This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

institutetext: a. St. Petersburg Department of the Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, 191023 St. Petersburg, Russia.
b. Laboratoire de Physique de l’Ecole Normale Superieure, CNRS, Universite PSL, Sorbonne Universites, 24 rue Lhomond, 75005 Paris, France
c. Institut de Physique Theorique, Universite Paris-Saclay, CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France
d. Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L2Y5, Canada.

Mirror channel eigenvectors of the dd-dimensional fishnets

Sergey Derkachova, Gwenaël Ferrandob,c, Enrico Olivuccid
Abstract

We present a basis of eigenvectors for the graph building operators acting along the mirror channel of planar fishnet Feynman integrals in dd-dimensions. The eigenvectors of a fishnet lattice of length NN depend on a set of NN quantum numbers (uk,lk)(u_{k},l_{k}), each associated with the rapidity and bound-state index of a lattice excitation. Each excitation is a particle in (1+1)(1+1)-dimensions with O(d)O(d) internal symmetry, and the wave-functions are formally constructed with a set of creation/annihilation operators that satisfy the corresponding Zamolodchikovs-Faddeev algebra. These properties are proved via the representation, new to our knowledge, of the matrix elements of the fused R-matrix with O(d)O(d) symmetry as integral operators on the functions of two spacetime points. The spectral decomposition of a fishnet integral we achieved can be applied to the computation of Basso-Dixon integrals in higher dimensions.

1 Introduction

The fishnet integrals are a class of Feynman diagrams with square lattice topology Zamolodchikov1980a of remarkable importance for massless quantum field theory and—especially—for theories with conformal symmetry. Diagrams of fishnet type describe the planar limit of correlators in the strongly-deformed 𝒩=4\mathcal{N}=4 supersymmetric Yang–Mills theory introduced by V.Kazakov and O.Gürdoğan Gurdogan:2015csr . Moreover, for minimal size of the square lattice (ladder integrals), they form the basis of functions needed for the bootstrap of four-point functions of 12\frac{1}{2}-BPS operators with specific R-symmetry polarisations in the undeformed theory Coronado_2019 ; Coronado_2020 . Furthermore, other classes of fishnet integrals—with different lattice topology—describe completely the correlators of other planar conformal field theories, for instance the 3D3D chiral theory obtained as a deformation of ABJM super-conformal theory Caetano:2016ydc . Finally, we shall mention that specific fishnets describe the Landau singularity of massless scattering amplitudes at all-loops Prlina:2018ukf .

The remarkable properties of the fishnets is the possibility to find algorithms for their computation at any loop order Basso:2017jwq . The procedure relies on methods of quantum integrability that map the Feynman integral to (the integral kernel of) a diagonalisable operator—the transfer-matrix of an integrable XXX spin chain with conformal symmetry Chicherin:2012yn ; Gromov:2017cja . Also, for a square lattice without boundary conditions imposed, these integrals enjoy infinite-dimensional Yangian symmetry Chicherin:2017frs ; Chicherin:2017cns .

Refer to caption
Figure 1: Left: Graph-building operator for a fishnet integral of size N=3N=3, with fixed boundaries x0x_{0} and x0x^{\prime}_{0}. Solid lines are bare propagators. Right: Fishnet integral of size M×NM\times N with M=4M=4 and N=3N=3. The boundaries are fixed to points x0=0x_{0}=0 and x0=x_{0}^{\prime}=\infty (amputation of upper legs), for which the graph-builder is especially simple to diagonalise. The Basso–Dixon integral would correspond to a reduction xk=xx_{k}=x and yk=yy_{k}=y. Black dots are integrated vertices and circles are external points.

A successful application of the spin-chain tools to fishnets is the computation of Basso–Dixon (BD) integrals in d=2,4d=2,4 spacetime dimensions. BD integrals Basso:2017jwq are specific reductions of a fishnet with open boundaries, which can be constructed using a so-called graph-building operator, see Fig. 1. This graph-building operator is said to act in the “mirror channel” of the fishnet lattice. B. Basso and L. Dixon originally obtained Basso:2017jwq a nice explicit determinant formula for this general family of Feynman diagrams in d=4d=4. Their derivation may be decomposed in two steps. First, the Feynman diagram is rewritten in some specific representation, then, the obtained expression is transformed to a determinant. The BD integrals in two dimensions were computed in Derkachov2019 , and in that case the transition to the determinant form is straightforward. In d=4d=4 the analogue transformation is more complicated and was proven in Basso:2021omx .

It was demonstrated in Derkachov2019 ; Derkachov:2019tzo ; Derkachov:2020zvv that the representation obtained in the first step is the so-called separated variables representation. Quantum separation of variables (SoV), introduced by E. Sklyanin Sklyanin:1984sb ; Sklyanin:1991ss ; Sklyanin:1995bm , is one of the various techniques Faddeev:1996iy ; Faddeev:1980zy ; Kulish:1981bi ; Sklyanin:1991ss used to solve quantum integrable models.

Roughly speaking, SoV consists in finding a basis of the quantum space in which the spectral problem simplifies drastically. Thus, it can be understood as some far-reaching generalisation of the usual Fourier transform. From the point of view of quantum mechanics, the Fourier transform is a transition from coordinate representation to momentum representation. It is the simplest example of a canonical transformation, and the generalised eigenvectors of the momentum operator are used as the integral kernel of the Fourier transform. The freedom in using various unitary equivalent representations is typical of quantum mechanics, but there is a natural distinguished representation in the case of integrable systems – Sklyanin’s SoV representation. The SoV basis is an eigenbasis for a particularly interesting family of commuting operators Sklyanin:1984sb ; Sklyanin:1991ss ; Sklyanin:1995bm . BD integrals are related to non-compact conformal spin chains Derkachov:2001yn ; Chicherin:2012yn , and it is indeed possible to define a commuting family of operators 𝐐(u)\mathbf{Q}(u), which includes the graph-building operator.

For a long time, application of the SoV method was restricted to the models with symmetry group of the lower rank Sklyanin:1991ss ; Derkachov:2001yn ; Derkachov:2002tf ; Bytsko:2006ut ; Kharchev:2001rs , or to the Toda chain Sklyanin:1984sb ; Kharchev:1999bh ; Kharchev:2000yj ; Kharchev:2000ug ; Kozlowski:2014jka . In the last few years, however, much progress has been made for compact Gromov:2016itr ; Maillet:2018bim ; Ryan:2018fyo ; Maillet:2018czd ; Maillet:2019nsy ; Gromov:2019wmz ; Maillet:2020ykb ; Gromov:2020fwh ; Ryan:2020rfk and non-compact Cavaglia:2019pow ; Gromov:2020fwh ; Cavaglia:2021mft spin chains with higher-rank symmetry.

In the present paper, we generalise the first step in the computation of BD integrals to the case of general dd, and we construct the corresponding dd-dimensional SoV representation. Namely, we give an explicit description of a basis of eigenvectors of 𝐐(u)\mathbf{Q}(u) and analyse their properties, thus revealing an underlying realisation of the Zamolodchikovs–Faddeev algebra Zamolodchikov:1978xm ; Faddeev:1980zy with respect to the exchange of their quantum numbers, i.e. the excitations of the lattice. The construction of the eigenvectors for an arbitrary number of sites extends, to any size NN of the fishnet, the two-site eigenvector presented in Basso:2019xay . However, the investigation of the symmetry properties of the eigenvectors, the calculation of the corresponding inner product and of Sklyanin’s measure are based on a new integral interchange relation. The main ingredient of this interchange relation is a particular O(d)O(d)-invariant R-matrix—more precisely, a solution of the Yang–Baxter equation acting in the tensor product of two arbitrary symmetric traceless representations of O(d)O(d).

Applied to the computation of the M×NM\times N BD integral, our results allow us to rewrite it in the following way:

πNd2x,,x|(i=1Nx^i1,i2δ)𝐁N,δ~M+1|y,,y=0l1,,lN+1midli++x,,x|(i=1Nx^i1,i2δ)|𝐮1,,𝐮N;Cm1,l1CmN,lN×𝐮1,,𝐮N;Cm1,l1CmN,lN|y,,yμ(𝐮1,,𝐮N)N!k=1NQlkM+1(uk)duk,\pi^{\frac{Nd}{2}}\bra{x,\dots,x}\left(\prod_{i=1}^{N}\hat{x}_{i-1,i}^{2\delta}\right)\mathbf{B}_{N,\tilde{\delta}}^{M+1}\ket{y,\dots,y}\\ =\sum_{\begin{subarray}{c}0\leqslant l_{1},\dots,l_{N}\leqslant+\infty\\ 1\leqslant m_{i}\leqslant d_{l_{i}}\end{subarray}}\int_{-\infty}^{+\infty}\cdots\int_{-\infty}^{+\infty}\bra{x,\dots,x}\left(\prod_{i=1}^{N}\hat{x}_{i-1,i}^{2\delta}\right)\ket{\mathbf{u}_{1},\dots,\mathbf{u}_{N};C_{m_{1},l_{1}}\otimes\dots\otimes C_{m_{N},l_{N}}}\\ \times\langle{\mathbf{u}_{1},\dots,\mathbf{u}_{N};C_{m_{1},l_{1}}\otimes\dots\otimes C_{m_{N},l_{N}}}\ket{y,\dots,y}\frac{\mu(\mathbf{u}_{1},\dots,\mathbf{u}_{N})}{N!}\prod_{k=1}^{N}Q^{M+1}_{l_{k}}(u_{k})\text{d}u_{k}\,, (1.1)

where 𝐮k=(uk,lk)\mathbf{u}_{k}=(u_{k},l_{k}), and {|𝐮1,,𝐮N;Cm1,l1CmN,lN}\{\ket{\mathbf{u}_{1},\dots,\mathbf{u}_{N};C_{m_{1},l_{1}}\otimes\dots\otimes C_{m_{N},l_{N}}}\} is a complete basis of eigenvectors of the graph-building operator 𝐁N,δ~\mathbf{B}_{N,\tilde{\delta}},

Ql(u)=Γ(δ)Γ(d4δ2+l2iu)Γ(d4δ2+l2+iu)Γ(δ~)Γ(d4+δ2+l2+iu)Γ(d4+δ2+l2iu),Q_{l}(u)=\frac{\Gamma(\delta)\Gamma\left(\frac{d}{4}-\frac{\delta}{2}+\frac{l}{2}-\operatorname{i}u\right)\Gamma\left(\frac{d}{4}-\frac{\delta}{2}+\frac{l}{2}+\operatorname{i}u\right)}{\Gamma(\tilde{\delta})\Gamma\left(\frac{d}{4}+\frac{\delta}{2}+\frac{l}{2}+\operatorname{i}u\right)\Gamma\left(\frac{d}{4}+\frac{\delta}{2}+\frac{l}{2}-\operatorname{i}u\right)}\,, (1.2)

and Sklyanin’s measure is

μ(𝐮1,,𝐮N)=1j<kN[(ujuk)2+(ljlk)24][(ujuk)2+(d2+lj+lk)24].{\mu(\mathbf{u}_{1},\dots,\mathbf{u}_{N})=\prod_{1\leqslant j<k\leqslant N}\left[(u_{j}-u_{k})^{2}+\frac{(l_{j}-l_{k})^{2}}{4}\right]\left[(u_{j}-u_{k})^{2}+\frac{(d-2+l_{j}+l_{k})^{2}}{4}\right]}\,. (1.3)

The explicit construction of the eigenvectors is described in Section 3. The next technical step to be performed is the simplification of 𝐮1,,𝐮N;Cm1,l1CmN,lN|y,,y\langle{\mathbf{u}_{1},\dots,\mathbf{u}_{N};C_{m_{1},l_{1}}\otimes\dots\otimes C_{m_{N},l_{N}}}\ket{y,\dots,y}. Though this was quite easy in two and four dimensions Derkachov2019 ; Derkachov:2019tzo ; Derkachov:2020zvv , we will show, on the simplest non-trivial example, i.e. the N=2N=2 case, that the situation in generic dimension is much more involved.

The rest of the paper is organised as follows. In Section 2, we work out the properties of a solution l1,l2(u)\mathbb{R}_{l_{1},l_{2}}(u) of the Yang-Baxter equation acting on the tensor product of spaces of rank-l1l_{1} and rank-l2l_{2} symmetric traceless tensors. In particular, we shall present two new representations for the matrix elements of the O(d)O(d)-invariant R-matrix. The first one is obtained by a direct application of the fusion procedure Kulish:1981gi , while the second one is an integral representation and is in fact equivalent to the main interchange relation. Along with that, the next section introduces the graphical Feynman diagram notations of lines and vertices that will be used to prove the most cumbersome identities throughout the paper. Section 3 contains the explicit construction of the eigenvectors of the fishnet, which is done in an iterative manner as in the d=2d=2 case Derkachov:2001yn ; Derkachov:2014gya ; Derkachov2019 , the determination of the spectrum, and the analysis of the eigenvectors’ properties. An eigenvector for a lattice of size NN turns out to be described by a set of NN excitations, each characterised by a rapidity uku_{k} and a bound-state index or spin lkl_{k}, according to the analysis carried out in Basso:2019xay . The rearrangement of the excitations inside an eigenvector and the overlap of eigenvectors reveal a picture of factorised scattering of excitations described by the S matrix l1,l2(u)\mathbb{R}_{l_{1},l_{2}}(u), up to a non-trivial phase. We work out, in Section 4, the simplest examples of application to Basso-Dixon integrals in any dd.

Appendix A contains the basic integral identities used throughout the paper, while the proof of the integral representation for the R-matrix and of some related identities are relegated to Appendices B, C, and D. Appendix E presents an alternative basis of the eigenvectors which makes use of auxiliary spinors, in the spirit of the d=4d=4 results of Derkachov:2019tzo ; Derkachov:2020zvv .

2 O(d)O(d)-invariant R Matrices

For ll\in\mathbb{N}, we denote by 𝕍l\mathbb{V}_{l} the (complex) vector space of symmetric traceless tensors of rank ll, in dimension dd. We shall denote its dimension by dld_{l}. We will sometimes refer to ll as the spin.

This section contains an explicit construction of the R-matrices l1,l2\mathbb{R}_{l_{1},l_{2}} acting in the tensor product 𝕍l1𝕍l2\mathbb{V}_{l_{1}}\otimes\mathbb{V}_{l_{2}} and satisfying the Yang–Baxter relation in 𝕍l1𝕍l2𝕍l3\mathbb{V}_{l_{1}}\otimes\mathbb{V}_{l_{2}}\otimes\mathbb{V}_{l_{3}} for arbitrary l1,l2,l3l_{1},l_{2},l_{3}. Our starting point will be the R-matrix by A. Zamolodchikov and Al. Zamolodchikov Zamolodchikov:1978xm

C𝕍1𝕍1,[1,1(u)C]μν=1u+i[uCμν+iCνμiuu+id22Cδμνρρ].\forall\,C\in\mathbb{V}_{1}\otimes\mathbb{V}_{1},\quad\left[\mathbb{R}_{1,1}(u)C\right]^{\mu\nu}=\frac{1}{u+\operatorname{i}}\left[uC^{\mu\nu}+\operatorname{i}C^{\nu\mu}-\frac{\operatorname{i}u}{u+\operatorname{i}\frac{d-2}{2}}{C}{{}^{\rho}_{\rho}}\delta^{\mu\nu}\right]\,. (2.1)

In the first part of the section, we apply the fusion procedure Kulish:1981gi ; Kulish:1981bi to the construction of the general R-matrix l1,l2\mathbb{R}_{l_{1},l_{2}}. The fusion procedure was used for the calculation of R-matrices 1,2,1,3\mathbb{R}_{1,2},\mathbb{R}_{1,3} and 2,2\mathbb{R}_{2,2} by N. MacKay MacKay:1990mp and for 1,l\mathbb{R}_{1,l} by N. Reshetikhin Reshetikhin:1985eun ; Reshetikhin:1985mhr , we therefore generalise their results.

In the second part of the section, we shall prove an identity, which we call the interchange relation, and in which l1,l2\mathbb{R}_{l_{1},l_{2}} plays the key role. This identity will be used extensively in the rest of the paper as it allows to prove symmetry properties of the eigenvectors of the transfer-matrix operators under the exchange of excitations. As a matter of fact, the interchange relation could be considered as the defining relation for the R-matrix l1,l2\mathbb{R}_{l_{1},l_{2}}, since it contains all the information about it. Starting from this identity, it is possible to derive an integral representation for the R-matrix, which allows to prove in a simple way its unitarity and the Yang–Baxter property. Vice versa, from the integral representation for the R-matrix it is possible to derive the interchange relation.

The equivalence of the two expressions for l1,l2\mathbb{R}_{l_{1},l_{2}}—the integral representation and the representation obtained directly by fusion procedure—is far from obvious. Our proof is very technical and we postpone it to Appendix B. We should note that the spectral decomposition for the general R-matrix l1,l2\mathbb{R}_{l_{1},l_{2}} was actually obtained thirty years ago by N. MacKay MacKay:1990mp ; MacKay:1991bj . The latter result is in some sense complementary to both our expressions and we have checked their equivalence in the case of 1,l\mathbb{R}_{1,l}.

2.1 Fusion procedure

In this subsection we show that the R-matrix acting on 𝕍l1𝕍l2\mathbb{V}_{l_{1}}\otimes\mathbb{V}_{l_{2}} is defined by the following matrix elements

xl1yl2[l1,l2(u)ζl1ηl2]=(iu+l2l12)l1(iul1+l22)l1k0,n0k+nmin(l1,l2)l1!l2!k!n!(l1kn)!(l2kn)!×(xyζη)k(xηyζ)n(iu+4l1l2d2)k(iu+2l1l22)n(xζ)l1kn(yη)l2kn,x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]=\frac{\left(\operatorname{i}u+\frac{l_{2}-l_{1}}{2}\right)_{l_{1}}}{\left(\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)_{l_{1}}}\sum_{\begin{subarray}{c}k\geqslant 0\,,n\geqslant 0\\ k+n\leqslant\min(l_{1},l_{2})\end{subarray}}\frac{l_{1}!l_{2}!}{k!n!(l_{1}-k-n)!(l_{2}-k-n)!}\\ \times\frac{\left(x\cdot y\,\zeta\cdot\eta\right)^{k}\left(x\cdot\eta\,y\cdot\zeta\right)^{n}}{\left(\operatorname{i}u+\frac{4-l_{1}-l_{2}-d}{2}\right)_{k}\left(-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}\right)_{n}}(x\cdot\zeta)^{l_{1}-k-n}(y\cdot\eta)^{l_{2}-k-n}\,, (2.2)

where all contractions, represented with a dot, of tensor indices are done using the Euclidean metric δμν\delta_{\mu\nu}, and x,y,ζ,ηx,y,\zeta,\eta are four null vectors in d\mathbb{C}^{d}. One has for instance

ζ2=ζζ=ζμζμ=ζμζνδμν=0.\zeta^{2}=\zeta\cdot\zeta=\zeta_{\mu}\zeta^{\mu}=\zeta^{\mu}\zeta^{\nu}\delta_{\mu\nu}=0\,. (2.3)

We also use the Pochhammer symbol

(a)l=Γ(a+l)Γ(a)=k=0l1(a+k).(a)_{l}=\frac{\Gamma(a+l)}{\Gamma(a)}=\prod_{k=0}^{l-1}(a+k)\,. (2.4)

The proof of (2.2) is done in two steps. We first apply fusion to increase one of the spins, keeping the other equal to 1. In that case, the previous formula contains only three terms and reads

xyl[1,l(u)ζηl]=1u+il+12[(uil12)xζ(yη)l+ilxηyζ(yη)l1iluil12u+id+l32xyζη(yη)l1].x\otimes y^{\otimes l}\cdot\left[\mathbb{R}_{1,l}(u)\zeta\otimes\eta^{\otimes l}\right]=\frac{1}{u+\operatorname{i}\frac{l+1}{2}}\Bigg{[}\left(u-\operatorname{i}\frac{l-1}{2}\right)x\cdot\zeta(y\cdot\eta)^{l}\\ +\operatorname{i}l\,x\cdot\eta\,y\cdot\zeta(y\cdot\eta)^{l-1}-\operatorname{i}l\frac{u-\operatorname{i}\frac{l-1}{2}}{u+\operatorname{i}\frac{d+l-3}{2}}x\cdot y\,\zeta\cdot\eta(y\cdot\eta)^{l-1}\Bigg{]}\,. (2.5)

Equivalently, we could have written, for C𝕍1𝕍lC\in\mathbb{V}_{1}\otimes\mathbb{V}_{l},

[1,l(u)C]μν1νl=1u+il+12[(uil12)Cμν1νl+ij=1lCνjμν1νj^νliuil12u+id+l32j=1lδμνjCρρ+ν1νj^νl1u+id+l321j<klδνjνkCρρ]μν1νj^νk^νl.\left[\mathbb{R}_{1,l}(u)C\right]^{\mu\nu_{1}\cdots\nu_{l}}=\frac{1}{u+\operatorname{i}\frac{l+1}{2}}\Bigg{[}\left(u-\operatorname{i}\frac{l-1}{2}\right)C^{\mu\nu_{1}\cdots\nu_{l}}+\operatorname{i}\sum_{j=1}^{l}C^{\nu_{j}\mu\nu_{1}\cdots\widehat{\nu_{j}}\cdots\nu_{l}}\\ -\operatorname{i}\frac{u-\operatorname{i}\frac{l-1}{2}}{u+\operatorname{i}\frac{d+l-3}{2}}\sum_{j=1}^{l}\delta^{\mu\nu_{j}}{C}^{\rho}_{\rho}{}^{\nu_{1}\cdots\widehat{\nu_{j}}\cdots\nu_{l}}+\frac{1}{u+\operatorname{i}\frac{d+l-3}{2}}\sum_{1\leqslant j<k\leqslant l}\delta^{\nu_{j}\nu_{k}}{C}^{\rho}_{\rho}{}^{\mu\nu_{1}\cdots\widehat{\nu_{j}}\cdots\widehat{\nu_{k}}\cdots\nu_{l}}\Bigg{]}\,. (2.6)

Before proving this last formula, we point out that, at the special point u=il+12u=\operatorname{i}\frac{l+1}{2}, the matrix 1,l(u)\mathbb{R}_{1,l}(u) reduces to the orthogonal projector 1,l(l+1)\mathbb{P}_{1,l}^{(l+1)} onto 𝕍l+1𝕍1𝕍l\mathbb{V}_{l+1}\subset\mathbb{V}_{1}\otimes\mathbb{V}_{l}. This fact justifies why the fusion procedure gives new solutions of the Yang–Baxter relation. Its proof goes as follows: first, one notices from (2.6) that 1,l(il+12)C\mathbb{R}_{1,l}\left(\operatorname{i}\frac{l+1}{2}\right)C is symmetric traceless in all l+1l+1 indices. After that, it is enough to remark that its contraction with any other symmetric traceless tensor C𝕍l+1C^{\prime}\in\mathbb{V}_{l+1} is given by CCC^{\prime}\cdot C.

The proof is made by induction: the property (2.6) clearly holds for l=1l=1 so we assume that it holds for some l1l\geqslant 1. Let us show it for l+1l+1, where the fusion procedure states that

1,l(l+1)1,1(uil2)1,l(u+i2)1,l(l+1)=1,l+1(u).\mathbb{P}_{1^{\prime},l}^{(l+1)}\mathbb{R}_{1,1^{\prime}}\left(u-\frac{\operatorname{i}l}{2}\right)\mathbb{R}_{1,l}\left(u+\frac{\operatorname{i}}{2}\right)\mathbb{P}_{1^{\prime},l}^{(l+1)}=\mathbb{R}_{1,l+1}(u)\,. (2.7)

We remind that, due to the Yang–Baxter equation, the left projector could be removed. Consequently, applying the left-hand side to C𝕍1𝕍l+1𝕍1𝕍1𝕍lC\in\mathbb{V}_{1}\otimes\mathbb{V}_{l+1}\subset\mathbb{V}_{1}\otimes\mathbb{V}^{\prime}_{1}\otimes\mathbb{V}_{l} gives

[1,1(uil2)1,l(u+i2)C]μν1νl+1=1u+i2l2[(uil2)[1,l(u+i2)C]μν1νl+1+i[1,l(u+i2)C]ν1μν2νl+1iuil2u+id2l2[1,l(u+i2)C]δμν1ρρν2νl+1].\left[\mathbb{R}_{1,1^{\prime}}\left(u-\frac{\operatorname{i}l}{2}\right)\mathbb{R}_{1,l}\left(u+\frac{\operatorname{i}}{2}\right)C\right]^{\mu\nu_{1}\cdots\nu_{l+1}}=\frac{1}{u+\operatorname{i}\frac{2-l}{2}}\Bigg{[}\left(u-\frac{\operatorname{i}l}{2}\right)\left[\mathbb{R}_{1,l}\left(u+\frac{\operatorname{i}}{2}\right)C\right]^{\mu\nu_{1}\cdots\nu_{l+1}}\\ +\operatorname{i}\left[\mathbb{R}_{1,l}\left(u+\frac{\operatorname{i}}{2}\right)C\right]^{\nu_{1}\mu\nu_{2}\cdots\nu_{l+1}}-\operatorname{i}\frac{u-\frac{\operatorname{i}l}{2}}{u+\operatorname{i}\frac{d-2-l}{2}}{\left[\mathbb{R}_{1,l}\left(u+\frac{\operatorname{i}}{2}\right)C\right]}{{}^{\rho\rho\nu_{2}\cdots\nu_{l+1}}}\delta^{\mu\nu_{1}}\Bigg{]}\,. (2.8)

We now use equation (2.6) to write the second term in the right-hand side as

[1,l(u+i2)C]ν1μν2νl+1=1u+il+22[(uil22)Cν1μν2νl+1+ij=2l+1Cνjμν1νj^νl+1iuil22u+id+l22j=2l+1δν1νjCρμρν2νj^νl+1+1u+id+l222j<kl+1δνjνkCρμρν1νj^νk^νl+1],\left[\mathbb{R}_{1,l}\left(u+\frac{\operatorname{i}}{2}\right)C\right]^{\nu_{1}\mu\nu_{2}\cdots\nu_{l+1}}=\frac{1}{u+\operatorname{i}\frac{l+2}{2}}\Bigg{[}\left(u-\operatorname{i}\frac{l-2}{2}\right)C^{\nu_{1}\mu\nu_{2}\cdots\nu_{l+1}}+\operatorname{i}\sum_{j=2}^{l+1}C^{\nu_{j}\mu\nu_{1}\cdots\widehat{\nu_{j}}\cdots\nu_{l+1}}\\ -\operatorname{i}\frac{u-\operatorname{i}\frac{l-2}{2}}{u+\operatorname{i}\frac{d+l-2}{2}}\sum_{j=2}^{l+1}\delta^{\nu_{1}\nu_{j}}{C}^{\rho\mu\rho\nu_{2}\cdots\widehat{\nu_{j}}\cdots\nu_{l+1}}+\frac{1}{u+\operatorname{i}\frac{d+l-2}{2}}\sum_{2\leqslant j<k\leqslant l+1}\delta^{\nu_{j}\nu_{k}}{C}^{\rho\mu\rho\nu_{1}\cdots\widehat{\nu_{j}}\cdots\widehat{\nu_{k}}\cdots\nu_{l+1}}\Bigg{]}\,, (2.9)

and, using the fact that CC is symmetric traceless in the last l+1l+1 indices, the third term is

[1,l(u+i2)C]ρρν2νl+1=(uil22)(u+idl22)(u+il+22)(u+id+l22)Cρρν2νl+1.\left[\mathbb{R}_{1,l}\left(u+\frac{\operatorname{i}}{2}\right)C\right]^{\rho\rho\nu_{2}\cdots\nu_{l+1}}=\frac{\left(u-\operatorname{i}\frac{l-2}{2}\right)\left(u+\operatorname{i}\frac{d-l-2}{2}\right)}{\left(u+\operatorname{i}\frac{l+2}{2}\right)\left(u+\operatorname{i}\frac{d+l-2}{2}\right)}C^{\rho\rho\nu_{2}\cdots\nu_{l+1}}\,. (2.10)

Putting everything together we straightforwardly recover (2.6) for 1,l+1(u)\mathbb{R}_{1,l+1}(u). Turning our attention to the more general case, it suffices to prove (2.2) for l1l2l_{1}\leqslant l_{2}, which we shall do by induction on l1l_{1} for given l2l_{2}. We have just verified it for l1=1l_{1}=1, and assuming it holds for some l1l21l_{1}\leqslant l_{2}-1, one just needs to use fusion to compute l1+1,l2(u)\mathbb{R}_{l_{1}+1,l_{2}}(u):

xl1+1yl2l1,l2(u+i2)1,l2(uil12)ζl1+1ηl2=xl1+1yl2l1+1,l2(u)ζl1+1ηl2.x^{\otimes l_{1}+1}\otimes y^{\otimes l_{2}}\cdot\mathbb{R}_{l_{1},l_{2}}\left(u+\frac{\operatorname{i}}{2}\right)\mathbb{R}_{1,l_{2}}\left(u-\frac{\operatorname{i}l_{1}}{2}\right)\zeta^{\otimes l_{1}+1}\otimes\eta^{\otimes l_{2}}\\ =x^{\otimes l_{1}+1}\otimes y^{\otimes l_{2}}\cdot\mathbb{R}_{l_{1}+1,l_{2}}(u)\zeta^{\otimes l_{1}+1}\otimes\eta^{\otimes l_{2}}\,. (2.11)

In the previous equation the product of the two R-matrices is taken in 𝕍l2\mathbb{V}_{l_{2}}. In order to compute this product, one may insert a resolution of the identity of 𝕍l2\mathbb{V}_{l_{2}} between the two matrices. More explicitly, if {Cj,l}1jdl\{C_{j,l}\}_{1\leqslant j\leqslant d_{l}} is an orthonormal basis of 𝕍l\mathbb{V}_{l} (for the inner product (C,C)=Cμ1μlCμ1μl=CC(C,C^{\prime})=C^{*}_{\mu_{1}\dots\mu_{l}}C^{\prime\mu_{1}\dots\mu_{l}}=C^{*}\cdot C^{\prime}), one can write

xl1+1yl2l1,l2(a)1,l2(b)ζl1+1ηl2=j=1dl2xl1yl2[l1,l2(a)ζl1Cj,l2]xCj,l2[1,l2(b)ζηl2].x^{\otimes l_{1}+1}\otimes y^{\otimes l_{2}}\cdot\mathbb{R}_{l_{1},l_{2}}\left(a\right)\mathbb{R}_{1,l_{2}}\left(b\right)\zeta^{\otimes l_{1}+1}\otimes\eta^{\otimes l_{2}}\\ =\sum_{j=1}^{d_{l_{2}}}x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(a)\zeta^{\otimes l_{1}}\otimes C_{j,l_{2}}\right]x\otimes C^{*}_{j,l_{2}}\cdot\left[\mathbb{R}_{1,l_{2}}(b)\zeta\otimes\eta^{\otimes l_{2}}\right]\,. (2.12)

Thus, according to the formulas (2.5) and (2.2), we can write

xl1+1yl2l1,l2(u+i2)1,l2(uil12)ζl1+1ηl2=(iu+l2l112)l1+1(iul1+l2+12)l1+1k+nl1l1!l2!k!n!(l1kn)!(l2kn)!(xy)k(yζ)n(xζ)l1kn(iu+3l1l2d2)k(iu+3l1l22)nj=1dl2(ζkxny(l2kn)Cj,l2)[xζ(Cj,l2ηl2)+lxη(Cj,l2ζη(l21))iu+1l1l22+lζη(Cj,l2xη(l21))iu+3+l1l2d2].x^{\otimes l_{1}+1}\otimes y^{\otimes l_{2}}\cdot\mathbb{R}_{l_{1},l_{2}}\left(u+\frac{\operatorname{i}}{2}\right)\mathbb{R}_{1,l_{2}}\left(u-\frac{\operatorname{i}l_{1}}{2}\right)\zeta^{\otimes l_{1}+1}\otimes\eta^{\otimes l_{2}}\\ =\frac{\left(\operatorname{i}u+\frac{l_{2}-l_{1}-1}{2}\right)_{l_{1}+1}}{\left(\operatorname{i}u-\frac{l_{1}+l_{2}+1}{2}\right)_{l_{1}+1}}\sum_{k+n\leqslant l_{1}}\frac{l_{1}!l_{2}!}{k!n!(l_{1}-k-n)!(l_{2}-k-n)!}\frac{\left(x\cdot y\right)^{k}(y\cdot\zeta)^{n}(x\cdot\zeta)^{l_{1}-k-n}}{\left(\operatorname{i}u+\frac{3-l_{1}-l_{2}-d}{2}\right)_{k}\left(-\operatorname{i}u+\frac{3-l_{1}-l_{2}}{2}\right)_{n}}\\ \sum_{j=1}^{d_{l_{2}}}(\zeta^{\otimes k}\otimes x^{\otimes n}\otimes y^{\otimes(l_{2}-k-n)}\cdot C_{j,l_{2}})\Bigg{[}x\cdot\zeta\,(C_{j,l_{2}}^{*}\cdot\eta^{\otimes l_{2}})+\frac{lx\cdot\eta\,(C_{j,l_{2}}^{*}\cdot\zeta\otimes\eta^{\otimes(l_{2}-1)})}{-\operatorname{i}u+\frac{1-l_{1}-l_{2}}{2}}\\ +\frac{l\zeta\cdot\eta\,(C_{j,l_{2}}^{*}\cdot x\otimes\eta^{\otimes(l_{2}-1)})}{\operatorname{i}u+\frac{3+l_{1}-l_{2}-d}{2}}\Bigg{]}\,. (2.13)

The only additional formulas needed in order to conclude the proof are

j=1dl2(ζkxny(l2kn)Cj,l2)(Cj,l2ηl2)=(ηζ)k(ηx)n(ηy)l2kn,\sum_{j=1}^{d_{l_{2}}}(\zeta^{\otimes k}\otimes x^{\otimes n}\otimes y^{\otimes(l_{2}-k-n)}\cdot C_{j,l_{2}})(C_{j,l_{2}}^{*}\cdot\eta^{\otimes l_{2}})=(\eta\cdot\zeta)^{k}(\eta\cdot x)^{n}(\eta\cdot y)^{l_{2}-k-n}\,, (2.14)

and

j=1dl2(ζkxny(l2kn)Cj,l2)(Cj,l2θη(l21))=(ηζ)k1(ηx)n1(ηy)l2kn1l2×[(l2kn)(yθ)(xη)(ζη)+n(xθ)(yη)(ζη)+k(ζθ)(yη)(xη)2θηd+2(l22)[(l2kn)n(yx)(ζη)+(l2kn)k(yζ)(xη)+kn(xζ)(yη)]],\sum_{j=1}^{d_{l_{2}}}(\zeta^{\otimes k}\otimes x^{\otimes n}\otimes y^{\otimes(l_{2}-k-n)}\cdot C_{j,l_{2}})(C_{j,l_{2}}^{*}\cdot\theta\otimes\eta^{\otimes(l_{2}-1)})=\frac{(\eta\cdot\zeta)^{k-1}(\eta\cdot x)^{n-1}(\eta\cdot y)^{l_{2}-k-n-1}}{l_{2}}\\ \times\Bigg{[}(l_{2}-k-n)(y\cdot\theta)(x\cdot\eta)(\zeta\cdot\eta)+n(x\cdot\theta)(y\cdot\eta)(\zeta\cdot\eta)+k(\zeta\cdot\theta)(y\cdot\eta)(x\cdot\eta)\\ -\frac{2\theta\cdot\eta}{d+2(l_{2}-2)}\left[(l_{2}-k-n)n\,(y\cdot x)(\zeta\cdot\eta)+(l_{2}-k-n)k(y\cdot\zeta)(x\cdot\eta)+kn(x\cdot\zeta)(y\cdot\eta)\right]\Bigg{]}\,, (2.15)

where θ2=0\theta^{2}=0, and we will apply it to θ{ζ,x}\theta\in\{\zeta,x\}. The first one is trivial since η2l2𝕍l2\eta_{2}^{\otimes l_{2}}\in\mathbb{V}_{l_{2}}, and {Cj,l2}1jdl2\{C_{j,l_{2}}\}_{1\leqslant j\leqslant d_{l_{2}}} is an orthonormal basis of 𝕍l2\mathbb{V}_{l_{2}}. The second one is a consequence of

j=1dl2Cj,l2μ1μl2(Cj,l2θη(l21))=1l2[i=1l2θμiημ1ημi^ημl22d+2(l22)1i<jl2θηδμiμjημ1ημi^ημj^ημl2],\sum_{j=1}^{d_{l_{2}}}C_{j,l_{2}}^{\mu_{1}\cdots\mu_{l_{2}}}(C_{j,l_{2}}^{*}\cdot\theta\otimes\eta^{\otimes(l_{2}-1)})=\frac{1}{l_{2}}\Bigg{[}\sum_{i=1}^{l_{2}}\theta^{\mu_{i}}\eta^{\mu_{1}}\dots\widehat{\eta^{\mu_{i}}}\dots\eta^{\mu_{l_{2}}}\\ -\frac{2}{d+2(l_{2}-2)}\sum_{1\leqslant i<j\leqslant l_{2}}\theta\cdot\eta\,\delta^{\mu_{i}\mu_{j}}\eta^{\mu_{1}}\dots\widehat{\eta^{\mu_{i}}}\dots\widehat{\eta^{\mu_{j}}}\dots\eta^{\mu_{l_{2}}}\Bigg{]}\,, (2.16)

which is the orthogonal projection of θη(l21)𝕍1𝕍l21\theta\otimes\eta^{\otimes(l_{2}-1)}\in\mathbb{V}_{1}\otimes\mathbb{V}_{l_{2}-1} onto 𝕍l2𝕍1𝕍l21\mathbb{V}_{l_{2}}\subset\mathbb{V}_{1}\otimes\mathbb{V}_{l_{2}-1}, as explained at the beginning of this section (recall that this projector is nothing else than 1,l21(il22)\mathbb{R}_{1,l_{2}-1}\left(\operatorname{i}\frac{l_{2}}{2}\right)).

Using the two additional formulas, we can compute the sum over dl2d_{l_{2}} appearing in (2.13):

j=1dl2(ζkxny(l2kn)Cj,l2)[xζ(Cj,l2ηl2)+lxη(Cj,l2ζη(l21))iu+1l1l22+lζη(Cj,l2xη(l21))iu+3+l1l2d2]=(ηζ)k(ηx)n(ηy)l2kn1(iu+1l1l22)(iu+3+l1l2d2)[(xζ)(ηy)(iu+1l1l22+n)×(iu+3+l1l2d2+k)+(yζ)(ηx)(l2kn)(iu+3+l1l2d2+k)+(yx)(ηζ)(l2kn)(iu+1l1l22+n)].\sum_{j=1}^{d_{l_{2}}}(\zeta^{\otimes k}\otimes x^{\otimes n}\otimes y^{\otimes(l_{2}-k-n)}\cdot C_{j,l_{2}})\Bigg{[}x\cdot\zeta\,(C_{j,l_{2}}^{*}\cdot\eta^{\otimes l_{2}})\\ +\frac{l\,x\cdot\eta\,(C_{j,l_{2}}^{*}\cdot\zeta\otimes\eta^{\otimes(l_{2}-1)})}{-\operatorname{i}u+\frac{1-l_{1}-l_{2}}{2}}+\frac{l\,\zeta\cdot\eta\,(C_{j,l_{2}}^{*}\cdot x\otimes\eta^{\otimes(l_{2}-1)})}{\operatorname{i}u+\frac{3+l_{1}-l_{2}-d}{2}}\Bigg{]}\\ =\frac{(\eta\cdot\zeta)^{k}(\eta\cdot x)^{n}(\eta\cdot y)^{l_{2}-k-n-1}}{\left(-\operatorname{i}u+\frac{1-l_{1}-l_{2}}{2}\right)\left(\operatorname{i}u+\frac{3+l_{1}-l_{2}-d}{2}\right)}\Bigg{[}(x\cdot\zeta)(\eta\cdot y)\left(-\operatorname{i}u+\frac{1-l_{1}-l_{2}}{2}+n\right)\\ \times\left(\operatorname{i}u+\frac{3+l_{1}-l_{2}-d}{2}+k\right)+(y\cdot\zeta)(\eta\cdot x)(l_{2}-k-n)\left(\operatorname{i}u+\frac{3+l_{1}-l_{2}-d}{2}+k\right)\\ +(y\cdot x)(\eta\cdot\zeta)(l_{2}-k-n)\left(-\operatorname{i}u+\frac{1-l_{1}-l_{2}}{2}+n\right)\Bigg{]}\,. (2.17)

After plugging (2.17) back into (2.13), we proceed to rewriting the sum k+nl1\sum_{k+n\leqslant l_{1}} into a sum k+nl1+1\sum_{k^{\prime}+n^{\prime}\leqslant l_{1}+1}. The terms contributing to a given pair (k,n)(k^{\prime},n^{\prime}) come from (k,n){(k,n),(k1,n),(k,n1)}(k,n)\in\{(k^{\prime},n^{\prime}),(k^{\prime}-1,n^{\prime}),(k^{\prime},n^{\prime}-1)\}. When (k,n)=(k,n)(k,n)=(k^{\prime},n^{\prime}), the contribution (without the tensors) is

l1!l2!k!n!(l1+1kn)!(l2kn)!l1+1kniu+3+l1l2d2iu+3+l1l2d2+k(iu+3l1l2d2)k(iu+1l1l22)n,\frac{l_{1}!l_{2}!}{k^{\prime}!n^{\prime}!(l_{1}+1-k^{\prime}-n^{\prime})!(l_{2}-k^{\prime}-n^{\prime})!}\frac{l_{1}+1-k^{\prime}-n^{\prime}}{\operatorname{i}u+\frac{3+l_{1}-l_{2}-d}{2}}\frac{\operatorname{i}u+\frac{3+l_{1}-l_{2}-d}{2}+k^{\prime}}{\left(\operatorname{i}u+\frac{3-l_{1}-l_{2}-d}{2}\right)_{k^{\prime}}\left(-\operatorname{i}u+\frac{1-l_{1}-l_{2}}{2}\right)_{n^{\prime}}}\,, (2.18)

while when (k,n)=(k1,n)(k,n)=(k^{\prime}-1,n^{\prime}) it is

l1!l2!k!n!(l1+1kn)!(l2kn)!kiu+3+l1l2d21(iu+3l1l2d2)k1(iu+1l1l22)n,\frac{l_{1}!l_{2}!}{k^{\prime}!n^{\prime}!(l_{1}+1-k^{\prime}-n^{\prime})!(l_{2}-k^{\prime}-n^{\prime})!}\frac{k^{\prime}}{\operatorname{i}u+\frac{3+l_{1}-l_{2}-d}{2}}\frac{1}{\left(\operatorname{i}u+\frac{3-l_{1}-l_{2}-d}{2}\right)_{k^{\prime}-1}\left(-\operatorname{i}u+\frac{1-l_{1}-l_{2}}{2}\right)_{n^{\prime}}}\,, (2.19)

and, when (k,n)=(k,n1)(k,n)=(k^{\prime},n^{\prime}-1), it is

l1!l2!k!n!(l1+1kn)!(l2kn)!niu+3+l1l2d2iu+3+l1l2d2+k(iu+3l1l2d2)k(iu+1l1l22)n.\frac{l_{1}!l_{2}!}{k^{\prime}!n^{\prime}!(l_{1}+1-k^{\prime}-n^{\prime})!(l_{2}-k^{\prime}-n^{\prime})!}\frac{n^{\prime}}{\operatorname{i}u+\frac{3+l_{1}-l_{2}-d}{2}}\frac{\operatorname{i}u+\frac{3+l_{1}-l_{2}-d}{2}+k^{\prime}}{\left(\operatorname{i}u+\frac{3-l_{1}-l_{2}-d}{2}\right)_{k^{\prime}}\left(-\operatorname{i}u+\frac{1-l_{1}-l_{2}}{2}\right)_{n^{\prime}}}\,. (2.20)

The sum of the previous three terms is

(l1+1)!l2!k!n!(l1+1kn)!(l2kn)!1(iu+3l1l2d2)k(iu+1l1l22)n,\frac{(l_{1}+1)!l_{2}!}{k^{\prime}!n^{\prime}!(l_{1}+1-k^{\prime}-n^{\prime})!(l_{2}-k^{\prime}-n^{\prime})!}\frac{1}{\left(\operatorname{i}u+\frac{3-l_{1}-l_{2}-d}{2}\right)_{k^{\prime}}\left(-\operatorname{i}u+\frac{1-l_{1}-l_{2}}{2}\right)_{n^{\prime}}}\,, (2.21)

which concludes the proof of (2.2) for (l1+1,l2)(l_{1}+1,l_{2}).

Extension of (2.2) to Symmetric Tensors

We now want to compute xl1yl2[l1,l2(u)ζl1ηl2]x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right] when ζ2=η2=0\zeta^{2}=\eta^{2}=0, but x20x^{2}\neq 0 and y20y^{2}\neq 0. Since l1,l2(u)ζl1ηl2\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}} belongs to 𝕍l1𝕍l2\mathbb{V}_{l_{1}}\otimes\mathbb{V}_{l_{2}}, only the symmetric traceless parts of xl1x^{\otimes l_{1}} and yl2y^{\otimes l_{2}} are needed. Let us call XlX_{l} the symmetric traceless part of xlx^{\otimes l}, it is given by

Xlμ1μl=p=0l2(x2)p(2ld2)p2p{i1,j1},,{ip,jp}k=1pδμikμjki{i1,j1,,ip,jp}xμi,X_{l}^{\mu_{1}\cdots\mu_{l}}=\sum_{p=0}^{\lfloor\frac{l}{2}\rfloor}\frac{(x^{2})^{p}}{\left(2-l-\frac{d}{2}\right)_{p}2^{p}}\sum_{\{i_{1},j_{1}\},\dots,\{i_{p},j_{p}\}}\prod_{k=1}^{p}\delta^{\mu_{i_{k}}\mu_{j_{k}}}\prod_{i\notin\{i_{1},j_{1},\dots,i_{p},j_{p}\}}x^{\mu_{i}}\,, (2.22)

where, for a given pp, we sum over l!(l2p)!p!2p\frac{l!}{(l-2p)!p!2^{p}} possible ways of forming pp pairs among ll elements. We can thus write

xl1yl2[l1,l2(u)ζl1ηl2]=Xl1Yl2[l1,l2(u)ζl1ηl2],x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]=X_{l_{1}}\otimes Y_{l_{2}}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\,, (2.23)

and then use the formula (2.2).

To start with, we consider only one vector that is not null : α2=0\alpha^{2}=0 but y20y^{2}\neq 0, so that we have

αl1yl2[l1,l2(u)ζl1ηl2]=(iu+l2l12)l1(iul1+l22)l1k,n0(l1)k+n(l2)k+nk!n!×(ζη)k(αη)n(αζ)l2kn(iu+4l1l2d2)k(iu+2l1l22)n(Yl2αkζnη(l2kn)).\alpha^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]=\frac{\left(\operatorname{i}u+\frac{l_{2}-l_{1}}{2}\right)_{l_{1}}}{\left(\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)_{l_{1}}}\sum_{k,n\geqslant 0}\frac{(-l_{1})_{k+n}(-l_{2})_{k+n}}{k!n!}\\ \times\frac{(\zeta\cdot\eta)^{k}(\alpha\cdot\eta)^{n}(\alpha\cdot\zeta)^{l_{2}-k-n}}{\left(\operatorname{i}u+\frac{4-l_{1}-l_{2}-d}{2}\right)_{k}\left(-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}\right)_{n}}\left(Y_{l_{2}}\cdot\alpha^{\otimes k}\otimes\zeta^{\otimes n}\otimes\eta^{\otimes(l_{2}-k-n)}\right)\,. (2.24)

We then use the explicit expression for Yl2Y_{l_{2}} to compute

Yl2αkζnη(l2kn)=q=0l22a+bq(k)a+b(n)qb(n+kl2)qaa!b!(qab)!(y2)q(2l2d2)q2q(αζ)a(αη)b(ζη)qab(αy)kab(yζ)n+bq(yη)l2+aknq,Y_{l_{2}}\cdot\alpha^{\otimes k}\otimes\zeta^{\otimes n}\otimes\eta^{\otimes(l_{2}-k-n)}=\sum_{q=0}^{\lfloor\frac{l_{2}}{2}\rfloor}\sum_{a+b\leqslant q}\frac{(-k)_{a+b}(-n)_{q-b}(n+k-l_{2})_{q-a}}{a!b!(q-a-b)!}\frac{(y^{2})^{q}}{\left(2-l_{2}-\frac{d}{2}\right)_{q}2^{q}}\\ (\alpha\cdot\zeta)^{a}(\alpha\cdot\eta)^{b}(\zeta\cdot\eta)^{q-a-b}(\alpha\cdot y)^{k-a-b}(y\cdot\zeta)^{n+b-q}(y\cdot\eta)^{l_{2}+a-k-n-q}\,, (2.25)

which implies

αl1yl2[l1,l2(u)ζl1ηl2]=(iu+l2l12)l1(iul1+l22)l1q=0l22K,Nqa+bq(1)q+a(l1)K+N+aq(l2)K+N(Kq)!(Nq)!a!b!(qab)!(αζ)l1+qNK(αη)N(ζη)K(y2)q(αy)Kq(yζ)Nq(yη)l2NK2q(2l2d2)q(iu+4l1l2d2)K+a+bq(iu+2l1l22)Nb,\alpha^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\\ =\frac{\left(\operatorname{i}u+\frac{l_{2}-l_{1}}{2}\right)_{l_{1}}}{\left(\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)_{l_{1}}}\sum_{q=0}^{\lfloor\frac{l_{2}}{2}\rfloor}\sum_{\begin{subarray}{c}K,N\geqslant q\\ a+b\leqslant q\end{subarray}}\frac{(-1)^{q+a}(-l_{1})_{K+N+a-q}(-l_{2})_{K+N}}{(K-q)!(N-q)!a!b!(q-a-b)!}\\ \frac{(\alpha\cdot\zeta)^{l_{1}+q-N-K}(\alpha\cdot\eta)^{N}(\zeta\cdot\eta)^{K}(y^{2})^{q}(\alpha\cdot y)^{K-q}(y\cdot\zeta)^{N-q}(y\cdot\eta)^{l_{2}-N-K}}{2^{q}\left(2-l_{2}-\frac{d}{2}\right)_{q}\left(\operatorname{i}u+\frac{4-l_{1}-l_{2}-d}{2}\right)_{K+a+b-q}\left(-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}\right)_{N-b}}\,, (2.26)

where we have changed summation indices from k,nk,n to K=k+qabK=k+q-a-b and N=n+bN=n+b. Recalling the Gauss identity

k=0n(n)k(u)kk!(v)k=(vu)n(v)n,\sum_{k=0}^{n}\frac{(-n)_{k}(u)_{k}}{k!(v)_{k}}=\frac{(v-u)_{n}}{(v)_{n}}\,, (2.27)

one can perform the sums over aa and bb

a+bq(1)q+a(l1)K+N+aqa!b!(qab)!1(iu+4l1l2d2)K+a+bq(iu+2l1l22)Nb=1(iu+4l1l2d2)K(iu+2l1l22)Na=0q(l1)K+N+aq(d2+l1+l2KN1)qaa!(qa)!=(l1)K+Nqq!(1)q(2l2d2)q(iu+4l1l2d2)K(iu+2l1l22)N,\sum_{a+b\leqslant q}\frac{(-1)^{q+a}(-l_{1})_{K+N+a-q}}{a!b!(q-a-b)!}\frac{1}{\left(\operatorname{i}u+\frac{4-l_{1}-l_{2}-d}{2}\right)_{K+a+b-q}\left(-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}\right)_{N-b}}\\ =\frac{1}{\left(\operatorname{i}u+\frac{4-l_{1}-l_{2}-d}{2}\right)_{K}\left(-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}\right)_{N}}\sum_{a=0}^{q}\frac{(-l_{1})_{K+N+a-q}\left(\frac{d}{2}+l_{1}+l_{2}-K-N-1\right)_{q-a}}{a!(q-a)!}\\ =\frac{(-l_{1})_{K+N-q}}{q!}\frac{(-1)^{q}\left(2-l_{2}-\frac{d}{2}\right)_{q}}{\left(\operatorname{i}u+\frac{4-l_{1}-l_{2}-d}{2}\right)_{K}\left(-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}\right)_{N}}\,, (2.28)

and eventually get

αl1yl2[l1,l2(u)ζl1ηl2]=(iu+l2l12)l1(iul1+l22)l1q=0l22K,Nq(l1)K+Nq(l2)K+N(N)qq!(Kq)!N!(y2)q(αζ)l1+qNK(αη)N(ζη)K(αy)Kq(yζ)Nq(yη)l2NK2q(iu+4l1l2d2)K(iu+2l1l22)N.\alpha^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]=\frac{\left(\operatorname{i}u+\frac{l_{2}-l_{1}}{2}\right)_{l_{1}}}{\left(\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)_{l_{1}}}\sum_{q=0}^{\lfloor\frac{l_{2}}{2}\rfloor}\sum_{K,N\geqslant q}\frac{(-l_{1})_{K+N-q}(-l_{2})_{K+N}(-N)_{q}}{q!(K-q)!N!}\\ \frac{(y^{2})^{q}(\alpha\cdot\zeta)^{l_{1}+q-N-K}(\alpha\cdot\eta)^{N}(\zeta\cdot\eta)^{K}(\alpha\cdot y)^{K-q}(y\cdot\zeta)^{N-q}(y\cdot\eta)^{l_{2}-N-K}}{2^{q}\left(\operatorname{i}u+\frac{4-l_{1}-l_{2}-d}{2}\right)_{K}\left(-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}\right)_{N}}\,. (2.29)

The same procedure allows to compute xl1yl2[l1,l2(u)ζl1ηl2]x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]. In this case we start from the expression

Xl1y(Kq)ζ(l1+qNK)ηN=p=0l12a+b+cp(K+q)2pab2c(N+Kl1q)b+c(N)a+c2pabca!b!c!(pabc)!(x2)p(y2)pabc(2l1d2)p2p×(yη)a(yζ)b(ζη)c(xy)Kq+2c+a+b2p(xζ)l1+qNKbc(xη)Nac,X_{l_{1}}\cdot y^{\otimes(K-q)}\otimes\zeta^{\otimes(l_{1}+q-N-K)}\otimes\eta^{\otimes N}\\ =\sum_{p=0}^{\lfloor\frac{l_{1}}{2}\rfloor}\sum_{a+b+c\leqslant p}\frac{(-K+q)_{2p-a-b-2c}(N+K-l_{1}-q)_{b+c}(-N)_{a+c}}{2^{p-a-b-c}a!b!c!(p-a-b-c)!}\frac{(x^{2})^{p}(y^{2})^{p-a-b-c}}{\left(2-l_{1}-\frac{d}{2}\right)_{p}2^{p}}\\ \times(y\cdot\eta)^{a}(y\cdot\zeta)^{b}(\zeta\cdot\eta)^{c}(x\cdot y)^{K-q+2c+a+b-2p}(x\cdot\zeta)^{l_{1}+q-N-K-b-c}(x\cdot\eta)^{N-a-c}\,, (2.30)

and, after the change of summation indices q=q+pabcq^{\prime}=q+p-a-b-c, k=K+ck=K+c, n=N+pacn=N+p-a-c, the sums over aa, bb, and cc can be performed via the repeated application of (2.27). One eventually obtains

xl1yl2[l1,l2(u)ζl1ηl2]=(iu+l2l12)l1(iul1+l22)l1p=0l12q=0l22kp+qn0(l1)k+nq(l2)k+np(n)p(n)qp!q!(kpq)!n!×(x22)p(y22)q(xζ)l1+qnk(xη)np(ζη)k(xy)kpq(yζ)nq(yη)l2+pnk(iu+4l1l2d2)k(iu+2l1l22)n.x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\\ =\frac{\left(\operatorname{i}u+\frac{l_{2}-l_{1}}{2}\right)_{l_{1}}}{\left(\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)_{l_{1}}}\sum_{p=0}^{\lfloor\frac{l_{1}}{2}\rfloor}\sum_{q=0}^{\lfloor\frac{l_{2}}{2}\rfloor}\sum_{\begin{subarray}{c}k\geqslant p+q\\ n\geqslant 0\end{subarray}}\frac{(-l_{1})_{k+n-q}(-l_{2})_{k+n-p}(-n)_{p}(-n)_{q}}{p!q!(k-p-q)!n!}\\ \times\left(\frac{x^{2}}{2}\right)^{p}\left(\frac{y^{2}}{2}\right)^{q}\frac{(x\cdot\zeta)^{l_{1}+q-n-k}(x\cdot\eta)^{n-p}(\zeta\cdot\eta)^{k}(x\cdot y)^{k-p-q}(y\cdot\zeta)^{n-q}(y\cdot\eta)^{l_{2}+p-n-k}}{\left(\operatorname{i}u+\frac{4-l_{1}-l_{2}-d}{2}\right)_{k}\left(-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}\right)_{n}}\,. (2.31)

In what follows, we shall use the graphical representation of the R-matrix shown in Fig.2.

Refer to caption
Figure 2: Graphical representation of a matrix element of the O(d)O(d)-invariant \mathbb{R}-matrix l1,l2(u)\mathbb{R}_{l_{1},l_{2}}(u).

2.2 Spectral Decomposition

The spectral decomposition of the R-matrix was computed by N. MacKay MacKay:1990mp ; MacKay:1991bj . Since it is clear from our expression (2.2) that the completely symmetric traceless tensors are eigenvectors with eigenvalue 11, the normalisation is fixed and MacKay’s result reads

l1,l2(u)=0mnmin(l1,l2)p=1muid+l1+l222q2u+id+l1+l222q2q=1nuil1+l2+22q2u+il1+l2+22q2l1,l2(l1+l22n,nm),\mathbb{R}_{l_{1},l_{2}}(u)=\sum_{0\leqslant m\leqslant n\leqslant\min(l_{1},l_{2})}\prod_{p=1}^{m}\frac{u-\operatorname{i}\frac{d+l_{1}+l_{2}-2-2q}{2}}{u+\operatorname{i}\frac{d+l_{1}+l_{2}-2-2q}{2}}\prod_{q=1}^{n}\frac{u-\operatorname{i}\frac{l_{1}+l_{2}+2-2q}{2}}{u+\operatorname{i}\frac{l_{1}+l_{2}+2-2q}{2}}\mathbb{P}_{l_{1},l_{2}}^{(l_{1}+l_{2}-2n,n-m)}\,, (2.32)

where l1,l2(n1,n2)\mathbb{P}_{l_{1},l_{2}}^{(n_{1},n_{2})} is the projector onto the subrepresentation with highest weight n1ω1+n2ω2n_{1}\omega_{1}+n_{2}\omega_{2} of 𝕍l1𝕍l2\mathbb{V}_{l_{1}}\otimes\mathbb{V}_{l_{2}}, the ωa\omega_{a}’s being fundamental weights (𝕍l\mathbb{V}_{l} has highest weight lω1l\omega_{1}). When one of the spins is equal to one, the previous decomposition reads

1,l(u)=1,l(l+1,0)+uil+12u+il+121,l(l1,1)+uid+l32u+id+l32uil+12u+il+121,l(l1,0).\mathbb{R}_{1,l}(u)=\mathbb{P}_{1,l}^{(l+1,0)}+\frac{u-\operatorname{i}\frac{l+1}{2}}{u+\operatorname{i}\frac{l+1}{2}}\mathbb{P}_{1,l}^{(l-1,1)}+\frac{u-\operatorname{i}\frac{d+l-3}{2}}{u+\operatorname{i}\frac{d+l-3}{2}}\frac{u-\operatorname{i}\frac{l+1}{2}}{u+\operatorname{i}\frac{l+1}{2}}\mathbb{P}_{1,l}^{(l-1,0)}\,. (2.33)

Let us check that this coincides with the expression (2.6) for the R-matrix. We first introduce some operators 𝒫\mathcal{P}, 𝒦1\mathcal{K}_{1}, and 𝒦2\mathcal{K}_{2}, in terms of which the R-matrix reads

1,l(u)=1u+il+12[(uil12)Id+i𝒫iuil12u+id+l32𝒦1+1u+id+l32𝒦2].\mathbb{R}_{1,l}(u)=\frac{1}{u+\operatorname{i}\frac{l+1}{2}}\left[\left(u-\operatorname{i}\frac{l-1}{2}\right)\mathrm{Id}+\operatorname{i}\mathcal{P}-\operatorname{i}\frac{u-\operatorname{i}\frac{l-1}{2}}{u+\operatorname{i}\frac{d+l-3}{2}}\mathcal{K}_{1}+\frac{1}{u+\operatorname{i}\frac{d+l-3}{2}}\mathcal{K}_{2}\right]\,. (2.34)

We have already explained that 1,l(l+1,0)=1,l(il+12)\mathbb{P}_{1,l}^{(l+1,0)}=\mathbb{R}_{1,l}\left(\operatorname{i}\frac{l+1}{2}\right), and in terms of the new operators this reads

1,l(l+1,0)=1l+1[Id+𝒫2d+2l2(𝒦1+𝒦2)].\mathbb{P}_{1,l}^{(l+1,0)}=\frac{1}{l+1}\left[\mathrm{Id}+\mathcal{P}-\frac{2}{d+2l-2}\left(\mathcal{K}_{1}+\mathcal{K}_{2}\right)\right]\,. (2.35)

We claim that the other two projectors are given by

1,l(l1,1)=1l+1[lId𝒫+1d+l3(2𝒦2(l1)𝒦1)]\mathbb{P}_{1,l}^{(l-1,1)}=\frac{1}{l+1}\left[l\,\mathrm{Id}-\mathcal{P}+\frac{1}{d+l-3}\left(2\mathcal{K}_{2}-(l-1)\mathcal{K}_{1}\right)\right] (2.36)

and

1,l(l1,0)=1(d+2l2)(d+l3)[(d+2l4)𝒦12𝒦2].\mathbb{P}_{1,l}^{(l-1,0)}=\frac{1}{(d+2l-2)(d+l-3)}\left[(d+2l-4)\mathcal{K}_{1}-2\mathcal{K}_{2}\right]\,. (2.37)

It is clear that 1,l(l+1,0)+1,l(l1,1)+1,l(l1,0)=Id\mathbb{P}_{1,l}^{(l+1,0)}+\mathbb{P}_{1,l}^{(l-1,1)}+\mathbb{P}_{1,l}^{(l-1,0)}=\mathrm{Id}, and that (2.33) is equivalent to (2.34). It remains to check that they are indeed orthogonal projectors, which leads to a tedious but straightforward computation that we do not show here.

2.3 Interchange relation and integral representation

In this section we shall consider the main interchange relation drawn in Fig.4 according to the graphical notation of Fig.3.

Refer to caption
Figure 3: Solid lines stand for the usual Feynman diagram notation, that is the square distance of the type (xy)2(x-y)^{2} between the extremal points xx and yy, to some power which is written adjacent to the line. Dashed line notation is illustrated in terms of product of solid lines and a tensor structure. The tensor Ix0μ(x,y)=xμx0μ(xx0)2yμx0μ(yx0)2I_{x_{0}}^{\mu}(x,y)=\frac{x^{\mu}-x_{0}^{\mu}}{(x-x_{0})^{2}}-\frac{y^{\mu}-x_{0}^{\mu}}{(y-x_{0})^{2}} is obtained by a conformal inversion around the point x0x_{0} of the vector xμyμx^{\mu}-y^{\mu}.

The interchange relation is equivalent to the explicit integral representation for the matrix element of the operator l1,l2\mathbb{R}_{l_{1},l_{2}} and we shall prove in Appendix B the equivalence of this integral expression and the expression (2.31). Here and in the rest of the paper we will use the notation a~d/2a\tilde{a}\equiv d/2-a, and we define a few standard functions of uu:

α(u)=δ~2iu,β(u)=δ~2+iu,so thatα(u)+β(u)+δ=d2,δi.\alpha(u)=\frac{\tilde{\delta}}{2}-\operatorname{i}u\,,\quad\beta(u)=\frac{\tilde{\delta}}{2}+\operatorname{i}u\,,\quad\text{so that}\quad\alpha(u)+\beta(u)+\delta=\frac{d}{2}\,,\,\,\,\delta\in i\mathbb{R}\,. (2.38)

We define the powers of solid lines of the two squares in the left-hand side of Fig.4 to be

aj=β~jlj2,bj=αj+d+lj21,cj=α~j+lj2,dj=1β~jlj2,a_{j}=\tilde{\beta}_{j}-\frac{l_{j}}{2}\,,\,\,b_{j}={\alpha}_{j}+\frac{d+l_{j}}{2}-1\,,\,\,c_{j}={\tilde{\alpha}}_{j}+\frac{l_{j}}{2}\,,\,\,d_{j}=1-\tilde{\beta}_{j}-\frac{l_{j}}{2}\,, (2.39)

and the powers of the square kernel in the right-hand side of Fig.4 are

A1=d21+β~1β~2+l1+l22,A2=d2+β~2β~1+l1l22,A3=1d2+β~1β~2l1+l22,A4=d2+β~2β~1+l2+l12.\displaystyle\begin{aligned} &A_{1}=\frac{d}{2}-1+\tilde{\beta}_{1}-\tilde{\beta}_{2}+\frac{l_{1}+l_{2}}{2}\,,\,\,A_{2}=\frac{d}{2}+\tilde{\beta}_{2}-\tilde{\beta}_{1}+\frac{l_{1}-l_{2}}{2}\,,\\ &A_{3}=1-\frac{d}{2}+\tilde{\beta}_{1}-\tilde{\beta}_{2}-\frac{l_{1}+l_{2}}{2}\,,\,\,A_{4}=\frac{d}{2}+\tilde{\beta}_{2}-\tilde{\beta}_{1}+\frac{l_{2}+l_{1}}{2}\,.\end{aligned} (2.40)
Refer to caption
Figure 4: Graphical representation of the interchange relation. Black dots are integration points of the diagram, circles are external points. The powers aj,bj,cj,dja_{j},b_{j},c_{j},d_{j}, for j=1,2j=1,2, of the solid lines get exchanged between both sides of the identity.

We show in Fig. 5 the chain of equivalent transformations which allows to derive, from the interchange relation, the integral representation for the elements of the R-matrix.

Refer to caption
Refer to caption
Refer to caption
Figure 5: Up left: l.h.s. of the interchange relation after multiplication by the inverse of the square kernel both in the r.h.s. and in the l.h.s. Up right: the central triangle (A1,a2,b1)(-A_{1},a_{2},b_{1}) is transformed into a star integral. Middle left: result of star-triangle identity in the vertices (a1,dA2,d/2a2)(a_{1},d-A_{2},d/2-a_{2}) and (b2,dA4,d/2a1)(b_{2},d-A_{4},d/2-a_{1}). Middle right: the triangle (A3,d/2a1,d/2b2)(-A_{3},d/2-a_{1},d/2-b_{2}) is transformed into a star integral. Down: result of the integration of the vertex (d1,c2,d/2+A1)(d_{1},c_{2},d/2+A_{1}). The tensors Ix0(x,y)l1I_{x_{0}}(x,y)^{\otimes{l_{1}}} and Ix0(z,y)l2I_{x_{0}}(z,y)^{\otimes{l_{2}}} get mixed by a non-trivial operator acting on 𝕍l1𝕍l2\mathbb{V}^{l_{1}}\otimes\mathbb{V}^{l_{2}}, the matrix l1l2(u)\mathbb{R}_{l_{1}l_{2}}(u).

The final form of the integral representation for the R-matrix element is shown in Fig.6 and it follows straightforwardly from the previous chain of relations.

Refer to caption
Figure 6: Integral representation of a matrix element of the fused R-matrix l1,l2(u)\mathbb{R}_{l_{1},l_{2}}(u), as encoded into the interchange relation.

The integral representation for the elements of the R-matrix is

[l1,l2(u)ζl1ηl2][(xx2ww2)l1(yy2ww2)l2]=Fl1,l2(u)x2(iu+l212)y2(iu+l122)w2(iu+l1+l221)×(zw)2(iu+l1+l221)[ζ(yy2vv2)]l1[η(xx2vv2)]l2(zx)2(iu+l212)(zy)2(iu+l122)(zv)2(d1+l1+l22iu)v2(1l1+l22+iu)ddzπd2ddvπd2,\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot\left[\left(\frac{x}{x^{2}}-\frac{w}{w^{2}}\right)^{\otimes l_{1}}\otimes\left(\frac{y}{y^{2}}-\frac{w}{w^{2}}\right)^{\otimes l_{2}}\right]=F_{l_{1},l_{2}}(u)\frac{x^{2\left(\operatorname{i}u+\frac{l_{21}}{2}\right)}y^{2\left(\operatorname{i}u+\frac{l_{12}}{2}\right)}}{w^{2\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}-1\right)}}\\ \times\int\frac{(z-w)^{2\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}-1\right)}\left[\zeta\cdot\left(\frac{y}{y^{2}}-\frac{v}{v^{2}}\right)\right]^{l_{1}}\left[\eta\cdot\left(\frac{x}{x^{2}}-\frac{v}{v^{2}}\right)\right]^{l_{2}}}{(z-x)^{2\left(\operatorname{i}u+\frac{l_{21}}{2}\right)}(z-y)^{2\left(\operatorname{i}u+\frac{l_{12}}{2}\right)}(z-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}v^{2\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)}}\frac{\text{d}^{d}z}{\pi^{\frac{d}{2}}}\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\,, (2.41)

where ζ2=η2=0\zeta^{2}=\eta^{2}=0 but x2,y2x^{2},y^{2} and w2w^{2} are arbitrary, and

Fl1,l2(u)=Γ(1l1+l22iu)Γ(1+l1+l22+iu)Γ(d1+l1+l22iu)Γ(1+l1+l22iu)Γ(d+l1+l221iu)Γ(1l1+l2+d2+iu).F_{l_{1},l_{2}}(u)=\frac{\Gamma\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)\Gamma\left(1+\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)\Gamma\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}{\Gamma\left(1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)\Gamma\left(\frac{d+l_{1}+l_{2}}{2}-1-\operatorname{i}u\right)\Gamma\left(1-\frac{l_{1}+l_{2}+d}{2}+\operatorname{i}u\right)}\,. (2.42)

The representation (2.41) is actually equivalent to the main interchange relation which guarantees the symmetry of eigenvectors w.r.t. the exchange of excitations numbers - explained in the following section.

In the follwing we present the derivation of a few integral representations for the matrix element (2.41). It is natural to perform an inversion of all external vectors x,y,wx,y,w and variables of integrations zzz2z\mapsto\frac{z}{z^{2}} and vvv2v\mapsto\frac{v}{v^{2}} in relation (2.41). After this transformation, one obtains

[l1,l2(u)ζl1ηl2](xw)l1(yw)l2=Fl1,l2(u)(zw)2(iu+l1+l221)(ζ(yv))l1(η(xv))l2(zx)2(iu+l212)(zy)2(iu+l122)(zv)2(d1+l1+l22iu)ddzddvπd.\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot(x-w)^{\otimes l_{1}}\otimes(y-w)^{\otimes l_{2}}\\ =F_{l_{1},l_{2}}(u)\int\frac{(z-w)^{2\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}-1\right)}(\zeta\cdot(y-v))^{l_{1}}(\eta\cdot(x-v))^{l_{2}}}{(z-x)^{2\left(\operatorname{i}u+\frac{l_{21}}{2}\right)}(z-y)^{2\left(\operatorname{i}u+\frac{l_{12}}{2}\right)}(z-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}}\frac{\text{d}^{d}z\,\text{d}^{d}v}{\pi^{d}}\,. (2.43)

The integral representation in the right hand side shows manifestly the translation invariance. Thus, for simplicity, we may put w=0w=0 without any loss of generality:

[l1,l2(u)ζl1ηl2]xl1yl2=Fl1,l2(u)z2(iu+l1+l221)(ζ(yv))l1(η(xv))l2(zx)2(iu+l212)(zy)2(iu+l122)(zv)2(d1+l1+l22iu)ddzddvπd.\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\\ =F_{l_{1},l_{2}}(u)\int\frac{z^{2\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}-1\right)}(\zeta\cdot(y-v))^{l_{1}}(\eta\cdot(x-v))^{l_{2}}}{(z-x)^{2\left(\operatorname{i}u+\frac{l_{21}}{2}\right)}(z-y)^{2\left(\operatorname{i}u+\frac{l_{12}}{2}\right)}(z-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}}\frac{\text{d}^{d}z\,\text{d}^{d}v}{\pi^{d}}\,. (2.44)

Despite its simplicity, this integral representation should be used with care because the integral over vv is ill defined. The origin of the problems is our naïve inversion of integration variable vvv2v\mapsto\frac{v}{v^{2}} in the initial expression, and we illustrate it on the much simpler example of the delta function (A.9)

ddvv2a(zv)2(da)=A0(a)A0(da)πdδ(d)(z).\int\frac{\text{d}^{d}v}{v^{2a}(z-v)^{2(d-a)}}=A_{0}(a)A_{0}(d-a)\pi^{d}\delta^{(d)}(z)\,. (2.45)

If one naïvely performs an inversion zzz2z\mapsto\frac{z}{z^{2}} and vvv2v\mapsto\frac{v}{v^{2}}

ddv(zv)2(da)=A0(a)A0(da)πdδ(d)(zz2)z2(da),\int\frac{\text{d}^{d}v}{(z-v)^{2(d-a)}}=A_{0}(a)A_{0}(d-a)\pi^{d}\frac{\delta^{(d)}\left(\frac{z}{z^{2}}\right)}{z^{2(d-a)}}\,, (2.46)

in the result neither the l.h.s. nor the r.h.s. are well-defined. In order to obtain a well defined expression for the R-matrix we perform an inversion of all external vectors x,y,wx,y,w but not of the variables of integrations zz and vv in (2.41), for which we obtain (here w=0w=0)

[l1,l2(u)ζl1ηl2]xl1yl2=Fl1,l2(u)ddzπd21(12zx+z2x2)iu+l212(12zy+z2y2)iu+l122ddvπd2(ζ(yvv2))l1(η(xvv2))l2(zv)2(d1+l1+l22iu)v2(1l1+l22+iu).\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}=F_{l_{1},l_{2}}(u)\int\frac{\text{d}^{d}z}{\pi^{\frac{d}{2}}}\frac{1}{\left(1-2z\cdot x+z^{2}x^{2}\right)^{\operatorname{i}u+\frac{l_{21}}{2}}\left(1-2z\cdot y+z^{2}y^{2}\right)^{\operatorname{i}u+\frac{l_{12}}{2}}}\\ \int\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\frac{(\zeta\cdot(y-\frac{v}{v^{2}}))^{l_{1}}(\eta\cdot(x-\frac{v}{v^{2}}))^{l_{2}}}{(z-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}v^{2\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)}}\,. (2.47)

The same representation can be obtained via the inversion zzz2z\mapsto\frac{z}{z^{2}} and vvv2v\mapsto\frac{v}{v^{2}} in relation (2.44). In fact, the integration of vv is reduced to the finite sum of derivatives of delta function, therefore the integration of zz can be performed easily, so that we can derive a closed expression for the integrals in r.h.s. of (2.47). The result reads (see Appendix B)

ddvπd2(ζ(yvv2))l1(η(xvv2))l2(zv)2(d1+l1+l22iu)v2(1l1+l22+iu)=Al1,l2(u)n,k,pl1!l2!(1)k+p 2kp3n(l1kn)!(l2pn)!k!p!n!(ζη)n(ζy)l1kn(ηx)l2pn(1l1+l22+iu)k+p+2n(2d2l1+l22+iu)ntksp(zμzμ)nδ(d)(ztζsη)\int\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\frac{(\zeta\cdot(y-\frac{v}{v^{2}}))^{l_{1}}(\eta\cdot(x-\frac{v}{v^{2}}))^{l_{2}}}{(z-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}v^{2\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)}}=A_{l_{1},l_{2}}(u)\sum_{n,k,p}\frac{l_{1}!l_{2}!(-1)^{k+p}\,2^{-k-p-3n}}{(l_{1}-k-n)!(l_{2}-p-n)!k!p!n!}\\ \frac{(\zeta\cdot\eta)^{n}(\zeta\cdot y)^{l_{1}-k-n}(\eta\cdot x)^{l_{2}-p-n}}{\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)_{k+p+2n}\left(2-\frac{d}{2}-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)_{n}}\,\partial_{t}^{k}\partial_{s}^{p}\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}\,\delta^{(d)}(z-t\zeta-s\eta) (2.48)

where we have to put t=s=0t=s=0 after differentiation, and the explicit expression for Al1,l2(u)A_{l_{1},l_{2}}(u) is given in (B.6). For simplicity, we showed in the sum the summation indices only. The sum is finite and the range of summation is dictated by factorials in denominator: for each 0nmin(l1,l2)0\leqslant n\leqslant\min(l_{1},l_{2}), we have 0kl1n0\leqslant k\leqslant l_{1}-n and 0pl2n0\leqslant p\leqslant l_{2}-n. Now the integral in zz can be calculated due to the appearance of the delta function, and we finally obtain

[l1,l2(u)ζl1ηl2]xl1yl2=πd2Fl1,l2(u)Al1,l2(u)n,k,pl1!l2!(1)k+p 2kp3n(l1kn)!(l2pn)!k!p!n!(ζη)n(ζy)l1kn(ηx)l2pn(1l1+l22+iu)k+p+2n(2d2l1+l22+iu)ntksp(zμzμ)n1(12zx+z2x2)iu+l212(12zy+z2y2)iu+l122|z=tζ+sη.\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}=\pi^{-\frac{d}{2}}F_{l_{1},l_{2}}(u)A_{l_{1},l_{2}}(u)\sum_{n,k,p}\frac{l_{1}!l_{2}!(-1)^{k+p}\,2^{-k-p-3n}}{(l_{1}-k-n)!(l_{2}-p-n)!k!p!n!}\\ \frac{(\zeta\cdot\eta)^{n}(\zeta\cdot y)^{l_{1}-k-n}(\eta\cdot x)^{l_{2}-p-n}}{\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)_{k+p+2n}\left(2-\frac{d}{2}-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)_{n}}\,\partial_{t}^{k}\partial_{s}^{p}\\ \left.\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}\,\frac{1}{\left(1-2z\cdot x+z^{2}x^{2}\right)^{\operatorname{i}u+\frac{l_{21}}{2}}\left(1-2z\cdot y+z^{2}y^{2}\right)^{\operatorname{i}u+\frac{l_{12}}{2}}}\right|_{z=t\zeta+s\eta}\,. (2.49)

It seems that the coincidence of expression (2.49) and (2.31) is far from obvious. The direct proof of their equivalence is very technical and is given in Appendix B. Note that equivalence (2.49) and (2.31) automatically guarantees the validity of the interchange relations in Fig.4.

2.4 Properties of the R matrices

The integral representation (2.44) is very useful. For example, it allows to reduce the derivation of some important properties of the R-matrix to a few simple standard steps: the integral chain rules (A.8) and (A.9) and the star-triangle relation (A.10).

Integral Formula for Null Vectors

The fact that (2.49), or equivalently (2.44), is the same as (2.31) is proved in Appendix B. However, in the case x2=y2=0x^{2}=y^{2}=0 everything is simpler and the integral over zz in (2.44) can be calculated explicitly using Symanzik’s trick Symanzik:1972wj : if the parameters a1,,aNa_{1},\dots,a_{N} satisfy k=1Nak=d\sum_{k=1}^{N}a_{k}=d, then it holds that

k=1NΓ(ak)(zxk)2akddzπd2=+Nei,jαiαj(xixj)2k=1Nγkak(k=1Nγkak)d2k=1Nαkak1dαk,\int\prod_{k=1}^{N}\frac{\Gamma(a_{k})}{(z-x_{k})^{2a_{k}}}\frac{\text{d}^{d}z}{\pi^{\frac{d}{2}}}=\int_{\mathbb{R}_{+}^{N}}\frac{\operatorname{e}^{-\frac{\sum_{i,j}\alpha_{i}\alpha_{j}(x_{i}-x_{j})^{2}}{\sum_{k=1}^{N}\gamma_{k}a_{k}}}}{\left(\sum_{k=1}^{N}\gamma_{k}a_{k}\right)^{\frac{d}{2}}}\prod_{k=1}^{N}\alpha_{k}^{a_{k}-1}\text{d}\alpha_{k}\,, (2.50)

where the parameters γ1,,γN\gamma_{1},\dots,\gamma_{N} can be chosen arbitrarily as long as γk0\gamma_{k}\geqslant 0, and they are not all zero. In our case, N=4N=4 and we choose three of the parameters to be 0 whereas the last one is set to 1, we thus obtain

Γ(iu+l212)Γ(iu+l122)Γ(1l1+l22iu)Γ(d1+l1+l22iu)(zx)2(iu+l212)(zy)2(iu+l122)z2(1l1+l22iu)(zv)2(d1+l1+l22iu)ddzπd2=+4α1iu+l2121α2iu+l1221α3l1+l22iuα4d22+l1+l22iueα1α2α4(xy)2α1(xv)2α2(yv)2α3v2k=14dαk=Γ(d2+l11)Γ(d2+l21)Γ(1l1+l22iu)Γ(1d+l1+l22+iu)(yv)2(d2+l11)(xv)2(d2+l21)v2(1l1+l22iu)(xy)2(1d+l1+l22+iu).\int\frac{\Gamma\left(\operatorname{i}u+\frac{l_{21}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{l_{12}}{2}\right)\Gamma\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)\Gamma\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}{(z-x)^{2\left(\operatorname{i}u+\frac{l_{21}}{2}\right)}(z-y)^{2\left(\operatorname{i}u+\frac{l_{12}}{2}\right)}z^{2\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}(z-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}}\frac{\text{d}^{d}z}{\pi^{\frac{d}{2}}}\\ =\int_{\mathbb{R}_{+}^{4}}\alpha_{1}^{\operatorname{i}u+\frac{l_{21}}{2}-1}\alpha_{2}^{\operatorname{i}u+\frac{l_{12}}{2}-1}\alpha_{3}^{-\frac{l_{1}+l_{2}}{2}-\operatorname{i}u}\alpha_{4}^{\frac{d}{2}-2+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u}\operatorname{e}^{-\frac{\alpha_{1}\alpha_{2}}{\alpha_{4}}(x-y)^{2}-\alpha_{1}(x-v)^{2}-\alpha_{2}(y-v)^{2}-\alpha_{3}v^{2}}\prod_{k=1}^{4}\text{d}\alpha_{k}\\ =\frac{\Gamma\left(\frac{d}{2}+l_{1}-1\right)\Gamma\left(\frac{d}{2}+l_{2}-1\right)\Gamma\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)\Gamma\left(1-\frac{d+l_{1}+l_{2}}{2}+\operatorname{i}u\right)}{(y-v)^{2\left(\frac{d}{2}+l_{1}-1\right)}(x-v)^{2\left(\frac{d}{2}+l_{2}-1\right)}v^{2\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}(x-y)^{2\left(1-\frac{d+l_{1}+l_{2}}{2}+\operatorname{i}u\right)}}\,. (2.51)

As a consequence, when xx and yy are null vectors, the formula (2.44) reduces to

[l1,l2(u)ζl1ηl2](xl1yl2)=Γ(d2+l11)Γ(d2+l21)(iu+l1+l22)Γ(iul1+l22)Γ(iu+d2+l1+l22)Γ(iu+l1l22)Γ(iu+l2l12)×(xy)2(iu+d+l1+l222)(ζ(vy))l1(η(vx))l2v2(1iul1+l22)(yv)2(d2+l11)(xv)2(d2+l21)ddvπd2.\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot(x^{\otimes l_{1}}\otimes y^{\otimes l_{2}})=\frac{\Gamma\left(\frac{d}{2}+l_{1}-1\right)\Gamma\left(\frac{d}{2}+l_{2}-1\right)\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}\right)\Gamma\left(\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)}{\Gamma\left(-\operatorname{i}u+\frac{d-2+l_{1}+l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{l_{1}-l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{l_{2}-l_{1}}{2}\right)}\\ \times(x-y)^{2\left(-\operatorname{i}u+\frac{d+l_{1}+l_{2}-2}{2}\right)}\int\frac{(\zeta\cdot(v-y))^{l_{1}}(\eta\cdot(v-x))^{l_{2}}}{v^{2\left(1-\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)}(y-v)^{2\left(\frac{d}{2}+l_{1}-1\right)}(x-v)^{2\left(\frac{d}{2}+l_{2}-1\right)}}\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\,. (2.52)

This integral is well-defined. We postpone to Appendix C the direct check of the equivalence of this representation to the expression (2.2).

Derivative identity and mixing operator 𝕆l1,l2\mathbb{O}_{l_{1},l_{2}}

For ζ\zeta and η\eta two null vectors, it holds that

(ζ)l1(η)l2x2(l1+l2+2d2+λ)=(4l1l2d2+λ)l1+l2(4l1l2d2λ)l1+l2(x2)2λ×[l1,l2(iλ)ζl1ηl2](l1+l2)x2(l1+l2+2d2λ).(\zeta\cdot\nabla)^{l_{1}}(\eta\cdot\nabla)^{l_{2}}x^{2\left(\frac{l_{1}+l_{2}+2-d}{2}+\lambda\right)}=\frac{\left(\frac{4-l_{1}-l_{2}-d}{2}+\lambda\right)_{l_{1}+l_{2}}}{\left(\frac{4-l_{1}-l_{2}-d}{2}-\lambda\right)_{l_{1}+l_{2}}}(x^{2})^{2\lambda}\\ \times\left[\mathbb{R}_{l_{1},l_{2}}(-\operatorname{i}\lambda)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot\nabla^{\otimes(l_{1}+l_{2})}x^{2\left(\frac{l_{1}+l_{2}+2-d}{2}-\lambda\right)}\,. (2.53)

In order to prove this identity one needs to compute y(l1+l2)[l1,l2(iλ)ζl1ηl2]y^{\otimes(l_{1}+l_{2})}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(-\operatorname{i}\lambda)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right] for arbitrary yy. The details of calculation and the proof of the relation (2.53) are given in Appendix D.

Let us define an operator 𝕆l1,l2(u):𝕍l1𝕍l2Sl1+l2(d)\mathbb{O}_{l_{1},l_{2}}(u):\mathbb{V}_{l_{1}}\otimes\mathbb{V}_{l_{2}}\rightarrow S^{l_{1}+l_{2}}(\mathbb{C}^{d}) that takes values in the space of symmetric tensors of rank l1+l2l_{1}+l_{2} in the following way:

(ζ)l1(η)l2x2(l1+l2+2d2+iu)=2l1+l2(4l1l2d2+iu)l1+l2[𝕆l1,l2(u)ζl1ηl2]x(l1+l2)x2(l1+l2+d22iu),\displaystyle(\zeta\cdot\nabla)^{l_{1}}(\eta\cdot\nabla)^{l_{2}}x^{2\left(\frac{l_{1}+l_{2}+2-d}{2}+\operatorname{i}u\right)}=2^{l_{1}+l_{2}}\left(\frac{4-l_{1}-l_{2}-d}{2}+\operatorname{i}u\right)_{l_{1}+l_{2}}\frac{\left[\mathbb{O}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot x^{\otimes(l_{1}+l_{2})}}{x^{2\left(\frac{l_{1}+l_{2}+d-2}{2}-\operatorname{i}u\right)}}\,, (2.54)

or, equivalently, using (D.2),

[𝕆l1,l2(u)ζl1ηl2]x(l1+l2)=pl1!l2!p!(l1p)!(l2p)!(x2ζη)p(ζx)l1p(ηx)l2p2p(4l1l2d2+iu)p.\displaystyle\left[\mathbb{O}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot x^{\otimes(l_{1}+l_{2})}=\sum_{p}\,\frac{l_{1}!l_{2}!}{p!(l_{1}-p)!(l_{2}-p)!}\frac{(x^{2}\zeta\cdot\eta)^{p}(\zeta\cdot x)^{l_{1}-p}(\eta\cdot x)^{l_{2}-p}}{2^{p}\left(\frac{4-l_{1}-l_{2}-d}{2}+\operatorname{i}u\right)_{p}}\,. (2.55)

The property (2.53) we presented above is now written in a concise manner as

𝕆l1,l2(u)=𝕆l1,l2(u)l1,l2(u).\mathbb{O}_{l_{1},l_{2}}(u)=\mathbb{O}_{l_{1},l_{2}}(-u)\mathbb{R}_{l_{1},l_{2}}(u)\,. (2.56)

The mixing operator 𝕆l1,l2\mathbb{O}_{l_{1},l_{2}} naturally arises in the generalisation of the chain relation (A.8):

ddwπd2C1(w|w|)C2(wx|wx|)w2a(wx)2b=Al1(a)Al2(b)Al1+l2(dab)[𝕆l1,l2(i(a+b+1d))C1C2]x(l1+l2)x2(a+b+l1+l2d2)\int\frac{\text{d}^{d}w}{\pi^{\frac{d}{2}}}\,\frac{C_{1}\left(\frac{w}{|w|}\right)C_{2}\left(\frac{w-x}{|w-x|}\right)}{w^{2a}(w-x)^{2b}}=\\ A_{l_{1}}(a)A_{l_{2}}(b)A_{l_{1}+l_{2}}(d-a-b)\,\frac{\left[\mathbb{O}_{l_{1},l_{2}}(\operatorname{i}(a+b+1-d))C_{1}\otimes C_{2}\right]\cdot x^{\otimes(l_{1}+l_{2})}}{x^{2\left(a+b+\frac{l_{1}+l_{2}-d}{2}\right)}}\, (2.57)

and in the expression for the Basso-Dixon diagram (4.19).

Unitarity

The representation (2.2) clearly shows that the R matrices are symmetric and transforms simply under complex conjugation:

l1,l2t=l1,l2,l1,l2(u)=l1,l2(u).{}^{t}\mathbb{R}_{l_{1},l_{2}}=\mathbb{R}_{l_{1},l_{2}}\,,\quad\mathbb{R}_{l_{1},l_{2}}(u)^{*}=\mathbb{R}_{l_{1},l_{2}}(-u^{*})\,. (2.58)

From the integral representation (2.44), on the other hand, it is easy to see that the inverse is obtained by changing the sign of the spectral parameter:

l1,l2(u)l1,l2(u)=Idl1Idl2.\mathbb{R}_{l_{1},l_{2}}(u)\mathbb{R}_{l_{1},l_{2}}(-u)=\mathrm{Id}_{l_{1}}\otimes\mathrm{Id}_{l_{2}}\,. (2.59)

With the help of the two previous relations this amounts to saying that the R-matrix is unitary when uu is real.

Refer to caption
Figure 7: Property (2.59) in the notation for the fused l1l2(u)\mathbb{R}_{l_{1}l_{2}}(u) introduced in Fig.2.

The proof of unitarity goes as follows:

[l1,l2(u)l1,l2(u)ζl1ηl2](xl1yl2)=Fl1,l2(u)[l1,l2(u)ζl1ηl2]((yv)l1(xv)l2)(zx)2(iu+l212)(zy)2(iu+l122)z2(1l1+l22+iu)(zv)2(d1+l1+l22+iu)ddzddvπd=Fl1,l2(u)Fl1,l2(u)1(zx)2(iu+l212)(zy)2(iu+l122)z2(1l1+l22+iu)(zv)2(d1+l1+l22+iu)(ζ(xvv))l1(η(yvv))l2(z+vy)2(iu+l212)(z+vx)2(iu+l122)z2(1l1+l22iu)(zv)2(d1+l1+l22iu)ddzddvddzddvπ2d.\left[\mathbb{R}_{l_{1},l_{2}}(-u)\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot(x^{\otimes l_{1}}\otimes y^{\otimes l_{2}})\\ =F_{l_{1},l_{2}}(-u)\int\frac{\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot((y-v)^{\otimes l_{1}}\otimes(x-v)^{\otimes l_{2}})}{(z-x)^{2\left(-\operatorname{i}u+\frac{l_{21}}{2}\right)}(z-y)^{2\left(-\operatorname{i}u+\frac{l_{12}}{2}\right)}z^{2\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)}(z-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)}}\frac{\text{d}^{d}z\text{d}^{d}v}{\pi^{d}}\\ =F_{l_{1},l_{2}}(-u)F_{l_{1},l_{2}}(u)\int\frac{1}{(z-x)^{2\left(-\operatorname{i}u+\frac{l_{21}}{2}\right)}(z-y)^{2\left(-\operatorname{i}u+\frac{l_{12}}{2}\right)}z^{2\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)}(z-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)}}\\ \frac{(\zeta\cdot(x-v-v^{\prime}))^{l_{1}}(\eta\cdot(y-v-v^{\prime}))^{l_{2}}}{(z^{\prime}+v-y)^{2\left(\operatorname{i}u+\frac{l_{21}}{2}\right)}(z^{\prime}+v-x)^{2\left(-\operatorname{i}u+\frac{l_{12}}{2}\right)}z^{\prime 2\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}(z^{\prime}-v^{\prime})^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}}\frac{\text{d}^{d}z^{\prime}\text{d}^{d}v^{\prime}\text{d}^{d}z\text{d}^{d}v}{\pi^{2d}}\,.

After the natural change of variables vvvv^{\prime}\to v^{\prime}-v and zzvz^{\prime}\to z^{\prime}-v, it is possible to integrate over vv explicitly using (A.9). One obtains δ(d)(zz)\delta^{(d)}(z-z^{\prime}), and the integration over zz^{\prime} reduces the whole expression to another integral of the type (A.9)

Fl1,l2(u)Fl1,l2(u)1(zx)2(iu+l212)(zy)2(iu+l122)z2(1l1+l22+iu)(zv)2(d1+l1+l22+iu)(ζ(xv))l1(η(yv))l2(zy)2(iu+l212)(zx)2(iu+l122)(zv)2(1l1+l22iu)(zv)2(d1+l1+l22iu)ddzddvddzddvπ2d=Γ(1l1+l22+iu)Γ(d1+l1+l22iu)Γ(d+l1+l221iu)Γ(1l1+l2+d2+iu)δ(d)(zz)(zx)2(iu+l212)(zy)2(iu+l122)z2(1l1+l22+iu)×(ζ(xv))l1(η(yv))l2(zy)2(iu+l212)(zx)2(iu+l122)(zv)2(d1+l1+l22iu)ddzddvddzπd=Γ(1l1+l22+iu)Γ(d1+l1+l22iu)Γ(d+l1+l221iu)Γ(1l1+l2+d2+iu)(ζ(xv))l1(η(yv))l2z2(1l1+l22+iu)(zv)2(d1+l1+l22iu)ddvddzπd=(ζ(xv))l1(η(yv))l2δ(d)(v)ddv=(ζx)l1(ηy)l2.F_{l_{1},l_{2}}(-u)F_{l_{1},l_{2}}(u)\int\frac{1}{(z-x)^{2\left(-\operatorname{i}u+\frac{l_{21}}{2}\right)}(z-y)^{2\left(-\operatorname{i}u+\frac{l_{12}}{2}\right)}z^{2\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)}(z-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)}}\\ \frac{(\zeta\cdot(x-v^{\prime}))^{l_{1}}(\eta\cdot(y-v^{\prime}))^{l_{2}}}{(z^{\prime}-y)^{2\left(\operatorname{i}u+\frac{l_{21}}{2}\right)}(z^{\prime}-x)^{2\left(-\operatorname{i}u+\frac{l_{12}}{2}\right)}(z^{\prime}-v)^{2\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}(z^{\prime}-v^{\prime})^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}}\frac{\text{d}^{d}z^{\prime}\text{d}^{d}v^{\prime}\text{d}^{d}z\text{d}^{d}v}{\pi^{2d}}\\ =\frac{\Gamma\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)\Gamma\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}{\Gamma\left(\frac{d+l_{1}+l_{2}}{2}-1-\operatorname{i}u\right)\Gamma\left(1-\frac{l_{1}+l_{2}+d}{2}+\operatorname{i}u\right)}\int\frac{\delta^{(d)}(z-z^{\prime})}{(z-x)^{2\left(-\operatorname{i}u+\frac{l_{21}}{2}\right)}(z-y)^{2\left(-\operatorname{i}u+\frac{l_{12}}{2}\right)}z^{2\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)}}\\ \times\frac{(\zeta\cdot(x-v^{\prime}))^{l_{1}}(\eta\cdot(y-v^{\prime}))^{l_{2}}}{(z^{\prime}-y)^{2\left(\operatorname{i}u+\frac{l_{21}}{2}\right)}(z^{\prime}-x)^{2\left(-\operatorname{i}u+\frac{l_{12}}{2}\right)}(z^{\prime}-v^{\prime})^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}}\frac{\text{d}^{d}z^{\prime}\text{d}^{d}v^{\prime}\text{d}^{d}z}{\pi^{d}}\\ =\frac{\Gamma\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)\Gamma\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}{\Gamma\left(\frac{d+l_{1}+l_{2}}{2}-1-\operatorname{i}u\right)\Gamma\left(1-\frac{l_{1}+l_{2}+d}{2}+\operatorname{i}u\right)}\int\frac{(\zeta\cdot(x-v^{\prime}))^{l_{1}}(\eta\cdot(y-v^{\prime}))^{l_{2}}}{z^{2\left(1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u\right)}(z-v^{\prime})^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}u\right)}}\frac{\text{d}^{d}v^{\prime}\text{d}^{d}z}{\pi^{d}}\\ =\int(\zeta\cdot(x-v^{\prime}))^{l_{1}}(\eta\cdot(y-v^{\prime}))^{l_{2}}\delta^{(d)}(v^{\prime})\text{d}^{d}v^{\prime}=(\zeta\cdot x)^{l_{1}}(\eta\cdot y)^{l_{2}}\,.

Crossing Symmetry

From the explicit representation (2.2) of the R-matrix one immediately deduces the following crossing property:

t2l1,l2(i2d2u)=(iu+d+l2l122)l1(iul1+l22)l1(iu+dl1l222)l1(iu+l2l12)l1l1,l2(u)^{t_{2}}\mathbb{R}_{l_{1},l_{2}}\left(\operatorname{i}\frac{2-d}{2}-u\right)=\frac{\left(-\operatorname{i}u+\frac{d+l_{2}-l_{1}-2}{2}\right)_{l_{1}}\left(\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)_{l_{1}}}{\left(-\operatorname{i}u+\frac{d-l_{1}-l_{2}-2}{2}\right)_{l_{1}}\left(\operatorname{i}u+\frac{l_{2}-l_{1}}{2}\right)_{l_{1}}}\mathbb{R}_{l_{1},l_{2}}(u) (2.60)

where t2t_{2} denotes transposition in 𝕍2\mathbb{V}_{2} only.

Yang–Baxter Relation

The fusion procedure being a way to construct new solutions of the Yang–Baxter relation, we know that the expresssion (2.2) satisfies it. It is however also possible to show it directly for the integral representation as we now explain. We want to show that for arbitrary null vectors ζ\zeta, η\eta, and θ\theta we have

l1,l2(λ)l1,l3(λ+μ)l2,l3(μ)ζl1ηl2θl3=l2,l3(μ)l1,l3(λ+μ)l1,l2(λ)ζl1ηl2θl3.\mathbb{R}_{l_{1},l_{2}}(\lambda)\mathbb{R}_{l_{1},l_{3}}(\lambda+\mu)\mathbb{R}_{l_{2},l_{3}}(\mu)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\otimes\theta^{\otimes l_{3}}\\ =\mathbb{R}_{l_{2},l_{3}}(\mu)\mathbb{R}_{l_{1},l_{3}}(\lambda+\mu)\mathbb{R}_{l_{1},l_{2}}(\lambda)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\otimes\theta^{\otimes l_{3}}\,. (2.61)
Refer to caption
Figure 8: Property (2.61) in the notation for the fused l1l2(u)\mathbb{R}_{l_{1}l_{2}}(u) introduced in Fig.2.

It suffices to verify that the scalar product with any vector of the form xl1yl2zl3x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\otimes z^{\otimes l_{3}}, for xx, yy, and zz real, is the same for both sides. After taking the scalar product and using the integral representation (without writing the scalar prefactors Fli,ljF_{l_{i},l_{j}}), the left-hand side becomes

[l1,l2(λ)l1,l3(λ+μ)l2,l3(μ)ζl1ηl2θl3]xl1yl2zl3[l1,l3(λ+μ)l2,l3(μ)ζl1ηl2θl3](yv)l1(xv)l2zl3(wx)2(iλ+l212)(wy)2(iλ+l122)w2(1l1+l22iλ)(wv)2(d1+l1+l22iλ)ddwddvπdπdddwddv(wx)2(iλ+l212)(wy)2(iλ+l122)w2(1l1+l22iλ)(wv)2(d1+l1+l22iλ)×[l2,l3(μ)ζl1ηl2θl3](zv)l1(xv)l2(yvv)l3(wy+v)2(iλ+iμ+l312)(wz)2(iλ+iμ+l132)w2(1l1+l32iλiμ)(wv)2(d1+l1+l32iλiμ)ddwddvπdπdddwddv(wx)2(iλ+l212)(wy)2(iλ+l122)w2(1l1+l22iλ)(wv)2(d1+l1+l22iλ)×πdddwddv(wy+v)2(iλ+iμ+l312)(wz)2(iλ+iμ+l132)w2(1l1+l32iλiμ)(wv)2(d1+l1+l32iλiμ)×(ζ(zv))l1(η(yvvv′′))l2(θ(xvv′′))l3πdddw′′ddv′′(w′′+vx)2(iμ+l322)(w′′+v+vy)2(iμ+l232)w′′2(1l2+l32iμ)(w′′v′′)2(d1+l2+l32iμ)πdddwddv(wx)2(iλ+l212)(wy)2(iλ+l122)w2(1l1+l22iλ)(wv)2(d1+l1+l22iλ)×πdddwddv(wy+v)2(iλ+iμ+l312)(wz)2(iλ+iμ+l132)w2(1l1+l32iλiμ)(wv)2(d1+l1+l32iλiμ)×(ζ(zv))l1(η(yvv′′))l2(θ(xv′′))l3πdddw′′ddv′′(w′′x)2(iμ+l322)(w′′+vy)2(iμ+l232)(w′′v)2(1l2+l32iμ)(w′′v′′)2(d1+l2+l32iμ).[\mathbb{R}_{l_{1},l_{2}}(\lambda)\mathbb{R}_{l_{1},l_{3}}(\lambda+\mu)\mathbb{R}_{l_{2},l_{3}}(\mu)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\otimes\theta^{\otimes l_{3}}]\cdot x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\otimes z^{\otimes l_{3}}\\ \propto\int\frac{[\mathbb{R}_{l_{1},l_{3}}(\lambda+\mu)\mathbb{R}_{l_{2},l_{3}}(\mu)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\otimes\theta^{\otimes l_{3}}]\cdot(y-v)^{\otimes l_{1}}\otimes(x-v)^{\otimes l_{2}}\otimes z^{\otimes l_{3}}}{(w-x)^{2\left(\operatorname{i}\lambda+\frac{l_{21}}{2}\right)}(w-y)^{2\left(\operatorname{i}\lambda+\frac{l_{12}}{2}\right)}w^{2\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)}(w-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)}}\frac{\text{d}^{d}w\text{d}^{d}v}{\pi^{d}}\\ \propto\int\frac{\pi^{-d}\text{d}^{d}w\text{d}^{d}v}{(w-x)^{2\left(\operatorname{i}\lambda+\frac{l_{21}}{2}\right)}(w-y)^{2\left(\operatorname{i}\lambda+\frac{l_{12}}{2}\right)}w^{2\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)}(w-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)}}\\ \times\frac{[\mathbb{R}_{l_{2},l_{3}}(\mu)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\otimes\theta^{\otimes l_{3}}]\cdot(z-v^{\prime})^{\otimes l_{1}}\otimes(x-v)^{\otimes l_{2}}\otimes(y-v-v^{\prime})^{\otimes l_{3}}}{(w^{\prime}-y+v)^{2\left(\operatorname{i}\lambda+\operatorname{i}\mu+\frac{l_{31}}{2}\right)}(w^{\prime}-z)^{2\left(\operatorname{i}\lambda+\operatorname{i}\mu+\frac{l_{13}}{2}\right)}w^{\prime 2\left(1-\frac{l_{1}+l_{3}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}(w^{\prime}-v^{\prime})^{2\left(d-1+\frac{l_{1}+l_{3}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}}\frac{\text{d}^{d}w^{\prime}\text{d}^{d}v^{\prime}}{\pi^{d}}\\ \propto\int\frac{\pi^{-d}\text{d}^{d}w\text{d}^{d}v}{(w-x)^{2\left(\operatorname{i}\lambda+\frac{l_{21}}{2}\right)}(w-y)^{2\left(\operatorname{i}\lambda+\frac{l_{12}}{2}\right)}w^{2\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)}(w-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)}}\\ \times\frac{\pi^{-d}\text{d}^{d}w^{\prime}\text{d}^{d}v^{\prime}}{(w^{\prime}-y+v)^{2\left(\operatorname{i}\lambda+\operatorname{i}\mu+\frac{l_{31}}{2}\right)}(w^{\prime}-z)^{2\left(\operatorname{i}\lambda+\operatorname{i}\mu+\frac{l_{13}}{2}\right)}w^{\prime 2\left(1-\frac{l_{1}+l_{3}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}(w^{\prime}-v^{\prime})^{2\left(d-1+\frac{l_{1}+l_{3}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}}\\ \times\frac{(\zeta\cdot(z-v^{\prime}))^{l_{1}}(\eta\cdot(y-v-v^{\prime}-v^{\prime\prime}))^{l_{2}}(\theta\cdot(x-v-v^{\prime\prime}))^{l_{3}}\,\pi^{-d}\text{d}^{d}w^{\prime\prime}\text{d}^{d}v^{\prime\prime}}{(w^{\prime\prime}+v-x)^{2\left(\operatorname{i}\mu+\frac{l_{32}}{2}\right)}(w^{\prime\prime}+v+v^{\prime}-y)^{2\left(\operatorname{i}\mu+\frac{l_{23}}{2}\right)}w^{\prime\prime 2\left(1-\frac{l_{2}+l_{3}}{2}-\operatorname{i}\mu\right)}(w^{\prime\prime}-v^{\prime\prime})^{2\left(d-1+\frac{l_{2}+l_{3}}{2}-\operatorname{i}\mu\right)}}\\ \propto\int\frac{\pi^{-d}\text{d}^{d}w\text{d}^{d}v}{(w-x)^{2\left(\operatorname{i}\lambda+\frac{l_{21}}{2}\right)}(w-y)^{2\left(\operatorname{i}\lambda+\frac{l_{12}}{2}\right)}w^{2\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)}(w-v)^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)}}\\ \times\frac{\pi^{-d}\text{d}^{d}w^{\prime}\text{d}^{d}v^{\prime}}{(w^{\prime}-y+v)^{2\left(\operatorname{i}\lambda+\operatorname{i}\mu+\frac{l_{31}}{2}\right)}(w^{\prime}-z)^{2\left(\operatorname{i}\lambda+\operatorname{i}\mu+\frac{l_{13}}{2}\right)}w^{\prime 2\left(1-\frac{l_{1}+l_{3}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}(w^{\prime}-v^{\prime})^{2\left(d-1+\frac{l_{1}+l_{3}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}}\\ \times\frac{(\zeta\cdot(z-v^{\prime}))^{l_{1}}(\eta\cdot(y-v^{\prime}-v^{\prime\prime}))^{l_{2}}(\theta\cdot(x-v^{\prime\prime}))^{l_{3}}\,\pi^{-d}\text{d}^{d}w^{\prime\prime}\text{d}^{d}v^{\prime\prime}}{(w^{\prime\prime}-x)^{2\left(\operatorname{i}\mu+\frac{l_{32}}{2}\right)}(w^{\prime\prime}+v^{\prime}-y)^{2\left(\operatorname{i}\mu+\frac{l_{23}}{2}\right)}(w^{\prime\prime}-v)^{2\left(1-\frac{l_{2}+l_{3}}{2}-\operatorname{i}\mu\right)}(w^{\prime\prime}-v^{\prime\prime})^{2\left(d-1+\frac{l_{2}+l_{3}}{2}-\operatorname{i}\mu\right)}}\,.

At the last step, we have simply performed the change of variables (w′′,v′′)(w′′v,v′′v)(w^{\prime\prime},v^{\prime\prime})\mapsto(w^{\prime\prime}-v,v^{\prime\prime}-v) so that now the integral over vv is computed by a simple application of the star-triangle identity (A.10). At the same time, we find it convenient to define z~=zy\tilde{z}=z-y and to perform the change of variables (w,v)(yw,yv)(w^{\prime},v^{\prime})\mapsto(y-w^{\prime},y-v^{\prime}), so that we obtain

[l1,l2(λ)l1,l3(λ+μ)l2,l3(μ)ζl1ηl2θl3]xl1yl2zl3=Fl1,l2(λ)Fl1,l3(λ+μ)Fl2,l3(μ)A0(d1+l1+l22iλ)A0(iλ+iμ+l312)A0(1l2+l32iμ)×πd2ddw(wx)2(iλ+l2l12)(wy)2(iλ+l1l22)w2(1l1+l22iλ)(ww′′)2(1d+l1+l22+iλ)×πdddwddv(w′′w)2(d+l1l32iλiμ)(wz~)2(iλ+iμ+l1l32)(wy)2(1l1+l32iλiμ)(wv)2(d1+l1+l32iλiμ)×(ζ(z~+v))l1(η(vv′′))l2(θ(xv′′))l3πdddw′′ddv′′(w′′x)2(iμ+l3l22)(w′′v)2(iμ+l2l32)(ww)2(d+l2+l321+iμ)(w′′v′′)2(d1+l2+l32iμ).[\mathbb{R}_{l_{1},l_{2}}(\lambda)\mathbb{R}_{l_{1},l_{3}}(\lambda+\mu)\mathbb{R}_{l_{2},l_{3}}(\mu)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\otimes\theta^{\otimes l_{3}}]\cdot x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\otimes z^{\otimes l_{3}}\\ =F_{l_{1},l_{2}}(\lambda)F_{l_{1},l_{3}}(\lambda+\mu)F_{l_{2},l_{3}}(\mu)A_{0}\!\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)A_{0}\!\left(\operatorname{i}\lambda+\operatorname{i}\mu+\frac{l_{31}}{2}\right)A_{0}\!\left(1-\frac{l_{2}+l_{3}}{2}-\operatorname{i}\mu\right)\\ \times\int\frac{\pi^{-\frac{d}{2}}\text{d}^{d}w}{(w-x)^{2\left(\operatorname{i}\lambda+\frac{l_{2}-l_{1}}{2}\right)}(w-y)^{2\left(\operatorname{i}\lambda+\frac{l_{1}-l_{2}}{2}\right)}w^{2\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)}(w^{\prime}-w^{\prime\prime})^{2\left(1-\frac{d+l_{1}+l_{2}}{2}+\operatorname{i}\lambda\right)}}\\ \times\frac{\pi^{-d}\text{d}^{d}w^{\prime}\text{d}^{d}v^{\prime}}{(w^{\prime\prime}-w)^{2\left(\frac{d+l_{1}-l_{3}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}(w^{\prime}-\tilde{z})^{2\left(\operatorname{i}\lambda+\operatorname{i}\mu+\frac{l_{1}-l_{3}}{2}\right)}(w^{\prime}-y)^{2\left(1-\frac{l_{1}+l_{3}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}(w^{\prime}-v^{\prime})^{2\left(d-1+\frac{l_{1}+l_{3}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}}\\ \times\frac{(\zeta\cdot(\tilde{z}+v^{\prime}))^{l_{1}}(\eta\cdot(v^{\prime}-v^{\prime\prime}))^{l_{2}}(\theta\cdot(x-v^{\prime\prime}))^{l_{3}}\,\pi^{-d}\text{d}^{d}w^{\prime\prime}\text{d}^{d}v^{\prime\prime}}{(w^{\prime\prime}-x)^{2\left(\operatorname{i}\mu+\frac{l_{3}-l_{2}}{2}\right)}(w^{\prime\prime}-v^{\prime})^{2\left(\operatorname{i}\mu+\frac{l_{2}-l_{3}}{2}\right)}(w-w^{\prime})^{2\left(\frac{d+l_{2}+l_{3}}{2}-1+\operatorname{i}\mu\right)}(w^{\prime\prime}-v^{\prime\prime})^{2\left(d-1+\frac{l_{2}+l_{3}}{2}-\operatorname{i}\mu\right)}}\,.
Refer to caption
Figure 9: The kernels depicted on the left and on the right are related respectively to the l.h.s. and r.h.s. of the Yang-Baxter equation (2.61) in the integral representation for the R-matrix elements (2.2), and the equality of the two kernels is equivalent to the YBE. Both kernels are shown to be proportional to the one in the middle, via star-triangle identity applied to the blue triangles. Keeping track of the proportionality constants shows that l.h.s.==r.h.s.

Similar manipulations for the right-hand side of the Yang–Baxter relation give

[l2,l3(μ)l1,l3(λ+μ)l1,l2(λ)ζl1ηl2θl3]xl1yl2zl3=Fl1,l2(λ)Fl1,l3(λ+μ)Fl2,l3(μ)A0(d1+l2+l32iμ)A0(iλ+iμ+l132)A0(1l1+l22iλ)×πd2ddww2(iμ+l3l22)(wz~)2(iμ+l2l32)(wy)2(1l2+l32iμ)(ww′′)2(1d+l2+l32+iμ)×πdddw′′ddv′′(w′′x)2(iλ+iμ+l3l12)(ww)2(d+l3l12iλiμ)w′′2(1l1+l32iλiμ)(w′′v′′)2(d1+l1+l32iλiμ)×(ζ(z~+v))l1(η(vv′′))l2(θ(xv′′))l3πdddwddv(wv′′)2(iλ+l2l12)(wz~)2(iλ+l1l22)(ww′′)2(d+l1+l221+iλ)(wv)2(d1+l1+l22iλ).[\mathbb{R}_{l_{2},l_{3}}(\mu)\mathbb{R}_{l_{1},l_{3}}(\lambda+\mu)\mathbb{R}_{l_{1},l_{2}}(\lambda)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\otimes\theta^{\otimes l_{3}}]\cdot x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}\otimes z^{\otimes l_{3}}\\ =F_{l_{1},l_{2}}(\lambda)F_{l_{1},l_{3}}(\lambda+\mu)F_{l_{2},l_{3}}(\mu)A_{0}\!\left(d-1+\frac{l_{2}+l_{3}}{2}-\operatorname{i}\mu\right)A_{0}\!\left(\operatorname{i}\lambda+\operatorname{i}\mu+\frac{l_{13}}{2}\right)A_{0}\!\left(1-\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)\\ \times\int\frac{\pi^{-\frac{d}{2}}\text{d}^{d}w}{w^{2\left(\operatorname{i}\mu+\frac{l_{3}-l_{2}}{2}\right)}(w-\tilde{z})^{2\left(\operatorname{i}\mu+\frac{l_{2}-l_{3}}{2}\right)}(w-y)^{2\left(1-\frac{l_{2}+l_{3}}{2}-\operatorname{i}\mu\right)}(w^{\prime}-w^{\prime\prime})^{2\left(1-\frac{d+l_{2}+l_{3}}{2}+\operatorname{i}\mu\right)}}\\ \times\frac{\pi^{-d}\text{d}^{d}w^{\prime\prime}\text{d}^{d}v^{\prime\prime}}{(w^{\prime\prime}-x)^{2\left(\operatorname{i}\lambda+\operatorname{i}\mu+\frac{l_{3}-l_{1}}{2}\right)}(w-w^{\prime})^{2\left(\frac{d+l_{3}-l_{1}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}w^{\prime\prime 2\left(1-\frac{l_{1}+l_{3}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}(w^{\prime\prime}-v^{\prime\prime})^{2\left(d-1+\frac{l_{1}+l_{3}}{2}-\operatorname{i}\lambda-\operatorname{i}\mu\right)}}\\ \times\frac{(\zeta\cdot(\tilde{z}+v^{\prime}))^{l_{1}}(\eta\cdot(v^{\prime}-v^{\prime\prime}))^{l_{2}}(\theta\cdot(x-v^{\prime\prime}))^{l_{3}}\,\pi^{-d}\text{d}^{d}w^{\prime}\text{d}^{d}v^{\prime}}{(w^{\prime}-v^{\prime\prime})^{2\left(\operatorname{i}\lambda+\frac{l_{2}-l_{1}}{2}\right)}(w^{\prime}-\tilde{z})^{2\left(\operatorname{i}\lambda+\frac{l_{1}-l_{2}}{2}\right)}(w-w^{\prime\prime})^{2\left(\frac{d+l_{1}+l_{2}}{2}-1+\operatorname{i}\lambda\right)}(w^{\prime}-v^{\prime})^{2\left(d-1+\frac{l_{1}+l_{2}}{2}-\operatorname{i}\lambda\right)}}\,.

Notice now that the numerators in the integrands of the last two formulas are the same, and that these do not involve ww, ww^{\prime}, or w′′w^{\prime\prime}. Consequently, if we can prove that the integrals over these three variables coincide, then we are done. This is actually a straightforward application of the star-triangle identity (A.10), as depicted in Fig.9.

3 Diagonalisation of Graph-building Operators

3.1 Construction of the Eigenvectors

In this section, we will work with the choice δi\delta\in\operatorname{i}\mathbb{R}, corresponding to a representation of the unitary principal series of the conformal group Tod:1977harm .

We will eventually restore the fishnet framework 0<δ<d20<\delta<\frac{d}{2} by analytic continuation. We also introduce, in our computations, a reference point x0dx_{0}\in\mathbb{R}^{d} (one could set it to 0 for instance).

Refer to caption
Figure 10: Transfer-matrix operator 𝐐3(u)\mathbf{Q}_{3}(u) as a integral operator with the kernel represented in Feynman diagram notation. The two equivalent forms are related by star-triangle identity.

Let us define the lattice transfer-matrix 𝐐N(u)\mathbf{Q}_{N}(u) we want to diagonalise, where NN\in\mathbb{N}^{*} is the lattice width and uu\in\mathbb{C} is the spectral parameter. The transfeR-matrix 𝐐N(u)\mathbf{Q}_{N}(u) is an operator acting on functions Φ\Phi of NN points as

[𝐐N(u)Φ](x1,,xN)=Φ(y1,,yN)k=1N(xkk+1)2δ(ykxk)2α(ykxk1)2βj=1Nddyjπd2=[A0(δ)A0(α(u))A0(β(u))]NΦ(y1,,yN)k=1N(wkyk)2δ~(wkxk)2β~(u)(wkxk1)2α~(u)j=1Nddwjddyjπd,\displaystyle\begin{aligned} &\left[\mathbf{\mathbf{Q}}_{N}(u)\Phi\right](x_{1},\dots,x_{N})=\int\frac{\Phi(y_{1},\dots,y_{N})}{\prod_{k=1}^{N}(x_{kk+1})^{2\delta}(y_{k}-x_{k})^{2\alpha}(y_{k}-x_{k-1})^{2\beta}}\prod_{j=1}^{N}\frac{\text{d}^{d}y_{j}}{\pi^{\frac{d}{2}}}\\ &=\left[A_{0}(\delta)A_{0}(\alpha(u))A_{0}(\beta(u))\right]^{N}\int\frac{\Phi(y_{1},\dots,y_{N})}{\prod_{k=1}^{N}(w_{k}-y_{k})^{2\tilde{\delta}}(w_{k}-x_{k})^{2\tilde{\beta}(u)}(w_{k}-x_{k-1})^{2\tilde{\alpha}(u)}}\prod_{j=1}^{N}\frac{\text{d}^{d}w_{j}\text{d}^{d}y_{j}}{\pi^{d}}\,,\end{aligned} (3.1)

where xkk+1=xkxk+1x_{kk+1}=x_{k}-x_{k+1}. The inner product between two functions of NN points Φ\Phi and Ψ\Psi is defined by

Φ|Ψ=Φ|x1,,xNx1,,xN|Ψk=1Nddxkπd2=Φ(x1,,xN)Ψ(x1,,xN)k=1Nddxkπd2.\langle{\Phi}\ket{\Psi}=\int\langle{\Phi}\ket{x_{1},\dots,x_{N}}\langle{x_{1},\dots,x_{N}}\ket{\Psi}\prod_{k=1}^{N}\frac{\text{d}^{d}x_{k}}{\pi^{\frac{d}{2}}}=\int\Phi^{*}(x_{1},\dots,x_{N})\Psi(x_{1},\dots,x_{N})\prod_{k=1}^{N}\frac{\text{d}^{d}x_{k}}{\pi^{\frac{d}{2}}}\,. (3.2)

With the definition (3.23), the constant πd2\pi^{-\frac{d}{2}} is included in the integration measure over space-time, i.e. |x\ket{x} is such that x|y=πd2δ(xy)\langle{x}\ket{y}=\pi^{\frac{d}{2}}\delta(x-y). As a consequence, one can write

x1,,xN|𝐐N(u)|y1,,yN=1k=1Nxk,k+12δ(ykxk)2α(ykxk1)2β\bra{x_{1},\dots,x_{N}}\mathbf{Q}_{N}(u)\ket{y_{1},\dots,y_{N}}=\frac{1}{\prod_{k=1}^{N}x_{k,k+1}^{2\delta}(y_{k}-x_{k})^{2\alpha}(y_{k}-x_{k-1})^{2\beta}} (3.3)

for the kernel of the graph-building operator, which is represented by the diagram of Fig.10.

A particular case of the family of operators (LABEL:Qmat_any_d) - for x0=0x_{0}=0 - is the graph-building operator of the square-lattice fishnet

𝐁N,δ~𝐐N(iδ~2).\mathbf{B}_{N,\tilde{\delta}}\equiv\mathbf{Q}_{N}\left(\operatorname{i}\frac{\tilde{\delta}}{2}\right)\,. (3.4)

The operators (LABEL:Qmat_any_d) computed at different values of the spectral parameter commute

[𝐐N(u),𝐐N(u)]=0,[\mathbf{Q}_{N}(u),\mathbf{Q}_{N}(u^{\prime})]=0\,, (3.5)

the proof follows all the steps of the one presented for d=2d=2 dimensions in Derkachov2019 ; Derkachov:2014gya , and it is ultimately based on the star-triangle identity (A.10). We show it in Fig.11 for completeness. The notation of Feynman diagrams used in Fig.10 maps lengthy manipulations of integral kernels into simple moves of lines and vertices, it will therefore be the language of many calculations of this section.

Refer to caption
Refer to caption
Figure 11: Commutation of operators 𝐐3\mathbf{Q}_{3} computed at different values uuu\neq u^{\prime} of the spectral parameter. Up left: The blue triangles are replaced by star integrals. Up center: upwards movement of the horizontal line of power ββ\beta-\beta^{\prime}, by a chain of star-triangle identitites. Up right: The last passage involves star-triangle and chain-rule indentity. Down left: integration of the blue vertices by star-triangle identity. Down right: the final result is equal to the first picture with exchanged uu and uu^{\prime}, i.e. (α,β)(α,β)(\alpha,\beta)\leftrightarrow(\alpha^{\prime},\beta^{\prime}).

We shall construct iteratively the eigenvectors of 𝐐N\mathbf{Q}_{N}, starting from N=1N=1. Since these operators commute with global rotations and dilations, the eigenvectors of 𝐐1\mathbf{Q}_{1} are constrained to be

x|𝐮1;C=C(xx0)(xx0)2(β~1+l12),𝐮1=(u1,l1)×,\langle{x}\ket{\mathbf{u}_{1};C}=\frac{C(x-x_{0})}{(x-x_{0})^{2\left(\tilde{\beta}_{1}+\frac{l_{1}}{2}\right)}}\,,\,\,\,\,\,\,\mathbf{u}_{1}=(u_{1},l_{1})\in\mathbb{C}\times\mathbb{N}\,, (3.6)

where

C(y)=Cμ1μl1yμ1yμl1,\quad C(y)=C^{\mu_{1}\dots\mu_{l_{1}}}y_{\mu_{1}}\dots y_{\mu_{l_{1}}}\,, (3.7)

and C𝕍lC\in\mathbb{V}_{l} is a symmetric traceless tensors of rank l1l_{1}. The spectral equation reads

𝐐1(u)|𝐮1;C=Ql1(u|u1)|𝐮1;C,\mathbf{Q}_{1}(u)\ket{\mathbf{u}_{1};C}=Q_{l_{1}}(u|u_{1})\ket{\mathbf{u}_{1};C}\,, (3.8)

and the eigenvalue, computed using the identity (A.11), is

Ql(u|u)=A0(α)Al(α~)Al(β+β~).Q_{l}(u|u^{\prime})=A_{0}(\alpha)A_{l}(\tilde{\alpha}^{\prime})A_{l}(\beta+\tilde{\beta}^{\prime})\,. (3.9)

For N>1N>1, we find the eigenvectors after the definition of a recursive step. For 𝐮×\mathbf{u}\in\mathbb{C}\times\mathbb{N} and C𝕍lC\in\mathbb{V}_{l} we introduce the layer operator C𝚲N(𝐮)C\cdot{\mathbf{\Lambda}}_{N}(\mathbf{u}) acting on functions of N1N-1 points and returning functions of NN points:

[C𝚲N(𝐮)Φ](x1,,xN)=[A0(1αl2)A0(β+l2)]N1×C(x1x0(x1x0)2y1x0(y1x0)2)(xNwN1)2(β~l2)k=1N1(xkwk)2(α~+l2)(xkwk1)2(β~l2)×Φ(y1,,yN1)k=1N1(ykwk)2(α+d+l21)(ykwk1)2(1β~l2)k=1N1ddwkπd2ddykπd2,\left[C\cdot{\mathbf{\Lambda}}_{N}(\mathbf{u})\Phi\right](x_{1},\dots,x_{N})=\left[A_{0}\left(1-\alpha-\frac{l}{2}\right)A_{0}\left(\beta+\frac{l}{2}\right)\right]^{N-1}\\ \times\int\frac{C\left(\frac{x_{1}-x_{0}}{(x_{1}-x_{0})^{2}}-\frac{y_{1}-x_{0}}{(y_{1}-x_{0})^{2}}\right)}{(x_{N}-w_{N-1})^{2\left(\tilde{\beta}-\frac{l}{2}\right)}\prod_{k=1}^{N-1}(x_{k}-w_{k})^{2\left(\tilde{\alpha}+\frac{l}{2}\right)}(x_{k}-w_{k-1})^{2\left(\tilde{\beta}-\frac{l}{2}\right)}}\\ \times\frac{\Phi(y_{1},\dots,y_{N-1})}{\prod_{k=1}^{N-1}(y_{k}-w_{k})^{2\left(\alpha+\frac{d+l}{2}-1\right)}(y_{k}-w_{k-1})^{2\left(1-\tilde{\beta}-\frac{l}{2}\right)}}\prod_{k=1}^{N-1}\frac{\text{d}^{d}w_{k}}{\pi^{\frac{d}{2}}}\frac{\text{d}^{d}y_{k}}{\pi^{\frac{d}{2}}}\,, (3.10)

with w0=x0w_{0}=x_{0}. The scalar prefactor in (3.10) leads to a convenient normalisation for the eigenvectors, that simplifies the form of their symmetry property and inner products. Strictly speaking, the integrals (3.10) are ill-defined if l>0l>0 and they should be understood as analytic continuations. Despite that, we can perform on them all the needed manipulations via integral identities presented in Appendix A. The operator 𝚲N(𝐮)\mathbf{\Lambda}_{N}(\mathbf{u}) carries ll symmetric traceless tensor indices,

𝚲N(𝐮)μ1μl,{\mathbf{\Lambda}_{N}}(\mathbf{u})^{\mu_{1}\dots\mu_{l}}\,, (3.11)

and its pairing with the tensor CC can be encoded in the action of a differential operator, according to (A.4):

C𝚲N(𝐮)=C(x0)2l(β~l2)lΛN(𝐮).C\cdot\mathbf{\Lambda}_{N}(\mathbf{u})=\frac{C\left(\nabla_{x_{0}}\right)}{2^{l}\left(\tilde{\beta}-\frac{l}{2}\right)_{l}}{\Lambda}_{N}(\mathbf{u})\,. (3.12)

The kernel of this last operator ΛN(𝐮){\Lambda}_{N}(\mathbf{u}) is represented by the diagram of Fig.12 for N=4N=4.

The crucial relation satisfied by the layer operator is (see the proof in Fig.14) is

𝐐N(u)CN𝚲N(𝐮N)=qlN(u|uN)CN𝚲N(𝐮N)𝐐N1(u),\mathbf{Q}_{N}(u)C_{N}\cdot\mathbf{\Lambda}_{N}(\mathbf{u}_{N})=q_{l_{N}}(u|u_{N})C_{N}\cdot\mathbf{\Lambda}_{N}(\mathbf{u}_{N})\mathbf{Q}_{N-1}(u)\,, (3.13)

and the eigenvectors of 𝐐N(u)\mathbf{Q}_{N}(u) are therefore constructed iteratively as

|𝐮1,,𝐮N;C1CN=CN𝚲N(𝐮N)C2𝚲2(𝐮2)|𝐮1;C1,\ket{\mathbf{u}_{1},\dots,\mathbf{u}_{N};C_{1}\otimes\dots\otimes C_{N}}=C_{N}\cdot\mathbf{\Lambda}_{N}(\mathbf{u}_{N})\cdots C_{2}\cdot\mathbf{\Lambda}_{2}(\mathbf{u}_{2})\ket{\mathbf{u}_{1};C_{1}}\,, (3.14)

with arbitrarily chosen Ci𝕍liC_{i}\in\mathbb{V}_{l_{i}}.

Refer to caption
Figure 12: Left: graphical representation of the layer operator C𝚲4(𝐮4)C(x0)Λ4(𝐮4)C\cdot\mathbf{\Lambda}_{4}(\mathbf{u}_{4})\propto C(\nabla_{x_{0}})\cdot{\Lambda}_{4}(\mathbf{u}_{4}). The blue triangle stands for the differential operator C(x0)C(\nabla_{x_{0}}). Right: graphical representation of the eigenvector |𝐮1,,𝐮4;C\ket{\mathbf{u}_{1},\dots,\mathbf{u}_{4};C}.

The spectral equation for the graph-building transfer-matrix reads

𝐐N(u)|𝐮1,,𝐮N;C=k=1Nqlk(u|uk)|𝐮1,,𝐮N;C{\mathbf{Q}_{N}(u)\ket{\mathbf{u}_{1},\dots,\mathbf{u}_{N};C}=\prod_{k=1}^{N}q_{l_{k}}(u|u_{k})\ket{\mathbf{u}_{1},\dots,\mathbf{u}_{N};C}} (3.15)

for an arbitrary tensor C𝕍l1𝕍lNC\in\mathbb{V}_{l_{1}}\otimes\dots\otimes\mathbb{V}_{l_{N}}, in agreement with the invariance of 𝐐N(u)\mathbf{Q}_{N}(u) under O(d)O(d) rotations. The spectrum of the transfer-matrix is factorized into NN identical contributions of the type found at N=1N=1, each depending on a rapidity uiu_{i} and a Lorentz spin lil_{i}, and is symmetric with respect to permutations of these quantum numbers.

Refer to caption
Figure 13: Left: action of the transfer matrix 𝐐3(u)\mathbf{Q}_{3}(u) on the layer operator C3𝚲3(u3)C_{3}\cdot\mathbf{\Lambda}_{3}(u_{3}). Right: the tensor structure is regarded as the action of a differential operator C3(x0)C_{3}(\nabla_{x_{0}}) as in Equation (A.4), and here represented by the blue triangle. The line with power β\beta and extreme x0x_{0} is pulled under the action of the operator C3(x0)C_{3}(\nabla_{x_{0}}) by means of the property (A.5).
Refer to caption
Figure 14: Lines are moved in the graphs via several star-triangle and chain-rule identities, illustrated via blue dots, blue triangles, and arrows (see, for details, appendix A).
Refer to caption
Figure 15: Last step of the diagonalisation procedure: the first and second picture differs in the fact that the operator C3(x0){C_{3}}(\nabla_{x_{0}}) does not act anymore on the line with power β\beta, via the application of the property (A.5). The last picture corresponds to the expression C3𝚲3(u3)𝐐2(u)C_{3}\cdot\mathbf{\Lambda}_{3}(u_{3})\,\mathbf{Q}_{2}(u).

3.2 Symmetry Property

The symmetry of the spectrum of 𝐐N(u)\mathbf{Q}_{N}(u) with respect to permutations of quantum numbers 𝐮i=(ui,li)\mathbf{u}_{i}=(u_{i},l_{i}) has its counterpart at the level of the eigenvectors. Using the integral representation (2.41) of the R-matrix, it is possible to show the following commutation relation:

C𝚲N+1(𝐮1)𝚲N(𝐮2)=[𝕊l1,l2(u1u2)C]𝚲N+1(𝐮2)𝚲N(𝐮1),C\cdot\mathbf{\Lambda}_{N+1}(\mathbf{u}_{1})\otimes\mathbf{\Lambda}_{N}(\mathbf{u}_{2})=[\mathbb{S}_{l_{1},l_{2}}(u_{1}-u_{2})C]\cdot\mathbf{\Lambda}_{N+1}(\mathbf{u}_{2})\otimes\mathbf{\Lambda}_{N}(\mathbf{u}_{1})\,, (3.16)

where C𝕍l1𝕍l2C\in\mathbb{V}_{l_{1}}\otimes\mathbb{V}_{l_{2}}, and the tensor product notation concerns only the finite-dimensional spaces 𝕍l1\mathbb{V}_{l_{1}} and 𝕍l2\mathbb{V}_{l_{2}}. The matrix 𝕊l1,l2(u)\mathbb{S}_{l_{1},l_{2}}(u) coincides with the fused R-matrix up to a scalar phase:

𝕊l,l(u)=(1)l+lΓ(1+l+l2iu)Γ(1+l+l2+iu)Γ(d21+l+l2iu)Γ(d21+l+l2+iu)l,l(u).\mathbb{S}_{l,l^{\prime}}(u)=(-1)^{l+l^{\prime}}\frac{\Gamma(1+\tfrac{l+l^{\prime}}{2}-\operatorname{i}u)}{\Gamma(1+\tfrac{l+l^{\prime}}{2}+\operatorname{i}u)}\frac{\Gamma(\frac{d}{2}-1+\tfrac{l+l^{\prime}}{2}-\operatorname{i}u)}{\Gamma(\frac{d}{2}-1+\tfrac{l+l^{\prime}}{2}+\operatorname{i}u)}\,\mathbb{R}_{l,l^{\prime}}(u)\,. (3.17)

The proof of (3.16) is heavily based on the main interchange relation (Fig.4) and presented in Fig.16.

The property (3.16) relates two eigenvectors with exchanged 𝐮k\mathbf{u}_{k}, 𝐮k+1\mathbf{u}_{k+1}. For a generic permutation σ𝔖N\sigma\in\mathfrak{S}_{N}, the matrix 𝕊lk,lk+1(ukuk+1)\mathbb{S}_{l_{k},l_{k+1}}(u_{k}-u_{k+1}) is replaced by an operator 𝕊(𝐮1,,𝐮N;σ)\mathbb{S}(\mathbf{u}_{1},\dots,\mathbf{u}_{N};\sigma) acting on 𝕍l1𝕍lN\mathbb{V}_{l_{1}}\otimes\dots\otimes\mathbb{V}_{l_{N}}. First, we set

𝕊(𝐮1,,𝐮N;id)=Idl1IdlN,\mathbb{S}(\mathbf{u}_{1},\dots,\mathbf{u}_{N};\text{id})=\mathrm{Id}_{l_{1}}\otimes\dots\otimes\mathrm{Id}_{l_{N}}\,, (3.18)

moreover, if σ\sigma is the transposition (k,k+1)(k,k+1), we impose

𝕊(𝐮1,,𝐮N;(kk+1))=Idl1Idlk1𝕊lk,lk+1(uk+1uk)Idlk+2IdlN.\mathbb{S}(\mathbf{u}_{1},\dots,\mathbf{u}_{N};(kk+1))=\mathrm{Id}_{l_{1}}\otimes\dots\otimes\mathrm{Id}_{l_{k-1}}\otimes\mathbb{S}_{l_{k},l_{k+1}}(u_{k+1}-u_{k})\otimes\mathrm{Id}_{l_{k+2}}\otimes\dots\otimes\mathrm{Id}_{l_{N}}\,. (3.19)

Finally, we require the factorisation property

𝕊(𝐮1,,𝐮N;(kk+1)σ)=𝕊(𝐮σ1(1),,𝐮σ1(N);(kk+1))𝕊(𝐮1,,𝐮N;σ),\mathbb{S}(\mathbf{u}_{1},\dots,\mathbf{u}_{N};(kk+1)\sigma)=\mathbb{S}(\mathbf{u}_{\sigma^{-1}(1)},\dots,\mathbf{u}_{\sigma^{-1}(N)};(kk+1))\mathbb{S}(\mathbf{u}_{1},\dots,\mathbf{u}_{N};\sigma)\,, (3.20)

for any k{1,,N1}k\in\{1,\dots,N-1\} and any permutation σ\sigma. Since any permutation can be decomposed into a product of transpositions of the form (kk+1)(kk+1), this is enough to define 𝕊(𝐮𝟏,,𝐮𝐍;σ)\mathbb{S}(\mathbf{u_{1}},\dots,\mathbf{u_{N}};\sigma) for all σ𝔖N\sigma\in\mathfrak{S}_{N}. Furthermore, there is no ambiguity in this definition because 𝕊l,l\mathbb{S}_{l,l^{\prime}} satisfies the Yang–Baxter equation.

The consequence of (3.14),(3.16) and (3.20) on the eigenvectors is the following symmetry property: for any permutation of quantum numbers σ𝔖N\sigma\in\mathfrak{S}_{N}, one has

|𝐮1,,𝐮N;C=|𝐮σ1(1),,𝐮σ1(N);σ𝕊(𝐮1,,𝐮N;σ)C{\ket{\mathbf{u}_{1},\dots,\mathbf{u}_{N};C}=\ket{\mathbf{u}_{\sigma^{-1}(1)},\dots,\mathbf{u}_{\sigma^{-1}(N)};\mathbb{P}_{\sigma}\mathbb{S}(\mathbf{u}_{1},\dots,\mathbf{u}_{N};\sigma)C}} (3.21)

where σ:𝕍l1𝕍lN𝕍lσ1(1)𝕍lσ1(N)\mathbb{P}_{\sigma}:\mathbb{V}_{l_{1}}\otimes\dots\otimes\mathbb{V}_{l_{N}}\rightarrow\mathbb{V}_{l_{\sigma^{-1}(1)}}\otimes\dots\otimes\mathbb{V}_{l_{\sigma^{-1}(N)}} is the canonical isomorphism.

Refer to caption

] Refer to caption

Figure 16: Proof of the symmetry of eigenvectors

We point out that the exchange property (3.16) is one of the defining properties of the Zamolodchikovs–Faddeev algebra Zamolodchikov:1978xm ; Faddeev:1980zy . Moreover, the symmetry property (3.21) would also be typical for eigenvectors of compact spin chains for instance. However, since we are now considering a model with continuous spectrum, the tensor CC and the rapidities can be chosen arbitrarily; there are no (nested) Bethe ansatz equations.

3.3 Inner Product

The inner product for eigenvectors of the model of lenght N=1N=1 is trivially computed to be

𝐮;C|𝐮;C=C(xx0)C(xx0)(xx0)2(β~+β~+l+l2)ddxπd2=δ(𝐮𝐮)C|C,\langle{\mathbf{u};C}\ket{\mathbf{u}^{\prime};C^{\prime}}=\int\frac{C^{*}(x-x_{0})C^{\prime}(x-x_{0})}{(x-x_{0})^{2\left(\tilde{\beta}^{*}+\tilde{\beta}^{\prime}+\frac{l+l^{\prime}}{2}\right)}}\frac{\text{d}^{d}x}{\pi^{\frac{d}{2}}}=\delta(\mathbf{u}-\mathbf{u}^{\prime})\langle{C}\ket{C^{\prime}}\,, (3.22)

where δ(𝐮𝐮)=δllδ(uu)\delta(\mathbf{u}-\mathbf{u}^{\prime})=\delta_{ll^{\prime}}\delta(u-u^{\prime}) and

C|C=π𝕊d1C(n)C(n)dnπd2=l! 21lπΓ(d2+l)Cμ1μlCμ1μl,\langle{C}\ket{C^{\prime}}=\pi\int_{\mathbb{S}^{d-1}}C^{*}(n)C^{\prime}(n)\frac{\text{d}n}{\pi^{\frac{d}{2}}}=\frac{l!\ 2^{1-l}\pi}{\Gamma\left(\frac{d}{2}+l\right)}C^{*}_{\mu_{1}\dots\mu_{l}}C^{\prime\mu_{1}\dots\mu_{l}}\,, (3.23)

is the inner product we choose on 𝕍l\mathbb{V}_{l}. The inner product of eigenvectors of length N>1N>1 is computed based on the iterative construction via layer operators (3.10). In fact, under the assumption 𝐮𝐮\mathbf{u}^{\prime}\neq\mathbf{u}, the overlap of two layer operators of length NN is expressed using layers of length N1N-1 via

C𝚲N(𝐮)C𝚲N(𝐮)=(CC)𝚲N(𝐮)𝚲N(𝐮)=[𝕊l,lt2(uu)CC]𝚲N1(𝐮)𝚲N1(𝐮)[(uu)2+(ll)24][(uu)2+(d2+l+l)24],ifN>2,C^{\prime}\cdot\mathbf{\Lambda}^{\dagger}_{N}(\mathbf{u}^{\prime})\,C\cdot\mathbf{\Lambda}_{N}(\mathbf{u})=\left(C^{\prime}\otimes C\right)\cdot\,\mathbf{\Lambda}^{\dagger}_{N}(\mathbf{u}^{\prime})\otimes\mathbf{\Lambda}_{N}(\mathbf{u})\\ =\frac{\left[{}^{t_{2}}\mathbb{S}_{l,l^{\prime}}(u-u^{\prime})C\otimes C^{\prime}\right]\cdot\,\mathbf{\Lambda}_{N-1}(\mathbf{u})\otimes\mathbf{\Lambda}_{N-1}(\mathbf{u}^{\prime})}{\left[(u-u^{\prime})^{2}+\frac{(l-l^{\prime})^{2}}{4}\right]\left[(u-u^{\prime})^{2}+\frac{(d-2+l+l^{\prime})^{2}}{4}\right]}\,,\quad\text{if}\quad N>2\,, (3.24)

and

x|C𝚲2(𝐮)C𝚲2(𝐮)|y=1[(uu)2+(ll)24][(uu)2+(d2+l+l)24]××[t2𝕊l,l(uu)CC](xx0)l(yx0)l(xx0)2(β~+l2)(yx0)2(β+l2).\bra{x}C^{\prime}\cdot\mathbf{\Lambda}^{\dagger}_{2}(\mathbf{u}^{\prime})C\cdot\mathbf{\Lambda}_{2}(\mathbf{u})\ket{y}=\frac{1}{\left[(u-u^{\prime})^{2}+\frac{(l-l^{\prime})^{2}}{4}\right]\left[(u-u^{\prime})^{2}+\frac{(d-2+l+l^{\prime})^{2}}{4}\right]}\times\\ \times\frac{[^{t_{2}}\mathbb{S}_{l,l^{\prime}}(u-u^{\prime})C\otimes C^{\prime}]\cdot(x-x_{0})^{\otimes l}\otimes(y-x_{0})^{\otimes l^{\prime}}}{(x-x_{0})^{2\left(\tilde{\beta}+\frac{l}{2}\right)}(y-x_{0})^{2\left(\beta^{\prime}+\frac{l^{\prime}}{2}\right)}}\,. (3.25)

The properties (3.25) and (3.24) are obtained using the integral representation (2.41) of the R-matrix and crossing symmetry (2.60), and are shown by the diagrams in Fig.17. From the iteration of (3.24) and the symmetry property (3.21), the overlap of two eigenvectors reads

𝐮1,,𝐮N;C|𝐮1,,𝐮N;C=σ𝔖Nk=1Nδ(𝐮σ(k)𝐮k)C|σ𝕊(𝐮1,,𝐮N;σ)Cμ(𝐮1,,𝐮N),\langle{\mathbf{u}_{1},\dots,\mathbf{u}_{N};C}\ket{\mathbf{u}^{\prime}_{1},\dots,\mathbf{u}^{\prime}_{N};C^{\prime}}=\frac{\sum_{\sigma\in\mathfrak{S}_{N}}\prod_{k=1}^{N}\delta(\mathbf{u}_{\sigma(k)}-\mathbf{u}^{\prime}_{k})\ \langle{C}\ket{\mathbb{P}_{\sigma}\mathbb{S}(\mathbf{u}^{\prime}_{1},\dots,\mathbf{u}^{\prime}_{N};\sigma)C^{\prime}}}{\mu(\mathbf{u}_{1},\dots,\mathbf{u}_{N})}\,, (3.26)

where the measure μ\mu is defined as

μ(𝐮1,,𝐮N)=1j<kN[(ujuk)2+(ljlk)24][(ujuk)2+(d2+lj+lk)24].{\mu(\mathbf{u}_{1},\dots,\mathbf{u}_{N})=\prod_{1\leqslant j<k\leqslant N}\left[(u_{j}-u_{k})^{2}+\frac{(l_{j}-l_{k})^{2}}{4}\right]\left[(u_{j}-u_{k})^{2}+\frac{(d-2+l_{j}+l_{k})^{2}}{4}\right]}\,. (3.27)

Let us understand this formula with an explicit example. For N=3N=3, the inner product is

𝐮1,𝐮2,𝐮3;C1C2C3|𝐮1,𝐮2,𝐮3;C1C2C3==𝐮1;C1|C2𝚲2(𝐮2)C3𝚲3(𝐮3)C3𝚲3(𝐮3)C2𝚲2(𝐮2)|𝐮1;C1==𝐮1;C1|xx|C2𝚲2(𝐮2)C3𝚲3(𝐮3)C3𝚲3(𝐮3)C2𝚲2(𝐮2)|yy|𝐮1;C1ddxddyπd.\displaystyle\begin{aligned} &\langle\mathbf{u}_{1},\mathbf{u}_{2},\mathbf{u}_{3};C_{1}\otimes C_{2}\otimes C_{3}|\mathbf{u}^{\prime}_{1},\mathbf{u}^{\prime}_{2},\mathbf{u}^{\prime}_{3};C^{\prime}_{1}\otimes C^{\prime}_{2}\otimes C^{\prime}_{3}\rangle=\\ &=\bra{\mathbf{u}_{1};C_{1}}C_{2}\cdot\mathbf{\Lambda}^{\dagger}_{2}(\mathbf{u}_{2})C_{3}\cdot\mathbf{\Lambda}^{\dagger}_{3}(\mathbf{u}_{3})C^{\prime}_{3}\cdot\mathbf{\Lambda}_{3}(\mathbf{u}^{\prime}_{3})C^{\prime}_{2}\cdot\mathbf{\Lambda}_{2}(\mathbf{u}^{\prime}_{2})\ket{\mathbf{u}^{\prime}_{1};C^{\prime}_{1}}=\\ &=\int\langle{\mathbf{u}_{1};C_{1}}|x\rangle\bra{x}C_{2}\cdot\mathbf{\Lambda}^{\dagger}_{2}(\mathbf{u}_{2})C_{3}\cdot\mathbf{\Lambda}^{\dagger}_{3}(\mathbf{u}_{3})C^{\prime}_{3}\cdot\mathbf{\Lambda}_{3}(\mathbf{u}^{\prime}_{3})C^{\prime}_{2}\cdot\mathbf{\Lambda}_{2}(\mathbf{u}^{\prime}_{2})\ket{y}\langle y\ket{\mathbf{u}_{1}^{\prime};C_{1}^{\prime}}\frac{\text{d}^{d}x\text{d}^{d}y}{\pi^{d}}\,.\end{aligned} (3.28)

If we assume that 𝐮3𝐮3\mathbf{u}_{3}\neq\mathbf{u}^{\prime}_{3}, 𝐮3𝐮2\mathbf{u}_{3}\neq\mathbf{u}^{\prime}_{2}, and 𝐮2𝐮3\mathbf{u}_{2}\neq\mathbf{u}^{\prime}_{3}, then thanks the overlap formula (3.24) one can write

𝐮1,𝐮2,𝐮3;C1C2C3|𝐮1,𝐮2,𝐮3;C1C2C3[𝕊l3,l2t2(u3u2)t3𝕊l2,l3(u2u3)t3𝕊l3,l3(u3u3)C2C3C2C3](z;x;z;y)×C1(xx0)C1(yx0)x2(β~1+β~3+l1+l32)y2(β~3+β~1+l3+l12)z2(β~2+β~2+l2+l22)ddxddyddzπ3d2.\langle{\mathbf{u}_{1},\mathbf{u}_{2},\mathbf{u}_{3};C_{1}\otimes C_{2}\otimes C_{3}}\ket{\mathbf{u}^{\prime}_{1},\mathbf{u}^{\prime}_{2},\mathbf{u}^{\prime}_{3};C^{\prime}_{1}\otimes C^{\prime}_{2}\otimes C^{\prime}_{3}}\\ \propto\int\left[{}^{t_{2}}\mathbb{S}_{l^{\prime}_{3},l_{2}}(u^{\prime}_{3}-u_{2})^{t_{3}}\mathbb{S}_{l^{\prime}_{2},l_{3}}(u^{\prime}_{2}-u_{3})^{t_{3}}\mathbb{S}_{l^{\prime}_{3},l_{3}}(u^{\prime}_{3}-u_{3})C^{\prime}_{2}\otimes C^{\prime}_{3}\otimes C^{*}_{2}\otimes C^{*}_{3}\right](z;x;z;y)\\ \times\frac{C_{1}^{*}(x-x_{0})C^{\prime}_{1}(y-x_{0})}{x^{2\left(\tilde{\beta}_{1}^{*}+\tilde{\beta}^{\prime}_{3}+\frac{l_{1}+l^{\prime}_{3}}{2}\right)}y^{2\left(\tilde{\beta}_{3}^{*}+\tilde{\beta}^{\prime}_{1}+\frac{l_{3}+l^{\prime}_{1}}{2}\right)}z^{2\left(\tilde{\beta}_{2}^{*}+\tilde{\beta}^{\prime}_{2}+\frac{l_{2}+l^{\prime}_{2}}{2}\right)}}\frac{\text{d}^{d}x\text{d}^{d}y\text{d}^{d}z}{\pi^{\frac{3d}{2}}}\,. (3.29)

The integrals over xx, yy and zz in (3.29) are of the form of (3.22), and their computation yields

𝐮1,𝐮2,𝐮3;C1C2C3|𝐮1,𝐮2,𝐮3;C1C2C3δ(𝐮1𝐮3)δ(𝐮2𝐮2)δ(𝐮3𝐮1)×C3C2C1|𝕊l2,l3(u3u2)𝕊l1,l3(u3u1)𝕊l1,l2(u2u1)C1C2C3.\langle{\mathbf{u}_{1},\mathbf{u}_{2},\mathbf{u}_{3};C_{1}\otimes C_{2}\otimes C_{3}}\ket{\mathbf{u}^{\prime}_{1},\mathbf{u}^{\prime}_{2},\mathbf{u}^{\prime}_{3};C^{\prime}_{1}\otimes C^{\prime}_{2}\otimes C^{\prime}_{3}}\propto\delta(\mathbf{u}_{1}-\mathbf{u}^{\prime}_{3})\delta(\mathbf{u}_{2}-\mathbf{u}^{\prime}_{2})\delta(\mathbf{u}_{3}-\mathbf{u}^{\prime}_{1})\\ \times\langle{C_{3}\otimes C_{2}\otimes C_{1}}\ket{\mathbb{S}_{l^{\prime}_{2},l^{\prime}_{3}}(u^{\prime}_{3}-u^{\prime}_{2})\mathbb{S}_{l^{\prime}_{1},l^{\prime}_{3}}(u^{\prime}_{3}-u^{\prime}_{1})\mathbb{S}_{l^{\prime}_{1},l^{\prime}_{2}}(u^{\prime}_{2}-u^{\prime}_{1})C^{\prime}_{1}\otimes C^{\prime}_{2}\otimes C^{\prime}_{3}}\,. (3.30)

Thanks to the delta functions, the prefactor is actually exactly μ(𝐮1,𝐮2,𝐮3)1\mu(\mathbf{u}_{1},\mathbf{u}_{2},\mathbf{u}_{3})^{-1}. It remains to notice that

𝕊l2,l3(u3u2)𝕊l1,l3(u3u1)𝕊l1,l2(u2u1)=𝕊(𝐮1,𝐮2,𝐮3;(12)(23)(12))=𝕊(𝐮1,𝐮2,𝐮3;(13))\mathbb{S}_{l^{\prime}_{2},l^{\prime}_{3}}(u^{\prime}_{3}-u^{\prime}_{2})\mathbb{S}_{l^{\prime}_{1},l^{\prime}_{3}}(u^{\prime}_{3}-u^{\prime}_{1})\mathbb{S}_{l^{\prime}_{1},l^{\prime}_{2}}(u^{\prime}_{2}-u^{\prime}_{1})=\mathbb{S}(\mathbf{u}^{\prime}_{1},\mathbf{u}^{\prime}_{2},\mathbf{u}^{\prime}_{3};(12)(23)(12))=\mathbb{S}(\mathbf{u}^{\prime}_{1},\mathbf{u}^{\prime}_{2},\mathbf{u}^{\prime}_{3};(13)) (3.31)

because of (3.20). On the other hand, when 𝐮3𝐮3\mathbf{u}_{3}\neq\mathbf{u}^{\prime}_{3}, 𝐮3𝐮2\mathbf{u}_{3}\neq\mathbf{u}^{\prime}_{2}, and 𝐮2𝐮3\mathbf{u}_{2}\neq\mathbf{u}^{\prime}_{3}, formula (3.26) also reduces to

𝐮1,𝐮2,𝐮3;C1C2C3|𝐮1,𝐮2,𝐮3;C1C2C3=μ(𝐮1,𝐮2,𝐮3)1×δ(𝐮1𝐮3)δ(𝐮2𝐮2)δ(𝐮3𝐮1)C3C2C1|𝕊(𝐮1,𝐮2,𝐮3;(13))C1C2C3.\langle{\mathbf{u}_{1},\mathbf{u}_{2},\mathbf{u}_{3};C_{1}\otimes C_{2}\otimes C_{3}}\ket{\mathbf{u}^{\prime}_{1},\mathbf{u}^{\prime}_{2},\mathbf{u}^{\prime}_{3};C^{\prime}_{1}\otimes C^{\prime}_{2}\otimes C^{\prime}_{3}}=\mu(\mathbf{u}_{1},\mathbf{u}_{2},\mathbf{u}_{3})^{-1}\\ \times\delta(\mathbf{u}_{1}-\mathbf{u}^{\prime}_{3})\delta(\mathbf{u}_{2}-\mathbf{u}^{\prime}_{2})\delta(\mathbf{u}_{3}-\mathbf{u}^{\prime}_{1})\langle{C_{3}\otimes C_{2}\otimes C_{1}}\ket{\mathbb{S}(\mathbf{u}^{\prime}_{1},\mathbf{u}^{\prime}_{2},\mathbf{u}^{\prime}_{3};(13))C^{\prime}_{1}\otimes C^{\prime}_{2}\otimes C^{\prime}_{3}}\,. (3.32)

The other terms of (3.26) appear when requiring, following (3.21), that the full result for the inner product be invariant under

|𝐮1,𝐮2,𝐮3;C1C2C3|𝐮σ1(1),𝐮σ1(2),𝐮σ1(3);σ𝕊(𝐮1,𝐮2,𝐮3;σ)C1C2C3\ket{\mathbf{u}_{1},\mathbf{u}_{2},\mathbf{u}_{3};C_{1}\otimes C_{2}\otimes C_{3}}\longmapsto\ket{\mathbf{u}_{\sigma^{-1}(1)},\mathbf{u}_{\sigma^{-1}(2)},\mathbf{u}_{\sigma^{-1}(3)};\mathbb{P}_{\sigma}\mathbb{S}(\mathbf{u}_{1},\mathbf{u}_{2},\mathbf{u}_{3};\sigma)C_{1}\otimes C_{2}\otimes C_{3}} (3.33)

for all the permutations σ𝔖3\sigma\in\mathfrak{S}_{3}. This whole procedure is generalized to arbitrary NN thanks the iterative form of the property (3.24).

Refer to caption
Refer to caption
Refer to caption
Figure 17: Proof of the inner product formula. Up left to down right: the overlap of two layer operators C𝚲3(u2)C^{\prime}\cdot\mathbf{\Lambda}_{3}(u_{2}) and C𝚲3(u1)C\cdot\mathbf{\Lambda}_{3}(u_{1}) is transformed via application of star-triangle identities and, at the last step, the interchange relation. The notation of blue dots, blue triangles and arrows is the same as in Fig.11 and refers to different application of the star-triangle and chain-rule identities. The final expression coincides with the r.h.s. of (3.24). It shows that the overlap of two layers amounts to the scattering of the two excitations 𝐮𝟏\mathbf{u_{1}} and 𝐮𝟐\mathbf{u_{2}} across each other, this is expressed by the fused R-matrix l1,l2(u12)\mathbb{R}_{l_{1},l_{2}}(u_{12}).

3.4 Completeness

Let us fix {Cm,l}1mdl\{C_{m,l}\}_{1\leqslant m\leqslant d_{l}} an orthonormal basis of 𝕍l\mathbb{V}_{l} with respect to the inner product defined in (3.23) (dld_{l} is the dimension of 𝕍l\mathbb{V}_{l}). We postulate that for any NN, the following resolution of the identity holds:

0l1+1m1dl10lN+1mNdlNμ(𝐮1,,𝐮N)N!x1,,xN|𝐮1,,𝐮N;Cm1,l1CmN,lN\displaystyle\sum_{\begin{subarray}{c}0\leqslant l_{1}\leqslant+\infty\\ 1\leqslant m_{1}\leqslant d_{l_{1}}\end{subarray}}\dots\sum_{\begin{subarray}{c}0\leqslant l_{N}\leqslant+\infty\\ 1\leqslant m_{N}\leqslant d_{l_{N}}\end{subarray}}\int\dots\int\frac{\mu(\mathbf{u}_{1},\dots,\mathbf{u}_{N})}{N!}\langle{x_{1},\dots,x_{N}}\ket{\mathbf{u}_{1},\dots,\mathbf{u}_{N};C_{m_{1},l_{1}}\otimes\dots\otimes C_{m_{N},l_{N}}} (3.34)
×𝐮1,,𝐮N;Cm1,l1CmN,lN|y1,,yNk=1Nduk=k=1Nπd2δ(xkyk).\displaystyle\times\langle{\mathbf{u}_{1},\dots,\mathbf{u}_{N};C_{m_{1},l_{1}}\otimes\dots\otimes C_{m_{N},l_{N}}}\ket{y_{1},\dots,y_{N}}\prod_{k=1}^{N}\text{d}u_{k}=\prod_{k=1}^{N}\pi^{\frac{d}{2}}\delta(x_{k}-y_{k})\,. (3.35)

The power of π\pi in the right-hand side comes from the fact that we have defined |x\ket{x} such that x|y=πd2δ(xy)\langle x\ket{y}=\pi^{\frac{d}{2}}\delta(x-y) (see beginning of Section 3). This completeness relation is easily verified in the case N=1N=1, as it coincides with the expansion of a radial function id dd-dimensions in Gegenbauer polynomials on the sphere Sd1S^{d-1}. We conjecture its validity for N>1N>1.

4 Basso–Dixon Diagrams

In this section, we investigate the application of obtained basis of eigenvectors and corresponding spectral decomposition of the graph-building operator to the computations of some fishnet Feynman integrals presented in Fig.18. Up to a trivial normalization factor the Feynman graph of the left panel has an interpretation as a four-point correlator in the fishnet theory:

GM,N(d,δ)(x1,x2,x3,x4)Tr(XN(x1)ZM(x2)XN(x3)ZM(x4)).G^{(d,\delta)}_{M,N}(x_{1},x_{2},x_{3},x_{4})\propto\left\langle\text{Tr}~{}\left(X^{N}(x_{1})Z^{M}(x_{2})X^{\dagger N}(x_{3})Z^{\dagger M}(x_{4})\right)\right\rangle\,. (4.1)
x1x_{1}x2x_{2}x3x_{3}x4x_{4}\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bulletNNMMyy0xx\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
Figure 18: Feyman graphs investigated in Section 4 in the case (M,N)=(3,4)(M,N)=(3,4). We call GM,N(d,δ)(x1,x2,x3,x4)G^{(d,\delta)}_{M,N}(x_{1},x_{2},x_{3},x_{4}) and IM,N(d,δ)(x,y)I^{(d,\delta)}_{M,N}(x,y) the integrals represented by the graph on the left and on the right respectively. All the vertical (or ending on x2,x4x_{2},x_{4} or 0) segments have weight δ\delta whereas all the horizontal (or ending on x1,x3,xx_{1},x_{3},x or yy) ones have weight δ~\tilde{\delta}.

Because of the conformal invariance of the integral it is equivalent to compute the integral associated to the right panel of the figure. A simple change of variables indeed shows that

GM,N(d,δ)(x1,x2,x3,x4)=1(x242)Mδ(x142x342)Nδ~IM,N(d,δ)(x14x142x24x242,x34x342x24x242).G^{(d,\delta)}_{M,N}(x_{1},x_{2},x_{3},x_{4})=\frac{1}{(x_{24}^{2})^{M\delta}\left(x^{2}_{14}x^{2}_{34}\right)^{N\tilde{\delta}}}I^{(d,\delta)}_{M,N}\left(\frac{x_{14}}{x^{2}_{14}}-\frac{x_{24}}{x^{2}_{24}},\frac{x_{34}}{x^{2}_{34}}-\frac{x_{24}}{x^{2}_{24}}\right)\,. (4.2)

In turn, the integral IM,N(d,δ)I^{(d,\delta)}_{M,N} is almost a matrix element of the (M+1)(M+1)-th power of the graph-building operator 𝐁N,δ~=𝐐N(iδ~2)\mathbf{B}_{N,\tilde{\delta}}=\mathbf{Q}_{N}\left(\operatorname{i}\frac{\tilde{\delta}}{2}\right), one just has to be careful when sending all the external points to the same point:

IM,N(d,δ)(x,y)=πNd2x,,x|(i=1Nx^i1,i2δ)𝐁N,δ~M+1|y,,y,I^{(d,\delta)}_{M,N}(x,y)=\pi^{\frac{Nd}{2}}\bra{x,\dots,x}\left(\prod_{i=1}^{N}\hat{x}_{i-1,i}^{2\delta}\right)\mathbf{B}_{N,\tilde{\delta}}^{M+1}\ket{y,\dots,y}\,, (4.3)

where we have set x0=0x_{0}=0. It thus seems natural to use the spectral decomposition of the graph-building operator 𝐐N(iδ~2)\mathbf{Q}_{N}\left(\operatorname{i}\frac{\tilde{\delta}}{2}\right) to try to express these integrals in a simpler form. This was successfully achieved in two dimensions in Derkachov2019 and in four dimensions in Derkachov:2019tzo ; Derkachov:2020zvv . For higher dimensions the result is actually more complicated and we are going to discuss it in a separate paper. Now we shall consider the first simplest examples to illustrate how the general scheme works in the case of higher dimensions.

As we have seen above, the eigenvalue of 𝐐N(iδ~2)\mathbf{Q}_{N}\left(\operatorname{i}\frac{\tilde{\delta}}{2}\right) factorises into a product of

Ql(u)=Ql(iδ~2|u)=Γ(δ)Γ(d4δ2+l2iu)Γ(d4δ2+l2+iu)Γ(δ~)Γ(d4+δ2+l2+iu)Γ(d4+δ2+l2iu).Q_{l}(u)=Q_{l}\left(\operatorname{i}\frac{\tilde{\delta}}{2}\bigg{|}u\right)=\frac{\Gamma(\delta)\Gamma\left(\frac{d}{4}-\frac{\delta}{2}+\frac{l}{2}-\operatorname{i}u\right)\Gamma\left(\frac{d}{4}-\frac{\delta}{2}+\frac{l}{2}+\operatorname{i}u\right)}{\Gamma(\tilde{\delta})\Gamma\left(\frac{d}{4}+\frac{\delta}{2}+\frac{l}{2}+\operatorname{i}u\right)\Gamma\left(\frac{d}{4}+\frac{\delta}{2}+\frac{l}{2}-\operatorname{i}u\right)}\,. (4.4)

4.1 Ladder Diagrams

We first give the expressions for the so-called ladder diagrams Usyukina:1993ch ; Broadhurst:1985vq ; Isaev_2003 ; Isaev:2007uy in arbitrary dimension:

IM,1(d,δ)=Γ(d2)(x32x42)δ~2l=0+2l+d2d2Cl(d22)(cosθ)du2π(x32x42)iuQlM+1(u),I_{M,1}^{(d,\delta)}=\frac{\Gamma\left(\frac{d}{2}\right)}{(x_{3}^{2}x_{4}^{2})^{\frac{\tilde{\delta}}{2}}}\sum_{l=0}^{+\infty}\frac{2l+d-2}{d-2}C_{l}^{\left(\frac{d-2}{2}\right)}(\cos\theta)\int\frac{\text{d}u}{2\pi}\,\left(\frac{x_{3}^{2}}{x_{4}^{2}}\right)^{\operatorname{i}u}Q_{l}^{M+1}(u)\,, (4.5)

where QlQ_{l} is given in equation (4.4), Cl(μ)C_{l}^{(\mu)} are Gegenbauer polynomials and cosθ=x3x4/|x3||x4|\cos\theta=x_{3}\cdot x_{4}/|x_{3}||x_{4}|. We assume d3d\geqslant 3.

The integral is straightforwardly computed by residues but the eigenvalue QlQ_{l} generically has infinitely many poles. However, when δ\delta is a positive integer, Ql1Q_{l}^{-1} is a polynomial of degree 2δ2\delta and there is a finite number of poles. If δ=1\delta=1, one has Ql(u)1=Γ(d22)(u2+(l+(d2)/2)2/4)Q_{l}(u)^{-1}=\Gamma\left(\frac{d-2}{2}\right)\left(u^{2}+(l+(d-2)/2)^{2}/4\right) and performing the integral yields

IM,1(d,1)=Γ(d22)M(x32x42)d24k=M2Mk!(2lnr)2MkM!(kM)!(2Mk)!l=0+Cl(d22)(cosθ)rl+d22(l+d22)kI_{M,1}^{(d,1)}=\frac{\Gamma\left(\frac{d-2}{2}\right)^{-M}}{(x_{3}^{2}x_{4}^{2})^{\frac{d-2}{4}}}\sum_{k=M}^{2M}\frac{k!(-2\ln r)^{2M-k}}{M!(k-M)!(2M-k)!}\sum_{l=0}^{+\infty}C_{l}^{\left(\frac{d-2}{2}\right)}(\cos\theta)\frac{r^{l+\frac{d-2}{2}}}{\left(l+\frac{d-2}{2}\right)^{k}} (4.6)

with r=x42/x32r=\sqrt{x_{4}^{2}/x_{3}^{2}}.

When dd is even we also have the following property of the Gegenbauer polynomials

Γ(d22)Cl(d22)(x)=24d2(ddx)d42[Cl+d42(1)(x)].\Gamma\left(\frac{d-2}{2}\right)C_{l}^{\left(\frac{d-2}{2}\right)}(x)=2^{\frac{4-d}{2}}\left(\frac{\text{d}}{\text{d}x}\right)^{\frac{d-4}{2}}\,\left[C^{(1)}_{l+\frac{d-4}{2}}(x)\right]\,. (4.7)

Consequently, for even d>2d>2, we can write (z=reiθz=r\operatorname{e}^{\operatorname{i}\theta})

IM,1(d,1)=24d2Γ(d22)M1(x32x42)d24(ddcosθ)d42[LM(z,z¯)eiθeiθ],I_{M,1}^{(d,1)}=\frac{2^{\frac{4-d}{2}}\Gamma\left(\frac{d-2}{2}\right)^{-M-1}}{(x_{3}^{2}x_{4}^{2})^{\frac{d-2}{4}}}\left(\frac{\text{d}}{\text{d}\cos\theta}\right)^{\frac{d-4}{2}}\left[\frac{L_{M}(z,\bar{z})}{\operatorname{e}^{\operatorname{i}\theta}-\operatorname{e}^{-\operatorname{i}\theta}}\right]\,, (4.8)

where we have introduced the ladder function LML_{M} defined for M>0M>0 by

LM(z,z¯)=k=M2Mk![ln(zz¯)]2MkM!(kM)!(2Mk)![Lik(z)Lik(z¯)].L_{M}(z,\bar{z})=\sum_{k=M}^{2M}\frac{k![-\ln(z\bar{z})]^{2M-k}}{M!(k-M)!(2M-k)!}\left[\mathrm{Li}_{k}(z)-\mathrm{Li}_{k}(\bar{z})\right]\,. (4.9)

with Lik(z)=n=1znnk\mathrm{Li}_{k}(z)=\sum_{n=1}^{\infty}\frac{z^{n}}{n^{k}} the polylogarithm.

4.2 Two-layer Diagrams

Inserting the resolution of the identity in the expression (4.3) of IM,2(d,δ)I_{M,2}^{(d,\delta)}, it becomes

IM,2(d,δ)=0l1+1m1dl10l2+1m2dl2du1du2[Ql1(u1)Ql2(u2)]M+1μ(𝐮1,𝐮2)2×x3,x3|x^122δx^12δ|𝐮1,𝐮2;Cm1,l1Cm2,l2𝐮1,𝐮2;Cm1,l1Cm2,l2|x4,x4I_{M,2}^{(d,\delta)}=\sum_{\begin{subarray}{c}0\leqslant l_{1}\leqslant+\infty\\ 1\leqslant m_{1}\leqslant d_{l_{1}}\end{subarray}}\sum_{\begin{subarray}{c}0\leqslant l_{2}\leqslant+\infty\\ 1\leqslant m_{2}\leqslant d_{l_{2}}\end{subarray}}\int\text{d}u_{1}\text{d}u_{2}\,[Q_{l_{1}}(u_{1})Q_{l_{2}}(u_{2})]^{M+1}\frac{\mu(\mathbf{u}_{1},\mathbf{u}_{2})}{2}\\ \times\bra{x_{3},x_{3}}\hat{x}_{12}^{2\delta}\hat{x}_{1}^{2\delta}\ket{\mathbf{u}_{1},\mathbf{u}_{2};C_{m_{1},l_{1}}\otimes C_{m_{2},l_{2}}}\bra{\mathbf{u}_{1},\mathbf{u}_{2};C_{m_{1},l_{1}}\otimes C_{m_{2},l_{2}}}{x_{4},x_{4}}\rangle (4.10)

One can show that

x3,x3|x^122δx^12δ|𝐮𝟏,𝐮𝟐;C=A0(δ~)Al1(α~1)Al2(α~2)41d2+iu21il1+l2x32(2α1d2+1)ddpπd2C(p,p)eipx3p2(1+l1+l22+iu21),\displaystyle\bra{x_{3},x_{3}}\hat{x}_{12}^{2\delta}\hat{x}_{1}^{2\delta}\ket{\mathbf{u_{1}},\mathbf{u_{2}};C}=A_{0}(\tilde{\delta})A_{l_{1}}(\tilde{\alpha}_{1})A_{l_{2}}(\tilde{\alpha}_{2})\frac{4^{1-\frac{d}{2}+\operatorname{i}u_{21}}\,\operatorname{i}^{l_{1}+l_{2}}}{x_{3}^{2\left(2\alpha_{1}-\frac{d}{2}+1\right)}}\int\frac{\text{d}^{d}p}{\pi^{\frac{d}{2}}}\,\frac{C(p,p)\operatorname{e}^{\operatorname{i}p\cdot x_{3}}}{p^{2\left(1+\frac{l_{1}+l_{2}}{2}+\operatorname{i}u_{21}\right)}}\,, (4.11)
x4,x4|𝐮𝟏,𝐮𝟐;C=A0(d2+δ)Al1(β1)Al2(β2)41d2+iu21il1+l2x42(2β~1d2+1)ddpπd2C(p,p)eipx4p2(1+l1+l22+iu21).\displaystyle\langle x_{4},x_{4}\ket{\mathbf{u_{1}},\mathbf{u_{2}};C}=A_{0}\left(\frac{d}{2}+\delta\right)A_{l_{1}}(\beta_{1})A_{l_{2}}(\beta_{2})\frac{4^{1-\frac{d}{2}+\operatorname{i}u_{21}}\,\operatorname{i}^{l_{1}+l_{2}}}{x_{4}^{2\left(2\tilde{\beta}_{1}-\frac{d}{2}+1\right)}}\int\frac{\text{d}^{d}p}{\pi^{\frac{d}{2}}}\,\frac{C(p,p)\operatorname{e}^{\operatorname{i}p\cdot x_{4}}}{p^{2\left(1+\frac{l_{1}+l_{2}}{2}+\operatorname{i}u_{21}\right)}}\,. (4.12)

Both of these equations can be rewritten using the operator 𝕆l1,l2\mathbb{O}_{l_{1},l_{2}} introduced in (2.54), the first one becomes for instance

x3,x3|x^122δx^12δ|𝐮𝟏,𝐮𝟐;C=A0(δ~)Al1(α~1)Al2(α~2)(1)l1+l2Al1+l2(1+iu21)[𝕆l1,l2(u2u1)C]x3(l1+l2)x32(α1+α2+l1+l22).\displaystyle\bra{x_{3},x_{3}}\hat{x}_{12}^{2\delta}\hat{x}_{1}^{2\delta}\ket{\mathbf{u_{1}},\mathbf{u_{2}};C}=A_{0}(\tilde{\delta})A_{l_{1}}(\tilde{\alpha}_{1})A_{l_{2}}(\tilde{\alpha}_{2})(-1)^{l_{1}+l_{2}}A_{l_{1}+l_{2}}(1+\operatorname{i}u_{21})\frac{\left[\mathbb{O}_{l_{1},l_{2}}(u_{2}-u_{1})C\right]\cdot x_{3}^{\otimes(l_{1}+l_{2})}}{x_{3}^{2\left(\alpha_{1}+\alpha_{2}+\frac{l_{1}+l_{2}}{2}\right)}}\,.

We have to remark that, necessarily, whatever orthonormal basis of symmetric traceless tensors we chose,

m=1N(d,l)Cm,l(p)Cm,l(q)=Γ(d2)(2l+d2)2π(d2)|p|l|q|lCl(d22)(pq|p||q|).\sum_{m=1}^{N(d,l)}C_{m,l}(p)C^{*}_{m,l}(q)=\frac{\Gamma\left(\frac{d}{2}\right)(2l+d-2)}{2\pi(d-2)}|p|^{l}|q|^{l}C_{l}^{(\frac{d-2}{2})}\left(\frac{p\cdot q}{|p||q|}\right)\,. (4.13)

so that it is possible to rewrite IM,2(d,δ)I_{M,2}^{(d,\delta)} as

IM,2(d,δ)=Γ(d2)22l1,l2du1du2(2π)242d[Ql1(u1)Ql2(u2)]M+2x32(2α1d2+1)x42(2β1d2+1)×[u122+l1224][u122+(l1+l2+d2)24](2l1+d2)(2l2+d2)(d2)2×ddpddqπdCl1(d22)(pq|p||q|)Cl2(d22)(pq|p||q|)p2(1+i(u2u1))q2(1+i(u1u2))eipx3iqx4.I_{M,2}^{(d,\delta)}=\frac{\Gamma\left(\frac{d}{2}\right)^{2}}{2}\sum_{l_{1},l_{2}}\int\frac{\text{d}u_{1}\text{d}u_{2}}{(2\pi)^{2}}\,\frac{4^{2-d}[Q_{l_{1}}(u_{1})Q_{l_{2}}(u_{2})]^{M+2}}{x_{3}^{2\left(2\alpha_{1}-\frac{d}{2}+1\right)}x_{4}^{2\left(2\beta_{1}-\frac{d}{2}+1\right)}}\\ \times\left[u_{12}^{2}+\frac{l_{12}^{2}}{4}\right]\left[u_{12}^{2}+\frac{(l_{1}+l_{2}+d-2)^{2}}{4}\right]\frac{(2l_{1}+d-2)(2l_{2}+d-2)}{(d-2)^{2}}\\ \times\int\frac{\text{d}^{d}p\,\text{d}^{d}q}{\pi^{d}}\,\frac{C_{l_{1}}^{(\frac{d-2}{2})}\left(\frac{p\cdot q}{|p||q|}\right)C_{l_{2}}^{(\frac{d-2}{2})}\left(\frac{p\cdot q}{|p||q|}\right)}{p^{2\left(1+\operatorname{i}(u_{2}-u_{1})\right)}q^{2\left(1+\operatorname{i}(u_{1}-u_{2})\right)}}\operatorname{e}^{\operatorname{i}p\cdot x_{3}-\operatorname{i}q\cdot x_{4}}\,. (4.14)

In order to perform the integrals over pp and qq, we may proceed as follows: first one expands the product of two Gegenbauer polynomials according to vilenkin1978special

Cl1(d22)(pq|p||q|)Cl2(d22)(pq|p||q|)=m=0min(l1,l2)al1,l2,mCl1+l22m(d22)(pq|p||q|)C_{l_{1}}^{(\frac{d-2}{2})}\left(\frac{p\cdot q}{|p||q|}\right)C_{l_{2}}^{(\frac{d-2}{2})}\left(\frac{p\cdot q}{|p||q|}\right)=\sum_{m=0}^{\min(l_{1},l_{2})}a_{l_{1},l_{2},m}C_{l_{1}+l_{2}-2m}^{(\frac{d-2}{2})}\left(\frac{p\cdot q}{|p||q|}\right) (4.15)

with

al1,l2,m=(l1+l22m+d22)(l1+l22m)!(l1+l2m+d22)m!(l1m)!(l2m)!(d22)m(d22)l1m(d22)l2m(d22)l1+l2m(d2)l1+l22m(d2)l1+l2m.a_{l_{1},l_{2},m}=\frac{(l_{1}+l_{2}-2m+\frac{d-2}{2})(l_{1}+l_{2}-2m)!}{(l_{1}+l_{2}-m+\frac{d-2}{2})m!(l_{1}-m)!(l_{2}-m)!}\frac{\left(\frac{d-2}{2}\right)_{m}\left(\frac{d-2}{2}\right)_{l_{1}-m}\left(\frac{d-2}{2}\right)_{l_{2}-m}}{\left(\frac{d-2}{2}\right)_{l_{1}+l_{2}-m}(d-2)_{l_{1}+l_{2}-2m}}(d-2)_{l_{1}+l_{2}-m}\,. (4.16)

Then one uses the fact that Cl(d22)(pq|p||q|)C_{l}^{(\frac{d-2}{2})}\left(\frac{p\cdot q}{|p||q|}\right) is a spherical harmonic with respect to both pp and qq (see equation (4.13)) to compute the integrals over these variables using (A.7):

ddpddqπdCl(d22)(pq|p||q|)p2(1iu12)q2(1+iu12)eipx3iqx4=|Γ(l+d22+iu12)Γ(l+22+iu12)|24d2Cl(d22)(x3x4|x3||x4|)x32(d21+iu12)x42(d21iu12).\int\frac{\text{d}^{d}p\,\text{d}^{d}q}{\pi^{d}}\,\frac{C_{l}^{(\frac{d-2}{2})}\left(\frac{p\cdot q}{|p||q|}\right)}{p^{2\left(1-\operatorname{i}u_{12}\right)}q^{2\left(1+\operatorname{i}u_{12}\right)}}\operatorname{e}^{\operatorname{i}p\cdot x_{3}-\operatorname{i}q\cdot x_{4}}=\Bigg{|}\frac{\Gamma\left(\frac{l+d-2}{2}+\operatorname{i}u_{12}\right)}{\Gamma\left(\frac{l+2}{2}+\operatorname{i}u_{12}\right)}\Bigg{|}^{2}\frac{4^{d-2}\,C_{l}^{(\frac{d-2}{2})}\left(\frac{x_{3}\cdot x_{4}}{|x_{3}||x_{4}|}\right)}{x_{3}^{2\left(\frac{d}{2}-1+\operatorname{i}u_{12}\right)}x_{4}^{2\left(\frac{d}{2}-1-\operatorname{i}u_{12}\right)}}\,. (4.17)

Consequently, one can write

IM,2(d,δ)=Γ(d2)22(x32x42)δ~l1,l2du1du2(2π)2(x32x42)i(u1+u2)[Ql1(u1)Ql2(u2)]M+2×[u122+l1224][u122+(l1+l2+d2)24](2l1+d2)(2l2+d2)(d2)2×m=0min(l1,l2)al1,l2,m|Γ(l1+l22m+d22+iu12)Γ(l1+l22m+22+iu12)|2Cl1+l22m(d22)(cosθ)I_{M,2}^{(d,\delta)}=\frac{\Gamma\left(\frac{d}{2}\right)^{2}}{2(x_{3}^{2}x_{4}^{2})^{\tilde{\delta}}}\sum_{l_{1},l_{2}}\int\frac{\text{d}u_{1}\text{d}u_{2}}{(2\pi)^{2}}\left(\frac{x_{3}^{2}}{x_{4}^{2}}\right)^{\operatorname{i}(u_{1}+u_{2})}[Q_{l_{1}}(u_{1})Q_{l_{2}}(u_{2})]^{M+2}\\ \times\left[u_{12}^{2}+\frac{l_{12}^{2}}{4}\right]\left[u_{12}^{2}+\frac{(l_{1}+l_{2}+d-2)^{2}}{4}\right]\frac{(2l_{1}+d-2)(2l_{2}+d-2)}{(d-2)^{2}}\\ \times\sum_{m=0}^{\min(l_{1},l_{2})}a_{l_{1},l_{2},m}\Bigg{|}\frac{\Gamma\left(\frac{l_{1}+l_{2}-2m+d-2}{2}+\operatorname{i}u_{12}\right)}{\Gamma\left(\frac{l_{1}+l_{2}-2m+2}{2}+\operatorname{i}u_{12}\right)}\Bigg{|}^{2}C_{l_{1}+l_{2}-2m}^{(\frac{d-2}{2})}(\cos\theta) (4.18)

with x3x4=|x3||x4|cosθx_{3}\cdot x_{4}=|x_{3}||x_{4}|\cos\theta. Using the operator 𝕆l1,l2\mathbb{O}_{l_{1},l_{2}}, this can actually be written in a more concise way:

IM,2(d,δ)=Γ(d2)22(x32x42)δ~l1,l2du1du2(2π)2(x32x42)i(u1+u2)[Ql1(u1)Ql2(u2)]M+2×[u122+l1224][u122+(l1+l2+d2)24](2l1+d2)(2l2+d2)(d2)2×|Γ(l1+l2+d22+iu12)Γ(l1+l2+22+iu12)|2[𝕆l1,l2(u21)t𝕆l1,l2(u12)x3(l1+l2)]x4(l1+l2)(|x3||x4|)l1+l2.I_{M,2}^{(d,\delta)}=\frac{\Gamma\left(\frac{d}{2}\right)^{2}}{2(x_{3}^{2}x_{4}^{2})^{\tilde{\delta}}}\sum_{l_{1},l_{2}}\int\frac{\text{d}u_{1}\text{d}u_{2}}{(2\pi)^{2}}\,\left(\frac{x_{3}^{2}}{x_{4}^{2}}\right)^{\operatorname{i}(u_{1}+u_{2})}[Q_{l_{1}}(u_{1})Q_{l_{2}}(u_{2})]^{M+2}\\ \times\left[u_{12}^{2}+\frac{l_{12}^{2}}{4}\right]\left[u_{12}^{2}+\frac{(l_{1}+l_{2}+d-2)^{2}}{4}\right]\frac{(2l_{1}+d-2)(2l_{2}+d-2)}{(d-2)^{2}}\\ \times\Bigg{|}\frac{\Gamma\left(\frac{l_{1}+l_{2}+d-2}{2}+\operatorname{i}u_{12}\right)}{\Gamma\left(\frac{l_{1}+l_{2}+2}{2}+\operatorname{i}u_{12}\right)}\Bigg{|}^{2}\frac{[\mathbb{O}_{l_{1},l_{2}}(u_{21})^{t}\mathbb{O}_{l_{1},l_{2}}(u_{12})x_{3}^{\otimes(l_{1}+l_{2})}]\cdot x_{4}^{\otimes(l_{1}+l_{2})}}{(|x_{3}||x_{4}|)^{l_{1}+l_{2}}}\,. (4.19)

Notice that since 𝕆l1,l2\mathbb{O}_{l_{1},l_{2}} goes from 𝕍l1𝕍l2\mathbb{V}_{l_{1}}\otimes\mathbb{V}_{l_{2}} to Sl1+l2(d)S^{l_{1}+l_{2}}(\mathbb{C}^{d}) we can only multiply it with its transpose. This is what happens here where we need matrix elements of 𝕆l1,l2(u21)t𝕆l1,l2(u12):Sl1+l2(d)Sl1+l2(d)\mathbb{O}_{l_{1},l_{2}}(u_{21})^{t}\mathbb{O}_{l_{1},l_{2}}(u_{12}):S^{l_{1}+l_{2}}(\mathbb{C}^{d})\rightarrow S^{l_{1}+l_{2}}(\mathbb{C}^{d}). It seems that expression (4.19) is the most natural for the generalization to the general case IM,N(d,δ)I_{M,N}^{(d,\delta)}.

Let us compare the expressions (4.18) for integral IM,2(d,δ)I_{M,2}^{(d,\delta)} in various dimensions. The limit d2d\rightarrow 2 is seemingly singular but one should remember that the Gegenbauer polynomials for l>0l>0 tend to 0 in this limit so that

l,2l+d2d2Cl(d22)(cosθ)d221+δl,0coslθ.\forall l\in\mathbb{N},\quad\frac{2l+d-2}{d-2}C_{l}^{(\frac{d-2}{2})}\left(\cos\theta\right)\underset{d\rightarrow 2}{\longrightarrow}\frac{2}{1+\delta_{l,0}}\cos l\theta\,. (4.20)

Thus, for min(l1,l2)>0\min(l_{1},l_{2})>0, one has

(2l1+d2)(2l2+d2)(d2)2al1,l2,mCl1+l22m(d22)(cosθ)d22[δm,0cos(l1+l2)θ+δm,min(l1,l2)cos(l1l2)θ].\frac{(2l_{1}+d-2)(2l_{2}+d-2)}{(d-2)^{2}}a_{l_{1},l_{2},m}C_{l_{1}+l_{2}-2m}^{(\frac{d-2}{2})}(\cos\theta)\underset{d\rightarrow 2}{\longrightarrow}\\ 2\left[\delta_{m,0}\cos(l_{1}+l_{2})\theta+\delta_{m,\min(l_{1},l_{2})}\cos(l_{1}-l_{2})\theta\right]\,. (4.21)

In the end, IM,2(2,δ)I_{M,2}^{(2,\delta)} is finite (as it should be) and, using the additional symmetry Ql=QlQ_{l}=Q_{-l} valid for ll\in\mathbb{Z} when d=2d=2, one can extend the sum to (l1,l2)2(l_{1},l_{2})\in\mathbb{Z}^{2} so that

IM,2(2,δ)=12(x32x42)δ~(l1,l2)2ei(l1+l2)θdu1du2(2π)2(x32x42)i(u1+u2)[Ql1(u1)Ql2(u2)]M+2[u122+l1224].I_{M,2}^{(2,\delta)}=\frac{1}{2(x_{3}^{2}x_{4}^{2})^{\tilde{\delta}}}\sum_{(l_{1},l_{2})\in\mathbb{Z}^{2}}\operatorname{e}^{\operatorname{i}(l_{1}+l_{2})\theta}\int\frac{\text{d}u_{1}\text{d}u_{2}}{(2\pi)^{2}}\left(\frac{x_{3}^{2}}{x_{4}^{2}}\right)^{\operatorname{i}(u_{1}+u_{2})}[Q_{l_{1}}(u_{1})Q_{l_{2}}(u_{2})]^{M+2}\left[u_{12}^{2}+\frac{l_{12}^{2}}{4}\right]\,. (4.22)

When d=4d=4, the dependence on uu of the sum over mm disappears and the sum is then simply

Cl1(1)(cosθ)Cl2(1)(cosθ)=(ei(l1+1)θei(l1+1)θ)(ei(l2+1)θei(l2+1)θ)(eiθeiθ)2.C^{(1)}_{l_{1}}(\cos\theta)C^{(1)}_{l_{2}}(\cos\theta)=\frac{(\operatorname{e}^{\operatorname{i}(l_{1}+1)\theta}-\operatorname{e}^{-\operatorname{i}(l_{1}+1)\theta})(\operatorname{e}^{\operatorname{i}(l_{2}+1)\theta}-\operatorname{e}^{-\operatorname{i}(l_{2}+1)\theta})}{(\operatorname{e}^{\operatorname{i}\theta}-\operatorname{e}^{-\operatorname{i}\theta})^{2}}\,. (4.23)

Noticing that Ql=Ql2Q_{l}=Q_{-l-2} when d=4d=4 we can keep only one of the four terms in the equation above if we extend the summation to (l1,l2)2(l_{1},l_{2})\in\mathbb{Z}^{2}. We thus recover the known formula Basso:2017jwq (we have also replaced ljl_{j} with aj=lj+1a_{j}=l_{j}+1):

IM,2(4,δ)=12(x32x42)δ~1(eiθeiθ)2(a1,a2)2a1a2ei(a1+a2)θ×du1du2(2π)2(x32x42)i(u1+u2)[Qa11(u1)Qa21(u2)]M+2[u122+a1224][u122+(a1+a2)24].I_{M,2}^{(4,\delta)}=\frac{1}{2(x_{3}^{2}x_{4}^{2})^{\tilde{\delta}}}\frac{1}{(\operatorname{e}^{\operatorname{i}\theta}-\operatorname{e}^{-\operatorname{i}\theta})^{2}}\sum_{(a_{1},a_{2})\in\mathbb{Z}^{2}}a_{1}a_{2}\operatorname{e}^{\operatorname{i}(a_{1}+a_{2})\theta}\\ \times\int\frac{\text{d}u_{1}\text{d}u_{2}}{(2\pi)^{2}}\left(\frac{x_{3}^{2}}{x_{4}^{2}}\right)^{\operatorname{i}(u_{1}+u_{2})}[Q_{a_{1}-1}(u_{1})Q_{a_{2}-1}(u_{2})]^{M+2}\left[u_{12}^{2}+\frac{a_{12}^{2}}{4}\right]\left[u_{12}^{2}+\frac{(a_{1}+a_{2})^{2}}{4}\right]\,. (4.24)

The next case we could investigate is (d,δ)=(6,1)(d,\delta)=(6,1), the formula (4.18) then reads

IM,2(6,1)=12(x32x42)2l1,l2du1du2(2π)2(x32x42)i(u1+u2)[u122+l1224][u122+(l1+l2+4)24][(u12+(l1+2)24)(u22+(l2+2)24)]M+2(l1+2)(l2+2)m=0min(l1,l2)(m+1)(l1m+1)(l2m+1)(l1+l2m+3)(l1+l22m+1)(l1+l22m+3)[u122+(l1+l22m+2)24]Cl1+l22m(2)(cosθ).I_{M,2}^{(6,1)}=\frac{1}{2(x_{3}^{2}x_{4}^{2})^{2}}\sum_{l_{1},l_{2}}\int\frac{\text{d}u_{1}\text{d}u_{2}}{(2\pi)^{2}}\,\left(\frac{x_{3}^{2}}{x_{4}^{2}}\right)^{\operatorname{i}(u_{1}+u_{2})}\frac{\left[u_{12}^{2}+\frac{l_{12}^{2}}{4}\right]\left[u_{12}^{2}+\frac{(l_{1}+l_{2}+4)^{2}}{4}\right]}{\left[\left(u_{1}^{2}+\frac{(l_{1}+2)^{2}}{4}\right)\left(u_{2}^{2}+\frac{(l_{2}+2)^{2}}{4}\right)\right]^{M+2}}(l_{1}+2)(l_{2}+2)\\ \sum_{m=0}^{\min(l_{1},l_{2})}\frac{(m+1)(l_{1}-m+1)(l_{2}-m+1)(l_{1}+l_{2}-m+3)}{(l_{1}+l_{2}-2m+1)(l_{1}+l_{2}-2m+3)}\,\left[u_{12}^{2}+\frac{(l_{1}+l_{2}-2m+2)^{2}}{4}\right]C_{l_{1}+l_{2}-2m}^{(2)}(\cos\theta)\,. (4.25)

The integrals are rather easy, at least when MM is not too large, but the sums seem to be quite tedious to perform. We hope that this example of the first nontrivial integral IM,2(d,δ)I_{M,2}^{(d,\delta)} clearly illustrates the complications arising in higher dimensions.

5 Conclusions

In the present paper, we have constructed the generalised eigenvectors of the graph-building operator for fishnet integrals in dd dimensions. The spectral decomposition of the graph-building operator allowed us to derive a representation for the dd-dimensional Basso–Dixon diagrams in terms of separated variables, i.e. the rapidities uju_{j} and the bound-state numbers ljl_{j} of the fishnet lattice’s excitations. According to that, the expression for the Basso–Dixon diagram is an integral over separated variables—with the corresponding Sklyanin measure that we computed for any dd from the overlap of eigenvectors, and it reproduces the results of Basso:2017jwq ; Derkachov2019 ; Derkachov:2019tzo in two and four dimensions. The integrand is given by the eigenvalues of the graph-building operator and by the reductions of the bra and ket eigenvectors corresponding to pinching their external coordinates to two points xx and yy. The former is factorised into NN contributions, each depending on the quantum numbers of one excitation (uj,lj)(u_{j},l_{j}), the latter have a more complicated structure for general dd. In d=2d=2 and d=4d=4, the eigenvectors are drastically simplified by the reduction, but, as we have demonstrated in the last section, the analogous expression for the general dd-dimensional situation is more involved.

The present construction of eigenvectors is based on the symmetric tensor representations of the group O(d)O(d). As a consequence, the corresponding main interchange relation governing the symmetry of the eigenvectors involves O(d)O(d)-invariant R-matrix acting on the tensor product of two symmetric tensor representations. In this framework, the symmetry of eigenvectors and scalar product look simple. On the other hand the special reduction of the eigenvector we would need in order to write the Basso–Dixon diagrams in terms of known functions is quite complicated.

In Appendix E we have discussed shortly the construction of the eigenvectors based on spinor representations of the group O(d)O(d). In some sense these constructions are complementary and show opposite features: in the spinorial framework the symmetry properties and scalar products looks more complicated but the special reductions of eigenvectors is straightforward. A detailed discussion of such duality, comparison between the spinorial and tensorial frameworks, and the derivation of the general expression for the reduced eigenvectors is left to a future paper.

Our results constitute an important step for a formulation of integrability techniques for nn-point functions (n3n\geqslant 3) in conformal field theories in dimension d4d\neq 4. This claim is based on the fact that techniques of hexagonalisation basso2015structure ; Eden:2016xvg ; Basso_2019 developed in the 44-dimensional 𝒩=4\mathcal{N}=4 SYM theory took an important piece information from the knowledge of Fishnet integrals, and can even be derived from first principle for the strongly deformed (Fishnet) theory Olivucci:2021cfy ; Olivucci_hex_II . At the same time, nothing is known about similar techniques in other dimensions, with the exception of a worldsheet theory without a known field theory dual Eden:2021xhe . For example, one can wonder if and how hexagon form factors and octagon functions Coronado_2019 ; Coronado_2020 can be computed in 𝒩=6\mathcal{N}=6 ABJM theory: a rich piece of information would come from an explicit computation of BD diagrams in 3D3D together with the discovery of an analogue of its representation as a determinant of ladder integrals, following the observations in d=2,4d=2,4 Derkachov2019 ; Basso:2021omx .

Acknowledgements.
G.F. thanks B. Basso and V. Kazakov for numerous fruitful discussions, and D. Serban and M. Staudacher for their many useful comments on an early version of the manuscript. The work of S.D. is supported by the Russian Science Foundation project No 19-11-00131. Research at the Perimeter Institute is supported in part by the Government of Canada through NSERC and by the Province of Ontario through MRI. This work was additionally supported by a grant from the Simons Foundation (Simons Collaboration on the Nonperturbative Bootstrap).

Appendix A Basic Integral Relations

We collect in this appendix various formulae which are used for the calculations of the Feynman diagrams DEramo:1971hnd ; Vasiliev:1982dc ; Vasiliev:1981dg ; Kazakov:1983ns ; Kazakov:1984km ; Vasil'ev:2004 . We recall that for a complex number aa and an integer l0l\geqslant 0 we define

a~=d2a,Al(a)=Γ(a~+l2)Γ(a+l2)=1Al(a~),(a)l=Γ(a+l)Γ(a)=k=0l1(a+k).\tilde{a}=\frac{d}{2}-a\,,\quad A_{l}(a)=\frac{\Gamma\left(\tilde{a}+\frac{l}{2}\right)}{\Gamma\left(a+\frac{l}{2}\right)}=\frac{1}{A_{l}(\tilde{a})}\,,\quad(a)_{l}=\frac{\Gamma(a+l)}{\Gamma(a)}=\prod_{k=0}^{l-1}(a+k)\,. (A.1)

If CC is a symmetric traceless tensor of rank ll, i.e. C𝕍lC\in\mathbb{V}_{l}, and xdx\in\mathbb{R}^{d} we will also write

C(x)=Cμ1μlxμ1xμl.C(x)=C^{\mu_{1}\cdots\mu_{l}}x_{\mu_{1}}\dots x_{\mu_{l}}\,. (A.2)

Because CC is traceless the following two elementary but very useful properties hold for an arbitrary complex number aa:

C(xy|xy|)(xy)2a=C(x)(2)l(al2)l1(xy)2(al2),\frac{C\left(\frac{x-y}{|x-y|}\right)}{(x-y)^{2a}}=\frac{C(\nabla_{x})}{(-2)^{l}\left(a-\frac{l}{2}\right)_{l}}\frac{1}{(x-y)^{2\left(a-\frac{l}{2}\right)}}\,, (A.3)

and

C(xx0|xx0|yx0|yx0|)(xx0)2(al2)(yx0)2(1al2)=C(x0)(2)l(al2)l1(xx0)2(al2)(yx0)2(1al2).\frac{C\left(\frac{x-x_{0}}{|x-x_{0}|}-\frac{y-x_{0}}{|y-x_{0}|}\right)}{(x-x_{0})^{2\left(a-\frac{l}{2}\right)}(y-x_{0})^{2\left(1-a-\frac{l}{2}\right)}}=\frac{C\left(\nabla_{x_{0}}\right)}{(-2)^{l}\left(a-\frac{l}{2}\right)_{l}}\frac{1}{(x-x_{0})^{2\left(a-\frac{l}{2}\right)}(y-x_{0})^{2\left(1-a-\frac{l}{2}\right)}}\,. (A.4)

The second property in particular implies that for arbitrary complex numbers aa and bb one has

C(w0)[1(xx0)2b(xw0)2(al2)(yw0)2(1al2)]|w0=x0=(al2)l(a+bl2)lC(w0)[1(xw0)2(a+bl2)(yw0)2(1abl2)(yx0)2b]|w0=x0.C\left(\nabla_{w_{0}}\right)\left[\frac{1}{(x-x_{0})^{2b}(x-w_{0})^{2\left(a-\frac{l}{2}\right)}(y-w_{0})^{2\left(1-a-\frac{l}{2}\right)}}\right]\Bigg{|}_{w_{0}=x_{0}}\\ =\frac{\left(a-\frac{l}{2}\right)_{l}}{\left(a+b-\frac{l}{2}\right)_{l}}C\left(\nabla_{w_{0}}\right)\left[\frac{1}{(x-w_{0})^{2\left(a+b-\frac{l}{2}\right)}(y-w_{0})^{2\left(1-a-b-\frac{l}{2}\right)}(y-x_{0})^{2b}}\right]\Bigg{|}_{w_{0}=x_{0}}\,. (A.5)

We also recall that, if (a)>0\Re(a)>0, one can write

1x2a=1Γ(a)0+eux2ua1du.\frac{1}{x^{2a}}=\frac{1}{\Gamma(a)}\int_{0}^{+\infty}\operatorname{e}^{-ux^{2}}u^{a-1}\text{d}u\,. (A.6)

Fourier transform of a propagator

For CC a rank ll symmetric traceless tensor,

C(p|p|)p2aeipxddpπd2=Al(a)il4a~C(x|x|)x2a~.\int\frac{C\left(\frac{p}{|p|}\right)}{p^{2a}}\operatorname{e}^{\operatorname{i}p\cdot x}\frac{\text{d}^{d}p}{\pi^{\frac{d}{2}}}=A_{l}(a)\operatorname{i}^{l}4^{\tilde{a}}\frac{C\left(\frac{x}{|x|}\right)}{x^{2\tilde{a}}}\,. (A.7)

Chain relation

πd2ddz(xz)2a(zy)2b=A0(a)A0(b)A0(dab)(xy)2(a+bd2).\int\frac{\pi^{-\frac{d}{2}}\text{d}^{d}z}{(x-z)^{2a}(z-y)^{2b}}=\frac{A_{0}(a)A_{0}(b)A_{0}(d-a-b)}{(x-y)^{2\left(a+b-\frac{d}{2}\right)}}\,. (A.8)

When a+b=d2a+b=\frac{d}{2} the chain relation becomes

πd2ddz(xz)2a(zy)2(da)=A0(a)A0(da)πd2δ(xy).\int\frac{\pi^{-\frac{d}{2}}\text{d}^{d}z}{(x-z)^{2a}(z-y)^{2(d-a)}}=A_{0}(a)A_{0}(d-a)\pi^{\frac{d}{2}}\delta(x-y)\,. (A.9)

Star-triangle relation

For a+b+c=da+b+c=d, one has

πd2ddw(wx)2a(wy)2b(wz)2c=A0(a)A0(b)A0(c)(xy)2c~(yz)2a~(zx)2b~.\int\frac{\pi^{-\frac{d}{2}}\text{d}^{d}w}{(w-x)^{2a}(w-y)^{2b}(w-z)^{2c}}=\frac{A_{0}(a)A_{0}(b)A_{0}(c)}{(x-y)^{2\tilde{c}}(y-z)^{2\tilde{a}}(z-x)^{2\tilde{b}}}\,. (A.10)
Refer to caption
Figure 19: Left: Star-triangle identity in graphical form. We recall that x~=d2x\tilde{x}=\frac{d}{2}-x. Right: Chain-rule identity in graphical form.
Refer to caption
Figure 20: The exchange relation corresponding to the notation of blue arrow used in the main text amounts to consecutive triangle-star and star-triangle transformations, and holds under the assumption α+β=α+β\alpha+\beta=\alpha^{\prime}+\beta^{\prime}.

Generalization of the chain relation

For C𝕍lC\in\mathbb{V}_{l}, one has

C(xz|xz|)(xz)2a(zy)2bddzπd2=Al(a)A0(b)Al(dab)C(xy|xy|)(xy)2(a+bd2).\int\frac{C\left(\frac{x-z}{|x-z|}\right)}{(x-z)^{2a}(z-y)^{2b}}\frac{\text{d}^{d}z}{\pi^{\frac{d}{2}}}=A_{l}(a)A_{0}(b)A_{l}(d-a-b)\frac{C\left(\frac{x-y}{|x-y|}\right)}{(x-y)^{2\left(a+b-\frac{d}{2}\right)}}\,. (A.11)

Appendix B Equivalence (2.47) and (2.31)

B.1 Derivation of (2.48)

In this section we derive representation (2.48) for the v-integral. For simplicity we shall use the compact notation λ=1l1+l22+iu\lambda=1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u. First step is the usual binomial expansion

ddvπd2(ζ(yvv2))l1(η(xvv2))l2(zv)2(dλ)v2λ=k,p(l1k)(l2p)(1)k+p(ζy)l1k(ηx)l2pddvπd2(ζvv2)k(ηvv2)p(zv)2(dλ)v2λ\int\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\frac{(\zeta\cdot(y-\frac{v}{v^{2}}))^{l_{1}}(\eta\cdot(x-\frac{v}{v^{2}}))^{l_{2}}}{(z-v)^{2\left(d-\lambda\right)}v^{2\lambda}}=\sum_{k,p}\binom{l_{1}}{k}\binom{l_{2}}{p}(-1)^{k+p}\\ (\zeta\cdot y)^{l_{1}-k}(\eta\cdot x)^{l_{2}-p}\,\int\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\frac{(\zeta\cdot\frac{v}{v^{2}})^{k}(\eta\cdot\frac{v}{v^{2}})^{p}}{(z-v)^{2\left(d-\lambda\right)}v^{2\lambda}} (B.1)

On the second step we use representation

(ζvv2)k(ηvv2)pv2λ=12k+p(λ)k+ptksp1(v22tζv2sηv)λ\displaystyle\frac{(\zeta\cdot\frac{v}{v^{2}})^{k}(\eta\cdot\frac{v}{v^{2}})^{p}}{v^{2\lambda}}=\frac{1}{2^{k+p}(\lambda)_{k+p}}\,\partial_{t}^{k}\partial_{s}^{p}\,\frac{1}{(v^{2}-2t\zeta\cdot v-2s\eta\cdot v)^{\lambda}}

and series expansion (ζ2=0\zeta^{2}=0 and η2=0\eta^{2}=0)

1(v22tζv2sηv)λ=1((vtζsη)22tsζη)λ=n(λ)nn!(2tsζη)n(vtζsη)2(λ+n)\displaystyle\frac{1}{(v^{2}-2t\zeta\cdot v-2s\eta\cdot v)^{\lambda}}=\frac{1}{\left((v-t\zeta-s\eta)^{2}-2ts\zeta\cdot\eta\right)^{\lambda}}=\sum_{n}\frac{(\lambda)_{n}}{n!}\frac{(2ts\zeta\cdot\eta)^{n}}{\left(v-t\zeta-s\eta\right)^{2(\lambda+n)}}

to reduce our expression to the sum of the simpler integrals

ddvπd2(ζ(yvv2))l1(η(xvv2))l2(zv)2(dλ)v2λ=n,k,p(l1k)(l2p)(1)k+p2nkp(λ)nn!(λ)k+p(ζy)l1k(ηx)l2p(ζη)ntksptnsnddvπd21(zv)2(dλ)(vtζsη)2(λ+n)\int\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\frac{(\zeta\cdot(y-\frac{v}{v^{2}}))^{l_{1}}(\eta\cdot(x-\frac{v}{v^{2}}))^{l_{2}}}{(z-v)^{2\left(d-\lambda\right)}v^{2\lambda}}=\sum_{n,k,p}\binom{l_{1}}{k}\binom{l_{2}}{p}(-1)^{k+p}\frac{2^{n-k-p}(\lambda)_{n}}{n!(\lambda)_{k+p}}(\zeta\cdot y)^{l_{1}-k}(\eta\cdot x)^{l_{2}-p}(\zeta\cdot\eta)^{n}\\ \,\partial_{t}^{k}\partial_{s}^{p}\,t^{n}s^{n}\,\int\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\frac{1}{(z-v)^{2\left(d-\lambda\right)}\left(v-t\zeta-s\eta\right)^{2(\lambda+n)}} (B.2)

Next step we reduce remaining integral to the standard form

ddvπd21v2(dλ)(v+ztζsη)2λ=πd2Γ(λd2)Γ(d2λ)Γ(dλ)Γ(λ)δ(d)(ztζsη)\displaystyle\int\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\frac{1}{v^{2\left(d-\lambda\right)}\left(v+z-t\zeta-s\eta\right)^{2\lambda}}=\pi^{\frac{d}{2}}\frac{\Gamma\left(\lambda-\frac{d}{2}\right)\Gamma\left(\frac{d}{2}-\lambda\right)}{\Gamma(d-\lambda)\Gamma(\lambda)}\delta^{(d)}\left(z-t\zeta-s\eta\right)

using external derivatives

(zμzμ)n1(z+z0)2λ=4n(λ)n(λd2+1)n1(z+z0)2(λ+n)\displaystyle\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}\frac{1}{(z+z_{0})^{2\lambda}}=4^{n}(\lambda)_{n}\left(\lambda-\frac{d}{2}+1\right)_{n}\frac{1}{(z+z_{0})^{2(\lambda+n)}}
ddvπd21v2(dλ)(v+ztζsη)2(λ+n)=(zμzμ)n4n(λ)n(λd2+1)nddvπd21v2(dλ)(v+ztζsη)2λ=πd2Γ(λd2)Γ(d2λ)4n(λ)n(λd2+1)nΓ(dλ)Γ(λ)(zμzμ)nδ(d)(ztζsη)\int\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\frac{1}{v^{2\left(d-\lambda\right)}\left(v+z-t\zeta-s\eta\right)^{2(\lambda+n)}}=\frac{\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}}{4^{n}(\lambda)_{n}\left(\lambda-\frac{d}{2}+1\right)_{n}}\int\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\frac{1}{v^{2\left(d-\lambda\right)}\left(v+z-t\zeta-s\eta\right)^{2\lambda}}\\ =\frac{\pi^{\frac{d}{2}}\Gamma\left(\lambda-\frac{d}{2}\right)\Gamma\left(\frac{d}{2}-\lambda\right)}{4^{n}(\lambda)_{n}\left(\lambda-\frac{d}{2}+1\right)_{n}\Gamma(d-\lambda)\Gamma(\lambda)}\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}\,\delta^{(d)}\left(z-t\zeta-s\eta\right) (B.3)

We have

ddvπd2(ζ(yvv2))l1(η(xvv2))l2(zv)2(dλ)v2λ=n,k,p(l1k)(l2p)(1)k+p2nkpπd2Γ(λd2)Γ(d2λ)n!(λ)k+p(λd2+1)nΓ(dλ)Γ(λ)(ζy)l1k(ηx)l2p(ζη)ntksptnsn(zμzμ)nδ(d)(ztζsη)\int\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\frac{(\zeta\cdot(y-\frac{v}{v^{2}}))^{l_{1}}(\eta\cdot(x-\frac{v}{v^{2}}))^{l_{2}}}{(z-v)^{2\left(d-\lambda\right)}v^{2\lambda}}=\sum_{n,k,p}\binom{l_{1}}{k}\binom{l_{2}}{p}(-1)^{k+p}\frac{2^{-n-k-p}\pi^{\frac{d}{2}}\Gamma\left(\lambda-\frac{d}{2}\right)\Gamma\left(\frac{d}{2}-\lambda\right)}{n!(\lambda)_{k+p}\left(\lambda-\frac{d}{2}+1\right)_{n}\Gamma(d-\lambda)\Gamma(\lambda)}\\ (\zeta\cdot y)^{l_{1}-k}(\eta\cdot x)^{l_{2}-p}(\zeta\cdot\eta)^{n}\,\partial_{t}^{k}\partial_{s}^{p}\,t^{n}s^{n}\,\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}\,\delta^{(d)}\left(z-t\zeta-s\eta\right) (B.4)

The last transformation: using evident formula

tktnF(t)|t=0=k!(kn)!tknF(t)|t=0\displaystyle\left.\partial_{t}^{k}\,t^{n}\,F(t)\right|_{t=0}=\frac{k!}{(k-n)!}\,\left.\partial_{t}^{k-n}\,F(t)\right|_{t=0}

and similar ones for s-derivative and shifting summation indices kk+nk\to k+n and pp+np\to p+n one obtains

ddvπd2(ζ(yvv2))l1(η(xvv2))l2(zv)2(dλ)v2λ=πd2Γ(λd2)Γ(d2λ)Γ(dλ)Γ(λ)n,k,p(l1k+n)(l2p+n)(k+n)!(p+n)!k!p!23nkp(1)k+pn!(λ)k+p+2n(λd2+1)n(ζy)l1kn(ηx)l2pn(ζη)ntksp(zμzμ)nδ(d)(ztζsη)\int\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\frac{(\zeta\cdot(y-\frac{v}{v^{2}}))^{l_{1}}(\eta\cdot(x-\frac{v}{v^{2}}))^{l_{2}}}{(z-v)^{2\left(d-\lambda\right)}v^{2\lambda}}=\\ \frac{\pi^{\frac{d}{2}}\Gamma\left(\lambda-\frac{d}{2}\right)\Gamma\left(\frac{d}{2}-\lambda\right)}{\Gamma(d-\lambda)\Gamma(\lambda)}\sum_{n,k,p}\binom{l_{1}}{k+n}\binom{l_{2}}{p+n}\frac{(k+n)!(p+n)!}{k!p!}\frac{2^{-3n-k-p}(-1)^{k+p}}{n!(\lambda)_{k+p+2n}\left(\lambda-\frac{d}{2}+1\right)_{n}}\\ (\zeta\cdot y)^{l_{1}-k-n}(\eta\cdot x)^{l_{2}-p-n}(\zeta\cdot\eta)^{n}\,\partial_{t}^{k}\partial_{s}^{p}\,\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}\,\delta^{(d)}\left(z-t\zeta-s\eta\right) (B.5)

It is exactly expression (2.48) and

Al1,l2(u)=πd2Γ(λd2)Γ(d2λ)Γ(dλ)Γ(λ);λ=1l1+l22+iu\displaystyle A_{l_{1},l_{2}}(u)=\frac{\pi^{\frac{d}{2}}\Gamma\left(\lambda-\frac{d}{2}\right)\Gamma\left(\frac{d}{2}-\lambda\right)}{\Gamma(d-\lambda)\Gamma(\lambda)}\ \ ;\ \ \lambda=1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u (B.6)

B.2 Equivalence

Now we are going to calculate sum in the right hand side of (2.49) and let us continue to use for simplicity notation λ=1l1+l22+iu\lambda=1-\frac{l_{1}+l_{2}}{2}+\operatorname{i}u. We have

Fl1,l2(u)=Γ(2λl1l2)Γ(λ+l1+l2)Γ(dλ)Γ(2λ)Γ(d2λ)Γ(λd2),Al1,l2(u)=πd2Γ(λd2)Γ(d2λ)Γ(dλ)Γ(λ),\displaystyle F_{l_{1},l_{2}}(u)=\frac{\Gamma\left(2-\lambda-l_{1}-l_{2}\right)\Gamma\left(\lambda+l_{1}+l_{2}\right)\Gamma\left(d-\lambda\right)}{\Gamma\left(2-\lambda\right)\Gamma\left(\frac{d}{2}-\lambda\right)\Gamma\left(\lambda-\frac{d}{2}\right)}\ \ \,,\ \ A_{l_{1},l_{2}}(u)=\frac{\pi^{\frac{d}{2}}\Gamma\left(\lambda-\frac{d}{2}\right)\Gamma\left(\frac{d}{2}-\lambda\right)}{\Gamma(d-\lambda)\Gamma(\lambda)}\,,
πd2Fl1,l2(u)Al1,l2(u)=Γ(2λl1l2)Γ(λ+l1+l2)Γ(2λ)Γ(λ)=(1)l1+l2λ1+l1+l2λ1\displaystyle\pi^{-\frac{d}{2}}F_{l_{1},l_{2}}(u)A_{l_{1},l_{2}}(u)=\frac{\Gamma\left(2-\lambda-l_{1}-l_{2}\right)\Gamma\left(\lambda+l_{1}+l_{2}\right)}{\Gamma\left(2-\lambda\right)\Gamma(\lambda)}=(-1)^{l_{1}+l_{2}}\frac{\lambda-1+l_{1}+l_{2}}{\lambda-1}

so that

[l1,l2(u)ζl1ηl2]xl1yl2=Γ(2λl1l2)Γ(λ+l1+l2)Γ(2λ)Γ(λ)n,k,pl1!l2!(1)k+p 2kp3n(l1kn)!(l2pn)!k!p!n!(ζη)n(ζy)l1kn(ηx)l2pn(λ)k+p+2n(λd2+1)ntksp(zμzμ)n(12zx+z2x2)1λl2(12zy+z2y2)1λl1|z=tζ+sη\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}=\frac{\Gamma\left(2-\lambda-l_{1}-l_{2}\right)\Gamma\left(\lambda+l_{1}+l_{2}\right)}{\Gamma\left(2-\lambda\right)\Gamma(\lambda)}\\ \sum_{n,k,p}\frac{l_{1}!l_{2}!(-1)^{k+p}\,2^{-k-p-3n}}{(l_{1}-k-n)!(l_{2}-p-n)!k!p!n!}\frac{(\zeta\cdot\eta)^{n}(\zeta\cdot y)^{l_{1}-k-n}(\eta\cdot x)^{l_{2}-p-n}}{\left(\lambda\right)_{k+p+2n}\left(\lambda-\frac{d}{2}+1\right)_{n}}\,\\ \partial_{t}^{k}\,\partial_{s}^{p}\,\left.\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}\,\left(1-2z\cdot x+z^{2}x^{2}\right)^{1-\lambda-l_{2}}\left(1-2z\cdot y+z^{2}y^{2}\right)^{1-\lambda-l_{1}}\right|_{z=t\zeta+s\eta} (B.7)

The first step is the calculation of the expression in the last line. We introduce Schwinger parameters

(12zx+z2x2)1λl2(12zy+z2y2)1λl1=1Γ(λ1+l2)Γ(λ1+l1)0dααλ2+l2eα0dββλ2+l1eβe2z(αx+βy)z2(αx2+βy2)\left(1-2z\cdot x+z^{2}x^{2}\right)^{1-\lambda-l_{2}}\left(1-2z\cdot y+z^{2}y^{2}\right)^{1-\lambda-l_{1}}=\\ \frac{1}{\Gamma(\lambda-1+l_{2})\Gamma(\lambda-1+l_{1})}\int_{0}^{\infty}\text{d}\alpha\alpha^{\lambda-2+l_{2}}\,e^{-\alpha}\int_{0}^{\infty}\text{d}\beta\beta^{\lambda-2+l_{1}}\,e^{-\beta}\,e^{2z\cdot(\alpha x+\beta y)-z^{2}(\alpha x^{2}+\beta y^{2})}

and then calculate z-derivatives using formula

eγzμzμebz2+zc=(1+4γb)d2eγc21+4γbebz2+zc1+4γb\displaystyle e^{\gamma\partial_{z_{\mu}}\partial_{z_{\mu}}}\,e^{-bz^{2}+z\cdot c}=\left(1+4\gamma b\right)^{-\frac{d}{2}}\,e^{\frac{\gamma c^{2}}{1+4\gamma b}}\,e^{\frac{-bz^{2}+z\cdot c}{1+4\gamma b}} (B.8)

This formula can be easily obtained using Gaussian integral and in our case b=αx2+βy2b=\alpha x^{2}+\beta y^{2} and c=2(αx+βy)c=2(\alpha x+\beta y). We have

(zμzμ)nebz2+zc=γn(1+4γb)d2eγc21+4γbebz2+zc1+4γb=4nbnγn(1+γ)d2eγ1+γc24bebz2+zc1+γ=m1m!γnγm(1+γ)d2m4nmbnm(c2)mebz2+zc1+γ\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}\,e^{-bz^{2}+z\cdot c}=\partial_{\gamma}^{n}\,\left(1+4\gamma b\right)^{-\frac{d}{2}}\,e^{\frac{\gamma c^{2}}{1+4\gamma b}}\,e^{\frac{-bz^{2}+z\cdot c}{1+4\gamma b}}=\\ 4^{n}b^{n}\partial_{\gamma}^{n}\,\left(1+\gamma\right)^{-\frac{d}{2}}\,e^{\frac{\gamma}{1+\gamma}\frac{c^{2}}{4b}}\,e^{\frac{-bz^{2}+z\cdot c}{1+\gamma}}=\sum_{m}\frac{1}{m!}\partial_{\gamma}^{n}\,\gamma^{m}\left(1+\gamma\right)^{-\frac{d}{2}-m}4^{n-m}b^{n-m}\left(c^{2}\right)^{m}\,e^{\frac{-bz^{2}+z\cdot c}{1+\gamma}}

Now it is possible to substitute z=tζ+sηz=t\zeta+s\eta so that z2=2tsζηz^{2}=2ts\zeta\cdot\eta and zc=tζc+sηcz\cdot c=t\zeta\cdot c+s\eta\cdot c and calculate t- and s-derivatives:

tkspe2tsbζη+tζc+sηc1+γ=(1+γ)ksp(2sbζη+ζc)kesηc1+γ=(1+γ)km1(km1)p!(pm1)!(2bζη)m1(ζc)km1spsm1esηc1+γ=m1(km1)p!(pm1)!(1+γ)kp+m1(2bζη)m1(ζc)km1(ηc)pm1\partial_{t}^{k}\,\partial_{s}^{p}\,e^{\frac{-2tsb\zeta\cdot\eta+t\zeta\cdot c+s\eta\cdot c}{1+\gamma}}=(1+\gamma)^{-k}\partial_{s}^{p}\,\left(-2sb\zeta\cdot\eta+\zeta\cdot c\right)^{k}e^{\frac{s\eta\cdot c}{1+\gamma}}=\\ (1+\gamma)^{-k}\sum_{m_{1}}\binom{k}{m_{1}}\frac{p!}{(p-m_{1})!}\left(-2b\zeta\cdot\eta\right)^{m_{1}}\left(\zeta\cdot c\right)^{k-m_{1}}\partial_{s}^{p}\,s^{m_{1}}\,e^{\frac{s\eta\cdot c}{1+\gamma}}=\\ \sum_{m_{1}}\binom{k}{m_{1}}\frac{p!}{(p-m_{1})!}(1+\gamma)^{-k-p+m_{1}}\left(-2b\zeta\cdot\eta\right)^{m_{1}}\left(\zeta\cdot c\right)^{k-m_{1}}\left(\eta\cdot c\right)^{p-m_{1}}

Using formula for γ\gamma-derivative

γnγm(1+γ)d2mkp+m1=(1)nmn!(d2+m+k+pm1)nm(nm)!\displaystyle\partial_{\gamma}^{n}\,\gamma^{m}\,\left(1+\gamma\right)^{-\frac{d}{2}-m-k-p+m_{1}}=(-1)^{n-m}\frac{n!\left(\frac{d}{2}+m+k+p-m_{1}\right)_{n-m}}{(n-m)!}

and collecting all terms we obtain

tksp(zμzμ)nebz2+zc|z=tζ+sη=m,m1(1)nm+m1n!k!p!(d2+m+k+pm1)nmm!m1!(nm)!(km1)!(pm1)! 4nm2m1bnm+m1(c2)m(ζη)m1(ζc)km1(ηc)pm1\partial_{t}^{k}\,\partial_{s}^{p}\,\left.\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}\,e^{-bz^{2}+z\cdot c}\right|_{z=t\zeta+s\eta}=\sum_{m,m_{1}}(-1)^{n-m+m_{1}}\frac{n!k!p!\left(\frac{d}{2}+m+k+p-m_{1}\right)_{n-m}}{m!m_{1}!(n-m)!(k-m_{1})!(p-m_{1})!}\,4^{n-m}2^{m_{1}}\,\\ b^{n-m+m_{1}}\left(c^{2}\right)^{m}\,\left(\zeta\cdot\eta\right)^{m_{1}}\left(\zeta\cdot c\right)^{k-m_{1}}\left(\eta\cdot c\right)^{p-m_{1}}

Let us return to our calculation. We have

tksp(zμzμ)ne2z(αx+βy)z2(αx2+βy2)|z=tζ+sη=m,m1(1)nm+m1n!k!p!(d2+m+k+pm1)nmm!m1!(nm)!(km1)!(pm1)! 4n2k+pm1(ζη)m1(αx2+βy2)nm+m1(α2x2+2αβxy+β2y2)m(αζx+βζy)km1(αηx+βηy)pm1\partial_{t}^{k}\,\partial_{s}^{p}\,\left.\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}\,e^{2z\cdot(\alpha x+\beta y)-z^{2}(\alpha x^{2}+\beta y^{2})}\right|_{z=t\zeta+s\eta}=\\ \sum_{m,m_{1}}(-1)^{n-m+m_{1}}\frac{n!k!p!\left(\frac{d}{2}+m+k+p-m_{1}\right)_{n-m}}{m!m_{1}!(n-m)!(k-m_{1})!(p-m_{1})!}\,4^{n}2^{k+p-m_{1}}\,\left(\zeta\cdot\eta\right)^{m_{1}}\\ \left(\alpha x^{2}+\beta y^{2}\right)^{n-m+m_{1}}\left(\alpha^{2}x^{2}+2\alpha\beta x\cdot y+\beta^{2}y^{2}\right)^{m}\,\left(\alpha\zeta\cdot x+\beta\zeta\cdot y\right)^{k-m_{1}}\left(\alpha\eta\cdot x+\beta\eta\cdot y\right)^{p-m_{1}}

so that it remains to use binomial expansions

(αx2+βy2)nm+m1=k1(nm+m1k1)αk1βnm+m1k1(x2)k1(y2)nm+m1k1,\displaystyle\left(\alpha x^{2}+\beta y^{2}\right)^{n-m+m_{1}}=\sum_{k_{1}}\binom{n-m+m_{1}}{k_{1}}\alpha^{k_{1}}\beta^{n-m+m_{1}-k_{1}}\,(x^{2})^{k_{1}}(y^{2})^{n-m+m_{1}-k_{1}}\,,
(αζx+βζy)km1=k2(km1k2)αk2βkm1k2(ζx)k2(ζy)km1k2,\displaystyle\left(\alpha\zeta\cdot x+\beta\zeta\cdot y\right)^{k-m_{1}}=\sum_{k_{2}}\binom{k-m_{1}}{k_{2}}\alpha^{k_{2}}\beta^{k-m_{1}-k_{2}}\,(\zeta\cdot x)^{k_{2}}(\zeta\cdot y)^{k-m_{1}-k_{2}}\,,
(αηx+βηy)pm1=k3(pm1k3)αk3βpm1k3(ηx)k3(ηy)pm1k3,\displaystyle\left(\alpha\eta\cdot x+\beta\eta\cdot y\right)^{p-m_{1}}=\sum_{k_{3}}\binom{p-m_{1}}{k_{3}}\alpha^{k_{3}}\beta^{p-m_{1}-k_{3}}\,(\eta\cdot x)^{k_{3}}(\eta\cdot y)^{p-m_{1}-k_{3}}\,,
(α2x2+2αβxy+β2y2)m=s1,s22s2m!α2s1+s2β2m2s1s2(ms1s2)!s1!s2!(x2)s1(xy)s2(y2)ms1s2\displaystyle\left(\alpha^{2}x^{2}+2\alpha\beta x\cdot y+\beta^{2}y^{2}\right)^{m}=\sum_{s_{1},s_{2}}\frac{2^{s_{2}}m!\,\alpha^{2s_{1}+s_{2}}\beta^{2m-2s_{1}-s_{2}}}{(m-s_{1}-s_{2})!s_{1}!s_{2}!}\,(x^{2})^{s_{1}}\,(x\cdot y)^{s_{2}}\,(y^{2})^{m-s_{1}-s_{2}}

and then calculate α\alpha- and β\beta-integrals

1Γ(λ1+l2)0dααλ2+l2αLeα=(λ1+l2)L\displaystyle\frac{1}{\Gamma(\lambda-1+l_{2})}\int_{0}^{\infty}\text{d}\alpha\alpha^{\lambda-2+l_{2}}\,\alpha^{L}\,e^{-\alpha}=\left(\lambda-1+l_{2}\right)_{L}
1Γ(λ1+l1)0dββλ2+l1βn+k+p+mLm1eβ=(λ1+l1)n+k+p+mLm1\displaystyle\frac{1}{\Gamma(\lambda-1+l_{1})}\int_{0}^{\infty}\text{d}\beta\beta^{\lambda-2+l_{1}}\,\beta^{n+k+p+m-L-m_{1}}e^{-\beta}=\left(\lambda-1+l_{1}\right)_{n+k+p+m-L-m_{1}}

where for simplicity we denote L=k1+k2+k3+2s1+s2L=k_{1}+k_{2}+k_{3}+2s_{1}+s_{2}. Collecting all pieces together we obtain the following intermediate result

tksp(zμzμ)n(12zx+z2x2)1λl2(12zy+z2y2)1λl1|z=tζ+sη=22n+k+pm1+s2(1)nm+m1n!k!p!(nm+m1)!m1!(nm)!(nm+m1k1)!(km1k2)!(pm1k3)!(ms1s2)!k1!k2!k3!s1!s2!(d2+m+k+pm1)nm(λ1+l2)L(λ1+l1)n+k+p+mLm1(x2)k1+s1(y2)n+m1k1s1s2(ζη)m1(xy)s2(ζx)k2(ζy)km1k2(ηx)k3(ηy)pm1k3\partial_{t}^{k}\,\partial_{s}^{p}\,\left.\left(\partial_{z_{\mu}}\partial_{z_{\mu}}\right)^{n}\,\left(1-2z\cdot x+z^{2}x^{2}\right)^{1-\lambda-l_{2}}\left(1-2z\cdot y+z^{2}y^{2}\right)^{1-\lambda-l_{1}}\right|_{z=t\zeta+s\eta}=\\ \sum\frac{2^{2n+k+p-m_{1}+s_{2}}\,(-1)^{n-m+m_{1}}\,n!k!p!(n-m+m_{1})!}{m_{1}!(n-m)!(n-m+m_{1}-k_{1})!(k-m_{1}-k_{2})!(p-m_{1}-k_{3})!(m-s_{1}-s_{2})!k_{1}!k_{2}!k_{3}!s_{1}!s_{2}!}\\ \left(\frac{d}{2}+m+k+p-m_{1}\right)_{n-m}\left(\lambda-1+l_{2}\right)_{L}\left(\lambda-1+l_{1}\right)_{n+k+p+m-L-m_{1}}\\ (x^{2})^{k_{1}+s_{1}}(y^{2})^{n+m_{1}-k_{1}-s_{1}-s_{2}}\left(\zeta\cdot\eta\right)^{m_{1}}(x\cdot y)^{s_{2}}(\zeta\cdot x)^{k_{2}}(\zeta\cdot y)^{k-m_{1}-k_{2}}(\eta\cdot x)^{k_{3}}(\eta\cdot y)^{p-m_{1}-k_{3}}

where summation is performed over m,m1,k1,k2,k3,s1,s2m,m_{1},k_{1},k_{2},k_{3},s_{1},s_{2} and for simplicity we do not show it explicitly. Substitution of this expression in (B.7) gives

[l1,l2(u)ζl1ηl2]xl1yl2=Γ(2λl1l2)Γ(λ+l1+l2)Γ(2λ)Γ(λ)n,k,pl1!l2!(1)k+p(l1kn)!(l2pn)!1(λ)k+p+2n(λd2+1)n(1)nm+m1(nm+m1)!m1!(nm)!(nm+m1k1)!(km1k2)!(pm1k3)!(ms1s2)!k1!k2!k3!s1!s2!(d2+m+k+pm1)nm(λ1+l2)L(λ1+l1)n+k+p+mLm1(x22)k1+s1(y22)n+m1k1s1s2(ζη)n+m1(xy)s2(ζx)k2(ζy)l1nm1k2(ηx)l2pn+k3(ηy)pm1k3\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot x^{\otimes l_{1}}\otimes y^{\otimes l_{2}}=\frac{\Gamma\left(2-\lambda-l_{1}-l_{2}\right)\Gamma\left(\lambda+l_{1}+l_{2}\right)}{\Gamma\left(2-\lambda\right)\Gamma(\lambda)}\\ \sum_{n,k,p}\frac{l_{1}!l_{2}!(-1)^{k+p}}{(l_{1}-k-n)!(l_{2}-p-n)!}\frac{1}{\left(\lambda\right)_{k+p+2n}\left(\lambda-\frac{d}{2}+1\right)_{n}}\,\\ \sum\frac{(-1)^{n-m+m_{1}}\,(n-m+m_{1})!}{m_{1}!(n-m)!(n-m+m_{1}-k_{1})!(k-m_{1}-k_{2})!(p-m_{1}-k_{3})!(m-s_{1}-s_{2})!k_{1}!k_{2}!k_{3}!s_{1}!s_{2}!}\\ \left(\frac{d}{2}+m+k+p-m_{1}\right)_{n-m}\left(\lambda-1+l_{2}\right)_{L}\,\left(\lambda-1+l_{1}\right)_{n+k+p+m-L-m_{1}}\\ \left(\frac{x^{2}}{2}\right)^{k_{1}+s_{1}}\left(\frac{y^{2}}{2}\right)^{n+m_{1}-k_{1}-s_{1}-s_{2}}\left(\zeta\cdot\eta\right)^{n+m_{1}}(x\cdot y)^{s_{2}}(\zeta\cdot x)^{k_{2}}(\zeta\cdot y)^{l_{1}-n-m_{1}-k_{2}}(\eta\cdot x)^{l_{2}-p-n+k_{3}}(\eta\cdot y)^{p-m_{1}-k_{3}}

Now we are going to show that some sequence of resummations allows to transform this expression to the form (2.31). We shall use two variants of Gauss summation formula

k(lk)(1)kΓ(A+k)Γ(B+k)\displaystyle\sum_{k}\binom{l}{k}(-1)^{k}\frac{\Gamma(A+k)}{\Gamma(B+k)} =Γ(A)Γ(BA+l)Γ(BA)Γ(B+l)\displaystyle=\frac{\Gamma(A)\Gamma(B-A+l)}{\Gamma(B-A)\Gamma(B+l)} (B.9)
k(lk)1Γ(A+k)Γ(Bk)\displaystyle\sum_{k}\binom{l}{k}\frac{1}{\Gamma(A+k)\Gamma(B-k)} =Γ(A+B+l1)Γ(B)Γ(A+B1)Γ(A+l)\displaystyle=\frac{\Gamma(A+B+l-1)}{\Gamma(B)\Gamma(A+B-1)\Gamma(A+l)} (B.10)

The first step: transformation pp+m1,kk+m1p\to p+m_{1}\,,k\to k+m_{1} and nnm1n\to n-m_{1}

l1!l2!(1)k+p(l1kn)!(l2pn)!1(λ)k+p+2n(λd2+1)nm1(1)nm(nm)!m1!(nmm1)!(nmk1)!(kk2)!(pk3)!(ms1s2)!k1!k2!k3!s1!s2!(d2+m+k+p+m1)nmm1(λ1+l2)L(λ1+l1)n+k+p+mL(x22)k1+s1(y22)nk1s1s2(ζη)n(xy)s2(ζx)k2(ζy)l1nk2(ηx)l2pn+k3(ηy)pk3\sum\frac{l_{1}!l_{2}!(-1)^{k+p}}{(l_{1}-k-n)!(l_{2}-p-n)!}\frac{1}{\left(\lambda\right)_{k+p+2n}\left(\lambda-\frac{d}{2}+1\right)_{n-m_{1}}}\,\\ \frac{(-1)^{n-m}\,(n-m)!}{m_{1}!(n-m-m_{1})!(n-m-k_{1})!(k-k_{2})!(p-k_{3})!(m-s_{1}-s_{2})!k_{1}!k_{2}!k_{3}!s_{1}!s_{2}!}\\ \left(\frac{d}{2}+m+k+p+m_{1}\right)_{n-m-m_{1}}\left(\lambda-1+l_{2}\right)_{L}\left(\lambda-1+l_{1}\right)_{n+k+p+m-L}\\ \left(\frac{x^{2}}{2}\right)^{k_{1}+s_{1}}\left(\frac{y^{2}}{2}\right)^{n-k_{1}-s_{1}-s_{2}}\left(\zeta\cdot\eta\right)^{n}(x\cdot y)^{s_{2}}(\zeta\cdot x)^{k_{2}}(\zeta\cdot y)^{l_{1}-n-k_{2}}(\eta\cdot x)^{l_{2}-p-n+k_{3}}(\eta\cdot y)^{p-k_{3}}

and then summation over m1m_{1} using (B.10)

m1(nm)!m1!(nmm1)!(d2+m+k+p+m1)nmm1(λd2+1)nm1=(λ)k+p+2n(λ)k+p+n+m(λd2+1)n\displaystyle\sum_{m_{1}}\frac{(n-m)!}{m_{1}!(n-m-m_{1})!}\frac{\left(\frac{d}{2}+m+k+p+m_{1}\right)_{n-m-m_{1}}}{\left(\lambda-\frac{d}{2}+1\right)_{n-m_{1}}}=\frac{(\lambda)_{k+p+2n}}{(\lambda)_{k+p+n+m}\left(\lambda-\frac{d}{2}+1\right)_{n}}

leads to expression

l1!l2!(1)k+p(l1kn)!(l2pn)!1(λ)k+p+n+m(λd2+1)n(1)nm(nmk1)!(kk2)!(pk3)!(ms1s2)!k1!k2!k3!s1!s2!(λ1+l2)L(λ1+l1)n+k+p+mL(x22)k1+s1(y22)nk1s1s2(ζη)n(xy)s2(ζx)k2(ζy)l1nk2(ηx)l2pn+k3(ηy)pk3\sum\frac{l_{1}!l_{2}!(-1)^{k+p}}{(l_{1}-k-n)!(l_{2}-p-n)!}\frac{1}{\left(\lambda\right)_{k+p+n+m}\left(\lambda-\frac{d}{2}+1\right)_{n}}\,\\ \frac{(-1)^{n-m}}{(n-m-k_{1})!(k-k_{2})!(p-k_{3})!(m-s_{1}-s_{2})!k_{1}!k_{2}!k_{3}!s_{1}!s_{2}!}\\ \left(\lambda-1+l_{2}\right)_{L}\left(\lambda-1+l_{1}\right)_{n+k+p+m-L}\\ \left(\frac{x^{2}}{2}\right)^{k_{1}+s_{1}}\left(\frac{y^{2}}{2}\right)^{n-k_{1}-s_{1}-s_{2}}\left(\zeta\cdot\eta\right)^{n}(x\cdot y)^{s_{2}}(\zeta\cdot x)^{k_{2}}(\zeta\cdot y)^{l_{1}-n-k_{2}}(\eta\cdot x)^{l_{2}-p-n+k_{3}}(\eta\cdot y)^{p-k_{3}}

Now it is possible to perform summation over mm using (B.9)

m(1)m(λ1+l1)n+k+p+mL(nmk1)!(ms1s2)!(λ)k+p+n+m=(1)s1+s2(k2+k3+n+s1l1)!(λ1+l1)n+k+pk1k2k3s1(nk1s1s2)!(Ll1)!(λ)k+p+2nk1\sum_{m}\frac{(-1)^{m}\left(\lambda-1+l_{1}\right)_{n+k+p+m-L}}{(n-m-k_{1})!(m-s_{1}-s_{2})!\left(\lambda\right)_{k+p+n+m}}=\\ \frac{(-1)^{s_{1}+s_{2}}(k_{2}+k_{3}+n+s_{1}-l_{1})!\left(\lambda-1+l_{1}\right)_{n+k+p-k_{1}-k_{2}-k_{3}-s_{1}}}{(n-k_{1}-s_{1}-s_{2})!(L-l_{1})!\left(\lambda\right)_{k+p+2n-k_{1}}}

so that one obtains

l1!l2!(1)k+p(l1kn)!(l2pn)!1(λ)k+p+2nk1(λd2+1)n(1)n+s1+s2(k2+k3+n+s1l1)!(nk1s1s2)!(Ll1)!(kk2)!(pk3)!k1!k2!k3!s1!s2!(λ1+l2)L(λ1+l1)n+k+pk1k2k3s1(x22)k1+s1(y22)nk1s1s2(ζη)n(xy)s2(ζx)k2(ζy)l1nk2(ηx)l2pn+k3(ηy)pk3\sum\frac{l_{1}!l_{2}!(-1)^{k+p}}{(l_{1}-k-n)!(l_{2}-p-n)!}\frac{1}{\left(\lambda\right)_{k+p+2n-k_{1}}\left(\lambda-\frac{d}{2}+1\right)_{n}}\,\\ \frac{(-1)^{n+s_{1}+s_{2}}(k_{2}+k_{3}+n+s_{1}-l_{1})!}{(n-k_{1}-s_{1}-s_{2})!(L-l_{1})!(k-k_{2})!(p-k_{3})!k_{1}!k_{2}!k_{3}!s_{1}!s_{2}!}\\ \left(\lambda-1+l_{2}\right)_{L}\left(\lambda-1+l_{1}\right)_{n+k+p-k_{1}-k_{2}-k_{3}-s_{1}}\\ \left(\frac{x^{2}}{2}\right)^{k_{1}+s_{1}}\left(\frac{y^{2}}{2}\right)^{n-k_{1}-s_{1}-s_{2}}\left(\zeta\cdot\eta\right)^{n}(x\cdot y)^{s_{2}}(\zeta\cdot x)^{k_{2}}(\zeta\cdot y)^{l_{1}-n-k_{2}}(\eta\cdot x)^{l_{2}-p-n+k_{3}}(\eta\cdot y)^{p-k_{3}}

The second step: transformation k1k1s1k_{1}\to k_{1}-s_{1} and pp+k3p\to p+k_{3}

l1!l2!(1)k+p+k3(l1kn)!(l2pnk3)!1(λ)k+p+2nk1+s1+k3(λd2+1)n(1)n+s1+s2(k2+k3+n+s1l1)!(nk1s2)!(k1+k2+k3+s1+s2l1)!(kk2)!p!(k1s1)!k2!k3!s1!s2!(λ1+l2)k1+k2+k3+s1+s2(λ1+l1)n+k+pk1k2(x22)k1(y22)nk1s2(ζη)n(xy)s2(ζx)k2(ζy)l1nk2(ηx)l2pn(ηy)p\sum\frac{l_{1}!l_{2}!(-1)^{k+p+k_{3}}}{(l_{1}-k-n)!(l_{2}-p-n-k_{3})!}\frac{1}{\left(\lambda\right)_{k+p+2n-k_{1}+s_{1}+k_{3}}\left(\lambda-\frac{d}{2}+1\right)_{n}}\,\\ \frac{(-1)^{n+s_{1}+s_{2}}(k_{2}+k_{3}+n+s_{1}-l_{1})!}{(n-k_{1}-s_{2})!(k_{1}+k_{2}+k_{3}+s_{1}+s_{2}-l_{1})!(k-k_{2})!p!(k_{1}-s_{1})!k_{2}!k_{3}!s_{1}!s_{2}!}\\ \left(\lambda-1+l_{2}\right)_{k_{1}+k_{2}+k_{3}+s_{1}+s_{2}}\left(\lambda-1+l_{1}\right)_{n+k+p-k_{1}-k_{2}}\\ \left(\frac{x^{2}}{2}\right)^{k_{1}}\left(\frac{y^{2}}{2}\right)^{n-k_{1}-s_{2}}\left(\zeta\cdot\eta\right)^{n}(x\cdot y)^{s_{2}}(\zeta\cdot x)^{k_{2}}(\zeta\cdot y)^{l_{1}-n-k_{2}}(\eta\cdot x)^{l_{2}-p-n}(\eta\cdot y)^{p}

then transformation k3k3s1k_{3}\to k_{3}-s_{1}

l1!l2!(1)k+p+k3(l1kn)!(l2pnk3+s1)!1(λ)k+p+2nk1+k3(λd2+1)n(1)n+s2(k2+k3+nl1)!(nk1s2)!(k1+k2+k3+s2l1)!(kk2)!p!(k1s1)!k2!(k3s1)!s1!s2!(λ1+l2)k1+k2+k3+s2(λ1+l1)n+k+pk1k2(x22)k1(y22)nk1s2(ζη)n(xy)s2(ζx)k2(ζy)l1nk2(ηx)l2pn(ηy)p\sum\frac{l_{1}!l_{2}!(-1)^{k+p+k_{3}}}{(l_{1}-k-n)!(l_{2}-p-n-k_{3}+s_{1})!}\frac{1}{\left(\lambda\right)_{k+p+2n-k_{1}+k_{3}}\left(\lambda-\frac{d}{2}+1\right)_{n}}\,\\ \frac{(-1)^{n+s_{2}}(k_{2}+k_{3}+n-l_{1})!}{(n-k_{1}-s_{2})!(k_{1}+k_{2}+k_{3}+s_{2}-l_{1})!(k-k_{2})!p!(k_{1}-s_{1})!k_{2}!(k_{3}-s_{1})!s_{1}!s_{2}!}\\ \left(\lambda-1+l_{2}\right)_{k_{1}+k_{2}+k_{3}+s_{2}}\left(\lambda-1+l_{1}\right)_{n+k+p-k_{1}-k_{2}}\\ \left(\frac{x^{2}}{2}\right)^{k_{1}}\left(\frac{y^{2}}{2}\right)^{n-k_{1}-s_{2}}\left(\zeta\cdot\eta\right)^{n}(x\cdot y)^{s_{2}}(\zeta\cdot x)^{k_{2}}(\zeta\cdot y)^{l_{1}-n-k_{2}}(\eta\cdot x)^{l_{2}-p-n}(\eta\cdot y)^{p}

and summation over s1s_{1} using (B.10)

s11s1!(k1s1)!1(l2pnk3+s1)!(k3s1)!=\displaystyle\sum_{s_{1}}\frac{1}{s_{1}!(k_{1}-s_{1})!}\frac{1}{(l_{2}-p-n-k_{3}+s_{1})!(k_{3}-s_{1})!}=
(l2pn+k1)!k1!k3!(l2pn+k1k3)!(l2pn)!\displaystyle\frac{(l_{2}-p-n+k_{1})!}{k_{1}!k_{3}!(l_{2}-p-n+k_{1}-k_{3})!(l_{2}-p-n)!}

finally gives

l1!l2!(1)k+p+k3(l1kn)!(l2pn)!1(λ)k+p+2nk1+k3(λd2+1)n(1)n+s2(k2+k3+nl1)!(l2pn+k1)!(l2pn+k1k3)!(nk1s2)!(k1+k2+k3+s2l1)!(kk2)!p!k1!k2!k3!s2!(λ1+l2)k1+k2+k3+s2(λ1+l1)n+k+pk1k2(x22)k1(y22)nk1s2(ζη)n(xy)s2(ζx)k2(ζy)l1nk2(ηx)l2pn(ηy)p\sum\frac{l_{1}!l_{2}!(-1)^{k+p+k_{3}}}{(l_{1}-k-n)!(l_{2}-p-n)!}\frac{1}{\left(\lambda\right)_{k+p+2n-k_{1}+k_{3}}\left(\lambda-\frac{d}{2}+1\right)_{n}}\,\\ \frac{(-1)^{n+s_{2}}(k_{2}+k_{3}+n-l_{1})!(l_{2}-p-n+k_{1})!}{(l_{2}-p-n+k_{1}-k_{3})!(n-k_{1}-s_{2})!(k_{1}+k_{2}+k_{3}+s_{2}-l_{1})!(k-k_{2})!p!k_{1}!k_{2}!k_{3}!s_{2}!}\\ \left(\lambda-1+l_{2}\right)_{k_{1}+k_{2}+k_{3}+s_{2}}\left(\lambda-1+l_{1}\right)_{n+k+p-k_{1}-k_{2}}\\ \left(\frac{x^{2}}{2}\right)^{k_{1}}\left(\frac{y^{2}}{2}\right)^{n-k_{1}-s_{2}}\left(\zeta\cdot\eta\right)^{n}(x\cdot y)^{s_{2}}(\zeta\cdot x)^{k_{2}}(\zeta\cdot y)^{l_{1}-n-k_{2}}(\eta\cdot x)^{l_{2}-p-n}(\eta\cdot y)^{p}

Now it is possible to perform summation over kk using (B.9)

k(1)k(l1kn)!(kk2)!(λ1+l1)n+k+pk1k2(λ)k+p+2nk1+k3=(1)k2k3!(λ1+l1)n+pk1(l1k2n)!(n+k2+k3l1)!(λ)p+n+l1+k3k1\sum_{k}\frac{(-1)^{k}}{(l_{1}-k-n)!(k-k_{2})!}\frac{\left(\lambda-1+l_{1}\right)_{n+k+p-k_{1}-k_{2}}}{\left(\lambda\right)_{k+p+2n-k_{1}+k_{3}}}=\\ \frac{(-1)^{k_{2}}k_{3}!\left(\lambda-1+l_{1}\right)_{n+p-k_{1}}}{(l_{1}-k_{2}-n)!(n+k_{2}+k_{3}-l_{1})!\left(\lambda\right)_{p+n+l_{1}+k_{3}-k_{1}}}

so that we obtain

l1!l2!(1)k2+p+k3(l1k2n)!(l2pn)!1(λ)p+n+l1+k3k1(λd2+1)n(1)n+s2(l2pn+k1)!(l2pn+k1k3)!(nk1s2)!(k1+k2+k3+s2l1)!p!k1!k2!s2!(λ1+l2)k1+k2+k3+s2(λ1+l1)n+pk1(x22)k1(y22)nk1s2(ζη)n(xy)s2(ζx)k2(ζy)l1nk2(ηx)l2pn(ηy)p\sum\frac{l_{1}!l_{2}!(-1)^{k_{2}+p+k_{3}}}{(l_{1}-k_{2}-n)!(l_{2}-p-n)!}\frac{1}{\left(\lambda\right)_{p+n+l_{1}+k_{3}-k_{1}}\left(\lambda-\frac{d}{2}+1\right)_{n}}\,\\ \frac{(-1)^{n+s_{2}}(l_{2}-p-n+k_{1})!}{(l_{2}-p-n+k_{1}-k_{3})!(n-k_{1}-s_{2})!(k_{1}+k_{2}+k_{3}+s_{2}-l_{1})!p!k_{1}!k_{2}!s_{2}!}\\ \left(\lambda-1+l_{2}\right)_{k_{1}+k_{2}+k_{3}+s_{2}}\left(\lambda-1+l_{1}\right)_{n+p-k_{1}}\\ \left(\frac{x^{2}}{2}\right)^{k_{1}}\left(\frac{y^{2}}{2}\right)^{n-k_{1}-s_{2}}\left(\zeta\cdot\eta\right)^{n}(x\cdot y)^{s_{2}}(\zeta\cdot x)^{k_{2}}(\zeta\cdot y)^{l_{1}-n-k_{2}}(\eta\cdot x)^{l_{2}-p-n}(\eta\cdot y)^{p}

and arrive to the last step – summation over k3k_{3} using (B.9)

k3(1)k3(l2pn+k1k3)!(k1+k2+k3+s2l1)!(λ1+l2)k1+k2+k3+s2(λ)p+n+l1+k3k1=Γ(λ)Γ(λ1+l1+l2)Γ(λ1+l2)Γ(λ+l1+l2)(1)k1+k2+s2l1(l1l22k1k2s2+p+n)!(l2l1+2k1+k2+s2pn)!\sum_{k_{3}}\frac{(-1)^{k_{3}}}{(l_{2}-p-n+k_{1}-k_{3})!(k_{1}+k_{2}+k_{3}+s_{2}-l_{1})!}\frac{\left(\lambda-1+l_{2}\right)_{k_{1}+k_{2}+k_{3}+s_{2}}}{\left(\lambda\right)_{p+n+l_{1}+k_{3}-k_{1}}}=\\ \frac{\Gamma(\lambda)\Gamma(\lambda-1+l_{1}+l_{2})}{\Gamma(\lambda-1+l_{2})\Gamma(\lambda+l_{1}+l_{2})}\frac{(-1)^{k_{1}+k_{2}+s_{2}-l_{1}}}{(l_{1}-l_{2}-2k_{1}-k_{2}-s_{2}+p+n)!(l_{2}-l_{1}+2k_{1}+k_{2}+s_{2}-p-n)!}

We see that this summation results in the key restriction s2+2k1+k2+l2=l1+p+ns_{2}+2k_{1}+k_{2}+l_{2}=l_{1}+p+n which fixes right homogeneity properties of our polynomial as function xx and yy. The sum now is over four indices and it is easy to check that after appropriate redefinition of summation variables one obtains the expression (2.31) exactly.

Appendix C Equivalence (2.2) and (2.52)

When xx and yy are null vectors, the Symanzik trick allows to reduce representation (2.44) to the simpler form

[l1,l2(u)ζl1ηl2](xl1yl2)=Γ(d2+l11)Γ(d2+l21)(iu+l1+l22)Γ(iul1+l22)Γ(iu+d2+l1+l22)Γ(iu+l1l22)Γ(iu+l2l12)×(xy)2(iu+d+l1+l222)(ζ(vy))l1(η(vx))l2v2(1iul1+l22)(yv)2(d2+l11)(xv)2(d2+l21)ddvπd2.\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot(x^{\otimes l_{1}}\otimes y^{\otimes l_{2}})=\frac{\Gamma\left(\frac{d}{2}+l_{1}-1\right)\Gamma\left(\frac{d}{2}+l_{2}-1\right)\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}\right)\Gamma\left(\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)}{\Gamma\left(-\operatorname{i}u+\frac{d-2+l_{1}+l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{l_{1}-l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{l_{2}-l_{1}}{2}\right)}\\ \times(x-y)^{2\left(-\operatorname{i}u+\frac{d+l_{1}+l_{2}-2}{2}\right)}\int\frac{(\zeta\cdot(v-y))^{l_{1}}(\eta\cdot(v-x))^{l_{2}}}{v^{2\left(1-\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)}(y-v)^{2\left(\frac{d}{2}+l_{1}-1\right)}(x-v)^{2\left(\frac{d}{2}+l_{2}-1\right)}}\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\,. (C.1)

This integral is perfectly well-defined. After having stripped the right-hand side (RHSRHS) of the (x,y)(x,y)-independent prefactor it can be represented as (it is important to notice that one can only impose x2=y2=0x^{2}=y^{2}=0 after having taken the derivatives):

RHS=(xy)2(iu+d+l1+l222)(ζy)l1(ηx)l22l1+l2(d21)l1(d21)l2v2(iu+l1+l221)(xv)2(d21)(yv)2(d21)ddvπd2\displaystyle RHS=(x-y)^{2\left(-\operatorname{i}u+\frac{d+l_{1}+l_{2}-2}{2}\right)}\frac{(\zeta\cdot\nabla_{y})^{l_{1}}(\eta\cdot\nabla_{x})^{l_{2}}}{2^{l_{1}+l_{2}}\left(\frac{d}{2}-1\right)_{l_{1}}\left(\frac{d}{2}-1\right)_{l_{2}}}\int\frac{v^{2\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}-1\right)}}{(x-v)^{2\left(\frac{d}{2}-1\right)}(y-v)^{2\left(\frac{d}{2}-1\right)}}\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}
=(xy)2(iu+d+l1+l222)Γ(iu+d2l1l22)(ζy)l1(ηx)l22l1+l2Γ(d2+l11)Γ(d2+l21)Γ(1iul1+l22)\displaystyle=(x-y)^{2\left(-\operatorname{i}u+\frac{d+l_{1}+l_{2}-2}{2}\right)}\frac{\Gamma\left(-\operatorname{i}u+\frac{d-2-l_{1}-l_{2}}{2}\right)(\zeta\cdot\nabla_{y})^{l_{1}}(\eta\cdot\nabla_{x})^{l_{2}}}{2^{l_{1}+l_{2}}\Gamma\left(\frac{d}{2}+l_{1}-1\right)\Gamma\left(\frac{d}{2}+l_{2}-1\right)\Gamma\left(1-\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)}
[0,1]3α1iul1+l22(α2α3)d22[α1α2y2+α1α3x2+α2α3(xy)2]iu+2+l1+l2d2δ(1k=13αk)k=13dαk\displaystyle\int_{[0,1]^{3}}\alpha_{1}^{-\operatorname{i}u-\frac{l_{1}+l_{2}}{2}}\left(\alpha_{2}\alpha_{3}\right)^{\frac{d}{2}-2}\left[\alpha_{1}\alpha_{2}y^{2}+\alpha_{1}\alpha_{3}x^{2}+\alpha_{2}\alpha_{3}(x-y)^{2}\right]^{\operatorname{i}u+\frac{2+l_{1}+l_{2}-d}{2}}\delta\left(1-\sum_{k=1}^{3}\alpha_{k}\right)\prod_{k=1}^{3}\text{d}\alpha_{k}
=Γ(iu+d2l1l22)Γ(d2+l11)Γ(d2+l21)Γ(1iul1+l22)kl1!l2!k!(l1k)!(l2k)!(xy)2k(2)k\displaystyle=\frac{\Gamma\left(-\operatorname{i}u+\frac{d-2-l_{1}-l_{2}}{2}\right)}{\Gamma\left(\frac{d}{2}+l_{1}-1\right)\Gamma\left(\frac{d}{2}+l_{2}-1\right)\Gamma\left(1-\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)}\sum_{k}\,\frac{l_{1}!l_{2}!}{k!(l_{1}-k)!(l_{2}-k)!}\frac{(x-y)^{2k}}{(-2)^{k}}
×(ζη)kΓ(iu+4d+l1+l22)Γ(iu+4dl1l22+k)[0,1]3(ζ(α1y+α3(yx)))l1k(η(α1x+α2(xy)))l2k\displaystyle\times(\zeta\cdot\eta)^{k}\frac{\Gamma\left(\operatorname{i}u+\frac{4-d+l_{1}+l_{2}}{2}\right)}{\Gamma\left(\operatorname{i}u+\frac{4-d-l_{1}-l_{2}}{2}+k\right)}\int_{[0,1]^{3}}(\zeta\cdot(\alpha_{1}y+\alpha_{3}(y-x)))^{l_{1}-k}(\eta\cdot(\alpha_{1}x+\alpha_{2}(x-y)))^{l_{2}-k}
×α1iul1+l22α2iu+l1l22+k1α3iu+l2l12+k1δ(1k=13αk)k=13dαk.\displaystyle\qquad\qquad\qquad\qquad\times\alpha_{1}^{-\operatorname{i}u-\frac{l_{1}+l_{2}}{2}}\alpha_{2}^{\operatorname{i}u+\frac{l_{1}-l_{2}}{2}+k-1}\alpha_{3}^{\operatorname{i}u+\frac{l_{2}-l_{1}}{2}+k-1}\,\delta\left(1-\sum_{k=1}^{3}\alpha_{k}\right)\prod_{k=1}^{3}\text{d}\alpha_{k}\,.

Since α1+α2+α3=1\alpha_{1}+\alpha_{2}+\alpha_{3}=1 one can write

(ζ(α1y+α3(yx)))l1k=m=0l1k(l1km)((1α2)ζy)m(α3ζx)l1km,\displaystyle(\zeta\cdot(\alpha_{1}y+\alpha_{3}(y-x)))^{l_{1}-k}=\sum_{m=0}^{l_{1}-k}\binom{l_{1}-k}{m}((1-\alpha_{2})\zeta\cdot y)^{m}(-\alpha_{3}\zeta\cdot x)^{l_{1}-k-m}\,,
(η(α1x+α2(xy)))l2k=n=0l2k(l2kn)((1α3)ηx)n(α2ηy)l2kn.\displaystyle(\eta\cdot(\alpha_{1}x+\alpha_{2}(x-y)))^{l_{2}-k}=\sum_{n=0}^{l_{2}-k}\binom{l_{2}-k}{n}((1-\alpha_{3})\eta\cdot x)^{n}(-\alpha_{2}\eta\cdot y)^{l_{2}-k-n}\,.

The integral that then appears is of the form

[0,1]3α1a1α2b1α3c1(1α2)m(1α3)nδ(1α1α2α3)dα1dα2dα3\displaystyle\int_{[0,1]^{3}}\alpha_{1}^{a-1}\alpha_{2}^{b-1}\alpha_{3}^{c-1}(1-\alpha_{2})^{m}(1-\alpha_{3})^{n}\,\delta(1-\alpha_{1}-\alpha_{2}-\alpha_{3})\text{d}\alpha_{1}\text{d}\alpha_{2}\text{d}\alpha_{3}
=Γ(a)p=0mq=0n(mp)(nq)(1)p+qΓ(b+p)Γ(c+q)Γ(a+b+c+p+q)\displaystyle=\Gamma(a)\sum_{p=0}^{m}\sum_{q=0}^{n}\binom{m}{p}\binom{n}{q}(-1)^{p+q}\frac{\Gamma(b+p)\Gamma(c+q)}{\Gamma(a+b+c+p+q)}
=Γ(a)Γ(c)p=0m(mp)(1)pΓ(b+p)(a+b+p)nΓ(a+b+c+n+p)=Γ(a)Γ(b)q=0n(nq)(1)qΓ(c+q)(a+c+q)mΓ(a+b+c+m+q)\displaystyle=\Gamma(a)\Gamma(c)\sum_{p=0}^{m}\binom{m}{p}(-1)^{p}\frac{\Gamma(b+p)(a+b+p)_{n}}{\Gamma(a+b+c+n+p)}=\Gamma(a)\Gamma(b)\sum_{q=0}^{n}\binom{n}{q}(-1)^{q}\frac{\Gamma(c+q)(a+c+q)_{m}}{\Gamma(a+b+c+m+q)}

where we used the Gauss identity (2.27) in the form l=0r(rl)(1)lΓ(A+l)Γ(B+l)=Γ(A)Γ(B+r)(BA)r\sum_{l=0}^{r}\binom{r}{l}(-1)^{l}\frac{\Gamma(A+l)}{\Gamma(B+l)}=\frac{\Gamma(A)}{\Gamma(B+r)}(B-A)_{r}. In our case the parameters actually are a=iu+2l1l22a=-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}, b=iu+l1+l22nb=\operatorname{i}u+\frac{l_{1}+l_{2}}{2}-n and c=iu+l1+l22mc=\operatorname{i}u+\frac{l_{1}+l_{2}}{2}-m. In particular a+b=1na+b=1-n so that (a+b+p)n=(1+pn)n=0(a+b+p)_{n}=(1+p-n)_{n}=0 unless pnp\geqslant n and one of the formulas above for the integral shows that it vanishes unless mnm\geqslant n. Similarly a+c=1ma+c=1-m so that we also need nmn\geqslant m. In the end, the integral is

[0,1]3α1iul1+l22α2iu+l1+l22n1α3iu+l1+l22m1(1α2)m(1α3)nδ(1k=13αk)k=13dαk=δm,nn!Γ(iu+2l1l22)Γ(iu+l1+l22)(iu+l1+l22)(iu+2l1l22)n.\int_{[0,1]^{3}}\alpha_{1}^{-\operatorname{i}u-\frac{l_{1}+l_{2}}{2}}\alpha_{2}^{\operatorname{i}u+\frac{l_{1}+l_{2}}{2}-n-1}\alpha_{3}^{\operatorname{i}u+\frac{l_{1}+l_{2}}{2}-m-1}(1-\alpha_{2})^{m}(1-\alpha_{3})^{n}\,\delta\left(1-\sum_{k=1}^{3}\alpha_{k}\right)\prod_{k=1}^{3}\text{d}\alpha_{k}\\ =\delta_{m,n}n!\frac{\Gamma\left(-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}\right)}{\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}\right)\left(-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}\right)_{n}}\,. (C.2)

Putting everything together yields (we also use (xy)2=2xy(x-y)^{2}=-2x\cdot y)

RHS=(1)l1+l2Γ(iu+d2l1l22)Γ(iu+l1+l22)Γ(d2+l11)Γ(d2+l21)(iu+l1+l22)k+nmin(l1,l2)l1!l2!(xyζη)kk!n!(l1kn)!(l2kn)!\displaystyle RHS=\frac{(-1)^{l_{1}+l_{2}}\Gamma\left(-\operatorname{i}u+\frac{d-2-l_{1}-l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}\right)}{\Gamma\left(\frac{d}{2}+l_{1}-1\right)\Gamma\left(\frac{d}{2}+l_{2}-1\right)\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}\right)}\sum_{k+n\leqslant\min(l_{1},l_{2})}\frac{l_{1}!l_{2}!(x\cdot y\,\zeta\cdot\eta)^{k}}{k!n!(l_{1}-k-n)!(l_{2}-k-n)!}
×Γ(iu+4d+l1+l22)Γ(iu+4dl1l22+k)(ζyηx)n(iu+2l1l22)n(ζx)l1kn(ηy)l2kn\displaystyle\times\frac{\Gamma\left(\operatorname{i}u+\frac{4-d+l_{1}+l_{2}}{2}\right)}{\Gamma\left(\operatorname{i}u+\frac{4-d-l_{1}-l_{2}}{2}+k\right)}\frac{(\zeta\cdot y\,\eta\cdot x)^{n}}{\left(-\operatorname{i}u+\frac{2-l_{1}-l_{2}}{2}\right)_{n}}(\zeta\cdot x)^{l_{1}-k-n}(\eta\cdot y)^{l_{2}-k-n}
=(1)l1+l2Γ(iu+d2l1l22)Γ(iu+4d+l1+l22)Γ(iu+l1l22)Γ(iu+l2l12)Γ(d2+l11)Γ(d2+l21)(iu+l1+l22)Γ(iu+4dl1l22)Γ(iul1+l22)\displaystyle=\frac{(-1)^{l_{1}+l_{2}}\Gamma\left(-\operatorname{i}u+\frac{d-2-l_{1}-l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{4-d+l_{1}+l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{l_{1}-l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{l_{2}-l_{1}}{2}\right)}{\Gamma\left(\frac{d}{2}+l_{1}-1\right)\Gamma\left(\frac{d}{2}+l_{2}-1\right)\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{4-d-l_{1}-l_{2}}{2}\right)\Gamma\left(\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)}
×[l1,l2(u)ζl1ηl2](xl1yl2)\displaystyle\times\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot(x^{\otimes l_{1}}\otimes y^{\otimes l_{2}})
=Γ(iu+d2+l1+l22)Γ(iu+l1l22)Γ(iu+l2l12)Γ(d2+l11)Γ(d2+l21)(iu+l1+l22)Γ(iul1+l22)[l1,l2(u)ζl1ηl2](xl1yl2).\displaystyle=\frac{\Gamma\left(-\operatorname{i}u+\frac{d-2+l_{1}+l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{l_{1}-l_{2}}{2}\right)\Gamma\left(\operatorname{i}u+\frac{l_{2}-l_{1}}{2}\right)}{\Gamma\left(\frac{d}{2}+l_{1}-1\right)\Gamma\left(\frac{d}{2}+l_{2}-1\right)\left(\operatorname{i}u+\frac{l_{1}+l_{2}}{2}\right)\Gamma\left(\operatorname{i}u-\frac{l_{1}+l_{2}}{2}\right)}\,\left[\mathbb{R}_{l_{1},l_{2}}(u)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot(x^{\otimes l_{1}}\otimes y^{\otimes l_{2}})\,.

Appendix D Derivative identity

For ζ\zeta and η\eta two null vectors, it holds that

(ζ)l1(η)l2x2(l1+l2+2d2+λ)=(4l1l2d2+λ)l1+l2(4l1l2d2λ)l1+l2(x2)2λ×[l1,l2(iλ)ζl1ηl2](l1+l2)x2(l1+l2+2d2λ).(\zeta\cdot\nabla)^{l_{1}}(\eta\cdot\nabla)^{l_{2}}x^{2\left(\frac{l_{1}+l_{2}+2-d}{2}+\lambda\right)}=\frac{\left(\frac{4-l_{1}-l_{2}-d}{2}+\lambda\right)_{l_{1}+l_{2}}}{\left(\frac{4-l_{1}-l_{2}-d}{2}-\lambda\right)_{l_{1}+l_{2}}}(x^{2})^{2\lambda}\\ \times\left[\mathbb{R}_{l_{1},l_{2}}(-\operatorname{i}\lambda)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot\nabla^{\otimes(l_{1}+l_{2})}x^{2\left(\frac{l_{1}+l_{2}+2-d}{2}-\lambda\right)}\,.

In order to prove it one first needs to compute y(l1+l2)[l1,l2(iλ)ζl1ηl2]y^{\otimes(l_{1}+l_{2})}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(-\operatorname{i}\lambda)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right] for arbitrary yy. We use equation (2.44) to write (after having performed the integral over zz using the star-triangle relation)

y(l1+l2)[l1,l2(iλ)ζl1ηl2]=Γ(d22λ)Γ(d+l1+l221+λ)Γ(1+l1+l22+λ)Γ(2λ)Γ(1+l1+l22λ)Γ(d+l1+l221λ)×y2(d+l1+l221λ)(ζ(yv))l1(η(yv))l2v2(d22λ)(vy)2(d+l1+l22+λ1)ddvπd2=kl1!l2!k!(l1k)!(l2k)!(2λ)k(y2ζη)k(yζ)l1k(yη)l2k2k(λl1+l22)k(λ+4l1l2d2)k.y^{\otimes(l_{1}+l_{2})}\cdot\left[\mathbb{R}_{l_{1},l_{2}}(-\operatorname{i}\lambda)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]=\frac{\Gamma\left(\frac{d}{2}-2\lambda\right)\Gamma\left(\frac{d+l_{1}+l_{2}}{2}-1+\lambda\right)\Gamma\left(1+\frac{l_{1}+l_{2}}{2}+\lambda\right)}{\Gamma(2\lambda)\Gamma\left(1+\frac{l_{1}+l_{2}}{2}-\lambda\right)\Gamma\left(\frac{d+l_{1}+l_{2}}{2}-1-\lambda\right)}\\ \quad\times y^{2\left(\frac{d+l_{1}+l_{2}}{2}-1-\lambda\right)}\int\frac{(\zeta\cdot(y-v))^{l_{1}}(\eta\cdot(y-v))^{l_{2}}}{v^{2\left(\frac{d}{2}-2\lambda\right)}(v-y)^{2\left(\frac{d+l_{1}+l_{2}}{2}+\lambda-1\right)}}\frac{\text{d}^{d}v}{\pi^{\frac{d}{2}}}\\ =\sum_{k}\,\frac{l_{1}!l_{2}!}{k!(l_{1}-k)!(l_{2}-k)!}\frac{(2\lambda)_{k}(y^{2}\zeta\cdot\eta)^{k}(y\cdot\zeta)^{l_{1}-k}(y\cdot\eta)^{l_{2}-k}}{2^{k}\left(\lambda-\frac{l_{1}+l_{2}}{2}\right)_{k}\left(\lambda+\frac{4-l_{1}-l_{2}-d}{2}\right)_{k}}\,. (D.1)

Returning to the proof of (2.53), we can write

[l1,l2(iλ)ζl1ηl2](l1+l2)x2(l1+l2+2d2λ)=kl1!l2!k!(l1k)!(l2k)!(2ζη)k×(2λ)k(λ+d2l1l22)k(λ+4l1l2d2)k(ζ)l1k(η)l2kx2(l1+l2+2d2kλ)=k,jl1!l2!2l1+l2kjk!j!(l1kj)!(l2kj)!(ζη)k+j(ζx)l1kj(ηx)l2kj×x2(2l1l2d2+k+jλ)(2λ)k(1)k(λ+4l1l2d2)k(4l1l2d2+k+jλ)l1+l2kj=pl1!l2!2l1+l2p(l1p)!(l2p)!(ζη)p(ζx)l1p(ηx)l2px2(2l1l2d2+pλ)×(4l1l2d2+pλ)l1+l2pk=0p1k!(pk)!(2λ)k(1)k(λ+4l1l2d2)k=(4l1l2d2λ)l1+l2pl1!l2!2l1+l2pp!(l1p)!(l2p)!(ζη)p(ζx)l1p(ηx)l2p(λ+4l1l2d2)px2(2l1l2d2+pλ).\left[\mathbb{R}_{l_{1},l_{2}}(-\operatorname{i}\lambda)\zeta^{\otimes l_{1}}\otimes\eta^{\otimes l_{2}}\right]\cdot\nabla^{\otimes(l_{1}+l_{2})}x^{2\left(\frac{l_{1}+l_{2}+2-d}{2}-\lambda\right)}=\sum_{k}\,\frac{l_{1}!l_{2}!}{k!(l_{1}-k)!(l_{2}-k)!}(2\zeta\cdot\eta)^{k}\\ \times\frac{(2\lambda)_{k}\left(\lambda+\frac{d-2-l_{1}-l_{2}}{2}\right)_{k}}{\left(\lambda+\frac{4-l_{1}-l_{2}-d}{2}\right)_{k}}(\zeta\cdot\nabla)^{l_{1}-k}(\eta\cdot\nabla)^{l_{2}-k}x^{2\left(\frac{l_{1}+l_{2}+2-d}{2}-k-\lambda\right)}\\ =\sum_{k,j}\,\frac{l_{1}!l_{2}!2^{l_{1}+l_{2}-k-j}}{k!j!(l_{1}-k-j)!(l_{2}-k-j)!}(\zeta\cdot\eta)^{k+j}(\zeta\cdot x)^{l_{1}-k-j}(\eta\cdot x)^{l_{2}-k-j}\\ \times x^{2\left(\frac{2-l_{1}-l_{2}-d}{2}+k+j-\lambda\right)}\frac{(2\lambda)_{k}(-1)^{k}}{\left(\lambda+\frac{4-l_{1}-l_{2}-d}{2}\right)_{k}}\left(\frac{4-l_{1}-l_{2}-d}{2}+k+j-\lambda\right)_{l_{1}+l_{2}-k-j}\\ =\sum_{p}\,\frac{l_{1}!l_{2}!2^{l_{1}+l_{2}-p}}{(l_{1}-p)!(l_{2}-p)!}(\zeta\cdot\eta)^{p}(\zeta\cdot x)^{l_{1}-p}(\eta\cdot x)^{l_{2}-p}x^{2\left(\frac{2-l_{1}-l_{2}-d}{2}+p-\lambda\right)}\\ \times\left(\frac{4-l_{1}-l_{2}-d}{2}+p-\lambda\right)_{l_{1}+l_{2}-p}\sum_{k=0}^{p}\frac{1}{k!(p-k)!}\frac{(2\lambda)_{k}(-1)^{k}}{\left(\lambda+\frac{4-l_{1}-l_{2}-d}{2}\right)_{k}}\\ =\left(\frac{4-l_{1}-l_{2}-d}{2}-\lambda\right)_{l_{1}+l_{2}}\sum_{p}\,\frac{l_{1}!l_{2}!2^{l_{1}+l_{2}-p}}{p!(l_{1}-p)!(l_{2}-p)!}\,\frac{(\zeta\cdot\eta)^{p}(\zeta\cdot x)^{l_{1}-p}(\eta\cdot x)^{l_{2}-p}}{\left(\lambda+\frac{4-l_{1}-l_{2}-d}{2}\right)_{p}}x^{2\left(\frac{2-l_{1}-l_{2}-d}{2}+p-\lambda\right)}\,.

On the other hand, one has

(ζ)l1(η)l2x2(l1+l2+2d2+λ)=pl1!l2!2l1+l2pp!(l1p)!(l2p)!(4l1l2d2+p+λ)l1+l2p×(ζη)p(ζx)l1p(ηx)l2px2(2l1l2d2+p+λ)(\zeta\cdot\nabla)^{l_{1}}(\eta\cdot\nabla)^{l_{2}}x^{2\left(\frac{l_{1}+l_{2}+2-d}{2}+\lambda\right)}=\sum_{p}\frac{l_{1}!l_{2}!2^{l_{1}+l_{2}-p}}{p!(l_{1}-p)!(l_{2}-p)!}\left(\frac{4-l_{1}-l_{2}-d}{2}+p+\lambda\right)_{l_{1}+l_{2}-p}\\ \times(\zeta\cdot\eta)^{p}(\zeta\cdot x)^{l_{1}-p}(\eta\cdot x)^{l_{2}-p}x^{2\left(\frac{2-l_{1}-l_{2}-d}{2}+p+\lambda\right)} (D.2)

and since

(4l1l2d2+p+λ)l1+l2p=(4l1l2d2+λ)l1+l2(4l1l2d2+λ)p\left(\frac{4-l_{1}-l_{2}-d}{2}+p+\lambda\right)_{l_{1}+l_{2}-p}=\frac{\left(\frac{4-l_{1}-l_{2}-d}{2}+\lambda\right)_{l_{1}+l_{2}}}{\left(\frac{4-l_{1}-l_{2}-d}{2}+\lambda\right)_{p}} (D.3)

equation (2.53) does hold.

Appendix E Spinor Basis

The eigenvectors of the graph-building operator (3.4) for the square-lattice fishnet have been first constructed in d=2,4d=2,4 for any number of sites LL in Derkachov2019 ; Derkachov:2019tzo , according to the iterative formula

Ψ(x1,,xL)=𝚲L(uL,lL)𝚲L(u2,l2)𝚲1(u1,l1),\Psi(x_{1},\dots,x_{L})=\mathbf{\Lambda}_{L}(u_{L},l_{L})\mathbf{\Lambda}_{L}(u_{2},l_{2})\cdots\mathbf{\Lambda}_{1}(u_{1},l_{1})\,, (E.1)

where the layer operator 𝚲k(u,n)\mathbf{\Lambda}_{k}(u,n) acts on k1k-1 coordinates x1,,xk1x_{1},\dots,x_{k-1} and is defined by its integral kernel in d=2rd=2r spacetime

𝚲1(u,n)=Un(xx0)(xx0)2(rδ~2+iu),𝚲k(u,n)=𝕋12(n)(iu)𝕋23(n)(iu)𝕋k1k(n)(iu)Un(xkx0)(xkx0)2(rδ~2+iu),\displaystyle\begin{aligned} &\mathbf{\Lambda}_{1}(u,n)=\frac{U_{n}(x-x_{0})}{(x-x_{0})^{2\left(r-\frac{\tilde{\delta}}{2}+iu\right)}}\,,\\ &\mathbf{\Lambda}_{k}(u,n)=\mathbb{T}^{(n)}_{12}\left(iu\right)\mathbb{T}^{(n)}_{23}\left(iu\right)\cdots\mathbb{T}^{(n)}_{k-1k}\left(iu\right)\frac{U_{n}(x_{k}-x_{0})}{(x_{k}-x_{0})^{2\left(r-\frac{\tilde{\delta}}{2}+iu\right)}}\,,\end{aligned} (E.2)

and the elementary building blocks in d=2rd=2r dimensions are

[𝕋ij(n)(w)]Φ(xi,xj)=𝑑yTw(n)(xi,xj|y)Φ(y,xj)Tw(n)(xi,xj|y)=Un(x1y)Un(yx2)(xixj)2(rδ~)(xiy)2(w+δ~2)(yxj)2(w+δ~2).\displaystyle\begin{aligned} &[\mathbb{T}^{(n)}_{ij}(w)]\Phi(x_{i},x_{j})=\int dy\,{T}^{(n)}_{w}(x_{i},x_{j}|y)\Phi(y,x_{j})\\ &{T}^{(n)}_{w}(x_{i},x_{j}|y)=\frac{U_{n}(x_{1}-y)U_{n}(y-x_{2})^{\dagger}}{(x_{i}-x_{j})^{2(r-\tilde{\delta})}(x_{i}-y)^{2\left(w+\frac{\tilde{\delta}}{2}\right)}(y-x_{j})^{2\left(-w+\frac{\tilde{\delta}}{2}\right)}}\,.\end{aligned} (E.3)

The matrices Un(x)U_{n}(x) belong to the nn-symmetric representation of the unitary groups U(1)U(1) for 2d2d and SU(2)SU(2) for 4d4d. For n=1n=1 they defined respectively as

U(2)(x)=x1+ix2x1ix2=eiϕ,U(4)(x)=xμ𝝈μx2=x^μ𝝈μ,U^{(2)}(x)=\frac{x_{1}+ix_{2}}{x_{1}-ix_{2}}=e^{i\phi}\,,\,U^{(4)}(x)=\frac{x_{\mu}\boldsymbol{\sigma}^{\mu}}{x^{2}}=\hat{x}_{\mu}\boldsymbol{\sigma}^{\mu}\,, (E.4)

where 𝝈k=iσk\boldsymbol{\sigma}_{k}=i\sigma_{k} for k=1,2,3k=1,2,3 and 𝝈4=𝟙\boldsymbol{\sigma}_{4}=\mathbbm{1}, and the matrix Un(x)U_{n}(x) is the symmetrization of nn-fold tensor products

Un(x)=Sym[U(x)U(x)],U_{n}(x)=\text{Sym}\left[U(x)\otimes\cdots\otimes U(x)\right]\,, (E.5)

namely

Un(2)(x)=eiϕn,Un(4)(x)=xμ1xμnn!π(1)σ(π)𝝈μπ(1)𝝈μπ(n).U^{(2)}_{n}(x)=e^{i\phi n}\,,\,U^{(4)}_{n}(x)=\frac{x_{\mu_{1}}\cdots x_{\mu_{n}}}{n!}\sum_{\pi}(-1)^{\sigma(\pi)}\boldsymbol{\sigma}^{\mu_{\pi(1)}}\otimes\cdots\otimes\boldsymbol{\sigma}^{\mu_{\pi(n)}}\,. (E.6)

The definitions (E.6) can actually be extended to any even dimension d=2rd=2r, for a unitary matrix Un(2r)(x)U_{n}^{(2r)}(x) in the nn-fold symmetric representation of the group SU(2r1)SU(2^{r-1})

U(2r)(x)=xμ𝚺μx2=x^μ𝚺μ,U^{(2r)}(x)=\frac{x_{\mu}\boldsymbol{\Sigma}^{\mu}}{x^{2}}=\hat{x}_{\mu}\boldsymbol{\Sigma}^{\mu}\,, (E.7)

where the matrices 𝚺μ\boldsymbol{\Sigma}_{\mu} and 𝚺¯μ=𝚺μ=𝚺μ1{\boldsymbol{\overline{\Sigma}}}_{\mu}=\boldsymbol{\Sigma}_{\mu}^{\dagger}=\boldsymbol{\Sigma}_{\mu}^{-1} realize the Weyl spinor representation of Clifford algebra in 2r2r dimensions

Γμ(r)=(0𝚺μ(r)𝚺¯μ(r)0),{Γμ,Γν}=2δμν𝟙2r,\Gamma_{\mu}^{(r)}=\begin{pmatrix}0&&\boldsymbol{\Sigma}^{(r)}_{\mu}\\ \boldsymbol{\overline{\Sigma}}^{(r)}_{\mu}&&0\end{pmatrix}\,,\,\,\,\,\{\Gamma_{\mu},\Gamma_{\nu}\}=2\delta_{\mu\nu}\mathbbm{1}_{2^{r}}\,, (E.8)

that is

𝚺μ𝚺¯ν+𝚺ν𝚺¯μ=𝚺¯μ𝚺ν+𝚺¯ν𝚺μ=2δμν𝟙2r1.\boldsymbol{\Sigma}_{\mu}\boldsymbol{\overline{\Sigma}}_{\nu}+\boldsymbol{\Sigma}_{\nu}\boldsymbol{\overline{\Sigma}}_{\mu}=\boldsymbol{\overline{\Sigma}}_{\mu}\boldsymbol{\Sigma}_{\nu}+\boldsymbol{\overline{\Sigma}}_{\nu}\boldsymbol{\Sigma}_{\mu}=2\delta_{\mu\nu}\mathbbm{1}_{2^{r-1}}\,. (E.9)

The concrete definition of matrices 𝚺μ\boldsymbol{\Sigma}_{\mu} and 𝚺¯μ\boldsymbol{\overline{\Sigma}}_{\mu} can be done recursively starting from r=2r=2, according to the recipe

Γμ(r)=(0ii0)Γμ(r1),μ=1,,2r2,Γ2r1(r)=(0ii0)(1001)𝟙2r2,Γ2r(r)=(0110)𝟙2r1,Γk(2)=(0𝝈k𝝈¯k0),μ=1,2,3,4.\displaystyle\begin{aligned} &\Gamma_{\mu}^{(r)}=\begin{pmatrix}0&&i\\ -i&&0\end{pmatrix}\otimes\Gamma_{\mu}^{(r-1)}\,,\,\,\,\mu=1,\dots,2r-2\,,\\ &\Gamma_{2r-1}^{(r)}=\begin{pmatrix}0&&i\\ -i&&0\end{pmatrix}\otimes\begin{pmatrix}1&&0\\ 0&&-1\end{pmatrix}\otimes\mathbbm{1}_{2^{r-2}}\,,\\ &\Gamma_{2r}^{(r)}=\begin{pmatrix}0&&1\\ 1&&0\end{pmatrix}\otimes\mathbbm{1}_{2^{r-1}}\,,\\ &\Gamma^{(2)}_{k}=\begin{pmatrix}0&&\boldsymbol{\sigma}_{k}\\ \overline{\boldsymbol{\sigma}}_{k}&&0\end{pmatrix}\,,\,\mu=1,2,3,4\,.\end{aligned} (E.10)

It is possible to check that with such definition det(xμ𝚺μ)=det(xμ𝚺¯μ)=(xμxμ)2r2\det\left(x_{\mu}\boldsymbol{\Sigma}^{\mu}\right)=\det\left(x_{\mu}\overline{\boldsymbol{\Sigma}}^{\mu}\right)=(x_{\mu}x^{\mu})^{2^{r-2}}, and for a normalized vector x^μ\hat{x}_{\mu} the matrices belong to the special unitary group. The definitions of layer operators in 2d, 4d2d,\,4d provide a concrete realization of a symmetric and traceless tensor in the coordinates xμx^{\mu} as it follows from their definition and the Fierz identity

𝝈μ𝝈μ=2𝟙2.\boldsymbol{\sigma}_{\mu}\otimes\boldsymbol{\sigma}^{\mu}=2\mathbbm{1}-2\mathbb{P}\,. (E.11)

For the general d=2rd=2r situation, the same identity for the matrices 𝚺μ(r)\boldsymbol{\Sigma}_{\mu}^{(r)} does not hold, and the layers need to be projected over specific subset of spinor components. To start with we pair each layer’s SU(2r1)SU(2^{r-1}) indices with generic complex vectors

α|𝚲k(u,n)|β=(α)a𝚲k(u,n)abβbi.e.α|U(x)|β.\langle\alpha|\mathbf{\Lambda}_{k}(u,n)|\beta\rangle=(\alpha^{*})^{a}\mathbf{\Lambda}_{k}(u,n)^{\,b}_{a}\beta_{b}\,\,\,\,\,\,\,\,\text{i.e.}\,\,\,\,\,\,\,\,\,\langle\alpha|U(x)|\beta\rangle\,. (E.12)

For k=1k=1 the condition of symmetric traceless tensor is mapped to the null vector condition

𝚺μ𝚺μ|β|β=0¯,\boldsymbol{\Sigma}_{\mu}\otimes\boldsymbol{\Sigma}^{\mu}|\beta\rangle\otimes|\beta\rangle=\underline{0}\,, (E.13)

which imposes a constraint on the components of |β|\beta\rangle. For d=4,6d=4,6 there is no need of any such condition while for d=2r8d=2r\geq 8 we need to impose N(r)N(r) pure spinor conditions, i.e. solve a quadratic system of N(r)N(r) independent equations in the vector components. For example, N(4)=1N(4)=1 and the constraint reads

β2β5β1β6+β4β7β8β3=0,{\beta_{2}\beta_{5}-\beta_{1}\beta_{6}+\beta_{4}\beta_{7}}-\beta_{8}\beta_{3}=0\,, (E.14)

while N(5)=5N(5)=5 and the system of constraints read

{β1β6β4β7+β3β8β5β2=0,β6β9+β8β11β7β12β5β10=0,β3β12+β6β13β5β14β4β11=0,β3β9β1β11+β7β13β5β15=0,β4β9β1β12+β8β13β16β5=0.\displaystyle\begin{aligned} \begin{cases}{\beta_{1}\beta_{6}-\beta_{4}\beta_{7}+\beta_{3}\beta_{8}}-{\beta_{5}}\beta_{2}=0\,,\\ {\beta_{6}\beta_{9}+\beta_{8}\beta_{11}-\beta_{7}\beta_{12}}-{\beta_{5}}\beta_{10}=0\,,\\ {\beta_{3}\beta_{12}+\beta_{6}\beta_{13}}-{\beta_{5}}\beta_{14}-\beta_{4}\beta_{11}=0\,,\\ {\beta_{3}\beta_{9}-\beta_{1}\beta_{11}+\beta_{7}\beta_{13}}-{\beta_{5}}\beta_{15}=0\,,\\ {\beta_{4}\beta_{9}-\beta_{1}\beta_{12}+\beta_{8}\beta_{13}}-\beta_{16}{\beta_{5}}=0\,.\end{cases}\end{aligned} (E.15)

In general the 2r12^{r-1} components of such spin vectors are subject to N(r)>0N(r)>0 linearly-independent quadratic constraints. Imposing the latter on spin vectors, the traceless condition is valid also for the length-kk layer. Indeed, the matrix structure of each layer is that of an SU(2r1)SU(2^{r-1}) matrix, with respect to which the kernel of the matrix 𝚺μ𝚺μ\boldsymbol{\Sigma}_{\mu}\otimes\boldsymbol{\Sigma}^{\mu} is invariant

𝚺μ𝚺μ|β|β=0¯(UU)(𝚺μ𝚺μ)|β|β=0¯(𝚺μ𝚺μ)(UU)|β|β=0¯.\boldsymbol{\Sigma}_{\mu}\otimes\boldsymbol{\Sigma}^{\mu}|\beta\rangle\otimes|\beta\rangle=\underline{0}\,\Longleftrightarrow\,(U\otimes U)(\boldsymbol{\Sigma}_{\mu}\otimes\boldsymbol{\Sigma}^{\mu})|\beta\rangle\otimes|\beta\rangle=\underline{0}\,\Longleftrightarrow\,(\boldsymbol{\Sigma}_{\mu}\otimes\boldsymbol{\Sigma}^{\mu})(U\otimes U)|\beta\rangle\otimes|\beta\rangle=\underline{0}\,. (E.16)

The proof that (E.1) is an eigenvector of the fishnet in d=2rd=2r dimensions is based on a star-triangle identity, and leads to the same eigenvalue as (4.4). Indeed, the basis (E.1) and (3.14) differ only by a very non-trivial rotation in the space of tensorial indices, respect to which the spectrum is degenerate, while for lj=0l_{j}=0 they coincide.

E.1 Star-triangle relation in d=2rd=2r

The scalar star-triangle identity in dd-dimensions is well-known DEramo:1971hnd ; Symanzik:1972wj ; Vasiliev:1982dc ; Vasiliev:1981dg ; Kazakov:1983ns ; Kazakov:1984km ; Vasil'ev:2004 and reads - in its amputated form or chain rule - as

d2ry1(xy)2a(xy)2b=πrΓ(ra)Γ(rb)Γ(a+br)Γ(an)Γ(bn)Γ(2rab+n+n)1(xy)2(a+br).\displaystyle\begin{aligned} \int d^{2r}y\frac{1}{(x-y)^{2a}(x-y)^{2b}}=\pi^{r}\frac{\Gamma\left(r-a\right)\Gamma\left(r-b\right)\Gamma\left(a+b-r\right)}{\Gamma\left(a-n\right)\Gamma\left(b-n^{\prime}\right)\Gamma\left(2r-a-b+n+n^{\prime}\right)}\frac{1}{(x-y)^{2(a+b-r)}}\,.\end{aligned} (E.17)

We can generalize it by adding an SU(2r1)SU(2^{r-1}) angular part to the radial functions x2x^{2}, that is

1x2aα|Un(2r)(x)|βx2a=(α|𝚺μ(r)|βx^μ)nx2a=(α|𝚺μ(r)|βμ)nΓ(a+n2)/Γ(an2)(2)n1x2(an2),\frac{1}{x^{2a}}\to\frac{\langle\alpha|U_{n}^{(2r)}(x)|\beta\rangle}{x^{2a}}=\frac{\left(\langle\alpha|\boldsymbol{\Sigma}^{(r)}_{\mu}|\beta\rangle\,\hat{x}^{\mu}\right)^{n}}{x^{2a}}=\frac{\left(\langle\alpha|\boldsymbol{\Sigma}^{(r)}_{\mu}|\beta\rangle\,\partial^{\mu}\right)^{n}}{\Gamma(a+\frac{n}{2})/\Gamma\left(a-\frac{n}{2}\right)(-2)^{n}}\frac{1}{x^{2\left(a-\frac{n}{2}\right)}}\,, (E.18)

and obtain, for 2r2r dimensions,

d2ryα|Un(xy)|βα|Un(yz)|β(xy)2a(yz)2b==πrΓ(ra+n2)Γ(rb+n2)Γ(a+br+nn2)(2)nΓ(a+n2)Γ(b+n2)Γ(2rab+n+n2)(α|𝚺μ(r)|βμ)nα|Un(xz)|β(xz)2(a+brn2)==πrΓ(ra+n2)Γ(rb+n2)Γ(a+br+nn2)(2)nΓ(a+n2)Γ(b+n2)Γ(2rab+n+n2)(β|𝚺¯μ(r)|αμ)nα|Un(xz)|β(xz)2(a+brn2).\displaystyle\begin{aligned} &\int d^{2r}y\frac{\langle\alpha|U_{n}(x-y)|\beta\rangle\langle\alpha^{\prime}|U_{n^{\prime}}(y-z)|\beta^{\prime}\rangle^{*}}{(x-y)^{2a}(y-z)^{2b}}=\\ &=\pi^{r}\frac{\Gamma\left(r-a+\frac{n}{2}\right)\Gamma\left(r-b+\frac{n^{\prime}}{2}\right)\Gamma\left(a+b-r+\frac{n^{\prime}-n}{2}\right)}{(-2)^{n}\Gamma\left(a+\frac{n}{2}\right)\Gamma\left(b+\frac{n^{\prime}}{2}\right)\Gamma\left(2r-a-b+\frac{n+n^{\prime}}{2}\right)}\left(\langle\alpha|\boldsymbol{\Sigma}^{(r)}_{\mu}|\beta\rangle\,\partial^{\mu}\right)^{n}\frac{\langle\alpha^{\prime}|U_{n^{\prime}}(x-z)|\beta^{\prime}\rangle^{*}}{(x-z)^{2\left(a+b-r-\frac{n}{2}\right)}}=\\ &=\pi^{r}\frac{\Gamma\left(r-a+\frac{n}{2}\right)\Gamma\left(r-b+\frac{n^{\prime}}{2}\right)\Gamma\left(a+b-r+\frac{n-n^{\prime}}{2}\right)}{(-2)^{n^{\prime}}\Gamma\left(a+\frac{n}{2}\right)\Gamma\left(b+\frac{n^{\prime}}{2}\right)\Gamma\left(2r-a-b+\frac{n+n^{\prime}}{2}\right)}\left(\langle\beta^{\prime}|\boldsymbol{\bar{\Sigma}}^{(r)}_{\mu}|\alpha^{\prime}\rangle\,\partial^{\mu}\right)^{n^{\prime}}\frac{\langle\alpha|U_{n}(x-z)|\beta\rangle}{(x-z)^{2\left(a+b-r-\frac{n^{\prime}}{2}\right)}}\,.\end{aligned} (E.19)

The nn terms or nn^{\prime} terms resulting from the derivation can eventually be organized in a mixing matrix for the spin vectors, and in the r=2r=2 case the latter coincides with a fused SU(2)SU(2) invariant solution of the Yang-Baxter equation. For the particular reduction n=0n^{\prime}=0 (or the analogous n=0n=0) the formula (LABEL:diff_str) simplifies as

d2ryα|Un(xy)|β(xy)2a(yz)2b=πrΓ(ra+n2)Γ(rb)Γ(a+br+n2)Γ(a+n2)Γ(b)Γ(2rab+n2)α|Un(xz)|β(xz)2(a+br).\displaystyle\int d^{2r}y\frac{\langle\alpha|U_{n}(x-y)|\beta\rangle}{(x-y)^{2a}(y-z)^{2b}}=\pi^{r}\frac{\Gamma\left(r-a+\frac{n}{2}\right)\Gamma\left(r-b\right)\Gamma\left(a+b-r+\frac{n}{2}\right)}{\Gamma\left(a+\frac{n}{2}\right)\Gamma\left(b\right)\Gamma\left(2r-a-b+\frac{n}{2}\right)}\frac{\langle\alpha|U_{n}(x-z)|\beta\rangle}{(x-z)^{2(a+b-r)}}\,. (E.20)

This kind of equation is what we need in order to prove to prove that for spin vectors subject to the constraints (E.13) the functions

αL|𝚲L(uL,lL)|βLα2|𝚲2(u2,l2)|β2α1|𝚲1(u1,l1)|β1.\langle\alpha_{L}|\mathbf{\Lambda}_{L}(u_{L},l_{L})|\beta_{L}\rangle\cdots\langle\alpha_{2}|\mathbf{\Lambda}_{2}(u_{2},l_{2})|\beta_{2}\rangle\cdot\langle\alpha_{1}|\mathbf{\Lambda}_{1}(u_{1},l_{1})|\beta_{1}\rangle\,. (E.21)

diagonalize the fishnet graph-building operator. The proof is identical to the d=4d=4 case treated in Derkachov:2020zvv , as it relies only on the star-triangle identity (LABEL:diff_str). The main complication arising for general rr respect to the case r=2r=2, is that the mixing of spinors is captured by a matrix that is not a solution of Yang-Baxter equation, and even contains explicitly a dependence over the coordinates. This fact can be checked already in 6d6d, when the pure spinor condition is trivial - i.e. the spin vectors components are not subject to any constraint. The main consequence is that it is not manifest the symmetry of the eigenvectors respect to the permutation of excitations numbers (uk,lk)(u_{k},l_{k}), and for this reason we prefer to use the basis of functions (3.14) which has a much more involved structure of tensorial indices and a complicated behaviour when one or more coordinates get identified.

References