A=\{2,4,7\}. Then the bb-partner of AA is {1,3,4,9}\{1,3,4,9\}. Although ({1,3,4,9},4)\mathcal{L}(\{1,3,4,9\},4) is maximal to ({2,4,7},3)\mathcal{L}(\{2,4,7\},3), ({1,3,4,9},4)\mathcal{L}(\{1,3,4,9\},4) and ({2,4,7},3)\mathcal{L}(\{2,4,7\},3) are not maximal cross intersecting families since ({2,4,7},3)({2,4,9},3)\mathcal{L}(\{2,4,7\},3)\subsetneq\mathcal{L}(\{2,4,9\},3), and ({2,4,9},3)\mathcal{L}(\{2,4,9\},3) and ({1,3,4,9},4)\mathcal{L}(\{1,3,4,9\},4) are cross intersecting families.

Frankl-Kupavskii [2] gave a sufficient condition for a pair of maximal cross intersecting families, and a necessary condition for a pair of maximal cross intersecting families as stated below.

Proposition 2.7 (Frankl-Kupavskii [2]).

Let a,b>0,a+bna,b\in\mathbb{Z}_{>0},a+b\leq n. Let PP and QQ be non-empty subsets of [n][n] with |P|a|P|\leq a and |Q|b|Q|\leq b. If QQ is the partner of PP, then (P,a)\mathcal{L}(P,a) and (Q,b)\mathcal{L}(Q,b) are maximal cross intersecting families. Inversely, if (A,a)\mathcal{L}(A,a) and (B,a)\mathcal{L}(B,a) are maximal cross intersecting families, let jj be the smallest element of ABA\cap B, P=A[j]P=A\cap[j] and Q=B[j]Q=B\cap[j]. Then (P,a)=(A,a)\mathcal{L}(P,a)=\mathcal{L}(A,a), (Q,b)=(B,b)\mathcal{L}(Q,b)=\mathcal{L}(B,b) and PP, QQ satisfy the following conditions: |P|a|P|\leq a, |Q|b|Q|\leq b, and QQ is the partner of PP.

Based on Proposition 2.7, we point out a necessary and sufficient condition for a pair of maximal cross intersecting families in terms of their IDs.

Fact 2.8.

Let AA and BB be nonempty subsets of [n][n] with |A|+|B|n|A|+|B|\leq n. Let A=AAtA^{\prime}=A\setminus A^{\mathrm{t}} and B=BBtB^{\prime}=B\setminus B^{\mathrm{t}}. Then (A,B)(A,B) is maximal if and only if AA^{\prime} is the partner of BB^{\prime}.

Proof.

Let |A|=a|A|=a and |B|=b|B|=b. From the definitions of AA^{\prime} and BB^{\prime}, we can see that (A,a)=(A,a)\mathcal{L}(A,a)=\mathcal{L}(A^{\prime},a) and (B,b)=(B,b)\mathcal{L}(B,b)=\mathcal{L}(B^{\prime},b). First we show the sufficiency. Suppose that AA^{\prime} is the partner of BB^{\prime}. Since |A||A||A^{\prime}|\leq|A| and |B||B||B^{\prime}|\leq|B|, by Proposition 2.7, (A,a)\mathcal{L}(A^{\prime},a) and (B,b)\mathcal{L}(B^{\prime},b) are maximal cross intersecting families. Thus (A,a)\mathcal{L}(A,a) and (B,b)\mathcal{L}(B,b) are maximal cross intersecting families, in other words, (A,B)(A,B) is maximal. Next, we show the necessity. Suppose that (A,B)(A,B) is maximal. Let jj be the smallest element of ABA\cap B, P=A[j]P=A\cap[j] and Q=B[j]Q=B\cap[j]. By Proposition 2.7, (A,a)=(P,a)\mathcal{L}(A,a)=\mathcal{L}(P,a), (B,b)=(Q,b)\mathcal{L}(B,b)=\mathcal{L}(Q,b); |P|a|P|\leq a, |Q|b|Q|\leq b and PP is the partner of QQ. Since (A,a)=(P,a)\mathcal{L}(A,a)=\mathcal{L}(P,a) and PAP\subseteq A, then we A=P{na+|P|+1,,n}A=P\cup\{n-a+|P|+1,\dots,n\}. Similarly, B=Q{nb+|Q|+1,,n}B=Q\cup\{n-b+|Q|+1,\dots,n\}. By the definitions of AA^{\prime} and BB^{\prime}, we have A=PA^{\prime}=P and B=QB^{\prime}=Q. Since PP is the partner of QQ, AA^{\prime} is the partner of BB^{\prime}. ∎

By Fact 2.8 and the definition of the kk-partner, we have the following property.

Fact 2.9.

Let a,b,k,na,b,k,n be integers with nmax{a+b,a+k}n\geq\max\{a+b,a+k\}. Let AA be an aa-subset of [n][n]. Suppose that KK is the kk-partner of AAtA\setminus A^{\mathrm{t}} and there exists a bb-set BB such that (A,B)(A,B) is maximal and let b=|BBt|b^{\prime}=|B\setminus B^{\mathrm{t}}|. Then (A,K)(A,K) is maximal if and only if kbk\geq b^{\prime}.

Fact 2.10.

Let a,b,na,b,n be positive integers and na+bn\geq a+b. Suppose that AA is an aa-subset of [n][n], and BB is the bb-partner of AA. Let AA^{\prime} be the aa-partner of BB, then (A,B)(A^{\prime},B) is maximal. Moreover, if AAA^{\prime}\neq A, then AAA\precneqq A^{\prime}.

Proof.

If (A,B)(A,B) is maximal, then AA is the aa-partner of BB and A=AA^{\prime}=A, we are fine. Suppose that (A,B)(A,B) is not maximal. By Fact 2.5, BB is maximal to AA, so AA is not maximal to BB. Let AA^{\prime} be the aa-partner of BB. By Fact 2.5 again, AA^{\prime} is maximal to BB and AAA\precneqq A^{\prime}. Since BB is maximal to AA, for any bb-set BB^{\prime} satisfying BBB\precneqq B^{\prime}, we have (B,b)\mathcal{L}(B^{\prime},b) and (A,a)\mathcal{L}(A^{\prime},a) are not cross intersecting. So BB is maximal to AA^{\prime}. Hence (A,B)(A^{\prime},B) is maximal. ∎

Definition 2.11.

Let h1h2h_{1}\leq h_{2} be positive integers, H1H_{1} and H2H_{2} be subsets of [n][n] with sizes h1h_{1} and h2h_{2} respectively. We say H1H_{1} is the h1h_{1}-parity of H2H_{2}, or H2H_{2} is the h2h_{2}-parity of H1H_{1} if H1H1t=H2H2tH_{1}\setminus H_{1}^{\rm t}=H_{2}\setminus H_{2}^{\rm t} and (H2)(H1)=h2h1\ell(H_{2})-\ell(H_{1})=h_{2}-h_{1}.

Remark 2.12.

Let dfhd\leq f\leq h be positive integers and F[n]F\subseteq[n] with |F|=f|F|=f. Then FF has an hh-parity if and only if hfn(F)max(FFt)1h-f\leq n-\ell(F)-\max(F\setminus F^{\rm t})-1, and FF has an dd-parity if and only if df(F)d\geq f-\ell(F).

Note that for a given integer kk and a subset A[n]A\subseteq[n], if AA has a kk-parity, then it has the unique one. The following fact is derived from the above definition directly.

Fact 2.13.

Let h1h2h3h_{1}\leq h_{2}\leq h_{3} and HiH_{i} be an hih_{i}-set for i[3]i\in[3]. If H1H_{1} is the h1h_{1}-parity of H2H_{2} and H2H_{2} is the h2h_{2}-parity of H3H_{3}, then H1H_{1} is the h1h_{1}-parity of H3H_{3}. Also, if H3H_{3} is the h3h_{3}-parity of H1H_{1} and H2H_{2} is the h2h_{2}-parity of H1H_{1}, then H3H_{3} is the h3h_{3}-parity of H2H_{2}.

Fact 2.14.

Let a,b,k,na,b,k,n be positive integers and nmax{a+k,b+k}n\geq\max\{a+k,b+k\}. Let AA and BB be two subsets of [n][n] with sizes |A|=a|A|=a and |B|=b|B|=b. Suppose that KaK_{a} and KbK_{b} are the kk-partners of AA and BB respectively. If ABA\prec B, then KbKaK_{b}\prec K_{a}. In particular, if AA is the aa-parity of BB, then Kb=KaK_{b}=K_{a}.

Definition 2.15.

Let h1h2h_{1}\leq h_{2}. For two families 1([n]h1)\mathcal{H}_{1}\subseteq{[n]\choose h_{1}} and 2([n]h2)\mathcal{H}_{2}\subseteq{[n]\choose h_{2}}, we say that 1\mathcal{H}_{1} is the h1h_{1}-parity of 2\mathcal{H}_{2}, or 2\mathcal{H}_{2} is the h2h_{2}-parity of 1\mathcal{H}_{1} if

(i) for any H11H_{1}\in\mathcal{H}_{1}, the h2h_{2}-parity of H1H_{1} exists and must be in 2\mathcal{H}_{2};

(ii) for any H22H_{2}\in\mathcal{H}_{2}, either H2H_{2} has no h1h_{1}-parity or it’s h1h_{1}-parity is in 1\mathcal{H}_{1}.

Proposition 2.16.

Let f,g,h,nf,g,h,n be positive integers with fgf\geq g and nf+hn\geq f+h. Let

={F([n]f): there exists H([n]h) such that (F,H) is maximal },\displaystyle\mathcal{F}=\left\{F\in{[n]\choose f}:\text{ there exists }H\in{[n]\choose h}\text{ such that }(F,H)\text{ is maximal }\right\},
𝒢={G([n]g): there exists H([n]h) such that (G,H) is maximal }.\displaystyle\mathcal{G}=\left\{G\in{[n]\choose g}:\text{ there exists }H\in{[n]\choose h}\text{ such that }(G,H)\text{ is maximal }\right\}.

Let ([n]h)\mathcal{H}_{\mathcal{F}}\subseteq{[n]\choose h} and 𝒢([n]h)\mathcal{H}_{\mathcal{G}}\subseteq{[n]\choose h} be the families such that \mathcal{F} and \mathcal{H}_{\mathcal{F}} are maximal pair families and 𝒢\mathcal{G} and 𝒢\mathcal{H}_{\mathcal{G}} are maximal pair families. Then \mathcal{F} is the ff-parity of 𝒢\mathcal{G}; 𝒢\mathcal{H}_{\mathcal{G}}\subseteq\mathcal{H}_{\mathcal{F}}; and for any G𝒢G\in\mathcal{G}, let FF\in\mathcal{F} be the ff-parity of GG and HH\in\mathcal{H} such that (F,H)(F,H) is maximal, then (G,H)(G,H) is maximal.

Proof.

If f=gf=g, then =𝒢\mathcal{F}=\mathcal{G} and 𝒢=\mathcal{H}_{\mathcal{G}}=\mathcal{H}_{\mathcal{F}}. So we may assume that f=g+sf=g+s for some s1s\geq 1. For any G𝒢G\in\mathcal{G}, there is the unique HH\in\mathcal{H} such that (G,H)(G,H) is maximal. Let G=GGt=G{n(G)+1,,n}G^{\prime}=G\setminus G^{\rm t}=G\setminus\{n-\ell(G)+1,\dots,n\} and H=HHt=H{n(H)+1,,n}H^{\prime}=H\setminus H^{\rm t}=H\setminus\{n-\ell(H)+1,\dots,n\}. Then, by Fact 2.8, GG^{\prime} and HH^{\prime} are partners of each other . So maxGg+h1f+hs1\max G^{\prime}\leq g+h-1\leq f+h-s-1. Let F=G{n(G)+1s,,n}F=G^{\prime}\cup\{n-\ell(G)+1-s,\dots,n\}. Then GFG\subseteq F, |F|=f|F|=f and (F)(G)=fg=s\ell(F)-\ell(G)=f-g=s. Then, by Definition 2.11, FF is the ff-parity of GG. Let F=FFtF^{\prime}=F\setminus F^{\rm t}. So F=GF^{\prime}=G^{\prime}. Furthermore, FF^{\prime} and HH^{\prime} are partners of each other. By Fact 2.8 again, we can see that (F,H)(F,H) is maximal. So FF\in\mathcal{F}, and \mathcal{F} is the ff-parity of 𝒢\mathcal{G}, as desired. For any G𝒢G\in\mathcal{G}, let FF be the ff-parity of GG and HH\in\mathcal{H} be the set such that (F,H)(F,H) is maximal. By Fact 2.14, (G,H)(G,H) is maximal, as desired. And this implies 𝒢\mathcal{H}_{\mathcal{G}}\subseteq\mathcal{H}_{\mathcal{F}}. The proof is complete. ∎

Fact 2.17.

Let a,b,c,na,b,c,n be positive integers, aba\geq b and na+cn\geq a+c, and let CC be a cc-subset of [n][n]. Suppose that AA is the aa-partner of CC and BB is the bb-partner of CC, then BAB\prec A or AA is the aa-parity of BB.

Proof.

If a=ba=b, then A=BA=B, we are done. Assume a>ba>b. Let TT be the partner of CC and let |T|=c|T|=c^{\prime}. If cbc^{\prime}\leq b, then c<ac^{\prime}<a. By the definitions of aa-partner and bb-partner and na+c>b+cn\geq a+c>b+c, we can see that AA is the aa-parity of BB. If b<cab<c^{\prime}\leq a, then we have minBA<minAB\min B\setminus A<\min A\setminus B, so BAB\prec A. At last, suppose b<a<cb<a<c^{\prime}. Let C={x1,,xb,,xa}CC^{\prime}=\{x_{1},\dots,x_{b},\dots,x_{a}\}\subseteq C be the first aa elements of CC. If xi+1=xi+1x_{i+1}=x_{i}+1 for all i[b,a1]i\in[b,a-1], then AA is the aa-parity of BB. Otherwise, we have BAB\prec A. ∎

3 Proofs of Theorem 1.4

Recall that k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}, (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is an extremal (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system, each i\mathcal{F}_{i} is L-initial, and I1,I2,,ItI_{1},I_{2},\dots,I_{t} are the IDs of 1,2,,t\mathcal{F}_{1},\mathcal{F}_{2},\dots,\mathcal{F}_{t} respectively throughout the paper. From Constructions 1.2 and 1.3, we have

i=1t|i|max{λ1,λ2}.\sum_{i=1}^{t}|\mathcal{F}_{i}|\geq\textup{max}\{\lambda_{1},\,\,\lambda_{2}\}. (3)

We are going to prove that i=1t|i|max{λ1,λ2}\sum_{i=1}^{t}|\mathcal{F}_{i}|\leq\textup{max}\{\lambda_{1},\lambda_{2}\}.

Claim 3.1.

We may assume that kt2k_{t}\geq 2.

Proof.

We consider the case kt=1k_{t}=1. Suppose that |t|=s|\mathcal{F}_{t}|=s. Then t={{1},,{s}}\mathcal{F}_{t}=\{\{1\},\dots,\{s\}\}. Since (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is a cross intersecting system, then for any i[t1]i\in[t-1] and FiF\in\mathcal{F}_{i}, we have [s]F[s]\subseteq F. Thus,

i=1t|i|=i=1t1(nskis)+sλ1.\sum_{i=1}^{t}|\mathcal{F}_{i}|=\sum_{i=1}^{t-1}{n-s\choose k_{i}-s}+s\leq\lambda_{1}.

So we may assume that kt2k_{t}\geq 2. ∎

From now on, kt2k_{t}\geq 2.

For the case k1=k2k_{1}=k_{2}, the authors in [6] (Corollary 1.12) have already given a positive answer. Although we can prove for this case in this paper, for simplicity, we assume that

k1>k2.k_{1}>k_{2}.

In [6], the authors proved the following result.

Theorem 3.2.

[6] Let nn, t2t\geq 2, k1,k2,,ktk_{1},k_{2},\dots,k_{t} be positive integers and d1,d2,,dtd_{1},d_{2},\dots,d_{t} be positive numbers. Let 𝒜1([n]k1),𝒜2([n]k2),,𝒜t([n]kt)\mathcal{A}_{1}\subset{[n]\choose k_{1}},\mathcal{A}_{2}\subset{[n]\choose k_{2}},\dots,\mathcal{A}_{t}\subset{[n]\choose k_{t}} be non-empty cross-intersecting families with |𝒜i|(n1ki1)|\mathcal{A}_{i}|\geq{n-1\choose k_{i}-1} for some i[t]i\in[t]. Let mim_{i} be the minimum integer among kjk_{j}, where j[t]{i}j\in[t]\setminus\{i\}. If nki+kjn\geq k_{i}+k_{j} for all j[t]{i}j\in[t]\setminus\{i\}, then

1=jtdj|𝒜j|max{di(nki)di(nmiki)+j=1,jitdj(nmikjmi),j=1tdj(n1kj1)}.\sum_{1=j}^{t}d_{j}|\mathcal{A}_{j}|\leq\max\left\{d_{i}{n\choose k_{i}}-d_{i}{n-m_{i}\choose k_{i}}+\sum_{j=1,j\neq i}^{t}d_{j}{n-m_{i}\choose k_{j}-m_{i}},\,\,\sum_{j=1}^{t}d_{j}{n-1\choose k_{j}-1}\right\}.

The equality holds if and only if one of the following holds.
(1) If di(nki)di(nktki)+jitdj(nmikjmi)j=1tdj(n1kj1)d_{i}{n\choose k_{i}}-d_{i}{n-k_{t}\choose k_{i}}+\sum_{j\neq i}^{t}d_{j}{n-m_{i}\choose k_{j}-m_{i}}\geq\sum_{j=1}^{t}d_{j}{n-1\choose k_{j}-1}, then there is some mim_{i}-element set T[n]T\subset[n] such that 𝒜i={F([n]ki):FT}\mathcal{A}_{i}=\{F\in{[n]\choose k_{i}}:F\cap T\neq\emptyset\} and 𝒜j={F([n]kj):TF}\mathcal{A}_{j}=\{F\in{[n]\choose k_{j}}:T\subset F\} for each j[t]{i}j\in[t]\setminus\{i\}.
(2) If di(nki)di(nktki)+jitdj(nmikjmi)j=1tdj(n1kj1)d_{i}{n\choose k_{i}}-d_{i}{n-k_{t}\choose k_{i}}+\sum_{j\neq i}^{t}d_{j}{n-m_{i}\choose k_{j}-m_{i}}\leq\sum_{j=1}^{t}d_{j}{n-1\choose k_{j}-1}, then there is some a[n]a\in[n] such that 𝒜j={F([n]kj):aF}\mathcal{A}_{j}=\{F\in{[n]\choose k_{j}}:a\in F\} for each j[t]j\in[t].
(3) If t=2t=2 and n=ki+k3in=k_{i}+k_{3-i}. If did3id_{i}\leq d_{3-i}, then 𝒜3i([n]k3i)\mathcal{A}_{3-i}\subseteq{[n]\choose k_{3-i}} with |𝒜3i|=(n1k3i1)|\mathcal{A}_{3-i}|={n-1\choose k_{3-i}-1} and 𝒜i=([n]ki)𝒜3i¯\mathcal{A}_{i}={[n]\choose k_{i}}\setminus\overline{\mathcal{A}_{3-i}}.
(4) If n=ki+kjn=k_{i}+k_{j} holds for every j[t]{i}j\in[t]\setminus\{i\} and jidj=di\sum_{j\neq i}d_{j}=d_{i}, then 𝒜j=𝒜\mathcal{A}_{j}=\mathcal{A} for all j[t]{i}j\in[t]\setminus\{i\}, where 𝒜([n]k)\mathcal{A}\subseteq{[n]\choose k} is an intersecting family with size |𝒜|=(n1k1)|\mathcal{A}|={n-1\choose k-1}, and 𝒜i=([n]ki)𝒜¯\mathcal{A}_{i}={[n]\choose k_{i}}\setminus\overline{\mathcal{A}}.

Claim 3.3.

|1|(n1k11)|\mathcal{F}_{1}|\geq{n-1\choose k_{1}-1} and |2|(n1k21)|\mathcal{F}_{2}|\geq{n-1\choose k_{2}-1}, in other words, {1,nk1+2,,n}I1\{1,n-k_{1}+2,\dots,n\}\prec I_{1} and {1,nk2+2,,n}I2\{1,n-k_{2}+2,\dots,n\}\prec I_{2}.

Proof.

If |i|<(n1ki1)|\mathcal{F}_{i}|<{n-1\choose k_{i}-1} for each i[t]i\in[t], then i=1t|i|<λ1\sum_{i=1}^{t}{|\mathcal{F}_{i}|}<\lambda_{1}, a contradiction to (3). So there is i[t]i\in[t] such that |i|(n1ki1)|\mathcal{F}_{i}|\geq{n-1\choose k_{i}-1}.

Suppose that i[3,t]i\in[3,t] firstly. Since k1k2k_{1}\geq k_{2}, nk1+k3n\geq k_{1}+k_{3} and therefore nki+kjn\geq k_{i}+k_{j} for all j[t]{i}j\in[t]\setminus\{i\}. Let mi=min{kj,j[t]{i}}m_{i}=\min\{k_{j},j\in[t]\setminus\{i\}\}. Taking d1=d2==dtd_{1}=d_{2}=\dots=d_{t} in Theorem 3.2, we obtain

j=1t|j|max{j=1t(n1kj1),(nki)(nktki)+j=1,jit(nmikjmi)}.\sum_{j=1}^{t}|\mathcal{F}_{j}|\leq\textup{max}\left\{\sum_{j=1}^{t}{n-1\choose k_{j}-1},\,\,{n\choose k_{i}}-{n-k_{t}\choose k_{i}}+\sum_{j=1,j\neq i}^{t}{n-m_{i}\choose k_{j}-m_{i}}\right\}.

In [6] (Proposition 2.20 [6]), we have shown that

(nki)(nktki)+j=1,jit(nmikjmi)(nk1)(nktk1)+j=2t(nktkjkt).{n\choose k_{i}}-{n-k_{t}\choose k_{i}}+\sum_{j=1,j\neq i}^{t}{n-m_{i}\choose k_{j}-m_{i}}\leq{n\choose k_{1}}-{n-k_{t}\choose k_{1}}+\sum_{j=2}^{t}{n-k_{t}\choose k_{j}-k_{t}}.

So

j=1t|j|\displaystyle\sum_{j=1}^{t}|\mathcal{F}_{j}| max{j=1t(n1kj1),(nk1)(nktk1)+j=2t(nktkjkt)}\displaystyle\leq\textup{max}\left\{\sum_{j=1}^{t}{n-1\choose k_{j}-1},{n\choose k_{1}}-{n-k_{t}\choose k_{1}}+\sum_{j=2}^{t}{n-k_{t}\choose k_{j}-k_{t}}\right\}
max{λ1,λ2},\displaystyle\leq\textup{max}\{\lambda_{1},\,\,\lambda_{2}\},

where the last inequality holds by kt2k_{t}\geq 2 and (nk2)(nktk2)>(nktk2kt){n\choose k_{2}}-{n-k_{t}\choose k_{2}}>{n-k_{t}\choose k_{2}-k_{t}}. Thus if max{λ1,λ2}=λ2\max\{\lambda_{1},\,\,\lambda_{2}\}=\lambda_{2}, then the last inequality holds strictly, it makes a a contradiction to (3). Suppose that max{λ1,λ2}=λ2\max\{\lambda_{1},\,\,\lambda_{2}\}=\lambda_{2}. Then Claim 3.3 follows from Theorem 3.2 (see the item (2) of Theorem 3.2). So i[2]i\in[2]. Without loss of generality, let i=1i=1. Since n<k1+k2n<k_{1}+k_{2}, then any two families 𝒢([n]k1)\mathcal{G}\subseteq{[n]\choose k_{1}} and ([n]k2)\mathcal{H}\subseteq{[n]\choose k_{2}} are cross intersecting freely. Since |1|(n1k11)|\mathcal{F}_{1}|\geq{n-1\choose k_{1}-1} and 1\mathcal{F}_{1} is L-initial, {1,nk1+2,,n}I1\{1,n-k_{1}+2,\dots,n\}\prec I_{1}. Note that n>k1+kjn>k_{1}+k_{j} for each j[3,t]j\in[3,t] and 1\mathcal{F}_{1} is cross intersecting with j\mathcal{F}_{j} but not freely for each j[3,t]j\in[3,t], every member of j\mathcal{F}_{j} contains 1. Since (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is extremal, all k2k_{2}-subsets contianing 1 are contained in 2\mathcal{F}_{2}, so {1,nk2+2,,n}I2\{1,n-k_{2}+2,\dots,n\}\prec I_{2}, this implies |2|(n1k21)|\mathcal{F}_{2}|\geq{n-1\choose k_{2}-1}. This completes the proof of Claim 3.3. ∎

The following observation is simple and frequently used in this paper.

Remark 3.4.

Let d2d\geq 2 be an integer, we consider dd L-initial families (A1,a1)\mathcal{L}(A_{1},a_{1}), \dots, (Ad,ad)\mathcal{L}(A_{d},a_{d}). For i[d]i\in[d] and let S[d]{i}S\subseteq[d]\setminus\{i\} be the set of all j[d]{i}j\in[d]\setminus\{i\} satisfying that nai+ajn\geq a_{i}+a_{j}. Suppose that {1,nai+2,,n}Ai\{1,n-a_{i}+2,\dots,n\}\preceq A_{i}. If (Ai,ai)\mathcal{L}(A_{i},a_{i}) and (Aj,aj)\mathcal{L}(A_{j},a_{j}) are cross intersecting for each jSj\in S, then (Aj,aj)\mathcal{L}(A_{j},a_{j}), jSj\in S are pairwise cross intersecting families since for any jSj\in S, every member of (Aj,aj)\mathcal{L}(A_{j},a_{j}) contains 11.

Combining Claim 3.3, Proposition 2.2 and (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is extremal, we have that for i[3,t]i\in[3,t], IiI_{i} is kik_{i}-partner of I1I_{1} (if I2I1I_{2}\prec I_{1}) or I2I_{2} (if I1I2I_{1}\prec I_{2}).

Since (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is extremal, IiI_{i} (ID of i\mathcal{F}_{i}) must be contained in i\mathcal{R}_{i}, which are defined as below.

1={R([n]k1):{1,nk1+2,,n}R{kt,nk1+2,,n}}.\displaystyle\mathcal{R}_{1}=\{R\in{[n]\choose k_{1}}:\{1,n-k_{1}+2,\dots,n\}\prec R\prec\{k_{t},n-k_{1}+2,\dots,n\}\}.
2={R([n]k2):{1,nk2+2,,n}R{kt,nk2+2,,n}}.\displaystyle\mathcal{R}_{2}=\{R\in{[n]\choose k_{2}}:\{1,n-k_{2}+2,\dots,n\}\prec R\prec\{k_{t},n-k_{2}+2,\dots,n\}\}.

For i[3,t1]i\in[3,t-1], let

i\displaystyle\mathcal{R}_{i} ={R([n]ki):[kt][nki+kt+1,n]R{1,nki+2,,n}},\displaystyle=\{R\in{[n]\choose k_{i}}:[k_{t}]\cup[n-k_{i}+k_{t}+1,n]\prec R\prec\{1,n-k_{i}+2,\dots,n\}\},
t\displaystyle\mathcal{R}_{t} ={R([n]kt):{1,2,,kt}R{1,nkt+2,,n}}.\displaystyle=\{R\in{[n]\choose k_{t}}:\{1,2,\dots,k_{t}\}\prec R\prec\{1,n-k_{t}+2,\dots,n\}\}.

For a family 𝒜1([n]k1)\mathcal{A}_{1}\subseteq{[n]\choose k_{1}} with ID A1A_{1}, let

m(n,A1)=\displaystyle m(n,A_{1})= max{j[t]{1}|𝒜j|:𝒜j([n]kj) is L-initial and (𝒜1,,𝒜t) is an\displaystyle\max\big{\{}\sum_{j\in[t]\setminus\{1\}}|\mathcal{A}_{j}|:\mathcal{A}_{j}\subseteq{[n]\choose k_{j}}\text{ is L-initial and }(\mathcal{A}_{1},\dots,\mathcal{A}_{t})\text{ is an }
(n,k1,,kt)-cross intersecting system, where k1+k3n<k1+k2}.\displaystyle(n,k_{1},\dots,k_{t})\text{-cross intersecting system, where }k_{1}+k_{3}\leq n<k_{1}+k_{2}\big{\}}.

For L-initial cross intersecting families 𝒜1([n]k1)\mathcal{A}_{1}\subseteq{[n]\choose k_{1}} and 𝒜2([n]k2)\mathcal{A}_{2}\subseteq{[n]\choose k_{2}} with IDs A1A_{1} and A2A_{2} respectively, let

m(n,A1,A2)=\displaystyle m(n,A_{1},A_{2})= max{j[t]{1,2}|𝒜j|:𝒜j([n]kj) is L-initial and (𝒜1,,𝒜t) is an\displaystyle\max\big{\{}\sum_{j\in[t]\setminus\{1,2\}}|\mathcal{A}_{j}|:\mathcal{A}_{j}\subseteq{[n]\choose k_{j}}\text{ is L-initial and }(\mathcal{A}_{1},\dots,\mathcal{A}_{t})\text{ is an }
(n,k1,,kt)-cross intersecting system, where k1+k3n<k1+k2}.\displaystyle(n,k_{1},\dots,k_{t})\text{-cross intersecting system, where }k_{1}+k_{3}\leq n<k_{1}+k_{2}\big{\}}.
Proposition 3.5.

If I1={1,nk1+2,,n}I_{1}=\{1,n-k_{1}+2,\dots,n\} or I1={kt,nk1+2,,n}I_{1}=\{k_{t},n-k_{1}+2,\dots,n\} (or I2={1,nk2+2,,n}I_{2}=\{1,n-k_{2}+2,\dots,n\} or I2={kt,nk2+2,,n}I_{2}=\{k_{t},n-k_{2}+2,\dots,n\}), then i=1t|i|=max{λ1,λ2}\sum_{i=1}^{t}|\mathcal{F}_{i}|=\textup{max}\{\lambda_{1},\,\,\lambda_{2}\}.

Proof.

The proofs for I1I_{1} and I2I_{2} are similar, so we only prove for I1I_{1}. Suppose that I1={1,nk1+2,,n}I_{1}=\{1,n-k_{1}+2,\dots,n\} firstly. Since {1,nk2+2,,n}I2\{1,n-k_{2}+2,\dots,n\}\prec I_{2}, I1I2I_{1}\prec I_{2}. By Fact 2.14, we have

m(n,I1)=M(n,k2,k3,,kt).m(n,I_{1})=M(n,k_{2},k_{3},\dots,k_{t}). (4)

Since (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is extremal,

i=1t|i|=(n1k11)+m(n,I1)\displaystyle\sum_{i=1}^{t}|\mathcal{F}_{i}|={n-1\choose k_{1}-1}+m(n,I_{1})
=(4)(n1k11)+M(n,k2,k3,,kt)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\overset{(\ref{newdef2})}{=}{n-1\choose k_{1}-1}+M(n,k_{2},k_{3},\dots,k_{t})
=Theorem1.1(n1k11)+max{i=2t(n1ki1),(nk2)(nktk2)+i=3t(nktkikt)}.\displaystyle~{}~{}~{}~{}~{}~{}\overset{Theorem\ref{HP}}{=}{n-1\choose k_{1}-1}+\textup{max}\left\{\sum_{i=2}^{t}{n-1\choose k_{i}-1},\,{n\choose k_{2}}-{n-k_{t}\choose k_{2}}+\sum_{i=3}^{t}{n-k_{t}\choose k_{i}-k_{t}}\right\}.

Since kt2k_{t}\geq 2,

(n1k11)+(nk2)(nktk2)+i=3t(nktkikt)<λ2.{n-1\choose k_{1}-1}+{n\choose k_{2}}-{n-k_{t}\choose k_{2}}+\sum_{i=3}^{t}{n-k_{t}\choose k_{i}-k_{t}}<\lambda_{2}.

By (3), i=1t|i|=λ1\sum_{i=1}^{t}|\mathcal{F}_{i}|=\lambda_{1}, as desired.

Next we consider I1={kt,nk1+2,,n}I_{1}=\{k_{t},n-k_{1}+2,\dots,n\}. For each i[3,t]i\in[3,t], since i\mathcal{F}_{i} and 1\mathcal{F}_{1} are cross intersecting and n>k1+k3k1+kin>k_{1}+k_{3}\geq k_{1}+k_{i}, every element of i\mathcal{F}_{i} must contain [kt][k_{t}]. Since i\mathcal{F}_{i} and 1\mathcal{F}_{1} are cross intersecting for every i[3,t]i\in[3,t], k2+k3n<k1+k2k_{2}+k_{3}\leq n<k_{1}+k_{2} and (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is extremal, we can see that I2={kt,nk2+2,,n}I_{2}=\{k_{t},n-k_{2}+2,\dots,n\}, that is the last element of 2\mathcal{R}_{2}. Therefore, i=1t|i|=λ2\sum_{i=1}^{t}|\mathcal{F}_{i}|=\lambda_{2}, as desired. ∎

By Proposition 3.5, the proof of the quantitative part of Theorem 1.4 will follow from the following proposition.

Proposition 3.6.

If {1,nk1+2,,n}I1{kt,nk1+2,,n}\{1,n-k_{1}+2,\dots,n\}\precneqq I_{1}\precneqq\{k_{t},n-k_{1}+2,\dots,n\} and {1,nk2+2,,n}I2{kt,nk2+2,,n}\{1,n-k_{2}+2,\dots,n\}\precneqq I_{2}\precneqq\{k_{t},n-k_{2}+2,\dots,n\}, then i=1t|i|<max{λ1,λ2}\sum_{i=1}^{t}|\mathcal{F}_{i}|<\max\{\lambda_{1},\lambda_{2}\}.

In order to prove Proposition 3.6, we need some preparations.

Definition 3.7.

Let 2,32\mathcal{F}_{2,3}\subseteq\mathcal{R}_{2} and 323\mathcal{F}_{3}^{2}\subseteq\mathcal{R}_{3} be such that 2,3\mathcal{F}_{2,3} and 32\mathcal{F}_{3}^{2} are maximal pair families.

The following lemma whose proof will be given in Section 5 is crucial. It tells us that for an extremal (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) with k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}, the ID I1I_{1} of 1\mathcal{F}_{1} is the parity of the ID I2I_{2} of 2\mathcal{F}_{2}.

Lemma 3.8.

Let (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) be an extremal L-initial (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system with IDs I1,I2,,ItI_{1},I_{2},\dots,I_{t} of 1,2,,t\mathcal{F}_{1},\mathcal{F}_{2},\dots,\mathcal{F}_{t} respectively. Then I1I_{1} and I2I_{2} satisfy

I22,3 and I1 is the k1-parity of I2.I_{2}\in\mathcal{F}_{2,3}\,\text{ and }\,I_{1}\text{ is the }k_{1}\text{-parity of }I_{2}. (5)

Recall that k1>k2ktk_{1}>k_{2}\geq\dots\geq k_{t}, and k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}. Let G22,3G_{2}\in\mathcal{F}_{2,3}. Let G1G_{1} be the k1k_{1}-parity of G2G_{2}. Then from Fact 2.14, we have the following claim.

Remark 3.9.

For any j[3,t]j\in[3,t], G1G_{1} and G2G_{2} have the same kjk_{j}-partner.

Fixing any G22,3G_{2}\in\mathcal{F}_{2,3}, let G1G_{1} be the k1k_{1}-parity of G2G_{2}, and for any i[3,t]i\in[3,t], let TiT_{i} by the kik_{i}-partner of G2G_{2}. By Claim 3.3 and Remark 3.4, we can see that (T3,k3)\mathcal{L}(T_{3},k_{3}), …, (Tt,kt)\mathcal{L}(T_{t},k_{t}) are pariwise cross-intersecting. Furthermore, combining Fact 2.5 and Remark 3.9, we conclude that

m(n,G1,G2)\displaystyle m(n,G_{1},G_{2}) =i=3t|(Ti,ki)|.\displaystyle=\sum_{i=3}^{t}|\mathcal{L}(T_{i},k_{i})|. (6)

Now we are ready to express M(n,k1,,kt)M(n,k_{1},\dots,k_{t}) in terms of a function of G2G_{2}.

Remark 3.10.

Let G22,3G_{2}\in\mathcal{F}_{2,3}, let G1G_{1} be the k1k_{1}-parity of G2G_{2} and for any i[3,t]i\in[3,t], let TiT_{i} be the kik_{i}-partner of G2G_{2}. Define

g(G2)=i=12|(Gi,ki)|+i=3t|(Ti,ki)|.g(G_{2})=\sum_{i=1}^{2}|\mathcal{L}(G_{i},k_{i})|+\sum_{i=3}^{t}|\mathcal{L}(T_{i},k_{i})|. (7)

Then by Lemma 3.8 and (6),

M(n,k1,,kt)=maxG22,3{g(G2)}.M(n,k_{1},\dots,k_{t})=\max_{G_{2}\in\mathcal{F}_{2,3}}\{g(G_{2})\}. (8)
Definition 3.11.

For each j[k21]j\in[k_{2}-1], let 2,j={R2:[nj+1,n]R}\mathcal{R}_{2,j}=\{R\in\mathcal{R}_{2}:[n-j+1,n]\subset R\} and 2(j)={R[nj+1,n]:R2,j}\mathcal{R}_{2}(j)=\{R\setminus[n-j+1,n]:R\in\mathcal{R}_{2,j}\}. Denote 2,3(j)={R[nj+1,n]:R2,32,j}\mathcal{F}_{2,3}(j)=\{R\setminus[n-j+1,n]:R\in\mathcal{F}_{2,3}\cap\mathcal{R}_{2,j}\}. For any j[k21]j\in[k_{2}-1] and any R2,32,jR\in\mathcal{F}_{2,3}\cap\mathcal{R}_{2,j}, we define g(R[nj+1,n])=g(R)g(R\setminus[n-j+1,n])=g(R).

We will prove several key lemmas to show the ‘local unimodality’ of g(G2)g(G_{2}) in Section 5. Before stating these crucial lemmas, we need to introduce some definitions.

Let 𝒜([n]k)\mathcal{A}\subset{[n]\choose k} be a family and c[k]c\in[k]. We say that 𝒜\mathcal{A} is cc-sequential if there are A[n]A\subset[n] with |A|=kc|A|=k-c and amaxAa\geq\max A (For a set A[n]A\subset[n], denote maxA=max{x:xA}\max A=\max\{x:x\in A\} and minA=min{x:xA}\min A=\min\{x:x\in A\}) such that 𝒜={A{a+1,,a+c},A{a+2,,a+c+1},,A{bc+1,,b}}\mathcal{A}=\{A\sqcup\{a+1,\dots,a+c\},A\sqcup\{a+2,\dots,a+c+1\},\dots,A\sqcup\{b-c+1,\dots,b\}\}, then we say that 𝒜\mathcal{A} is cc-sequential, write A1𝑐A2𝑐𝑐Abac+1A_{1}\overset{c}{\prec}A_{2}\overset{c}{\prec}\cdots\overset{c}{\prec}A_{b-a-c+1}, where A1=A{a+1,,a+c}A_{1}=A\sqcup\{a+1,\dots,a+c\}, A2=A{a+2,,a+c+1}A_{2}=A\sqcup\{a+2,\dots,a+c+1\},\dots, Abac+1=A{bc+1,,b}A_{b-a-c+1}=A\sqcup\{b-c+1,\dots,b\}, we also say that AiA_{i} and AjA_{j} are cc-sequential. In particular, if l2=l1+1l_{2}=l_{1}+1, we write Al1𝑐Al2A_{l_{1}}\overset{c}{\prec}A_{l_{2}}; if maxAl2=n\max A_{l_{2}}=n, write Al1𝑐Al2A_{l_{1}}\overset{c}{\longrightarrow}A_{l_{2}}. Note that if |𝒜|=1|\mathcal{A}|=1, then 𝒜\mathcal{A} is cc-sequential for any c[k]c\in[k]. Let \mathcal{F} be a family and F1,F2F_{1},F_{2}\in\mathcal{F}. If F1F2F_{1}\precneqq F_{2} and there is no FF^{\prime}\in\mathcal{F} such that F1FF2F_{1}\precneqq F^{\prime}\precneqq F_{2}, then we say that F1<F2F_{1}<F_{2} in \mathcal{F}, or F1<F2F_{1}<F_{2} simply if there is no confusion.

We will prove the following crucial lemmas in Sections 6 and 7. They show that function g(R)g(R) has local unimodality.

Lemma 3.12.

For any j[0,k21]j\in[0,k_{2}-1], let 1ck2j1\leq c\leq k_{2}-j and F2,G2,H22,3(j)F_{2},G_{2},H_{2}\in\mathcal{F}_{2,3}(j) with F2𝑐G2𝑐H2F_{2}\overset{c}{\prec}G_{2}\overset{c}{\prec}H_{2}. Then g(G2)g(F2)g(G_{2})\geq g(F_{2}) implies g(H2)>g(G2)g(H_{2})>g(G_{2}).

Lemma 3.13.

Let 4jk2+14\leq j\leq k_{2}+1 and F2,G2,H22,3F_{2},G_{2},H_{2}\in\mathcal{F}_{2,3} with [2,j]=F2[n(F2)+1,n][2,j]=F_{2}\setminus[n-\ell(F_{2})+1,n], [2,j1]=G2[n(G2)+1,n][2,j-1]=G_{2}\setminus[n-\ell(G_{2})+1,n] and [2,j2]=H2[n(H2)+1,n][2,j-2]=H_{2}\setminus[n-\ell(H_{2})+1,n]. Then g([2,j1])g([2,j])g([2,j-1])\geq g([2,j]) implies g([2,j2])>g([2,j1])g([2,j-2])>g([2,j-1]).

Lemma 3.14.

Let kt+2jkt+k21k_{t}+2\leq j\leq k_{t}+k_{2}-1 and F2,G2,H22,3F_{2},G_{2},H_{2}\in\mathcal{F}_{2,3} with [kt,j]=F2[n(F2)+1,n][k_{t},j]=F_{2}\setminus[n-\ell(F_{2})+1,n], [kt,j1]=G2[n(G2)+1,n][k_{t},j-1]=G_{2}\setminus[n-\ell(G_{2})+1,n] and [kt,j2]=H2[n(H2)+1,n][k_{t},j-2]=H_{2}\setminus[n-\ell(H_{2})+1,n]. Then g([kt,j1])g([kt,j])g([k_{t},j-1])\geq g([k_{t},j]) implies g([kt,j2])>g([kt,j1])g([k_{t},j-2])>g([k_{t},j-1]).

Claim 3.15.

Let AA be a k2k_{2}-subset of [n][n] with (A)=p\ell(A)=p. Suppose A={x1,,xk2p,np+1,,n}A=\{x_{1},\dots,x_{k_{2}-p},n-p+1,\dots,n\} and A=A{xk2p}[np,n]A^{\prime}=A\setminus\{x_{k_{2}-p}\}\cup[n-p,n]. If A2,3A\in\mathcal{F}_{2,3}, then A2,3A^{\prime}\in\mathcal{F}_{2,3}.

Proof.

Let TT and TT^{\prime} be the partners of {x1,,xk2p}=AAt\{x_{1},\dots,x_{k_{2}-p}\}=A\setminus A^{\rm t} and {x1,,xk2p1}=AAt\{x_{1},\dots,x_{k_{2}-p-1}\}=A^{\prime}\setminus A^{\prime\rm t} respectively. Since A2,3A\in\mathcal{F}_{2,3}, |T|k3|T|\leq k_{3}. Thus, |T||T|k3|T^{\prime}|\leq|T|\leq k_{3}. Let B=T{nk3+|T|+1,,n}B=T^{\prime}\cup\{n-k_{3}+|T^{\prime}|+1,\dots,n\} if |T|<k3|T^{\prime}|<k_{3}, otherwise, let B=TB=T^{\prime}. Then BB is the k3k_{3}-partner of {x1,,xk2p1}\{x_{1},\dots,x_{k_{2}-p-1}\}. Fact 2.9 implies that (A,B)(A^{\prime},B) is maximal, thus A2,3A^{\prime}\in\mathcal{F}_{2,3}. ∎

Claim 3.16.

Let AA be a k2k_{2}-subset of [n][n] with (A)=p1\ell(A)=p\geq 1. Suppose that A={x1,,xk2p,np+1,,n}A=\{x_{1},\dots,x_{k_{2}-p},n-p+1,\dots,n\} and A=A{np+1}{xk2p+1}[np+2,n]A^{\prime}=A\setminus\{n-p+1\}\cup\{x_{k_{2}-p}+1\}\cup[n-p+2,n] (if p=1p=1, then [np+2,n]=[n-p+2,n]=\emptyset). If A2,3A\in\mathcal{F}_{2,3} and {1,nk2+2,,n}A\{1,n-k_{2}+2,\dots,n\}\precneqq A, then A2,3A^{\prime}\in\mathcal{F}_{2,3}.

Proof.

Let TT and TT^{\prime} be the partners of {x1,,xk2p}=AAt\{x_{1},\dots,x_{k_{2}-p}\}=A\setminus A^{\rm t} and {x1,,xk2p,xk2p+1}=AAt\{x_{1},\dots,x_{k_{2}-p},\\ x_{k_{2}-p}+1\}=A^{\prime}\setminus A^{\prime\rm t} respectively. Then |T|=|T||T|=|T^{\prime}| and maxTmaxT=1\max T^{\prime}-\max T=1. Since A2,3A\in\mathcal{F}_{2,3}, by Definition 3.7, there is B32B\in\mathcal{F}_{3}^{2} such that (A,B)(A,B) is maximal. By Fact 2.8, T=B{n(B)+1,,n}T=B\setminus\{n-\ell(B)+1,\dots,n\}, B=T{nk3+|T|+1,,n}B=T\cup\{n-k_{3}+|T|+1,\dots,n\} and maxT<nk3+|T|\max T<n-k_{3}+|T|. We claim that maxT<nk3+|T|1\max T<n-k_{3}+|T|-1. Since otherwise maxT=nk3+|T|1\max T=n-k_{3}+|T|-1, this implies that |{x1,,xk2p}|+|T|=nk3+|T||\{x_{1},\dots,x_{k_{2}-p}\}|+|T|=n-k_{3}+|T| and then

|A|+|B||{x1,,xk2p}|+1+|T|+|{nk3+|T|+1,,n}|=n+1,|A|+|B|\geq|\{x_{1},\dots,x_{k_{2}-p}\}|+1+|T|+|\{n-k_{3}+|T|+1,\dots,n\}|=n+1,

this is a contradiction to nk2+k3(=|A|+|B|)n\geq k_{2}+k_{3}\,\,(=|A|+|B|). Let B=T{nk3+|T|+1,,n}B^{\prime}=T^{\prime}\cup\{n-k_{3}+|T^{\prime}|+1,\dots,n\} if |T|<k3|T^{\prime}|<k_{3}, and B=TB^{\prime}=T^{\prime} otherwise. Thus,

maxT=maxT+1<nk3+|T|=nk3+|T|.\max T^{\prime}=\max T+1<n-k_{3}+|T|=n-k_{3}+|T^{\prime}|.

Therefore, T=B{n(B)+1,,n}T^{\prime}=B^{\prime}\setminus\{n-\ell(B^{\prime})+1,\dots,n\}. Trivially, {x1,,xk2p,xk2p+1}=A{n(A)+1,,n}\{x_{1},\dots,x_{k_{2}-p},x_{k_{2}-p}+1\}=A^{\prime}\setminus\{n-\ell(A^{\prime})+1,\dots,n\}. By Fact 2.8 again, (A,B)(A^{\prime},B^{\prime}) is maximal and since {1,nk2+2,,n}A\{1,n-k_{2}+2,\dots,n\}\precneqq A, we have A2,3A^{\prime}\in\mathcal{F}_{2,3}, as desired. ∎

Definition 3.17.

Let 1,31\mathcal{F}_{1,3}\subseteq\mathcal{R}_{1} and 313\mathcal{F}_{3}^{1}\subseteq\mathcal{R}_{3} such that 1,3\mathcal{F}_{1,3} and 31\mathcal{F}_{3}^{1} are maximal pair families. By Proposition 2.16, 3231\mathcal{F}_{3}^{2}\subseteq\mathcal{F}_{3}^{1}. Let 1,3\mathcal{F}^{\prime}_{1,3} be the subfamily of 1,3\mathcal{F}_{1,3} such that 1,3\mathcal{F}^{\prime}_{1,3} and 32\mathcal{F}_{3}^{2} are maximal pair families.

Observation 3.18.

Since k3kt2k_{3}\geq k_{t}\geq 2 and nk1+k3n\geq k_{1}+k_{3}, by Fact 2.8, it is easy to see that {1,nk2+1,,n},{2,,k2+1},{kt,kt+1,,kt+k21},{kt,nk2+1,,n}\{1,n-k_{2}+1,\dots,n\},\{2,\dots,k_{2}+1\},\{k_{t},k_{t}+1,\dots,k_{t}+k_{2}-1\},\{k_{t},n-k_{2}+1,\dots,n\} are in 2,3\mathcal{F}_{2,3}. As a consequence of Claim 3.15 and Claim 3.16, we have the following observation. {2,,k2,n},{2,,k21,n1,n},,{2,nk2+2,,n},{kt,kt+1,,kt+k22,n},{kt,kt+1,,kt+k23,n1,n},,{kt,nk2+2,,n}\{2,\dots,k_{2},n\},\{2,\dots,k_{2}-1,n-1,n\},\dots,\{2,n-k_{2}+2,\dots,n\},\{k_{t},k_{t}+1,\\ \dots,k_{t}+k_{2}-2,n\},\{k_{t},k_{t}+1,\dots,k_{t}+k_{2}-3,n-1,n\},\dots,\{k_{t},n-k_{2}+2,\dots,n\} are in 2,3\mathcal{F}_{2,3} as well. 1,3\mathcal{F}^{\prime}_{1,3} contains {1,nk1+2,,n},{2,,k1+1},{2,,k1,n},{2,,k11,n1,n},,{2,nk1+2,,n},{kt,kt+1,,kt+k11},{kt,kt+1,,kt+k12,n},{kt,kt+1,,kt+k13,n1,n},,{kt,nk1+2,,n}\{1,n-k_{1}+2,\dots,n\},\{2,\dots,k_{1}+1\},\{2,\dots,k_{1},n\},\{2,\\ \dots,k_{1}-1,n-1,n\},\dots,\{2,n-k_{1}+2,\dots,n\},\{k_{t},k_{t}+1,\dots,k_{t}+k_{1}-1\},\{k_{t},k_{t}+1,\dots,k_{t}+k_{1}-2,n\},\{k_{t},k_{t}+1,\dots,k_{t}+k_{1}-3,n-1,n\},\dots,\{k_{t},n-k_{1}+2,\dots,n\}. Note that 1,3({kt,nk1+2,,n},k1)\mathcal{F}^{\prime}_{1,3}\subseteq\mathcal{L}(\{k_{t},n-k_{1}+2,\dots,n\},k_{1}) since we require that (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting systems is non-empty.

Assuming that Lemmas 3.8, 3.12, 3.13 and 3.14 hold, we are going to complete the proof of Proposition 3.6. We will prove Lemmas 3.8, 3.12, 3.13 and 3.14 in Sections 5, 6 and 7.

Definition 3.19.

For a family 𝒢2,3\mathcal{G}\subseteq\mathcal{F}_{2,3}, denote g(𝒢)=max{g(G):G𝒢}g(\mathcal{G})=\max\{g(G):G\in\mathcal{G}\}.

Proof of Proposition 3.6.

By Observation 3.18 and Lemma 3.12, we have

g(2,3)=max{g([2,k2+1]),g([kt,kt+1,kt+k21]),g(2,3(1))}.g(\mathcal{F}_{2,3})=\max\{g([2,k_{2}+1]),g([k_{t},k_{t}+1,k_{t}+k_{2}-1]),g(\mathcal{F}_{2,3}(1))\}. (9)

Applying Lemma 3.12 and Observation 3.18 repeatedly, we have

g(2,3(1))=max{g([2,k2]),g([kt,kt+k22]),g(2,3(2))},\displaystyle g(\mathcal{F}_{2,3}(1))=\max\{g([2,k_{2}]),g([k_{t},k_{t}+k_{2}-2]),g(\mathcal{F}_{2,3}(2))\},
g(2,3(2))=max{g([2,k21]),g([kt,k+k23]),g(2,3(3))},\displaystyle g(\mathcal{F}_{2,3}(2))=\max\{g([2,k_{2}-1]),g([k_{t},k+k_{2}-3]),g(\mathcal{F}_{2,3}(3))\},
\displaystyle\quad\vdots
g(2,3(k21))<max{g({1}),g({kt})}.\displaystyle g(\mathcal{F}_{2,3}(k_{2}-1))<\max\{g(\{1\}),g(\{k_{t}\})\}. (10)

By Lemma 3.13, we have

max{g([2,k2+1]),g([2,k2]),,g({2,3}),g({2})}\displaystyle\max\{g([2,k_{2}+1]),g([2,k_{2}]),\dots,g(\{2,3\}),g(\{2\})\}
=max{g([2,k2+1]),g({2})},\displaystyle=\max\{g([2,k_{2}+1]),g(\{2\})\}, (11)

and

g({2})<max{g({1}),g({kt})}.g(\{2\})<\max\{g(\{1\}),g(\{k_{t}\})\}. (12)

By Lemma 3.14, we have

max{g([kt,kt+k21]),g([kt,kt+k22]),,g({kt,kt+1})}\displaystyle\max\{g([k_{t},k_{t}+k_{2}-1]),g([k_{t},k_{t}+k_{2}-2]),\dots,g(\{k_{t},k_{t}+1\})\}
=max{g([kt,kt+k21]),g({kt,kt+1})},\displaystyle=\max\{g([k_{t},k_{t}+k_{2}-1]),g(\{k_{t},k_{t}+1\})\}, (13)

and

g({kt,kt+1})<max{g([kt,kt+k21]),g({kt})}.g(\{k_{t},k_{t}+1\})<\max\{g([k_{t},k_{t}+k_{2}-1]),g(\{k_{t}\})\}. (14)

In Section 7, we will prove the following proposition.

Proposition 3.20.
g([2,k2+1])\displaystyle g([2,k_{2}+1]) <max{g({1}),g([2,k2])}\displaystyle<\max\{g(\{1\}),g([2,k_{2}])\} (15)
g([kt,kt+k21])\displaystyle g([k_{t},k_{t}+k_{2}-1]) <max{g({kt1}),g([kt,kt+k22])}.\displaystyle<\max\{g(\{k_{t}-1\}),g([k_{t},k_{t}+k_{2}-2])\}. (16)

Combining (15), (3) and (12), we have

g([2,k2+1])<max{g({1}),g({kt})}.g([2,k_{2}+1])<\max\{g(\{1\}),g(\{k_{t}\})\}. (17)

Combining (16), (3) and (14), we have

g([kt,kt+k21])<max{g({kt}),g({kt1})}max{g({1}),g({kt})}.g([k_{t},k_{t}+k_{2}-1])<\max\{g(\{k_{t}\}),g(\{k_{t}-1\})\}\leq\max\{g(\{1\}),g(\{k_{t}\})\}. (18)

Combining (9), (10), (3), (12), (3), (14),(17) and (18), we have

g(2,3)<max{g({1}),g({kt})}.g(\mathcal{F}_{2,3})<\max\{g(\{1\}),g(\{k_{t}\})\}.

Recall (8), we obtain

M(n,k1,,kt)\displaystyle M(n,k_{1},\dots,k_{t}) =maxG22,3g(G2)<max{g({1}),g({kt})}.\displaystyle=\max_{G_{2}\in\mathcal{F}_{2,3}}g(G_{2})<\max\{g(\{1\}),g(\{k_{t}\})\}. (19)

This completes the proof of Proposition 3.6. ∎

We apply Propositions 3.5 and 3.6 to prove Theorem 1.4.

Proof of Theorem 1.4.

Propositions 3.5 and 3.6 imply the quantitative part of Theorem 1.4. Now we show that extremal (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting systems with k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2} must be isomorphic to Constructions 1.2 or 1.3. By Claim 3.3, Propositions 3.5 and 3.6, and Theorem 2.1, we conclude that: if (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system with i=1t|i|=max{λ1,λ2}\sum_{i=1}^{t}|\mathcal{F}_{i}|=\max\{\lambda_{1},\lambda_{2}\}, then either for each i[t]i\in[t], |i|=(n1ki1)|\mathcal{F}_{i}|={n-1\choose k_{i}-1} or |1|=(nk1)(nktk1)|\mathcal{F}_{1}|={n\choose k_{1}}-{n-k_{t}\choose k_{1}}, |2|=(nk2)(nktk2)|\mathcal{F}_{2}|={n\choose k_{2}}-{n-k_{t}\choose k_{2}} and |i|=(nktkikt)|\mathcal{F}_{i}|={n-k_{t}\choose k_{i}-k_{t}} holds for each i[3,t]i\in[3,t]. If the previous happens, then (1,3,,t)(\mathcal{F}_{1},\mathcal{F}_{3},\dots,\mathcal{F}_{t}) is an (n,k1,k3,,kt)(n,k_{1},k_{3},\dots,k_{t})-cross intersecting system with i=1,i2t|i|=i=1,i2t(n1ki1)\sum_{i=1,i\neq 2}^{t}|\mathcal{F}_{i}|=\sum_{i=1,i\neq 2}^{t}{n-1\choose k_{i}-1} and (2,3,,t)(\mathcal{F}_{2},\mathcal{F}_{3},\dots,\mathcal{F}_{t}) is an (n,k2,k3,,kt)(n,k_{2},k_{3},\dots,k_{t})-cross intersecting system with i=2t|i|=i=2t(n1ki1)\sum_{i=2}^{t}|\mathcal{F}_{i}|=\sum_{i=2}^{t}{n-1\choose k_{i}-1}. By Theorem 1.1, (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is isomorphic to (𝒢1,,𝒢t)(\mathcal{G}_{1},\dots,\mathcal{G}_{t}) which is defined in Construction 1.2. If the later happens, then (1,3,,t)(\mathcal{F}_{1},\mathcal{F}_{3},\dots,\mathcal{F}_{t}) is an (n,k1,k3,,kt)(n,k_{1},k_{3},\dots,\\ k_{t})-cross intersecting system with i=1,i2t|i|=(nk1)(nktk1)+i=3t(nktkikt)\sum_{i=1,i\neq 2}^{t}|\mathcal{F}_{i}|={n\choose k_{1}}-{n-k_{t}\choose k_{1}}+\sum_{i=3}^{t}{n-k_{t}\choose k_{i}-k_{t}} and (2,3,,t)(\mathcal{F}_{2},\mathcal{F}_{3},\dots,\mathcal{F}_{t}) is an (n,k2,k3,,kt)(n,k_{2},k_{3},\dots,k_{t})-cross intersecting system with i=2t|i|=(nk2)(nktk2)+i=3t(nktkikt)\sum_{i=2}^{t}|\mathcal{F}_{i}|={n\choose k_{2}}-{n-k_{t}\choose k_{2}}+\sum_{i=3}^{t}{n-k_{t}\choose k_{i}-k_{t}}. By Theorem 1.1, (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is isomorphic to (1,,t)(\mathcal{H}_{1},\dots,\mathcal{H}_{t}) which is defined in Construction 1.3. This completes the proof of Theorem 1.4. ∎

We owe the proofs of Lemmas 3.8, 3.12, 3.13, 3.14 and Proposition 3.20. Before giving their proofs, we list some results obtained in [5] for non-mixed type in the next section. Figure 1 is the flow chart of the proofs of the main theorem and lemmas.

Refer to caption
Figure 1: Flow chart of the proofs

4 Results of non-mixed type

In [5], we worked on non-mixed type: Let t2t\geq 2, k1k2ktk_{1}\geq k_{2}\geq\cdots\geq k_{t} and nk1+k2n\geq k_{1}+k_{2} and families 𝒜1([n]k1),𝒜2([n]k2),,𝒜t([n]kt)\mathcal{A}_{1}\subset{[n]\choose k_{1}},\mathcal{A}_{2}\subset{[n]\choose k_{2}},\dots,\mathcal{A}_{t}\subset{[n]\choose k_{t}} be non-empty pairwise cross-intersecting (not freely). Let RR be the ID of 𝒜1\mathcal{A}_{1}, and TT be the partner of RR. In the proof of Theorem 1.1, one important ingredient is that by Proposition 2.2, i=1t|𝒜i|\sum_{i=1}^{t}{|\mathcal{A}_{i}|} can be bounded by a function of RR as in the following lemma.

Lemma 4.1.

[5] Let k1k2ktk_{1}\geq k_{2}\geq\dots\geq k_{t}, nk1+k2n\geq k_{1}+k_{2} and (𝒜1,𝒜2,,𝒜t)(\mathcal{A}_{1},\mathcal{A}_{2},\dots,\mathcal{A}_{t}) be a non-empty L-initial (n,k1,k2,,kt)(n,k_{1},k_{2},\dots,k_{t})-cross intersecting system with |𝒜1|(n1k11)|\mathcal{A}_{1}|\geq{n-1\choose k_{1}-1}. Let RR be the ID of 𝒜1\mathcal{A}_{1} and TT be the partner of RR. Then

j=1t|𝒜j||(R,k1)|+j=2t|(T,kj)|=:f(R).\displaystyle\sum_{j=1}^{t}|\mathcal{A}_{j}|\leq|\mathcal{L}(R,k_{1})|+\sum_{j=2}^{t}|\mathcal{L}(T,k_{j})|=:f(R). (20)

Another crucial part in the proof of Theorem 1.1 is to show local unimodality of f(R)f(R). Let RR and RR^{\prime} be k1k_{1}-subsets of [n][n] satisfying RRR\prec R^{\prime}. In order to analyze f(R)f(R)f(R^{\prime})-f(R), two related functions are defined in [5] as follows.

Definition 4.2.

Let t2t\geq 2, k1,k2,,ktk_{1},k_{2},\dots,k_{t} be positive integers with k1k2ktk_{1}\geq k_{2}\geq\dots\geq k_{t} and nk1+k2n\geq k_{1}+k_{2}. Let RR and RR^{\prime} be k1k_{1}-subsets of [n][n] satisfying RRR\prec R^{\prime} and let TT and TT^{\prime} be the partners of RR and RR^{\prime} respectively. We define

α(R,R):=|(R,k1)||(R,k1)|,\displaystyle\alpha(R,R^{\prime}):=|\mathcal{L}(R^{\prime},k_{1})|-|\mathcal{L}(R,k_{1})|, (21)
β(R,R):=j=2t(|(T,kj)||(T,kj)|).\displaystyle\beta(R,R^{\prime}):=\sum_{j=2}^{t}\big{(}|\mathcal{L}(T,k_{j})|-|\mathcal{L}(T^{\prime},k_{j})|\big{)}. (22)

It is easy to see that

f(R)f(R)=α(R,R)β(R,R).\displaystyle f(R^{\prime})-f(R)=\alpha(R,R^{\prime})-\beta(R,R^{\prime}).

Let

1={R([n]k1):{1,nk1+2,,n}R{kt,nk1+2,,n}}.\mathcal{R}_{1}=\{R\in{[n]\choose k_{1}}:\{1,n-k_{1}+2,\dots,n\}\prec R\prec\{k_{t},n-k_{1}+2,\dots,n\}\}.

In order to show local unimodality of f(R)f(R), we proved the following results in [5]. These results give us some foundation in showing local unimodality of g(G2)g(G_{2}) (recall (7)).

Proposition 4.3.

[5] Let F<G1F<G\in\mathcal{R}_{1} and maxG=q\max G=q. Then β(F,G)=j=2t(nqkj(qk1))\beta(F,G)=\sum_{j=2}^{t}{n-q\choose k_{j}-(q-k_{1})}. If n=k1+kjn=k_{1}+k_{j} holds for any j[t]{1}j\in[t]\setminus\{1\}, then β(F,G)=j=2t1=t1\beta(F,G)=\sum_{j=2}^{t}1=t-1; otherwise, we have β(F,G)0\beta(F,G)\geq 0 and β(F,G)\beta(F,G) decrease as qq increase.

Lemma 4.4.

[5] Let c[k1]c\in[k_{1}] and F,G,F,G1F,G,F^{\prime},G^{\prime}\in\mathcal{R}_{1}. If F,GF,G are cc-sequential, F,GF^{\prime},G^{\prime} are cc-sequential and maxF=maxF,maxG=maxG\max F=\max F^{\prime},\max G=\max G^{\prime}, then α(F,G)=α(F,G)\alpha(F,G)=\alpha(F^{\prime},G^{\prime}) and β(F,G)=β(F,G)\beta(F,G)=\beta(F^{\prime},G^{\prime}).

Definition 4.5.

For k[k11]k\in[k_{1}-1], let 1,k={R1:[nk+1,n]R}\mathcal{R}_{1,k}=\{R\in\mathcal{R}_{1}:[n-k+1,n]\subset R\}, and 1(k)={R[nk+1,n]:R1,k}\mathcal{R}_{1}(k)=\{R\setminus[n-k+1,n]:R\in\mathcal{R}_{1,k}\}. In addition, we will write 1(0)=1\mathcal{R}_{1}(0)=\mathcal{R}_{1}.

Remark 4.6.

When we consider i(k)\mathcal{R}_{i}(k), we regard the ground set as [nk][n-k]. For Ri(k)R\in\mathcal{R}_{i}(k), we write f(R)f(R) simply, in fact, f(R)=f(R[nk+1,n])f(R)=f(R\cup[n-k+1,n]).

Lemma 4.7.

[5] Let 1jk111\leq j\leq k_{1}-1 and 1dk1j1\leq d\leq k_{1}-j. Let F,H,F,H1(j)F,H,F^{\prime},H^{\prime}\in\mathcal{R}_{1}(j) and FF, HH are dd-sequential, FF^{\prime}, HH^{\prime} are dd-sequential. If maxF=maxF\max F=\max F^{\prime}, then α(F,H)=α(F,H)\alpha(F,H)=\alpha(F^{\prime},H^{\prime}) and β(F,H)=β(F,H)\beta(F,H)=\beta(F^{\prime},H^{\prime}).

The following two lemmas confirm that f(R)f(R) has local unimodality.

Lemma 4.8.

[5] Suppose that if t=2t=2, then n>k1+ktn>k_{1}+k_{t}. For any j[0,k11]j\in[0,k_{1}-1], let 1ck1j1\leq c\leq k_{1}-j and FF, GG, HH be contained in 1(j)\mathcal{R}_{1}(j) with F𝑐G𝑐HF\overset{c}{\prec}G\overset{c}{\prec}H. If f(G)f(F)f(G)\geq f(F), then f(H)>f(G)f(H)>f(G).

Lemma 4.9.

[5] Suppose that if t=2t=2, then n>k1+ktn>k_{1}+k_{t}. Let 1mkt1\leq m\leq k_{t} and m+1jm+k11m+1\leq j\leq m+k_{1}-1. If f1([m,j])f1([m,j1])f_{1}([m,j])\leq f_{1}([m,j-1]), then f([m,j1])<f([m,j2])f([m,j-1])<f([m,j-2]).

5 Verify Parity: Proof of Lemma 3.8

In this section, we will give the proof of Lemma 3.8. The proof is divided into two cases.

Case 1: I1I2I_{1}\prec I_{2}.

By Fact 2.14 , Fact 2.5, Remark 3.4 and (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is extremal, we have that for each i[3,t]i\in[3,t], IiI_{i} is the kik_{i}-partner of I2I_{2}. By Fact 2.17, for all i[4,t]i\in[4,t], we have

IiI3 or I3 is the k3-parity of Ii.I_{i}\prec I_{3}\text{ or }I_{3}\text{ is the $k_{3}$-parity of }I_{i}. (23)
Claim 5.1.

(I2,I3)(I_{2},I_{3}) is maximal.

Proof.

Assume on the contrary that (I2,I3)(I_{2},I_{3}) is not maximal. Let F2,iF_{2,i} be the k2k_{2}-partner of IiI_{i} for each i[3,t]i\in[3,t], by Fact 2.10, (I2,i,Ii)(I_{2,i},I_{i}) is maximal. Since (I2,I3)(I_{2},I_{3}) is not maximal, I2I2,3I_{2}\precneqq I_{2,3}. By (23) and Fact 2.14, we have I2,3I2,jI_{2,3}\prec I_{2,j} for all j[4,t]j\in[4,t]. This implies that for i[3,t]i\in[3,t], (I2,3,k2)\mathcal{L}(I_{2,3},k_{2}) and (Ii,ki)\mathcal{L}(I_{i},k_{i}) are cross intersecting. Further more, (1,(I2,3,k2),3,,t)(\mathcal{F}_{1},\mathcal{L}(I_{2,3},k_{2}),\mathcal{F}_{3},\dots,\mathcal{F}_{t}) is an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system. However, I2I2,3I_{2}\precneqq I_{2,3} implies 2(I2,3,k2)\mathcal{F}_{2}\subsetneqq\mathcal{L}(I_{2,3},k_{2}), this is a contradiction to the assumption that (1,2,,t)(\mathcal{F}_{1},\mathcal{F}_{2},\dots,\mathcal{F}_{t}) is extremal. ∎

Claim 5.1 tells us that I22,3I_{2}\in\mathcal{F}_{2,3}. By Proposition 2.16, 1,3\mathcal{F}_{1,3} is the k1k_{1}-parity of 2,3\mathcal{F}_{2,3}. Then there exists I11,3I^{\prime}_{1}\in\mathcal{F}_{1,3} such that I1I^{\prime}_{1} is the k1k_{1}-parity of I2I_{2}. If I1=I1I_{1}=I^{\prime}_{1}, then I1I_{1} and I2I_{2} satisfy (5), as desired. So we may assume I1I1I_{1}\neq I^{\prime}_{1}. By Proposition 2.16, (I1,I3)(I^{\prime}_{1},I_{3}) is maximal. Since 1\mathcal{F}_{1} and 3\mathcal{F}_{3} are cross intersecting, I1I1I_{1}\precneqq I^{\prime}_{1}. Let IiI^{\prime}_{i} be the kik_{i}-partner of I1I^{\prime}_{1} for each i[3,t]i\in[3,t]. It follows from Fact 2.14 that Ii=IiI^{\prime}_{i}=I_{i}, i[3,t]i\in[3,t]. Therefore, ((I1,k1),2,,t)(\mathcal{L}(I^{\prime}_{1},k_{1}),\mathcal{F}_{2},\dots,\mathcal{F}_{t}) is an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system. However, I1I1I_{1}\precneqq I^{\prime}_{1} implies 1(I1,k1)\mathcal{F}_{1}\subsetneqq\mathcal{L}(I^{\prime}_{1},k_{1}), this is a contradiction to the assumption that (1,2,,t)(\mathcal{F}_{1},\mathcal{F}_{2},\dots,\mathcal{F}_{t}) is extremal.

Case 2: I2I1I_{2}\precneqq I_{1}.

Using a similar argument to Case 1, we conclude the following three properties:

(a) IiI_{i} is the kik_{i}-partner of I1I_{1} for each i[3,t]i\in[3,t];

(b) for all i[4,t]i\in[4,t], IiI3I_{i}\prec I_{3} or I3I_{3} is the k3k_{3}-parity of IiI_{i};

(c) (I1,I3)(I_{1},I_{3}) is maximal and I11,3I_{1}\in\mathcal{F}_{1,3}.

If (I2,I3)(I_{2},I_{3}) is maximal, then I22,3I_{2}\in\mathcal{F}_{2,3}, and Proposition 2.16 implies that I1I_{1} is the k1k_{1}-parity of I2I_{2}. However, I2I1I_{2}\precneqq I_{1} implies that I1I_{1} is not the k1k_{1}-parity of I2I_{2}, a contradiction. Therefore (I2,I3)(I_{2},I_{3}) is not maximal. Since (1,2,,t)(\mathcal{F}_{1},\mathcal{F}_{2},\dots,\mathcal{F}_{t}) is extremal, combining (b), Fact 2.14 and Fact 2.5, we have that I2I_{2} is the k2k_{2}-partner of I3I_{3}. Therefore, Fact 2.10 implies that the k3k_{3}-partner I3I^{\prime}_{3} of I2I_{2} is such that (I2,I3)(I_{2},I^{\prime}_{3}) is maximal. So I22,3I_{2}\in\mathcal{F}_{2,3}. By Proposition 2.16, there exists I11,3I^{\prime}_{1}\in\mathcal{F}_{1,3} such that I1I^{\prime}_{1} is the k1k_{1}-parity of I2I_{2}. For i[3,t]i\in[3,t], let IiI^{\prime}_{i} be the kik_{i}-partner of I2I_{2}. It follows from Facts 2.14 and 2.5 that IiI^{\prime}_{i} is maximal to I1I^{\prime}_{1} for all i[3,t]i\in[3,t]. Combining with Remark 3.4, we conclude that ((I1,k1),2,(I3,k3),,(It,kt))(\mathcal{L}(I^{\prime}_{1},k_{1}),\mathcal{F}_{2},\mathcal{L}(I^{\prime}_{3},k_{3}),\dots,\mathcal{L}(I^{\prime}_{t},k_{t})) is an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system. Since (1,,t)(\mathcal{F}_{1},\dots,\mathcal{F}_{t}) is extremal,

|(I1,k1)|+|2|+i=3t|(Ii,ki)|i=1t|i|.|\mathcal{L}(I^{\prime}_{1},k_{1})|+|\mathcal{F}_{2}|+\sum_{i=3}^{t}|\mathcal{L}(I^{\prime}_{i},k_{i})|\leq\sum_{i=1}^{t}|\mathcal{F}_{i}|.

This implies that

i=1,i2t|(Ii,ki)|i=1,i2t|i|.\sum_{i=1,i\neq 2}^{t}|\mathcal{L}(I^{\prime}_{i},k_{i})|\leq\sum_{i=1,i\neq 2}^{t}|\mathcal{F}_{i}|. (24)

Let H1=I1I1tH_{1}=I_{1}\setminus I_{1}^{\rm t} and g=|H1|g=|H_{1}|. Recall that I2I_{2} is the k2k_{2}-partner of I3I_{3}, (I2,I3)(I_{2},I_{3}) is not maximal and (I1,I3)(I_{1},I_{3}) is maximal. It follows from Facts 2.9 and 2.4 that

k2<g.k_{2}<g.

Let H2={x1,,xi,xi+1,,xk2}H_{2}=\{x_{1},\dots,x_{i},x_{i+1},\dots,x_{k_{2}}\} be the first k2k_{2} elements of H1H_{1}. Let i[0,k21]i\in[0,k_{2}-1] be the subscript such that xi+2xi+1x_{i}+2\leq x_{i+1} and xj+1=xj+1x_{j}+1=x_{j+1} for all j[i+1,k21]j\in[i+1,k_{2}-1], where i=0i=0 if xj+1=xj+1x_{j+1}=x_{j}+1 for all j[k21]j\in[k_{2}-1]. Since I2I_{2} is the k2k_{2}-partner of I3I_{3} and (I1,I3)(I_{1},I_{3}) is maximal, we can see that if i<k21i<k_{2}-1, then I2={x1,,xi,xi+11,nk2+i+2,,n}I_{2}=\{x_{1},\dots,x_{i},x_{i+1}-1,n-k_{2}+i+2,\dots,n\}, if i=k21i=k_{2}-1, then I2={x1,,xk21,xk21}I_{2}=\{x_{1},\dots,x_{k_{2}-1},x_{k_{2}}-1\}. Since I1I^{\prime}_{1} is the k1k_{1}-parity of I2I_{2} and k1>k2k_{1}>k_{2}, we get (I1)>0\ell(I^{\prime}_{1})>0 and

I1={x1,,xi,xi+11,nk1+i+2,,n},whereik21.I^{\prime}_{1}=\{x_{1},\dots,x_{i},x_{i+1}-1,n-k_{1}+i+2,\dots,n\},\,where\,\,i\leq k_{2}-1.
Claim 5.2.

I1I1I1′′:={x1,,xi+1,nk1+i+2,,n}.I^{\prime}_{1}\precneqq I_{1}\precneqq I^{\prime\prime}_{1}:=\{x_{1},\dots,x_{i+1},n-k_{1}+i+2,\dots,n\}.

Proof.

Obviously, I1I1I^{\prime}_{1}\precneqq I_{1}. We are going to prove I1I1′′I_{1}\precneqq I^{\prime\prime}_{1}. Notice that {x1,,xi,xi+1}I1\{x_{1},\dots,x_{i},\\ x_{i+1}\}\subset I_{1} and |I1′′|=k1|I^{\prime\prime}_{1}|=k_{1}, these imply I1I1′′I_{1}\prec I^{\prime\prime}_{1}. If I1=I1′′I_{1}=I^{\prime\prime}_{1}, then H1={x1,,xi+1}H_{1}=\{x_{1},\dots,x_{i+1}\}. So g=i+1k2g=i+1\leq k_{2} since ik21i\leq k_{2}-1, this is a contradiction to k2<gk_{2}<g. ∎

Since (1,2,,t)(\mathcal{F}_{1},\mathcal{F}_{2},\dots,\mathcal{F}_{t}) is an (n,k1,k2,,kt)(n,k_{1},k_{2},\dots,k_{t})-cross intersecting system with k1+k3n<k1+k2k_{1}+k_{3}\leq n<k_{1}+k_{2}, (1,3,,t)(\mathcal{F}_{1},\mathcal{F}_{3},\dots,\mathcal{F}_{t}) is an (n,k1,k3,,kt)(n,k_{1},k_{3},\dots,k_{t})-cross intersecting system with nk1+k3n\geq k_{1}+k_{3}. Denote

m\displaystyle m^{\prime} =max{i=1t|𝒢i|:(𝒢1,𝒢3,,𝒢t) is an L-initial (n,k1,k3,,kt)-cross intersecting\displaystyle=\max\big{\{}\sum_{i=1}^{t}|\mathcal{G}_{i}|:(\mathcal{G}_{1},\mathcal{G}_{3},\dots,\mathcal{G}_{t})\text{ is an L-initial }(n,k_{1},k_{3},\dots,k_{t})\text{-cross intersecting}
system with nk1+k3, the IDG1of𝒢1satisfiesI1G1I1′′}.\displaystyle\quad\quad\quad\quad\text{system with $n\geq k_{1}+k_{3}$, the ID}\ {G}_{1}\ \text{of}\ \mathcal{G}_{1}\ \text{satisfies}\ I^{\prime}_{1}\prec G_{1}\prec I^{\prime\prime}_{1}\big{\}}.

Suppose that ((G1,k1),(G3,k3),,(Gt,kt))(\mathcal{L}(G_{1},k_{1}),\mathcal{L}(G_{3},k_{3}),\dots,\mathcal{L}(G_{t},k_{t})) is an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system with nk1+k3n\geq k_{1}+k_{3} such that m=i=1,i2t|𝒢i|m^{\prime}=\sum_{i=1,i\neq 2}^{t}|\mathcal{G}_{i}| and I1G1I1′′I^{\prime}_{1}\prec G_{1}\prec I^{\prime\prime}_{1}. Since I1I^{\prime}_{1} is the k1k_{1}-parity of I2I_{2} and I1G1I1′′I^{\prime}_{1}\prec G_{1}\prec I^{\prime\prime}_{1}, we have that either I2G1I_{2}\prec G_{1} (if G1I1G_{1}\neq I^{\prime}_{1}) or G1G_{1} is the k1k_{1}-parity of I2I_{2} (if G1=I1G_{1}=I^{\prime}_{1}). Thus, ((G1,k1),2,(G3,k3),,(Gt,kt))(\mathcal{L}(G_{1},k_{1}),\mathcal{F}_{2},\mathcal{L}(G_{3},k_{3}),\dots,\mathcal{L}(G_{t},k_{t})) is an (n,k1,,kt)(n,k_{1},\dots,k_{t})-cross intersecting system as well. Since (1,2,,t)(\mathcal{F}_{1},\mathcal{F}_{2},\dots,\mathcal{F}_{t}) is extremal, we have i=1,i2t|i|i=1,i2t|𝒢i|=m\sum_{i=1,i\neq 2}^{t}|\mathcal{F}_{i}|\geq\sum_{i=1,i\neq 2}^{t}|\mathcal{G}_{i}|=m^{\prime}. Therefore,

m=i=1,i2t|i|.m^{\prime}=\sum_{i=1,i\neq 2}^{t}|\mathcal{F}_{i}|. (25)

To complete the proof of Lemma 3.8, we only need to prove the following claim since it makes a contradiction to (25) and Claim 5.2.

Claim 5.3.

Let (𝒢1,𝒢3,,𝒢t)(\mathcal{G}_{1},\mathcal{G}_{3},\dots,\mathcal{G}_{t}) be an L-initial (n,k1,k3,,kt)(n,k_{1},k_{3},\dots,k_{t})-cross intersecting system with nk1+k3n\geq k_{1}+k_{3} and G1G_{1} be the ID of 𝒢1\mathcal{G}_{1} satisfying I1G1I1′′I^{\prime}_{1}\prec G_{1}\prec I^{\prime\prime}_{1}. Then i=1,i2t|𝒢i|=m\sum_{i=1,i\neq 2}^{t}|\mathcal{G}_{i}|=m^{\prime} if and only if G1=I1G_{1}=I^{\prime}_{1} or G1=I1′′G_{1}=I^{\prime\prime}_{1}.

Proof.

For each i[3,t]i\in[3,t], let TiT_{i} be the kik_{i}-partner of G1G_{1}. By Remark 2.3 and Lemma 4.1, we have

i=1,i2t|𝒢i||(G1,k1)|+i=3t|(Ti,ki)|=:f1(G1).\sum_{i=1,i\neq 2}^{t}|\mathcal{G}_{i}|\leq|\mathcal{L}(G_{1},k_{1})|+\sum_{i=3}^{t}|\mathcal{L}(T_{i},k_{i})|=:f_{1}(G_{1}).

By the definition of mm^{\prime},

m=max{f1(R):R([n]k1)andI1RI1′′}.m^{\prime}=\max\left\{f_{1}(R):R\in{[n]\choose k_{1}}\ \text{and}\ I^{\prime}_{1}\prec R\prec I^{\prime\prime}_{1}\right\}.

Denote

={F([n]k1):I1FI1′′}.\mathcal{F}=\{F\in{[n]\choose k_{1}}:I^{\prime}_{1}\prec F\prec I^{\prime\prime}_{1}\}.

Then m=f1()m^{\prime}=f_{1}(\mathcal{F}) (recall that f1()=max{f1(F):F}f_{1}(\mathcal{F})=\max\{f_{1}(F):F\in\mathcal{F}\}). For each j[k1]j\in[k_{1}], denote

(j)={F[nj+1,n]:F,[nj+1,n]F}.\mathcal{F}(j)=\{F\setminus[n-j+1,n]:F\in\mathcal{F},[n-j+1,n]\subseteq F\}.

To prove Claim 5.3 is equivalent to prove the following claim.

Claim 5.4.

f1()=max{f1(I1),f1(I1′′)}f_{1}(\mathcal{F})=\max\{f_{1}(I^{\prime}_{1}),f_{1}(I^{\prime\prime}_{1})\}, and for any FF\in\mathcal{F} with I1FI1′′I^{\prime}_{1}\precneqq F\precneqq I^{\prime\prime}_{1}, we have f1(F)<f1()f_{1}(F)<f_{1}(\mathcal{F}).

Proof.

By the definitions of I1I^{\prime}_{1} and I1′′I^{\prime\prime}_{1}, we can see that (I1)=(I1′′)=:k>0\ell(I^{\prime}_{1})=\ell(I^{\prime\prime}_{1})=:k>0, (k)={I1[n(I1)+1,n],I1′′[n(I1′′)+1,n]}\mathcal{F}(k)=\{I^{\prime}_{1}\setminus[n-\ell(I^{\prime}_{1})+1,n],\,I^{\prime\prime}_{1}\setminus[n-\ell(I^{\prime\prime}_{1})+1,n]\} and for each FF\in\mathcal{F}, (F)k\ell(F)\leq k. Denote

A0\displaystyle A_{0} ={x1,,xi,xi+1,xi+1+1,,xi+1+k1i1},\displaystyle=\{x_{1},\dots,x_{i},x_{i+1},x_{i+1}+1,\dots,x_{i+1}+k_{1}-i-1\},
A1\displaystyle A_{1} ={x1,,xi,xi+1,xi+1+1,,xi+1+k1i2}{n},\displaystyle=\{x_{1},\dots,x_{i},x_{i+1},x_{i+1}+1,\dots,x_{i+1}+k_{1}-i-2\}\cup\{n\},
\displaystyle\vdots
Ak1\displaystyle A_{k-1} ={x1,,xi,xi+1,xi+1+1}[nk1+i+3,n].\displaystyle=\{x_{1},\dots,x_{i},x_{i+1},x_{i+1}+1\}\cup[n-k_{1}+i+3,n].

Then A0A_{0} is the k1k_{1}-set with F1<A0F^{\prime}_{1}<A_{0}. Applying Lemma 4.8 repeatedly, we obtain

f1()\displaystyle f_{1}(\mathcal{F}) =max{f1(A0),f1((1))},\displaystyle=\max\{f_{1}(A_{0}),f_{1}(\mathcal{F}(1))\},
f1((1))\displaystyle f_{1}(\mathcal{F}(1)) =max{f1(A1),f1((2))},\displaystyle=\max\{f_{1}(A_{1}),f_{1}(\mathcal{F}(2))\},
\displaystyle\vdots
f1((k1))\displaystyle f_{1}(\mathcal{F}(k-1)) =max{f1(Ak1),f1((k))},\displaystyle=\max\{f_{1}(A_{k-1}),f_{1}(\mathcal{F}(k))\},
f1((k))\displaystyle f_{1}(\mathcal{F}(k)) =max{f1(F1),f1(F1′′)}.\displaystyle=\max\{f_{1}(F^{\prime}_{1}),f_{1}(F^{\prime\prime}_{1})\}.

Thus

f1()=max{f1(A0),f1(A1),,f1(Ak1),f1(I1),f1(I1′′)}.f_{1}(\mathcal{F})=\max\{f_{1}(A_{0}),f_{1}(A_{1}),\dots,f_{1}(A_{k-1}),f_{1}(I^{\prime}_{1}),f_{1}(I^{\prime\prime}_{1})\}.

Since k1>k2k_{1}>k_{2} and nk2+ktn\geq k_{2}+k_{t}, n>k1+ktn>k_{1}+k_{t}. Then by Lemma 4.8 again, we can see that for any F{A0,A1,,Ak1,I1,I1′′}F\in\mathcal{F}\setminus\{A_{0},A_{1},\dots,A_{k-1},I^{\prime}_{1},I^{\prime\prime}_{1}\}, we have f1(F)<f1()f_{1}(F)<f_{1}(\mathcal{F}). Combing with the following Claims 5.5 and 5.6, we will get Claim 5.4.

Claim 5.5.

max{f1(A0),f1(A1),,f1(Ak1),f1(I1′′)}=max{f1(A0),f1(I1′′)}\max\{f_{1}(A_{0}),f_{1}(A_{1}),\dots,f_{1}(A_{k-1}),f_{1}(I^{\prime\prime}_{1})\}=\max\{f_{1}(A_{0}),f_{1}(I^{\prime\prime}_{1})\}.

Proof.

If k=1k=1, then we are fine. We may assume that k2k\geq 2. Let I1′′=AkI^{\prime\prime}_{1}=A_{k}. To prove Claim 5.5, it is sufficient to prove that for any j[0,k2]j\in[0,k-2], if f1(Aj)f1(Aj+1)f_{1}(A_{j})\leq f_{1}(A_{j+1}), then f1(Aj+1)<f1(Aj+2)f_{1}(A_{j+1})<f_{1}(A_{j+2}). Let j[0,k2]j\in[0,k-2]. Clearly, (Aj+1)=(Aj)+11\ell(A_{j+1})=\ell(A_{j})+1\geq 1 and (Aj+2)=(Aj+1)+1\ell(A_{j+2})=\ell(A_{j+1})+1. Let AjA^{\prime}_{j} and Aj+1A^{\prime}_{j+1} be the k1k_{1}-sets such that Aj<AjA_{j}<A^{\prime}_{j} and Aj+1<Aj+1A_{j+1}<A^{\prime}_{j+1}. Then Aj(Aj+1)Aj+1A^{\prime}_{j}\overset{\ell(A_{j+1})}{\longrightarrow}A_{j+1}. Let JJ be the k1k_{1}-set such that Aj+1(Ai+1)JA^{\prime}_{j+1}\overset{\ell(A_{i+1})}{\longrightarrow}J. Then AjA^{\prime}_{j}, Aj+1A_{j+1} are (Ai+1)\ell(A_{i+1})-sequential and Aj+1A^{\prime}_{j+1}, JJ are (Ai+1)\ell(A_{i+1})-sequential. Clearly, maxAj=maxAj+1\max A^{\prime}_{j}=\max A^{\prime}_{j+1} and maxAj+1=maxJ=n\max A_{j+1}=\max J=n. Applying Lemma 4.4, we have

α(Aj,Aj+1)=α(Aj+1,J)\alpha(A^{\prime}_{j},A_{j+1})=\alpha(A^{\prime}_{j+1},J) and β(Aj,Aj+1)=β(Aj+1,J)\beta(A^{\prime}_{j},A_{j+1})=\beta(A^{\prime}_{j+1},J). (26)

If (Aj)1\ell(A^{\prime}_{j})\geq 1, then Aj<Aj=Aj+1<Aj+2=Aj+1A_{j}<A^{\prime}_{j}=A_{j+1}<A_{j+2}=A^{\prime}_{j+1}. In this case, α(Aj+1,Aj+2)=1\alpha(A_{j+1},A_{j+2})=1. By Proposition 4.3 and n>k1+ktn>k_{1}+k_{t} (since k1>k2k_{1}>k_{2} and nk2+ktn\geq k_{2}+k_{t}), we have β(Aj+1,Aj+2)=0\beta(A_{j+1},A_{j+2})=0. So f(Aj+1)<f(Aj+2)f(A_{j+1})<f(A_{j+2}), as desired. Next we may assume that (Aj)=0\ell(A^{\prime}_{j})=0. Clearly, α(Aj,Aj)=α(Aj+1,Aj+1)=1\alpha(A_{j},A^{\prime}_{j})=\alpha(A_{j+1},A^{\prime}_{j+1})=1. By Proposition 4.3 and maxAj=maxAj+1\max A^{\prime}_{j}=\max A^{\prime}_{j+1}, we have β(Aj,Aj)=β(Aj+1,Aj+1)\beta(A_{j},A^{\prime}_{j})=\beta(A_{j+1},A^{\prime}_{j+1}). Combining with (26), we get

α(Aj,Aj+1)=α(Aj+1,J)\alpha(A_{j},A_{j+1})=\alpha(A_{j+1},J) and β(Aj,Aj+1)=β(Aj+1,J)\beta(A_{j},A_{j+1})=\beta(A_{j+1},J).

Thus f(J)f(Aj+1)f(J)\geq f(A_{j+1}) since f(Aj)f(Aj+1)f(A_{j})\leq f(A_{j+1}). Note that (Aj+1)=(J)\ell(A_{j+1})=\ell(J) and Aj+1Aj+1t1((Aj+1))A_{j+1}\setminus A_{j+1}^{\rm t}\in\mathcal{R}_{1}(\ell(A_{j+1})), so JJt1((Aj+1))J\setminus J^{\rm t}\in\mathcal{R}_{1}(\ell(A_{j+1})) and Aj+1Aj+1t1JJtA_{j+1}\setminus A_{j+1}^{\rm t}\overset{1}{\prec}J\setminus J^{\rm t}. Since (Aj+2)=(Aj+1)+1\ell(A_{j+2})=\ell(A_{j+1})+1, Aj+2[n(Aj+1)+1,n]1((Aj+1))A_{j+2}\setminus[n-\ell(A_{j+1})+1,n]\in\mathcal{R}_{1}(\ell(A_{j+1})). And in 1((Aj+1))\mathcal{R}_{1}(\ell(A_{j+1})), we have

Aj+1Aj+1t1JJt1Aj+2[n(Aj+1)+1,n].A_{j+1}\setminus A_{j+1}^{\rm t}\overset{1}{\prec}J\setminus J^{\rm t}\overset{1}{\longrightarrow}A_{j+2}\setminus[n-\ell(A_{j+1})+1,n].

Recall that n>k1+ktn>k_{1}+k_{t}. By Lemma 4.8 and f(J)f(Aj+1)f(J)\geq f(A_{j+1}), we obtain f(Aj+2)>f(J)f(Aj+1)f(A_{j+2})>f(J)\geq f(A_{j+1}), as required. ∎

Claim 5.6.

If f1(A0)f1(I1)f_{1}(A_{0})\geq f_{1}(I^{\prime}_{1}), then f1(A0)<f1(I1′′)f_{1}(A_{0})<f_{1}(I^{\prime\prime}_{1}).

Proof.

Note that I1<A0I^{\prime}_{1}<A_{0} in 1\mathcal{R}_{1}. Then α(I1,A0)=1\alpha(I^{\prime}_{1},A_{0})=1. Since f1(A0)f1(I1)f_{1}(A_{0})\geq f_{1}(I^{\prime}_{1}), α(I1,A0)β(I1,A0)\alpha(I^{\prime}_{1},A_{0})\geq\beta(I^{\prime}_{1},A_{0}), so β(I1,A0)1\beta(I^{\prime}_{1},A_{0})\leq 1. Consider the family :={F:|F|=k1,A0FI1′′}\mathcal{F^{\prime}}:=\{F:|F|=k_{1},A_{0}\prec F\prec I^{\prime\prime}_{1}\}. We can see that for each FF\in\mathcal{F^{\prime}}, maxFmaxA0\max F\geq\max A_{0}. By Proposition 4.3 and n>k1+ktn>k_{1}+k_{t} (since k1>k2k_{1}>k_{2} and nk2+ktn\geq k_{2}+k_{t}), for each two k1k_{1}-sets FF and GG with A0F<GI1′′A_{0}\prec F<G\prec I^{\prime\prime}_{1}, we have that β(F,G)<β(I1,A0)1\beta(F,G)<\beta(I^{\prime}_{1},A_{0})\leq 1 and α(F,G)=1\alpha(F,G)=1. Thus, f1(I1′′)>f1(A0)f_{1}(I^{\prime\prime}_{1})>f_{1}(A_{0}). This completes the proof of Claim 5.6

Since we have shown Claims 5.5 and 5.6, the proof of Claim 5.4 is complete. ∎

Since the proof of Claim 5.4 is complete, Claim 5.3 follows as noted before. ∎

Since the proof of Claim 5.3 is complete, the proof of Lemma 3.8 is complete.

6 Verify Unimodality: Proof of Lemma 3.12

In this section, we are going to prove a more general result Lemma 6.10 which will be applied for the most general case nk1+ktn\geq k_{1}+k_{t} in [7]. Lemma 3.12 will follow from Lemma 6.10 immediately. Before stating the result, we need to make some preparations.

Definition 6.1.

Suppose that t2t\geq 2 is a positive integer, s[t1]s\in[t-1], k1k2ktk_{1}\geq k_{2}\geq\dots\geq k_{t} and k1+ks+1n<ks1+ksk_{1}+k_{s+1}\leq n<k_{s-1}+k_{s}. We define i\mathcal{R}_{i} for every i[t]i\in[t] as follows. For i[s]i\in[s], let

i={R([n]ki):{1,nki+2,,n}R{kt,nki+2,,n}}.\mathcal{R}_{i}=\{R\in{[n]\choose k_{i}}:\{1,n-k_{i}+2,\dots,n\}\prec R\prec\{k_{t},n-k_{i}+2,\dots,n\}\}.

For i[s+1,t]i\in[s+1,t], let

i={R([n]ki):[kt]R}.\mathcal{R}_{i}=\{R\in{[n]\choose k_{i}}:[k_{t}]\subseteq R\}.

In Section 3, we defined notations i\mathcal{R}_{i}, 1it1\leq i\leq t. Throughout the paper except in this section, i\mathcal{R}_{i} follows from the definitions in Section 3. i\mathcal{R}_{i} in this section follows from the above definition. When s=2s=2, they are consistent.

Definition 6.2.

Let RR and TT be two subsets of [n][n] with different sizes. We write R<TR\overset{\sim}{<}T if RTR\prec T and there is no other set RR^{\prime} such that |R|=|R||R^{\prime}|=|R| and RRTR\precneqq R^{\prime}\prec T.

By the definition of parity, we have the following simple remark.

Remark 6.3.

For any R1R\in\mathcal{R}_{1} and i[2,s]i\in[2,s], RR has a kik_{i}-parity if and only if |RRt|ki|R\setminus R^{\rm t}|\leq k_{i}.

From the above observation, for any R11R_{1}\in\mathcal{R}_{1} and i[2,s]i\in[2,s], we define the corresponding kik_{i}-set of R1R_{1} as follows.

Definition 6.4.

Let R11R_{1}\in\mathcal{R}_{1} and i[2,s]i\in[2,s]. If RR has a kik_{i}-parity, then let RiR_{i} be the kik_{i}-parity of R1R_{1}; otherwise, let RiR_{i} be the kik_{i}-set such that Ri<R1R_{i}\overset{\sim}{<}R_{1}. We call RiR_{i} the corresponding kik_{i}-set of R1R_{1}.

Definition 6.5.

Let R11R_{1}\in\mathcal{R}_{1}. For each i[2,s]i\in[2,s], let RiR_{i} be the corresponding kik_{i}-set of R1R_{1} as in Definition 6.4 and for each i[s+1,t]i\in[s+1,t], let RiR_{i} be the kik_{i}-partner of R1R_{1}. We denote

f(R1)=i=1t|(Ri,kt)|.f(R_{1})=\sum_{i=1}^{t}|\mathcal{L}(R_{i},k_{t})|.
Definition 6.6.

For each j[k11]j\in[k_{1}-1], let

1,j\displaystyle\mathcal{R}_{1,j} ={R1:[nj+1,n]R},\displaystyle=\{R\in\mathcal{R}_{1}:[n-j+1,n]\subseteq R\},
1(j)\displaystyle\mathcal{R}_{1}(j) ={R[nj+1,n]:R1,j}.\displaystyle=\{R\setminus[n-j+1,n]:R\in\mathcal{R}_{1,j}\}.

For any j[k11]j\in[k_{1}-1] and any R1,jR\in\mathcal{R}_{1,j}, we define f(R[nj+1,n])=f(R)f(R\setminus[n-j+1,n])=f(R). For example, f({1})=f({1,nk1+2,,n})f(\{1\})=f(\{1,n-k_{1}+2,\dots,n\}).

Definition 6.7.

Let R1,R11R_{1},R^{\prime}_{1}\in\mathcal{R}_{1} with R1R1R_{1}\prec R^{\prime}_{1} and for any i[s+1,t]i\in[s+1,t], Ri,RiR_{i},R^{\prime}_{i} be the kik_{i}-partners of R1,R1R_{1},R^{\prime}_{1} respectively, and for each i[2,s]i\in[2,s], let Ri,RiR_{i},R^{\prime}_{i} be the corresponding kik_{i}-sets of R1,R1R_{1},R^{\prime}_{1} respectively as in Definition 6.4. We define the following functions.

For i[s]i\in[s], let

αi(R1,R1)\displaystyle\alpha_{i}(R_{1},R^{\prime}_{1}) =|(Ri,k1)||(Ri,k1)|,\displaystyle=|\mathcal{L}(R^{\prime}_{i},k_{1})|-|\mathcal{L}(R_{i},k_{1})|,
γ(R1,R1)\displaystyle\gamma(R_{1},R^{\prime}_{1}) =i=1sαi(R1,R1),\displaystyle=\sum_{i=1}^{s}\alpha_{i}(R_{1},R^{\prime}_{1}),
δ(R1,R1)\displaystyle\delta(R_{1},R^{\prime}_{1}) =i=s+1t(|(Ri,ki)||(Ri,ki)|).\displaystyle=\sum_{i=s+1}^{t}\big{(}|\mathcal{L}(R_{i},k_{i})|-|\mathcal{L}(R^{\prime}_{i},k_{i})|\big{)}.
Definition 6.8.

For any j[k11]j\in[k_{1}-1] and any R1,R11,jR_{1},R^{\prime}_{1}\in\mathcal{R}_{1,j} with R1R1R_{1}\prec R^{\prime}_{1}, we define αi(R1[nj+1,n],R1[nj+1,n])=αi(R1,R1)\alpha_{i}(R_{1}\setminus[n-j+1,n],R^{\prime}_{1}\setminus[n-j+1,n])=\alpha_{i}(R_{1},R^{\prime}_{1}) for each i[s]i\in[s], γ(R1[nj+1,n],R1[nj+1,n])=γ(R1,R1)\gamma(R_{1}\setminus[n-j+1,n],R^{\prime}_{1}\setminus[n-j+1,n])=\gamma(R_{1},R^{\prime}_{1}) and δ(R1[nj+1,n],R1[nj+1,n])=δ(R1,R1)\delta(R_{1}\setminus[n-j+1,n],R^{\prime}_{1}\setminus[n-j+1,n])=\delta(R_{1},R^{\prime}_{1}).

From the above definition, we have

f(R1)f(R1)=γ(R1,R1)δ(R1,R1).f(R^{\prime}_{1})-f(R_{1})=\gamma(R_{1},R^{\prime}_{1})-\delta(R_{1},R^{\prime}_{1}).
Remark 6.9.

Suppose that A1,B1,C11A_{1},B_{1},C_{1}\in\mathcal{R}_{1} with A1B1C1A_{1}\prec B_{1}\prec C_{1}. Then for any i[s]i\in[s], αi(A1,C1)=αi(A1,B1)+αi(B1,C1)\alpha_{i}(A_{1},C_{1})=\alpha_{i}(A_{1},B_{1})+\alpha_{i}(B_{1},C_{1}), and γ(A1,C1)=γ(A1,B1)+γ(B1,C1)\gamma(A_{1},C_{1})=\gamma(A_{1},B_{1})+\gamma(B_{1},C_{1}), δ(A1,C1)=δ(A1,B1)+δ(B1,C1)\delta(A_{1},C_{1})=\delta(A_{1},B_{1})+\delta(B_{1},C_{1}).

We will prove the following more general lemma, which implies Lemma 3.12.

Lemma 6.10.

Let k[0,k11]k\in[0,k_{1}-1] and F1,G1,H11(k)F_{1},G_{1},H_{1}\in\mathcal{R}_{1}(k) with F1𝑐G1𝑐H1F_{1}\overset{c}{\prec}G_{1}\overset{c}{\prec}H_{1} for some c[k1]c\in[k_{1}]. If f(F1)f(G1)f(F_{1})\leq f(G_{1}), then f(G1)<f(H1)f(G_{1})<f(H_{1}).

Let us explain why Lemma 6.10 implies Lemma 3.12. Take s=2s=2 (see Definition 6.1). Take F2,G2,H22,3(j)F_{2},G_{2},H_{2}\in\mathcal{F}_{2,3}(j) satisfying the condition F2𝑐G2𝑐H2F_{2}\overset{c}{\prec}G_{2}\overset{c}{\prec}H_{2} (see Lemma 3.12). Let F2=F2[nj+1,n],G2=G2[nj+1,n]F^{\prime}_{2}=F_{2}\cup[n-j+1,n],G^{\prime}_{2}=G_{2}\cup[n-j+1,n] and H2=H2[nj+1,n]H^{\prime}_{2}=H_{2}\cup[n-j+1,n]. Then F2,G2,H22,3F^{\prime}_{2},G^{\prime}_{2},H^{\prime}_{2}\in\mathcal{F}_{2,3} and g(F2)=g(F2)g(F_{2})=g(F^{\prime}_{2}), g(G2)=g(G2)g(G_{2})=g(G^{\prime}_{2}) and g(H2)=g(H2)g(H_{2})=g(H^{\prime}_{2}) (see Definition 3.11). Let F1,G1,H1F^{\prime}_{1},G^{\prime}_{1},H^{\prime}_{1} be the k1k_{1}-parities of F2,G2,H2F^{\prime}_{2},G^{\prime}_{2},H^{\prime}_{2} respectively. (Proposition 2.16) guarantees the k1k_{1}-parities of F2,G2,H2F^{\prime}_{2},G^{\prime}_{2},H^{\prime}_{2} exist.) Take k=j+k1k2k=j+k_{1}-k_{2} in Lemma 6.10. Let F1=F1[nk+1,n]F_{1}=F^{\prime}_{1}\setminus[n-k+1,n], G1=G1[nk+1,n]G_{1}=G^{\prime}_{1}\setminus[n-k+1,n] and H1=H1[nk+1,n]H_{1}=H^{\prime}_{1}\setminus[n-k+1,n]. Then F1,G1,H11(k)F_{1},G_{1},H_{1}\in\mathcal{R}_{1}(k) with F1𝑐G1𝑐H1F_{1}\overset{c}{\prec}G_{1}\overset{c}{\prec}H_{1} and f(F1)=g(F1)f(F_{1})=g(F^{\prime}_{1}), f(G1)=f(G1)f(G_{1})=f(G^{\prime}_{1}) and f(H1)=f(H1)f(H_{1})=f(H^{\prime}_{1}) (see Definition 6.6). By Fact 2.14, for each i[3,t]i\in[3,t], F1F^{\prime}_{1} and F2F^{\prime}_{2} have the same kik_{i}-partner, G1G^{\prime}_{1} and G2G^{\prime}_{2} have the same kik_{i}-partner and H1H^{\prime}_{1} and H2H^{\prime}_{2} have the same kik_{i}-partner. Therefore, g(F2)=g(F2)=f(F1)=f(F1)g(F_{2})=g(F^{\prime}_{2})=f(F^{\prime}_{1})=f(F_{1}), g(G2)=g(G2)=f(G1)=f(G1)g(G_{2})=g(G^{\prime}_{2})=f(G^{\prime}_{1})=f(G_{1}) and g(H2)=g(H2)=f(H1)=f(H1)g(H_{2})=g(H^{\prime}_{2})=f(H^{\prime}_{1})=f(H_{1}). Now applying Lemma 6.10, we have that if f(F1)=f(F1)=g(F2)g(G2)=f(G1)=f(G1)f(F_{1})=f(F^{\prime}_{1})=g(F_{2})\leq g(G_{2})=f(G^{\prime}_{1})=f(G_{1}), then g(G2)=f(G1)=f(G1)<f(H1)=f(H1)=g(H2)g(G_{2})=f(G^{\prime}_{1})=f(G_{1})<f(H_{1})=f(H^{\prime}_{1})=g(H_{2}).

Before proving Lemma 6.10, we need to make some preparations. Denote

s={i:i[s],ki=k1}.s^{\prime}=\{i:i\in[s],k_{i}=k_{1}\}. (27)

The following remark is useful.

Remark 6.11.

When k1=k2==ksk_{1}=k_{2}=\dots=k_{s}, the authors have proved the truth of Theorem 1.4 in [6], see Corollary 1.12 in [6] (taking k=k1==ksk=k_{1}=\dots=k_{s} in Corollary 1.12). So we may assume that s<ss^{\prime}<s. So n>ks+ks+1n>k_{s^{\prime}}+k_{s+1}.

Claim 6.12.

Let R1,R11R_{1},R^{\prime}_{1}\in\mathcal{R}_{1} with R1<R1R_{1}<R^{\prime}_{1} and R=R1R1tR=R^{\prime}_{1}\setminus{R^{\prime}_{1}}^{\rm t} Then for each i[s]i\in[s], we have

αi(R1,R1)=((R1)ki|R|).\alpha_{i}(R_{1},R^{\prime}_{1})={\ell(R^{\prime}_{1})\choose k_{i}-|R|}.

In particular, αi(R1,R1)=0\alpha_{i}(R_{1},R^{\prime}_{1})=0 if and only if (R1)<k1ki\ell(R^{\prime}_{1})<k_{1}-k_{i}. Furthermore, if (R1)=0\ell(R^{\prime}_{1})=0, then γ(R1,R1)=s\gamma(R_{1},R^{\prime}_{1})=s^{\prime}.

Proof.

Clearly, for i[s]i\in[s^{\prime}], αi(R1,R1)=1=((R1)ki|R|)\alpha_{i}(R_{1},R^{\prime}_{1})=1={\ell(R^{\prime}_{1})\choose k_{i}-|R|}. We next consider for i[s+1,s]i\in[s^{\prime}+1,s]. In this case, ki<k1k_{i}<k_{1}. Let RiR_{i} and RiR^{\prime}_{i} be the corresponding kik_{i}-sets of R1R_{1} and R1R^{\prime}_{1} respectively as in Definition 6.4. Then RiRiR_{i}\prec R^{\prime}_{i}, moreover αi(R1,R1)0\alpha_{i}(R_{1},R^{\prime}_{1})\geq 0 and αi(R1,R1)=0\alpha_{i}(R_{1},R^{\prime}_{1})=0 if and only if Ri=RiR_{i}=R^{\prime}_{i} clearly. Ri=RiR_{i}=R^{\prime}_{i} implies Ri<R1R^{\prime}_{i}\overset{\sim}{<}R^{\prime}_{1}, furthermore, (R1)<k1ki\ell(R^{\prime}_{1})<k_{1}-k_{i}. Then we can see that if (R1)=0\ell(R^{\prime}_{1})=0, then αi(R1,R1)=0=((R1)ki|R|)\alpha_{i}(R_{1},R^{\prime}_{1})=0={\ell(R^{\prime}_{1})\choose k_{i}-|R|}. Therefore, γ(R1,R1)=s\gamma(R_{1},R^{\prime}_{1})=s^{\prime}, as required. We next assume that RiR^{\prime}_{i} is the kik_{i}-parirty of R1R^{\prime}_{1}. So (R1)1\ell(R^{\prime}_{1})\geq 1. In this case, since R1<R1R_{1}<R^{\prime}_{1}, (R1)=(R1)1\ell(R_{1})=\ell(R^{\prime}_{1})-1. If Ri<R1R_{i}\overset{\sim}{<}R_{1}, then (R1)=ki|R|\ell(R^{\prime}_{1})=k_{i}-|R| and αi(R1,R1)=1=((R1)ki|R|)\alpha_{i}(R_{1},R^{\prime}_{1})=1={\ell(R^{\prime}_{1})\choose k_{i}-|R|}, as required. Last, we assume that RiR_{i} is the kik_{i}-parirty of R1R_{1}. So (R1)1\ell(R_{1})\geq 1. Let k1ki=kk_{1}-k_{i}=k. In this case we have

R1\displaystyle R^{\prime}_{1} =R[n(R1)+1,n];\displaystyle=R\cup[n-\ell(R^{\prime}_{1})+1,n];
R1\displaystyle R_{1} =R{n(R1)}[n(R1)+2,n];\displaystyle=R\cup\{n-\ell(R^{\prime}_{1})\}\cup[n-\ell(R^{\prime}_{1})+2,n];
Ri\displaystyle R_{i} =R{n(R1)} if (Ri)=0,\displaystyle=R\cup\{n-\ell(R^{\prime}_{1})\}\text{ if $\ell(R_{i})=0$,}
Ri\displaystyle R_{i} =R{n(R1)}[n(R1)+2+k,n] if (Ri)1;\displaystyle=R\cup\{n-\ell(R^{\prime}_{1})\}\cup[n-\ell(R^{\prime}_{1})+2+k,n]\text{ if $\ell(R_{i})\geq 1$};
Ri\displaystyle R^{\prime}_{i} =R[n(R1)+1+k,n].\displaystyle=R\cup[n-\ell(R^{\prime}_{1})+1+k,n].

Then

αi(R1,R1)=|(Ri,ki)||(Ri,ki)|=((R1)ki|R|),\alpha_{i}(R_{1},R^{\prime}_{1})=|\mathcal{L}(R^{\prime}_{i},k_{i})|-|\mathcal{L}(R_{i},k_{i})|={\ell(R^{\prime}_{1})\choose k_{i}-|R|},

as required. ∎

From Definitions 6.7 and 4.2, we have the following observation.

Remark 6.13.

For any R1,R11R_{1},R_{1}^{\prime}\in\mathcal{R}_{1} with R1R1R_{1}\prec R^{\prime}_{1}, we have that αi(R1,R1)=α(R1,R1)\alpha_{i}(R_{1},R^{\prime}_{1})=\alpha(R_{1},R^{\prime}_{1}) holds for each i[s]i\in[s^{\prime}], and δ(R1,R1)=β(R1,R1)\delta(R_{1},R^{\prime}_{1})=\beta(R_{1},R^{\prime}_{1}).

Claim 6.14.

Let j[0,k11]j\in[0,k_{1}-1], d[k1j]d\in[k_{1}-j] and A1,B1,C1,D11(j)A_{1},B_{1},C_{1},D_{1}\in\mathcal{R}_{1}(j). Suppose that A1,B1A_{1},B_{1} are dd-sequential and C1,D1C_{1},D_{1} are dd-sequential with maxA1=maxC1\max A_{1}=\max C_{1} and maxB1=maxD1\max B_{1}=\max D_{1}. Then γ(A1,B1)=γ(C1,D1)\gamma(A_{1},B_{1})=\gamma(C_{1},D_{1}) and δ(A1,B1)=δ(C1,D1)\delta(A_{1},B_{1})=\delta(C_{1},D_{1}). In particular, if A1𝑑B1A_{1}\overset{d}{\longrightarrow}B_{1}, C1𝑑D1C_{1}\overset{d}{\longrightarrow}D_{1} and maxA1=maxC1\max A_{1}=\max C_{1}, then γ(A1,B1)=γ(C1,D1)\gamma(A_{1},B_{1})=\gamma(C_{1},D_{1}) and δ(A1,B1)=δ(C1,D1)\delta(A_{1},B_{1})=\delta(C_{1},D_{1}).

Proof.

By the definitions of A1,B1,C1,D1A_{1},B_{1},C_{1},D_{1}, from Lemma 4.7 and Remark 6.13, we have δ(A1,B1)=δ(C1,D1)\delta(A_{1},B_{1})=\delta(C_{1},D_{1}) and αi(A1,B1)=αi(C1,D1)\alpha_{i}(A_{1},B_{1})=\alpha_{i}(C_{1},D_{1}) holds for each i[s]i\in[s^{\prime}]. Next, we aim to show that for each i[s+1,s]i\in[s^{\prime}+1,s], αi(A1,B1)=αi(C1,D1)\alpha_{i}(A_{1},B_{1})=\alpha_{i}(C_{1},D_{1}). Let i[s+1,s]i\in[s^{\prime}+1,s]. Denot

𝒜\displaystyle\mathcal{A} ={R:A1[nj+1,n]RB1[nj+1,n] and |R|=k1},\displaystyle=\{R:A_{1}\cup[n-j+1,n]\prec R\prec B_{1}\cup[n-j+1,n]\text{ and }|R|=k_{1}\},
\displaystyle\mathcal{B} ={T:C1[nj+1,n]TD1[nj+1,n] and |T|=k1}.\displaystyle=\{T:C_{1}\cup[n-j+1,n]\prec T\prec D_{1}\cup[n-j+1,n]\text{ and }|T|=k_{1}\}.

Since α1(A1,B1)=α1(C1,D1)\alpha_{1}(A_{1},B_{1})=\alpha_{1}(C_{1},D_{1}), |𝒜|=||=:h|\mathcal{A}|=|\mathcal{B}|=:h. Let 𝒜={R1,R2,,Rh}\mathcal{A}=\{R_{1},R_{2},\dots,R_{h}\} and ={T1,T2,,Th}\mathcal{B}=\{T_{1},T_{2},\dots,T_{h}\}, where R1R2RhR_{1}\prec R_{2}\prec\dots\prec R_{h} and T1T2ThT_{1}\prec T_{2}\prec\dots\prec T_{h}. For any j[h]j\in[h], we have (Rj)=(Tj)\ell(R_{j})=\ell(T_{j}) and |RjRjt|=|TjTjt||R_{j}\setminus R_{j}^{\rm t}|=|T_{j}\setminus T_{j}^{\rm t}|. Thus, by Claim 6.12, for any j[h1]j\in[h-1], αi(Rj,Rj+1)=αi(Tj,Tj+1)\alpha_{i}(R_{j},R_{j+1})=\alpha_{i}(T_{j},T_{j+1}). Furthermore, by Remark 6.9, we conclude that αi(A1,B1)=αi(C1,D1)\alpha_{i}(A_{1},B_{1})=\alpha_{i}(C_{1},D_{1}). ∎

Claim 6.15.

Let A1,B1,C11A_{1},B_{1},C_{1}\in\mathcal{R}_{1} and aa be an integer. Suppose A1A1t=A{a,a+1}A_{1}\setminus A_{1}^{\rm t}=A\cup\{a,a+1\}, B1=A{a}[n(B1)+1,n]B_{1}=A\cup\{a\}\cup[n-\ell(B_{1})+1,n] and C1=A{a+1}[n(B1)+1,n]C_{1}=A\cup\{a+1\}\cup[n-\ell(B_{1})+1,n] for some AA. Then δ(A1,B1)=δ(B1,C1)\delta(A_{1},B_{1})=\delta(B_{1},C_{1}). If a+1n(A1)2a+1\leq n-\ell(A_{1})-2, then γ(A1,B1)=γ(B1,C1)\gamma(A_{1},B_{1})=\gamma(B_{1},C_{1}). If a+1=n(A1)1a+1=n-\ell(A_{1})-1, then γ(A1,B1)γ(B1,C1)\gamma(A_{1},B_{1})\leq\gamma(B_{1},C_{1}), equality holds if and only if C1C_{1} does not have ks+1k_{s^{\prime}+1}-parity (recall that ss^{\prime} is the integer such that k1==ks>ks+1k_{1}=\dots=k_{s^{\prime}}>k_{s^{\prime}+1}).

Proof.

Let A1A^{\prime}_{1} and B1B^{\prime}_{1} be the k1k_{1}-sets such that A1<A1A_{1}<A^{\prime}_{1} and B1<B1B_{1}<B^{\prime}_{1}. Then maxA1=maxB1\max A^{\prime}_{1}=\max B^{\prime}_{1}, and A1A^{\prime}_{1}, B1B_{1} are ((A1)+1)(\ell(A_{1})+1)-sequential, B1B^{\prime}_{1}, C1C_{1} are ((A1)+1)(\ell(A_{1})+1)-sequential. Note that maxB1=maxC1=n\max B_{1}=\max C_{1}=n, then applying Lemma 4.4 and Reamrk 6.13, we have that αi(A1,B1)=αi(B1,C1)\alpha_{i}(A^{\prime}_{1},B_{1})=\alpha_{i}(B^{\prime}_{1},C_{1}) holds for each i[s]i\in[s^{\prime}] and δ(A1,B1)=δ(B1,C1)\delta(A^{\prime}_{1},B_{1})=\delta(B^{\prime}_{1},C_{1}). Clearly, α1(A1,A1)=α1(B1,B1)=1\alpha_{1}(A_{1},A^{\prime}_{1})=\alpha_{1}(B_{1},B^{\prime}_{1})=1 holds for each i[s]i\in[s^{\prime}] and using Proposition 4.3 and Remark 6.13, we have δ(A1,A1)=δ(B1,B1)\delta(A_{1},A^{\prime}_{1})=\delta(B_{1},B^{\prime}_{1}). Therefore, by Remark 6.9, we have δ(A1,B1)=δ(B1,C1)\delta(A_{1},B_{1})=\delta(B_{1},C_{1}). Clearly, for each i[s]i\in[s^{\prime}],

αi(A1,B1)=αi(A1,A1)+αi(A1,B1)=αi(B1,B1)+αi(A1,C1)=αi(B1,C1).\alpha_{i}(A_{1},B_{1})=\alpha_{i}(A_{1},A^{\prime}_{1})+\alpha_{i}(A^{\prime}_{1},B_{1})=\alpha_{i}(B_{1},B^{\prime}_{1})+\alpha_{i}(A^{\prime}_{1},C_{1})=\alpha_{i}(B_{1},C_{1}). (28)

Since A1A1t=A{a,a+1}A_{1}\setminus A_{1}^{\rm t}=A\cup\{a,a+1\}, a+1n(A1)1a+1\leq n-\ell(A_{1})-1. By the definitions of A1A_{1}, B1B_{1}, and C1C_{1}, if a+1n(A1)2a+1\leq n-\ell(A_{1})-2, then (B1)=(C1)=(A1)+1\ell(B_{1})=\ell(C_{1})=\ell(A_{1})+1, and if a+1=n(A1)1a+1=n-\ell(A_{1})-1, then (B1)=(A1)+1\ell(B_{1})=\ell(A_{1})+1 and (C1)=(B1)+1\ell(C_{1})=\ell(B_{1})+1. Using Claim 6.14, for each j[s+1,s]j\in[s^{\prime}+1,s], we have

αj(A1,B1)=αj(B1,C1).\alpha_{j}(A^{\prime}_{1},B_{1})=\alpha_{j}(B^{\prime}_{1},C_{1}). (29)

If the previous case happens, then (A1)=(B1)=0\ell(A^{\prime}_{1})=\ell(B^{\prime}_{1})=0, so Claim 6.12 gives αi(A1,A1)=αi(B1,B1)=0\alpha_{i}(A_{1},A^{\prime}_{1})=\alpha_{i}(B_{1},B^{\prime}_{1})=0 for each i[s+1,s]i\in[s^{\prime}+1,s]. Combing this with (28), (29) and Remark 6.9, we get

γ(A1,B1)\displaystyle\gamma(A_{1},B_{1}) =i=1sαi(A1,B1)\displaystyle=\sum_{i=1}^{s}\alpha_{i}(A_{1},B_{1})
=i=1sαi(A1,B1)+i=s+1s(αi(A1,A1)+αi(A1,B1))\displaystyle=\sum_{i=1}^{s^{\prime}}\alpha_{i}(A_{1},B_{1})+\sum_{i=s^{\prime}+1}^{s}(\alpha_{i}(A_{1},A^{\prime}_{1})+\alpha_{i}(A^{\prime}_{1},B_{1}))
=i=1sα1(B1,C1)+i=s+1s(αi(B1,B1)+αi(B1,C1))\displaystyle=\sum_{i=1}^{s^{\prime}}\alpha_{1}(B_{1},C_{1})+\sum_{i=s^{\prime}+1}^{s}(\alpha_{i}(B_{1},B^{\prime}_{1})+\alpha_{i}(B^{\prime}_{1},C_{1}))
=γ(B1,C1),\displaystyle=\gamma(B_{1},C_{1}),

as desired. If the later case happens, then A1<B1<C1A_{1}<B_{1}<C_{1}, by Claim 6.12, since (B1)=(A1)+1\ell(B_{1})=\ell(A_{1})+1 and (C1)=(B1)+1\ell(C_{1})=\ell(B_{1})+1, then for each j[s+1,s]j\in[s^{\prime}+1,s], we have αj(A1,B1)=αj(B1,C1)\alpha_{j}(A_{1},B_{1})=\alpha_{j}(B_{1},C_{1}) if kj<|C1C1t|k_{j}<|C_{1}\setminus C_{1}^{\rm t}|, i.e., C1C_{1} dest not have kjk_{j}-parity; and αj(A1,B1)<αj(B1,C1)\alpha_{j}(A_{1},B_{1})<\alpha_{j}(B_{1},C_{1}) if kj|C1C1t|k_{j}\geq|C_{1}\setminus C_{1}^{\rm t}|, i.e., C1C_{1} has kjk_{j}-parity. Note that ks+1ksk_{s^{\prime}+1}\geq\dots\geq k_{s}, so if C1C_{1} does not have ks+1k_{s^{\prime}+1}-parity, then it does not have any kjk_{j}-parity for j[s+1,s]j\in[s^{\prime}+1,s]. Therefore, j=1sαj(A1,B1)j=1sαj(B1,C1)\sum_{j=1}^{s}\alpha_{j}(A_{1},B_{1})\leq\sum_{j=1}^{s}\alpha_{j}(B_{1},C_{1}), and the equality holds if and only if C1C_{1} has ks+1k_{s^{\prime}+1}-parity, that is, γ(A1,B1)γ(B1,C1)\gamma(A_{1},B_{1})\leq\gamma(B_{1},C_{1}), and the equality holds if and only if C1C_{1} does not have ks+1k_{s^{\prime}+1}-parity, as desired. ∎

We are going to prove Lemma 6.10 by induction on kk.

6.1 The Base Case

We are going to show that Lemma 6.10 holds for k=0k=0. Assume that F1,G1,H11F_{1},G_{1},H_{1}\in\mathcal{R}_{1} with F1𝑐G1𝑐H1F_{1}\overset{c}{\prec}G_{1}\overset{c}{\prec}H_{1} for some c[k1]c\in[k_{1}] and f(F1)f(G1)f(F_{1})\leq f(G_{1}), we are going to show that f(G1)<f(H1)f(G_{1})<f(H_{1}). Since F1,G1,H11F_{1},G_{1},H_{1}\in\mathcal{R}_{1} with F1𝑐G1𝑐H1F_{1}\overset{c}{\prec}G_{1}\overset{c}{\prec}H_{1}, maxF1n2\max F_{1}\leq n-2, maxG1n1\max G_{1}\leq n-1 and maxH1n\max H_{1}\leq n. Let G1G^{\prime}_{1} and H1H^{\prime}_{1} be the k1k_{1}-sets such that G1<G1G^{\prime}_{1}<G_{1} and H1<H1H^{\prime}_{1}<H_{1}. we first show the following observation.

Claim 6.16.

Let FmF_{m} be the k1k_{1}-set such that F1𝑐FmF_{1}\overset{c}{\longrightarrow}F_{m}, where mm is the number of k1k_{1}-subsets RR satisfying F1RFmF_{1}\prec R\prec F_{m}. If δ(G1,G1)<s\delta(G^{\prime}_{1},G_{1})<s^{\prime}, then f(R)f(R), where RR\in\mathcal{F}, increases on \mathcal{F}, in particular, f(G1)<f(H1)f(G_{1})<f(H_{1}).

Proof.

We may assume that ={Fi:1im}\mathcal{F}=\{F_{i}:1\leq i\leq m\} and F1<F2<<FmF_{1}<F_{2}<\dots<F_{m}. Then maxF2=maxG1\max F_{2}=\max G_{1}. Since F1<F2F_{1}<F_{2} and G1<G1G^{\prime}_{1}<G_{1}, by Proposition 4.3 and Remark 6.13, δ(F1,F2)=δ(G1,G1)<s\delta(F_{1},F_{2})=\delta(G^{\prime}_{1},G_{1})<s^{\prime} (assumption). Since maxFiF2\max F_{i}\geq F_{2} for any i[2,m]i\in[2,m], then by Proposition 4.3 and Remark 6.11, δ(Fi,Fi+1)<s\delta(F_{i},F_{i+1})<s^{\prime} holds for all i[m1]i\in[m-1]. On the other hand, γ(Fi,Fi+1)s\gamma(F_{i},F_{i+1})\geq s^{\prime} for all i[m1]i\in[m-1], thus, f(R)f(R), where RR\in\mathcal{F}, increases on \mathcal{F}. Clearly, G1,H1G_{1},H_{1}\in\mathcal{F} and G1H1G_{1}\precneqq H_{1}, therefore, f(G1)<f(H1)f(G_{1})<f(H_{1}), as required. ∎

By Claim 6.16, next we may assume that

δ(G1,G1)s.\displaystyle\delta(G^{\prime}_{1},G_{1})\geq s^{\prime}. (30)

Note that

f(G1)\displaystyle f(G_{1}) =f(G1)+γ(G1,G1)δ(G1,G1),\displaystyle=f(G^{\prime}_{1})+\gamma(G^{\prime}_{1},G_{1})-\delta(G^{\prime}_{1},G_{1}), (31)
f(H1)\displaystyle f(H_{1}) =f(H1)+γ(H1,H1)δ(H1,H1).\displaystyle=f(H^{\prime}_{1})+\gamma(H^{\prime}_{1},H_{1})-\delta(H^{\prime}_{1},H_{1}). (32)

Since (G1)=0\ell(G_{1})=0, by Claim 6.12, for each i[s+1,s]i\in[s^{\prime}+1,s], we have

αi(G1,G1)=0αi(H1,H1).\alpha_{i}(G^{\prime}_{1},G_{1})=0\leq\alpha_{i}(H^{\prime}_{1},H_{1}). (33)

Clearly, for i[s]i\in[s^{\prime}], αi(G1,G1)=αi(H1,H1)=1\alpha_{i}(G^{\prime}_{1},G_{1})=\alpha_{i}(H^{\prime}_{1},H_{1})=1. So γ(G1,G1)γ(H1,H1)\gamma(G^{\prime}_{1},G_{1})\leq\gamma(H^{\prime}_{1},H_{1}). Note that maxG1<maxH1\max G_{1}<\max H_{1}, combining Proposition 4.3, Remark 6.11, Remark 6.13 and (30), we obtain δ(G1,G1)>δ(H1,H1)\delta(G^{\prime}_{1},G_{1})>\delta(H^{\prime}_{1},H_{1}). Combining with equalities (31) and (32), to show f(G1)<f(H1)f(G_{1})<f(H_{1}), it is sufficient to show the following claim.

Claim 6.17.

f(G1)f(H1)f(G^{\prime}_{1})\leq f(H^{\prime}_{1}).

Proof.

If c=1c=1, then F1=G1F_{1}=G^{\prime}_{1} and G1=H1G_{1}=H^{\prime}_{1}. Since f(F1)f(G1)f(F_{1})\leq f(G_{1}), f(G1)f(H1)f(G^{\prime}_{1})\leq f(H^{\prime}_{1}), as desired. Thus, we have proved for c=1c=1.

Next, we consider c2c\geq 2. In this case, F1c1G1F_{1}\overset{c-1}{\longrightarrow}G^{\prime}_{1} and G1c1H1G_{1}\overset{c-1}{\longrightarrow}H^{\prime}_{1}. Let F1F^{\prime}_{1} be the k1k_{1}-set such that F1c1F1F_{1}\overset{c-1}{\prec}F^{\prime}_{1}. Therefore, maxF1=maxG1\max F^{\prime}_{1}=\max G_{1} and F1c1G1F^{\prime}_{1}\overset{c-1}{\longrightarrow}G^{\prime}_{1}. Note that maxG1=maxH1=n\max G^{\prime}_{1}=\max H^{\prime}_{1}=n. By Lemma 4.4 and Remark 6.13, we have α1(F1,G1)=α1(G1,H1)\alpha_{1}(F^{\prime}_{1},G^{\prime}_{1})=\alpha_{1}(G_{1},H^{\prime}_{1}) and δ(F1,G1)=δ(G1,H1)\delta(F^{\prime}_{1},G^{\prime}_{1})=\delta(G_{1},H^{\prime}_{1}). Let F1′′F^{\prime\prime}_{1} be the k1k_{1}-set such that F1′′<F1F^{\prime\prime}_{1}<F^{\prime}_{1}. Thus, F1′′F^{\prime\prime}_{1}, G1G^{\prime}_{1} and H1H^{\prime}_{1} satisfy the condition of Claim 6.15. So we conclude that γ(F1′′,G1)γ(G1,H1)\gamma(F^{\prime\prime}_{1},G^{\prime}_{1})\leq\gamma(G^{\prime}_{1},H^{\prime}_{1}) and δ(F1′′,G1)=δ(G1,H1)\delta(F^{\prime\prime}_{1},G^{\prime}_{1})=\delta(G^{\prime}_{1},H^{\prime}_{1}). Note that

f(G1)=f(F1′′)+γ(F1′′,G1)δ(F1′′,G1),\displaystyle f(G^{\prime}_{1})=f(F^{\prime\prime}_{1})+\gamma(F^{\prime\prime}_{1},G^{\prime}_{1})-\delta(F^{\prime\prime}_{1},G^{\prime}_{1}),
f(H1)=f(G1)+γ(G1,H1)δ(G1,H1).\displaystyle f(H^{\prime}_{1})=f(G^{\prime}_{1})+\gamma(G^{\prime}_{1},H^{\prime}_{1})-\delta(G^{\prime}_{1},H^{\prime}_{1}).

Thus, to show f(G1)f(H1)f(G^{\prime}_{1})\leq f(H^{\prime}_{1}) is sufficient to show the following claim.

Claim 6.18.

f(F1′′)f(G1)f(F^{\prime\prime}_{1})\leq f(G^{\prime}_{1}).

Proof.

Suppose on the contrary that f(F1′′)>f(G1)f(F^{\prime\prime}_{1})>f(G^{\prime}_{1}). Since αi(G1,G1)=1\alpha_{i}(G^{\prime}_{1},G_{1})=1 holds for each i[s]i\in[s^{\prime}] and αj(G1,G1)=0\alpha_{j}(G^{\prime}_{1},G_{1})=0 holds for each j[s+1,s]j\in[s^{\prime}+1,s] (see (33)), γ(G1,G1)=s\gamma(G^{\prime}_{1},G_{1})=s^{\prime}. Since δ(G1,G1)s\delta(G^{\prime}_{1},G_{1})\geq s^{\prime} and f(G1)=f(G1)+γ(G1,G1)δ(G1,G1)f(G_{1})=f(G^{\prime}_{1})+\gamma(G^{\prime}_{1},G_{1})-\delta(G^{\prime}_{1},G_{1}), f(G1)f(G1)f(G^{\prime}_{1})\geq f(G_{1}). Therefore, f(G1)f(F1)f(G^{\prime}_{1})\geq f(F_{1}) since f(G1)f(F1)f(G_{1})\geq f(F_{1}). Hence, f(F1′′)>f(F1)f(F^{\prime\prime}_{1})>f(F_{1}) since f(F1′′)>f(G1)f(F^{\prime\prime}_{1})>f(G^{\prime}_{1}). This implies F1F1′′F_{1}\neq F^{\prime\prime}_{1}. Therefore, c3c\geq 3 and F1c2F1′′F_{1}\overset{c-2}{\longrightarrow}F^{\prime\prime}_{1}. Since F1𝑐G1F_{1}\overset{c}{\prec}G_{1}, we may assume that there exists some (k1c)(k_{1}-c)-set FF and some integer xx such that F1=F[x+1,x+c]F_{1}=F\cup[x+1,x+c] and maxFx\max F\leq x if FF\neq\emptyset. Then F1′′=F{x+1,x+2}[nc+3,n]F^{\prime\prime}_{1}=F\cup\{x+1,x+2\}\cup[n-c+3,n].

The forthcoming claim will be used to make a contradiction to f(F1′′)>f(G1)f(F^{\prime\prime}_{1})>f(G^{\prime}_{1}), thereby ending the proof of Claim 6.18. We will explain this after stating the claim.

Claim 6.19.

Let dd be a positive integer, B1=B[y+1,y+d]B_{1}=B\cup[y+1,y+d] for some set BB with maxBy\max B\leq y and y+d<ny+d<n. Suppose i[d]i\in[d] and C1C_{1} is the k1k_{1}-set such that B1𝑖C1B_{1}\overset{i}{\longrightarrow}C_{1}. Let p=nydp=n-y-d. We define k1k_{1}-sets D1,D2,,DpD_{1},D_{2},\dots,D_{p} as follows. If i=1i=1, then let D1=B1D_{1}=B_{1} and Dj=B[y+1,y+d1]{y+d+j1}D_{j}=B\cup[y+1,y+d-1]\cup\{y+d+j-1\} for each j[2,p]j\in[2,p], when d=1d=1, we regard [y+1,y+d1][y+1,y+d-1] as an empty set. If i2i\geq 2, then let Dj=B[y+1,y+di]{y+d+ji}[ni+2,n]D_{j}=B\cup[y+1,y+d-i]\cup\{y+d+j-i\}\cup[n-i+2,n] for each j[p]j\in[p], when d=id=i, we regard [y+1,y+di][y+1,y+d-i] as an empty set. If f(B1)f(C1)f(B_{1})\leq f(C_{1}), then for each j[p]j\in[p], f(Dj)f(C1)f(D_{j})\leq f(C_{1}).

To finish the proof of Claim 6.18, we only need to prove Claim 6.19. Assume that Claim 6.19 holds, taking B1=F1B_{1}=F_{1}, y=xy=x, d=cd=c and i=c1i=c-1 in Claim 6.19, we can see that C1=G1C_{1}=G^{\prime}_{1} and D1=F1′′D_{1}=F^{\prime\prime}_{1}. Since f(F1)f(G1)f(F_{1})\leq f(G^{\prime}_{1}), then Claim 6.19 gives f(F1′′)f(G1)f(F^{\prime\prime}_{1})\leq f(G^{\prime}_{1}), which is a contradiction to the assumption that f(F1′′)>f(G1)f(F^{\prime\prime}_{1})>f(G^{\prime}_{1}). This completes the proof of Claim 6.18 by assuming the truth of Claim 6.19. ∎

Proof for Claim 6.19.

We are going to prove Claim 6.19 by induction on ii.

We first consider the case i=1i=1. In this case, B1=D11D211Dp1C1B_{1}=D_{1}\overset{1}{\prec}D_{2}\overset{1}{\prec}\dots\overset{1}{\prec}D_{p}\overset{1}{\prec}C_{1}. If p=1p=1, then we have nothing to say. We may assume p2p\geq 2. If f(D2)>f(C1)f(D_{2})>f(C_{1}), then f(D1)<f(D2)f(D_{1})<f(D_{2}) since f(B1)=f(D1)f(C1)f(B_{1})=f(D_{1})\leq f(C_{1}). Note that we have already proved Lemma 6.10 when c=1c=1. By taking c=1c=1 in Lemma 6.10, we have f(D2)<f(D3)<<f(Dp)<f(C1)f(D_{2})<f(D_{3})<\dots<f(D_{p})<f(C_{1}), a contradiction. Using the same argument, we can see that for each j[2,p]j\in[2,p], f(Dj)<f(C1)f(D_{j})<f(C_{1}), as required.

We next consider the case i2i\geq 2 and assume that Claim 6.19 holds for i1i-1. If f(D1)f(C1)f(D_{1})\geq f(C_{1}), then f(D1)f(B1)f(D_{1})\geq f(B_{1}) since f(B1)f(C1)f(B_{1})\leq f(C_{1}). Note that B1i1D1B_{1}\overset{i-1}{\longrightarrow}D_{1}. By replacing C1C_{1} with D1D_{1} and ii with i1i-1 in Claim 6.19, we define E1,E2,,EpE_{1},E_{2},\dots,E_{p} as definitions of D1,D2,,DpD_{1},D_{2},\dots,D_{p}. Then by induction hypothesis, we obtain

f(Ej)f(D1)f(E_{j})\leq f(D_{1}) holds for each j[p]j\in[p]. (34)

For convenience, we denote C1=Dp+1C_{1}=D_{p+1}. We have the following claim.

Claim 6.20.

For each j[p]j\in[p], δ(Ej,D1)=δ(Dj,Dj+1)\delta(E_{j},D_{1})=\delta(D_{j},D_{j+1}). For each j[p1]j\in[p-1], γ(Ej,D1)=γ(Dj,Dj+1)\gamma(E_{j},D_{1})=\gamma(D_{j},D_{j+1}) and γ(Ep,D1)γ(Dp,Dp+1)\gamma(E_{p},D_{1})\leq\gamma(D_{p},D_{p+1}).

Proof.

Note that Ep<D1E_{p}<D_{1}, Dp<Dp+1D_{p}<D_{p+1}, (D1)=(Dp+1)1\ell(D_{1})=\ell(D_{p+1})-1 and |D1D1t|=|Dp+1Dp+1t|+1|D_{1}\setminus D_{1}^{\rm t}|=|D_{p+1}\setminus D_{p+1}^{\rm t}|+1. By Claim 6.12, for each j[s+1,s]j\in[s^{\prime}+1,s], αj(Ep,D1)αj(Dp,Dp+1)\alpha_{j}(E_{p},D_{1})\leq\alpha_{j}(D_{p},D_{p+1}). Trivially, for each j[s]j\in[s^{\prime}], αi(Ep,D1)αi(Dp,Dp+1)=1\alpha_{i}(E_{p},D_{1})\leq\alpha_{i}(D_{p},D_{p+1})=1, therefore, γ(Ep,D1)γ(Dp,Dp+1)\gamma(E_{p},D_{1})\leq\gamma(D_{p},D_{p+1}), as required.

For each j[2,p]j\in[2,p], let FjF_{j} and HjH_{j} be the k1k_{1}-sets such that Dj1<FjD_{j-1}<F_{j} and Ej1<HjE_{j-1}<H_{j}. Thus, for each j[2,p]j\in[2,p], Fji1DjF_{j}\overset{i-1}{\longrightarrow}D_{j} and we have B1i1H2i1H3i1i1Hpi1D1B_{1}\overset{i-1}{\prec}H_{2}\overset{i-1}{\prec}H_{3}\overset{i-1}{\prec}\dots\overset{i-1}{\prec}H_{p}\overset{i-1}{\prec}D_{1} and B1𝑖F2𝑖F3𝑖𝑖Fp𝑖C1.B_{1}\overset{i}{\prec}F_{2}\overset{i}{\prec}F_{3}\overset{i}{\prec}\dots\overset{i}{\prec}F_{p}\overset{i}{\prec}C_{1}. Then for each j[2,p]j\in[2,p], we have maxHj=maxFj\max H_{j}=\max F_{j}. By Claim 6.14, γ(Hj,D1)=γ(Fj,Dj)\gamma(H_{j},D_{1})=\gamma(F_{j},D_{j}) and δ(Hj,D1)=δ(Fj,Dj)\delta(H_{j},D_{1})=\delta(F_{j},D_{j}). Note that for each j[2,p]j\in[2,p], Dj1<FjD_{j-1}<F_{j} and Ej1<HjE_{j-1}<H_{j}, hence Claim 6.12 gives γ(Dj1,Fj)=γ(Ej1,Hj)\gamma(D_{j-1},F_{j})=\gamma(E_{j-1},H_{j}), Proposition 4.3 and Remark 6.13 give δ(Dj1,Fj)=δ(Ej1,Hj)\delta(D_{j-1},F_{j})=\delta(E_{j-1},H_{j}). So for each j[2,p]j\in[2,p], we have

γ(Ej1,D1)\displaystyle\gamma(E_{j-1},D_{1}) =γ(Ej1,Hj)+γ(Hj,D1)\displaystyle=\gamma(E_{j-1},H_{j})+\gamma(H_{j},D_{1})
=γ(Dj1,Fj)+γ(Fj,Dj)\displaystyle=\gamma(D_{j-1},F_{j})+\gamma(F_{j},D_{j})
=γ(Dj1,Dj),\displaystyle=\gamma(D_{j-1},D_{j}),

and

δ(Ej1,D1)\displaystyle\delta(E_{j-1},D_{1}) =δ(Ej1,Hj)+δ(Hj,D1)\displaystyle=\delta(E_{j-1},H_{j})+\delta(H_{j},D_{1})
=δ(Dj1,Fj)+δ(Fj,Dj)\displaystyle=\delta(D_{j-1},F_{j})+\delta(F_{j},D_{j})
=δ(Dj1,Dj).\displaystyle=\delta(D_{j-1},D_{j}).

Since Ep<D1E_{p}<D_{1}, Dp<Dp+1D_{p}<D_{p+1} and maxD1=maxDp+1=maxC1=n\max D_{1}=\max D_{p+1}=\max C_{1}=n. By Proposition 4.3 and Remark 6.13, δ(Ep,D1)=β(Ep,D1)=β(Dp,Dp+1)=δ(Dp,Dp+1)\delta(E_{p},D_{1})=\beta(E_{p},D_{1})=\beta(D_{p},D_{p+1})=\delta(D_{p},D_{p+1}). This completes the proof of Claim 6.20. ∎

Let us continue the proof of Claim 6.19. Note that for each j[p]j\in[p], f(Dj+1)=f(Dj)+γ(Dj,Dj+1)δ(Dj,Dj+1)f(D_{j+1})=f(D_{j})+\gamma(D_{j},D_{j+1})-\delta(D_{j},D_{j+1}) and f(D1)=f(Ej)+γ(Ej,D1)δ(Ej,D1)f(D_{1})=f(E_{j})+\gamma(E_{j},D_{1})-\delta(E_{j},D_{1}). By Claim 6.20 and (34), we conclude that

f(D1)f(D2)f(Dp+1)=f(C1).f(D_{1})\leq f(D_{2})\leq\dots\leq f(D_{p+1})=f(C_{1}).

This completes the proof of Claim 6.19. ∎

Since we have shown that Claim 6.19 holds, Claim 6.17 holds. ∎

This completes the base case of Lemma 6.10. We next to consider the induction step.

6.2 The Induction Step

Recall that 1,k=:{R1:[nk+1,n]R},1(k)=:{R[nk+1,n]:R1,k}\mathcal{R}_{1,k}=:\{R\in\mathbb{R}_{1}:[n-k+1,n]\subset R\},\mathcal{R}_{1}(k)=:\{R\setminus[n-k+1,n]:R\in\mathcal{R}_{1,k}\} for k[k11]k\in[k_{1}-1]. The authors have shown the following result in [5].

Claim 6.21.

[5] Let j[0,k1j]j\in[0,k_{1}-j], F1<F1,G1<G1F_{1}<F^{\prime}_{1},G_{1}<G^{\prime}_{1} in 1(j)\mathcal{R}_{1}(j), and maxF1=maxG1\max F^{\prime}_{1}=\max G^{\prime}_{1}. Then α(F1,F1)=α(G1,G1)\alpha(F_{1},F^{\prime}_{1})=\alpha(G_{1},G^{\prime}_{1}) and β(F1,F1)=β(G1,G1)\beta(F_{1},F^{\prime}_{1})=\beta(G_{1},G^{\prime}_{1}).

We have the following claim.

Claim 6.22.

Let j[0,k11]j\in[0,k_{1}-1], F1<F1,G1<G1F_{1}<F^{\prime}_{1},G_{1}<G^{\prime}_{1} and F1F1G1G1F_{1}\prec F^{\prime}_{1}\prec G_{1}\prec G^{\prime}_{1} in 1(j)\mathcal{R}_{1}(j), and maxF1=maxG1\max F^{\prime}_{1}=\max G^{\prime}_{1} with (F1)=(G1)\ell(F^{\prime}_{1})=\ell(G^{\prime}_{1}) in 1(j)\mathcal{R}_{1}(j). Then γ(F1,F1)=γ(G1,G1)\gamma(F_{1},F^{\prime}_{1})=\gamma(G_{1},G^{\prime}_{1}) and δ(F1,F1)=δ(G1,G1)\delta(F_{1},F^{\prime}_{1})=\delta(G_{1},G^{\prime}_{1}).

Proof.

If j=0j=0, then we are fine (recall Claim 6.12 and Proposition 4.3). Assume j1j\geq 1. Let A1=F1[nj+1,n]A_{1}=F_{1}\cup[n-j+1,n], A1=F1[nj+1,n]A^{\prime}_{1}=F^{\prime}_{1}\cup[n-j+1,n], B1=G1[nj+1,n]B_{1}=G_{1}\cup[n-j+1,n] and B1=G1[nj+1,n]B^{\prime}_{1}=G^{\prime}_{1}\cup[n-j+1,n]. Let A1′′A^{\prime\prime}_{1} and B1′′B^{\prime\prime}_{1} be the k1k_{1}-sets such that A1<A1′′A_{1}<A^{\prime\prime}_{1} and B1<B1′′B_{1}<B^{\prime\prime}_{1}. Then by the definitions of F1,F1,G1,G1F_{1},F^{\prime}_{1},G_{1},G^{\prime}_{1}, we have maxA1′′=maxB1′′\max A^{\prime\prime}_{1}=\max B^{\prime\prime}_{1}, A1′′𝑗A1A^{\prime\prime}_{1}\overset{j}{\longrightarrow}A^{\prime}_{1} and B1′′𝑗B1B^{\prime\prime}_{1}\overset{j}{\longrightarrow}B^{\prime}_{1}. By Claim 6.14, γ(A1′′,A1)=γ(B1′′,B1)\gamma(A^{\prime\prime}_{1},A^{\prime}_{1})=\gamma(B^{\prime\prime}_{1},B^{\prime}_{1}) and δ(A1′′,A1′′)=δ(B1′′,B1)\delta(A^{\prime\prime}_{1},A^{\prime\prime}_{1})=\delta(B^{\prime\prime}_{1},B^{\prime}_{1}). By Claim 6.12 and (F1)=(G1)\ell(F^{\prime}_{1})=\ell(G^{\prime}_{1}) in 1(j)\mathcal{R}_{1}(j), γ(A1,A1)=γ(B1,B1′′)\gamma(A_{1},A^{\prime}_{1})=\gamma(B_{1},B^{\prime\prime}_{1}) and δ(A1,A1′′)=δ(B1,B1′′)\delta(A_{1},A^{\prime\prime}_{1})=\delta(B_{1},B^{\prime\prime}_{1}). Thus, γ(A1,A1)=γ(B1,B1)\gamma(A_{1},A^{\prime}_{1})=\gamma(B_{1},B^{\prime}_{1}) and δ(A1,A1)=δ(B1,B1)\delta(A_{1},A^{\prime}_{1})=\delta(B_{1},B^{\prime}_{1}), that is γ(F1,F1)=γ(G1,G1)\gamma(F_{1},F^{\prime}_{1})=\gamma(G_{1},G^{\prime}_{1}) and δ(F1,F1)=δ(G1,G1)\delta(F_{1},F^{\prime}_{1})=\delta(G_{1},G^{\prime}_{1}), as desired. ∎

We are ready to give the induction step of Lemma 6.10.

Proof of Lemma 6.10.

By induction on kk. We have shown that it holds for k=0k=0 in Section 6.1. Suppose it holds for k[0,k12]k\in[0,k_{1}-2], we are going to prove it holds for k+1k+1. Let F1,G1,H11(k+1)F_{1},G_{1},H_{1}\in\mathcal{R}_{1}(k+1) with F1𝑐G1𝑐H1F_{1}\overset{c}{\prec}G_{1}\overset{c}{\prec}H_{1} and f(G1)f(F1)f(G_{1})\geq f(F_{1}), i.e., γ(F1,G1)δ(F1,G1)\gamma(F_{1},G_{1})\geq\delta(F_{1},G_{1}). We are going to apply induction hypothesis to show f(H1)>f(G1)f(H_{1})>f(G_{1}), i.e., γ(G1,H1)>δ(G1,H1)\gamma(G_{1},H_{1})>\delta(G_{1},H_{1}). Let F1=F1{maxF+1},G1=G1{maxG1+1}F^{\prime}_{1}=F_{1}\cup\{\max F+1\},G^{\prime}_{1}=G_{1}\cup\{\max G_{1}+1\} and H1=H1{maxH1+1}H^{\prime}_{1}=H_{1}\cup\{\max H_{1}+1\}. Then F1,G1,H11(k)F^{\prime}_{1},G^{\prime}_{1},H^{\prime}_{1}\in\mathcal{R}_{1}(k). Moreover, F1c+1G1c+1H1F^{\prime}_{1}\overset{c+1}{\prec}G^{\prime}_{1}\overset{c+1}{\prec}H^{\prime}_{1} in 1(k)\mathcal{R}_{1}(k).

Let A,B,C,D,EA,B,C,D,E be the (k1k)(k_{1}-k)-sets satisfying C<G1<D,E<H1,F1𝑐AC<G^{\prime}_{1}<D,E<H^{\prime}_{1},F^{\prime}_{1}\overset{c}{\prec}A and F1<BF^{\prime}_{1}<B in 1(k)\mathcal{R}_{1}(k). Let F~1=F1{nk},G~1=G1{nk}\widetilde{F}_{1}=F_{1}\sqcup\{n-k\},\widetilde{G}_{1}=G_{1}\sqcup\{n-k\}, H~1=H1{nk}\widetilde{H}_{1}=H_{1}\sqcup\{n-k\}. Then F~1,G~1,H~11(k)\widetilde{F}_{1},\widetilde{G}_{1},\widetilde{H}_{1}\in\mathcal{R}_{1}(k). We can see that if c2c\geq 2, then

F1<B1F~1A𝑐C<G1<D1G~1andG1𝑐E<H1.F^{\prime}_{1}<B\overset{1}{\longrightarrow}\widetilde{F}_{1}\precneqq A\overset{c}{\longrightarrow}C<G^{\prime}_{1}<D\overset{1}{\longrightarrow}\widetilde{G}_{1}\,\,\text{and}\,\,G^{\prime}_{1}\overset{c}{\longrightarrow}E<H^{\prime}_{1}. (35)

If c=1c=1, then

F1<A=B1F~1=C<G1<D1G~1andG11E<H1.F^{\prime}_{1}<A=B\overset{1}{\longrightarrow}\widetilde{F}_{1}=C<G^{\prime}_{1}<D\overset{1}{\longrightarrow}\widetilde{G}_{1}\,\,\text{and}\,\,G^{\prime}_{1}\overset{1}{\longrightarrow}E<H^{\prime}_{1}. (36)
Claim 6.23.

γ(A,C)>δ(A,C).\gamma(A,C)>\delta(A,C).

Proof.

Suppose on the contrary that γ(A,C)δ(A,C).\gamma(A,C)\leq\delta(A,C). We first consider the case c2c\geq 2. By (35),

γ(F~1,G~1)=γ(F~1,A)+γ(A,C)+γ(C,G1)+γ(G1,G~1),\displaystyle\gamma(\widetilde{F}_{1},\widetilde{G}_{1})=\gamma(\widetilde{F}_{1},A)+\gamma(A,C)+\gamma(C,G^{\prime}_{1})+\gamma(G^{\prime}_{1},\widetilde{G}_{1}),
δ(F~1,G~1)=δ(F~1,A)+δ(A,C)+δ(C,G1)+δ(G1,G~1).\displaystyle\delta(\widetilde{F}_{1},\widetilde{G}_{1})=\delta(\widetilde{F}_{1},A)+\delta(A,C)+\delta(C,G^{\prime}_{1})+\delta(G^{\prime}_{1},\widetilde{G}_{1}).

Note that f(F1)=f(F~1)f(F_{1})=f(\widetilde{F}_{1}) and f(G1)=f(G~1)f(G_{1})=f(\widetilde{G}_{1}), therefore, γ(F1,G1)δ(F1,G1)\gamma(F_{1},G_{1})\geq\delta(F_{1},G_{1}) implies γ(F~1,G~1)δ(F~1,G~1)\gamma(\widetilde{F}_{1},\widetilde{G}_{1})\geq\delta(\widetilde{F}_{1},\widetilde{G}_{1}). Since γ(A,C)δ(A,C)\gamma(A,C)\leq\delta(A,C), then

γ(F~1,A)+γ(C,G1)+γ(G1,G~1)δ(F~1,A)+δ(C,G1)+δ(G1,G~1).\gamma(\widetilde{F}_{1},A)+\gamma(C,G^{\prime}_{1})+\gamma(G^{\prime}_{1},\widetilde{G}_{1})\geq\delta(\widetilde{F}_{1},A)+\delta(C,G^{\prime}_{1})+\delta(G^{\prime}_{1},\widetilde{G}_{1}). (37)

Note that maxB=maxG1\max B=\max G^{\prime}_{1} with (B)=(G1)=0\ell(B)=\ell(G^{\prime}_{1})=0 in 1(j)\mathcal{R}_{1}(j) (i.e., maxB=maxG1<nk\max B=\max G^{\prime}_{1}<n-k). By Claim 6.22, we have δ(F1,B)=δ(C,G1)\delta(F^{\prime}_{1},B)=\delta(C,G^{\prime}_{1}) and γ(F1,B)=γ(C,G1)\gamma(F^{\prime}_{1},B)=\gamma(C,G^{\prime}_{1}). Note that B1F~1,G11G~1B\overset{1}{\longrightarrow}\widetilde{F}_{1},G^{\prime}_{1}\overset{1}{\longrightarrow}\widetilde{G}_{1}, maxB=maxG1\max B=\max G^{\prime}_{1} and maxF~1=maxG~1\max\widetilde{F}_{1}=\max\widetilde{G}_{1}, it follows from Claim 6.14 that γ(B,F~1)=γ(G1,G~1)\gamma(B,\widetilde{F}_{1})=\gamma(G^{\prime}_{1},\widetilde{G}_{1}) and δ(B,F~1)=δ(G1,G~1).\delta(B,\widetilde{F}_{1})=\delta(G^{\prime}_{1},\widetilde{G}_{1}). Then

γ(F~1,A)+γ(C,G1)+γ(G1,G~1)\displaystyle\gamma(\widetilde{F}_{1},A)+\gamma(C,G^{\prime}_{1})+\gamma(G^{\prime}_{1},\widetilde{G}_{1}) =γ(F~1,A)+γ(F1,B)+γ(B,F~1)=γ(F1,A).\displaystyle=\gamma(\widetilde{F}_{1},A)+\gamma(F^{\prime}_{1},B)+\gamma(B,\widetilde{F}_{1})=\gamma(F^{\prime}_{1},A).

Similarly, we have

δ(F~1,A)+δ(C,G1)+δ(G1,G~1)=δ(F1,A).\delta(\widetilde{F}_{1},A)+\delta(C,G^{\prime}_{1})+\delta(G^{\prime}_{1},\widetilde{G}_{1})=\delta(F^{\prime}_{1},A).

So inequality (37) gives γ(F1,A)δ(F1,A)\gamma(F^{\prime}_{1},A)\geq\delta(F^{\prime}_{1},A). Note that F1𝑐A,A𝑐CF^{\prime}_{1}\overset{c}{\prec}A,A\overset{c}{\longrightarrow}C in 1(k)\mathcal{R}_{1}(k) for c[kik]c\in[k_{i}-k], by induction hypothesis, γ(A,C)>δ(A,C)\gamma(A,C)>\delta(A,C). A contradiction to our assumption.

We next consider the case c=1c=1. By (36), we have

γ(F~1,G~1)=γ(C,G1)+γ(G1,G~1),\displaystyle\gamma(\widetilde{F}_{1},\widetilde{G}_{1})=\gamma(C,G^{\prime}_{1})+\gamma(G^{\prime}_{1},\widetilde{G}_{1}),
δ(F~1,G~1)=δ(C,G1)+δ(G1,G~1).\displaystyle\delta(\widetilde{F}_{1},\widetilde{G}_{1})=\delta(C,G^{\prime}_{1})+\delta(G^{\prime}_{1},\widetilde{G}_{1}).

Note that γ(F1,G1)δ(F1,G1)\gamma(F_{1},G_{1})\geq\delta(F_{1},G_{1}) implies γ(F~1,G~1)δ(F~1,G~1)\gamma(\widetilde{F}_{1},\widetilde{G}_{1})\geq\delta(\widetilde{F}_{1},\widetilde{G}_{1}) and

γ(C,G1)+γ(G1,G~1)δ(C,G1)+δ(G1,G~1).\gamma(C,G^{\prime}_{1})+\gamma(G^{\prime}_{1},\widetilde{G}_{1})\geq\delta(C,G^{\prime}_{1})+\delta(G^{\prime}_{1},\widetilde{G}_{1}). (38)

Note that maxB=maxG1\max B=\max G^{\prime}_{1} and (B)=(G1)=0\ell(B)=\ell(G^{\prime}_{1})=0 in 1(k)\mathcal{R}_{1}(k). By Claim 6.22, we have δ(F1,B)=δ(C,G1)\delta(F^{\prime}_{1},B)=\delta(C,G^{\prime}_{1}) and γ(F1,B)=γ(C,G1)\gamma(F^{\prime}_{1},B)=\gamma(C,G^{\prime}_{1}). Note that B1F~1,G11G~1B\overset{1}{\longrightarrow}\widetilde{F}_{1},G^{\prime}_{1}\overset{1}{\longrightarrow}\widetilde{G}_{1}, maxB=maxG1\max B=\max G^{\prime}_{1} and maxF~1=maxG~1\max\widetilde{F}_{1}=\max\widetilde{G}_{1}, it follows from Claim 6.14 that γ(B,F~1)=γ(G1,G~1)\gamma(B,\widetilde{F}_{1})=\gamma(G^{\prime}_{1},\widetilde{G}_{1}) and δ(B,F~1)=δ(G1,G~1).\delta(B,\widetilde{F}_{1})=\delta(G^{\prime}_{1},\widetilde{G}_{1}). Then

γ(C,G1)+γ(G1,G~1)\displaystyle\gamma(C,G^{\prime}_{1})+\gamma(G^{\prime}_{1},\widetilde{G}_{1}) =γ(F1,B)+γ(B,F~1)=γ(F1,F~1).\displaystyle=\gamma(F^{\prime}_{1},B)+\gamma(B,\widetilde{F}_{1})=\gamma(F^{\prime}_{1},\widetilde{F}_{1}).

Similarly, we have

δ(C,G1)+δ(G1,G~1)=δ(F1,F~1).\delta(C,G^{\prime}_{1})+\delta(G^{\prime}_{1},\widetilde{G}_{1})=\delta(F^{\prime}_{1},\widetilde{F}_{1}).

So inequality (38) gives γ(F1,F~1)δ(F1,F~1)\gamma(F^{\prime}_{1},\widetilde{F}_{1})\geq\delta(F^{\prime}_{1},\widetilde{F}_{1}).

In view of (36) that

γ(F1,A)=γ(F1,F~1)γ(A,C)\gamma(F^{\prime}_{1},A)=\gamma(F^{\prime}_{1},\widetilde{F}_{1})-\gamma(A,C)

and

δ(F1,A)=δ(F1,F~1)δ(A,C).\delta(F^{\prime}_{1},A)=\delta(F^{\prime}_{1},\widetilde{F}_{1})-\delta(A,C).

Since γ(A,C)δ(A,C)\gamma(A,C)\leq\delta(A,C) and γ(F1,F~1)δ(F1,F~1)\gamma(F^{\prime}_{1},\widetilde{F}_{1})\geq\delta(F^{\prime}_{1},\widetilde{F}_{1}), we get γ(F1,A)δ(F1,A)\gamma(F^{\prime}_{1},A)\geq\delta(F^{\prime}_{1},A). Note that F1𝑐A,A𝑐C1(k)F^{\prime}_{1}\overset{c}{\prec}A,A\overset{c}{\longrightarrow}C\in\mathcal{R}_{1}(k), where c=1[k1k]c=1\in[k_{1}-k], by induction hypothesis, γ(A,C)>δ(A,C)\gamma(A,C)>\delta(A,C). A contradiction to our assumption. This completes the proof of Claim 6.23. ∎

By (35) and (36), we have G1𝑐E,A𝑐C,maxG1=maxA,maxE=maxCG^{\prime}_{1}\overset{c}{\longrightarrow}E,A\overset{c}{\longrightarrow}C,\max G^{\prime}_{1}=\max A,\max E=\max C in 1(k)\mathcal{R}_{1}(k). By Claim 6.14 and Claim 6.23, we get

γ(G1,E)>δ(G1,E).\gamma(G^{\prime}_{1},E)>\delta(G^{\prime}_{1},E). (39)
Claim 6.24.

γ(D,H1)>δ(D,H1)\gamma(D,H^{\prime}_{1})>\delta(D,H^{\prime}_{1}).

Proof.

Since G1<DG^{\prime}_{1}<D, E<H1E<H^{\prime}_{1} and G1DEH1G^{\prime}_{1}\prec D\prec E\prec H^{\prime}_{1} in 1(k)\mathcal{R}_{1}(k), we will meet the following two cases: (D)=(H1)\ell(D)=\ell(H^{\prime}_{1}) and (D)<(H1)\ell(D)<\ell(H^{\prime}_{1}). We first consider the case (D)=(H1)\ell(D)=\ell(H^{\prime}_{1}). Then by Claim 6.22, we have γ(G1,D)=γ(E,H1)\gamma(G^{\prime}_{1},D)=\gamma(E,H^{\prime}_{1}) and δ(G1,D)=δ(E,H1)\delta(G^{\prime}_{1},D)=\delta(E,H^{\prime}_{1}). Therefore,

γ(D,H1)\displaystyle\gamma(D,H^{\prime}_{1}) =γ(G1,E)γ(G1,D)+γ(E,H1)\displaystyle=\gamma(G^{\prime}_{1},E)-\gamma(G^{\prime}_{1},D)+\gamma(E,H^{\prime}_{1})
=γ(G1,E)\displaystyle=\gamma(G^{\prime}_{1},E)
>δ(G1,E)\displaystyle>\delta(G^{\prime}_{1},E)
=δ(G1,E)δ(G1,D)+δ(E,H1)\displaystyle=\delta(G^{\prime}_{1},E)-\delta(G^{\prime}_{1},D)+\delta(E,H^{\prime}_{1})
=δ(D,H1),\displaystyle=\delta(D,H^{\prime}_{1}),

as desired. Next we assume that (D)<(H1)\ell(D)<\ell(H^{\prime}_{1}). If c=1c=1, then G1<D=E<H1G^{\prime}_{1}<D=E<H^{\prime}_{1}. By Claim 6.12,

γ(D,H1)γ(G1,D)>(39)δ(G1,E)=δ(D,H1),\gamma(D,H^{\prime}_{1})\geq\gamma(G^{\prime}_{1},D)\overset{(\ref{hh})}{>}\delta(G^{\prime}_{1},E)=\delta(D,H^{\prime}_{1}),

where the last equality holds by Proposition 4.3, as required. If c2c\geq 2, then G1<D=G~1E<H1G^{\prime}_{1}<D=\widetilde{G}_{1}\precneqq E<H^{\prime}_{1}, maxD=maxE=nk\max D=\max E=n-k and (E)>(D)0\ell(E)>\ell(D)\geq 0. By Claim 6.12 and Remark 6.9,

γ(D,H1)γ(G1,E)>(39)δ(G1,E)=δ(D,H1),\gamma(D,H^{\prime}_{1})\geq\gamma(G^{\prime}_{1},E)\overset{(\ref{hh})}{>}\delta(G^{\prime}_{1},E)=\delta(D,H^{\prime}_{1}),

as required. ∎

Consequently, f(D)<f(H1)f(D)<f(H^{\prime}_{1}) following from Claim 6.24. Recall that D1G~1D\overset{1}{\longrightarrow}\widetilde{G}_{1} and H11H~1H^{\prime}_{1}\overset{1}{\longrightarrow}\widetilde{H}_{1}. Hence, f(G~1)<f(H~1)f(\widetilde{G}_{1})<f(\widetilde{H}_{1}) by applying Claim 6.14. This implies γ(G1,H1)>δ(G1,H1)\gamma(G_{1},H_{1})>\delta(G_{1},H_{1}), as desired.

This completes the proof of Lemma 6.10. ∎

7 Verify Unimodality: The Proofs of Lemmas 3.13, 3.14 and Proposition 3.20

Lemmas 3.13 and 3.14 will follow from the following lemma.

Lemma 7.1.

Let B0={b1,,bx}[y,y+k]B_{0}=\{b_{1},\dots,b_{x}\}\cup[y,y+k] with bx<y1b_{x}<y-1, k1k\geq 1 and y+k<ny+k<n. For i[k]i\in[k], let Bi={b1,,bx}[y,y+ki][ni+1,n]B_{i}=\{b_{1},\dots,b_{x}\}\cup[y,y+k-i]\cup[n-i+1,n]. Suppose that Bi,Bi+1,Bi+21B_{i},B_{i+1},B_{i+2}\in\mathcal{R}_{1} for some i[0,k2]i\in[0,k-2] and f(Bi)f(Bi+1)f(B_{i})\leq f(B_{i+1}), then f(Bi+1)<f(Bi+2)f(B_{i+1})<f(B_{i+2}).

Let us explain why Lemma 7.1 implies Lemmas 3.13 and 3.14. Let F2,G2,H2F_{2},G_{2},H_{2} be as in Lemma 3.13 or Lemma 3.14. Let F1,G1,H1F_{1},G_{1},H_{1} be the k1k_{1}-parities of F2,G2,H2F_{2},G_{2},H_{2} respectively (Proposition 2.16 guarantees that F1,G1,H1F_{1},G_{1},H_{1} exists).

By Fact 2.14, for each i[3,t]i\in[3,t], F1F_{1} and F2F_{2} have the same kik_{i}-partner. Take s=2s=2 (see Definition 6.1), we have g(F2)=f(F1)g(F_{2})=f(F_{1}), g(G2)=f(G1)g(G_{2})=f(G_{1}) and g(H2)=f(H1)g(H_{2})=f(H_{1}). We may take Bi=F1B_{i}=F_{1}, Bi+1=G1B_{i+1}=G_{1} and Bi+2=H1B_{i+2}=H_{1}. So g(F2)g(G2)g(F_{2})\leq g(G_{2}) implies

f(Bi)=f(F1)=g(F2)g(G2)=f(G1)=f(Bi+1).f(B_{i})=f(F_{1})=g(F_{2})\leq g(G_{2})=f(G_{1})=f(B_{i+1}).

Then by Lemma 7.1, we have f(Bi+2)>f(Bi+1)f(B_{i+2})>f(B_{i+1}). So

g(H2)=f(H1)=f(Bi+2)>f(Bi+1)=f(G1)=g(G2).g(H_{2})=f(H_{1})=f(B_{i+2})>f(B_{i+1})=f(G_{1})=g(G_{2}).
Proof for Lemma 7.1.

Clearly, (Bi+1)=(Bi)+11\ell(B_{i+1})=\ell(B_{i})+1\geq 1 and (Bi+2)=(Bi+1)+1\ell(B_{i+2})=\ell(B_{i+1})+1. Let BiB^{\prime}_{i} and Bi+1B^{\prime}_{i+1} be the k1k_{1}-sets such that Bi<BiB_{i}<B^{\prime}_{i} and Bi+1<Bi+1B_{i+1}<B^{\prime}_{i+1}. Then Bi(Bi+1)Bi+1B^{\prime}_{i}\overset{\ell(B_{i+1})}{\longrightarrow}B_{i+1}. Let JJ be the k1k_{1}-set such that Bi+1(Bi+1)JB^{\prime}_{i+1}\overset{\ell(B_{i+1})}{\longrightarrow}J. Then Bi,Bi+1B^{\prime}_{i},B_{i+1} are (Bi+1)\ell(B_{i+1})-sequential and Bi+1,JB^{\prime}_{i+1},J are (Bi+1)\ell(B_{i+1})-sequential. Clearly, maxBi=maxBi+1\max B^{\prime}_{i}=\max B^{\prime}_{i+1} and maxBi+1=maxJ=n\max B_{i+1}=\max J=n. By Claim 6.14,

γ(Bi,Bi+1)=γ(Bi+1,J)\gamma(B^{\prime}_{i},B_{i+1})=\gamma(B^{\prime}_{i+1},J) and δ(Bi,Bi+1)=δ(Bi+1,J)\delta(B^{\prime}_{i},B_{i+1})=\delta(B^{\prime}_{i+1},J). (40)

If (Bi)1\ell(B^{\prime}_{i})\geq 1, then Bi<Bi=Bi+1<Bi+2=Bi+1B_{i}<B^{\prime}_{i}=B_{i+1}<B_{i+2}=B^{\prime}_{i+1}. By Proposition 4.3, δ(Bi,Bi+1)=δ(Bi+1,Bi+2)\delta(B_{i},B_{i+1})=\delta(B_{i+1},B_{i+2}). By Claim 6.12, we have γ(Bi,Bi+1)γ(Bi+1,Bi+2)\gamma(B_{i},B_{i+1})\leq\gamma(B_{i+1},B_{i+2}). So f(Bi+1)f(Bi)=γ(Bi,Bi+1)δ(Bi,Bi+1)γ(Bi+1,Bi+2)δ(Bi+1,Bi+2)=f(Bi+2)f(Bi+2)f(B_{i+1})-f(B_{i})=\gamma(B_{i},B_{i+1})-\delta(B_{i},B_{i+1})\leq\gamma(B_{i+1},B_{i+2})-\delta(B_{i+1},B_{i+2})=f(B_{i+2})-f(B_{i+2}). So if f(Bi)<f(Bi+1)f(B_{i})<f(B_{i+1}), then f(Bi+1)<f(Bi+2)f(B_{i+1})<f(B_{i+2}), as desired. We next assume that f(Bi)=f(Bi+1)f(B_{i})=f(B_{i+1}). Then δ(Bi,Bi+1)=γ(Bi,Bi+1)s\delta(B_{i},B_{i+1})=\gamma(B_{i},B_{i+1})\geq s^{\prime}. If γ(Bi,Bi+1)=s\gamma(B_{i},B_{i+1})=s^{\prime}, then δ(Bi,Bi+1)=s\delta(B_{i},B_{i+1})=s^{\prime}. Since Bi<Bi+1B_{i}<B_{i+1} and maxBi+1=n\max B_{i+1}=n, δ(Bi,Bi+1)=β(Bi,Bi+1)=0\delta(B_{i},B_{i+1})=\beta(B_{i},B_{i+1})=0 or 11, and δ(Bi,Bi+1)=β(Bi,Bi+1)=s\delta(B_{i},B_{i+1})=\beta(B_{i},B_{i+1})=s^{\prime} if and only if n=k1+kt=k2+kt1==ks+kts+1n=k_{1}+k_{t}=k_{2}+k_{t-1}=\dots=k_{s}^{\prime}+k_{t-s^{\prime}+1} (see Proposition 4.3). This is a contradiction to n>k1+ktn>k_{1}+k_{t} (since s<ss^{\prime}<s and nks+ktn\geq k_{s}+k_{t}). So γ(Bi,Bi+1)>s\gamma(B_{i},B_{i+1})>s^{\prime}. Consequently, there exists j[s+1,s]j\in[s^{\prime}+1,s] such that αj(Bi,Bi+1)>0\alpha_{j}(B_{i},B_{i+1})>0. Let jj be any integer that satisfies the above condition. By Claim 6.12, (Gi+1)k1kj\ell(G_{i+1})\geq k_{1}-k_{j}. Since (Bi+2)=(Bi+1)+1\ell(B_{i+2})=\ell(B_{i+1})+1, (Gi+1)>k1kj\ell(G_{i+1})>k_{1}-k_{j}. By Claim 6.12 again, αj(Bi+1,Bi+2)>αj(Bi,Bi+1)\alpha_{j}(B_{i+1},B_{i+2})>\alpha_{j}(B_{i},B_{i+1}). By the arbitrariness of jj and the definitions of γ(Bi,Bi+1)\gamma(B_{i},B_{i+1}) and γ(Bi+1,Bi)\gamma(B_{i+1},B_{i}) (see Definition 6.7), we conclude that γ(Bi+1,Bi)<γ(Bi,Bi+1)\gamma(B_{i+1},B_{i})<\gamma(B_{i},B_{i+1}). Combining with δ(Bi,Bi+1)=δ(Bi+1,Bi+2)\delta(B_{i},B_{i+1})=\delta(B_{i+1},B_{i+2}), we have f(Bi+1)f(Bi)=γ(Bi,Bi+1)δ(Bi,Bi+1)<γ(Bi+1,Bi+2)δ(Bi+1,Bi+2)=f(Bi+2)f(Bi+2)f(B_{i+1})-f(B_{i})=\gamma(B_{i},B_{i+1})-\delta(B_{i},B_{i+1})<\gamma(B_{i+1},B_{i+2})-\delta(B_{i+1},B_{i+2})=f(B_{i+2})-f(B_{i+2}). So if f(Bi)=f(Bi+1)f(B_{i})=f(B_{i+1}), then f(Bi+1)<f(Bi+2)f(B_{i+1})<f(B_{i+2}), as desired.

Next we assume that (Bi)=0\ell(B^{\prime}_{i})=0. By Claim 6.12, for each j[s+1,s]j\in[s^{\prime}+1,s], αj(Bi,Bi)=αj(Bi+1,Bi+1)=0\alpha_{j}(B_{i},B^{\prime}_{i})=\alpha_{j}(B_{i+1},B^{\prime}_{i+1})=0. Clearly, for for each j[s]j\in[s^{\prime}], αj(Bi,Bi)=αj(Bi+1,Bi+1)=1\alpha_{j}(B_{i},B^{\prime}_{i})=\alpha_{j}(B_{i+1},B^{\prime}_{i+1})=1 and then γ(Bi,Bi)=γ(Bi+1,Bi+1)\gamma(B_{i},B^{\prime}_{i})=\gamma(B_{i+1},B^{\prime}_{i+1}). Combining with (40), we get

γ(Bi,Bi+1)=γ(Bi+1,J)\gamma(B_{i},B_{i+1})=\gamma(B_{i+1},J) and δ(Bi,Bi+1)=δ(Bi+1,J)\delta(B_{i},B_{i+1})=\delta(B_{i+1},J).

Thus f(J)f(Bi+1)f(J)\geq f(B_{i+1}) since f(Bi)f(Bi+1)f(B_{i})\leq f(B_{i+1}). Note that (Bi+1)=(J)\ell(B_{i+1})=\ell(J) and Bi+1Bi+1t1((Bi+1))B_{i+1}\setminus B_{i+1}^{\rm t}\in\mathcal{R}_{1}(\ell(B_{i+1})), so JJt1((Bi+1))J\setminus J^{\rm t}\in\mathcal{R}_{1}(\ell(B_{i+1})) and Bi+1Bi+1t1JJtB_{i+1}\setminus B_{i+1}^{\rm t}\overset{1}{\prec}J\setminus J^{\rm t}. Since (Bi+2)=(Bi+1)+1\ell(B_{i+2})=\ell(B_{i+1})+1, Bi+2[n(Bi+1)+1,n]1((Bi+1))B_{i+2}\setminus[n-\ell(B_{i+1})+1,n]\in\mathcal{R}_{1}(\ell(B_{i+1})). And in 1((Bi+1))\mathcal{R}_{1}(\ell(B_{i+1})), we have

Bi+1Bi+1t1JJt1Bi+2[n(Bi+1)+1,n].B_{i+1}\setminus B_{i+1}^{\rm t}\overset{1}{\prec}J\setminus J^{\rm t}\overset{1}{\longrightarrow}B_{i+2}\setminus[n-\ell(B_{i+1})+1,n].

By Lemma 6.10 and f(J)f(Bi+1)f(J)\geq f(B_{i+1}), we obtain f(Bi+2)>f(J)f(Bi+1)f(B_{i+2})>f(J)\geq f(B_{i+1}), as required. ∎

Proof for Proposition 3.20.

The proofs of equalities (15) and (16) are quite similar, we prove the previous one only.

Let G2=[2,k2+1]G_{2}=[2,k_{2}+1] and G1G_{1} be the k1k_{1}-parity of G2G_{2}. Since k1>k2k_{1}>k_{2}, (G1)1\ell(G_{1})\geq 1. So G1=[2,k2+1][nk1+k2+1,n]G_{1}=[2,k_{2}+1]\cup[n-k_{1}+k_{2}+1,n]. Let AA be the k1k_{1}-parity of [2,k2]{n}[2,k_{2}]\cup\{n\}. So A=[2,k2][nk1+k2,n]A=[2,k_{2}]\cup[n-k_{1}+k_{2},n]. To prove (15), it is equivalent to prove that f(G1)<max{f({1}),f(A)}f(G_{1})<\max\{f(\{1\}),f(A)\}. Let k=k1k2k=k_{1}-k_{2}. Note that G1G1tG_{1}\setminus G_{1}^{\rm t}, {1,nk1+2,,n}[nk1+k2+1,n]\{1,n-k_{1}+2,\dots,n\}\setminus[n-k_{1}+k_{2}+1,n] and A[nk1+k2+1,n]A\setminus[n-k_{1}+k_{2}+1,n] are contained in 1(k)\mathcal{R}_{1}(k) and

{1,nk1+2,,n}[nk1+k2+1,n]<G1G1t1A[nk1+k2+1,n]\{1,n-k_{1}+2,\dots,n\}\setminus[n-k_{1}+k_{2}+1,n]<G_{1}\setminus G_{1}^{\rm t}\overset{1}{\longrightarrow}A\setminus[n-k_{1}+k_{2}+1,n]

in 1(k)\mathcal{R}_{1}(k). Let C1=G1G1t{max(G1G1t)+1}[n(G1)+2,n]C_{1}=G_{1}\setminus G_{1}^{\rm t}\cup\{\max(G_{1}\setminus G_{1}^{\rm t})+1\}\cup[n-\ell(G_{1})+2,n] (if (G1)=2\ell(G_{1})=2, then [n(G1)+2,n]=[n-\ell(G_{1})+2,n]=\emptyset). Since (G1)1\ell(G_{1})\geq 1, |C1|=k1|C_{1}|=k_{1}. Let B1(k)B\in\mathcal{R}_{1}(k) be the set such that G1G1t<BG_{1}\setminus G_{1}^{\rm t}<B and B1=B[n(G1)+1,n]B_{1}=B\cup[n-\ell(G_{1})+1,n]. Clearly, {1,nk1+2,,n}C1G1B1A\{1,n-k_{1}+2,\dots,n\}\precneqq C_{1}\precneqq G_{1}\precneqq B_{1}\prec A. We may also assume that f(G1)f(C1)f(G_{1})\geq f(C_{1}) since otherwise, g(2,3)>g(G1)=f(G1)g(\mathcal{F}_{2,3})>g(G_{1})=f(G_{1}), we are done. Based on these, we may apply Lemma 7.1 to C1,G1,B1C_{1},G_{1},B_{1}. Since f(G1)f(C1)f(G_{1})\geq f(C_{1}), Lemma 7.1 gives f(G1)<f(B1)f(G_{1})<f(B_{1}). Consequently, by Lemma 6.10, f(A)>f(B)>f(G1)f(A)>f(B)>f(G_{1}), as desired. ∎

8 Acknowledgements

This work was supported by NSFC (Grant No. 11931002).

References

  • [1] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxf. 2(12) (1961) 313–320.
  • [2] P. Frankl, A. Kupavskii, Erdős-Ko-Rado theorem for {0, ±1}-vectors, J. Comb. Theory Ser. A 155 (2018), 157–179.
  • [3] P. Frankl, A. Kupavskii, Sharp results concerning disjoint cross intersecting families, Europ J. Combin 86 (2020) 103089.
  • [4] P. Frankl, N. Tokushige, Some best possible inequalities concerning crossing-intersecting families, J. Combin. Theory Ser. A 61 (1992) 87-97.
  • [5] Yang Huang, Yuejian Peng, The maximum sum of sizes of non-empty pairwise cross intersecting families. arXiv: 2306.03473.
  • [6] Yang Huang, Yuejian Peng, Coefficients added non-empty pairwise cross intersecting families. Manuscript.
  • [7] Yang Huang, Yuejian Peng, Mixed pairwise cross intersecting families (II). In preparation.
  • [8] A.J.W. Hilton, E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxf. 2 (18) (1967) 369-384.
  • [9] A.J.W. Hilton, The Erdős-Ko-Rado theorem with valency conditions, Unpublished Manuscript, 1976.
  • [10] A.J.W. Hilton, An intersection theorem for a collection of families of subsets of a finite set, J. London Math. Soc. 2 (1977) 369-376.
  • [11] G.O.H. Katona, A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, Akadémai Kiadó, (1968) 187-207.
  • [12] J.B. Kruskal, The number of simplices in a complex, in: Math. Opt. Techniques, Univ. of Calif. Press, (1963) 251-278.
  • [13] C. Shi, P. Frankl, J. Qian, On non-empty cross-intersecting families, Combinatorica 42 (2022) 1513–1525