This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Microscopic theory of magnetoresistance in ferromagnetic materials

Xian-Peng Zhang Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China    Xiangrong Wang Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China    Yugui Yao [email protected] Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai, 519000, China
Abstract

The magnetoresistance (MR) effect, which stems from the spin-exchange coupling between local moments and itinerant electrons in magnetic materials, is a challenging many-body and open-quantum problem. Here, we develop a comprehensive microscopic theory of MR from an open-quantum system perspective. The theory not only predicts the magnetic field and temperature dependencies of MR which are related to spin relaxation time and spin-exchange field but also obtains the universal cosine-square law of anisotropic MR that microscopically elucidates diverse MR effects from the magnon-induced spin flip, anisotropic spin relaxation, and Hanle spin precession of itinerant electrons. Moreover, we reveal fruitful behaviors of the MR effect that enable the simple detection of the microscopic spin-exchange coupling through an electrical approach. Our theory contributes to a deeper understanding of the fundamental physics underlying MR and provides insights for experiments involving magnetic materials.

Introduction–Magnetoresistance (MR), one of the most fundamental but enigmatic phenomena of condensed matter physics since discovered in 1856 by Kelvin [1], is highly significant and technologically crucial for modern microelectronics industry [2]. Fascinating effects include anisotropic [3, 4, 5, 6, 7, 8], Hanle [9, 10], giant [11, 12], and tunnel MR [13, 14, 15] that give valuable insights into the magnetic properties of various materials and offer tremendous potential for applications in spintronics technology [16]. The origin of this century-old effect is known as the spin-exchange coupling (SEC) between local moments and itinerant electrons in magnetic materials [17, 18, 19, 20, 21, 22, 23, 24, 25], while microscopic mechanisms have not been fully understood due to its intrinsic complexity as a many-body and open-quantum problem.

The conventional microscopic theories of MR in ferromagnets primarily focused on the plasma frequency and momentum relaxation time of itinerant electrons [26]. For example, the anisotropic MR, i.e., the change of resistance with the orientation of the magnetization relative to the electric current direction [27, 28, 29, 30, 31, 32, 33, 34], originates from i) the anisotropic plasma frequency due to the interplay of magnetization and spin-orbit coupling (SOC) [35, 36, 37, 38] and ii) anisotropic momentum relaxation time arising from either the magnetization-dependent scattering rate of itinerant electrons [27, 28, 29, 30, 31, 32] or the magnon population of the local moments [20, 21, 22, 23] (i.e., magnon MR [39, 40]). Additionally, the Hanle spin precession of the spin accumulation results in Hanle MR [9, 10]. Even these theories have established the foundations for understanding Hanle MR and anisotropic MR, they can not quantitatively, or even qualitatively 111For example, the previous theory of Hanle MR excludes temperature- and magnetic field-dependent spin-exchange field (2), thus incapable of adequately including temperature and magnetic field dependencies of MR in ferromagnetic materials. The previous theory of anisotropic MR is mainly based on purely phenomenological formula, that is, Δρ0\Delta\rho_{0} and Δρ1\Delta\rho_{1} in Eq. (7) are phenomenological parameters independent of temperature and magnetic field., analyze the diverse MR effects observed in experiments especially involving complicated dependencies on the strength of the magnetic field (𝑩\boldsymbol{B}) and temperature (TT[3, 4, 5, 6, 42, 43, 40, 44, 45, 46]. Here, we unveil that previous theories have overlooked a crucial aspect - the strong BB and TT dependencies of the itinerant electrons’ spin precession and relaxation [47, 48, 49] which are ubiquitous in magnetic materials and thus must play a crucial role in MR.

In this Letter, we develop a comprehensive microscopic theory of ferromagnetic materials, based on the theory of open-quantum system, that explicitly accounts for the BB and TT dependencies of the spin precession and relaxation processes. By solving the anisotropic spin diffusion equation, we derive a universal cosine-square formula of MR that elucidates the microscopic mechanisms of the various MR effects from the magnon-induced spin flip, anisotropic spin relaxation, and Hanle spin precession of itinerant electrons. Furthermore, our analysis unveils intriguing behaviors of MR that allow electrical detection of the strength of microscopic SEC.

Model and theory–The MR effect, at its core, deals with the interplay between local moments and itinerant electrons. We consider a ferromagnetic material described by the total Hamiltonian H=He+Hm+VemH=H_{e}+H_{m}+V_{em}. The itinerant electrons’ Hamiltonian is given by He=pn2/2m+ωB𝐦𝝈n(/4m2c2)𝝈n[𝒑n×Vso(𝒓n)]H_{e}=p_{n}^{2}/2m+\hbar\omega_{B}{\bf m}\cdot\boldsymbol{\mathbf{\sigma}}_{n}-(\hbar/4m^{2}c^{2})\boldsymbol{\sigma}_{n}\cdot[\boldsymbol{p}_{n}\times\boldsymbol{\nabla}V_{\text{so}}(\boldsymbol{r}_{n})] with ωB=gμBB/\omega_{B}=\textsl{g}\mu_{B}B/\hbar and 𝐦=𝑩/B\mathbf{m}=\boldsymbol{B}/B, where g2\textsl{g}\simeq 2 is the gg-factor, μB\mu_{B} is the Bohr magneton, \hbar is the reduced Planck constant, 𝝈n=(σnx,σny,σnz)\boldsymbol{\sigma}_{n}=(\sigma_{n}^{x},\sigma_{n}^{y},\sigma_{n}^{z}) is the vector of Pauli matrices representing the nnth itinerant electron with position 𝒓n\boldsymbol{r}_{n} and momentum 𝒑n\boldsymbol{p}_{n}, and Vso(𝒓n)V_{\text{so}}(\boldsymbol{r}_{n}) includes both intrinsic and extrinsic spin–orbit potential [50]. Hereafter, repeated indices are summed over. We also include a term describing the coupling of the local moments between themselves and the external magnetic field Hm=gμB𝐒j𝑩Jij𝐒i𝐒jH_{m}=\textsl{g}\mu_{B}\mathbf{S}_{j}\cdot\boldsymbol{B}-J_{ij}\mathbf{S}_{i}\cdot\mathbf{S}_{j}, where Jij>0J_{ij}>0 is the coupling constant of the Heisenberg ferromagnet. Finally, VemV_{em} describes the effect of the local moments with scattering potential [17, 18, 19, 20, 21, 22, 23, 24, 25]

Vem=𝒥sd𝝈n𝐒jδ(𝒓n𝑹𝒋),V_{em}=-\mathcal{J}_{sd}\boldsymbol{\sigma}_{n}\cdot\mathbf{S}_{j}\delta(\boldsymbol{r}_{n}-\boldsymbol{R_{j}}), (1)

where 𝐒j\mathbf{S}_{j} is the spin of the jjth local moment with position 𝑹𝒋\boldsymbol{R_{j}} and positive (negative) 𝒥sd\mathcal{J}_{sd} corresponds to ferromagnetic (antiferromagnetic) SEC.

There exist two effects caused by the SEC (1). First, the SEC shifts the Hanle spin precession frequency ωL=ωBgμBsd\omega_{L}=\omega_{B}-\textsl{g}\mu_{B}\mathcal{B}_{sd} by spin-exchange field

sd=nS𝒥sdS/(gμB),\mathcal{B}_{sd}=n_{\mathrm{S}}\mathcal{J}_{sd}\langle S_{\|}\rangle/(\hbar\textsl{g}\mu_{B}), (2)

where nSn_{\mathrm{S}} is the density of local moments and SS_{\|} is the spin component in the direction of the magnetization, which is assumed to be collinear to 𝑩\boldsymbol{B}. Second, SEC causes anisotropic spin relaxation [47]. The longitudinal (transverse) spin relaxation times τ\tau_{\|} (τ\tau_{\bot}) can be expressed by the spin expectation value S\langle S_{\parallel}\rangle and spin-spin correlation function S2\langle S^{2}_{\|}\rangle of local moments (see derivations and approximations, established on the theory of open-quantum system [51], in Supplementary Materials (SM) [52])

1τ\displaystyle\frac{1}{\tau_{\|}} =1τ0+πnSνF𝒥sd2βϵLnB(ϵL)[S(S+1)S2S],\displaystyle=\frac{1}{\tau_{0}}+\frac{\pi}{\hbar}n_{\text{S}}\nu_{F}\mathcal{J}^{2}_{sd}\beta\epsilon_{L}n_{B}(\epsilon_{L})[S(S+1)-\langle S^{2}_{\|}\rangle-\langle S_{\|}\rangle], (3)
1τ\displaystyle\frac{1}{\tau_{\perp}} =12τ0+12τ+πnSνF𝒥sd2S2.\displaystyle=\frac{1}{2\tau_{0}}+\frac{1}{2\tau_{\|}}+\frac{\pi}{\hbar}n_{\text{S}}\nu_{F}\mathcal{J}^{2}_{sd}\langle S^{2}_{\|}\rangle. (4)

Here, νF\nu_{F} is the density of state for each spin at Fermi energy, which is assumed to be the same for spin-up and spin-down species. The spin-relaxation time τ0\tau_{0} arises from such as intrinsic or extrinsic SOC, and the spin-flip from static disorders, which are assumed to be isotropic and independent of BB and TT. The second term of Eq. (3) describes the spin-flip rate associated with magnon emission and absorption, while the third term of Eq. (4) represents the spin dephasing rate arising from scattering processes during which the electron spin, being in a superposition of spin-up and spin-down, acquires a precession phase about the 𝒎\boldsymbol{m}-direction. nB(ϵL)=1/(eβϵL1)n_{B}(\epsilon_{L})=1/(e^{\beta\epsilon_{L}}-1) is the Bose-Einstein distribution function at temperature β=1/(kBT)\beta=1/(k_{B}T) and Weiss Larmor frequency ϵL=ωBSiJij\epsilon_{L}=\hbar\omega_{B}-\langle S_{\|}\rangle\sum_{i}J_{ij}, where kBk_{B} is the Boltzmann constant. The spin-spin correlation function can be expressed by S2=S(S+1)+coth(βϵL/2)S\langle S^{2}_{\parallel}\rangle=S(S+1)+\coth(\beta\epsilon_{L}/2)\left\langle S_{\parallel}\right\rangle [47].

To qualitatively discuss the spin-exchange field (2) and spin relaxation time (3) and (4), we consider two regimes. i) βϵL1\beta\epsilon_{L}\gg 1, i.e., the strongly magnetized regime with large BB and low TT, the spins of local moments are fixed and the flip of itinerant electrons’ spins is prohibited. Thus, the spin-exchange field (2) is strongest, i.e., sd=nS𝒥sdS/(gμB)\mathcal{B}_{sd}=-n_{\mathrm{S}}\mathcal{J}_{sd}S/(\hbar\textsl{g}\mu_{B}), while the spin relaxation time (3) and (4) becomes anisotropic, i.e., τ1=τ01\tau^{-1}_{\|}=\tau^{-1}_{0} and τ1=τ01+Ω0\tau^{-1}_{\perp}=\tau^{-1}_{0}+\Omega_{0} with Ω0=πnSνF(𝒥sdS)2\Omega_{0}=\frac{\pi}{\hbar}n_{\text{S}}\nu_{F}(\mathcal{J}_{sd}S)^{2}, as a result of the vanishing spin-flip rate and the maximum spin dephasing rate. ii) In the opposite limit (βϵL1\beta\epsilon_{L}\ll 1) with small BB and high TT, where the microscopic ferromagnetic order is destroyed, the spin-exchange field (2) vanishes because S=0\langle S_{\|}\rangle=0, while the spin relaxation time (3) and (4) become isotropic, i.e., τ1=τ1=τ01+Ω1\tau^{-1}_{\|}=\tau^{-1}_{\perp}=\tau^{-1}_{0}+\Omega_{1}, where Ω1=2π3νFnS𝒥sd2S(S+1)\Omega_{1}=\frac{2\pi}{3\hbar}\nu_{F}n_{\text{S}}\mathcal{J}^{2}_{sd}S(S+1). Consequently, the spin relaxation time and spin-exchange field induced by the SEC strongly rely on BB and TT, and below we will see they are crucial for the BB- and TT-dependent MR.

Refer to caption
Figure 1: (Color online) The MR effect arises from a two-step charge–spin conversion process. The left panel plots the SHE.

Besides the SEC (1), another dominant ingredient of MR is the SOC [27]. The MR stems from the combination of the spin Hall effect (SHE) and its inverse effect that arise from the SOC [53, 54], as depicted in Fig. 1. In the first step charge current 𝑱L0=σD𝑬\boldsymbol{J}_{\text{L0}}=\sigma_{\text{D}}\boldsymbol{E} is converted to a drift spin current 𝑱SH=θSH(y^×𝑱L0)\boldsymbol{J}_{\text{SH}}=\theta_{\text{SH}}(\hat{y}\times\boldsymbol{J}_{\text{L0}}) via the SHE, as shown by the left-curved arrow, Here, θSH\theta_{\text{SH}} represents the charge-spin conversion ratio of the SHE, σD\sigma_{\text{D}} is the Drude conductivity, and 𝑬\boldsymbol{E} is an electric field in xx-axis direction. The drift spin current polarized in yy-axis direction and flowing in zz-axis direction leads to considerable spin accumulation μsy(z)\mu_{\mathrm{s}}^{y}(z) that accounts for the diffusive spin current, JSdif=σD2ezμsy(z)J^{\text{dif}}_{\text{S}}=-\frac{\sigma_{\text{D}}}{2e}\partial_{z}\mu_{\mathrm{s}}^{y}(z). The boundary conditions require that the total spin current is continuous at the top (z=dNz=d_{N}) and bottom (z=0z=0) interfaces [55, 10]

Jsa|z=0,dN=σD2ezμsa|z=0,dN+δayθSHσDE=0,\displaystyle\left.J_{\mathrm{s}}^{a}\right|_{z=0,d_{N}}=-\frac{\sigma_{\text{D}}}{2e}\left.\partial_{z}\mu_{\mathrm{s}}^{a}\right|_{z=0,d_{N}}+\delta_{ay}\theta_{\mathrm{SH}}\sigma_{\text{D}}E=0, (5)

with a={x,y,z}a=\{x,y,z\} where dNd_{N} is the thickness of the ferromagnetic material. In the second step, the diffusive spin current is converted back to charge current by the inverse SHE (right-curved arrow in Fig. 1). We study a ferromagnetic material that is assumed to be homogeneous in the x^y^\hat{x}-\hat{y} plane. The resulted spin accumulation μsa\mu_{s}^{a} depends only on zz and satisfies the diffusion equation with anisotropic spin relaxation time (see SM [52])

z2μsa=2δabμsb+(22)mambμsbL2ϵabcmcμsc,\partial_{z}^{2}\mu_{\mathrm{s}}^{a}=\ell_{\mathrm{\bot}}^{-2}\delta_{ab}\mu_{\mathrm{s}}^{b}+\left(\ell_{\mathrm{\parallel}}^{-2}-\ell_{\mathrm{\bot}}^{-2}\right)m_{a}m_{b}\mu_{\mathrm{s}}^{b}-\ell_{\mathrm{L}}^{-2}\epsilon_{abc}m_{c}\mu_{\mathrm{s}}^{c}, (6)

where a,b,c={x,y,z}a,b,c=\{x,y,z\}. The Hanle spin precession length is given by L=𝒟/ωL\ell_{\mathrm{L}}=\sqrt{\mathcal{D}/\omega_{L}}, while the longitudinal and transverse spin diffusion lengths are expressed as =𝒟τ\ell_{\mathrm{\bot}}=\sqrt{\mathcal{D}\tau_{\mathrm{\bot}}} and =𝒟τ\ell_{\mathrm{\parallel}}=\sqrt{\mathcal{D}\tau_{\mathrm{\parallel}}}, respectively, where 𝒟\mathcal{D} is diffusion coefficient. Overall, both SEC and SOC are crucial for the MR and participate in diffusion equation (6) and boundary condition (5), respectively.

Provided by boundary conditions (5), the diffusion equation (6) can be analytically solved and we obtain the widespread phenomenological formula of the longitudinal resistivity (see derivations in SM [52])

ρLρL0+2θSH2θSH2Δρ0+θSH2Δρ1(1m^y2),\rho_{\mathrm{L}}\simeq\rho_{\mathrm{L0}}+2\theta_{\mathrm{SH}}^{2}-\theta_{\mathrm{SH}}^{2}\Delta\rho_{0}+\theta_{\mathrm{SH}}^{2}\Delta\rho_{1}\left(1-\hat{m}_{y}^{2}\right), (7)

with

Δρ0ρL0=2dNtanh(dN2),\frac{\Delta\rho_{0}}{\rho_{\mathrm{L0}}}=\frac{2\ell_{\|}}{d_{N}}\tanh\left(\frac{d_{N}}{2\ell_{\|}}\right), (8)
Δρ1ρL0=2dNtanh(dN2)Re[2ΛdNtanh(dN2Λ)],\frac{\Delta\rho_{1}}{\rho_{\mathrm{L0}}}=\frac{2\ell_{\|}}{d_{N}}\tanh\left(\frac{d_{N}}{2\ell_{\|}}\right)-\mathrm{Re}\left[\frac{2\Lambda}{d_{N}}\tanh\left(\frac{d_{N}}{2\Lambda}\right)\right], (9)

where ρL0=1/σD\rho_{\mathrm{L0}}=1/\sigma_{\text{D}} and Λ2=2+iL2\Lambda^{-2}=\ell_{\mathrm{\bot}}^{-2}+i\ell_{\mathrm{L}}^{-2}. Equations (7-9), as the central result, not only microscopically explain the universal cosine-square law of anisotropic MR with the magnetization direction (m^ysinα\hat{m}_{y}\equiv\sin\alpha) but also quantitatively describe BB- and TT-dependent MR. Importantly, both TT and BB dependencies of Δρ0\Delta\rho_{0} and Δρ1\Delta\rho_{1}, i.e., Eqs. (8) and (9), are reflected in Hanle spin precession length L\ell_{\mathrm{L}}, spin diffusion lengths \ell_{\mathrm{\bot}} and \ell_{\mathrm{\parallel}} through the spin-exchange field (2), spin relaxation time (3) and (4), respectively. The dependence of resistance on TT arises from S\langle S_{\|}\rangle and S2\langle S_{\|}^{2}\rangle, while that of BB has an extra channel - the magnetic-field spin precession frequency ωB(B)\omega_{B}(\propto B).

Then we investigate the microscopic mechanisms of various MR effects using our formulas (7-9). Note that the SEC in magnetic materials is ubiquitous and profoundly affects the MR effects. At 𝒥sd=0\mathcal{J}_{sd}=0, the spin diffusion lengths become isotropic (i.e., ,=0=𝒟τ0\ell_{\|,\perp}=\ell_{0}=\sqrt{\mathcal{D}\tau_{0}}) and we recover the previous theory of spin precession MR (i.e., Hanle MR [10]) where Δρ1B2\Delta\rho_{1}\propto B^{2} for small BB. Next, we focus on the case of 𝒥sd0\mathcal{J}_{sd}\neq 0. i) The SEC shifts the Hanle spin precession frequency ωL=gμB(Bsd)\omega_{L}=g\mu_{B}(B-\mathcal{B}_{sd}), introduces a finite value of Δρ1(Bsd)2\Delta\rho_{1}\propto(B-\mathcal{B}_{sd})^{2} even when the anisotropic spin relaxation is artificially removed by setting =\ell_{\|}=\ell_{\perp}, and contributes to a shifted spin precession MR. Thus, our theory, different from the previous spin precession MR independent of TT, effectively includes TT and BB dependencies of MR through the spin-exchange field (2). ii) The SEC causes anisotropic spin diffusion lengths (\ell_{\|}\neq\ell_{\perp}), produces a finite value of Δρ1=2dNtanh(dN2)2dNtanh(dN2)\Delta\rho_{1}=\frac{2\ell_{\|}}{d_{N}}\tanh\left(\frac{d_{N}}{2\ell_{\|}}\right)-\frac{2\ell_{\perp}}{d_{N}}\tanh\left(\frac{d_{N}}{2\ell_{\perp}}\right) when artificially setting ωL=0\omega_{L}=0, and accounts for anisotropic spin relaxation MR. Thus, our microscopic theory, exceeding the previous phenomenological theory of anisotropic MR, adequately captures the TT and BB dependencies of Δρ1\Delta\rho_{1} through the spin relaxation time (3) and (4). iii) The BB modulation of Δρ0\Delta\rho_{0}, i.e., Eq. (8), depends only on the longitudinal spin relaxation time (3) originating entirely from spin-flip processes and this MR is unambiguously associated with magnon emission and absorption, thus referring to isotropic magnon MR. Overall, we demonstrate the isotropic magnon, anisotropic spin relaxation and spin precession MR originating from the magnon-induced spin flip, anisotropic spin relaxation, and Hanle spin precession of itinerant electrons, respectively.

To quantitatively analyze the BB- and TT-dependent MR effect in ferromagnetic materials, our theory is numerically explored by considering a typical example - the Pt film decorated with magnetic permalloy (Py). Here, the SOC in Pt is characterized by a spin Hall angle θSH0.1\theta_{\mathrm{SH}}\simeq 0.1 [56] and spin diffusion length 0=3.0n\ell_{0}=3.0nm comparable to the thickness of Pt film, dN=5d_{N}=5 nm. The local moments (Py) have spin S=2S=2 and density nSaPt3=0.1n_{\mathrm{S}}a^{3}_{\text{Pt}}=0.1 where aPta_{\text{Pt}} is the lattice constant of Pt and nSn_{\mathrm{S}} should be high enough to generate ferromagnetic order of local moments. Moreover, our SEC nS𝒥sdn_{\text{S}}\mathcal{J}_{sd} is set to be the order of meV 222The SEC between Co adatoms on Cu(100) has been predicted to realize a ferromagnetic interaction of about nS𝒥sd350n_{\text{S}}\mathcal{J}_{sd}\simeq 350 meV and an antiferromagnetic one about nS𝒥sd17n_{\text{S}}\mathcal{J}_{sd}\simeq-17 meV [60, 58], which have been validated by probing the Kondo resonance in experiments of P. Wahl et.alet.al [58]. Though there is no experimental data of spin-exchange coupling in Pt film decorated with Py, we believe nS𝒥sdn_{\text{S}}\mathcal{J}_{sd}\sim meV should be an experimentally feasible parameter.. Below, we discuss isotropic magnon, anisotropic spin precession and spin relaxation MR together with diverse MR behaviors according to our universal formulas (7-9).

Refer to caption
Figure 2: (Color online) Magnon MR. (a,b) Δρ0\Delta\rho_{0} vs (a) temperature TT and (b) magnetic field BB. We set nS𝒥sd=8n_{\mathrm{S}}\mathcal{J}_{sd}=8 meV and a Tc=10T_{c}=10 K. Other parameters: θSH=0.1\theta_{\mathrm{SH}}=0.1, S=2S=2, 0=3.0\ell_{0}=3.0 nm, dN=5d_{N}=5 nm, EF=1.0E_{F}=1.0 eV, mF=1.0m_{F}=1.0 me0m^{0}_{e}, ρL0=2.0×106\rho_{L0}=2.0\times 10^{6} Ωm\Omega\cdot m, nimpac3=0.1n_{\mathrm{imp}}a^{3}_{c}=0.1, and 𝒟=1.0106\mathcal{D}=1.0*10^{-6} m2/s.

Magnon MR-Our magnon MR, independent of the magnetization direction, is quantified by Δρ0\Delta\rho_{0}, i.e., Eq. (8). With increasing /dN\ell_{\|}/d_{N}, Δρ0\Delta\rho_{0} initially exhibits a linear increase following the expression Δρ0=2/dN\Delta\rho_{0}=2\ell_{\|}/d_{N}, and gradually approaches a saturation value of 1, in accordance with the asymptotic formula Δρ0=1dN2/(122)\Delta\rho_{0}=1-d^{2}_{N}/(12\ell^{2}_{\|}) in the end. Figures 2(a) and 2(b) plot the TT and BB dependencies of Δρ0\Delta\rho_{0}, respectively. Note that \ell_{\|} varies from 𝒟/(τ01+Ω1)\sqrt{\mathcal{D}/(\tau^{-1}_{0}+\Omega_{1})} to 0\ell_{0} when cooling T>TcT>T_{c} to TTcT\ll T_{c} at B=0B=0 [blue curve in Fig. 2(a)], where TcT_{c} is the critical temperature of the ferromagnetic material. We obtain considerable modulation of magnon MR with TT, i.e., |Δρ0(T)Δρ0(0)|ρL0|\Delta\rho_{0}(T)-\Delta\rho_{0}(0)|\sim\rho_{\text{L0}} [Fig. 2(a)]. To increase the BB tunability of Δρ0\Delta\rho_{0} via the longitudinal spin relaxation time (3), we consider small critical temperature (Tc=10T_{c}=10 K) and large SEC (nS𝒥sd=8n_{\text{S}}\mathcal{J}_{sd}=8 meV). The latter leads to a large value of Ω1\Omega_{1} and a small value of 𝒟/(τ01+Ω1)/dN0.07\sqrt{\mathcal{D}/(\tau^{-1}_{0}+\Omega_{1})}/d_{N}\simeq 0.07. Then, we obtain sizable BB modulation of magnon MR, i.e., [Δρ0(B)Δρ0(0)]ρL0[\Delta\rho_{0}(B)-\Delta\rho_{0}(0)]\sim\rho_{\text{L0}}, which always shows negative MR [Fig. 2(b)] because increasing BB prevents the magnon-induced spin flip and increases \ell_{\|}. The predicted characteristics are consistent with magnon MR experiments [40] that, however, depends on the orientation of the magnetization relative to the magnetic field [23, 22].

Refer to caption
Figure 3: (Color online) Anisotropic MR. (a) Δρ1\Delta\rho_{1} vs TT for various BB. The curve shape indicates two contributions: spin-exchange field and anisotropic spin relaxation. The spin-exchange field results in a sharp drop at the critical temperature when B=0B=0 (blue curve). The contribution from anisotropic spin relaxation is represented in the inset, where sd\mathcal{B}_{sd} is set to zero. (b) Resistivity as a function of the magnetization direction (α\alpha). We set Tc=100T_{c}=100 K and nS𝒥sd=1n_{\mathrm{S}}\mathcal{J}_{sd}=1 meV and other parameters are the same as for FIG. 2.

Anisotropic MR-Anisotropic spin relaxation MR (\ell_{\|}\neq\ell_{\perp}) always appears together with the shifted spin precession MR (sd0\mathcal{B}_{sd}\neq 0) even when B0B\rightarrow 0, and thus cannot always be easily separated in experiments. Both enter through BB dependence of Δρ1\Delta\rho_{1} and share the same dependence on the magnetization direction, which adds to the uncertainties of interpreting the experimental data. The TT dependence of Δρ1\Delta\rho_{1}, i.e., Eq. (9), is plotted in Fig. 3(a). The shape of the curve reveals two contributions, including a spin-exchange field and anisotropic spin relaxation. The former is reflected in sharp vanishing at critical temperature (blue curve), while the latter is plotted in the inset of Fig. 3(a) by artificially setting sd=0\mathcal{B}_{sd}=0. Anisotropic spin relaxation and spin precession MR demonstrate themselves by the cosine-square characteristics of ρL\rho_{L} concerning the magnetization direction α\alpha [blue and green curves of Fig. 3(b)]. At a high temperature (TTcT\geq T_{c}), no anisotropic MR is observed at B0B\rightarrow 0 [red line of Fig. 3(b)]. The predicted behaviors are in agreement with anisotropic MR experiments [43].

Diverse behaviors of MR-Next, we show intriguing MR for the magnetic field in xx-axis direction (BxB_{x}). Figure 4(a) plots a transition from positive to negative MR at small BB for antiferromagnetic SEC when the system is cooled from a high (T=200K)(T=200K) to low temperatures (T=10K)(T=10K). This interesting transition can be explained as follows. The SEC (1) induces a spin-exchange field (2), which is linearly proportional to the SEC 𝒥sd\mathcal{J}_{sd} and the magnetization S\langle S_{\parallel}\rangle, i.e., sd𝒥sdS\mathcal{B}_{sd}\propto\mathcal{J}_{sd}\langle S_{\|}\rangle. Hence, the ferromagnetic (antiferromagnetic) SEC generates a blue (red) shift of the Hanle spin precession frequency ωL=gμB(Bxsd)/\omega_{L}=\textsl{g}\mu_{B}(B_{x}-\mathcal{B}_{sd})/\hbar with sd<0\mathcal{B}_{sd}<0 (sd>0\mathcal{B}_{sd}>0). For high enough temperature (red curve), sd\mathcal{B}_{sd} vanishes because S0\langle S_{\parallel}\rangle\simeq 0, and we recover the previous Hanle MR that exhibits quadratic behavior concerning small BxB_{x}, i.e., ρLωL2Bx2\rho_{\text{L}}\propto\omega^{2}_{L}\propto B_{x}^{2} [10]. Thus, we always get positive MR for ferromagnetic and antiferromagnetic SEC. At a low enough temperature (black curve), i.e., strongly magnetized regime, the spin-exchange field (2), spin relaxation time (3) and (4) acquire their saturated values and become independent of the magnetic field. Then, the magnetic field dependence of resistance purely originates from the magnetic-field spin precession frequency, leading to the shifted spin precession MR ρLωL2(Bxsd)2\rho_{\text{L}}\propto\omega^{2}_{L}\propto(B_{x}-\mathcal{B}_{sd})^{2} with sd=nS𝒥sdS/(gμB)\mathcal{B}_{sd}=-n_{\mathrm{S}}\mathcal{J}_{sd}S/(\hbar g\mu_{B}). The ferromagnetic (antiferromagnetic) SEC leads to positive (negative) MR with sd<0\mathcal{B}_{sd}<0 (sd>0)(\mathcal{B}_{sd}>0), as indicated by the red and blue curves in Fig. 4(b). Thus, we find a transition from positive to negative MR for antiferromagnetic SEC by cooling the system to low temperatures.

Notably, the minimum of the shifted spin precession MR is where the applied magnetic field offsets the spin-exchange field, i.e., Bx=sdB_{x}=\mathcal{B}_{sd}. At saturated temperature (T=10T=10K), the motion of the minimum for different 𝒥sd\mathcal{J}_{sd} is plotted in Fig. 4(b). We observe the spin-exchange field (2), sd|𝒥sd|\mathcal{B}_{sd}\propto|\mathcal{J}_{sd}|, is rightly shifted by the stronger antiferromagnetic SEC. This result, in return, can be used to electrically detect the strength of the microscopic SEC, which was previously only detected by the Kondo resonance of scanning tunneling spectroscopy [58].

Refer to caption
Figure 4: (Color online) Diverse MR behaviors. (a,b) Resistivity as a function of x^\hat{x}-axis magnetic field, BxB_{x}, for different values of (a) temperature TT and (b) SEC 𝒥sd\mathcal{J}_{sd}. (c,d) ρL\rho_{\text{L}} vs (c) BxB_{x} and (d) TT, for various 𝒥sd\mathcal{J}_{sd}. The BB- and TT-dependent sd\mathcal{B}_{sd} causes a minimum in resistivity with BB (a-c) and TT (d) at Bx=sdB_{x}=\mathcal{B}_{sd}. Other parameters are the same as FIG. 3.

Besides, higher temperature (TTcT\lesssim T_{c}) can convert negative MR into a positive one for large antiferromagnetic SEC [Fig. 4(c)]. Because the positive MR produced by the anisotropic spin relaxation MR (\ell_{\|}\neq\ell_{\perp}) becomes larger for stronger antiferromagnetic SEC at critical temperature. Thus, the longitudinal resistivity quickly ascends first due to anisotropic MR, descends later, and increases again because of the shifted Hanle MR. Note that the spin-exchange field also relies on TT. We find a minimum in resistivity with TT for sizable antiferromagnetic SEC like the Kondo effect [59], as shown in Fig. 4(d).

Summary-Based on the theory of open-quantum system, we develop a comprehensive microscopic theory to illustrate the diverse MR effects from the magnon-induced spin flip, anisotropic spin relaxation time, and Hanle spin precession of itinerant electrons. Our theory provides insights of experimental observations involving BB- and TT-dependent MR, paving the way for further progress in the understanding and practical applications of magnetic materials. Besides, we reveal fruitful behaviors due to the interplay of magnon, spin relaxation and precession MR, allowing electrical detection of the strenghth of the microscopic SEC. Moreover, our method can be generalized to more different magnetic materials (e.g. ferrimagnetic/antiferromagnetic metals/semiconductors).

References

  • Thomson [1857] W. Thomson, Xix. on the electro-dynamic qualities of metals:—effects of magnetization on the electric conductivity of nickel and of iron, Proc. R. Soc. Lond. , 546 (1857).
  • Dieny et al. [2020] B. Dieny, I. L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. O. Demokritov, J. Akerman, A. Deac, P. Pirro, C. Adelmann, A. Anane, A. V. Chumak, A. Hirohata, S. Mangin, S. O. Valenzuela, M. C. Onbaşlı, M. d’Aquino, G. Prenat, G. Finocchio, L. Lopez-Diaz, R. Chantrell, O. Chubykalo-Fesenko, and P. Bortolotti, Opportunities and challenges for spintronics in the microelectronics industry, Nat. Electron. 3, 446 (2020).
  • van Gorkom et al. [2001] R. P. van Gorkom, J. Caro, T. M. Klapwijk, and S. Radelaar, Temperature and angular dependence of the anisotropic magnetoresistance in epitaxial fe films, Phys. Rev. B 63, 134432 (2001).
  • Ramos et al. [2008] R. Ramos, S. K. Arora, and I. V. Shvets, Anomalous anisotropic magnetoresistance in epitaxial fe3o4{\text{fe}}_{3}{\text{o}}_{4} thin films on mgo(001), Phys. Rev. B 78, 214402 (2008).
  • Miao et al. [2024] Y. Miao, J. Sun, C. Gao, D. Xue, and X. R. Wang, Anisotropic galvanomagnetic effects in single cubic crystals: A theory and its verification, Phys. Rev. Lett. 132, 206701 (2024).
  • Rushforth et al. [2007] A. W. Rushforth, K. Výborný, C. S. King, K. W. Edmonds, R. P. Campion, C. T. Foxon, J. Wunderlich, A. C. Irvine, P. Vašek, V. Novák, K. Olejník, J. Sinova, T. Jungwirth, and B. L. Gallagher, Anisotropic magnetoresistance components in (ga,mn)as, Phys. Rev. Lett. 99, 147207 (2007).
  • Zeng et al. [2020] F. L. Zeng, Z. Y. Ren, Y. Li, J. Y. Zeng, M. W. Jia, J. Miao, A. Hoffmann, W. Zhang, Y. Z. Wu, and Z. Yuan, Intrinsic mechanism for anisotropic magnetoresistance and experimental confirmation in coxfe1x{\mathrm{co}}_{x}{\mathrm{fe}}_{1-x} single-crystal films, Phys. Rev. Lett. 125, 097201 (2020).
  • Dai et al. [2022] Y. Dai, Y. W. Zhao, L. Ma, M. Tang, X. P. Qiu, Y. Liu, Z. Yuan, and S. M. Zhou, Fourfold anisotropic magnetoresistance of l10{\mathrm{l}1}_{0} fept due to relaxation time anisotropy, Phys. Rev. Lett. 128, 247202 (2022).
  • Dyakonov [2007] M. I. Dyakonov, Magnetoresistance due to edge spin accumulation, Phys. Rev. Lett. 99, 126601 (2007).
  • Vélez et al. [2016] S. Vélez, V. N. Golovach, A. Bedoya-Pinto, M. Isasa, E. Sagasta, M. Abadia, C. Rogero, L. E. Hueso, F. S. Bergeret, and F. Casanova, Hanle magnetoresistance in thin metal films with strong spin-orbit coupling, Phys. Rev. Lett. 116, 016603 (2016).
  • Binasch et al. [1989] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B 39, 4828 (1989).
  • Baibich et al. [1988] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices, Phys. Rev. Lett. 61, 2472 (1988).
  • Julliere [1975] M. Julliere, Tunneling between ferromagnetic films, Phys. Lett. A 54, 225 (1975).
  • Miyazaki and Tezuka [1995] T. Miyazaki and N. Tezuka, Giant magnetic tunneling effect in fe/al2o3/fe junction, J. Magn. Magn. Mater. 139, L231 (1995).
  • Moodera et al. [1995] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett. 74, 3273 (1995).
  • Chappert et al. [2007] C. Chappert, A. Fert, and F. N. Van Dau, The emergence of spin electronics in data storage, Nature materials 6, 813 (2007).
  • Mott [1936a] N. F. Mott, The electrical conductivity of transition metals, P. Roy. Soc. A-Math. Phys. 153, 699 (1936a).
  • Mott [1936b] N. F. Mott, The resistance and thermoelectric properties of the transition metals, P. Roy. Soc. A-Math. Phy. 156, 368 (1936b).
  • Mott [1964] N. F. Mott, Electrons in transition metals, Advances in Physics 13, 325 (1964).
  • Goodings [1963] D. A. Goodings, Electrical resistivity of ferromagnetic metals at low temperatures, Phys. Rev. 132, 542 (1963).
  • Yosida [1957] K. Yosida, Anomalous electrical resistivity and magnetoresistance due to an sds-d interaction in cu-mn alloys, Phys. Rev. 107, 396 (1957).
  • Raquet et al. [2002] B. Raquet, M. Viret, E. Sondergard, O. Cespedes, and R. Mamy, Electron-magnon scattering and magnetic resistivity in 3d3d ferromagnets, Phys. Rev. B 66, 024433 (2002).
  • Mihai et al. [2008] A. P. Mihai, J. P. Attané, A. Marty, P. Warin, and Y. Samson, Electron-magnon diffusion and magnetization reversal detection in FePt\mathrm{FePt} thin films, Phys. Rev. B 77, 060401 (2008).
  • Zhang [2022] X.-P. Zhang, Extrinsic spin-valley hall effect and spin-relaxation anisotropy in magnetized and strained graphene, Phys. Rev. B 106, 115437 (2022).
  • Zhang et al. [2023] X.-P. Zhang, Y. Yao, K. Y. Wang, and P. Yan, Microscopic theory of spin-orbit torque and spin memory loss from interfacial spin-orbit coupling, Phys. Rev. B 108, 125309 (2023).
  • Ritzinger and Vỳbornỳ [2023] P. Ritzinger and K. Vỳbornỳ, Anisotropic magnetoresistance: materials, models and applications, R. Soc. Open Sci. 10, 230564 (2023).
  • McGuire and Potter [1975] T. McGuire and R. Potter, Anisotropic magnetoresistance in ferromagnetic 3d alloys, IEEE Trans. Magn. 11, 1018 (1975).
  • Campbell et al. [1970] I. Campbell, A. Fert, and O. Jaoul, The spontaneous resistivity anisotropy in ni-based alloys, J. Phys. C: Solid State Phys. 3, S95 (1970).
  • Ebert et al. [1996] H. Ebert, A. Vernes, and J. Banhart, Anisotropic electrical resistivity of ferromagnetic co-pd and co-pt alloys, Phys. Rev. B 54, 8479 (1996).
  • Smit [1951] J. Smit, Magnetoresistance of ferromagnetic metals and alloys at low temperatures, Physica 17, 612 (1951).
  • Van Elst [1959] H. Van Elst, The anisotropy in the magneto-resistance of some nickel alloys, Physica 25, 708 (1959).
  • Trushin et al. [2009] M. Trushin, K. Výborný, P. Moraczewski, A. A. Kovalev, J. Schliemann, and T. Jungwirth, Anisotropic magnetoresistance of spin-orbit coupled carriers scattered from polarized magnetic impurities, Phys. Rev. B 80, 134405 (2009).
  • Wang et al. [2023] X. Wang, C. Wang, and X. Wang, A theory of unusual anisotropic magnetoresistance in bilayer heterostructures, Sci. Rep. 13, 309 (2023).
  • Wang [2024] X. Wang, A theory of magnetoresistance of non-magnetic metal on magnon valves, AIP Adv. 14, 045101 (2024).
  • Velev et al. [2005] J. Velev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal, Ballistic anisotropic magnetoresistance, Phys. Rev. Lett. 94, 127203 (2005).
  • Kato et al. [2008] T. Kato, Y. Ishikawa, H. Itoh, and J.-i. Inoue, Intrinsic anisotropic magnetoresistance in spin-polarized two-dimensional electron gas with rashba spin-orbit interaction, Phys. Rev. B 77, 233404 (2008).
  • Výborný et al. [2009] K. Výborný, A. A. Kovalev, J. Sinova, and T. Jungwirth, Semiclassical framework for the calculation of transport anisotropies, Phys. Rev. B 79, 045427 (2009).
  • Nádvorník et al. [2021] L. c. v. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions, Phys. Rev. X 11, 021030 (2021).
  • Khvalkovskiy et al. [2009] A. V. Khvalkovskiy, K. A. Zvezdin, Y. V. Gorbunov, V. Cros, J. Grollier, A. Fert, and A. K. Zvezdin, High domain wall velocities due to spin currents perpendicular to the plane, Phys. Rev. Lett. 102, 067206 (2009).
  • Nguyen et al. [2011] V. D. Nguyen, L. Vila, P. Laczkowski, A. Marty, T. Faivre, and J. P. Attané, Detection of domain-wall position and magnetization reversal in nanostructures using the magnon contribution to the resistivity, Phys. Rev. Lett. 107, 136605 (2011).
  • Note [1] For example, the previous theory of Hanle MR excludes temperature- and magnetic field-dependent spin-exchange field (2\@@italiccorr), thus incapable of adequately including temperature and magnetic field dependencies of MR in ferromagnetic materials. The previous theory of anisotropic MR is mainly based on purely phenomenological formula, that is, Δρ0\Delta\rho_{0} and Δρ1\Delta\rho_{1} in Eq. (7\@@italiccorr) are phenomenological parameters independent of temperature and magnetic field.
  • Hupfauer et al. [2015] T. Hupfauer, A. Matos-Abiague, M. Gmitra, F. Schiller, J. Loher, D. Bougeard, C. H. Back, J. Fabian, and D. Weiss, Emergence of spin–orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide, Nat. Commun. 6, 7374 (2015).
  • Lin et al. [2014] T. Lin, C. Tang, H. M. Alyahayaei, and J. Shi, Experimental investigation of the nature of the magnetoresistance effects in pd-yig hybrid structures, Phys. Rev. Lett. 113, 037203 (2014).
  • Xiao et al. [2015] X. Xiao, J. Li, Z. Ding, and Y. Wu, Four-fold symmetric anisotropic magnetoresistance of single-crystalline ni (001) film, J. Appl. Phys. 118, 203905 (2015).
  • Miao et al. [2021] Y. Miao, D. Yang, L. Jia, X. Li, S. Yang, C. Gao, and D. Xue, Magnetocrystalline anisotropy correlated negative anisotropic magnetoresistance in epitaxial fe30co70 thin films, Appl. Phys. Lett. 118, 042404 (2021).
  • Bason et al. [2009] Y. Bason, J. Hoffman, C. H. Ahn, and L. Klein, Magnetoresistance tensor of la0.8sr0.2mno3{\text{la}}_{0.8}{\text{sr}}_{0.2}{\text{mno}}_{3}Phys. Rev. B 79, 092406 (2009).
  • Zhang et al. [2019] X.-P. Zhang, F. S. Bergeret, and V. N. Golovach, Theory of spin hall magnetoresistance from a microscopic perspective, Nano Lett. 19, 6330 (2019).
  • Gomez-Perez et al. [2020] J. M. Gomez-Perez, X.-P. Zhang, F. Calavalle, M. Ilyn, C. González-Orellana, M. Gobbi, C. Rogero, A. Chuvilin, V. N. Golovach, L. E. Hueso, et al., Strong interfacial exchange field in a heavy metal/ferromagnetic insulator system determined by spin hall magnetoresistance, Nano Letters 20, 6815 (2020).
  • Oyanagi et al. [2021] K. Oyanagi, J. M. Gomez-Perez, X.-P. Zhang, T. Kikkawa, Y. Chen, E. Sagasta, A. Chuvilin, L. E. Hueso, V. N. Golovach, F. S. Bergeret, F. Casanova, and E. Saitoh, Paramagnetic spin hall magnetoresistance, Phys. Rev. B 104, 134428 (2021).
  • Winkler et al. [2003] R. Winkler, S. Papadakis, E. De Poortere, and M. Shayegan, Spin-Orbit Coupling in Two-Dimensional Electron and Hole Systems, Vol. 41 (Springer, 2003).
  • Breuer and Petruccione [2002] H.-P. Breuer and F. Petruccione, The theory of open quantum systems (OUP Oxford, 2002).
  • [52] Supplementary Materials , for details of the derivations of the anisotropic spin relaxation time from the theory of open quantum physics and the longitudinal resistivity from the diffusion equation with anisotropic spin relaxation time.
  • Maekawa and Kimura [2017] S. Maekawa and T. Kimura, Spin Current, Vol. 22 (Oxford University Press, 2017).
  • Sinova et al. [2015] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin hall effects, Rev. Mod. Phys. 87, 1213 (2015).
  • Chen et al. [2013] Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T. B. Goennenwein, E. Saitoh, and G. E. W. Bauer, Theory of spin hall magnetoresistance, Phys. Rev. B 87, 144411 (2013).
  • Ando et al. [2008] K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, and E. Saitoh, Electric manipulation of spin relaxation using the spin hall effect, Phys. Rev. Lett. 101, 036601 (2008).
  • Note [2] The SEC between Co adatoms on Cu(100) has been predicted to realize a ferromagnetic interaction of about nS𝒥sd350n_{\text{S}}\mathcal{J}_{sd}\simeq 350 meV and an antiferromagnetic one about nS𝒥sd17n_{\text{S}}\mathcal{J}_{sd}\simeq-17 meV [60, 58], which have been validated by probing the Kondo resonance in experiments of P. Wahl et.alet.al [58]. Though there is no experimental data of spin-exchange coupling in Pt film decorated with Py, we believe nS𝒥sdn_{\text{S}}\mathcal{J}_{sd}\sim meV should be an experimentally feasible parameter.
  • Wahl et al. [2007] P. Wahl, P. Simon, L. Diekhöner, V. S. Stepanyuk, P. Bruno, M. A. Schneider, and K. Kern, Exchange interaction between single magnetic adatoms, Phys. Rev. Lett. 98, 056601 (2007).
  • Kondo [1964] J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32, 37 (1964).
  • Stepanyuk et al. [2001] V. Stepanyuk, A. Baranov, D. Bazhanov, W. Hergert, and A. Katsnelson, Magnetic properties of mixed co–cu clusters on cu (0 0 1), Surf. Sci. 482, 1045 (2001).