This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Metric mean dimension of free semigroup actions for non-compact sets

Abstract.

In this paper, we introduce the notions of upper metric mean dimension, uu-upper metric mean dimension, ll-upper metric mean dimension of free semigroup actions for non-compact sets via Carathéodory-Pesin structure. Firstly, the lower and upper estimations of the upper metric mean dimension of free semigroup actions are obtained by local metric mean dimensions. Secondly, one proves a variational principle that relates the uu-upper metric mean dimension of free semigroup actions for non-compact sets with the corresponding skew product transformation. Furthermore, using the variational principle above, φ\varphi-irregular set acting on free semigroup actions shows full upper metric mean dimension in the system with the gluing orbit property. Our analysis generalizes the results obtained by Carvalho et al. [MR4348410], Lima and Varandas [MR4308163].

Key words and phrases:
Free semigroup actions; metric mean dimension; local metric mean dimensions; skew product; irregular set
2020 Mathematics Subject Classification:
Primary: 37B05; 54F45; Secondary: 37B40; 37D35.
Corresponding author: Dongkui Ma

Yanjie Tang1, Xiaojiang Ye1 and Dongkui Ma∗1

1School of Mathematics, South China University of Technology,

Guangzhou 510641, P.R. China

1. Introduction

Topological entropy is a fundamental quantity used to measure the complexity of dynamical systems. Yano in [MR579700] proved that a closed manifold of dimension at least two the topological entropy is infinite for generic homeomorphisms. It is then a natural problem to distinguish the complexity of two systems with infinite topological entropy. In the late 1990s, Gromov [MR1742309] proposed a new dynamical concept of dimension that was meant to extend the usual topological dimension to broader contexts. This notion, called mean topological dimension, is a topological invariant and defined for continuous maps on compact metric spaces in terms of the growth rate of refinements of coverings of the phase space, and is hard to compute in general. Further, Lindenstrauss and Weiss [MR1749670] introduced the metric mean dimension to provide nontrivial information for infinite dimensional dynamical systems of infinite topological entropy and the well-known fact that it is an upper bound of mean topological dimension. Unlike the definition of topological entropy, the metric mean dimension depends on the selection of the metric.

It has several applications which cannot be touched within the framework of topological entropy [MR1749670, MR1793417, MR3939578, MR4025517, MR3763403, MR4308163, MR3798396]. For instance, Lima and Varandas in [MR4308163] considered homeomorphisms homotopic to the identity on the torus and employed precisely the metric mean dimension as the finer scaling of complexity they needed to describe the multifractal aspects of the sets of points with prescribed rotation vectors. Recently, Lindenstrauss and Tsukamoto’s pioneering work [MR3990194] connected mean dimension to some information-theoretic quantity, called Double Variational Principle, which is similar to the classical variational principle in dynamical systems for topological entropy.

Given a continuous map f:XXf:X\rightarrow X on a compact metric space (X,d)(X,d) and a continuous observable φ:Xd(d1)\varphi:X\rightarrow\mathbb{R}^{d}(d\geq 1), the set of points with φ\varphi-irregular is

Xφ,f:={xX:limn1ni=0n1φ(fi(x)) does not exist}.X_{\varphi,f}:=\left\{x\in X:\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{i=0}^{n-1}\varphi\left(f^{i}(x)\right)\text{ does not exist}\right\}.

The term ‘historic behavior’ was coined after some dynamics where the phenomenon of the persistence of points with this kind of behavior occurs [MR2396607, MR1858471]. The irregular set is not detectable from the measure-theoretic viewpoint as the Birkhoff’s ergodic theorem ensures the irregular set has zero measure with respect to any invariant probability measure. However, it is an increasingly well-known phenomenon that the irregular set can be large from the point of view of dimension theory. It was first proved by Pesin and Pitskel [MR775933] that in the case of full shift on two symbols the set Xφ,fX_{\varphi,f} is either empty or carries full topological entropy. Furthermore, Barreira and Schmeling [MR1759398] proved that for subshifts of finite type, conformal repellers and conformal horseshoes, the set Xφ,fX_{\varphi,f} carries full topological entropy and full Hausdorff dimension. There are lots of advanced results to show that the irregular set can carry full entropy with specification-like, shadowing-like, see [MR2158401, MR3833343, MR2931333, MR1942414]. To obtain yet another mechanism to describe the topological complexity of the set of points with historic behavior and to pave the way to multifractal analysis, Lima and Varandas [MR4308163] introduced the metric mean dimension for any non-compact subset using Carathéodory-Pesin structure (see [MR1489237]), and they proved that under the gluing orbit property,

if Xφ,fX_{\varphi,f}\neq\emptyset, then mdim¯Xφ,f(f)=mdim¯X(f)\overline{\mathrm{mdim}}_{X_{\varphi,f}}(f)=\overline{\mathrm{mdim}}_{X}(f),

where mdim¯Xφ,f(f)\overline{\mathrm{mdim}}_{X_{\varphi,f}}(f) denotes the metric mean dimension of Xφ,fX_{\varphi,f} defined by Lima and Varandas [MR4308163].

People have become increasingly concerned with the research of free semigroup actions in recent years. On the one hand, it is needed by some other disciplines, such as physics, to allow the system that describes the real events to readjust over time to account for the inevitable experimental errors in [MR2808288]. Some dynamic system theories, on the other hand, are closely related to it, such as the case of a foliation on a manifold and a pseudo-group of holonomy maps. The geometric entropy of finitely generated pseudogroup has been introduced [MR926526] and shown to be a useful tool for studying the topology and dynamics of foliated manifolds. Metric mean dimension on the whole phase space of free semigroup actions was introduced by Carvalho et al. [MR4348410] which proved a variational principle that relates the metric mean dimension of the semigroup action with the corresponding notions for the associated skew product and the shift map.

The above results raise the question of whether similar sets exist in dynamical systems of free semigroup actions. In order to do so, we introduce the notion of metric mean dimension of a free semigroup action for non-compact subsets.

This paper is organized as follows. In Sect. 2, we give our main results. In Sect. 3, we give some preliminaries. In Sect. 4, by using the Carathéodory-Pesin structure we give the new definitions of the upper metric mean dimension of free semigroup actions. Several of their properties are provided. In Sect. 5, we give the proofs of the main results.

2. Statement of Main Results

Let (X,d)(X,d) and (Y,dY)(Y,d_{Y}) be compact metric spaces, fy:XXf_{y}:X\to X be a continuous self-map for all yYy\in Y. Consider the free semigroup (G,)(G,\circ) with generator G1:={fy:yY}G_{1}:=\{f_{y}:y\in Y\} where the semigroup operation \circ is the composition of maps. In what follows, we will assume that the generator set G1G_{1} is minimal, meaning that no transformation fyf_{y}, yYy\in Y can be expressed as a composition of the remaining generators. Let 𝒴\mathcal{Y} be the set of all finite words formed by the elements of YY, that is, 𝒴=NYN\mathcal{Y}=\bigcup_{N\in\mathbb{N}}Y^{N}. Obviously, 𝒴\mathcal{Y} with respect to the law of composition is a free semigroup generated by elements of YY as generators.

For convenience, we first recall the notion of words. For w𝒴w\in\mathcal{Y}, we write www^{\prime}\leq w if there exists a word w′′𝒴w^{\prime\prime}\in\mathcal{Y} such that w=w′′ww=w^{\prime\prime}w^{\prime}, |w||w| stands for the length of ww, that is, the number of symbols in ww. If ω=(i1i2)Y\omega=(i_{1}i_{2}\cdots)\in Y^{\mathbb{N}}, and a,ba,b\in\mathbb{N} with aba\leq b, write ω|[a,b]=w\omega|_{[a,b]}=w if w=iaia+1ibw=i_{a}i_{a+1}\cdots i_{b}. Notice that 𝒴\emptyset\in\mathcal{Y} and w\emptyset\leq w. For w=i1i2ik𝒴w=i_{1}i_{2}\cdots i_{k}\in\mathcal{Y}, denote w¯=iki2i1\overline{w}=i_{k}\cdots i_{2}i_{1}. For w𝒴w\in\mathcal{Y}, w=i1ikw=i_{1}\cdots i_{k}, let us write fw=fi1fikf_{w}=f_{i_{1}}\circ\cdots\circ f_{i_{k}}. Note that if k=0k=0, that is, w=w=\emptyset, define fw=Idf_{w}=\operatorname{Id}, where Id is the identity map. Obviously, fww=fwfwf_{ww^{\prime}}=f_{w}f_{w^{\prime}}. We set fw1=(fw)1f_{w}^{-1}=(f_{w})^{-1} for w𝒴w\in\mathcal{Y}.

Our first main result is an estimate of the upper metric mean dimension using local metric mean dimensions inspired by Ma and Wen [MR2412786] and Ju et al. [MR3918203]. Let (X)\mathcal{M}(X) denote the set of all Borel probability measures on XX. For xXx\in X and w𝒴w\in\mathcal{Y}, denote Bw(x,ε)B_{w}(x,\varepsilon) the (w,ε)(w,\varepsilon)-Bowen ball at xx. Inspired by Ju et al. [MR3918203], we introduce the concepts of lower and upper local entropies of free semigroup actions as follows. For μ(X)\mu\in\mathcal{M}(X),

hμ,GL+(x):=limε0hμ,GL+(x,ε),h_{\mu,G}^{L^{+}}(x):=\lim_{\varepsilon\rightarrow 0}h_{\mu,G}^{L^{+}}(x,\varepsilon),

where

hμ,GL+(x,ε):=lim infn1n+1loginfwYn{μ(Bw(x,ε))},h_{\mu,G}^{L^{+}}(x,\varepsilon):=\liminf_{n\rightarrow\infty}-\frac{1}{n+1}\log\inf_{w\in Y^{n}}\left\{\mu\left(B_{w}(x,\varepsilon)\right)\right\},

is called the L+L^{+} lower local entropy of μ\mu at point xx with respect to GG, while the quantity

hμ,GL(x):=limε0hμ,GL(x,ε),h_{\mu,G}^{L^{-}}(x):=\lim_{\varepsilon\rightarrow 0}h_{\mu,G}^{L^{-}}(x,\varepsilon),

where

hμ,GL(x,ε):=lim infn1n+1logsupwYn{μ(Bw(x,ε))},h_{\mu,G}^{L^{-}}(x,\varepsilon):=\liminf_{n\rightarrow\infty}-\frac{1}{n+1}\log\sup_{w\in Y^{n}}\left\{\mu\left(B_{w}(x,\varepsilon)\right)\right\},

is called the LL^{-} lower local entropy of μ\mu at point xx with respect to GG.

Remark 2.1.

If Y=m\sharp Y=m, that is, G1={f0,f1,,fm1}G_{1}=\{f_{0},f_{1},\cdots,f_{m-1}\}, then hμ,GL+(x)h_{\mu,G}^{L^{+}}(x) and hμ,GL(x)h_{\mu,G}^{L^{-}}(x) coincide with L+L^{+} and LL^{-} lower local entropy of μ\mu at point xx with respect to GG respectively defined by Ju et al. [MR3918203]. If Y=1\sharp Y=1, that is G1={f}G_{1}=\{f\}, then hμ,GL+(x)=hμ,GL(x)h_{\mu,G}^{L^{+}}(x)=h_{\mu,G}^{L^{-}}(x), i.e., the lower local entropy for ff defined by Brin and Katok [MR730261].

In order to have a concept related to the metric mean dimension, we introduced the following concepts.

Definition 2.2.

For μ(X)\mu\in\mathcal{M}(X), we define the L+L^{+} upper local metric mean dimension as

mdim¯μ(x,G):=lim supε0hμ,GL+(x,ε)log1ε,\overline{\mathrm{mdim}}_{\mu}(x,G):=\limsup_{\varepsilon\to 0}\frac{h_{\mu,G}^{L^{+}}(x,\varepsilon)}{\log\frac{1}{\varepsilon}},

and define the LL^{-} lower local metric mean dimension as

mdim¯μ(x,G):=lim infε0hμ,GL(x,ε)log1ε.\underline{\mathrm{mdim}}_{\mu}(x,G):=\liminf_{\varepsilon\to 0}\frac{h_{\mu,G}^{L^{-}}(x,\varepsilon)}{\log\frac{1}{\varepsilon}}.

Now we give two estimations about the upper metric mean dimension of free semigroup action on ZXZ\subseteq X:

Theorem 2.3.

Let μ\mu be a Borel probability measure on XX, ZZ a Borel subset of XX and s(0,)s\in(0,\infty).

  1. (i)

    If mdim¯μ(x,G)s\underline{\mathrm{mdim}}_{\mu}(x,G)\geq s for all xZx\in Z and μ(Z)>0\mu(Z)>0 then mdim¯Z(G,d,)s\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P})\geq s.

  2. (ii)

    If mdim¯μ(x,G)s\overline{\mathrm{mdim}}_{\mu}(x,G)\leq s for all xZx\in Z then mdim¯Z(G,d,)s\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P})\leq s.

Here \mathbb{P} is a random walk on YY^{\mathbb{N}}, mdim¯Z(G,d,)\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P}) denotes the upper metric mean dimension of free semigroup action GG with respect to \mathbb{P} on the set ZZ (see Sec. 4).

Next, the second result describes a variational principle that relates the metric mean dimension of the semigroup action for non-compact sets with the corresponding notions for the associated skew product on YN×XY^{\mathrm{N}}\times X, and compares them with the upper box dimension of YY. For ν(Y)\nu\in\mathcal{M}(Y), denote suppν\mathrm{supp}\nu the support of ν\nu on YY. Let F:YN×XYN×XF:Y^{\mathrm{N}}\times X\to Y^{\mathrm{N}}\times X be the skew product transformation, DD be the product metric on YN×XY^{\mathrm{N}}\times X. dim¯BY\overline{\mathrm{dim}}_{B}Y denotes the upper box dimension of (Y,dY)(Y,d_{Y}), Y\mathcal{H}_{Y} the set of such homogeneous Borel probability measures on YY, umdim¯Y×Z(F,D)\overline{\mathrm{umdim}}_{Y^{\mathbb{N}}\times Z}\left(F,D\right) the uu-upper metric mean dimension with 0 potential of FF on the set Y×ZY^{\mathbb{N}}\times Z (see [MR4216094]). Then we have the following theorem:

Theorem 2.4.

For any subset ZXZ\subset X, if dim¯BY<\overline{\mathrm{dim}}_{B}Y<\infty and νY\nu\in\mathcal{H}_{Y}, then

  1. (i)

    dim¯B(suppν)+umdim¯Z(G,d,ν)umdim¯Y×Z(F,D)\overline{\mathrm{dim}}_{B}(\mathrm{supp}\nu)+\overline{\mathrm{umdim}}_{Z}\left(G,d,\nu^{\mathbb{N}}\right)\leq\overline{\mathrm{umdim}}_{Y^{\mathbb{N}}\times Z}\left(F,D\right);

  2. (ii)

    if, suppν=Y\mathrm{supp}\nu=Y,

    (1) dim¯BY+umdim¯Z(G,d,ν)=umdim¯Y×Z(F,D).\overline{\mathrm{dim}}_{B}Y+\overline{\mathrm{umdim}}_{Z}\left(G,d,\nu^{\mathbb{N}}\right)=\overline{\mathrm{umdim}}_{Y^{\mathbb{N}}\times Z}\left(F,D\right).

Here ν\nu^{\mathbb{N}} denotes the product measure on YY^{\mathbb{N}}, umdim¯Z(G,d,ν)\overline{\mathrm{umdim}}_{Z}\left(G,d,\nu^{\mathbb{N}}\right) denotes the uu-upper metric mean dimension of free semigroup action GG with respect to ν\nu^{\mathbb{N}} on the set ZZ (see Sec. 4).

Remark 2.5.

If Z=XZ=X, Theorem 2.4 generalizes the result obtained by Carvalho et al. [MR4348410].

If Y=m\sharp Y=m and \mathbb{P} is generated by the probability vector ν:=(p1,,pm)\nu:=\left(p_{1},\cdots,p_{m}\right) with i=1mpi=1\sum_{i=1}^{m}p_{i}=1 and pi>0p_{i}>0 for all i=1,,mi=1,\cdots,m, it follows from Theorem 2.4 that

umdim¯Z(G,d,ν)=umdim¯Y×Z(F,D).\overline{\mathrm{umdim}}_{Z}\left(G,d,\nu^{\mathbb{N}}\right)=\overline{\mathrm{umdim}}_{Y^{\mathbb{N}}\times Z}\left(F,D\right).

Finally, the third result is that φ\varphi-irregular set of free semigroup actions carries full upper metric mean dimension using Theorem 2.4. The irregular set arises in the context of multifractal analysis. As a consequence of Birkhoff’s ergodic theorem, the irregular set is not detectable from the point of view of an invariant measure. Let φ:Xd\varphi:X\rightarrow\mathbb{R}^{d} be a continuous function. Recall that a point xXx\in X is called to be φ\varphi-irregular point of free semigroup action GG if there exists ωY\omega\in Y^{\mathbb{N}}, the limit limn1nj=0n1φ(fω|[1,j]¯(x))\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi\left(f_{\overline{\omega|_{[1,j]}}}(x)\right) does not exist, which was introduced by Zhu and Ma [MR4200965]. Let Iφ(G)I_{\varphi}(G) denote the set of all φ\varphi-irregular points of free semigroup action, that is,

Iφ(G):={xX:limn1nj=0n1φ(fω|[1,j]¯(x)) does not exist for some ωY}.I_{\varphi}(G):=\left\{x\in X:\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi\left(f_{\overline{\omega|_{[1,j]}}}(x)\right)\text{ does not exist for some }\omega\in Y^{\mathbb{N}}\right\}.
Theorem 2.6.

Suppose that GG has the gluing orbit property, dim¯BY<\overline{\mathrm{dim}}_{B}Y<\infty and ν\nu is a homogeneous measure with suppν=Y\mathrm{supp}\nu=Y. Let φ:Xd\varphi:X\rightarrow\mathbb{R}^{d} be a continuous function. If Iφ(G)I_{\varphi}(G)\neq\emptyset, then

umdim¯Iφ(G)(G,d,)=mdim¯M(X,G,d,)=umdim¯X(G,d,),\overline{\mathrm{umdim}}_{I_{\varphi}(G)}(G,d,\mathbb{P})=\overline{\mathrm{mdim}}_{M}(X,G,d,\mathbb{P})=\overline{\mathrm{umdim}}_{X}(G,d,\mathbb{P}),

where mdim¯M(X,G,d,)\overline{\mathrm{mdim}}_{M}(X,G,d,\mathbb{P}) denotes the upper metric mean dimension of free semigroup action GG with respect to \mathbb{P} on the whole phase defined by Carvalho et al. [MR4348410].

Remark 2.7.

When Y=1\sharp Y=1, that is , G1={f}G_{1}=\{f\}, Theorem 2.6 coincides with the result obtained by Lima and Varandas [MR4308163].

3. Preliminaries

We start recalling the main concepts we use and describing the systems we will work with.

3.1. Metric mean dimension on the whole space of free semigroup actions

Let (X,d)(X,d) and (Y,dY)(Y,d_{Y}) be compact metric spaces, fy:XXf_{y}:X\to X be a continuous self-map for all yYy\in Y, GG be the free semigroup acting on XX generated by G1={fy:yY}G_{1}=\{f_{y}:y\in Y\}.

A random walk \mathbb{P} on YY^{\mathbb{N}} is a Borel probability measure in this space of sequences which is invariant by the shift map σ\sigma. For instance, we may consider a finite subset E={y0,y1,,ym1}YE=\left\{y_{0},y_{1},\cdots,y_{m-1}\right\}\subset Y, a probability vector 𝐩:=(p0,p1,,pm1)\mathbf{p}:=(p_{0},p_{1},\cdots,p_{m-1}) with pi>0p_{i}>0 and i=0m1pi=1\sum_{i=0}^{m-1}p_{i}=1, the probability measure ν:=i=0m1piδyi\nu:=\sum_{i=0}^{m-1}p_{i}\delta_{y_{i}} on EE and the Borel product measure ν\nu^{\mathbb{N}} on YY^{\mathbb{N}}. Such Borel product measure ν\nu^{\mathbb{N}} will be called a Bernoulli measure, which is said to be symmetric if pi=(1/k)p_{i}=(1/k) for every i{0,1,,m1}i\in\{0,1,\ldots,m-1\}. If YY is a Lie group, a natural symmetric random walk is given by ν\nu^{\mathbb{N}}, where ν\nu is the Haar measure.

For w𝒴w\in\mathcal{Y}, we assign a metric dwd_{w} on XX by setting

dw(x1,x2):=maxww¯d(fw(x1),fw(x2)).d_{w}\left(x_{1},x_{2}\right):=\max_{w^{\prime}\leq\overline{w}}d\left(f_{w^{\prime}}\left(x_{1}\right),f_{w^{\prime}}\left(x_{2}\right)\right).

Given a number δ>0\delta>0 and a point xXx\in X, define the (w,δ)(w,\delta)-Bowen ball at xx by

Bw(x,δ):={yX:dw(x,y)<δ}.B_{w}(x,\delta):=\left\{y\in X:d_{w}(x,y)<\delta\right\}.

Restate that the separated set and spanning set of free semigroup actions were introduced by Bufetov [MR1681003]. For ZXZ\subset X, w𝒴w\in\mathcal{Y} and ε>0\varepsilon>0, a subset KZK\subset Z is called a (w,ε,Z,G)(w,\varepsilon,Z,G)-separated set of ZZ if, for any x1,x2Kx_{1},x_{2}\in K with x1x2x_{1}\neq x_{2}, one has dw(x1,x2)>εd_{w}\left(x_{1},x_{2}\right)>\varepsilon. The maximum cardinality of a (w,ε,Z,G)(w,\varepsilon,Z,G)-separated subset of ZZ is denoted by s(w,ε,Z,G)s(w,\varepsilon,Z,G). A subset EZE\subset Z is said to be (w,ε,G)(w,\varepsilon,G)-spanning set of ZZ if for every xXx\in X there is yEy\in E such that dw(x,y)εd_{w}(x,y)\leq\varepsilon. The smallest cardinality of any (w,ε,Z,G)(w,\varepsilon,Z,G)-spanning subset of ZZ is denoted by r(w,ε,Z,G)r(w,\varepsilon,Z,G).

Obviously,

(2) r(w,ε,Z,G)s(w,ε,Z,G)r(w,ε2,Z,G).r(w,\varepsilon,Z,G)\leq s(w,\varepsilon,Z,G)\leq r(w,\frac{\varepsilon}{2},Z,G).

We recall the definition of metric mean dimension on the whole phase space of free semigroup actions introduced by Carvalho et al. [MR4348410]. Let \mathbb{P} be a product measure on YY^{\mathbb{N}} generated by Borel probability measure ν\nu supported on YY. The topological entropy of free semigroup action GG is given by

hX(G,):=limε0lim supn1nlogYs(ω|[1,n],ε,X,G)𝑑(ω),h_{X}(G,\mathbb{P}):=\lim_{\varepsilon\to 0}\limsup_{n\to\infty}\frac{1}{n}\log\int_{Y^{\mathbb{N}}}s\left(\omega|_{[1,n]},\varepsilon,X,G\right)d\mathbb{P}(\omega),

which was introduced by Carvalho et al. [MR3784991].

Remark 3.1.

If Y=m\sharp Y=m and the probability measure \mathbb{P} is generated by (1m,,1m)(\frac{1}{m},\cdots,\frac{1}{m}), then hX(G,)h_{X}(G,\mathbb{P}) coincides with the definition of topological entropy introduced by Bufetov [MR1681003].

Definition 3.2.

[MR4348410] The upper and lower metric mean dimensions of the free semigroup action GG with respect to \mathbb{P} are given respectively by

mdim¯M(X,G,d,)=lim supε0h(X,G,,ε)logε,\displaystyle\overline{\operatorname{mdim}}_{M}(X,G,d,\mathbb{P})=\limsup_{\varepsilon\rightarrow 0}\frac{h(X,G,\mathbb{P},\varepsilon)}{-\log\varepsilon},
mdim¯M(X,G,d,)=lim infε0h(X,G,,ε)logε,\displaystyle\underline{\operatorname{mdim}}_{M}(X,G,d,\mathbb{P})=\liminf_{\varepsilon\rightarrow 0}\frac{h(X,G,\mathbb{P},\varepsilon)}{-\log\varepsilon},

where

h(X,G,,ε)=lim supn1nlogYs(ω|[1,n],ε,X,G)𝑑(ω).h(X,G,\mathbb{P},\varepsilon)=\limsup_{n\rightarrow\infty}\frac{1}{n}\log\int_{Y^{\mathbb{N}}}s\left(\omega|_{[1,n]},\varepsilon,X,G\right)d\mathbb{P}(\omega).
Remark 3.3.

If Y=1\sharp Y=1, these definitions coincide with the upper and lower metric mean dimensions of a single map on the whole phase defined by Lindenstrauss and Weiss [MR1749670].

The dynamical systems given by free semigroup action have a strong connection with the skew product which has been analyzed to obtain properties of free semigroup actions through fiber associated with the skew product (see for instance [MR3784991, MR4200965, MR4348410]). Recall that the skew product transformation is given as follows:

F:Y×XY×X,(ω,x)(σ(ω),fi1(x)),F:Y^{\mathbb{N}}\times X\rightarrow Y^{\mathbb{N}}\times X,(\omega,x)\mapsto\left(\sigma(\omega),f_{i_{1}}(x)\right),

where ω=(i1,i2,)\omega=\left(i_{1},i_{2},\cdots\right) and σ\sigma is the shift map of YY^{\mathbb{N}}. The metric dd^{\prime} on YY^{\mathbb{N}} is given by

d(ω,ω):=j=1dY(ij,ij)2j.d^{\prime}(\omega,\omega^{\prime}):=\sum_{j=1}^{\infty}\frac{d_{Y}(i_{j},i_{j}^{\prime})}{2^{j}}.

The metric DD on Y×XY^{\mathbb{N}}\times X is given by the formula

D((ω,x),(ω,x)):=max{d(ω,ω),d(x,x)}.D\left((\omega,x),\left(\omega^{\prime},x^{\prime}\right)\right):=\max\left\{d^{\prime}\left(\omega,\omega^{\prime}\right),d\left(x,x^{\prime}\right)\right\}.

The specification property of free semigroup actions was introduced by Rodrigues and Varandas [MR3503951].

Definition 3.4.

[MR3503951] We say that GG has the specification property if for any ε>0\varepsilon>0, there exists 𝔪(ε)>0\mathfrak{m}(\varepsilon)>0, such that for any k>0k>0, any points x1,,xkXx_{1},\cdots,x_{k}\in X, any positive integers n1,,nkn_{1},\cdots,n_{k}, any word w(n1)Yn1w_{(n_{1})}\in Y^{n_{1}},\cdots, w(nk)Ynkw_{(n_{k})}\in Y^{n_{k}}, any p1,,pk𝔪(ε)p_{1},\cdots,p_{k}\geq\mathfrak{m}(\varepsilon), any w(p1)Yp1w_{(p_{1})}\in Y^{p_{1}}, \cdots, w(pk)Ypkw_{(p_{k})}\in Y^{p_{k}}, one has

Bw(n1)(x1,ε)(j=2kfw(pj1)¯w(nj1)¯w(p1)¯w(n1)¯1Bw(nj)(xj,ε)).B_{w_{(n_{1})}}\left(x_{1},\varepsilon\right)\cap\left(\bigcap_{j=2}^{k}{f^{-1}_{\overline{w_{(p_{j-1})}}\,\overline{w_{(n_{j-1})}}\cdots\overline{w_{(p_{1})}}\,\overline{w_{(n_{1})}}}}B_{w_{(n_{j})}}\left(x_{j},\varepsilon\right)\right)\neq\emptyset.

If m=1m=1, the specification property of free semigroup actions coincides with the classical definition introduced by Bowen [MR282372].

3.2. Some concepts

Let (Y,dY)(Y,d_{Y}) be a compact metric space, ν\nu be a Borel probability measure on YY. A balanced measure should give the same probability to any two balls with the same radius, but in general this is too strong a requirement. Bowen [MR0274707] therefore introduced a definition of the chi-square measure. In this paper, we only need the following definition which is weaker than Bowen’s [MR0274707].

Definition 3.5.

[MR0274707] We say that ν\nu is homogeneous if there exists L>0L>0 such that

ν(B(y1,2ε))Lν(B(y2,ε))y1,y2suppνε>0.\nu\left(B\left(y_{1},2\varepsilon\right)\right)\leq L\nu\left(B\left(y_{2},\varepsilon\right)\right)\quad\forall y_{1},y_{2}\in\operatorname{supp}\nu\quad\forall\varepsilon>0.

For instance, the Lebesgue measure on [0,1][0,1], atomic measures, and probability measures absolutely continuous with respect to the latter ones, with densities bounded away from zero and infinity, are examples of homogeneous probability measures. We denote by Y\mathcal{H}_{Y} the set of such homogeneous Borel probability measures on YY. For a discussion on conditions on YY which ensure the existence of homogeneous measures, we refer the reader to ([MR3137474], Sec. 4) and references therein.

Next, we recall the definition of upper box dimension, see e.g. [MR2118797] for more details.

Definition 3.6.

[MR2118797] The upper box dimension of (Y,dY)(Y,d_{Y}) is given by

dim¯BY:=lim supε0logNdY(ε)log1ε,\overline{\mathrm{dim}}_{B}Y:=\limsup_{\varepsilon\to 0}\frac{\log N_{d_{Y}}(\varepsilon)}{\log\frac{1}{\varepsilon}},

where NdY(ε)N_{d_{Y}}(\varepsilon) denotes the maximal cardinality of ε\varepsilon-separated set of (Y,dY)(Y,d_{Y}).

The gluing orbit property was introduced in [MR2921897] (with the terminology of transitive specification property) and independently in [MR3944271] for homeomorphisms and flows. It bridges between completely non-hyperbolic dynamics (equicontinuous and minimal dynamics [MR3603272, MR3960495]) and uniformly hyperbolic dynamics (see e.g. [MR3944271]). Both of these properties imply a rich structure on the dynamics (see e.g. [MR3603272, MR4125519]).

Definition 3.7.

[MR2921897] Let (X,d)(X,d) be a compact metric space, f:XXf:X\to X a continuous self-map. We say that ff satisfies the gluing orbit property if for any ε>0\varepsilon>0, there exists an integer 𝔭(ε)1\mathfrak{p}(\varepsilon)\geq 1, so that for any points x1,x2,,xkXx_{1},x_{2},\cdots,x_{k}\in X, any positive integers n1,,nkn_{1},\cdots,n_{k}, there are 0p1,,pk1𝔭(ε)0\leq p_{1},\cdots,p_{k-1}\leq\mathfrak{p}(\varepsilon) and a point yXy\in X hold

Bn1(x1,ε)j=2kf(n1+p1++nj1+pj1)(Bnj(xj,ε)).B_{n_{1}}(x_{1},\varepsilon)\cap\bigcap_{j=2}^{k}f^{-(n_{1}+p_{1}+\cdots+n_{j-1}+p_{j-1})}\left(B_{n_{j}}(x_{j},\varepsilon)\right)\neq\emptyset.

Here Bn(x,ε)B_{n}(x,\varepsilon) denotes the (n,ε)(n,\varepsilon)-Bowen ball of ff.

It is not hard to check that irrational rotations satisfy the gluing orbit property [MR3603272], but fail to satisfy the shadowing or specification properties. Partially hyperbolic examples exhibiting the same kind of behavior have been constructed in [MR4159675].

Under the gluing orbit property, the metric mean dimension of the irregular set has been studied in Lima and Varandas [MR4308163], but the metric mean dimension of such set has not been studied in dynamical systems of free semigroup actions. In this paper, we focus on the metric mean dimension of such set of free semigroup actions and obtain more extensive results. Therefore, it is important and necessary to introduce the gluing orbit property of free semigroup actions.

Next, we introduce the concept of the gluing orbit property of free semigroup actions:

Definition 3.8.

We say that GG satisfies the gluing orbit property, if for any ε>0\varepsilon>0, there exists 𝔭(ε)>0\mathfrak{p}(\varepsilon)>0, such that for any k2k\geq 2, any points x1,,xkXx_{1},\cdots,x_{k}\in X, any positive integers n1,,nkn_{1},\cdots,n_{k}, any words w(n1)Yn1,,w(nk)Ynkw_{(n_{1})}\in Y^{n_{1}},\cdots,w_{(n_{k})}\in Y^{n_{k}}, there exist 0p1,,pk1𝔭(ε)0\leq p_{1},\cdots,p_{k-1}\leq\mathfrak{p}(\varepsilon), such that for any words w(p1)Yp1,,w(pk1)Ypk1w_{(p_{1})}\in Y^{p_{1}},\cdots,w_{(p_{k-1})}\in Y^{p_{k-1}}, one has

Bw(n1)(x1,ε)(j=2kfw(pj1)¯w(nj1)¯w(p1)¯w(n1)¯1Bw(nj)(xj,ε)).B_{w_{(n_{1})}}\left(x_{1},\varepsilon\right)\cap\left(\bigcap_{j=2}^{k}{f^{-1}_{\overline{w_{(p_{j-1})}}\,\overline{w_{(n_{j-1})}}\cdots\overline{w_{(p_{1})}}\,\overline{w_{(n_{1})}}}}B_{w_{(n_{j})}}\left(x_{j},\varepsilon\right)\right)\neq\emptyset.
Remark 3.9.

It is clear that the specification property (see Definition 3.4) implies the gluing orbit property for free semigroup actions. If m=1m=1, the gluing orbit property of free semigroup actions coincides with the definition of a single map introduced by Bomfim and Varandas [MR3944271].

We describe an example to help us interpret the gluing orbit property of free semigroup actions.

Example 3.10.

Let MM be a compact Riemannian manifold, Y={0,1,,m1}Y=\{0,1,\cdots,m-1\} and GG the free semigroup generated by G1={f0,,fm1}G_{1}=\{f_{0},\cdots,f_{m-1}\} on MM which are C1C^{1}-local diffeomorphisms such that for any j=0,,m1j=0,\cdots,m-1, Dfj(x)vλjv\left\|Df_{j}(x)v\right\|\geq\lambda_{j}\|v\| for all xMx\in M and all vTxMv\in T_{x}M, where λj\lambda_{j} is a constant larger than 1. It follows from Theorem 16 of [MR3503951] that GG satisfies specification property. Given ε>0\varepsilon>0, let 𝔭(ε):=2𝔪(ε)\mathfrak{p}(\varepsilon):=2\mathfrak{m}(\varepsilon) where 𝔪(ε)\mathfrak{m}(\varepsilon) is the positive integer in the definition of specification property of GG (see Definition 3.4). For any points x1,,xkMx_{1},\cdots,x_{k}\in M, any positive integers n1,,nkn_{1},\cdots,n_{k}, any words w(n1)Yn1,,w(nk)Ynkw_{(n_{1})}\in Y^{n_{1}},\cdots,w_{(n_{k})}\in Y^{n_{k}}, pick p1=p2==pk1=𝔪(ε)p_{1}=p_{2}=\cdots=p_{k-1}=\mathfrak{m}(\varepsilon), for any words w(p1)Yp1,,w(pk1)Ypk1w_{(p_{1})}\in Y^{p_{1}},\cdots,w_{(p_{k-1})}\in Y^{p_{k-1}}, by specification property it holds that

Bw(n1)(x1,ε)(j=2kfw(pj1)¯w(nj1)¯w(p1)¯w(n1)¯1Bw(nj)(xj,ε)).B_{w_{(n_{1})}}\left(x_{1},\varepsilon\right)\cap\left(\bigcap_{j=2}^{k}{f^{-1}_{\overline{w_{(p_{j-1})}}\,\overline{w_{(n_{j-1})}}\cdots\overline{w_{(p_{1})}}\,\overline{w_{(n_{1})}}}}B_{w_{(n_{j})}}\left(x_{j},\varepsilon\right)\right)\neq\emptyset.

Hence, GG has the gluing orbit property.

4. Upper metric mean dimension of free semigroup actions for non-compact sets and properties

In this section, using Carathéodory-Pesin structure, we introduce the definitions of upper metric mean dimension, uu-upper metric mean dimension, ll-upper metric mean dimension of free semigroup action GG with respect to \mathbb{P} for non-compact sets by open covers and Bowen’s balls, respectively, and provide some properties of them.

4.1. Upper metric mean dimension of free semigroup actions for non-compact sets using open covers

For 0<ε<10<\varepsilon<1, let C(ε)C(\varepsilon) be the set of all the open covers of XX with diameter less than ε\varepsilon. Consider an open cover 𝒰\mathcal{U} of XX and denote by 𝒲n+1(𝒰)\mathcal{W}_{n+1}(\mathcal{U}) the collection of all strings 𝐔=(U0,,Un)\mathbf{U}=(U_{0},\cdots,U_{n}) with length 𝔩(𝐔)=n+1\mathfrak{l}(\mathbf{U})=n+1 where Uj𝒰U_{j}\in\mathcal{U} for all 0jn0\leq j\leq n. We put the Cartesian product

𝒮n+1(𝒰):={(w𝐔,𝐔):𝐔𝒲n+1(𝒰),w𝐔Yn},\mathcal{S}_{n+1}(\mathcal{U}):=\left\{\left(w_{\mathbf{U}},\mathbf{U}\right):\mathbf{U}\in\mathcal{W}_{n+1}(\mathcal{U}),\,w_{\mathbf{U}}\in Y^{n}\right\},

and 𝒮(𝒰):=n1𝒮n(𝒰)\mathcal{S}(\mathcal{U}):=\bigcup_{n\geq 1}\mathcal{S}_{n}(\mathcal{U}).

For (w𝐔,𝐔)𝒮n+1(w_{\mathbf{U}},\mathbf{U})\in\mathcal{S}_{n+1}, w𝐔=i1i2inw_{\mathbf{U}}=i_{1}i_{2}\cdots i_{n}, we associate the set

Xw𝐔(𝐔):\displaystyle X_{w_{\mathbf{U}}}(\mathbf{U}): ={xX:xU0,fi1(x)U1,,fini1(x)Un}\displaystyle=\left\{x\in X:x\in U_{0},\,f_{i_{1}}(x)\in U_{1},\cdots,f_{i_{n}\cdots i_{1}}(x)\in U_{n}\right\}
=U0(fi1)1(U1)(fini1)1(Un).\displaystyle=U_{0}\cap\left(f_{i_{1}}\right)^{-1}\left(U_{1}\right)\cap\cdots\cap\left(f_{i_{n}\cdots i_{1}}\right)^{-1}\left(U_{n}\right).

The theory of Carathéodory dimension characteristic ensures the following definitions. Fixed NN\in\mathbb{N}, wYNw\in Y^{N}, λ\lambda\in\mathbb{R}, ZXZ\subset X and 0<ε<10<\varepsilon<1, we set

Mw(Z,λ,N,ε,G,d):=inf𝒰C(ε)inf𝒢w(𝒰){(w𝐔,𝐔)𝒢w(𝒰)eλ𝔩(𝐔)},M_{w}(Z,\lambda,N,\varepsilon,G,d):=\inf_{\mathcal{U}\in C(\varepsilon)}\inf_{\mathcal{G}_{w}(\mathcal{U})}\left\{\sum_{(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}(\mathcal{U})}e^{-\lambda\mathfrak{l}(\mathbf{U})}\right\},

where the second infimum is taken over finite or countable collections of strings 𝒢w(𝒰)𝒮(𝒰)\mathcal{G}_{w}(\mathcal{U})\subset\mathcal{S}(\mathcal{U}) such that 𝔩(𝐔)N+1\mathfrak{l}(\mathbf{U})\geq N+1 and w𝐔|[1,N]=ww_{\mathbf{U}}|_{[1,N]}=w for all (w𝐔,𝐔)𝒢w(𝒰)(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}(\mathcal{U}) and Z(w𝐔,𝐔)𝒢w(𝒰)Xw𝐔(𝐔).Z\subset\bigcup_{(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}(\mathcal{U})}X_{w_{\mathbf{U}}}(\mathbf{U}).

For ωY\omega\in Y^{\mathbb{N}}, put w(ω):=ω|[1,N]w(\omega):=\omega|_{[1,N]}, we define

M(Z,λ,N,ε,G,d,):=YMw(ω)(Z,λ,N,ε,G,d)𝑑(ω).M(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}):=\int_{Y^{\mathbb{N}}}M_{w(\omega)}(Z,\lambda,N,\varepsilon,G,d)d\mathbb{P}(\omega).

Moreover, the function NM(Z,λ,N,ε,G,d,)N\mapsto M(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}) is non-decreasing as NN increases. Therefore, the following limit exists

m(Z,λ,ε,G,d,):=limN+M(Z,λ,N,ε,G,d,).m(Z,\lambda,\varepsilon,G,d,\mathbb{P}):=\lim_{N\rightarrow+\infty}M(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}).

Similarly, we define

Rw(Z,λ,N,ε,G,d):\displaystyle R_{w}(Z,\lambda,N,\varepsilon,G,d): =inf𝒰C(ε)inf𝒢w(𝒰){(w𝐔,𝐔)𝒢w(𝒰)eλ(N+1)}\displaystyle=\inf_{\mathcal{U}\in C(\varepsilon)}\inf_{\mathcal{G}_{w}(\mathcal{U})}\left\{\sum_{(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}(\mathcal{U})}e^{-\lambda(N+1)}\right\}
=eλ(N+1)Λw(Z,N,ε,G,d),\displaystyle=e^{-\lambda(N+1)}\Lambda_{w}(Z,N,\varepsilon,G,d),

where Λw(Z,N,ε,G,d):=inf𝒰C(ε)inf𝒢w(𝒰){𝒢w(𝒰)},\Lambda_{w}(Z,N,\varepsilon,G,d):=\inf_{\mathcal{U}\in C(\varepsilon)}\inf_{\mathcal{G}_{w}(\mathcal{U})}\left\{\sharp\mathcal{G}_{w}(\mathcal{U})\right\}, and the second infimum is taken over finite or countable collections of strings 𝒢w(𝒰)𝒮(𝒰)\mathcal{G}_{w}(\mathcal{U})\subset\mathcal{S}(\mathcal{U}) such that 𝔩(𝐔)=N+1\mathfrak{l}(\mathbf{U})=N+1 and w𝐔=ww_{\mathbf{U}}=w for all (w𝐔,𝐔)𝒢w(𝒰)(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}(\mathcal{U}) and Z(w𝐔,𝐔)𝒢w(𝒰)Xw𝐔(𝐔).Z\subset\bigcup_{(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}(\mathcal{U})}X_{w_{\mathbf{U}}}(\mathbf{U}).

Let

R(Z,λ,N,ε,G,d,):\displaystyle R(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}): =YRw(ω)(Z,λ,N,ε,G,d,)𝑑(ω)\displaystyle=\int_{Y^{\mathbb{N}}}R_{w(\omega)}(Z,\lambda,N,\varepsilon,G,d,\mathbb{P})d\mathbb{P}(\omega)
=eλ(N+1)Λ(Z,N,ε,G,d,),\displaystyle=e^{-\lambda(N+1)}\Lambda(Z,N,\varepsilon,G,d,\mathbb{P}),

where Λ(Z,N,ε,G,d,)=YΛw(ω)(Z,N,ε,G,d)𝑑(ω).\Lambda(Z,N,\varepsilon,G,d,\mathbb{P})=\int_{Y^{\mathbb{N}}}\Lambda_{w(\omega)}(Z,N,\varepsilon,G,d)d\mathbb{P}(\omega). We set

r¯(Z,λ,ε,G,d,):\displaystyle\overline{r}(Z,\lambda,\varepsilon,G,d,\mathbb{P}): =lim supN+R(Z,λ,N,ε,G,d,),\displaystyle=\limsup_{N\rightarrow+\infty}R(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}),
r¯(Z,λ,ε,G,d,):\displaystyle\underline{r}(Z,\lambda,\varepsilon,G,d,\mathbb{P}): =lim infN+R(Z,λ,N,ε,G,d,).\displaystyle=\liminf_{N\rightarrow+\infty}R(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}).

When λ\lambda goes from -\infty to ++\infty the m(Z,λ,ε,G,d)m(Z,\lambda,\varepsilon,G,d), r¯(Z,λ,ε,G,d)\overline{r}(Z,\lambda,\varepsilon,G,d), r¯(Z,λ,ε,G,d)\underline{r}(Z,\lambda,\varepsilon,G,d), jump from ++\infty to 0 at a unique critical value. We denote the critical values respectively as

mdim¯Z(ε,G,d,):\displaystyle\overline{\mathrm{mdim}}_{Z}(\varepsilon,G,d,\mathbb{P}): =inf{λ:m(Z,λ,ε,G,d,)=0}\displaystyle=\inf\left\{\lambda:m(Z,\lambda,\varepsilon,G,d,\mathbb{P})=0\right\}
=sup{λ:m(Z,λ,ε,G,d,)=},\displaystyle=\sup\left\{\lambda:m(Z,\lambda,\varepsilon,G,d,\mathbb{P})=\infty\right\},
umdim¯Z(ε,G,d,):\displaystyle\overline{\mathrm{umdim}}_{Z}(\varepsilon,G,d,\mathbb{P}): =inf{λ:r¯(Z,λ,ε,G,d,)=0}\displaystyle=\inf\left\{\lambda:\overline{r}(Z,\lambda,\varepsilon,G,d,\mathbb{P})=0\right\}
=sup{λ:r¯(Z,λ,ε,G,d,)=},\displaystyle=\sup\left\{\lambda:\overline{r}(Z,\lambda,\varepsilon,G,d,\mathbb{P})=\infty\right\},
lmdim¯Z(ε,G,d,):\displaystyle\underline{\mathrm{lmdim}}_{Z}(\varepsilon,G,d,\mathbb{P}): =inf{λ:r¯(Z,λ,ε,G,d,)=0}\displaystyle=\inf\left\{\lambda:\underline{r}(Z,\lambda,\varepsilon,G,d,\mathbb{P})=0\right\}
=sup{λ:r¯(Z,λ,ε,G,d,)=}.\displaystyle=\sup\left\{\lambda:\underline{r}(Z,\lambda,\varepsilon,G,d,\mathbb{P})=\infty\right\}.

Put

mdim¯Z(G,d,)\displaystyle\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P}) :=lim supε0mdim¯Z(G,d,ε,)log1ε,\displaystyle:=\limsup_{\varepsilon\rightarrow 0}\frac{\overline{\mathrm{mdim}}_{Z}(G,d,\varepsilon,\mathbb{P})}{\log\frac{1}{\varepsilon}},
umdim¯Z(G,d,)\displaystyle\overline{\mathrm{umdim}}_{Z}(G,d,\mathbb{P}) :=lim supε0umdim¯Z(G,d,ε,)log1ε,\displaystyle:=\limsup_{\varepsilon\rightarrow 0}\frac{\overline{\mathrm{umdim}}_{Z}(G,d,\varepsilon,\mathbb{P})}{\log\frac{1}{\varepsilon}},
lmdim¯Z(G,d,)\displaystyle\overline{\mathrm{lmdim}}_{Z}(G,d,\mathbb{P}) :=lim supε0lmdim¯Z(G,d,ε,)log1ε.\displaystyle:=\limsup_{\varepsilon\rightarrow 0}\frac{\underline{\mathrm{lmdim}}_{Z}(G,d,\varepsilon,\mathbb{P})}{\log\frac{1}{\varepsilon}}.

The quantities mdim¯Z(G,d,)\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P}), umdim¯Z(G,d,)\overline{\mathrm{umdim}}_{Z}(G,d,\mathbb{P}), lmdim¯Z(G,d,)\overline{\mathrm{lmdim}}_{Z}(G,d,\mathbb{P}) are called the upper metric mean dimension, uu-upper metric mean dimension, ll-upper metric mean dimension of free semigroup action GG with respect to \mathbb{P} on the set ZZ, respectively.

Remark 4.1.

If Y=1\sharp Y=1, G1={f}G_{1}=\{f\}, these quantities coincides with the upper metric mean dimension, uu-upper metric mean dimension, ll-upper metric mean dimension of ff with 0 potential on the set ZZ defined by Cheng et al. [MR4216094], respectively.

4.2. Properties of the upper metric mean dimension of free semigroup actions for non-compact sets

Using the basic properties of the Carathéodory–Pesin dimension [MR1489237] and definitions, we get the following basic properties of upper metric mean dimension, uu-upper metric mean dimension and ll-upper metric mean dimension of free semigroup actions for non-compact sets.

Proposition 4.2.

Let GG be the free semigroup acting on XX generated by G1={fy:yY}G_{1}=\{f_{y}:\,y\in Y\}. Then

  1. (i)

    mdim¯Z1(G,d,)mdim¯Z2(G,d,)\overline{\mathrm{mdim}}_{Z_{1}}(G,d,\mathbb{P})\leq\overline{\mathrm{mdim}}_{Z_{2}}(G,d,\mathbb{P}), umdim¯Z1(G,d,)umdim¯Z2(G,d,),lmdim¯Z1(G,d,)lmdim¯Z2(G,d,)\overline{\mathrm{umdim}}_{Z_{1}}(G,d,\mathbb{P})\leq\overline{\mathrm{umdim}}_{Z_{2}}(G,d,\mathbb{P}),\\ \overline{\mathrm{lmdim}}_{Z_{1}}(G,d,\mathbb{P})\leq\overline{\mathrm{lmdim}}_{Z_{2}}(G,d,\mathbb{P}), if Z1Z2XZ_{1}\subset Z_{2}\subset X.

  2. (ii)

    mdim¯Z(G,d,)=supi1mdim¯Zi(G,d,),umdim¯Z(G,d,)supi1umdim¯Zi(G,d,),lmdim¯Z(G,d,)supi1lmdim¯Zi(G,d,)\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P})=\sup_{i\geq 1}\overline{\mathrm{mdim}}_{Z_{i}}(G,d,\mathbb{P}),\\ \overline{\mathrm{umdim}}_{Z}(G,d,\mathbb{P})\geq\sup_{i\geq 1}\overline{\mathrm{umdim}}_{Z_{i}}(G,d,\mathbb{P}),\\ \overline{\mathrm{lmdim}}_{Z}(G,d,\mathbb{P})\geq\sup_{i\geq 1}\overline{\mathrm{lmdim}}_{Z_{i}}(G,d,\mathbb{P}), if Z=i1ZiZ=\bigcup_{i\geq 1}Z_{i}.

  3. (iii)

    mdim¯Z(G,d,)lmdim¯Z(G,d,)umdim¯Z(G,d,)\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P})\leq\overline{\mathrm{lmdim}}_{Z}(G,d,\mathbb{P})\leq\overline{\mathrm{umdim}}_{Z}(G,d,\mathbb{P}) for any subset ZXZ\subset X.

Similar to the Theorem 2.2 in [MR1489237] and Lemma 3.2 in [MR3918203], we obtain the following result:

Proposition 4.3.

For any subset ZXZ\subset X, one has

lmdim¯Z(G,d,)\displaystyle\overline{\mathrm{lmdim}}_{Z}(G,d,\mathbb{P}) =lim supε0lim infNlogΛ(Z,N,ε,G,d,)Nlog1ε,\displaystyle=\limsup_{\varepsilon\to 0}\liminf_{N\to\infty}\frac{\log\Lambda(Z,N,\varepsilon,G,d,\mathbb{P})}{N\log\frac{1}{\varepsilon}},
umdim¯Z(G,d,)\displaystyle\overline{\mathrm{umdim}}_{Z}(G,d,\mathbb{P}) =lim supε0lim supNlogΛ(Z,N,ε,G,d,)Nlog1ε.\displaystyle=\limsup_{\varepsilon\to 0}\limsup_{N\to\infty}\frac{\log\Lambda(Z,N,\varepsilon,G,d,\mathbb{P})}{N\log\frac{1}{\varepsilon}}.
Proof.

We will prove the first equality; the second one can be proved in a similar fashion. It is enough to show that

lmdim¯Z(ε,G,d,)=lim infNlogΛ(Z,N,ε,G,d,)N\overline{\mathrm{lmdim}}_{Z}(\varepsilon,G,d,\mathbb{P})=\liminf_{N\to\infty}\frac{\log\Lambda(Z,N,\varepsilon,G,d,\mathbb{P})}{N}

for any 0<ε<10<\varepsilon<1. This can be checked as follows. Put

α=lmdim¯Z(ε,G,d,),β=lim infNlogΛ(Z,N,ε,G,d,)N.\alpha=\overline{\mathrm{lmdim}}_{Z}(\varepsilon,G,d,\mathbb{P}),\quad\beta=\liminf_{N\to\infty}\frac{\log\Lambda(Z,N,\varepsilon,G,d,\mathbb{P})}{N}.

Given γ>0\gamma>0, one can choose a sequence NjN_{j}\to\infty such that

0=r¯(Z,α+γ,ε,G,d,)=limjR(Z,α+γ,Nj,ε,G,d,).0=\underline{r}(Z,\alpha+\gamma,\varepsilon,G,d,\mathbb{P})=\lim_{j\to\infty}R(Z,\alpha+\gamma,N_{j},\varepsilon,G,d,\mathbb{P}).

It follows that R(Z,α+γ,Nj,ε,G,d,)<1R(Z,\alpha+\gamma,N_{j},\varepsilon,G,d,\mathbb{P})<1 for all sufficiently large jj. Therefore, for such numbers jj,

e(α+γ)(Nj+1)Λ(Z,Nj,ε,G,d,)<1.e^{-(\alpha+\gamma)(N_{j}+1)}\Lambda(Z,N_{j},\varepsilon,G,d,\mathbb{P})<1.

Moreover,

α+γlogΛ(Z,Nj,ε,G,d,)Nj+1.\alpha+\gamma\geq\frac{\log\Lambda(Z,N_{j},\varepsilon,G,d,\mathbb{P})}{N_{j}+1}.

Therefore,

α+γlim infNlogΛ(Z,N,ε,G,d,)N.\alpha+\gamma\geq\liminf_{N\rightarrow\infty}\frac{\log\Lambda(Z,N,\varepsilon,G,d,\mathbb{P})}{N}.

Hence,

(3) αβγ.\alpha\geq\beta-\gamma.

Let us now choose a sequence NjN_{j}^{\prime}\to\infty such that

β=limjlogΛ(Z,Nj,ε,G,d,)Nj.\beta=\lim_{j\rightarrow\infty}\frac{\log\Lambda(Z,N_{j}^{\prime},\varepsilon,G,d,\mathbb{P})}{N_{j}^{\prime}}.

We have

limjR(Z,αγ,Nj,ε,G,d,)r¯(Z,αγ,ε,G,d,)=.\lim_{j\to\infty}R(Z,\alpha-\gamma,N_{j}^{\prime},\varepsilon,G,d,\mathbb{P})\geq\underline{r}(Z,\alpha-\gamma,\varepsilon,G,d,\mathbb{P})=\infty.

This implies that R(Z,αγ,Nj,ε,G,d,)1R(Z,\alpha-\gamma,N_{j}^{\prime},\varepsilon,G,d,\mathbb{P})\geq 1 for all sufficiently large jj. Therefore, for such jj,

e(αγ)(Nj+1)Λ(Z,Nj,ε,G,d,)1.e^{-(\alpha-\gamma)(N_{j}^{\prime}+1)}\Lambda(Z,N_{j}^{\prime},\varepsilon,G,d,\mathbb{P})\geq 1.

and hence

αγlogΛ(Z,Nj,ε,G,d,)Nj+1.\alpha-\gamma\leq\frac{\log\Lambda(Z,N_{j}^{\prime},\varepsilon,G,d,\mathbb{P})}{N_{j}^{\prime}+1}.

Taking the limit as jj\rightarrow\infty we obtain that

αγlim infNlogΛ(Z,N,ε,G,d,)N=β,\alpha-\gamma\leq\liminf_{N\rightarrow\infty}\frac{\log\Lambda(Z,N,\varepsilon,G,d,\mathbb{P})}{N}=\beta,

and consequently,

(4) αβ+γ.\alpha\leq\beta+\gamma.

Since γ\gamma can be chosen arbitrarily small, the inequalities (3) and (4) imply that α=β\alpha=\beta. ∎

For the free semigroup GG acting on XX generated by G1={fy}yYG_{1}=\{f_{y}\}_{y\in Y}, a subset ZXZ\subset X is called GG-invariant if fy1(Z)=Zf_{y}^{-1}(Z)=Z for all yYy\in Y. For an invariant set, similar to the topological entropy of a sing map [MR1489237] and free semigroup actions [MR3918203], and the metric mean dimension [MR4216094] of a sing map, we have the following theorem.

Proposition 4.4.

For any GG-invariant subset ZXZ\subset X,

lmdim¯Z(G,d,)=umdim¯Z(G,d,).\overline{\mathrm{lmdim}}_{Z}(G,d,\mathbb{P})=\overline{\mathrm{umdim}}_{Z}(G,d,\mathbb{P}).
Proof.

Fix 0<ε<10<\varepsilon<1, 𝒰C(ε)\mathcal{U}\in C(\varepsilon), p,qp,q\in\mathbb{N} and w(1)Ypw^{(1)}\in Y^{p}, w(2)Yqw^{(2)}\in Y^{q}. We can choose two collections of strings 𝒢w(1)𝒲p+1(𝒰)\mathcal{G}_{w^{(1)}}\subset\mathcal{W}_{p+1}(\mathcal{U}) and 𝒢w(2)𝒲q+1(𝒰)\mathcal{G}_{w^{(2)}}\subset\mathcal{W}_{q+1}(\mathcal{U}) which cover ZZ. Supposing that (w(1),𝐔)𝒢w(1)(w^{(1)},\mathbf{U})\in\mathcal{G}_{w^{(1)}}, 𝐔=(U0,U1,Up)\mathbf{U}=\left(U_{0},U_{1}\cdots,U_{p}\right) and (w(2),𝐕)𝒢w(2)(w^{(2)},\mathbf{V})\in\mathcal{G}_{w^{(2)}}, 𝐕=(V0,V1,,Vq)\mathbf{V}=\left(V_{0},V_{1},\cdots,V_{q}\right), we define

𝐔𝐕:=(U0,U1,,Up,V0,V1,,Vq).\mathbf{UV}:=\left(U_{0},U_{1},\cdots,U_{p},V_{0},V_{1},\cdots,V_{q}\right).

Fixed iYi\in Y, consider

𝒢w(1)iw(2):={(w(1)iw(2),𝐔𝐕):𝐔𝒢w(1),𝐕𝒢w(2)}𝒲p+q+2(𝒰).\mathcal{G}_{w^{(1)}iw^{(2)}}:=\left\{\left(w^{(1)}iw^{(2)},\mathbf{UV}\right):\mathbf{U}\in\mathcal{G}_{w^{(1)}},\mathbf{V}\in\mathcal{G}_{w^{(2)}}\right\}\subset\mathcal{W}_{p+q+2}(\mathcal{U}).

Then

Xw(1)iw(2)(𝐔𝐕)=Xw(1)(𝐔)(fw(1)i¯)1(Xw(2)(𝐕)).X_{w^{(1)}iw^{(2)}}(\mathbf{UV})=X_{w^{(1)}}(\mathbf{U})\cap(f_{\overline{w^{(1)}i}})^{-1}\left(X_{w^{(2)}}(\mathbf{V})\right).

Since ZZ is a GG-invariant set, the collection of strings 𝒢w(1)iw(2)\mathcal{G}_{w^{(1)}iw^{(2)}} also covers ZZ. By the definition of Λw(1)iw(2)(Z,p+q+1,ε,G,d)\Lambda_{w^{(1)}iw^{(2)}}(Z,p+q+1,\varepsilon,G,d), we have

Λw(1)iw(2)(Z,p+q+1,ε,G,d)𝒢w(1)iw(2)𝒢w(1)×𝒢w(2).\Lambda_{w^{(1)}iw^{(2)}}(Z,p+q+1,\varepsilon,G,d)\leq\sharp\mathcal{G}_{w^{(1)}iw^{(2)}}\leq\sharp\mathcal{G}_{w^{(1)}}\times\sharp\mathcal{G}_{w^{(2)}}.

This implies that

Λw(1)iw(2)(Z,p+q+1,ε,G,d)Λw(1)(Z,p,ε,G,d)×Λw(2)(Z,q,ε,G,d).\Lambda_{w^{(1)}iw^{(2)}}(Z,p+q+1,\varepsilon,G,d)\leq\Lambda_{w^{(1)}}(Z,p,\varepsilon,G,d)\times\Lambda_{w^{(2)}}(Z,q,\varepsilon,G,d).

Then,

Λ(Z,p+q+1,ε,G,d,)\displaystyle\Lambda(Z,p+q+1,\varepsilon,G,d,\mathbb{P}) =YΛw(ω)(Z,p+q+1,ε,G,d)𝑑(ω)\displaystyle=\int_{Y^{\mathbb{N}}}\Lambda_{w(\omega)}(Z,p+q+1,\varepsilon,G,d)d\mathbb{P}(\omega)
YΛw(1)(ω)(Z,p,ε,G,d)×Λw(2)(σp+1ω)(Z,q,ε,G,d)𝑑\displaystyle\leq\int_{Y^{\mathbb{N}}}\Lambda_{w^{(1)}(\omega)}(Z,p,\varepsilon,G,d)\times\Lambda_{w^{(2)}(\sigma^{p+1}\omega)}(Z,q,\varepsilon,G,d)d\mathbb{P}
=Λ(Z,p,ε,G,d,)×Λ(Z,q,ε,G,d,).\displaystyle=\Lambda(Z,p,\varepsilon,G,d,\mathbb{P})\times\Lambda(Z,q,\varepsilon,G,d,\mathbb{P}).

Therefore,

Λ(Z,p+q+1,ε,G,d,)Λ(Z,p,ε,G,d,)×Λ(Z,q,ε,G,d,).\Lambda(Z,p+q+1,\varepsilon,G,d,\mathbb{P})\leq\Lambda(Z,p,\varepsilon,G,d,\mathbb{P})\times\Lambda(Z,q,\varepsilon,G,d,\mathbb{P}).

Let ap:=logΛ(Z,p,ε,G,d,)a_{p}:=\log\Lambda(Z,p,\varepsilon,G,d,\mathbb{P}). Note that Λ(Z,p,ε,G,d,)1.\Lambda(Z,p,\varepsilon,G,d,\mathbb{P})\geq 1. Therefore, infp1app>\inf_{p\geq 1}\frac{a_{p}}{p}>-\infty. So, by Theorem 4.9 of [MR648108], the limit limpapp\lim_{p\rightarrow\infty}\frac{a_{p}}{p} exists and coincides with infpapp\inf_{p\rightarrow\infty}\frac{a_{p}}{p}. ∎

Next, we discuss the relationship between the upper metric mean dimension and uu-upper metric mean dimension of free semigroup action GG on ZZ when ZZ is a compact GG-invariant set. Let 0<ε<10<\varepsilon<1 be given. We choose any λ>mdim¯Z(ε,G,d,)\lambda>\overline{\mathrm{mdim}}_{Z}(\varepsilon,G,d,\mathbb{P}), then

m(Z,λ,ε,G,d,)=limNM(Z,λ,N,ε,G,d,)=0.m(Z,\lambda,\varepsilon,G,d,\mathbb{P})=\lim_{N\rightarrow\infty}M(Z,\lambda,N,\varepsilon,G,d,\mathbb{P})=0.

It is easy to check that

inf𝒰C(ε)limNM(Z,λ,N,𝒰,G,d,)=0,\inf_{\mathcal{U}\in C(\varepsilon)}\lim_{N\rightarrow\infty}M(Z,\lambda,N,\mathcal{U},G,d,\mathbb{P})=0,

where

M(Z,λ,N,𝒰,G,d,):=YMw(ω)(Z,λ,N,𝒰,G,d)𝑑(ω),M(Z,\lambda,N,\mathcal{U},G,d,\mathbb{P}):=\int_{Y^{\mathbb{N}}}M_{w(\omega)}(Z,\lambda,N,\mathcal{U},G,d)d\mathbb{P}(\omega),
Mw(Z,λ,N,𝒰,G,d,):=inf𝒢w(𝒰){(w𝐔,𝐔)𝒢w(𝒰)eλ𝔩(𝐔)},M_{w}(Z,\lambda,N,\mathcal{U},G,d,\mathbb{P}):=\inf_{\mathcal{G}_{w}(\mathcal{U})}\left\{\sum_{(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}(\mathcal{U})}e^{-\lambda\mathfrak{l}(\mathbf{U})}\right\},

and the infimum is taken over finite or countable collections of strings 𝒢w(𝒰)𝒮(𝒰)\mathcal{G}_{w}(\mathcal{U})\subset\mathcal{S}(\mathcal{U}) such that 𝔩(𝐔)N+1\mathfrak{l}(\mathbf{U})\geq N+1 and w𝐔|[1,N]=ww_{\mathbf{U}}|_{[1,N]}=w for all (w𝐔,𝐔)𝒢w(𝒰)(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}(\mathcal{U}) and Z(w𝐔,𝐔)𝒢w(𝒰)Xw𝐔(𝐔).Z\subset\bigcup_{(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}(\mathcal{U})}X_{w_{\mathbf{U}}}(\mathbf{U}). There exists a open cover 𝒰C(ε)\mathcal{U}\in C(\varepsilon) such that

limNM(Z,λ,N,𝒰,G,d,)=0.\lim_{N\rightarrow\infty}M(Z,\lambda,N,\mathcal{U},G,d,\mathbb{P})=0.

Note that M(Z,λ,N,𝒰,G,d,)M(Z,\lambda,N,\mathcal{U},G,d,\mathbb{P}) is non-decreasing as NN increases and non-negative, it follows that M(Z,λ,N,𝒰,G,d,)=0M(Z,\lambda,N,\mathcal{U},G,d,\mathbb{P})=0 for all NN\in\mathbb{N}. Hence, for any NN\in\mathbb{N}, we have

Mw(Z,λ,N,𝒰,G,d)=0,νNa.e.wYN.M_{w}(Z,\lambda,N,\mathcal{U},G,d)=0,\quad\nu^{N}-a.e.\,\,w\in Y^{N}.

Then there exists a finite or countable collections of strings 𝒢w𝒮(𝒰)\mathcal{G}_{w}\subset\mathcal{S}(\mathcal{U}) with w𝐔|[1,N]=ww_{\mathbf{U}}|_{[1,N]}=w and 𝔩(𝐔)N+1\mathfrak{l}(\mathbf{U})\geq N+1 for all (w𝐔,𝐔)𝒢w(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w} and Z(w𝐔,𝐔)𝒢wXw𝐔(𝐔)Z\subset\bigcup_{(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}}X_{w_{\mathbf{U}}}(\mathbf{U}) such that

(5) Q(G,Z,λ,𝒢w):=(w𝐔,𝐔)𝒢weλ𝔩(𝐔)<p<1.Q(G,Z,\lambda,\mathcal{G}_{w}):=\sum_{(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}}e^{-\lambda\mathfrak{l}(\mathbf{U})}<p<1.

Since ZZ is compact we can choose 𝒢w\mathcal{G}_{w} to be finite and K3K\geq 3 to be a constant such that

(6) 𝒢wj=1K𝒮j(𝒰).\mathcal{G}_{w}\subset\bigcup_{j=1}^{K}\mathcal{S}_{j}(\mathcal{U}).

For any w(1),w(2)YNw^{(1)},w^{(2)}\in Y^{N} and iYi\in Y, we can construct

𝒜𝒢w(1)i𝒢w(2):={(w𝐔iw𝐕,𝐔𝐕):(w𝐔,𝐔)𝒢w(1),(w𝐕,𝐕)𝒢w(2)},\mathcal{A}_{\mathcal{G}_{w^{(1)}}i\mathcal{G}_{w^{(2)}}}:=\left\{(w_{\mathbf{U}}iw_{\mathbf{V}},\mathbf{UV}):(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w^{(1)}},(w_{\mathbf{V}},\mathbf{V})\in\mathcal{G}_{w^{(2)}}\right\},

where 𝒢w(1)\mathcal{G}_{w^{(1)}} and 𝒢w(2)\mathcal{G}_{w^{(2)}} satisfy (5), (6). Then

Xw𝐔iw𝐕(𝐔𝐕)=Xw𝐔(𝐔)(fw𝐔i¯)1(Xw𝐕(𝐕)),X_{w_{\mathbf{U}}iw_{\mathbf{V}}}(\mathbf{UV})=X_{w_{\mathbf{U}}}(\mathbf{U})\cap\left(f_{\overline{w_{\mathbf{U}}i}}\right)^{-1}(X_{w_{\mathbf{V}}}\left(\mathbf{V})\right),

where 𝔩(𝐔𝐕)2(N+1)\mathfrak{l}(\mathbf{UV})\geq 2(N+1). Since ZZ is GG-invariant, then 𝒜𝒢w(1)i𝒢w(2)\mathcal{A}_{\mathcal{G}_{w^{(1)}}i\mathcal{G}_{w^{(2)}}} covers ZZ. It is easy to see that

Q(G,Z,λ,𝒜𝒢w(1)i𝒢w(2))Q(G,Z,λ,𝒢w(1))×Q(G,Z,λ,𝒢w(2))<p2.Q\left(G,Z,\lambda,\mathcal{A}_{\mathcal{G}_{w^{(1)}}i\mathcal{G}_{w^{(2)}}}\right)\leq Q\left(G,Z,\lambda,\mathcal{G}_{w^{(1)}}\right)\times Q\left(G,Z,\lambda,\mathcal{G}_{w^{(2)}}\right)<p^{2}.

By the induction, for each nn\in\mathbb{N}, w(1),,w(n)YNw^{(1)},\cdots,w^{(n)}\in Y^{N} and i1,,in1Yi_{1},\cdots,i_{n-1}\in Y, we can define 𝒜𝒢w(1)i1𝒢w(2)in1𝒢w(n)\mathcal{A}_{\mathcal{G}_{w^{(1)}}i_{1}\mathcal{G}_{w^{(2)}}\cdots i_{n-1}\mathcal{G}_{w^{(n)}}} which covers ZZ and satisfies

Q(G,Z,λ,𝒜𝒢w(1)i1𝒢w(2)in1𝒢w(n))<pn.Q\left(G,Z,\lambda,\mathcal{A}_{\mathcal{G}_{w^{(1)}}i_{1}\mathcal{G}_{w^{(2)}}\cdots i_{n-1}\mathcal{G}_{w^{(n)}}}\right)<p^{n}.

Let Γ𝒢w(1)i1𝒢w(2):=𝒜𝒢w(1)𝒜𝒢w(1)i1𝒢w(2).\Gamma_{\mathcal{G}_{w^{(1)}}i_{1}\mathcal{G}_{w^{(2)}}\cdots}:=\mathcal{A}_{\mathcal{G}_{w^{(1)}}}\cup\mathcal{A}_{\mathcal{G}_{w^{(1)}}i_{1}\mathcal{G}_{w^{(2)}}}\cup\cdots. Since ZZ is GG-invariant, then Γ𝒢w(1)i1𝒢w(2)\Gamma_{\mathcal{G}_{w^{(1)}}i_{1}\mathcal{G}_{w^{(2)}}\cdots} covers ZZ and

Q(G,Z,λ,Γ𝒢w(1)i1𝒢w(2))n=1pn<.Q\left(G,Z,\lambda,\Gamma_{\mathcal{G}_{w^{(1)}}i_{1}\mathcal{G}_{w^{(2)}}\cdots}\right)\leq\sum_{n=1}^{\infty}p^{n}<\infty.

Therefore, for any w(j)YNw^{(j)}\in Y^{N} and ijYi_{j}\in Y, jj\in\mathbb{N}, there exists Γ𝒢w(1)i1𝒢w(2)\Gamma_{\mathcal{G}_{w^{(1)}}i_{1}\mathcal{G}_{w^{(2)}}\cdots} covering ZZ and Q(G,Z,λ,Γ𝒢w(1)i1𝒢w(2))<Q(G,Z,\lambda,\Gamma_{\mathcal{G}_{w^{(1)}}i_{1}\mathcal{G}_{w^{(2)}}\cdots})<\infty. Put

:={Γ𝒢w(1)i1𝒢w(2):w(j)YN,ijY,j,N}.\mathcal{F}:=\left\{\Gamma_{\mathcal{G}_{w^{(1)}}i_{1}\mathcal{G}_{w^{(2)}}\cdots}:w^{(j)}\in Y^{N},i_{j}\in Y,j,N\in\mathbb{N}\right\}.
Condition 4.5.

For any N>0N>0 and νNa.e.wYN\nu^{N}-a.e.\,w\in Y^{N}, there exists Γ𝒢wi1𝒢w(2)\Gamma_{\mathcal{G}_{w}i_{1}\mathcal{G}_{w^{(2)}}\cdots}\in\mathcal{F} such that w𝐔|[1,N]=ww_{\mathbf{U}}|_{[1,N]}=w and N+1𝔩(𝐔)N+KN+1\leq\mathfrak{l}(\mathbf{U})\leq N+K for any (w𝐔,𝐔)Γ𝒢wi1𝒢w(2)(w_{\mathbf{U}},\mathbf{U})\in\Gamma_{\mathcal{G}_{w}i_{1}\mathcal{G}_{w^{(2)}}\cdots}, where KK is a constant as that in (6).

Proposition 4.6.

Under the Condition 4.5, for any GG-invariant and compact subset ZXZ\subset X,

mdim¯Z(G,d)=lmdim¯Z(G,d)=umdim¯Z(G,d).\overline{\mathrm{mdim}}_{Z}(G,d)=\overline{\mathrm{lmdim}}_{Z}(G,d)=\overline{\mathrm{umdim}}_{Z}(G,d).
Proof.

Under Condition 4.5. For any N>0N>0 and νNa.e.wYN\nu^{N}-a.e.\,w\in Y^{N}, there is Γ𝒢wi1𝒢w(2)\Gamma_{\mathcal{G}_{w}i_{1}\mathcal{G}_{w^{(2)}}\cdots}\in\mathcal{F} covering ZZ such that w𝐔|[1,N]=ww_{\mathbf{U}}|_{[1,N]}=w for any (w𝐔,𝐔)Γ𝒢wi1𝒢w(2)(w_{\mathbf{U}},\mathbf{U})\in\Gamma_{\mathcal{G}_{w}i_{1}\mathcal{G}_{w^{(2)}}\cdots}. Then for any xZx\in Z, there exists a string (w𝐔,𝐔)Γ𝒢wi1𝒢w(2)(w_{\mathbf{U}},\mathbf{U})\in\Gamma_{\mathcal{G}_{w}i_{1}\mathcal{G}_{w^{(2)}}\cdots}, 𝐔=(U0,U1,,UN,,UN+P)\mathbf{U}=(U_{0},U_{1},\cdots,U_{N},\cdots,U_{N+P}), such that xXw𝐔(𝐔)x\in X_{w_{\mathbf{U}}}(\mathbf{U}), where 0PK0\leq P\leq K. Let U:=(U0,U1,,UN)U^{*}:=(U_{0},U_{1},\cdots,U_{N}). Then Xw𝐔(𝐔)Xw(𝐔)X_{w_{\mathbf{U}}}(\mathbf{U})\subset X_{w}(\mathbf{U}^{*}). If Γw\Gamma_{w}^{*} denotes the collection of substrings (w,𝐔)(w,\mathbf{U}^{*}) constructed above, then

eλ(N+1)Λw(Z,N,ε,G,d)\displaystyle e^{-\lambda(N+1)}\Lambda_{w}(Z,N,\varepsilon,G,d) eλ(N+1)Γw\displaystyle\leq e^{-\lambda(N+1)}\cdot\sharp\Gamma_{w}^{*}
max{1,eλK}Q(G,Z,λ,Γ𝒢wi1𝒢w(2))\displaystyle\leq\max\{1,e^{\lambda K}\}\cdot Q(G,Z,\lambda,\Gamma_{\mathcal{G}_{w}i_{1}\mathcal{G}_{w^{(2)}}\cdots})
max{1,eλK}n=1pn<.\displaystyle\leq\max\{1,e^{\lambda K}\}\cdot\sum_{n=1}^{\infty}p^{n}<\infty.

Therefore,

R(Z,λ,N,ε,G,d,)\displaystyle R(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}) =eλ(N+1)Λ(Z,N,ε,G,d,)\displaystyle=e^{-\lambda(N+1)}\Lambda(Z,N,\varepsilon,G,d,\mathbb{P})
=eλ(N+1)YΛw(ω)(Z,N,ε,G,d)𝑑(ω)<.\displaystyle=e^{-\lambda(N+1)}\int_{Y^{\mathbb{N}}}\Lambda_{w(\omega)}(Z,N,\varepsilon,G,d)d\mathbb{P}(\omega)<\infty.

Then we have λ>umdim¯Z(ε,G,d,)\lambda>\overline{\mathrm{umdim}}_{Z}(\varepsilon,G,d,\mathbb{P}). Hence,

mdim¯Z(ε,G,d,)umdim¯Z(ε,G,d,).\overline{\mathrm{mdim}}_{Z}(\varepsilon,G,d,\mathbb{P})\geq\overline{\mathrm{umdim}}_{Z}(\varepsilon,G,d,\mathbb{P}).

Dividing both sides of this inequality by log1ε\log\frac{1}{\varepsilon}, and letting ε0\varepsilon\to 0 to take the limitsup, we can get that

mdim¯Z(G,d,)umdim¯Z(G,d,),\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P})\geq\overline{\mathrm{umdim}}_{Z}(G,d,\mathbb{P}),

as we wanted to prove. ∎

4.3. Upper metric mean dimension of free semigroup actions for non-compact sets using open covers using Bowen balls

For NN\in\mathbb{N}, wYNw\in Y^{N}, λ\lambda\in\mathbb{R}, ZXZ\subset X and 0<ε<10<\varepsilon<1, we set

MwB(Z,λ,N,ε,G,d):=infΓw{iIeλ(|wi|+1)},M_{w}^{B}(Z,\lambda,N,\varepsilon,G,d):=\inf_{\Gamma_{w}}\left\{\sum_{i\in I}e^{-\lambda(|w_{i}|+1)}\right\},

where the infimum is taken over all finite or countable collections Γw={Bwi(xi,ε)}iI\Gamma_{w}=\left\{B_{w_{i}}\left(x_{i},\varepsilon\right)\right\}_{i\in I} covering ZZ with |wi|N|w_{i}|\geq N and wi|[1,N]=ww_{i}|_{[1,N]}=w.

For ωY\omega\in Y^{\mathbb{N}}, put w(ω):=ω|[1,N]w(\omega):=\omega|_{[1,N]}, we define

MB(Z,λ,N,ε,G,d,):=YMw(ω)B(Z,λ,N,ε,G,d)𝑑(ω).M^{B}(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}):=\int_{Y^{\mathbb{N}}}M_{w(\omega)}^{B}(Z,\lambda,N,\varepsilon,G,d)d\mathbb{P}(\omega).

Moreover, the function NM(Z,λ,N,ε,G,d)N\mapsto M(Z,\lambda,N,\varepsilon,G,d) is non-decreasing as NN increases. Therefore, the following limit exists

mB(Z,λ,ε,G,d,):=limNMB(Z,λ,N,ε,G,d,).m^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P}):=\lim_{N\to\infty}M^{B}(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}).

Similarly, we define

RwB(Z,λ,N,ε,G,d):\displaystyle R_{w}^{B}(Z,\lambda,N,\varepsilon,G,d): =infΓw{iIeλ(N+1)}\displaystyle=\inf_{\Gamma_{w}}\left\{\sum_{i\in I}e^{-\lambda(N+1)}\right\}
=eλ(N+1)ΛwB(Z,N,ε,G,d),\displaystyle=e^{-\lambda(N+1)}\Lambda^{B}_{w}(Z,N,\varepsilon,G,d),

where ΛwB(Z,N,ε,G,d):=infΓw{Γw},\Lambda^{B}_{w}(Z,N,\varepsilon,G,d):=\inf_{\Gamma_{w}}\left\{\sharp\Gamma_{w}\right\}, and the infimum is taken over all finite or countable collections Γw={Bw(xi,ε)}iI\Gamma_{w}=\left\{B_{w}\left(x_{i},\varepsilon\right)\right\}_{i\in I} covering ZZ .

For ωY\omega\in Y^{\mathbb{N}}, put w(ω):=ω|[1,N]w(\omega):=\omega|_{[1,N]}, we define

RB(Z,λ,N,ε,G,d,):\displaystyle R^{B}(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}): =YRw(ω)B(Z,λ,N,ε,G,d)𝑑(ω)\displaystyle=\int_{Y^{\mathbb{N}}}R^{B}_{w(\omega)}(Z,\lambda,N,\varepsilon,G,d)d\mathbb{P}(\omega)
=eλ(N+1)ΛB(Z,N,ε,G,d,),\displaystyle=e^{-\lambda(N+1)}\Lambda^{B}(Z,N,\varepsilon,G,d,\mathbb{P}),

where ΛB(Z,N,ε,G,d,)=YΛw(ω)B(Z,N,ε,G,d)𝑑(ω).\Lambda^{B}(Z,N,\varepsilon,G,d,\mathbb{P})=\int_{Y^{\mathbb{N}}}\Lambda^{B}_{w(\omega)}(Z,N,\varepsilon,G,d)d\mathbb{P}(\omega). We set

r¯B(Z,λ,ε,G,d,):\displaystyle\overline{r}^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P}): =lim supNRB(Z,λ,N,ε,G,d,),\displaystyle=\limsup_{N\to\infty}R^{B}(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}),
r¯B(Z,λ,ε,G,d,):\displaystyle\underline{r}^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P}): =lim infNRB(Z,λ,N,ε,G,d,).\displaystyle=\liminf_{N\to\infty}R^{B}(Z,\lambda,N,\varepsilon,G,d,\mathbb{P}).

It is readily to check that mB(Z,λ,ε,G,d,),r¯B(Z,λ,ε,G,d,),r¯B(Z,λ,ε,G,d,)m^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P}),\overline{r}^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P}),\underline{r}^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P}) have a critical value of parameter λ\lambda jumping from \infty to 0 . We respectively denote their critical values as

mdim¯ZB(ε,G,d,):\displaystyle\overline{\mathrm{mdim}}_{Z}^{B}(\varepsilon,G,d,\mathbb{P}): =inf{λ:mB(Z,λ,ε,G,d,)=0}\displaystyle=\inf\{\lambda:m^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P})=0\}
=sup{λ:mB(Z,λ,ε,G,d,)=},\displaystyle=\sup\{\lambda:m^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P})=\infty\},
umdim¯ZB(ε,G,d,):\displaystyle\overline{\mathrm{umdim}}_{Z}^{B}(\varepsilon,G,d,\mathbb{P}): =inf{λ:r¯B(Z,λ,ε,G,d,)=0}\displaystyle=\inf\{\lambda:\overline{r}^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P})=0\}
=sup{λ:r¯B(Z,λ,ε,G,d,)=},\displaystyle=\sup\{\lambda:\overline{r}^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P})=\infty\},
lmdim¯ZB(ε,G,d,):\displaystyle\overline{\mathrm{lmdim}}_{Z}^{B}(\varepsilon,G,d,\mathbb{P}): =inf{λ:r¯B(Z,λ,ε,G,d,)=0}\displaystyle=\inf\{\lambda:\underline{r}^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P})=0\}
=sup{λ:r¯B(Z,λ,ε,G,d,)=}.\displaystyle=\sup\{\lambda:\underline{r}^{B}(Z,\lambda,\varepsilon,G,d,\mathbb{P})=\infty\}.
Theorem 4.7.

For any subset ZXZ\subset X, one has

mdim¯Z(G,d,)\displaystyle\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P}) =lim supε0mdim¯ZB(ε,G,d,)log1ε,\displaystyle=\limsup_{\varepsilon\rightarrow 0}\frac{\overline{\mathrm{mdim}}_{Z}^{B}(\varepsilon,G,d,\mathbb{P})}{\log\frac{1}{\varepsilon}},
umdim¯Z(G,d,)\displaystyle\overline{\mathrm{umdim}}_{Z}(G,d,\mathbb{P}) =lim supε0umdim¯ZB(ε,G,d,)log1ε,\displaystyle=\limsup_{\varepsilon\rightarrow 0}\frac{\overline{\mathrm{umdim}}_{Z}^{B}(\varepsilon,G,d,\mathbb{P})}{\log\frac{1}{\varepsilon}},
lmdim¯Z(G,d,)\displaystyle\overline{\mathrm{lmdim}}_{Z}(G,d,\mathbb{P}) =lim supε0lmdim¯ZB(ε,G,d,)log1ε.\displaystyle=\limsup_{\varepsilon\rightarrow 0}\frac{\overline{\mathrm{lmdim}}_{Z}^{B}(\varepsilon,G,d,\mathbb{P})}{\log\frac{1}{\varepsilon}}.
Proof.

We will prove the first equality; the second and third ones can be proved in a similar fashion. Let 𝒰\mathcal{U} be an open covers of XX with diameter less than ε\varepsilon, and δ(𝒰)\delta(\mathcal{U}) be the Lebesgue number of 𝒰\mathcal{U}. It is easy to see that for every xXx\in X, if xXw𝐔(𝐔)x\in X_{w_{\mathbf{U}}}(\mathbf{U}) for some (w𝐔,𝐔)𝒮(𝒰)(w_{\mathbf{U}},\mathbf{U})\in\mathcal{S}(\mathcal{U}), then

(7) Bw𝐔(x,12δ(𝒰))Xw𝐔(𝐔)Bw𝐔(x,2diam(𝒰)).B_{w_{\mathbf{U}}}(x,\frac{1}{2}\delta(\mathcal{U}))\subset X_{w_{\mathbf{U}}}(\mathbf{U})\subset B_{w_{\mathbf{U}}}(x,2\mathrm{diam}(\mathcal{U})).

It follows that

inf𝒢w(𝒰){(w𝐔,𝐔)𝒢w(𝒰)eλ𝔩(𝐔)}\displaystyle\inf_{\mathcal{G}_{w}(\mathcal{U})}\left\{\sum_{(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}(\mathcal{U})}e^{-\lambda\mathfrak{l}(\mathbf{U})}\right\} MwB(Z,λ,N,2diam(𝒰),G,d)\displaystyle\geq M_{w}^{B}(Z,\lambda,N,2\mathrm{diam}(\mathcal{U}),G,d)
MwB(Z,λ,N,2ε,G,d),for any 𝒰C(ε).\displaystyle\geq M_{w}^{B}(Z,\lambda,N,2\varepsilon,G,d),\quad\text{for any }\mathcal{U}\in C(\varepsilon).

Thus,

(8) Mw(Z,λ,N,ε,G,d)MwB(Z,λ,N,2ε,G,d).M_{w}(Z,\lambda,N,\varepsilon,G,d)\geq M_{w}^{B}(Z,\lambda,N,2\varepsilon,G,d).

On the other hand, consider a open cover 𝒰:={B(x,ε2):xX}\mathcal{U}:=\left\{B(x,\frac{\varepsilon}{2}):x\in X\right\}. It is easy to check that ε2\frac{\varepsilon}{2} is a Lebesgue number of 𝒰\mathcal{U}. It follows from (7) that

(9) MwB(Z,λ,N,ε4,G,d)\displaystyle M_{w}^{B}(Z,\lambda,N,\frac{\varepsilon}{4},G,d) inf𝒢w(𝒰){(w𝐔,𝐔)𝒢w(𝒰)eλ𝔩(𝐔)}\displaystyle\geq\inf_{\mathcal{G}_{w}(\mathcal{U})}\left\{\sum_{(w_{\mathbf{U}},\mathbf{U})\in\mathcal{G}_{w}(\mathcal{U})}e^{-\lambda\mathfrak{l}(\mathbf{U})}\right\}
Mw(Z,λ,N,ε,G,d).\displaystyle\geq M_{w}(Z,\lambda,N,\varepsilon,G,d).

We conclude by (8) and (9) that

mdim¯Z(G,d,)=lim supε0mdim¯ZB(ε,G,d,)log1ε.\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P})=\limsup_{\varepsilon\rightarrow 0}\frac{\overline{\mathrm{mdim}}_{Z}^{B}(\varepsilon,G,d,\mathbb{P})}{\log\frac{1}{\varepsilon}}.

Remark 4.8.

If Y=1\sharp Y=1, then mdim¯Z(G,d,)\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P}) is equal to the upper mean metric dimension of a single map for non-compact subset ZZ defined by Lima and Varandas [MR4308163].

If Y=m\sharp Y=m and \mathbb{P} is generated by the probability vector 𝐩:=(1m,,1m)\mathbf{p}:=\left(\frac{1}{m},\cdots,\frac{1}{m}\right), then the critical values umdim¯Z(ε,G,d,),mdim¯Z(ε,G,d,),lmdim¯Z(ε,G,d,)\overline{\mathrm{umdim}}_{Z}(\varepsilon,G,d,\mathbb{P}),\overline{\mathrm{mdim}}_{Z}(\varepsilon,G,d,\mathbb{P}),\underline{\mathrm{lmdim}}_{Z}(\varepsilon,G,d,\mathbb{P}) are equal to hZ(ε,G),Ch¯Z(ε,G),Ch¯Z(ε,G)h_{Z}(\varepsilon,G),\overline{\mathrm{Ch}}_{Z}(\varepsilon,G),\underline{\mathrm{Ch}}_{Z}(\varepsilon,G), respectively, as defined by Ju et al. [MR3918203].

Ghys, Langevin and Walczak proposed in [MR926526] the topological entropy of a semigroup action GG which differs from the way Bufetov [MR1681003] was defined. For nn\in\mathbb{N}, let

BnG(x,ε):={yX:d(fw¯(x),fw¯(y))<ε for all wYi,0in},B_{n}^{G}(x,\varepsilon):=\left\{y\in X:d(f_{\overline{w}}(x),f_{\overline{w}}(y))<\varepsilon\text{ for all }w\in Y^{i},0\leq i\leq n\right\},

called the nthnth-dynamical ball of center xx and radius ε\varepsilon (see [MR3137474, MR926526] for more details). Rodrigues et al. [WOS:000899898700001] introduced the metric mean dimension of free semigroup actions for non-compact sets in the GLW setting. For all wYnw\in Y^{n}, we have

BnG(x,ε)Bw(x,ε).B_{n}^{G}(x,\varepsilon)\subset B_{w}(x,\varepsilon).

Thus, the metric mean dimension here defined is a lower bound for the dimension given in Rodrigues et al. [WOS:000899898700001].

5. The proofs of main results

5.1. The proof of Theorem 2.3

In this subsection, we obtain lower and upper estimations of the upper metric mean dimension of free semigroup action GG generated by G1={fy:yY}G_{1}=\{f_{y}:y\in Y\} using local metric mean dimensions.

Proof of Theorem 2.3 (i).

Fix γ>0\gamma>0. For each k1k\geq 1, put

Zk:={xZ:lim infnlogsupwYn{μ(Bw(x,ε))}(n+1)log1ε>sγ for all ε(0,1k)}.Z_{k}:=\left\{x\in Z:\liminf_{n\to\infty}\frac{-\log\sup_{w\in Y^{n}}\left\{\mu\left(B_{w}(x,\varepsilon)\right)\right\}}{(n+1)\log\frac{1}{\varepsilon}}>s-\gamma\text{ for all }\varepsilon\in\left(0,\frac{1}{k}\right)\right\}.

Since mdim¯μ(x,G)s\underline{\mathrm{mdim}}_{\mu}(x,G)\geq s for all xZx\in Z, the sequence {Zk}k=1\left\{Z_{k}\right\}_{k=1}^{\infty} increases to ZZ. So by the continuity of the measure, we have

limkμ(Zk)=μ(Z)>0.\lim_{k\to\infty}\mu\left(Z_{k}\right)=\mu(Z)>0.

Then fix some k01k_{0}\geq 1 with μ(Zk0)>12μ(Z)\mu(Z_{k_{0}})>\frac{1}{2}\mu(Z). For each N1N\geq 1, put

Zk0,N:=\displaystyle Z_{k_{0},N}:= {xZk0:lim infnlogsupwYn{μ(Bw(x,ε))}(n+1)log1ε>s+γ\displaystyle\left\{x\in Z_{k_{0}}:\liminf_{n\to\infty}\frac{-\log\sup_{w\in Y^{n}}\left\{\mu\left(B_{w}(x,\varepsilon)\right)\right\}}{(n+1)\log\frac{1}{\varepsilon}}>s+\gamma\right.
 for all nN and ε(0,1k0)}.\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\left.\text{ for all }n\geq N\text{ and }\varepsilon\in\left(0,\frac{1}{k_{0}}\right)\right\}.

Since the sequence {Zk0,N}N=1\left\{Z_{k_{0},N}\right\}_{N=1}^{\infty} increases to Zk0Z_{k_{0}}, we may pick an N1N^{*}\geq 1 such that μ(Zk0,N)>12μ(Zk0)\mu\left(Z_{k_{0},N^{*}}\right)>\frac{1}{2}\mu\left(Z_{k_{0}}\right). Write Z=Zk0,NZ^{*}=Z_{k_{0},N^{*}} and ε=1k0\varepsilon^{*}=\frac{1}{k_{0}}. Then μ(Z)>0\mu(Z^{*})>0 and

(10) supwYn{μ(Bw(x,ε))}<e(sγ)(n+1)log1ε\sup_{w\in Y^{n}}\left\{\mu\left(B_{w}(x,\varepsilon)\right)\right\}<e^{-(s-\gamma)(n+1)\log\frac{1}{\varepsilon}}

for all xZx\in Z^{*}, 0<εε0<\varepsilon\leq\varepsilon^{*} and nNn\geq N^{*}. For any NNN\geq N^{*} and wYNw\in Y^{N}, set a countable cover of ZZ^{*}

w:={Bw(i)(xi,ε2):w(i)YN,NN and w(i)|[1,N]=w},\mathcal{F}_{w}:=\left\{B_{w^{(i)}}\left(x_{i},\frac{\varepsilon}{2}\right):w^{(i)}\in Y^{N^{\prime}},\,N^{\prime}\geq N\text{ and }w^{(i)}|_{[1,N]}=w\right\},

which satisfies

ZBw(i)(xi,ε2), for all i1 and 0<εεZ^{*}\cap B_{w^{(i)}}\left(x_{i},\frac{\varepsilon}{2}\right)\neq\emptyset,\text{ for all }i\geq 1\text{ and }0<\varepsilon\leq\varepsilon^{*}\text{. }

For each i1i\geq 1, there exists an yiZBw(i)(xi,ε2)y_{i}\in Z^{*}\cap B_{w^{(i)}}\left(x_{i},\frac{\varepsilon}{2}\right). By the triangle inequality

Bw(i)(xi,ε2)Bw(i)(yi,ε).B_{w^{(i)}}\left(x_{i},\frac{\varepsilon}{2}\right)\subset B_{w^{(i)}}\left(y_{i},\varepsilon\right).

In combination with (10), this implies

i1e(sγ)(|w(i)|+1)log1εi1μ(Bw(i)(yi,ε))μ(Z)>0.\sum_{i\geq 1}\mathrm{e}^{-(s-\gamma)(|w^{(i)}|+1)\log\frac{1}{\varepsilon}}\geq\sum_{i\geq 1}\mu\left(B_{w^{(i)}}\left(y_{i},\varepsilon\right)\right)\geq\mu\left(Z^{*}\right)>0.

Therefore,

MwB(Z,(sγ)log1ε,N,ε,G,d)μ(Z)>0,M_{w}^{B}\left(Z^{*},(s-\gamma)\log\frac{1}{\varepsilon},N,\varepsilon,G,d\right)\geq\mu\left(Z^{*}\right)>0,

for all wFNw\in F^{N} with NNN\geq N^{*}. Then

MB(Z,(sγ)log1ε,N,ε,G,d,)μ(Z)>0,M^{B}\left(Z^{*},(s-\gamma)\log\frac{1}{\varepsilon},N,\varepsilon,G,d,\mathbb{P}\right)\geq\mu\left(Z^{*}\right)>0,

and consequently

mB(Z,(sγ)log1ε,ε,G,d,)=limNMB(Z,(sγ)log1ε,N,ε,G,d,)>0,m^{B}\left(Z^{*},(s-\gamma)\log\frac{1}{\varepsilon},\varepsilon,G,d,\mathbb{P}\right)=\lim_{N\to\infty}M^{B}\left(Z^{*},(s-\gamma)\log\frac{1}{\varepsilon},N,\varepsilon,G,d,\mathbb{P}\right)>0,

which in turn implies that mdim¯ZB(ε,G,d,)(sγ)log1ε\overline{\mathrm{mdim}}_{Z^{*}}^{B}(\varepsilon,G,d,\mathbb{P})\geq(s-\gamma)\log\frac{1}{\varepsilon}. Dividing both sides of this inequality by log1ε\log\frac{1}{\varepsilon}, and letting ε0\varepsilon\to 0 to take the limitsup, we can get that

mdim¯Z(G,d,)sγ.\overline{\mathrm{mdim}}_{Z^{*}}(G,d,\mathbb{P})\geq s-\gamma.

Hence mdim¯Z(G,d,)s\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P})\geq s since mdim¯Z(G,d,)mdim¯Z(G,d,)\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P})\geq\overline{\mathrm{mdim}}_{Z^{*}}(G,d,\mathbb{P}) and γ\gamma is arbitrary. The proof is completed now. ∎

First, we need the following lemma, which is much like the classical covering lemma, to prove Theorem 2.3 (ii), and the proof follows [MR2412786] and is omitted.

Lemma 5.1.

[MR3918203] Let ε>0\varepsilon>0 and (ε):={Bw(x,ε):xX,wYN,N}\mathcal{B}(\varepsilon):=\left\{B_{w}(x,\varepsilon):x\in X,w\in Y^{N},N\in\mathbb{N}\right\}. For any family (ε)\mathcal{F}\subset\mathcal{B}(\varepsilon), there exists a (not necessarily countable) subfamily 𝒢\mathcal{G}\subset\mathcal{F} consisting of disjoint balls such that

BBBw(x,ε)𝒢Bw(x,3ε).\bigcup_{B\in\mathcal{F}}B\subset\bigcup_{B_{w}(x,\varepsilon)\in\mathcal{G}}B_{w}\left(x,3\varepsilon\right).
Proof of Theorem 2.3 (ii).

Since mdim¯μ(x,G)s\overline{\mathrm{mdim}}_{\mu}(x,G)\leq s for all xZx\in Z, then for all ωY\omega\in Y^{\mathbb{N}} and xZx\in Z,

lim supε0lim infnlogμ(Bω|[1,n](x,ε))(n+1)log1εmdim¯μ(x,G)s.\limsup_{\varepsilon\to 0}\liminf_{n\to\infty}\frac{-\log\mu\left(B_{\omega|_{[1,n]}}(x,\varepsilon)\right)}{(n+1)\log\frac{1}{\varepsilon}}\leq\overline{\mathrm{mdim}}_{\mu}(x,G)\leq s.

Fixed γ>0\gamma>0, NN\in\mathbb{N} and wYNw\in Y^{N}, we have Z=k1ZkZ=\bigcup_{k\geq 1}Z_{k} where

Zk:=\displaystyle Z_{k}:= {xZ:lim infnlogμ(Bω|[1,n](x,ε))(n+1)log1ε<s+γ\displaystyle\left\{x\in Z:\liminf_{n\to\infty}\frac{-\log\mu\left(B_{\omega|_{[1,n]}}(x,\varepsilon)\right)}{(n+1)\log\frac{1}{\varepsilon}}<s+\gamma\right.
for all ε(0,1k) for some ωY with ω|[1,N]=w}.\displaystyle\quad\quad\quad\quad\left.\text{for all }\varepsilon\in\left(0,\frac{1}{k}\right)\text{ for some }\omega\in Y^{\mathbb{N}}\text{ with }\omega|_{[1,N]}=w\right\}.

Now fix k1k\geq 1 and 0<ε<13k0<\varepsilon<\frac{1}{3k}. For each xZkx\in Z_{k}, there exist ωxY\omega_{x}\in Y^{\mathbb{N}} with ωx|[1,N]=w\omega_{x}|_{[1,N]}=w and a strictly increasing sequence {njx}j=1\{n_{j}^{x}\}_{j=1}^{\infty} such that

μ(Bωx|[1,njx](x,ε))e(njx+1)(s+γ)log1ε,for all j1.\mu\left(B_{\omega_{x}|_{[1,n_{j}^{x}]}}(x,\varepsilon)\right)\geq e^{-(n_{j}^{x}+1)(s+\gamma)\log\frac{1}{\varepsilon}},\quad\text{for all }j\geq 1.

So, the set ZkZ_{k} is contained in the union of the sets in the family

w:={Bωx|[1,njx](x,ε):xZk,ωxY,ωx|[1,N]=w,njxN}.\mathcal{F}_{w}:=\left\{B_{\omega_{x}|_{[1,n_{j}^{x}]}}(x,\varepsilon):x\in Z_{k},\omega_{x}\in Y^{\mathbb{N}},\omega_{x}|_{[1,N]}=w,n_{j}^{x}\geq N\right\}.

By Lemma 5.1, there exists a subfamily 𝒢w={Bωxj|[1,nj](xj,ε)}jJw\mathcal{G}_{w}=\{B_{\omega_{x_{j}}|_{[1,n_{j}]}}(x_{j},\varepsilon)\}_{j\in J}\subset\mathcal{F}_{w} consisting of disjoint balls such that for all jJj\in J

ZkjJBωxj|[1,nj](xj,3ε)Z_{k}\subset\bigcup_{j\in J}B_{\omega_{x_{j}}|_{[1,n_{j}]}}(x_{j},3\varepsilon)

and

μ(Bωxj|[1,nj](xj,ε))e(nj+1)(s+γ)log1ε,for all jJ.\mu\left(B_{\omega_{x_{j}}|_{[1,n_{j}]}}(x_{j},\varepsilon)\right)\geq e^{-(n_{j}+1)(s+\gamma)\log\frac{1}{\varepsilon}},\quad\text{for all }j\in J.

The index set JJ is at most countable since μ\mu is a probability measure and 𝒢\mathcal{G} is a disjointed family of sets, each of which has a positive μ\mu-measure. Therefore,

MwB(Zk,(s+γ)log1ε,N,3ε,G,d,)\displaystyle M_{w}^{B}\left(Z_{k},(s+\gamma)\log\frac{1}{\varepsilon},N,3\varepsilon,G,d,\mathbb{P}\right) jJe(nj+1)(s+γ)log1ε\displaystyle\leq\sum_{j\in J}e^{-(n_{j}+1)(s+\gamma)\log\frac{1}{\varepsilon}}
jJμ(Bωxj|[1,nj](xj,ε))1,\displaystyle\leq\sum_{j\in J}\mu\left(B_{\omega_{x_{j}}|_{[1,n_{j}]}}(x_{j},\varepsilon)\right)\leq 1,

where the disjointness of {Bωxj|[1,nj](xj,ε)}jJ\{B_{\omega_{x_{j}}|_{[1,n_{j}]}}(x_{j},\varepsilon)\}_{j\in J} is used in the last inequality. It follows that

MB(Zk,(s+γ)log1ε,N,3ε,G,d,)1,M^{B}\left(Z_{k},(s+\gamma)\log\frac{1}{\varepsilon},N,3\varepsilon,G,d,\mathbb{P}\right)\leq 1,

and consequently

mB(Zk,(s+γ)log1ε,3ε,G,d,)=limNMB(Zk,(s+γ)log1ε,N,3ε,G,d,)1,m^{B}\left(Z_{k},(s+\gamma)\log\frac{1}{\varepsilon},3\varepsilon,G,d,\mathbb{P}\right)=\lim_{N\to\infty}M^{B}\left(Z_{k},(s+\gamma)\log\frac{1}{\varepsilon},N,3\varepsilon,G,d,\mathbb{P}\right)\leq 1,

which in turn implies that mdim¯ZkB(3ε,G,d,)(s+γ)log1ε\overline{\mathrm{mdim}}_{Z_{k}}^{B}(3\varepsilon,G,d,\mathbb{P})\leq(s+\gamma)\log\frac{1}{\varepsilon} for any 0<ε<13k0<\varepsilon<\frac{1}{3k}. Dividing both sides of this inequality by log1ε\log\frac{1}{\varepsilon}, and letting ε0\varepsilon\to 0 to take the limitsup, we can get that

mdim¯Zk(G,d,)s+γ.\overline{\mathrm{mdim}}_{Z_{k}}(G,d,\mathbb{P})\leq s+\gamma.

As the arbitrariness of γ\gamma, we obtain that

mdim¯Zk(G,d,)s, for all k1.\overline{\mathrm{mdim}}_{Z_{k}}(G,d,\mathbb{P})\leq s,\quad\text{ for all }k\geq 1.

By Proposition 4.2 (ii),

mdim¯Z(G,d,)=supk1mdim¯Zk(G,d,)s.\overline{\mathrm{mdim}}_{Z}(G,d,\mathbb{P})=\sup_{k\geq 1}\overline{\mathrm{mdim}}_{Z_{k}}(G,d,\mathbb{P})\leq s.

This finishes the proof of the theorem. ∎

5.2. The Proof of Theorem 2.4

In the subsection, our purpose is to find the relationship between the uu-upper metric mean dimension of free semigroup action GG generated by G1={fy:yY}G_{1}=\{f_{y}:\,y\in Y\} and the uu-upper metric mean dimension of the corresponding skew product transformation FF.

For ZXZ\subset X, wYnw\in Y^{n}, and 0<ε<10<\varepsilon<1, since ΛwB(Z,n,ε,G,d)=r(w,ε,Z,G)\Lambda_{w}^{B}(Z,n,\varepsilon,G,d)=r(w,\varepsilon,Z,G), then

ΛB(Z,n,ε,G,d,)=Yr(ω|[1,n],ε,Z,G)𝑑(ω).\Lambda^{B}(Z,n,\varepsilon,G,d,\mathbb{P})=\int_{Y^{\mathbb{N}}}r(\omega|_{[1,n]},\varepsilon,Z,G)d\mathbb{P}(\omega).

Therefore,

umdim¯Z(G,d,)\displaystyle\overline{\mathrm{umdim}}_{Z}(G,d,\mathbb{P}) =lim supε0lim supnlogYr(ω|[1,n],Z,ε,G)𝑑(ω)nlog1ε\displaystyle=\limsup_{\varepsilon\to 0}\limsup_{n\rightarrow\infty}\frac{\log\int_{Y^{\mathbb{N}}}r(\omega|_{[1,n]},Z,\varepsilon,G)d\mathbb{P}(\omega)}{n\log\frac{1}{\varepsilon}}
=lim supε0lim supnlogYs(ω|[1,n],ε,Z,G)𝑑(ω)nlog1ε.\displaystyle=\limsup_{\varepsilon\to 0}\limsup_{n\rightarrow\infty}\frac{\log\int_{Y^{\mathbb{N}}}s(\omega|_{[1,n]},\varepsilon,Z,G)d\mathbb{P}(\omega)}{n\log\frac{1}{\varepsilon}}.

and

lmdim¯Z(G,d,)\displaystyle\overline{\mathrm{lmdim}}_{Z}(G,d,\mathbb{P}) =lim supε0lim infnlogYr(ω|[1,n],ε,Z,G)𝑑(ω)nlog1ε\displaystyle=\limsup_{\varepsilon\to 0}\liminf_{n\rightarrow\infty}\frac{\log\int_{Y^{\mathbb{N}}}r(\omega|_{[1,n]},\varepsilon,Z,G)d\mathbb{P}(\omega)}{n\log\frac{1}{\varepsilon}}
=lim supε0lim infnlogYs(ω|[1,n],ε,Z,G)𝑑(ω)nlog1ε.\displaystyle=\limsup_{\varepsilon\to 0}\liminf_{n\rightarrow\infty}\frac{\log\int_{Y^{\mathbb{N}}}s(\omega|_{[1,n]},\varepsilon,Z,G)d\mathbb{P}(\omega)}{n\log\frac{1}{\varepsilon}}.
Remark 5.2.

If Z=XZ=X, then

umdim¯X(G,d,)=lmdim¯X(G,d,)=mdim¯M(X,G,d,).\overline{\mathrm{umdim}}_{X}(G,d,\mathbb{P})=\overline{\mathrm{lmdim}}_{X}(G,d,\mathbb{P})=\overline{\mathrm{mdim}}_{M}(X,G,d,\mathbb{P}).

Hence, the uu-upper metric mean dimension and ll-upper metric mean dimension of free semigroup actions on XX coincide with the upper metric mean dimension of free semigroup actions on XX defined by Carvalho et al. [MR4348410].

To prove Theorem 2.4, we give the following two lemmas. The proof of these two lemmas is similar to that of Carvalho et al. [MR4348410]. Therefore, we omit the proof.

Lemma 5.3.

For any subset ZXZ\subset X, if dim¯BY<\overline{\mathrm{dim}}_{B}Y<\infty and νY\nu\in\mathcal{H}_{Y}, then

dim¯B(suppν)+umdim¯Z(G,d,ν)umdim¯Y×Z(F,D).\overline{\mathrm{dim}}_{B}(\mathrm{supp}\nu)+\overline{\mathrm{umdim}}_{Z}\left(G,d,\nu^{\mathbb{N}}\right)\leq\overline{\mathrm{umdim}}_{Y^{\mathbb{N}}\times Z}\left(F,D\right).

Therefore, we establish the proof of Theorem 2.4 (i). Furthermore, we can get the following more general than Theorem 2.4 (ii) similar to Proposition 4.2 in [MR4348410].

Lemma 5.4.

For any subset ZXZ\subset X, if dim¯BY<\overline{\mathrm{dim}}_{B}Y<\infty and νY\nu\in\mathcal{H}_{Y}, then

dim¯B(suppν)+umdim¯Z(G,d,ν)=umdim¯(suppν)×Z(F,D)\overline{\mathrm{dim}}_{B}(\operatorname{supp}\nu)+\overline{\mathrm{umdim}}_{Z}\left(G,d,\nu^{\mathbb{N}}\right)=\overline{\mathrm{umdim}}_{(\mathrm{supp}\nu)^{\mathbb{N}}\times Z}\left(F,D\right)

5.3. The proof of Theorem 2.6

In order to prove Theorem 2.6, we first need the following auxiliary result.

Lemma 5.5.

If GG satisfies the gluing orbit property, then the skew product map FF corresponding to the maps G1={fy:yY}G_{1}=\{f_{y}:y\in Y\} has the gluing orbit property.

Proof.

Let ε>0\varepsilon>0 and set δ=ε2diamY\delta=\frac{\varepsilon}{2\cdot\mathrm{diam}Y}. Then j>logδ2jdiamY<ε\sum_{j>\lceil-\log\delta\rceil}2^{-j}\cdot\mathrm{diam}Y<\varepsilon. Let 𝔭G(δ)\mathfrak{p}_{G}(\delta) be the positive integer in the definition of gluing orbit property of GG (see Definition 3.8). Let (ω1,x1),,(ωk,xk)Y×X(\omega_{1},x_{1}),\cdots,(\omega_{k},x_{k})\in Y^{\mathbb{N}}\times X and n1,,nkn_{1},\cdots,n_{k} be given. Let

w(n1)\displaystyle w_{(n_{1})} :=ω1|[1,n1+logδ],\displaystyle:=\omega_{1}|_{[1,\,n_{1}+\lceil-\log\delta\rceil]},
w(n2)\displaystyle w_{(n_{2})} :=ω2|[1,n2+logδ],\displaystyle:=\omega_{2}|_{[1,\,n_{2}+\lceil-\log\delta\rceil]},
\displaystyle\cdots
w(nk)\displaystyle w_{(n_{k})} :=ωk|[1,nk+logδ].\displaystyle:=\omega_{k}|_{[1,\,n_{k}+\lceil-\log\delta\rceil]}.

Assume that the integers 0p1G,,pk1G𝔭G(δ)0\leq p_{1}^{G},\cdots,p_{k-1}^{G}\leq\mathfrak{p}_{G}(\delta) satisfy the Definition 3.8. Pick

w(p1G)\displaystyle w_{(p_{1}^{G})} :=ω1|[n1+logδ+1,n1+logδ+p1G],\displaystyle:=\omega_{1}|_{[n_{1}+\lceil-\log\delta\rceil+1,\,n_{1}+\lceil-\log\delta\rceil+p_{1}^{G}]},
w(p2G)\displaystyle w_{(p^{G}_{2})} :=ω2|[n2+logδ+1,n2+logδ+p2G],\displaystyle:=\omega_{2}|_{[n_{2}+\lceil-\log\delta\rceil+1,\,n_{2}+\lceil-\log\delta\rceil+p_{2}^{G}]},
\displaystyle\cdots
w(pk1G)\displaystyle w_{(p_{k-1}^{G})} :=ωk1|[nk1+logδ+1,nk1+logδ+pk1G].\displaystyle:=\omega_{k-1}|_{[n_{k-1}+\lceil-\log\delta\rceil+1,\,n_{k-1}+\lceil-\log\delta\rceil+p_{k-1}^{G}]}.

Then there exists yXy\in X such that dw(n1)(y,x1)δd_{w_{(n_{1})}}(y,x_{1})\leq\delta and

dw(nj)(fw(pj1G)w(nj1)w(p1G)w(n1)¯(y),xj)δ,for all 2jk.d_{w_{(n_{j})}}(f_{\overline{w_{(p_{j-1}^{G})}w_{(n_{j-1})}\cdots w_{(p_{1}^{G})}w_{(n_{1})}}}(y),x_{j})\leq\delta,\quad\text{for all }2\leq j\leq k.

Consider

ω:=w(n1)w(p1G)w(n2)w(p2G)w(nk1)w(pk1G)w(nk)Y.\omega:=w_{(n_{1})}w_{(p_{1}^{G})}w_{(n_{2})}w_{(p_{2}^{G})}\cdots w_{(n_{k-1})}w_{(p_{k-1}^{G})}w_{(n_{k})}\cdots\in Y^{\mathbb{N}}.

Let 𝔭F(ε):=𝔭G(δ)+logδ\mathfrak{p}_{F}(\varepsilon):=\mathfrak{p}_{G}(\delta)+\lceil-\log\delta\rceil and

p1F:=p1G+logδ,p2F:=p2G+logδ,,pk1F:=pk1G+logδ.p^{F}_{1}:=p_{1}^{G}+\lceil-\log\delta\rceil,\,p^{F}_{2}:=p_{2}^{G}+\lceil-\log\delta\rceil,\cdots,p^{F}_{k-1}:=p_{k-1}^{G}+\lceil-\log\delta\rceil.

It is easy to see that 0p1F,p2F,,pk1F𝔭F(ε)0\leq p_{1}^{F},p_{2}^{F},\cdots,p_{k-1}^{F}\leq\mathfrak{p}_{F}(\varepsilon). Hence,

D(Fi(ω,y),Fi(ω1,x1))\displaystyle D\left(F^{i}(\omega,y),F^{i}(\omega_{1},x_{1})\right) =max{d(σi(ω),σi(ω1)),d(fω|[1,i]¯(y),fω1|[1,i]¯(x1))}\displaystyle=\max\left\{d^{\prime}(\sigma^{i}(\omega),\sigma^{i}(\omega_{1})),d(f_{\overline{\omega|_{[1,i]}}}(y),f_{\overline{\omega_{1}|_{[1,i]}}}(x_{1}))\right\}
=max{d(σi(ω),σi(ω1)),d(fw(1)|[1,i]¯(y),fw(1)|[1,i]¯(x1))}\displaystyle=\max\left\{d^{\prime}(\sigma^{i}(\omega),\sigma^{i}(\omega_{1})),d(f_{\overline{w_{(1)}|_{[1,i]}}}(y),f_{\overline{w_{(1)}|_{[1,i]}}}(x_{1}))\right\}
ε,\displaystyle\leq\varepsilon,

for all 0in110\leq i\leq n_{1}-1, and

D(FMj1+i(ω,y),Fi(ωj,xj))\displaystyle D\left(F^{M_{j-1}+i}(\omega,y),F^{i}(\omega_{j},x_{j})\right)
=\displaystyle= max{d(σMj1+i(ω),σi(ωj)),d(fω|[1,Mj1+i]¯(y),fωj|[1,i]¯(xj))}\displaystyle\max\left\{d^{\prime}(\sigma^{M_{j-1}+i}(\omega),\sigma^{i}(\omega_{j})),d(f_{\overline{\omega|_{[1,M_{j-1}+i]}}}(y),f_{\overline{\omega_{j}|_{[1,i]}}}(x_{j}))\right\}
=\displaystyle= max{d(σMj1+i(ω),σi(ωj)),d(fw(j)|[1,i]w(pj1G)w(j1)w(p1G)w(1)¯(y),fw(j)|[1,i]¯(xj))}\displaystyle\max\left\{d^{\prime}(\sigma^{M_{j-1}+i}(\omega),\sigma^{i}(\omega_{j})),d(f_{\overline{w_{(j)}|_{[1,i]}w_{(p_{j-1}^{G})}w_{(j-1)}\cdots w_{(p_{1}^{G})}w_{(1)}}}(y),f_{\overline{w_{(j)}|_{[1,i]}}}(x_{j}))\right\}
\displaystyle\leq ε,\displaystyle\varepsilon,

where Mj1:=n1+p1F++nj1+pj1FM_{j-1}:=n_{1}+p_{1}^{F}+\cdots+n_{j-1}+p^{F}_{j-1}, for all 2jk2\leq j\leq k and 0inj10\leq i\leq n_{j}-1. ∎

Proof of Theorem 2.6.

Suppose F:Y×XY×XF:Y^{\mathbb{N}}\times X\rightarrow Y^{\mathbb{N}}\times X is the skew product transformation corresponding to the maps G1={fy:yY}G_{1}=\{f_{y}:y\in Y\}. Define a function ψ:Y×Xd\psi:Y^{\mathbb{N}}\times X\rightarrow\mathbb{R}^{d} such that for any ω=(i1i2)Y\omega=\left(i_{1}i_{2}\cdots\right)\in Y^{\mathbb{N}}, the map ψ\psi satisfies ψ(ω,x)=φ(x)\psi(\omega,x)=\varphi(x), then ψC(Y×X,d)\psi\in C\left(Y^{\mathbb{N}}\times X,\mathbb{R}^{d}\right). Let

Iψ(F):={(ω,x)Y×X:limn1nj=0n1ψ(Fj(ω,x)) does not exist }.I_{\psi}(F):=\left\{(\omega,x)\in Y^{\mathbb{N}}\times X:\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{j=0}^{n-1}\psi\left(F^{j}(\omega,x)\right)\text{ does not exist }\right\}.

From Lemma 5.5, FF has the gluing orbit property. In [MR4308163], the authors proved the following result:

(a) either Iψ(F)=I_{\psi}(F)=\emptyset; or (b) mdim¯Iψ(F)(F,D)=mdim¯M(Y×X,F,D)\overline{\mathrm{mdim}}_{I_{\psi}(F)}(F,D)=\overline{\mathrm{mdim}}_{M}(Y^{\mathbb{N}}\times X,F,D).

We just consider the case of Iφ(G)I_{\varphi}(G)\neq\emptyset. For any (ω,x)Y×X(\omega,x)\in Y^{\mathbb{N}}\times X, it’s easy to see that

ψ(Fj(ω,x))=φ(fω|[1,j]¯(x)),\psi\left(F^{j}(\omega,x)\right)=\varphi\left(f_{\overline{\omega|_{[1,j]}}}(x)\right),

then we have

(11) 1nj=0n1ψ(Fj(ω,x))=1nj=0n1φ(fω|[1,j]¯(x)).\frac{1}{n}\sum_{j=0}^{n-1}\psi\left(F^{j}(\omega,x)\right)=\frac{1}{n}\sum_{j=0}^{n-1}\varphi\left(f_{\overline{\omega|_{[1,j]}}}(x)\right).

For any (ω,x)Iψ(F)(\omega,x)\in I_{\psi}(F) and by (11), we obtain that if

limn1nj=0n1φ(fω|[1,j]¯(x))\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi\left(f_{\overline{\omega|_{[1,j]}}}(x)\right)

does not exist, then xIφ(G)x\in I_{\varphi}(G). So (ω,x)Y×Iφ(G)(\omega,x)\in Y^{\mathbb{N}}\times I_{\varphi}(G). It implies that

Iψ(F)Y×Iφ(G)Y×XI_{\psi}(F)\subseteq Y^{\mathbb{N}}\times I_{\varphi}(G)\subseteq Y^{\mathbb{N}}\times X

By Theorem 2.4, we get

(12) umdim¯Y×Iφ(G)(F,D)=umdim¯Iφ(G)(G,d,).\overline{\mathrm{umdim}}_{Y^{\mathbb{N}}\times I_{\varphi}(G)}(F,D)=\overline{\mathrm{umdim}}_{I_{\varphi}(G)}(G,d,\mathbb{P}).

Since Iψ(F)Y×Iφ(G)I_{\psi}(F)\subseteq Y^{\mathbb{N}}\times I_{\varphi}(G) and (b), we get

(13) mdim¯M(Y×X,F,D)=mdim¯Iψ(F)(F,D)\displaystyle\overline{\mathrm{mdim}}_{M}(Y^{\mathbb{N}}\times X,F,D)=\overline{\mathrm{mdim}}_{I_{\psi}(F)}(F,D) mdim¯Y×Iψ(F)(F,D)\displaystyle\leq\overline{\mathrm{mdim}}_{Y^{\mathbb{N}}\times I_{\psi}(F)}(F,D)
umdim¯Y×Iψ(F)(F,D).\displaystyle\leq\overline{\mathrm{umdim}}_{Y^{\mathbb{N}}\times I_{\psi}(F)}(F,D).

From (1), (12) and (13), we have

dim¯BY+mdim¯M(X,G,d,)\displaystyle\overline{\mathrm{dim}}_{B}Y+\overline{\mathrm{mdim}}_{M}(X,G,d,\mathbb{P}) =mdim¯M(Y×X,F,D)\displaystyle=\overline{\mathrm{mdim}}_{M}(Y^{\mathbb{N}}\times X,F,D)
=mdim¯Iψ(F)(F,D)\displaystyle=\overline{\mathrm{mdim}}_{I_{\psi}(F)}(F,D)
umdim¯Y×Iφ(G)(F,D)\displaystyle\leq\overline{\mathrm{umdim}}_{Y^{\mathbb{N}}\times I_{\varphi}(G)}(F,D)
=dim¯BY+umdim¯Iφ(G)(G,d,),\displaystyle=\overline{\mathrm{dim}}_{B}Y+\overline{\mathrm{umdim}}_{I_{\varphi}(G)}(G,d,\mathbb{P}),

then

umdim¯X(G,d,)=mdim¯M(X,G,d,)umdim¯Iφ(G)(G,d,).\overline{\mathrm{umdim}}_{X}(G,d,\mathbb{P})=\overline{\mathrm{mdim}}_{M}(X,G,d,\mathbb{P})\leq\overline{\mathrm{umdim}}_{I_{\varphi}(G)}(G,d,\mathbb{P}).

Obviously,

umdim¯Iφ(G)(G,d,)mdim¯M(X,G,d,)=umdim¯X(G,d,).\overline{\mathrm{umdim}}_{I_{\varphi}(G)}(G,d,\mathbb{P})\leq\overline{\mathrm{mdim}}_{M}(X,G,d,\mathbb{P})=\overline{\mathrm{umdim}}_{X}(G,d,\mathbb{P}).

Hence,

umdim¯Iφ(G)(G,d,)=mdim¯M(X,G,d,)=umdim¯X(G,d,).\overline{\mathrm{umdim}}_{I_{\varphi}(G)}(G,d,\mathbb{P})=\overline{\mathrm{mdim}}_{M}(X,G,d,\mathbb{P})=\overline{\mathrm{umdim}}_{X}(G,d,\mathbb{P}).

Remark 5.6.

A similar result of the upper metric mean dimension of free semigroup actions for the whale phase in the GLW setting was obtained by Rodrigues et al. [WOS:000899898700001].

References