This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Minimal relative units of the cyclotomic 2\mathbb{Z}_{2}-extension

Tomokazu Kashio
Hyuga Yoshizaki
Tokyo University of Science, [email protected]Tokyo University of Science, [email protected]
Abstract

Let 𝔹n:=(cos(π/2n+1))\mathbb{B}_{n}:=\mathbb{Q}(\cos(\pi/2^{n+1})). For the relative norm map Nn/n1:𝒪𝔹n×𝒪𝔹n1×\mathrm{N}_{n/n-1}\,\colon\mathcal{O}_{\mathbb{B}_{n}}^{\times}\rightarrow\mathcal{O}_{\mathbb{B}_{n-1}}^{\times} on the units group, we define REn:=Nn/n11({±1})RE_{n}:=\mathrm{N}_{n/n-1}^{-1}(\{\pm 1\}), REn+:=Nn/n11({1})RE_{n}^{+}:=\mathrm{N}_{n/n-1}^{-1}(\{1\}). Komatsu conjectured that Trϵ22n(2n+11)\mathrm{Tr}\,\epsilon^{2}\geq 2^{n}(2^{n+1}-1) for ϵREn{±1}\epsilon\in RE_{n}-\{\pm 1\}. Morisawa and Okazaki showed that it holds for ϵREnREn+\epsilon\in RE_{n}-RE_{n}^{+}. In this paper we study the case ϵREn+\epsilon\in RE_{n}^{+}. We conjecture that min{Trϵ2ϵREn+{±1}}=2n(1+8cn)\min\{\mathrm{Tr}\,\epsilon^{2}\mid\epsilon\in RE_{n}^{+}-\{\pm 1\}\}=2^{n}(1+8c_{n}), where c1:=2c_{1}:=2 and cn:=2round(2n/5)c_{n}:=2\cdot\mathrm{round}(2^{n}/5) (n2n\geq 2). We show that this holds for n6n\leq 6 and that a “half” of this: min{Trϵ2ϵREn+{±1}}2n(1+8cn)\min\{\mathrm{Tr}\,\epsilon^{2}\mid\epsilon\in RE_{n}^{+}-\{\pm 1\}\}\leq 2^{n}(1+8c_{n}) holds for even nn. We also observe a relation to the class number problem.

1 Introduction

Let 𝔹n:=(cos(π/2n+1))\mathbb{B}_{n}:=\mathbb{Q}(\cos(\pi/2^{n+1})), which is the nnth layer of the cyclotomic 2\mathbb{Z}_{2}-extension over \mathbb{Q}. We put REn+:=KerNn/n1RE_{n}^{+}:=\operatorname{Ker}\mathrm{N}_{n/n-1}\,, REn:=Nn/n11({1})RE_{n}^{-}:=\mathrm{N}_{n/n-1}^{-1}(\{-1\}), REn:=Nn/n11({±1})=REn+REnRE_{n}:=\mathrm{N}_{n/n-1}^{-1}(\{\pm 1\})=RE_{n}^{+}\coprod RE_{n}^{-}, where Nn/n1:𝒪𝔹n×𝒪𝔹n1×\mathrm{N}_{n/n-1}\,\colon\mathcal{O}_{\mathbb{B}_{n}}^{\times}\rightarrow\mathcal{O}_{\mathbb{B}_{n-1}}^{\times} denotes the relative norm map on the unit group. Then Komatsu, in personal communication with Morisawa and Okazaki, stated the following conjecture.

Conjecture 1.1 ([MO3, Conjecture 1.1]).

We have for ϵREn{±1}\epsilon\in RE_{n}-\{\pm 1\}

Trϵ22n(2n+11).\displaystyle\mathrm{Tr}\,\epsilon^{2}\geq 2^{n}(2^{n+1}-1). (1)

Morisawa and Okazaki showed that

Theorem 1.2 ([MO3, Theorem 6.4]).

Ineq. (1) holds for ϵREn\epsilon\in RE_{n}^{-}.

Namely the unsolved problem is Ineq. (1) for ϵREn+{±1}\epsilon\in RE_{n}^{+}-\{\pm 1\}. We provide the best possible refinement in this case as follows.

Conjecture (2.2).

Let c1=2c_{1}=2, cn=2round(2n/5)c_{n}=2\cdot\mathrm{round}\,(2^{n}/5) (n2)(n\geq 2) where round(x)\mathrm{round}\,(x) denotes the nearest integer to xx. Then we have

min{Trϵ2±1ϵREn+}=2n(1+8cn).\displaystyle\min\{\mathrm{Tr}\,\epsilon^{2}\mid\pm 1\neq\epsilon\in RE_{n}^{+}\}=2^{n}(1+8c_{n}). (2)

The first few terms of cnc_{n} are c1=2c_{1}=2, c2=2c_{2}=2, c3=4c_{3}=4, c4=6c_{4}=6, c5=12,c_{5}=12,\dots. We also present some partial results.

Theorem (2.5).

For n=1,3,5n=1,3,5 or for even nn, there exists unREn+{±1}u_{n}\in RE_{n}^{+}-\{\pm 1\} satisfying

Trun2=2n(1+8cn).\displaystyle\mathrm{Tr}\,u_{n}^{2}=2^{n}(1+8c_{n}).

Hence a “half” of Eq. 2: min{Trϵ2±1ϵREn+}2n(1+8cn)\min\{\mathrm{Tr}\,\epsilon^{2}\mid\pm 1\neq\epsilon\in RE_{n}^{+}\}\leq 2^{n}(1+8c_{n}) holds for such nn.

Theorem (2.7).

Eq. 2 holds for n6n\leq 6.

The proof of 2.7 relies on the fact that the class number hnh_{n} of 𝔹n\mathbb{B}_{n} is 11. On the other hand, in 2.6, we also provide a proof for n3n\leq 3 without using any information of hnh_{n}.

We also see a relation between our Conjecture and the class numbers in §3, 4. Weber’s class number problem asks whether hn=1h_{n}=1 for all nn and some partial results follows by studying the unit group. For example, by using 1.2 concerning REnRE_{n}^{-}, Fukuda and Komatsu [FK3, Theorem 1.3] showed that

lhnl\nmid h_{n} for all nn and for all primes ll with l±1mod32l\not\equiv\pm 1\bmod 32. (3)

We may observe a “similar” phenomena also for REn+RE_{n}^{+}. Morisawa and Okazaki [MO3, Proposition 6.6] showed that

min{Trϵ2±1ϵREn+}2n17(n2).\displaystyle\min\{\mathrm{Tr}\,\epsilon^{2}\mid\pm 1\neq\epsilon\in RE_{n}^{+}\}\geq 2^{n}\cdot 17\quad(n\geq 2). (4)

The second author [Yo, Remark in §5.1] showed that

Ineq. (4) implies h2/h1=1h_{2}/h_{1}=1.

We generalize these results as follows.

Theorem (2.3).

We have

min{Trϵ2±1ϵREn+}2n33(n3).\displaystyle\min\{\mathrm{Tr}\,\epsilon^{2}\mid\pm 1\neq\epsilon\in RE_{n}^{+}\}\geq 2^{n}\cdot 33\quad(n\geq 3). (5)
Theorem (3.2).

Ineq. (5) implies h3/h2=1h_{3}/h_{2}=1.

In §4 we introduce some numerical results:

  1. (i)

    When n=4,5n=4,5, Eq. 2 implies the ll-indivisibility of hn/hn1h_{n}/h_{n-1} for several primes ll4.1).

  2. (ii)

    When n=7n=7, Eq. 2 implies the ll-indivisibility of h7/h71h_{7}/h_{7-1} for the first 10001000 primes ll satisfying l>109l>10^{9}, l65mod128l\equiv 65\bmod 1284.2).

The known results for the ll-indivisibility is as follows.

if n<7 or l±1mod64 or l109, then a prime l does not divide hn.\displaystyle\text{if $n<7$ or $l\not\equiv\pm 1\bmod 64$ or $l\leq 10^{9}$, then a prime $l$ does not divide $h_{n}$}. (6)

We note that the primes ll in the case (ii) are out of this range.

2 Minimal relative units

Let 𝔹n\mathbb{B}_{n} be the nnth layer of the cyclotomic 2\mathbb{Z}_{2}-extension over \mathbb{Q}. More explicitly we have

𝔹n=(Xn),Xn:=2cos(2π2n+2).\displaystyle\mathbb{B}_{n}=\mathbb{Q}(X_{n}),\quad X_{n}:=2\cos\left(\frac{2\pi}{2^{n+2}}\right).

In this paper, we fix a generator σ\sigma of Gn:=Gal(𝔹n/)/2nG_{n}:=\mathrm{Gal}(\mathbb{B}_{n}/\mathbb{Q})\cong\mathbb{Z}/2^{n}\mathbb{Z} by

σ:2cos(2π2n+2)2cos(32π2n+2).\displaystyle\sigma\colon 2\cos\left(\frac{2\pi}{2^{n+2}}\right)\mapsto 2\cos\left(\frac{3\cdot 2\pi}{2^{n+2}}\right).
Definition 2.1.

Let EnE_{n} be the unit group of 𝔹n\mathbb{B}_{n}. We consider the following subgroups:

REn+\displaystyle RE_{n}^{+} :={ϵEnNn/n1ϵ=1},\displaystyle:=\{\epsilon\in E_{n}\mid\mathrm{N}_{n/n-1}\,\epsilon=1\},
REn\displaystyle RE_{n} :={ϵEnNn/n1ϵ=±1},\displaystyle:=\{\epsilon\in E_{n}\mid\mathrm{N}_{n/n-1}\,\epsilon=\pm 1\},
An\displaystyle A_{n} :=±1,εn[Gn]={±i=02n11σi(εn)mimi}forεn:=Xn+1Xn1.\displaystyle:=\langle\pm 1,\varepsilon_{n}\rangle_{\mathbb{Z}[G_{n}]}=\left\{\pm\prod_{i=0}^{2^{n-1}-1}\sigma^{i}(\varepsilon_{n})^{m_{i}}\mid m_{i}\in\mathbb{Z}\right\}\quad\text{for}\quad\varepsilon_{n}:=\frac{X_{n}+1}{X_{n}-1}.

Here Nn/n1:𝔹n𝔹n1\mathrm{N}_{n/n-1}\,\colon\mathbb{B}_{n}\rightarrow\mathbb{B}_{n-1} denotes the relative norm map.

We have AnREn+A_{n}\subset RE_{n}^{+} since Nn/n1σi(εn)=σi(Xn+1Xn1Xn+1Xn1)=1\mathrm{N}_{n/n-1}\,\sigma^{i}(\varepsilon_{n})=\sigma^{i}(\frac{X_{n}+1}{X_{n}-1}\cdot\frac{-X_{n}+1}{-X_{n}-1})=1. We embed 𝔹n\mathbb{B}_{n} into 2n\mathbb{R}^{2^{n}} as usual:

𝔹n2n,x(σi(x))0i2n1.\displaystyle\mathbb{B}_{n}\rightarrow\mathbb{R}^{2^{n}},\quad x\mapsto(\sigma^{i}(x))_{0\leq i\leq 2^{n}-1}.

In particular, Trx2\sqrt{\mathrm{Tr}\,x^{2}} is equal to the length of xx in 2n\mathbb{R}^{2^{n}}. The ring of integers 𝒪𝔹n=[Xn]\mathcal{O}_{\mathbb{B}_{n}}=\mathbb{Z}[X_{n}] has an orthogonal basis {bi0i2n1}\{b_{i}\mid 0\leq i\leq 2^{n}-1\}:

bi:={1(i=0)2cos(i2π2n+2)(1i2n1),Tr(bibj)={0(ij)2n(i=j=0)2n+1(i=j>0).\displaystyle b_{i}:=\begin{cases}1&(i=0)\\ 2\cos\left(\frac{i*2\pi}{2^{n+2}}\right)&(1\leq i\leq 2^{n}-1)\end{cases},\quad\mathrm{Tr}\,(b_{i}b_{j})=\begin{cases}0&(i\neq j)\\ 2^{n}&(i=j=0)\\ 2^{n+1}&(i=j>0)\end{cases}. (7)

In this paper, we repeatedly use the following relations:

b0bi=bi,bibj=bi+j+bij,bi2=2+b2i(1i,j2n1,ij),\displaystyle b_{0}b_{i}=b_{i},\quad b_{i}b_{j}=b_{i+j}+b_{i-j},\quad b_{i}^{2}=2+b_{2i}\qquad(1\leq i,j\leq 2^{n}-1,\ i\neq j),

where we regard that

b2n=0,bk:=bk,b2n+k:=b2nk(1k2n1).\displaystyle b_{2^{n}}=0,\quad b_{-k}:=b_{k},\quad b_{2^{n}+k}:=-b_{2^{n}-k}\quad(1\leq k\leq 2^{n}-1).

The following conjecture and the partial results below are the main results in this paper.

Conjecture 2.2.

We define cnc_{n} for nn\in\mathbb{N} by

c1\displaystyle c_{1} :=2,\displaystyle:=2,
cn\displaystyle c_{n} :=2round(2n/5)={2(2n1)/5(n0mod4)2(2n2)/5(n1mod4)2(2n+1)/5(n2mod4)2(2n+2)/5(n3mod4)(n2).\displaystyle:=2\cdot\mathrm{round}\,(2^{n}/5)=\begin{cases}2(2^{n}-1)/5&(n\equiv 0\mod 4)\\ 2(2^{n}-2)/5&(n\equiv 1\mod 4)\\ 2(2^{n}+1)/5&(n\equiv 2\mod 4)\\ 2(2^{n}+2)/5&(n\equiv 3\mod 4)\\ \end{cases}\qquad(n\geq 2).

Here round(x)\mathrm{round}\,(x) denotes the nearest integer to xx. Then we have

min{Trϵ2±1ϵREn+}=2n(1+8cn).\displaystyle\min\{\mathrm{Tr}\,\epsilon^{2}\mid\pm 1\neq\epsilon\in RE_{n}^{+}\}=2^{n}(1+8c_{n}).

For example, c1=2c_{1}=2, c2=2c_{2}=2, c3=4c_{3}=4, c4=6c_{4}=6, c5=12c_{5}=12, c6=26c_{6}=26, c7=52c_{7}=52, c8=102c_{8}=102, c9=204c_{9}=204, c10=410c_{10}=410. Hereinafter in this section, we present partial results (Theorems 2.3, 2.5 and 2.6) for 2.2. First, we generalize Morisawa-Okazaki’s Ineq. (4) a little.

Theorem 2.3.

We have for n3n\geq 3

min{Trϵ2±1ϵREn+}2n33.\displaystyle\min\{\mathrm{Tr}\,\epsilon^{2}\mid\pm 1\neq\epsilon\in RE_{n}^{+}\}\geq 2^{n}\cdot 33.
Proof.

Let ϵREn+\epsilon\in RE_{n}^{+}, ±1\neq\pm 1. Write

ϵ=i=02n1aibi(ai).\displaystyle\epsilon=\sum_{i=0}^{2^{n}-1}a_{i}b_{i}\quad(a_{i}\in\mathbb{Z}).

We have by ϵREn+\epsilon\in RE_{n}^{+}

Nn/n1ϵ=(2iaibi)2(2iaibi)2=1.\displaystyle\mathrm{N}_{n/n-1}\,\epsilon=\biggl{(}\sum_{2\mid i}a_{i}b_{i}\biggr{)}^{2}-\biggl{(}\sum_{2\nmid i}a_{i}b_{i}\biggr{)}^{2}=1. (8)

[MO3, Lemma 6.2] states that

a0 is odd, ai (i0) are even.\displaystyle\text{$a_{0}$ is odd, $a_{i}$ ($i\neq 0$) are even}. (9)

We claim that it suffices to show that

  • (a)

    at least four aia_{i}’s are not equal to 0 for non-zero ii, or,

  • (b)

    at least two aia_{i}’s are not equal to 0 for odd ii.

First we note that

Trϵ2=2n(a02+2a12++2a2n12).\displaystyle\mathrm{Tr}\,\epsilon^{2}=2^{n}(a_{0}^{2}+2a_{1}^{2}+\cdots+2a_{2^{n}-1}^{2}).

by (7). The statement (a) implies the assertion since we have

2n(a02+2a12++2a2n12)2n(1+2422)=2n33\displaystyle 2^{n}(a_{0}^{2}+2a_{1}^{2}+\cdots+2a_{2^{n}-1}^{2})\geq 2^{n}(1+2\cdot 4\cdot 2^{2})=2^{n}\cdot 33

by (9). Now assume (b). By taking the trace of (8), we have

2na02+2n+12i0ai22n+12iai2=2n.\displaystyle 2^{n}a_{0}^{2}+2^{n+1}\sum_{2\mid i\neq 0}a_{i}^{2}-2^{n+1}\sum_{2\nmid i}a_{i}^{2}=2^{n}.

It follows that

2n(a02+2a12++2a2n12)=2n+2n+22iai2.\displaystyle 2^{n}(a_{0}^{2}+2a_{1}^{2}+\cdots+2a_{2^{n}-1}^{2})=2^{n}+2^{n+2}\sum_{2\nmid i}a_{i}^{2}.

This is greater than or equal to 2n+2n+224=2n332^{n}+2^{n+2}\cdot 2\cdot 4=2^{n}\cdot 33 by (9) and (b) as desired.

Recall that ±1ϵREn+\pm 1\neq\epsilon\in RE_{n}^{+}. In particular ϵ𝔹n𝔹n1\epsilon\in\mathbb{B}_{n}-\mathbb{B}_{n-1}, so at least one aia_{i} is not equal to 0 for odd ii. We may assume i=1i=1 by considering the Galois action. If there exists at least one more odd ii satisfying ai0a_{i}\neq 0, then (b) holds. Assume that ai=0a_{i}=0 for odd i1i\neq 1. Then (8) becomes

(2iaibi)2=(1+2a12)+a12b2.\displaystyle\biggl{(}\sum_{2\mid i}a_{i}b_{i}\biggr{)}^{2}=(1+2a_{1}^{2})+a_{1}^{2}b_{2}.

By (9), we have a00a_{0}\neq 0. There exists at least one more even i1i_{1} satisfying ai10a_{i_{1}}\neq 0, because otherwise it follows that a12b2=a0212a12a_{1}^{2}b_{2}=a_{0}^{2}-1-2a_{1}^{2}\in\mathbb{Z}. This is a contradiction for b2𝔹n1𝔹n2b_{2}\in\mathbb{B}_{n-1}-\mathbb{B}_{n-2} and n3n\geq 3. Once again, we see that there exists at least one more even i2i_{2} satisfying ai0a_{i}\neq 0, because otherwise it follows that

(a02+2ai12)+2a0ai1bi1+ai12b2i1=(1+2a12)+a12b2.\displaystyle(a_{0}^{2}+2a_{i_{1}}^{2})+2a_{0}a_{i_{1}}b_{i_{1}}+a_{i_{1}}^{2}b_{2i_{1}}=(1+2a_{1}^{2})+a_{1}^{2}b_{2}.

Then we have “b2=bi1=b2i1b_{2}=b_{i_{1}}=-b_{2i_{1}}” or “b2=bi1b_{2}=b_{i_{1}}, b2i1b_{2i_{1}}\in\mathbb{Z}”, that is, “i1=2i_{1}=2, 2i1=2n+122i_{1}=2^{n+1}-2” or “i1=2i_{1}=2, 2i1=2n2i_{1}=2^{n}”, which is a contradiction for n3n\geq 3.

Now ϵ\epsilon has at least three non-zero coefficients a1,ai1,ai2a_{1},a_{i_{1}},a_{i_{2}} with 2i1,i22\mid i_{1},i_{2}, other than a0a_{0}. We assume for the contradiction that these are all non-zero ones. In particular (8) becomes

(a02+2ai12+2ai22)+2a0ai1bi1+2a0ai2bi2+ai12b2i1+ai22b2i2+2ai1ai2bi1+i2+2ai1ai2bi1i2\displaystyle(a_{0}^{2}+2a_{i_{1}}^{2}+2a_{i_{2}}^{2})+2a_{0}a_{i_{1}}b_{i_{1}}+2a_{0}a_{i_{2}}b_{i_{2}}+a_{i_{1}}^{2}b_{2i_{1}}+a_{i_{2}}^{2}b_{2i_{2}}+2a_{i_{1}}a_{i_{2}}b_{i_{1}+i_{2}}+2a_{i_{1}}a_{i_{2}}b_{i_{1}-i_{2}}
=(1+2a12)+a12b2.\displaystyle=(1+2a_{1}^{2})+a_{1}^{2}b_{2}. (10)

We consider three cases: “i1i20mod4i_{1}\equiv i_{2}\equiv 0\bmod 4”, “i1i22mod4i_{1}\equiv i_{2}\equiv 2\bmod 4”, “i12mod4i_{1}\equiv 2\bmod 4, i20mod4i_{2}\equiv 0\bmod 4”. First assume that i1i20mod4i_{1}\equiv i_{2}\equiv 0\bmod 4. Then we have 2i1,2i2,i1±i20mod42i_{1},2i_{2},i_{1}\pm i_{2}\equiv 0\bmod 4. Therefore there does not exist any term in the left-hand side corresponding to a12b2a_{1}^{2}b_{2} in the right-hand side, which is a contradiction. Next assume that i1i22mod4i_{1}\equiv i_{2}\equiv 2\bmod 4. We have 2i1,2i2,i1±i20mod42i_{1},2i_{2},i_{1}\pm i_{2}\equiv 0\bmod 4. Therefore the relation (10) implies

2a0ai1bi1+2a0ai2bi2=a12b2.\displaystyle 2a_{0}a_{i_{1}}b_{i_{1}}+2a_{0}a_{i_{2}}b_{i_{2}}=a_{1}^{2}b_{2}.

This follows, for example, by considering the quotient vector space 𝔹n1/𝔹n2\mathbb{B}_{n-1}/\mathbb{B}_{n-2}. Then we have i1=i2=2i_{1}=i_{2}=2, which is a contradiction. Finally assume that i12mod4i_{1}\equiv 2\bmod 4, i20mod4i_{2}\equiv 0\bmod 4. We have i1±i22mod4i_{1}\pm i_{2}\equiv 2\bmod 4, 2i1,2i20mod42i_{1},2i_{2}\equiv 0\bmod 4. Similarly as above we obtain

2a0ai1bi1+2ai1ai2bi1+i2+2ai1ai2bi1i2=a12b2.\displaystyle 2a_{0}a_{i_{1}}b_{i_{1}}+2a_{i_{1}}a_{i_{2}}b_{i_{1}+i_{2}}+2a_{i_{1}}a_{i_{2}}b_{i_{1}-i_{2}}=a_{1}^{2}b_{2}.

We have i1+i2{±2,±(2n+12)}i_{1}+i_{2}\notin\{\pm 2,\pm(2^{n+1}-2)\} by 2i12n22\leq i_{1}\leq 2^{n}-2, 4i22n44\leq i_{2}\leq 2^{n}-4. That is, |b2||bi1+i2||b_{2}|\neq|b_{i_{1}+i_{2}}|. Then there are two possible cases:

|b2|=|bi1||bi1+i2|=|bi1i2|or|b2|=|bi1i2||bi1+i2|=|bi1|.\displaystyle|b_{2}|=|b_{i_{1}}|\neq|b_{i_{1}+i_{2}}|=|b_{i_{1}-i_{2}}|\quad\text{or}\quad|b_{2}|=|b_{i_{1}-i_{2}}|\neq|b_{i_{1}+i_{2}}|=|b_{i_{1}}|.

If the former one holds, then we have i1=2i_{1}=2 and i1+i2=(i1i2)i_{1}+i_{2}=-(i_{1}-i_{2}), which is a contradiction. If the latter one holds, we have

2a0ai1bi1+2ai1ai2bi1+i2=0,\displaystyle 2a_{0}a_{i_{1}}b_{i_{1}}+2a_{i_{1}}a_{i_{2}}b_{i_{1}+i_{2}}=0,

which implies |a0|=|ai2||a_{0}|=|a_{i_{2}}|. This is a contradiction for (9). Then the assertion is clear. ∎

Remark 2.4.
  1. (i)

    The above proof is independent of any information of the class number hnh_{n} of 𝔹n\mathbb{B}_{n}. Oppositely, we show that 2.3 implies h3/h2=1h_{3}/h_{2}=1 in §3.

  2. (ii)

    The strategy of the above proof is counting the number of non-zero coefficients aia_{i} of a relative unit ϵ=i=02n1aibiREn+\epsilon=\sum_{i=0}^{2^{n}-1}a_{i}b_{i}\in RE_{n}^{+} by a combinatorial argument, and showing that the number is greater than or equal to ckc_{k} if nkn\geq k, for k=3k=3. The same proof works for k=4k=4, although we used a computer.

For small nn or even nn, we obtain (a candidate of) the minimal unit REn+\in RE_{n}^{+} explicitly.

Theorem 2.5.

For n=1,3,5n=1,3,5, we put

u1\displaystyle u_{1} :=ε1=3b0+2b1,\displaystyle:=\varepsilon_{1}=3b_{0}+2b_{1},
u3\displaystyle u_{3} :=ε3σ(ε3)=b0+2(b1+b2+b5+b6),\displaystyle:=\varepsilon_{3}\sigma(\varepsilon_{3})=b_{0}+2(b_{1}+b_{2}+b_{5}+b_{6}),
u5\displaystyle u_{5} :=ε5σ2(ε5)\displaystyle:=\varepsilon_{5}\sigma^{2}(\varepsilon_{5})
=b0+2(b11+b12b14b15+b17+b18+b19+b20b22b23+b25+b26).\displaystyle=b_{0}+2(b_{11}+b_{12}-b_{14}-b_{15}+b_{17}+b_{18}+b_{19}+b_{20}-b_{22}-b_{23}+b_{25}+b_{26}).

For n2n\in 2\mathbb{N}, we put

un:=b0+(1)n22i=2n+152n+25bi.\displaystyle u_{n}:=b_{0}+(-1)^{\frac{n}{2}}2\sum_{i=\lceil\frac{2^{n+1}}{5}\rceil}^{\lfloor\frac{2^{n+2}}{5}\rfloor}b_{i}.

Here \lceil\ \rceil, \lfloor\ \rfloor denote the ceiling function, the floor function, respectively. Then we have

Trun2=2n(1+8cn)(n=1,3,5 or n2).\displaystyle\mathrm{Tr}\,u_{n}^{2}=2^{n}(1+8c_{n})\quad(n=1,3,5\text{ or }n\in 2\mathbb{N}).

Hence a “half” of 2.2 holds for such nn:

min{Trϵ2±1ϵREn+}2n(1+8cn)(n=1,3,5 or n2).\displaystyle\min\{\mathrm{Tr}\,\epsilon^{2}\mid\pm 1\neq\epsilon\in RE_{n}^{+}\}\leq 2^{n}(1+8c_{n})\quad(n=1,3,5\text{ or }n\in 2\mathbb{N}).
Proof.

The cases n=1,3,5n=1,3,5 follow from a direct calculation, by noting that (7) implies

Tr(i=02n1cibi)2=2n(c02+2i=12n1ci2)(ci).\displaystyle\mathrm{Tr}\,\biggl{(}\sum_{i=0}^{2^{n}-1}c_{i}b_{i}\biggr{)}^{2}=2^{n}\biggl{(}c_{0}^{2}+2\sum_{i=1}^{2^{n}-1}c_{i}^{2}\biggr{)}\quad(c_{i}\in\mathbb{Z}). (11)

For even nn, easily see that

cn=2n+252n+15+1.\displaystyle c_{n}=\lfloor\tfrac{2^{n+2}}{5}\rfloor-\lceil\tfrac{2^{n+1}}{5}\rceil+1. (12)

It follows that Trun2=2n(1+8cn)\mathrm{Tr}\,u_{n}^{2}=2^{n}(1+8c_{n}) by (11). Hence it suffices to show that Nn/n1un=1\mathrm{N}_{n/n-1}\,u_{n}=1. Let s:=2n+15s:=\lceil\frac{2^{n+1}}{5}\rceil, t:=2n+25t:=\lfloor\frac{2^{n+2}}{5}\rfloor, b(n):=bnb(n):=b_{n}. We can write

Nn/n1un1\displaystyle\mathrm{N}_{n/n-1}\,u_{n}-1 =(1+(1)n22i=stb(i))(1+(1)n22i=st(1)ib(i))1\displaystyle=\left(1+(-1)^{\frac{n}{2}}2\sum_{i=s}^{t}b(i)\right)\left(1+(-1)^{\frac{n}{2}}2\sum_{i=s}^{t}(-1)^{i}b(i)\right)-1
=(1)n24s2ktb(2k)+4s2ktb(2k)2+8s2k<2ltb(2k)b(2l)\displaystyle=(-1)^{\frac{n}{2}}4\sum_{s\leq 2k\leq t}b(2k)+4\sum_{s\leq 2k\leq t}b(2k)^{2}+8\sum_{s\leq 2k<2l\leq t}b(2k)b(2l)
4s2k+1tb(2k+1)28s2k+1<2l+1tb(2k+1)b(2l+1).\displaystyle\quad-4\sum_{s\leq 2k+1\leq t}b(2k+1)^{2}-8\sum_{s\leq 2k+1<2l+1\leq t}b(2k+1)b(2l+1).

The sum of the second and forth terms in the most right-hand side is equal to

4s2kt(b(4k)+2)4s2k+1t(b(4k+2)+2)=4s2ktb(4k)4s2k+1tb(4k+2).\displaystyle 4\sum_{s\leq 2k\leq t}(b(4k)+2)-4\sum_{s\leq 2k+1\leq t}(b(4k+2)+2)=4\sum_{s\leq 2k\leq t}b(4k)-4\sum_{s\leq 2k+1\leq t}b(4k+2).

since (12) implies that the parities of s,ts,t are even-odd or odd-even. The sum of the third and fifth terms is equal to

8s2k<2lt(b(2k+2l)+b(2k2l))8s2k+1<2l+1t(b(2k+2l+2)+b(2k2l))\displaystyle 8\sum_{s\leq 2k<2l\leq t}(b(2k+2l)+b(2k-2l))-8\sum_{s\leq 2k+1<2l+1\leq t}(b(2k+2l+2)+b(2k-2l))
=8s2k<2ltb(2k+2l)8s2k+1<2l+1tb(2k+2l+2),\displaystyle=8\sum_{s\leq 2k<2l\leq t}b(2k+2l)-8\sum_{s\leq 2k+1<2l+1\leq t}b(2k+2l+2),

by the parities of s,ts,t again. Hence it suffices to show that

(1)n2s2ktb(2k)+s2ktb(4k)s2k+1tb(4k+2)\displaystyle(-1)^{\frac{n}{2}}\sum_{s\leq 2k\leq t}b(2k)+\sum_{s\leq 2k\leq t}b(4k)-\sum_{s\leq 2k+1\leq t}b(4k+2)
+2s2k<2ltb(2k+2l)2s2k+1<2l+1tb(2k+2l+2)\displaystyle\quad+2\sum_{s\leq 2k<2l\leq t}b(2k+2l)-2\sum_{s\leq 2k+1<2l+1\leq t}b(2k+2l+2) (13)

is equal to 0. We divide it into two cases. First assume that n2mod4n\equiv 2\mod 4. Then ss is even and tt is odd. Therefore s2k+1ts\leq 2k+1\leq t is equivalent to s2kt1s\leq 2k\leq t-1, and s2k+1<2l+1ts\leq 2k+1<2l+1\leq t is equivalent to s2k<2lt1s\leq 2k<2l\leq t-1, respectively. Then (13) becomes

s2kt1b(2k)+s2kt1b(4k)s2kt1b(4k+2)\displaystyle-\sum_{s\leq 2k\leq t-1}b(2k)+\sum_{s\leq 2k\leq t-1}b(4k)-\sum_{s\leq 2k\leq t-1}b(4k+2)
+2s2k<2lt1b(2k+2l)2s2k<2lt1b(2k+2l+2).\displaystyle\quad+2\sum_{s\leq 2k<2l\leq t-1}b(2k+2l)-2\sum_{s\leq 2k<2l\leq t-1}b(2k+2l+2).

Since we have

s2k<2lt1b(2k+2l)s2k<2lt1b(2k+2l+2)\displaystyle\sum_{s\leq 2k<2l\leq t-1}b(2k+2l)-\sum_{s\leq 2k<2l\leq t-1}b(2k+2l+2) =s2kt1b(4k+2)s+t+12k2tb(2k),\displaystyle=\sum_{s\leq 2k\leq t-1}b(4k+2)-\sum_{s+t+1\leq 2k\leq 2t}b(2k),
s2kt1b(4k)+s2kt1b(4k+2)\displaystyle\sum_{s\leq 2k\leq t-1}b(4k)+\sum_{s\leq 2k\leq t-1}b(4k+2) =2s2k2tb(2k),\displaystyle=\sum_{2s\leq 2k\leq 2t}b(2k),

the problem is reduced to showing that

s2kt1b(2k)+2s2k2tb(2k)2s+t+12k2tb(2k)=0.\displaystyle-\sum_{s\leq 2k\leq t-1}b(2k)+\sum_{2s\leq 2k\leq 2t}b(2k)-2\sum_{s+t+1\leq 2k\leq 2t}b(2k)=0.

Let c:=2n+210c:=\frac{2^{n+2}}{10}. For even nn (not only for n2mod4n\equiv 2\bmod 4), we see that

 s is the least integer ct is the greatest integer 2c,\displaystyle\bullet\text{ $s$ is the least integer $\geq c$, $t$ is the greatest integer $\leq 2c$},
 2s is the least even integer 2c2t is the greatest even integer 4c,\displaystyle\bullet\text{ $2s$ is the least even integer $\geq 2c$, $2t$ is the greatest even integer $\leq 4c$}, (14)
 s+t+1 is the least even integer 3c.\displaystyle\bullet\text{ $s+t+1$ is the least even integer $\geq 3c$}.

Therefore the left-hand side becomes

c2k2cb(2k)+2c2k4cb(2k)23c2k4cb(2k)\displaystyle-\sum_{c\leq 2k\leq 2c}b(2k)+\sum_{2c\leq 2k\leq 4c}b(2k)-2\sum_{3c\leq 2k\leq 4c}b(2k)
=c2k2cb(2k)+2c2k3cb(2k)3c2k4cb(2k)\displaystyle=-\sum_{c\leq 2k\leq 2c}b(2k)+\sum_{2c\leq 2k\leq 3c}b(2k)-\sum_{3c\leq 2k\leq 4c}b(2k)

The last sum is equal to 0 since we have

c2k2cb(2k)+3c2k4cb(2k)=0,\displaystyle\sum_{c\leq 2k\leq 2c}b(2k)+\sum_{3c\leq 2k\leq 4c}b(2k)=0,
2c2k3cb(2k)=2c2k<2nb(2k)+b(2n)+2n<2k<3cb(2k)=0\displaystyle\sum_{2c\leq 2k\leq 3c}b(2k)=\sum_{2c\leq 2k<2^{n}}b(2k)+b(2^{n})+\sum_{2^{n}<2k<3c}b(2k)=0

by b(2n+k)=b(2nk)b(2^{n}+k)=-b(2^{n}-k) and b(2n)=0b(2^{n})=0.

Next assume that n0mod4n\equiv 0\mod 4, which implies ss is odd and tt is even. Then (13) becomes

s+12ktb(2k)+s+12ktb(4k)s12kt2b(4k+2)\displaystyle\sum_{s+1\leq 2k\leq t}b(2k)+\sum_{s+1\leq 2k\leq t}b(4k)-\sum_{s-1\leq 2k\leq t-2}b(4k+2)
+2s+12k<2ltb(2k+2l)2s12k<2lt2b(2k+2l+2).\displaystyle\quad+2\sum_{s+1\leq 2k<2l\leq t}b(2k+2l)-2\sum_{s-1\leq 2k<2l\leq t-2}b(2k+2l+2). (15)

In this case we have

s+12k<2ltb(2k+2l)s12k<2lt2\displaystyle\sum_{s+1\leq 2k<2l\leq t}b(2k+2l)-\sum_{s-1\leq 2k<2l\leq t-2} b(2k+2l+2)\displaystyle b(2k+2l+2)
=s12kt2b(4k+2)2s2ks+t1b(2k),\displaystyle=\sum_{s-1\leq 2k\leq t-2}b(4k+2)-\sum_{2s\leq 2k\leq s+t-1}b(2k),
s+12ktb(4k)+s12kt2b(4k+2)\displaystyle\sum_{s+1\leq 2k\leq t}b(4k)+\sum_{s-1\leq 2k\leq t-2}b(4k+2) =2s2k2tb(2k).\displaystyle=\sum_{2s\leq 2k\leq 2t}b(2k).

Hence (15) is equal to

s+12ktb(2k)+2s2k2tb(2k)22s2ks+t1b(2k).\displaystyle\sum_{s+1\leq 2k\leq t}b(2k)+\sum_{2s\leq 2k\leq 2t}b(2k)-2\sum_{2s\leq 2k\leq s+t-1}b(2k). (16)

By (14), we can rewrite (16) as

c2k2cb(2k)+2c2k4cb(2k)22c2k3cb(2k)\displaystyle\sum_{c\leq 2k\leq 2c}b(2k)+\sum_{2c\leq 2k\leq 4c}b(2k)-2\sum_{2c\leq 2k\leq 3c}b(2k)
=c2k2cb(2k)+3c2k4cb(2k)2c2k3cb(2k),\displaystyle=\sum_{c\leq 2k\leq 2c}b(2k)+\sum_{3c\leq 2k\leq 4c}b(2k)-\sum_{2c\leq 2k\leq 3c}b(2k),

which is equal to 0 by b(2n+k)=b(2nk)b(2^{n}+k)=-b(2^{n}-k) and b(2n)=0b(2^{n})=0. Then the assertion is clear. ∎

We obtain the following corollary by Ineq. (4), Theorems 2.3, 2.5 (and a trivial argument for n=1n=1).

Corollary 2.6.

2.2 holds true for n=1,2,3n=1,2,3.

2.2 should be proved without studying the class number hnh_{n} of 𝔹n\mathbb{B}_{n}, as we seen above. On the other hand, we have

kn:=hnhn1=[REn+:An].\displaystyle k_{n}:=\frac{h_{n}}{h_{n-1}}=[RE_{n}^{+}:A_{n}]. (17)

This follows from, for example, [Wa, Theorem 8.2, Proposition 8.11], [H2, (1), (4)]. For a proof, see [Yo, §4.1]. Besides, we have hn=1h_{n}=1 for n6n\leq 6, so REn+=AnRE_{n}^{+}=A_{n} for the same nn. Since AnA_{n} is given explicitly, we can verify 2.2 numerically for such nn, as follows.

Assume that uREn+u\in RE_{n}^{+} satisfies

Tru22n(1+8cn).\displaystyle\mathrm{Tr}\,u^{2}\leq 2^{n}(1+8c_{n}). (18)

We put

xi:=log|σi(u)|(0i2n11).\displaystyle x_{i}:=\log|\sigma^{i}(u)|\in\mathbb{R}\quad(0\leq i\leq 2^{n-1}-1).

Since Nn/n1τ(u)=τ(u)σ2n1(τ(u))=1\mathrm{N}_{n/n-1}\,\tau(u)=\tau(u)\sigma^{2^{n-1}}(\tau(u))=1 for τGn\tau\in G_{n}, the inequality (18) turns into

i=02n11(e2xi+e2xi)2n(1+8cn).\displaystyle\sum_{i=0}^{2^{n-1}-1}(e^{2x_{i}}+e^{-2x_{i}})\leq 2^{n}(1+8c_{n}).

We consider the logarithmic embedding

REn+/{±1}2n1,ϵ(log(|σi(ϵ)|))i=0,1,,2n11.\displaystyle RE_{n}^{+}/\{\pm 1\}\hookrightarrow\mathbb{R}^{2^{n-1}},\quad\epsilon\mapsto(\log(|\sigma^{i}(\epsilon)|))_{i=0,1,\dots,2^{n-1}-1}.

Then the square of the length of the image of uu is given by

i=02n11(log|σi(u)|)2=i=02n11xi2.\displaystyle\sum_{i=0}^{2^{n-1}-1}(\log|\sigma^{i}(u)|)^{2}=\sum_{i=0}^{2^{n-1}-1}x_{i}^{2}.

We put

Ln:=max{i=02n11xi2|xi,i=02n11(e2xi+e2xi)2n(1+8cn)}.\displaystyle L_{n}:=\max\left\{\sum_{i=0}^{2^{n-1}-1}x_{i}^{2}\,\middle|\,x_{i}\in\mathbb{R},\ \sum_{i=0}^{2^{n-1}-1}(e^{2x_{i}}+e^{-2x_{i}})\leq 2^{n}(1+8c_{n})\right\}.

Namely, the condition (18) implies

i=02n11(log|σi(u)|)2Ln.\displaystyle\sum_{i=0}^{2^{n-1}-1}(\log|\sigma^{i}(u)|)^{2}\leq L_{n}. (19)

Now we assume that REn+=AnRE_{n}^{+}=A_{n}, which is equivalent to kn:=hnhn1=1k_{n}:=\frac{h_{n}}{h_{n-1}}=1 by (17) (n6n\leq 6 is a sufficient condition). Then we may write

u=j=02n11σj(εn)nj(nj).\displaystyle u=\prod_{j=0}^{2^{n-1}-1}\sigma^{j}(\varepsilon_{n})^{n_{j}}\quad(n_{j}\in\mathbb{Z}).

Therefore (19) is equivalent to

M[𝐧]:=𝐧tM𝐧Ln,\displaystyle M[\mathbf{n}]:={}^{t}\mathbf{n}M\mathbf{n}\leq L_{n}, (20)
M:=[k=02n11log|σk+i(εn)|log|σk+j(εn)|]i,j=0,1,,2n11,\displaystyle M:=\left[\sum_{k=0}^{2^{n-1}-1}\log|\sigma^{k+i}(\varepsilon_{n})|\log|\sigma^{k+j}(\varepsilon_{n})|\right]_{i,j=0,1,\dots,2^{n-1}-1},
𝐧:=[ni]i=0,1,,2n11.\displaystyle\mathbf{n}:=[n_{i}]_{i=0,1,\dots,2^{n-1}-1}.

We can find all such vectors 𝐧\mathbf{n} by the Fincke-Pohst algorithm (actually, we used the command qfminim of PARI/GP). Here the value of LnL_{n} is given as follows: Assume that xix_{i} satisfies i=02n11(e2xi+e2xi)=2na\sum_{i=0}^{2^{n-1}-1}(e^{2x_{i}}+e^{-2x_{i}})=2^{n}a for a fixed aa. Note that a1a\geq 1 since y+y12y+y^{-1}\geq 2 for yy\in\mathbb{R}. Then the Lagrange multiplier theorem says that the function i=02n11xi2\sum_{i=0}^{2^{n-1}-1}x_{i}^{2} takes the maximum value only when (xi)i=λ(e2xie2xi)i(x_{i})_{i}=\lambda(e^{2x_{i}}-e^{-2x_{i}})_{i} for some λ\lambda\in\mathbb{R}. The solutions of x=λ(e2xe2x)x=\lambda(e^{2x}-e^{-2x}) are of the form of x=±bx=\pm b with b0b\geq 0 since e2xe2xe^{2x}-e^{-2x} (x0x\geq 0) is a convex function and x,e2xe2xx,e^{2x}-e^{-2x} are odd functions. It follows that e2xi+e2xie^{2x_{i}}+e^{-2x_{i}} is constant for all ii, that is, e2xi+e2xi=2ae^{2x_{i}}+e^{-2x_{i}}=2a. Namely, i=02n11xi2\sum_{i=0}^{2^{n-1}-1}x_{i}^{2} takes the maximum value when

xi=±log(aa21)2.\displaystyle x_{i}=\pm\frac{\log(a-\sqrt{a^{2}-1})}{2}.

Therefore we see that

Ln\displaystyle L_{n} =max{2n3(log(aa21))2| 1a1+8cn}\displaystyle=\max\left\{2^{n-3}\left(\log\left(a-\sqrt{a^{2}-1}\right)\right)^{2}\,\middle|\,1\leq a\leq 1+8c_{n}\right\}
=2n3(log(1+8cn16cn+64cn2))2\displaystyle=2^{n-3}\left(\log\left(1+8c_{n}-\sqrt{16c_{n}+64c_{n}^{2}}\right)\right)^{2}

In fact, we have L1=3.107L_{1}=3.107\ldots, L2=6.214L_{2}=6.214\ldots, L3=17.55L_{3}=17.55\ldots, L4=42.04L_{4}=42.04\ldots, L5=111.0L_{5}=111.0\ldots, L6=291.4L_{6}=291.4\ldots, L7=723.8L_{7}=723.8\ldots.

When n6n\leq 6, we confirmed that uu does not satisfies Tru2<2n(1+8cn)\mathrm{Tr}\,u^{2}<2^{n}(1+8c_{n}) for any 𝐧𝟎\mathbf{n}\neq\mathbf{0} satisfying (20): for example, let n=6n=6. Then the number of vectors 𝐧𝟎\mathbf{n}\neq\mathbf{0} satisfying (20) is 290624290624. We computed Tr(i=0251σ(εn)ni)2\mathrm{Tr}\,(\prod_{i=0}^{2^{5}-1}\sigma(\varepsilon_{n})^{n_{i}})^{2} for such 𝐧\mathbf{n} and checked that the minimal value is equal to 26(1+8c6)2^{6}(1+8c_{6}). To summarize, by numerical computation and by using kn=1k_{n}=1, we have the following.

Theorem 2.7.

2.2 holds true for n6n\leq 6.

Remark 2.8.
  1. (i)

    When n6n\leq 6, all ϵREn+\epsilon\in RE_{n}^{+} satisfying Trϵ2=2n(1+8cn)\mathrm{Tr}\,\epsilon^{2}=2^{n}(1+8c_{n}) are the conjugates of unu_{n} given in 2.5.

  2. (ii)

    We can not confirm the case n>6n>6 due to the limit of computer power.

3 Relation to hn=1h_{n}=1 when n3n\leq 3

There are many partial results supporting Weber’s class number problem obtained by studying the unit group. More directly, the second author proved the following. We put kn:=hnhn1k_{n}:=\frac{h_{n}}{h_{n-1}}, where hnh_{n} denotes the class number of 𝔹n\mathbb{B}_{n}.

Theorem 3.1 ([Yo, Remark in §3.3]).

Ineq. (4) implies k2=1k_{2}=1.

In this section, we generalize this result to n=3n=3 as follows.

Theorem 3.2.

2.3 implies k3=1k_{3}=1.

Proof.

Assume for contradiction that there exists uRE3+A3u\in RE^{+}_{3}-A_{3}. Since [RE3+:A3]<[RE^{+}_{3}:A_{3}]<\infty, we can write

u:=j=03σj(ε3)xj,(x0,x1,x2,x3)44.\displaystyle u:=\prod_{j=0}^{3}\sigma^{j}(\varepsilon_{3})^{x_{j}},\quad(x_{0},x_{1},x_{2},x_{3})\in\mathbb{Q}^{4}-\mathbb{Z}^{4}.

We may replace (x0,x1,x2,x3)(x_{0},x_{1},x_{2},x_{3}) with (x0,x1,x2,x3)(x_{0}^{\prime},x_{1}^{\prime},x_{2}^{\prime},x_{3}^{\prime}) so that xiximodx_{i}\equiv x_{i}^{\prime}\bmod\mathbb{Z}. Therefore, by putting

T(x0,x1,x2,x3):=i=07j=03|σi+j(ε3)|2xj,\displaystyle T(x_{0},x_{1},x_{2},x_{3}):=\sum_{i=0}^{7}\prod_{j=0}^{3}|\sigma^{i+j}(\varepsilon_{3})|^{2x_{j}},
L:=minα0maxα0x0α0+1minα1maxα1x1α1+1minα2maxα2x2α2+1minα3maxα3x3α3+1T(x0,x1,x2,x3),\displaystyle L:=\min_{\alpha_{0}\in\mathbb{R}}\max_{\alpha_{0}\leq x_{0}\leq\alpha_{0}+1}\min_{\alpha_{1}\in\mathbb{R}}\max_{\alpha_{1}\leq x_{1}\leq\alpha_{1}+1}\min_{\alpha_{2}\in\mathbb{R}}\max_{\alpha_{2}\leq x_{2}\leq\alpha_{2}+1}\min_{\alpha_{3}\in\mathbb{R}}\max_{\alpha_{3}\leq x_{3}\leq\alpha_{3}+1}T(x_{0},x_{1},x_{2},x_{3}),

it suffices to show that

L<23(1+8c3)=264\displaystyle L<2^{3}(1+8c_{3})=264 (21)

since we have

T(x0,x1,x2,x3)=Tru2264\displaystyle T(x_{0},x_{1},x_{2},x_{3})=\mathrm{Tr}\,u^{2}\geq 264

for ±1uRE3+\pm 1\neq u\in RE_{3}^{+} by 2.3.

First we show that T(x0,x1,x2,x3)T(x_{0},x_{1},x_{2},x_{3}) is a convex function. In particular, a set

S:={(x0,x1,x2,x3,y)yT(x0,x1,x2,x3)}\displaystyle S:=\{(x_{0},x_{1},x_{2},x_{3},y)\mid y\geq T(x_{0},x_{1},x_{2},x_{3})\}

is convex. We can reduce it to the convexity of a function of the form ax0bx1cx2dx3a^{x_{0}}b^{x_{1}}c^{x_{2}}d^{x_{3}} since the sum of convex functions is again convex. Its Hessian matrix is equal to

4a2x0b2x1c2x2d2x3((loga)2logalogblogalogclogalogdlogalogb(logb)2logblogclogblogdlogalogclogblogc(logc)2logclogdlogalogdlogblogdlogclogd(logd)2),\displaystyle 4a^{2x_{0}}b^{2x_{1}}c^{2x_{2}}d^{2x_{3}}\begin{pmatrix}(\log a)^{2}&\log a\log b&\log a\log c&\log a\log d\\ \log a\log b&(\log b)^{2}&\log b\log c&\log b\log d\\ \log a\log c&\log b\log c&(\log c)^{2}&\log c\log d\\ \log a\log d&\log b\log d&\log c\log d&(\log d)^{2}\end{pmatrix},

whose eigenvalues and eigenvectors are

0,0,0,4a2x0b2x1c2x2d2x3((loga)2+(logb)2+(logc)2+(logd)2),\displaystyle 0,0,0,4a^{2x_{0}}b^{2x_{1}}c^{2x_{2}}d^{2x_{3}}((\log a)^{2}+(\log b)^{2}+(\log c)^{2}+(\log d)^{2}),
(logb,loga,0,0),(logc,0,loga,0),(logd,0,0,loga),(loga,logb,logc,logd).\displaystyle(-\log b,\log a,0,0),(-\log c,0,\log a,0),(-\log d,0,0,\log a),(\log a,\log b,\log c,\log d).

Therefore ax0bx1cx2dx3a^{x_{0}}b^{x_{1}}c^{x_{2}}d^{x_{3}} is convex since the eigenvalues are non-negative.

By the convexity of TT (in particular, the convexity with respect to x3x_{3}) we can write

T3(x0,x1,x2)\displaystyle T_{3}(x_{0},x_{1},x_{2}) :=minα3maxα3x3α3+1T(x0,x1,x2,x3)\displaystyle:=\min_{\alpha_{3}\in\mathbb{R}}\max_{\alpha_{3}\leq x_{3}\leq\alpha_{3}+1}T(x_{0},x_{1},x_{2},x_{3})
=minα3max{T(x0,x1,x2,α3),T(x0,x1,x2,α3+1)}\displaystyle=\min_{\alpha_{3}\in\mathbb{R}}\max\{T(x_{0},x_{1},x_{2},\alpha_{3}),T(x_{0},x_{1},x_{2},\alpha_{3}+1)\} (22)
=T(x0,x1,x2,α)\displaystyle=T(x_{0},x_{1},x_{2},\alpha)

for a unique α\alpha satisfying

T(x0,x1,x2,α)=T(x0,x1,x2,α+1).\displaystyle T(x_{0},x_{1},x_{2},\alpha)=T(x_{0},x_{1},x_{2},\alpha+1).

Now we clam that T3(x0,x1,x2)T_{3}(x_{0},x_{1},x_{2}) is again convex: namely we have for t[0,1]t\in[0,1]

T3(ta0+(1t)b0,ta1+(1t)b1,ta2+(1t)b2)tT3(a0,a1,a2)+(1t)T3(b0,b1,b2).\displaystyle T_{3}(ta_{0}+(1-t)b_{0},ta_{1}+(1-t)b_{1},ta_{2}+(1-t)b_{2})\leq tT_{3}(a_{0},a_{1},a_{2})+(1-t)T_{3}(b_{0},b_{1},b_{2}).

Say

T3(a0,a1,a2)=T(a0,a1,a2,α)=T(a0,a1,a2,α+1),\displaystyle T_{3}(a_{0},a_{1},a_{2})=T(a_{0},a_{1},a_{2},\alpha)=T(a_{0},a_{1},a_{2},\alpha+1),
T3(b0,b1,b2)=T(b0,b1,b2,β)=T(b0,b1,b2,β+1).\displaystyle T_{3}(b_{0},b_{1},b_{2})=T(b_{0},b_{1},b_{2},\beta)=T(b_{0},b_{1},b_{2},\beta+1).

Moreover we put

ci:=tai+(1t)bi(i=0,1,2),c3:=tα+(1t)β.\displaystyle c_{i}:=ta_{i}+(1-t)b_{i}\ (i=0,1,2),\quad c_{3}:=t\alpha+(1-t)\beta.

Since

(a0,a1,a2,α,T3(a0,a1,a2)),\displaystyle(a_{0},a_{1},a_{2},\alpha,T_{3}(a_{0},a_{1},a_{2})), (b0,b1,b2,β,T3(b0,b1,b2)),\displaystyle(b_{0},b_{1},b_{2},\beta,T_{3}(b_{0},b_{1},b_{2})),
(a0,a1,a2,α+1,T3(a0,a1,a2)),\displaystyle(a_{0},a_{1},a_{2},\alpha+1,T_{3}(a_{0},a_{1},a_{2})), (b0,b1,b2,β+1,T3(b0,b1,b2))\displaystyle(b_{0},b_{1},b_{2},\beta+1,T_{3}(b_{0},b_{1},b_{2}))

are elements of the convex set SS, so are

(c0,c1,c2,c3,tT3(a0,a1,a2)+(1t)T3(b0,b1,b2)),\displaystyle(c_{0},c_{1},c_{2},c_{3},tT_{3}(a_{0},a_{1},a_{2})+(1-t)T_{3}(b_{0},b_{1},b_{2})),
(c0,c1,c2,c3+1,tT3(a0,a1,a2)+(1t)T3(b0,b1,b2)).\displaystyle(c_{0},c_{1},c_{2},c_{3}+1,tT_{3}(a_{0},a_{1},a_{2})+(1-t)T_{3}(b_{0},b_{1},b_{2})).

Namely we have

tT3(a0,a1,a2)+(1t)T3(b0,b1,b2)T(c0,c1,c2,c3),T(c0,c1,c2,c3+1).\displaystyle tT_{3}(a_{0},a_{1},a_{2})+(1-t)T_{3}(b_{0},b_{1},b_{2})\geq T(c_{0},c_{1},c_{2},c_{3}),T(c_{0},c_{1},c_{2},c_{3}+1).

Hence, by (22), we have

tT3(a0,a1,a2)+(1t)T3(b0,b1,b2)\displaystyle tT_{3}(a_{0},a_{1},a_{2})+(1-t)T_{3}(b_{0},b_{1},b_{2}) max{T(c0,c1,c2,c3),T(c0,c1,c2,c3+1)}\displaystyle\geq\max\{T(c_{0},c_{1},c_{2},c_{3}),T(c_{0},c_{1},c_{2},c_{3}+1)\}
T3(c0,c1,c2)\displaystyle\geq T_{3}(c_{0},c_{1},c_{2})

as desired. By repeating the same argument, we can write

T2(x0,x1):=minα2maxα2x2α2+1T3(x0,x1,x2)=T3(x0,x1,α)\displaystyle T_{2}(x_{0},x_{1}):=\min_{\alpha_{2}\in\mathbb{R}}\max_{\alpha_{2}\leq x_{2}\leq\alpha_{2}+1}T_{3}(x_{0},x_{1},x_{2})=T_{3}(x_{0},x_{1},\alpha)
forαwithT3(x0,x1,α)=T3(x0,x1,α+1),\displaystyle\text{for}\ \alpha\ \text{with}\ T_{3}(x_{0},x_{1},\alpha)=T_{3}(x_{0},x_{1},\alpha+1),
T1(x0):=minα1maxα1x1α1+1T2(x0,x1)=T2(x0,α)\displaystyle T_{1}(x_{0}):=\min_{\alpha_{1}\in\mathbb{R}}\max_{\alpha_{1}\leq x_{1}\leq\alpha_{1}+1}T_{2}(x_{0},x_{1})=T_{2}(x_{0},\alpha^{\prime})
forαwithT2(x0,α)=T2(x0,α+1).\displaystyle\text{for}\ \alpha^{\prime}\ \text{with}\ T_{2}(x_{0},\alpha^{\prime})=T_{2}(x_{0},\alpha^{\prime}+1).

We easily obtain an upper bound of such minimal values as follows. Consider a closed-interval I=[a,b]I=[a,b] and divide it into N+1N+1 pieces:

A:={a,a+(ba)/N,a+2(ba)/N,,b(ba)/N,b}.\displaystyle A:=\{a,a+(b-a)/N,a+2(b-a)/N,\dots,b-(b-a)/N,b\}.

Then we see that

T3(x0,x1,x2)\displaystyle T_{3}(x_{0},x_{1},x_{2}) =minα3max{T(x0,x1,x2,α3),T(x0,x1,x2,α3+1)}\displaystyle=\min_{\alpha_{3}\in\mathbb{R}}\max\{T(x_{0},x_{1},x_{2},\alpha_{3}),T(x_{0},x_{1},x_{2},\alpha_{3}+1)\}
minα3Amax{T(x0,x1,x2,α3),T(x0,x1,x2,α3+1)}.\displaystyle\leq\min_{\alpha_{3}\in A}\max\{T(x_{0},x_{1},x_{2},\alpha_{3}),T(x_{0},x_{1},x_{2},\alpha_{3}+1)\}.

By repeating similar arguments, we obtain an upper bound of LL as

Lminα0Amaxx0=α0,α0+1minα1Amaxx1=α1,α1+1minα2Amaxx2=α2,α2+1minα3Amaxx3=α3,α3+1T(x0,x1,x2,x3).\displaystyle L\leq\min_{\alpha_{0}\in A}\max_{x_{0}=\alpha_{0},\alpha_{0}+1}\min_{\alpha_{1}\in A}\max_{x_{1}=\alpha_{1},\alpha_{1}+1}\min_{\alpha_{2}\in A}\max_{x_{2}=\alpha_{2},\alpha_{2}+1}\min_{\alpha_{3}\in A}\max_{x_{3}=\alpha_{3},\alpha_{3}+1}T(x_{0},x_{1},x_{2},x_{3}).

Now, we put [a,b]:=[101100,99100][a,b]:=[\frac{-101}{100},\frac{99}{100}], N:=32N:=32. Then numerically we have

t(404400)=887.4,,t(229400)=312.9,t(204400)=260.8,t(179400)=241.1,\displaystyle t(\tfrac{-404}{400})=887.4\dots,\ \cdots,\ t(\tfrac{-229}{400})=312.9\dots,t(\tfrac{-204}{400})=260.8\dots,t(\tfrac{-179}{400})=241.1\dots,
,t(171400)=239.1,t(196400)=259.0,t(221400)=308.8,,t(396400)=1094.5.\displaystyle\cdots,\ t(\tfrac{171}{400})=239.1\dots,t(\tfrac{196}{400})=259.0\dots,t(\tfrac{221}{400})=308.8\dots,\ \cdots,\ t(\tfrac{396}{400})=1094.5\dots.

where we put

t(α0):=minα1Amaxx1=α1,α1+1minα2Amaxx2=α2,α2+1minα3Amaxx3=α3,α3+1T(α0,x1,x2,x3).\displaystyle t(\alpha_{0}):=\min_{\alpha_{1}\in A}\max_{x_{1}=\alpha_{1},\alpha_{1}+1}\min_{\alpha_{2}\in A}\max_{x_{2}=\alpha_{2},\alpha_{2}+1}\min_{\alpha_{3}\in A}\max_{x_{3}=\alpha_{3},\alpha_{3}+1}T(\alpha_{0},x_{1},x_{2},x_{3}).

Hence we obtain Lmax{t(204400),t(196400)}=260.8L\leq\max\{t(\frac{-204}{400}),t(\frac{196}{400})\}=260.8\dots as desired. ∎

Remark 3.3.

Summarizing the proof of 3.2, we showed that there exists a fundamental domain DD of 2n1\mathbb{R}^{2^{n-1}} modulo 2n1\mathbb{Z}^{2^{n-1}} satisfying

max{i=02n1j=02n11|σi+j(εn)|2xj(xi)iD}<2n(1+8cn)\displaystyle\max\left\{\sum_{i=0}^{2^{n}-1}\prod_{j=0}^{2^{n-1}-1}|\sigma^{i+j}(\varepsilon_{n})|^{2x_{j}}\mid(x_{i})_{i}\in D\right\}<2^{n}(1+8c_{n})

for n=3n=3, by considering the \mathbb{Z}-module structure of RE+nRE_{+}^{n}. When n4n\geq 4, it seems to have to consider its Galois module structure, not only the \mathbb{Z}-module structure, in order to studying the relation between 2.2 and the class number. We provide some partial (and numerical) results in the proceeding sections.

4 ll-Indivisibility of hnh_{n} by numerical calculations

We give a demonstration of numerical checks of the ll-indivisibility of knk_{n} for several (l,n)(l,n), by using 2.2. More powerful results can be seen in [H1, H2, FK1, FK2, FK3, MO1, MO2], including (3). Let ll be an odd prime. We put

An1l\displaystyle A_{n}^{\frac{1}{l}} :={xxlAn}.\displaystyle:=\{x\in\mathbb{R}\mid x^{l}\in A_{n}\}.

Since An/{±1}A_{n}/\{\pm 1\} is a free abelian group generated by {σi(εn)i=0,,2n11}\{\sigma^{i}(\varepsilon_{n})\mid i=0,\dots,2^{n-1}-1\}, we may identify the following three 𝔽l[Gn]\mathbb{F}_{l}[G_{n}]-modules

𝔽l[x]/(x2n1+1)An1l/An𝔽l2n1,i=02n11aixi¯i=02n11σi(εn)ail¯(ai)0i2n11.\displaystyle\begin{array}[]{ccccc}\mathbb{F}_{l}[x]/(x^{2^{n-1}}+1)&\cong&A_{n}^{\frac{1}{l}}/A_{n}&\cong&\mathbb{F}_{l}^{2^{n}-1},\\ \rotatebox[origin={c}]{90.0}{$\in$}&&\rotatebox[origin={c}]{90.0}{$\in$}&&\rotatebox[origin={c}]{90.0}{$\in$}\\ \displaystyle\overline{\sum_{i=0}^{2^{n-1}-1}a_{i}x^{i}}&\leftrightarrow&\displaystyle\overline{\prod_{i=0}^{2^{n-1}-1}\sigma^{i}(\varepsilon_{n})^{\frac{a_{i}}{l}}}&\leftrightarrow&(a_{i})_{0\leq i\leq 2^{n-1}-1}.\end{array}

Here σ\sigma acts on 𝔽l2n1\mathbb{F}_{l}^{2^{n}-1} by

σ(a0,a1,a2,,a2n2,a2n1)=(a2n1,a0,a1,,a2n3,a2n2).\displaystyle\sigma(a_{0},a_{1},a_{2},\dots,a_{2^{n}-2},a_{2^{n}-1})=(-a_{2^{n}-1},a_{0},a_{1},\dots,a_{2^{n}-3},a_{2^{n}-2}).

𝔽l[Gn]\mathbb{F}_{l}[G_{n}] acts on 𝔽l[x]/(x2n1+1)\mathbb{F}_{l}[x]/(x^{2^{n-1}}+1) via

𝔽l[Gn]σx𝔽l[x]/(x2n1)𝔽l[x]/(x2n1+1),\displaystyle\mathbb{F}_{l}[G_{n}]\stackrel{{\scriptstyle\sigma\mapsto x}}{{\cong}}\mathbb{F}_{l}[x]/(x^{2^{n}}-1)\twoheadrightarrow\mathbb{F}_{l}[x]/(x^{2^{n-1}}+1),

and hence we may also consider 𝔽l[x]/(x2n1+1),An1l/An,𝔽l2n1\mathbb{F}_{l}[x]/(x^{2^{n-1}}+1),A_{n}^{\frac{1}{l}}/A_{n},\mathbb{F}_{l}^{2^{n}-1} are 𝔽l[x]\mathbb{F}_{l}[x]-modules where xx acts as σ\sigma.

By the Chinese remainder theorem, the irreducible decomposition of 𝔽l[x]/(x2n1+1)\mathbb{F}_{l}[x]/(x^{2^{n-1}}+1) as a 𝔽l[x]\mathbb{F}_{l}[x]-module is given as

𝔽l[x]/(x2n1+1)=fiMf,\displaystyle\mathbb{F}_{l}[x]/(x^{2^{n-1}}+1)=\bigoplus_{f_{i}}M_{f},
Mfi:=x2n1+1fi𝔽l[x]/(x2n1+1)(𝔽ldegfi),\displaystyle M_{f_{i}}:=\tfrac{x^{2^{n-1}}+1}{f_{i}}\cdot\mathbb{F}_{l}[x]/(x^{2^{n-1}}+1)\ (\cong\mathbb{F}_{l}^{\deg f_{i}}),

where fif_{i} runs over all irreducible polynomial fi𝔽l[x]f_{i}\in\mathbb{F}_{l}[x] dividing x2n1+1x^{2^{n-1}}+1. (Note that x2n1+1modlx^{2^{n-1}}+1\bmod l has no multiple roots.) Taking a polynomial gfi𝔽l[x]g_{f_{i}}\in\mathbb{F}_{l}[x] satisfying x2n1+1figfi1modfi\tfrac{x^{2^{n-1}}+1}{f_{i}}\cdot g_{f_{i}}\equiv 1\mod f_{i}, the idempotent map is given explicitly as

efi:𝔽l[x]/(x2n1+1)Mfi,hx2n1+1figfih.\displaystyle e_{f_{i}}\colon\mathbb{F}_{l}[x]/(x^{2^{n-1}}+1)\twoheadrightarrow M_{f_{i}},\quad h\mapsto\tfrac{x^{2^{n-1}}+1}{f_{i}}g_{f_{i}}h.

Now, we assume that lknl\mid k_{n}. It follows that there exists ϵREn+\epsilon\in RE_{n}^{+} satisfying

ϵAn,ϵlAn.\displaystyle\epsilon\notin A_{n},\quad\epsilon^{l}\in A_{n}.

This element corresponds to a non-trivial element gϵ¯𝔽l[x]/(x2n1+1)An1l/An\overline{g_{\epsilon}}\in\mathbb{F}_{l}[x]/(x^{2^{n-1}}+1)\cong A_{n}^{\frac{1}{l}}/A_{n}. Then we can take fif_{i} so that efi(gϵ¯)0¯e_{f_{i}}(\overline{g_{\epsilon}})\neq\overline{0} since iefi(gϵ¯)=gϵ¯0¯\sum_{i}e_{f_{i}}(\overline{g_{\epsilon}})=\overline{g_{\epsilon}}\neq\overline{0}. For such fif_{i}, the whole of MfiM_{f_{i}} is contained in REn+/AnRE_{n}^{+}/A_{n}, since we have

𝔽l[x]/(x2n1+1)An1l/AnMfi{gεn¯An1l/AngMfi}==𝔽l[x]efi(gϵ¯)(x2n1+1figfi𝔽l[x])ϵ¯REn+/An.\displaystyle\begin{array}[]{cccc}\mathbb{F}_{l}[x]/(x^{2^{n-1}}+1)&\cong&A_{n}^{\frac{1}{l}}/A_{n}\\ \cup&&\cup\\ M_{f_{i}}&\cong&\left\{g\cdot\overline{\varepsilon_{n}}\in A_{n}^{\frac{1}{l}}/A_{n}\mid g\in M_{f_{i}}\right\}\\ \rotatebox[origin={c}]{90.0}{$=$}&&\rotatebox[origin={c}]{90.0}{$=$}\\ \mathbb{F}_{l}[x]\cdot e_{f_{i}}(\overline{g_{\epsilon}})&\cong&\left(\tfrac{x^{2^{n-1}}+1}{f_{i}}g_{f_{i}}\mathbb{F}_{l}[x]\right)\cdot\overline{\epsilon}&\subset RE_{n}^{+}/A_{n}.\end{array} (28)

For g=i=0maixi[x]g=\sum_{i=0}^{m}a_{i}x^{i}\in\mathbb{Z}[x] (not only for elements 𝔽l[x]\in\mathbb{F}_{l}[x]), we put

gεn:=i=0mσi(εn)ailAn1l.\displaystyle g\cdot\varepsilon_{n}:=\prod_{i=0}^{m}\sigma^{i}(\varepsilon_{n})^{\frac{a_{i}}{l}}\in A_{n}^{\frac{1}{l}}.

Then the following proposition follows form (28).

Proposition 4.1.

Assume that an odd prime ll divides knk_{n}. Then there exists an irreducible polynomial f𝔽l[x]f\in\mathbb{F}_{l}[x] dividing x2n1+1x^{2^{n-1}}+1 satisfying

{gεn¯An1l/An|g[x] with gmod(x2n1+1)Mf}REn+.\displaystyle\left\{\overline{g\cdot\varepsilon_{n}}\in A_{n}^{\frac{1}{l}}/A_{n}\;\middle|\;g\in\mathbb{Z}[x]\text{ with }g\bmod(x^{2^{n-1}}+1)\in M_{f}\right\}\subset RE_{n}^{+}.

We extend the trace map to

Tr~(ϵ2l):=i=02n1(σi(ϵ)2)1l(ϵAn).\displaystyle\widetilde{\mathrm{Tr}}\,\big{(}\epsilon^{\frac{2}{l}}\big{)}:=\sum_{i=0}^{2^{n}-1}\left(\sigma^{i}(\epsilon)^{2}\right)^{\frac{1}{l}}\quad(\epsilon\in A_{n}).

By the above proposition, 2.2 can be used for a numerical check of the indivisibility of the class numbers as follows.

Theorem 4.2.

Assume that 2.2 holds true for nn. If for each irreducible polynomial f𝔽l[x]f\in\mathbb{F}_{l}[x] dividing x2n1+1x^{2^{n-1}}+1 there exists g[x]g\in\mathbb{Z}[x] satisfying

gmod(l,x2n1+1)Mf{0},\displaystyle g\bmod(l,x^{2^{n-1}}+1)\in M_{f}-\{0\},
Tr~((gεn)2)<2n(1+8cn),\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g\cdot\varepsilon_{n}\right)^{2}\right)<2^{n}(1+8c_{n}),

then we have lknl\nmid k_{n}.

4.1 The case n=4,5n=4,5

Example 4.3.

Let n=4n=4, l<106l<10^{6}. For each irreducible polynomial f𝔽l[x]f\in\mathbb{F}_{l}[x] dividing x23+1x^{2^{3}}+1, we took the center lift gg of a suitable element in MfM_{f} and confirmed that

Tr((gε4)2)<24(1+8c4)=784.\displaystyle\mathrm{Tr}\,\left(\left(g\cdot\varepsilon_{4}\right)^{2}\right)<2^{4}(1+8c_{4})=784. (29)

Namely, by 4.2, we checked that 2.2 implies lk4l\nmid k_{4} for l<106l<10^{6}.

For example, let l=3l=3. Then the irreducible decomposition of x8+1mod3x^{8}+1\bmod 3 is given by

x8+1f1f2mod3,f1=x4+x21,f2=x4x21.\displaystyle x^{8}+1\equiv f_{1}f_{2}\mod 3,\quad f_{1}=x^{4}+x^{2}-1,\quad f_{2}=x^{4}-x^{2}-1.

We choose elements x8+1fiMfi\frac{x^{8}+1}{f_{i}}\in M_{f_{i}} (i=1,2)(i=1,2) and take their center lifts g1:=x4x21g_{1}:=x^{4}-x^{2}-1, g2:=x4+x21g_{2}:=x^{4}+x^{2}-1. Then, by numerical computation, we obtain

Tr~((g1ε4)2)=Tr~((ε41σ2(ε4)1σ4(ε4))23)=95.6,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{1}\cdot\varepsilon_{4}\right)^{2}\right)=\widetilde{\mathrm{Tr}}\,\left(\left(\varepsilon_{4}^{-1}\sigma^{2}(\varepsilon_{4})^{-1}\sigma^{4}(\varepsilon_{4})\right)^{\frac{2}{3}}\right)=95.6\dots,
Tr~((g2ε4)2)=Tr~((ε41σ2(ε4)σ4(ε4))23)=100.1.\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{2}\cdot\varepsilon_{4}\right)^{2}\right)=\widetilde{\mathrm{Tr}}\,\left(\left(\varepsilon_{4}^{-1}\sigma^{2}(\varepsilon_{4})\sigma^{4}(\varepsilon_{4})\right)^{\frac{2}{3}}\right)=100.1\dots.

These values satisfy the condition (29) for 3k43\nmid k_{4}.

Next, let l=7l=7. Then we have

x8+1f1f2f3f4mod7,\displaystyle x^{8}+1\equiv f_{1}f_{2}f_{3}f_{4}\mod 7,
f1=x2+x1,f2=x2+3x1,f3=x23x1,f4=x2x1.\displaystyle f_{1}=x^{2}+x-1,\quad f_{2}=x^{2}+3x-1,\quad f_{3}=x^{2}-3x-1,\quad f_{4}=x^{2}-x-1.

First we take center lifts gig_{i} of x8+1fimod7\frac{x^{8}+1}{f_{i}}\bmod 7:

g1=x6x5+2x43x32x2x1,g2=x63x5+3x4+2x33x23x1,\displaystyle g_{1}=x^{6}-x^{5}+2x^{4}-3x^{3}-2x^{2}-x-1,\quad g_{2}=x^{6}-3x^{5}+3x^{4}+2x^{3}-3x^{2}-3x-1,
g3=x6+3x5+3x42x33x2+3x1,g4=x6+x5+2x4+3x32x2+x1.\displaystyle g_{3}=x^{6}+3x^{5}+3x^{4}-2x^{3}-3x^{2}+3x-1,\quad g_{4}=x^{6}+x^{5}+2x^{4}+3x^{3}-2x^{2}+x-1.

Then we have

Tr~((g1ε4)2)=106.5,Tr~((g2ε4)2)=546.9,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{1}\cdot\varepsilon_{4}\right)^{2}\right)=106.5\dots,\quad\widetilde{\mathrm{Tr}}\,\left(\left(g_{2}\cdot\varepsilon_{4}\right)^{2}\right)=546.9\dots,
Tr~((g3ε4)2)=840.6,Tr~((g4ε4)2)=160.2.\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{3}\cdot\varepsilon_{4}\right)^{2}\right)=840.6\dots,\quad\widetilde{\mathrm{Tr}}\,\left(\left(g_{4}\cdot\varepsilon_{4}\right)^{2}\right)=160.2\dots.

Note that the case i=3i=3 does not satisfy the condition (29). Replacing g3g_{3} with the center lift g3=2x6x5x4+3x3+x2x2g_{3}^{\prime}=2x^{6}-x^{5}-x^{4}+3x^{3}+x^{2}-x-2 of 2x8+1fimod72\cdot\frac{x^{8}+1}{f_{i}}\bmod 7, we have

Tr~((g3ε4)2)=200.7,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{3}^{\prime}\cdot\varepsilon_{4}\right)^{2}\right)=200.7\dots,

which implies 7k47\nmid k_{4}.

Example 4.4.

Let n=5n=5, l<105l<10^{5}, 97,193,257\neq 97,193,257. Then, similarly as in 4.3, the center lift gg of a suitable element in MfM_{f} for each ff satisfies the condition of 4.2:

Tr~((gε5)2)<25(1+8c5)=3104.\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g\cdot\varepsilon_{5}\right)^{2}\right)<2^{5}(1+8c_{5})=3104.

We also check the exceptions 97,193,25797,193,257 by taking certain non-center lifts.

Let l=97l=97. Then we have

x24+1i=116fimod97,\displaystyle x^{2^{4}}+1\equiv\prod_{i=1}^{16}f_{i}\mod 97,
f1=x+19,\displaystyle f_{1}=x+19, f2=x+20,\displaystyle f_{2}=x+20, f3=x+28,\displaystyle f_{3}=x+28, f4=x+30,\displaystyle f_{4}=x+30, f5=x+34,\displaystyle f_{5}=x+34,
f6=x+42,\displaystyle f_{6}=x+42, f7=x+45,\displaystyle f_{7}=x+45, f8=x+46,\displaystyle f_{8}=x+46, f9=x46,\displaystyle f_{9}=x-46, f10=x45,\displaystyle f_{10}=x-45,
f11=x42,\displaystyle f_{11}=x-42, f12=x34,\displaystyle f_{12}=x-34, f13=x30,\displaystyle f_{13}=x-30, f14=x28,\displaystyle f_{14}=x-28, f15=x20,\displaystyle f_{15}=x-20,
f16=x19.\displaystyle f_{16}=x-19.

For i=1,4,5,6,8,9,11,13,14i=1,4,5,6,8,9,11,13,14, we put gig_{i} to be the center lift of 4x24+1fi4\cdot\frac{x^{2^{4}}+1}{f_{i}}. Then we have

Tr~((g1ε5)2)=1123.9,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{1}\cdot\varepsilon_{5}\right)^{2}\right)=1123.9\dots, Tr~((g4ε5)2)=1429.9,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{4}\cdot\varepsilon_{5}\right)^{2}\right)=1429.9\dots, Tr~((g5ε5)2)=2421.7,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{5}\cdot\varepsilon_{5}\right)^{2}\right)=2421.7\dots,
Tr~((g6ε5)2)=1632.8,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{6}\cdot\varepsilon_{5}\right)^{2}\right)=1632.8\dots, Tr~((g8ε5)2)=2332.6,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{8}\cdot\varepsilon_{5}\right)^{2}\right)=2332.6\dots, Tr~((g9ε5)2)=1291.7,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{9}\cdot\varepsilon_{5}\right)^{2}\right)=1291.7\dots,
Tr~((g11ε5)2)=1537.1,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{11}\cdot\varepsilon_{5}\right)^{2}\right)=1537.1\dots, Tr~((g13ε5)2)=1492.2,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{13}\cdot\varepsilon_{5}\right)^{2}\right)=1492.2\dots, Tr~((g14ε5)2)=1444.4.\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{14}\cdot\varepsilon_{5}\right)^{2}\right)=1444.4\dots.

For i=2,3,7,10,12,15,16i=2,3,7,10,12,15,16, we have to take non-center lifts. Hereinafter, we write a polynomial i=0kaixi\sum_{i=0}^{k}a_{i}x^{i} as a vector [a0,,ak][a_{0},\dots,a_{k}] for saving pages. We put

g2\displaystyle g_{2} :=[34,8,19,33,42,27,45,22,28,18,30,50¯,46,12,20,1],\displaystyle:=[34,8,19,33,42,27,-45,-22,-28,-18,30,\underline{-50},-46,12,-20,1],
g3\displaystyle g_{3} :=[7,24,13,3,38,61¯,29,44,40,43,5,31,37,16,41,2],\displaystyle:=[7,24,13,3,38,\underline{61},29,44,40,-43,5,31,37,16,41,2],
g7\displaystyle g_{7} :=[41,16,37,31,5,43,40,53¯,29,36,38,3,13,24,7,2],\displaystyle:=[41,-16,37,-31,5,43,40,\underline{53},29,36,38,-3,13,-24,7,2],
g10\displaystyle g_{10} :=[41,16,37,31,5,54¯,40,44,29,36,38,3,13,24,7,2],\displaystyle:=[-41,-16,-37,-31,-5,\underline{-54},-40,-44,-29,36,-38,-3,-13,-24,-7,2],
g12\displaystyle g_{12} :=[17,49¯,10,6,23,25,15,9,14,11,26,35,21,32,39,4],\displaystyle:=[17,\underline{49},10,6,23,-25,-15,-9,14,-11,-26,-35,-21,-32,39,4],
g15\displaystyle g_{15} :=[29,16,38,31,84¯,43,7,44,41,36,37,3,5,24,40,2],\displaystyle:=[29,16,-38,-31,\underline{-84},-43,-7,-44,-41,-36,37,-3,-5,24,40,2],
g16\displaystyle g_{16} :=[5,36,7,31,29,24,37,53¯,13,16,40,3,41,43,38,2],\displaystyle:=[5,36,7,31,-29,24,37,\underline{53},13,16,-40,3,41,43,38,2],

which are lifts of x24+1f2,2x24+1f3,2x24+1f7,2x24+1f10,4x24+1f12,2x24+1f15,2x24+1f16\frac{x^{2^{4}}+1}{f_{2}},2\cdot\frac{x^{2^{4}}+1}{f_{3}},2\cdot\frac{x^{2^{4}}+1}{f_{7}},2\cdot\frac{x^{2^{4}}+1}{f_{10}},4\cdot\frac{x^{2^{4}}+1}{f_{12}},2\cdot\frac{x^{2^{4}}+1}{f_{15}},2\cdot\frac{x^{2^{4}}+1}{f_{16}} respectively. Here components with underlining are not contained in [l12,l12][-\frac{l-1}{2},\frac{l-1}{2}]. Then we have

Tr~((g2ε5)2)=1492.1,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{2}\cdot\varepsilon_{5}\right)^{2}\right)=1492.1\dots, Tr~((g3ε5)2)=1963.0,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{3}\cdot\varepsilon_{5}\right)^{2}\right)=1963.0\dots, Tr~((g7ε5)2)=1548.9,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{7}\cdot\varepsilon_{5}\right)^{2}\right)=1548.9\dots,
Tr~((g10ε5)2)=920.6,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{10}\cdot\varepsilon_{5}\right)^{2}\right)=920.6\dots, Tr~((g12ε5)2)=1831.2,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{12}\cdot\varepsilon_{5}\right)^{2}\right)=1831.2\dots, Tr~((g15ε5)2)=2985.0,\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{15}\cdot\varepsilon_{5}\right)^{2}\right)=2985.0\dots,
Tr~((g16ε5)2)=2386.1.\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g_{16}\cdot\varepsilon_{5}\right)^{2}\right)=2386.1\dots.

The other cases l=193,257l=193,257 can be done similarly.

Remark 4.5.

Let n=6n=6. Then, for many ll (e.g., l=31,97,127,193,223,257,449,l=31,97,127,193,223,257,449,\dots), the center lift gg of any element in MfM_{f} does not satisfy the condition

Tr~((gε6)2)<26(1+8c6)=13376.\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g\cdot\varepsilon_{6}\right)^{2}\right)<2^{6}(1+8c_{6})=13376.

Moreover searching all non-center lifts is difficult due to the high dimension. We confirmed that 2.2 implies that lk6l\nmid k_{6} only for l=31l=31.

4.2 The case n=7n=7, l>109l>10^{9}, l65mod128l\equiv 65\bmod 128

If n,ln,l are large, it is difficult to check the condition in 4.2. However that becomes relatively easy in some special cases. Let n=7n=7, l65mod128l\equiv 65\bmod 128. We note that such ll are out of the range of (6). Then the irreducible decomposition of x26+1modlx^{2^{6}}+1\bmod l is in the form

x26+1modl=i=132(x2+ai).\displaystyle x^{2^{6}}+1\bmod l=\prod_{i=1}^{32}(x^{2}+a_{i}). (30)

In fact, that l65mod128l\equiv 65\bmod 128 is equivalent to that ll splits completely in (ζ6)\mathbb{Q}(\zeta_{6}) and does not in (ζ7)\mathbb{Q}(\zeta_{7}) where ζn:=e2πi2n\zeta_{n}:=e^{\frac{2\pi i}{2^{n}}}. Then y25+1y^{2^{5}}+1, which is a minimal polynomial of (ζ6)\mathbb{Q}(\zeta_{6}), decomposes a product of polynomials of degree 11 modulo ll, and x26+1x^{2^{6}}+1 of (ζ7)\mathbb{Q}(\zeta_{7}) does not. Considering y=x2y=x^{2}, we obtain the expression (30). Since half of the coefficients of x26+1x2+a\frac{x^{2^{6}}+1}{x^{2}+a} are equal to 0 (that is, x26+1x2+a\frac{x^{2^{6}}+1}{x^{2}+a} is in the form i=031c2ix2i\sum_{i=0}^{31}c_{2i}x^{2i}), the value of Tr~((gε7)2)\widetilde{\mathrm{Tr}}\,((g\cdot\varepsilon_{7})^{2}) tends to “small” if we take a center lift gg of x26+1x2+a\frac{x^{2^{6}}+1}{x^{2}+a} multiplied by a constant. For example, let l=1000000321l=1000000321, which is the least prime satisfying l>109l>10^{9}, l65mod128l\equiv 65\bmod 128. Note that this case is not contained in (6). Then we have

x26+1modl=i=132(x2+ai),\displaystyle x^{2^{6}}+1\bmod l=\prod_{i=1}^{32}(x^{2}+a_{i}),
a1=30063488,a2=30912022,a3=42483948,a4=59955883,a5=78186285,\displaystyle a_{1}=30063488,\ a_{2}=30912022,\ a_{3}=42483948,\ a_{4}=59955883,\ a_{5}=78186285,
a6=160612070,a7=191346380,a8=246360387,a9=268629094,a10=269645956,\displaystyle a_{6}=160612070,\ a_{7}=191346380,\ a_{8}=246360387,\ a_{9}=268629094,\ a_{10}=269645956,
a11=280492327,a12=303644312,a13=311722386,a14=424439170,\displaystyle a_{11}=280492327,\ a_{12}=303644312,\ a_{13}=311722386,\ a_{14}=424439170,
a15=441230693,a16=447503416,a16+i=a17i(1i16).\displaystyle a_{15}=441230693,\ a_{16}=447503416,\ a_{16+i}=-a_{17-i}\ (1\leq i\leq 16).

We put gig_{i} to be the center lift of bix26+1x2+aib_{i}\cdot\frac{x^{2^{6}}+1}{x^{2}+a_{i}} with

b1=231,b2=231,b3=867,b4=125,b5=386,b6=231,b7=100,b8=100,\displaystyle b_{1}=231,\ b_{2}=231,\ b_{3}=867,\ b_{4}=125,\ b_{5}=386,\ b_{6}=231,\ b_{7}=100,\ b_{8}=100,
b9=64,b10=36,b11=702,b12=771,b13=231,b14=2069,b15=349,b16=64,\displaystyle b_{9}=64,\ \ b_{10}=36,\ b_{11}=702,\ b_{12}=771,\ b_{13}=231,\ b_{14}=2069,\ b_{15}=349,\ b_{16}=64,
b17=64,b18=64,b19=4,b20=64,b21=686,b22=105,b23=167,b24=64,\displaystyle b_{17}=64,\ b_{18}=64,\ b_{19}=4,\ b_{20}=64,\ b_{21}=686,\ b_{22}=105,\ b_{23}=167,\ b_{24}=64,
b25=100,b26=89,b27=100,b28=100,b29=100,b30=100,b31=100,b32=64.\displaystyle b_{25}=100,\ b_{26}=89,\ b_{27}=100,\ b_{28}=100,\ b_{29}=100,\ b_{30}=100,\ b_{31}=100,\ b_{32}=64.

Then ti:=Tr~((giε7)2)t_{i}:=\widetilde{\mathrm{Tr}}\,((g_{i}\cdot\varepsilon_{7})^{2}) are calculated numerically as follows.

t1=24947.7,t2=15616.7,t3=49165.2,t4=23454.0,t5=46028.1,\displaystyle t_{1}=24947.7\dots,\ t_{2}=15616.7\dots,\ t_{3}=49165.2\dots,\ t_{4}=23454.0\dots,\ t_{5}=46028.1\dots,
t6=41400.4,t7=19344.5,t8=26943.5,t9=42868.4,t10=40913.4,\displaystyle t_{6}=41400.4\dots,\ t_{7}=19344.5\dots,\ t_{8}=26943.5\dots,\ t_{9}=42868.4\dots,\ t_{10}=40913.4\dots,
t11=44067.7,t12=49457.9,t13=18759.3,t14=39188.3,\displaystyle t_{11}=44067.7\dots,\ t_{12}=49457.9\dots,\ t_{13}=18759.3\dots,\ t_{14}=39188.3\dots,
t15=35939.1,t16=44713.3,t17=41782.1,t18=47974.8,\displaystyle t_{15}=35939.1\dots,\ t_{16}=44713.3\dots,\ t_{17}=41782.1\dots,\ t_{18}=47974.8\dots,
t19=52445.8,t20=49841.0,t21=43256.3,t22=52244.6,\displaystyle t_{19}=52445.8\dots,\ t_{20}=49841.0\dots,\ t_{21}=43256.3\dots,\ t_{22}=52244.6\dots,
t23=49338.6,t24=22229.3,t25=36290.0,t26=48593.0,\displaystyle t_{23}=49338.6\dots,\ t_{24}=22229.3\dots,\ t_{25}=36290.0\dots,\ t_{26}=48593.0\dots,
t27=26438.3,t28=40208.3,t29=23006.2,t30=19831.0,\displaystyle t_{27}=26438.3\dots,\ t_{28}=40208.3\dots,\ t_{29}=23006.2\dots,\ t_{30}=19831.0\dots,
t31=16060.6,t32=42470.9.\displaystyle t_{31}=16060.6\dots,\ t_{32}=42470.9\dots.

These values satisfy the condition in 4.2:

Tr~((gε7)2)<27(1+8c7)=53376.\displaystyle\widetilde{\mathrm{Tr}}\,\left(\left(g\cdot\varepsilon_{7}\right)^{2}\right)<2^{7}(1+8c_{7})=53376.

Namely, 2.2 for n=7n=7 implies l=1000000321k7l=1000000321\nmid k_{7}. Similarly, we checked that 2.2 for n=7n=7 implies the ll-indivisibility of k7k_{7} for first 10001000 primes satisfying

109<l,l65mod128,\displaystyle 10^{9}<l,\ l\equiv 65\bmod 128,

form 10000003211000000321 to 10012873611001287361.

References

  • [Ha] Hasse, H., Über die Klassenzahl abelscher Zahlkörper (Reprint of the first edition), Springer-Verlag, Berlin, 1985.
  • [H1] Horie, K., Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field, J. London Math. Soc. (2), 66 (2002), no. 2, 257–275.
  • [H2] Horie, K., The ideal class group of the basic p\mathbb{Z}_{p}-extension over an imaginary quadratic field, Tohoku Math. J. (2), 57 (2005), no. 3, 375–394.
  • [FK1] Fukuda, T., Komatsu, K., Weber’s class number problem in the cyclotomic 2\mathbb{Z}_{2}-extension of \mathbb{Q}, Experiment. Math., 18 (2009), no. 2, 213–222.
  • [FK2] Fukuda, T., Komatsu, K., Weber’s class number problem in the cyclotomic 2\mathbb{Z}_{2}-extension of \mathbb{Q}, II, J. Théor. Nombres Bordeaux, 22 (2010), no. 2, 359–368.
  • [FK3] Fukuda, T., Komatsu, K., Weber’s class number problem in the cyclotomic 2\mathbb{Z}_{2}-extension of \mathbb{Q}, III, Int. J. Number Theory, 7 (2011), no. 6, 1627–1635.
  • [MO1] Morisawa, T., Okazaki, R., Mahler measure and Weber’s class number problem in the cyclotomic p\mathbb{Z}_{p}-extension of \mathbb{Q} for odd prime number pp, Tohoku Math. J. (2), 65 (2013), no. 2, 253–272.
  • [MO2] Morisawa, T., Okazaki, R., Height and Weber’s class number problem, J. Théor. Nombres Bordeaux, 28 (2016), no. 3, 811–828.
  • [MO3] Morisawa, T., Okazaki, R., Filtrations of units of Viète field, Int. J. Number Theory, 16 (2020), no. 5, 1067–1079.
  • [Si] Sinnott, W., On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. (2), 108 (1978), no. 1, 107–134.
  • [Wa] Washington, L.C., Introduction to cyclotomic fields, Second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.
  • [Yo] Yoshizaki, H., A New Continued Fraction Expansion and Weber’s Class Number Problem, preprint (arXiv:2010.06399).