This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Metamorphism as a covariant transform
for the SSR group

Taghreed Alqurashi and Vladimir V. Kisil School of Mathematics
University of Leeds
Leeds LS2 9JT
UK
Mathematics Department
Albaha University
Faculty of Science in Almakhwah
Saudi Arabia
[email protected] [email protected] http://www1.maths.leeds.ac.uk/~kisilv/
Abstract.

Metamorphism is a recently introduced integral transform, which is useful in solving partial differential equations. Basic properties of metamorphism can be verified by direct calculations. In this paper we present metamorphism as a sort of covariant transform and derive its most important features in this way. Our main result is a characterisation of metamorphism’s image space. Reading this paper does not require advanced knowledge of group representations or theory of covariant transform.

Key words and phrases:
metamorphism, covariant transform, integral transform.
2010 Mathematics Subject Classification:
Primary 35A22; Secondary 20C35, 22E70, 35C15.
On leave from Odessa University.

1. Introduction

Metamorphism is the integral transform f(u)f(x,y,b,r)f(u)\mapsto\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}(x,y,b,r) defined by [Kisil21c, Kisil21b]:

(1) f(x,y,b,r)=2r24f(u)exp(π((r2ib)(uy)2+2i(uy)x))du.\begin{split}\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}(x,y,b,r)&=\sqrt[4]{2r^{2}}\int_{\mathbb{R}{}}f(u)\,\exp\left(-\pi\hslash\left((r^{2}-\mathrm{i}b)(u-y)^{2}+2\mathrm{i}(u-y)x\right)\right)\,\mathrm{d}u\,.\end{split}

Particular values of f(x,y,b,r)\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}(x,y,b,r) encompass many important integral transforms of f(u)f(u), for example:

  • f(x,0,0,+0)\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}(x,0,0,+0) is the Fourier transform.

  • f(0,y,0,r)\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}(0,y,0,r) is the Gauss–Weierstrass(–Hille) transform [Zemanian67a].

  • f(x,y,0,1)\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}(x,y,0,1) is the Fock–Segal–Bargmann (FSB) transform [Folland89]*§ 1.6.

  • f(x,y,0,r)\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}(x,y,0,r) is the Fourier–Bros–Iagolnitzer (FBI) transform [Folland89]*§ 3.3.

  • f(x,y,b,1)\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}(x,y,b,1) was used in [AlmalkiKisil18a, AlmalkiKisil19a] to treat the Schrödinger equation.

  • f(0,0,b,r)\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}(0,0,b,r) is a sort of wavelet transform for the affine group [AliAntGaz14a]*Ch. 12.

  • a variant of quadratic Fourier (or Fresnel–Fourier [Osipov92a], or integral Gauss [Neretin11a], or linear canonical [HealyKutayOzaktasSheridan16], etc.) transform.

However, the metamorphism is more than just a formal recombination of classical transforms. For example, it can be used as a sort of transmutation [KravchenkoSitnik20a, ShishkinaSitnik20a] to reduce the order of a differential equations [Kisil21c]: e.g. a second order differential equation can be transformed to a first order admitting a straightforward solution and transparent geometrical structure [AlmalkiKisil18a, AlmalkiKisil19a].

Basic properties of the metamorphism can be verified by direct calculations—the path which was intentionally chosen to reduce the amount of prerequisites in the introductory paper [Kisil21c]. Yet, a genuine origin of metamorphism is a covariant transform related to the Schrödinger–Jacobi group [Folland89, Berndt07a] as was already presented in the Jupyter notebooks [Kisil21b] with respective symbolic computations.

This paper systematically utilises the group theory and covariant transform technique to reinstall the metamorphism transform from a scratch. Furthermore, some sister integral transforms are appearing as well. The paper can be seen as a readable narrative to a Jupyter notebook [Kisil21b], which will be frequently referred here to replace some boring calculations. Our main result is a characterisation of the metamorphism image space in Thm. 5.5.

We made this paper as accessible as possible. Its reading does not require an advanced knowledge of group representations and the theory of covariant transform. We provide most of required information with further references to more detailed presentations if needed.

In Sect. 2 we introduce several groups: the Heisenberg, SL2()\mathrm{SL}_{2}(\mathbb{R}{}), affine, Schrödinger, and finally our main object—the group SSR. Essential relations between those groups are presented as well. We describe some (not all) induced representations of the group SSR in Sect. 3. The corresponding covariant transform and its properties are described in Sect. 4. Finally, we connect a selection of a fiducial vector with the properties of the image space of covariant transform in Sect. 5. In particular, the metamorphism is defined as the covariant transform with a remarkable fiducial vector—the Gaussian. Covariant transforms with some other mentioned fiducial vectors are still awaiting their investigation.

2. Heisenberg, SL2()\mathrm{SL}_{2}(\mathbb{R}{}), affine, Schrödinger and SSR groups

We start from a brief account of groups involved in the consideration. An element of the one-dimensional Heisenberg group \mathbb{H} [Folland89, Kisil10a, Kisil19b] will be denoted by (s,x,y)3(s,x,y)\in\mathbb{R}^{3}{}. The group law on \mathbb{H} is defined as follows:

(s,x,y)(s,x,y)=(s+s+12ω(x,y;x,y),x+x,y+y),(s,x,y)\cdot(s^{\prime},\,x^{\prime},\,y^{\prime})=(s+s^{\prime}+{\textstyle\frac{1}{2}}{\omega}(x,y;x^{\prime},y^{\prime}),\,x+\,x^{\prime},\,y+\,y^{\prime}),

where

(2) ω(x,y;x,y)=xyxy{\omega}(x,y;x^{\prime},y^{\prime})=xy^{\prime}-x^{\prime}y

is the symplectic form [Arnold91]*§41 on 2\mathbb{R}^{2}{}. The identity element in \mathbb{H}{} is (0,0,0)(0,0,0), and the inverse of (s,x,y)(s,x,y) is (s,x,y)(-s,-x,-y).

There is an alternative form of \mathbb{H}{} called the polarised Heisenberg group p\mathbb{H}_{p}{} with the group law \citelist[Folland89]*§1.2 [AlameerKisil21a]

(s,x,y)(s,x,y)=(s+s+xy,x+x,y+y).(s,\,x,\,y)\cdot(s^{\prime},\,x^{\prime},\,y^{\prime})=(\,s+s^{\prime}+xy^{\prime},\,x+x^{\prime},\,y+y^{\prime}).

and the group isomorphism θ:p\theta:\mathbb{H}{}\rightarrow\mathbb{H}_{p}{} given by

Θ:(s,x,y)(s+12xy,x,y).\Theta:(s,x,y)\rightarrow(s+{\textstyle\frac{1}{2}}xy,\,x,\,y).

The special linear group SL2()\mathrm{SL}_{2}(\mathbb{R}{}) is the group of 2×22\times 2 matrices with real entries and the unit determinant [Lang85, Kisil12a]. The group law on SL2()\mathrm{SL}_{2}(\mathbb{R}{}) coincides with the matrix multiplication. A matrix ASL2()A\in\mathrm{SL}_{2}(\mathbb{R}{}) acts on vectors in 2\mathbb{R}^{2}{} by a symplectomorphism, i.e. an automorphisms of the symplectic form ω\omega (2):

ω(A(x,y);A(x,y))=ω(x,y;x,y).\omega(A(x,y);A(x^{\prime},y^{\prime}))=\omega(x,y;x^{\prime},y^{\prime}).

Therefore, the transformation θA:\theta_{A}:\mathbb{H}{}\rightarrow\mathbb{H}{}

θA:(s,x,y)(s,A(x,y))\theta_{A}:(s,x,y)\rightarrow(s,A(x,y))

is an automorphism of \mathbb{H}{} [Folland89]*§1.2. The corresponding polarised automorphism θAp=ΘθAΘ1:pp\theta_{A}^{p}=\Theta\circ\theta_{A}\circ\Theta^{-1}:\mathbb{H}_{p}{}\rightarrow\mathbb{H}_{p}{} is

θAP(s,x,y)=(s+12(acx2+2bcxy+bdy2),ax+by,cx+dy),\theta_{A}^{P}(s,x,y)=\left(s+{\textstyle\frac{1}{2}}(acx^{2}+2bcxy+bdy^{2}),ax+by,cx+dy\right),

where A=(abcd)A=\begin{pmatrix}a&b\\ c&d\end{pmatrix}.

Upper-triangular matrices in SL2()\mathrm{SL}_{2}(\mathbb{R}{}) with positive diagonal entries form a subgroup 𝔸\mathbb{A}{}. We parameterise it by pairs (b,r)+2(b,r)\in\mathbb{R}^{2}_{+}{} with bb\in\mathbb{R}{} and r>0r>0 as follows:

(3) (1b01)(r001/r)=(rb/r01/r).\begin{pmatrix}1&b\\ 0&1\end{pmatrix}\,\begin{pmatrix}r&0\\ 0&1/r\end{pmatrix}\,=\begin{pmatrix}r&b/r\\ 0&1/r\end{pmatrix}.

The subgroup is isomorphic to the affine group of the real line also known as the ax+bax+b group [Kisil12d].

For a group acting by automorphism on another group we can define their semi-direct product. The model case is the affine group itself, where dilations act as automorphisms of shifts. Formally, let GG and HH be two groups and assume θ:HAut(G)\theta:H\rightarrow Aut(G), where θh\theta_{h} is an automorphism of GG corresponding to hHh\in H. The semi-direct product of GG by HH denoted by GHG\rtimes H is the Cartesian product of G×HG\times H with the group law

(4) (g1,h1)(g2,h2)=(g1θh1(g2),h1h2),(g_{1},h_{1})\,\cdot(g_{2},h_{2})=(g_{1}\theta_{h_{1}}(g_{2}),h_{1}h_{2}),

where (g1,h1),(g2,h2)G×H(g_{1},h_{1}),\,(g_{2},h_{2})\in G\times H.

The semidirect product of the Heisenberg group and SL2()\mathrm{SL}_{2}(\mathbb{R}{}) is called Schrödinger group 𝕊\mathbb{S}, which is the group of symmetries of the Schrödinger equation [Niederer72a, KalninsMiller74a] and parabolic equations [Wolf76a] with applications in optics [ATorre08a, ATorre10a]. In the context of number theory it is also known as the Jacobi group [Berndt07a].

Our main object here is the group 𝔾p𝔸\mathbb{G}{}\coloneqq\mathbb{H}_{p}{}\rtimes\mathbb{A}{}, which is the semi-direct product of the Heisenberg group p\mathbb{H}_{p}{} and the affine group 𝔸\mathbb{A}{} (3) acting by symplectic automorphism of p\mathbb{H}_{p}{}. Thus, 𝔾\mathbb{G}{} is a subgroup of the Schrödinger group. It can be also called shear-squeeze-rotation (SSR) group [Kisil21b] by three types of transformations of Gaussian coherent states. A subgroup of 𝔾\mathbb{G}{} without squeeze (i.e. r=1r=1 in (3)) is called the shear group and it was used in a similar context in [AlmalkiKisil18a, AlmalkiKisil19a]. This nilpotent step 3 group is also known as the Engel group [Chatzakou22a].

Let (s,x,y,b,r)𝔾(s,x,y,b,r)\in\mathbb{G}{} where (s,x,y)p(s,x,y)\in\mathbb{H}_{p}{} and (b,r)𝔸(b,r)\in\mathbb{A}. Explicitly the group law (4) on 𝔾\mathbb{G}{} is [Kisil21b]

(s,x,y,b,r)(s,x,y,b,r)\displaystyle(s,x,y,b,r)\cdot(s^{\prime},x^{\prime},y^{\prime},b^{\prime},r^{\prime}) =(s+s+xr1y12b(r1y)2,\displaystyle=(s+s^{\prime}+x{r}^{-1}y^{\prime}-{\textstyle\frac{1}{2}}\,b\,{({r}^{-1}{y^{\prime}})}^{2},
x+rxbr1y,y+r1y,b+br2,rr).\displaystyle x+rx^{\prime}-b{r}^{-1}y^{\prime},\,y+{r}^{-1}y^{\prime},\,b+b^{\prime}{r}^{2},\,rr^{\prime}).

There is a convenient matrix realisation of 𝔾\mathbb{G}{} [Kisil21b]

(s,x,y,b,r)=(1yr(x+by)/r2syx0rb/rx001/ry0001).(s,x,y,b,r)=\begin{pmatrix}1&-yr&({x+by})/{r}&2s-yx\\ 0&r&-b/r&x\\ 0&0&1/r&y\\ 0&0&0&1\end{pmatrix}.

The corresponding solvable Lie algebra 𝔤\mathfrak{g} has a basis {S,X,Y,B,R}\{S,X,Y,B,R\}, with the following non-vanishing commutators:

(5) [X,Y]=S,[X,R]=X,[Y,R]=Y,[Y,B]=X,[R,B]=2B.[X,Y]=S,\quad[X,R]=-X,\quad[Y,R]=Y,\quad[Y,B]=X,\quad[R,B]=2B.

Clearly, the group 𝔾\mathbb{G}{} is non-commutative.

3. Induced representations the group 𝔾\mathbb{G}{}

In this section we construct several induced representations of the group 𝔾\mathbb{G}{}, which are required for our study. First, we recall the general scheme of induced representations. For simplicity, only inductions from characters of subgroups are considered and it is sufficient for our present purposes. For further details and applications of induced representations see [AliAntGaz14a, Folland16a, Mensky76, Mackey70a, Kisil09e].

3.1. Induced representation from a subgroup character

Let GG be a group and HH be a subgroup of GG. The space X=G/HX=G/H of the left cosets gHgH of the subgroup HH is given by the equivalence relation: ggg\sim g^{\prime} if there exists hHh\in H such that g=ghg=g^{\prime}h. We define the natural projection 𝐩:GX\mathbf{p}:G\rightarrow X such that 𝐩(g)=gH\mathbf{p}(g)=gH.

Let us fix a section 𝐬:XG\mathbf{s}:X\rightarrow G such that 𝐩𝐬=I\mathbf{p}\circ\mathbf{s}=I, where II is the identity map on XX. An associated map 𝐫:GH\mathbf{r}:G\rightarrow H by

(6) 𝐫(g)=𝐬(𝐩(g))1g.\mathbf{r}(g)={\mathbf{s}(\mathbf{p}(g))}^{-1}\cdot g.

provides the unique decomposition of the form [Kirillov76]*§13.2

g=𝐬(𝐩(g))𝐫(g), for any gG.g=\mathbf{s}(\mathbf{p}(g))\cdot\mathbf{r}(g),\qquad\text{ for any }g\in G.

Thus, XX is a left homogeneous space with the GG action as follows:

(7) g1:xg1x=𝐩(g1𝐬(x)),g^{-1}:x\rightarrow g^{-1}\cdot x=\mathbf{p}\,(g^{-1}*\mathbf{s}(x)),

where * is the multiplication of GG and \cdot is the action of GG on XX from the left.

Suppose χ:H𝕋\chi:H\rightarrow\mathbb{T}{} be a character of the subgroup HH. Let 𝖫2χ(G)\mathsf{L}_{2}^{\chi}{}(G) be a Hilbert space of functions on GG with a GG-invariant inner product and the HH-covariance property [Kisil17a],

(8) F(gh)=χ¯(h)F(g), for all gG,hH.F(gh)=\bar{\chi}(h)\,F(g),\qquad\text{ for all }g\in G,\ h\in H.

The space 𝖫2χ(G)\mathsf{L}_{2}^{\chi}{}(G) is invariant under the left regular representation by GG-shifts

(9) Λ(g):F(g)F(g1g), where g,gG.\Lambda(g):F(g^{\prime})\rightarrow F(g^{-1}g^{\prime}),\quad\text{ where }g,g^{\prime}\in G.

The restriction of Λ\Lambda to the space 𝖫2χ(G)\mathsf{L}_{2}^{\chi}{}(G) is called the induced representation from the character χ\chi.

An equivalent form of the induced representation can be constructed as follows [Kirillov76, Kisil17a]. We define a lifting χ:𝖫2(X)𝖫2χ(G)\mathcal{L}^{\chi}:\mathsf{L}_{2}{}(X)\rightarrow\mathsf{L}_{2}^{\chi}{}(G) as the map

(10) [χf](g)=χ¯(𝐫(g))f(𝐩(g)).[\mathcal{L}^{\chi}f](g)=\overline{\chi}(\mathbf{r}(g))\,f(\mathbf{p}(g)).

The pulling 𝒫:𝖫2(G)χ𝖫2(X)\mathcal{P}:\mathsf{L}_{2}{}^{\chi}(G)\rightarrow\mathsf{L}_{2}{}(X) given by

(11) [𝒫F](x)=F(𝐬(x)).[\mathcal{P}F](x)=F(\mathbf{s}(x)).

Clearly 𝒫χ=I\mathcal{P}\circ\mathcal{L}^{\chi}=I on 𝖫2(X)\mathsf{L}_{2}{}(X). From (10), (11), the induced representation ρ:𝖫2(X)𝖫2(X)\rho:\mathsf{L}_{2}{}(X)\rightarrow\mathsf{L}_{2}{}(X) is defined by the formula:

ρχ(g)=𝒫Λ(g)χ,\rho_{\chi}(g)=\mathcal{P}\circ\Lambda(g)\circ\mathcal{L}^{\chi},

where Λ(g)\Lambda(g) is the left regular representation (9). The representation ρχ\rho_{\chi} explicitly is

(12) [ρχ(g)](x)=χ¯(𝐫(g1𝐬(x)))f(g1x),[\rho_{\chi}(g)](x)=\bar{\chi}(\mathbf{r}(g^{-1}\,\mathbf{s}(x)))\,f(g^{-1}\cdot x),

where gGg\in G and xXx\in X and g1xg^{-1}\cdot x is defined by (7). For a GG-invariant measure μ\mu on XX the representation (12) is unitary on the space 𝖫2(X,μ)\mathsf{L}_{2}{}(X,\mu)

3.2. Derived representations

In this subsection GG is a Lie group with the corresponding Lie algebra 𝔤\mathfrak{g}. Let ρ\rho be a representation of GG in a Hilbert space \mathcal{H}, the derived representation of X𝔤X\in\mathfrak{g} denoted as dρX\mathrm{d}\rho^{X} is given by

(13) dρXϕ=ddtρ(exp(tX))ϕ|t=0,\mathrm{d}{\rho}^{X}\phi=\left.\frac{\mathrm{d}\ }{\mathrm{d}t}\rho(\exp(tX))\phi\right|_{t=0},

where the vector ϕ\phi\in\mathcal{H} is such that the vector-function gρ(g)ϕg\rightarrow\rho(g)\phi is infinitely-differentiable for any gGg\in G. These vectors are called smooth and constitute a linear subspace, denoted 𝒟\mathcal{D}^{\infty}, of \mathcal{H} which is dense in \mathcal{H}. It is easy to show that 𝒟\mathcal{D}^{\infty} is invariant under ρ(g)\rho(g) [Lang85]*§6.1. If \mathcal{H} is 𝖫2(n)\mathsf{L}_{2}{}(\mathbb{R}^{n}{}) then the space DD^{\infty} contains the Schwartz space, which is a dense subspace of 𝖫2(n)\mathsf{L}_{2}{}(\mathbb{R}^{n}{}).

Also, we define the Lie derivative X\mathcal{L}^{X} for X𝔤X\in\mathfrak{g} as the derived right regular representation [Lang85]*§6.1, that is

(14) [XF](g)=ddtF(gexp(tX))|t=0,[\mathcal{L}^{X}F](g)=\left.\frac{d\ }{dt}F(g\,\exp(tX))\right|_{t=0},

for any differentiable function FF on GG.

3.3. Left regular representation of group 𝔾\mathbb{G}{}

The left and right invariant Haar measures of the group 𝔾\mathbb{G}{} are given by

dl(s,x,y,b,r)=dsdxdydbdrr3,\mathrm{d}_{l}(s,x,y,b,r)=\mathrm{d}s\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}b\,\frac{\mathrm{d}r}{{r}^{3}},
dr(s,x,y,b,r)=dsdxdydbdrr.\mathrm{d}_{r}(s,x,y,b,r)=\mathrm{d}s\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}b\,\frac{\mathrm{d}r}{r}.

Thus, the group 𝔾\mathbb{G}{} is non-unimodular with the modular function Δ(s,x,y,b,r)=1r2\Delta(s,x,y,b,r)=\textstyle\frac{1}{r^{2}}.

We extend the action (9) of 𝔾\mathbb{G}{} on itself by left shifts to the left regular unitary representation on the linear space of functions 𝖫2(𝔾,dl)\mathsf{L}_{2}{}(\mathbb{G}{},d_{l}):

(15) [Λ(s,x,y,b,r)F](s,x,y,b,r)=F(ss+x(yy)12b(yy)2,1r(xx)+br(yy),r(yy),1r2(bb),rr),\begin{split}\@ADDCLASS{ltx_eqn_lefteqn}$\displaystyle[\Lambda(s,x,y,b,r)F](s^{\prime},x^{\prime},y^{\prime},b^{\prime},r^{\prime})=F(s^{\prime}-s+x(y^{\prime}-y)-{\textstyle\frac{1}{2}}b{(y^{\prime}-y)}^{2},$\mbox{}\hfil&\qquad{}\\ &\qquad\qquad\qquad\qquad\qquad\frac{1}{r}(x^{\prime}-x)+\frac{b}{r}(y^{\prime}-y),\,r(y^{\prime}-y),\,\frac{1}{r^{2}}(b^{\prime}-b),\,\frac{r^{\prime}}{r}),\end{split}

where (s,x,y,b,r)(s,x,y,b,r), (s,x,y,b,r)𝔾(s^{\prime},x^{\prime},y^{\prime},b^{\prime},r^{\prime})\in\mathbb{G}{}.

This representation is reducible, i.e. there are Λ\Lambda-invariant proper subspaces in 𝖫2(𝔾,dl)\mathsf{L}_{2}{}(\mathbb{G}{},d_{l}). In particular, many types of induced representations of 𝔾\mathbb{G}{} are realised as restrictions of the left regular representations (15) to some subspaces with a covariance property (8). We describe here two of them—called the quasi-regular type representation and the Schrödinger type representation—together with equivalent forms on the respective homogeneous spaces.

3.4. Quasi-regular representation of the group 𝔾\mathbb{G}{}

Let

Z={(s,0,0,0,1),s}Z=\{(s,0,0,0,1),s\in\mathbb{R}{}\}

be the centre of the group 𝔾\mathbb{G}{}. The space of left cosets X=𝔾/ZX=\mathbb{G}{}/Z can be parametrised by

+4={(x,y,b,r)4:r>0}.\mathbb{R}^{4}_{+}{}=\{(x,y,b,r)\in\mathbb{R}^{4}{}:\ r>0\}.

Consider the natural projection and the section maps

𝐩(s,x,y,b,r)\displaystyle\mathbf{p}(s,x,y,b,r) (x,y,b,r),\displaystyle\rightarrow(x,y,b,r),
(16) 𝐬(x,y,b,r)\displaystyle\mathbf{s}(x,y,b,r) (0,x,y,b,r).\displaystyle\rightarrow(0,x,y,b,r).

We calculate the respective map 𝐫\mathbf{r} (6) as follows

𝐫(s,x,y,b,r)=𝐬(𝐩(s,x,y,b,r))1(s,x,y,b,r)=(s,0,0,0,1).\begin{split}\mathbf{r}(s,x,y,b,r)&=\mathbf{s}(\mathbf{p}(s,x,y,b,r))^{-1}(s,x,y,b,r)\\ &=(s,0,0,0,1).\end{split}

Let χ:Z𝕋\chi_{\hbar}:Z\rightarrow\mathbb{T}{} be an unitary character of ZZ:

χ(s,0,0,0,1)=e2πis,\chi_{\hbar}(s,0,0,0,1)=\mathrm{e}^{2\pi\mathrm{i}\hbar s},

defined by a parameter \hbar\in\mathbb{R}{}. In quantum mechanical framework \hbar is naturally associated to the Planck constant [Folland89, Kisil02e, Kisil09e, Kisil17a]. The corresponding induced representation ρ~:𝖫2(+4)𝖫2(+4)\tilde{\rho}:\mathsf{L}_{2}{}(\mathbb{R}^{4}_{+}{})\rightarrow\mathsf{L}_{2}{}(\mathbb{R}^{4}_{+}{}) is [Kisil21b]

(17) [ρ~(s,x,y,b,r)f](x,y,b,r)=e2πi(s+x(yy)b(yy)2/2)×f(1r(xx)+br(yy),r(yy),1r2(bb),rr).\begin{split}\@ADDCLASS{ltx_eqn_lefteqn}$\displaystyle[\tilde{\rho}(s,x,y,b,r)f](x^{\prime},y^{\prime},b^{\prime},r^{\prime})=\mathrm{e}^{2\pi\mathrm{i}\hbar(s+x(y^{\prime}-y)-b{(y^{\prime}-y)}^{2}/2)}$\mbox{}\hfil&\qquad\\ &\qquad\qquad\qquad\qquad{}\times f(\textstyle\frac{1}{r}(x^{\prime}-x)+\textstyle\frac{b}{r}(y^{\prime}-y),r(y^{\prime}-y),\textstyle\frac{1}{r^{2}}(b^{\prime}-b),\textstyle\frac{r^{\prime}}{r}).\end{split}

It is called the quasi-regular type representation on 𝖫2(+4)\mathsf{L}_{2}{}(\mathbb{R}^{4}_{+}{}). One can check that ρ~\tilde{\rho} is unitary and we will discuss its reducibility below.

3.5. Schrödinger type representation of the group 𝔾\mathbb{G}{}

Let

H1={(s,x,0,b,r),s,x,b,r+}H_{1}=\{(s,x,0,b,r),\,s,\,x,b\in\mathbb{R}{},r\in\mathbb{R_{+}}\}

be a subgroup of 𝔾\mathbb{G}{}, which is a semidirect product of a maximal abelian subgroup of \mathbb{H}{} and the affine group 𝔸\mathbb{A}{}. The space of the left cosets 𝔾/H1\mathbb{G}{}/H_{1} is parameterized by \mathbb{R}{}. We define the natural projection 𝐩:𝔾\mathbf{p}:\mathbb{G}{}\rightarrow\mathbb{R}{} and a section map 𝐬:𝔾\mathbf{s}:\mathbb{R}{}\rightarrow\mathbb{G}{} by

𝐩(s,x,y,b,r)\displaystyle\mathbf{p}(s,x,y,b,r) =y,\displaystyle=y,
𝐬(y)\displaystyle\mathbf{s}(y) =(0,0,y,0,1).\displaystyle=(0,0,y,0,1).

The respective map 𝐫\mathbf{r} (6) is

𝐫(s,x,y,b,r)=𝐬(𝐩(s,x,y,b,r))1(s,x,y,b,r)=(s,x,0,b,r).\begin{split}\mathbf{r}(s,x,y,b,r)&=\mathbf{s}(\mathbf{p}(s,x,y,b,r))^{-1}(s,x,y,b,r)\\ &=(s,x,0,b,r).\end{split}

Let χλ:H1𝕋{\chi}_{\hbar\lambda}:H_{1}\rightarrow\mathbb{T}{} be a character H1H_{1}

χλ(s,x,0,b,r)=e2πisrλ+12,\chi_{\hbar\lambda}(s,x,0,b,r)=\mathrm{e}^{2\pi\mathrm{i}\hbar s}\,r^{\lambda+\frac{1}{2}},

where \hbar\in\mathbb{R}{}, λi\lambda\in i{\mathbb{R}{}}. For simplicity, we will consider here the case of λ=0\lambda=0 only. The induced representation on 𝖫2()\mathsf{L}_{2}{}(\mathbb{R}{}) is [Kisil21b]

(18) [ρ(s,x,y,b,r)f](u)=re2πi(s+x(uy)b(uy)2/2)f(r(uy)).[\rho(s,x,y,b,r)f](u)=\sqrt{r}\,\mathrm{e}^{2\pi\mathrm{i}\hbar(s+x(u-y)-b{(u-y)}^{2}/2)}\,f(r\,(u-y)).
Remark 3.1.

The structure of this representation can be illuminated through its restrictions to the following subgroups:

  • The affine group 𝔸\mathbb{A}, i.e. the substitution s=x=y=0s=x=y=0. The restriction is the co-adjoint representation of the affine group \citelist[Folland16a]*§6.7.1 [Kisil12d]:

    [ρ(0,0,0,b,r)f](u)=reπibu2f(ru).[\rho(0,0,0,b,r)f](u)=\sqrt{r}\,\mathrm{e}^{\pi\mathrm{i}\hbar\,b\,{u}^{2}}\,f(r\,u).

    Through the Fourier transform it is unitary equivalent to the quasi-regular representation of the affine group, which is the keystone of the wavelet theory and numerous results in complex and harmonic analysis [Kisil12d].

  • The Heisenberg group, that is r=1r=1 and b=0b=0. The restriction is the celebrated Schrödinger representation [Folland89, Kisil17a]:

    [ρ(s,x,y,0,1)f](u)=e2πi(s+x(uy))f(uy),[\rho(s,x,y,0,1)f](u)=\mathrm{e}^{2\pi\mathrm{i}\hbar(s+x(u-y))}\,f(u-y),

    which plays the crucial rôle in quantum theory.

  • The third subgroup is the Gabor group with b=0b=0. The representation is

    [ρ(s,x,y,r,0)f](u)=e2πi(s+x(uy))r12f(r(uy)).[\rho(s,x,y,r,0)f](u)=\mathrm{e}^{2\pi\mathrm{i}\hbar(s+x(u-y))}r^{\frac{1}{2}}\,f(r\,(u-y)).

    It is involved in Gabor analysis and Fourier–Bros–Iagolnitzer (FBI) transform [Folland89]*§3.3.

  • Finally, the shear group corresponding to r=1r=1. The restriction is

    [ρ(s,x,y,1,b)f](u)=e2πi(s+x(uy)b(uy)2/2)f(uy),[\rho(s,x,y,1,b)f](u)=\mathrm{e}^{2\pi\mathrm{i}\hbar(s+x(u-y)-b{(u-y)}^{2}/2)}f(u-y),

    It was employed in [AlmalkiKisil18a, AlmalkiKisil19a] to reduce certain quantum Hamiltonians to first-order differential operators.

In view of the mentioned connections, we call representation (18) as Schrödinger type representation. It is irreducible since its restriction to the Heisenberg group coincides with the irreducible Schrödinger representation [Folland89, Kisil17a].

The derived representation (13) of the Schrödinger type representation (18) is

dρX\displaystyle\mathrm{d}{\rho}^{X} =2πiuI,\displaystyle=2\pi\mathrm{i}\hbar uI, dρB\displaystyle\mathrm{d}{\rho}^{B} =πiu2I,\displaystyle=-\pi\mathrm{i}\hbar u^{2}I,
(19) dρY\displaystyle\mathrm{d}{\rho}^{Y} =ddu,\displaystyle=-\frac{\mathrm{d}\ }{\mathrm{d}u}, dρR\displaystyle\mathrm{d}{\rho}^{R} =12I+uddu,\displaystyle={\textstyle\frac{1}{2}}I+u\,\frac{\mathrm{d}\ }{\mathrm{d}u},
dρS\displaystyle\mathrm{d}{\rho}^{S} =2πiI.\displaystyle=2\pi\mathrm{i}\hbar I.

It is easy to check that the above sets of operators (19) represents commutators (5) of the Lie algebra 𝔤\mathfrak{g} of the group 𝔾\mathbb{G}{}.

4. Covariant transform

The covariant transform plays a significant rôle in various fields of mathematics and its applications [Perelomov86, Berezin86, AliAntGaz14a, Folland89, Kisil11c, Kisil17a, Kisil12d]. We present here some fundamental properties of the covariant transform which have implications for the metamorphism transform.

4.1. Induced covariant transform

Let GG be a group and let ρ\rho be a unitary irreducible representation of the group GG in a Hilbert space \mathcal{H}. For a fixed unit vector ϕ\phi\in\mathcal{H}, called here a fiducial vector (aka vacuum vector, ground state, mother wavelet, etc.), the covariant transform 𝒲ϕ:𝖫(G)\mathcal{W}_{\phi}:\mathcal{H}\rightarrow\mathsf{L}{}(G) is \citelist[AliAntGaz14a]*§8.1 [Berezin86] [Perelomov86]

(20) [𝒲ϕf](g)=f,ρ(g)ϕ, where f and gG.[{\mathcal{W}_{\phi}}f](g)=\langle f,\rho(g)\phi\rangle,\qquad\text{ where }f\in\mathcal{H}\text{ and }g\in G.

Here 𝖫(G)\mathsf{L}{}(G) is a certain linear space of functions on GG usually linked to some additional conditions. The common focus is on 𝖫(G)=𝖫2(G,dμ)\mathsf{L}{}(G)=\mathsf{L}_{2}{}(G,\mathrm{d}\mu)—the square integrable functions with respect to a Haar measure dμ\mathrm{d}\mu, for this we need a square-integrable representation ρ\rho and an admissible fiducial vector ϕ\phi [AliAntGaz14a, Ch. 8]. However, many topics in analysis prompt to study other situations, e.g. related to Hardy-type invariant functionals [Kisil12d, Kisil13a], Gelfand triples [FeichtingerGrochenig88a], Banach spaces [Kisil98a], etc.

The main property of (20) is that 𝒲ϕ{\mathcal{W}_{\phi}} intertwines the representation ρ\rho on \mathcal{H} and the left regular action Λ\Lambda (9) on GG:

(21) 𝒲ϕρ(g)=Λ(g)𝒲ϕ, for all gG.\mathcal{W}_{\phi}\circ\rho(g)=\Lambda(g)\circ\mathcal{W}_{\phi},\quad\text{ for all }g\in G.

A representation ρ\rho is square-integrable if for some ϕ\phi\in\mathcal{H}, the map 𝒲ϕ:𝖫2(G,dg)\mathcal{W}_{\phi}:\mathcal{H}\rightarrow\mathsf{L}_{2}{}(G,dg) is unitary for a left Haar measure dgdg on GG. Some representations are not square-integrable, but can still be treated by the following modification of covariant transform by Perelomov [Perelomov86]. Let HH be a closed subgroup of the group GG and the corresponding homogeneous space is X=G/HX=G/H. Let for some character χ\chi of HH a fiducial vector ϕ\phi\in\mathcal{H} is a joint eigenvector

(22) ρ(h)ϕ=χ(h)ϕ,for all hH.\rho(h)\,\phi=\chi(h)\phi,\qquad\text{for all }h\in H.

Then, the respective covariant transform satisfies the covariant property, cf. (8):

[𝒲ϕf](gh)=χ¯(h)[𝒲ϕf](g).[\mathcal{W}_{\phi}f](gh)=\overline{\chi}(h)[\mathcal{W}_{\phi}f](g).

Thus, the image space of 𝒲ϕ\mathcal{W}_{\phi} belongs to the induced representation by the character χ\chi of the subgroup HH. This prompts to adopt the covariant transform to the space of function on the homogeneous space X=G/HX=G/H. To this end, let us fix a section 𝐬:XG\mathbf{s}:X\rightarrow G and a fiducial vector ϕ\phi\in\mathcal{H} satisfying (22). The induced covariant transform from the Hilbert space \mathcal{H} to a space of functions 𝖫ϕ(X)\mathsf{L}_{\phi}{}(X) is

[𝒲ϕf](x)=f,ρ(s(x))ϕ, where xX.[{\mathcal{W}_{\phi}}f](x)=\langle f,\rho(s(x))\phi\rangle,\quad\text{ where }x\in X.

Then, the induced covariant transform intertwines ρ\rho and ρ~\tilde{\rho}—an induced representation from the character χ\chi of the subgroup HH, cf. (21):

(23) Wϕρρ(g)=ρ~(g)Wϕρ, for all gG.W^{\rho}_{\phi}\circ\rho(g)=\tilde{\rho}(g)\circ W^{\rho}_{\phi},\qquad\text{ for all }g\in G.

In particular, the image space 𝖫ϕ(G/H)\mathsf{L}_{\phi}{}(G/H) of the induced covariant transform is invariant under ρ~\tilde{\rho}. Induced covariant transforms for the Heisenberg group [Kisil09e] and the affine group [Kisil12d] are the most familiar examples.

4.2. Induced covariant transform of the group 𝔾\mathbb{G}{}

On the same way as above, we can calculate the induced covariant transform of 𝔾\mathbb{G}{}. Consider the subgroup ZZ of 𝔾\mathbb{G}{}, which is Z={(s,0,0,0,1),s}Z=\{(s,0,0,0,1),s\in\mathbb{R}{}\}. For the Schrödinger type representation (18), any function ϕ𝖫2()\phi\in\mathsf{L}_{2}{}(\mathbb{R}{}) satisfies the eigenvector condition ρ(s,0,0,0,1)ϕ=e2πisϕ\rho(s,0,0,0,1)\phi=\mathrm{e}^{2\pi\mathrm{i}\hbar s}\phi with the character χ(s,0,0,0,1)=e2πis\chi(s,0,0,0,1)=\mathrm{e}^{-2\pi\mathrm{i}\hbar s}, cf. (22). Thus, the respective homogeneous space is 𝔾/Z+4\mathbb{G}{}/Z\simeq\mathbb{R}^{4}_{+}{} and we take the above section 𝐬:𝔾/Z𝔾:𝐬(x,y,b,r)=(0,x,y,b,r)\mathbf{s}:\mathbb{G}{}/Z\rightarrow\mathbb{G}{}:\ \mathbf{s}(x,y,b,r)=(0,x,y,b,r) (16). Then, the induced covariant transform is

(24) [𝒲ϕf](x,y,b,r)=f,ρ(𝐬(x,y,b,r))ϕ=f,ρ(0,x,y,b,r)ϕ=f(u)ρ(0,x,y,b,r)ϕ(u)¯du=f(u)e2πi(x(uy)b(uy)2/2)r12ϕ¯(r(uy))du=rf(u)e2πi(x(uy)b(uy)2/2)ϕ¯(r(uy))du.\begin{split}[\mathcal{W}_{\phi}f](x,y,b,r)&=\langle f,\rho(\mathbf{s}(x,y,b,r))\phi\rangle\\ &=\langle f,\rho(0,x,y,b,r)\phi\rangle\\ &=\int_{\mathbb{R}{}}{f(u)\,\overline{\rho(0,x,y,b,r)\,\phi(u)}}\,\mathrm{d}u\\ &=\int_{\mathbb{R}{}}{f(u)\,\mathrm{e}^{-2\pi\mathrm{i}\hbar(x(u-y)-b(u-y)^{2}/2)}\,r^{\frac{1}{2}}\,\overline{\phi}(r(u-y))}\,\mathrm{d}u\\ &=\sqrt{r}\int_{\mathbb{R}{}}{f(u)\,\mathrm{e}^{-2\pi\mathrm{i}\hbar(x(u-y)-b(u-y)^{2}/2)}\,\overline{\phi}(r(u-y))}\,\mathrm{d}u.\end{split}

From (23), 𝒲ϕ\mathcal{W}_{\phi} intertwines the Schrödinger type representation (18) with quasi-regular (17).

The last integral in (24) is a composition of five unitary operators 𝖫2(2)𝖫2(2)\mathsf{L}_{2}{}(\mathbb{R}^{2}{})\rightarrow\mathsf{L}_{2}{}(\mathbb{R}^{2}{}) applied to a function F(y,u)=f(y)ϕ¯(u)F(y,u)=f(y)\overline{\phi}(u) in the space 𝖫2()𝖫2()𝖫2(2)\mathsf{L}_{2}{}(\mathbb{R}{})\otimes\mathsf{L}_{2}{}(\mathbb{R}{})\simeq\mathsf{L}_{2}{}(\mathbb{R}^{2}{}):

  1. (1)

    The unitary operator R:𝖫2(2)𝖫2(2)R:\mathsf{L}_{2}{}(\mathbb{R}^{2}{})\rightarrow\mathsf{L}_{2}{}(\mathbb{R}^{2}{}) based on the dilation

    R:F(y,u)rF(y,ru), where r>0.R:F(y,u)\rightarrow\sqrt{r}\,F(y,ru),\qquad\text{ where }r>0.
  2. (2)

    The change of variables T:𝖫2(2)𝖫2(2)T:\mathsf{L}_{2}{}(\mathbb{R}^{2}{})\rightarrow\mathsf{L}_{2}{}(\mathbb{R}^{2}{})

    T:F(y,u)F(u,uy).T:F(y,u)\rightarrow F(u,u-y).
  3. (3)

    The operator of multiplication by an unimodular function ψb(x,y)=eπib(uy)2\psi_{b}(x,y)=\mathrm{e}^{\pi\mathrm{i}\hbar b(u-y)^{2}},

    Mb:F(y,u)eπib(uy)2F(y,u), where b.M_{b}:F(y,u)\rightarrow\mathrm{e}^{\pi\mathrm{i}\hbar b(u-y)^{2}}\,F(y,u),\qquad\text{ where }b\in\mathbb{R}{}.
  4. (4)

    The partial Fourier transform uxu\rightarrow x in the second variable

    [2F](y,x)=F(y,u)e2πixudu.[\mathcal{F}_{2}F](y,x)=\int_{\mathbb{R}{}}{F(y,u)\,\mathrm{e}^{-2\pi\mathrm{i}\hbar xu}\,\mathrm{d}u}.
  5. (5)

    The multiplication MM by the unimodular function e2πixy\mathrm{e}^{2\pi\mathrm{i}\hbar xy}.

Thus, we can write 𝒲ϕ\mathcal{W}_{\phi} as

(25) [𝒲ϕf](x,y,b,r)=[(M2MbTR)F](x,y),[\mathcal{W}_{\phi}f](x,y,b,r)=[\left(M\circ\mathcal{F}_{2}\circ M_{b}\circ T\circ R\right)\,F](x,y),

and obtain

Proposition 4.1.

For a fixed r0+r_{0}\in\mathbb{R}_{+}{} and b0b_{0}\in\mathbb{R}{}, the map fϕ¯[𝒲ϕf](,,b0,r0)f\otimes\overline{\phi}\rightarrow[\mathcal{W}_{\phi}f](\cdot,\cdot,b_{0},r_{0}) is a unitary operator from 𝖫2()𝖫2()\mathsf{L}_{2}{}(\mathbb{R}{})\otimes\mathsf{L}_{2}{}(\mathbb{R}{}) onto 𝖫2(2)\mathsf{L}_{2}{}(\mathbb{R}^{2}{}).

Also, the induced covariant transform preserves the Schwartz space, that is, if f,ϕ𝒮()f,\phi\in\mathcal{S}(\mathbb{R}{}) then 𝒲ϕf(,,b0,r0)𝒮(2)\mathcal{W}_{\phi}f(\cdot,\cdot,b_{0},r_{0})\in\mathcal{S}(\mathbb{R}^{2}{}). This is because the 𝒮(2)\mathcal{S}(\mathbb{R}^{2}{}) is invariant under the all five above components of 𝒲ϕf\mathcal{W}_{\phi}f in (25).

Note, that the induced covariant transform (24) does not define a square-integrable function on 𝔾/Z+4\mathbb{G}{}/Z\sim\mathbb{R}^{4}_{+}{}. To discuss unitarity we need to introduce a suitable inner product. In general we can start from a probability measure μ\mu on +2\mathbb{R}^{2}_{+}{}, that is +2dμ=1\int_{\mathbb{R}^{2}_{+}{}}\,\mathrm{d}\mu=1. Then we define the inner product

(26) f,gμ=+4f(x,y,b,r)g(x,y,b,r)¯dxdydμ(b,r)2r,\langle f,g\rangle_{\mu}=\int_{\mathbb{R}^{4}_{+}{}}{f(x,y,b,r)\,\overline{g(x,y,b,r)}\,\frac{\hbar\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}\mu(b,r)}{\sqrt{2r}},}

for f,g𝖫ϕ(+4)f,g\in\mathsf{L}_{\phi}{}(\mathbb{R}^{4}_{+}{}). The factor \hbar in the measure dxdy2r0\textstyle\frac{\hbar\,\mathrm{d}x\,\mathrm{d}y}{\sqrt{2r_{0}}} makes it dimensionless, see discussion of this in [Kisil02e, AlmalkiKisil18a]. Important particular cases of probability measures parametrised by (b0,r0)+2(b_{0},r_{0})\in\mathbb{R}^{2}_{+}{} are

(27) dμ(b0,r0)(b,r)=δ(bb0)δ(rr0)dbdr,\mathrm{d}\mu_{(b_{0},r_{0})}(b,r)=\delta(b-b_{0})\,\delta(r-r_{0})\,\mathrm{d}b\,\mathrm{d}r\,,

where δ(t)\delta(t) is the Dirac delta. The respective inner products becomes:

(28) f,g(b0,r0)=2f(x,y,b0,r0)g(x,y,b0,r0)¯dxdy2r0.\langle f,g\rangle_{(b_{0},r_{0})}=\int_{\mathbb{R}^{2}{}}f(x,y,b_{0},r_{0})\,\overline{g(x,y,b_{0},r_{0})}\,\frac{\hbar\,\mathrm{d}x\,\mathrm{d}y}{\sqrt{2r_{0}}}\,.

From now on we consider 𝖫ϕ(+4)\mathsf{L}_{\phi}{}(\mathbb{R}^{4}_{+}{}) as a Hilbert space with the inner product (26) or specifically (28). The respective norms are denoted by μ\|\cdot\|_{\mu} and (b0,r0)\|\cdot\|_{(b_{0},r_{0})}.

Using the above inner product, we can derive from Proposition 4.1 the following orthogonality relation:

Corollary 4.2.

Let f,g,ϕ,ψ𝖫2()f,g,\phi,\psi\in\mathsf{L}_{2}{}(\mathbb{R}{}), then

𝒲ϕf,𝒲ψgμ=f,gϕ,ψ¯,\langle\mathcal{W}_{\phi}f,\mathcal{W}_{\psi}g\rangle_{\mu}=\langle f,g\rangle\,\overline{\langle\phi,\psi\rangle},

for any probability measure μ\mu, in particular (27) with fixed (b0,r0)+2(b_{0},r_{0})\in\mathbb{R}^{2}_{+}{}.

Corollary 4.3.

Let ϕ𝖫2()\phi\in\mathsf{L}_{2}{}(\mathbb{R}{}) have a unite norm. Then, the induced covariant transform 𝒲ϕ\mathcal{W}_{\phi} is an isometry from 𝖫2()\mathsf{L}_{2}{}(\mathbb{R}{}) to 𝖫ϕ(+4)\mathsf{L}_{\phi}{}(\mathbb{R}^{4}_{+}{}) and its inverse is given by the adjoint operator—contravariant transform:

(29) f(u)=+4F(x,y,b,r)[ρ(𝐬(x,y,b,r))ϕ](u)dxdydμ(b,r)2r,f(u)=\int_{\mathbb{R}^{4}_{+}{}}F(x,y,b,r)\,[\rho(\mathbf{s}(x,y,b,r))\phi](u)\,\frac{\hbar\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}\mu(b,r)}{\sqrt{2r}},

where F𝖫ϕ(+4)F\in\mathsf{L}_{\phi}{}(\mathbb{R}^{4}_{+}{}). In particular:

(30) f(u)=2F(x,y,b0,r0)[ρ(𝐬(x,y,b0,r0))ϕ](u)dxdy2r0.f(u)=\int_{\mathbb{R}^{2}{}}F(x,y,b_{0},r_{0})\,[\rho(\mathbf{s}(x,y,b_{0},r_{0}))\phi](u)\,\frac{\hbar\,\mathrm{d}x\,\mathrm{d}y}{\sqrt{2r_{0}}}.
Proof.

For f𝖫2()f\in\mathsf{L}_{2}{}(\mathbb{R}{}), we have

f𝖫2()=fϕ¯𝖫2(2)=𝒲ϕfμ,\|f\|_{\mathsf{L}_{2}{}(\mathbb{R}{})}=\|f\otimes\overline{\phi}\|_{\mathsf{L}_{2}{}(\mathbb{R}^{2}{})}=\|\mathcal{W}_{\phi}f\|_{\mu},

which follows from isometry 𝖫2(2)𝖫2(2)\mathsf{L}_{2}{}(\mathbb{R}^{2}{})\rightarrow\mathsf{L}_{2}{}(\mathbb{R}^{2}{}) in Prop. 4.1. Then verification of formulae (29)–(30) is a technical exercise. ∎

A reader may note that (30) with ϕ(u)=24eπu2\phi(u)=\sqrt[4]{2}\mathrm{e}^{-\pi\hbar\,u^{2}} is essentially the inverse Fock–Segal–Bargmann transform.

5. Image spaces of the covariant transforms

Clearly, not every function on +4\mathbb{R}^{4}_{+}{} is a covariant transform (24) of a function from 𝖫2()\mathsf{L}_{2}{}(\mathbb{R}{}). In this section we discuss the image space of the covariant transform.

5.1. Right shifts and covariant transform

Let R(g)R(g) be the right regular representation of the group GG, which acts on the functions defined in the group GG as follows:

R(g):f(g)f(gg), where gG.R(g):f(g^{\prime})\rightarrow f(g^{\prime}\,g),\qquad\text{ where }g\in G.

In contrast to the intertwining property of the covariant transform for the left regular representation (21), the right shift satisfies the relation

R(g)[𝒲ϕ](g)\displaystyle R(g)[\mathcal{W}_{\phi}](g^{\prime}) =[𝒲ϕ](gg)\displaystyle=[\mathcal{W}_{\phi}](g^{\prime}\,g)
=f,ρ(gg)ϕ\displaystyle=\langle f,\rho(g^{\prime}\,g)\phi\rangle
=f,ρ(g)ρ(g)ϕ\displaystyle=\langle f,\rho(g^{\prime})\rho(g)\phi\rangle
=[𝒲ρ(g)ϕf](g).\displaystyle=[\mathcal{W}_{\rho(g)\,\phi}f](g^{\prime}).

That is, the covariant transform intertwines the right shift with the action of ρ\rho on the fiducial vector ϕ\phi. Therefore, we obtain the following result, which plays an important rôle in exploring the nature of the image space of the covariant transform.

Corollary 5.1.

[Kisil10c] Let GG be a Lie group with a Lie algebra 𝔤\mathfrak{g} and ρ\rho be a representation of GG in a Hilbert space \mathcal{H}. Let a fiducial vector ϕ\phi be a null-solution, Aϕ=0A\phi=0, for the operator A=jajdρXjA=\sum_{j}a_{j}{d\rho}^{X_{j}}, where dρXj{d\rho}^{X_{j}} are the derived representation of some Xj𝔤X_{j}\in\mathfrak{g} and aja_{j} are constants. Then, for any ff\in\mathcal{H} the wavelet transform [Wϕf](g)=f,ρ(g)ϕ[W_{\phi}f](g)=\left\langle f,\rho(g)\phi\right\rangle satisfies

D(Wϕf)=0, where D=ja¯jXj.D(W_{\phi}f)=0,\quad\text{ where }\quad D=\sum_{j}\overline{a}_{j}\mathcal{L}^{X_{j}}.

Here Xj\mathcal{L}^{X_{j}} are the left invariant fields (Lie derivatives) (14) on GG corresponding to XjX_{j}.

Illustrative examples are the classical spaces of analytical functions: the Fock–Segal–Bargmann space and the Hardy space, see [Kisil11c, Kisil13c] for details.

Remark 5.2.

It is straightforward to extend the result of Cor. 5.1 from a linear combination of elements in the Lie algebra 𝔤\mathfrak{g} to an arbitrary polynomial from the enveloping algebra of 𝔤\mathfrak{g} or even to more general functions/distributions, cf. [Kisil11c]*Cor. 5.8.

5.2. Characterisation of the image space for the group 𝔾\mathbb{G}{}

The above Cor. 5.1 can be used to construct covariant transforms with desired properties through purposely selected fiducial vectors. We are illustrating this for the group 𝔾\mathbb{G}{}. First, we need to compute the Lie derivatives (14) reduced to the representation space of the quasi-regular representation (17), see [Kisil21b]:

X\displaystyle\mathcal{L}^{X} =rx,\displaystyle=r\partial_{x}, B\displaystyle\mathcal{L}^{B} =r2b,\displaystyle=r^{2}\,\partial_{b},
(31) Y\displaystyle\mathcal{L}^{Y} =1r(2πixIbx+y),\displaystyle=\textstyle\frac{1}{r}(-2\pi\mathrm{i}\hbar xI-b\,\partial_{x}+\partial_{y}), R\displaystyle\mathcal{L}^{R} =rr,\displaystyle=r\,\partial_{r},
S\displaystyle\mathcal{L}^{S} =2πiI.\displaystyle=-2\pi\mathrm{i}\hbar I.

One can check that those Lie derivatives make a representation of the Lie algebra of the group 𝔾\mathbb{G}{} [Kisil21b].

Now we are looking for a covariant transform 𝒲ϕ:𝖫2()𝖫2(+4)\mathcal{W}_{\phi}:\mathsf{L}_{2}{}(\mathbb{R}{})\rightarrow\mathsf{L}_{2}{}(\mathbb{R}^{4}_{+}{}) with the image space annihilated by a generic linear combination of Lie derivatives (31). To this end the fiducial vector ϕ\phi shall be a null solution of the following differential operator composed from the derived Schrödinger type representation (19)

(32) dρiEsS+ExX+iEyY+iEbB+ErR=(EruiEy)ddu+(π(Ebu2+2iExu2Es)+12Er)I.\begin{split}\@ADDCLASS{ltx_eqn_lefteqn}$\displaystyle{\mathrm{d}\rho}^{\mathrm{i}E_{s}S+E_{x}X+\mathrm{i}E_{y}Y+\mathrm{i}E_{b}B+E_{r}R}$\mbox{}\hfil\qquad&\\ &=(E_{r}u-\mathrm{i}E_{y})\frac{\mathrm{d}\ }{\mathrm{d}u}+(\pi\hbar(E_{b}u^{2}+{2\mathrm{i}}E_{x}u-2E_{s})+{\textstyle\frac{1}{2}}E_{r})I.\end{split}

where EsE_{s}, ExE_{x}, EyE_{y}, EbE_{b} and ErE_{r} are arbitrary real coefficients. This equation has two different solutions depending on a value of ErE_{r}. If Er=0E_{r}=0 (which requires Ey0E_{y}\neq 0 for non-trivial operator (32)) then a generic solution of (32) is [Kisil21b]

(33) ϕ0(u)=Cexp(π(2iEsEyu+ExEyu2iEb3Eyu3)),\phi_{0}(u)=C\,\exp\!\left(\pi\hbar\left(2\mathrm{i}\frac{E_{s}}{E_{y}}u+\frac{E_{x}}{E_{y}}u^{2}-\mathrm{i}\frac{E_{b}}{3E_{y}}u^{3}\right)\right)\,,

where Ex<0E_{x}<0 for square integrability of ϕ0\phi_{0} and the constant CC is determined from the normalisation condition ϕ02=1\|\phi_{0}\|_{2}=1. We have here a sort of Airy beam [BerryBalazs79a], which was employed in [AlmalkiKisil19a] in the context of the share group, i.e. the absence of dρR{d\rho}^{R} in (32).

For Er0E_{r}\neq 0 we find the generic solution in the form [Kisil21b]:

(34) ϕ1(u)=C(EruiEy)12+2πEs/ErπEy(2ExEr+EbEy)/Er3×exp(π(i(2ExEr+EbEy)Er2u+Eb2Eru2)).\begin{split}\phi_{1}(u)&=C\,{(E_{r}u-\mathrm{i}E_{y})^{-\frac{1}{2}+2{\pi\hbar E_{s}}/{E_{r}}-{\pi\hbar E_{y}(2E_{x}E_{r}+E_{b}E_{y})}/{E_{r}^{3}}}}\\ &\qquad\times{\exp\left(-\pi\hbar\left(\frac{\mathrm{i}(2E_{x}E_{r}+E_{b}E_{y})}{E_{r}^{2}}u+\frac{E_{b}}{2E_{r}}{u}^{2}\right)\right)}.\end{split}

Again, for ϕ1𝖫2()\phi_{1}\in\mathsf{L}_{2}{}(\mathbb{R}{}) we need EbEr>0\frac{\hbar E_{b}}{E_{r}}>0 and a proper normalising constant CC.

A detailed study of all arising covariant transforms is still awaiting further work. Here we concentrate on some special aspects which appear in this extended group setting for the most traditional fiducial vector—the Gaussian. First, we note that it steams from both solutions (33) and (34):

  • For Er=0E_{r}=0 letting Es=Eb=0E_{s}=E_{b}=0, Ex=1E_{x}=-1 and Ey=1E_{y}=1 with C=24C=\sqrt[4]{2} in ϕ0\phi_{0} (33) produces

    (35) ϕ(u)=24eπu2 with the identity dρX+iYϕ=0,\phi(u)=\sqrt[4]{2}\mathrm{e}^{-\pi\hbar\,u^{2}}\quad\text{ with the identity }\quad{\mathrm{d}\rho}^{-X+\mathrm{i}Y}\,\phi=0,

    i.e. ϕ\phi is annihilated by the Heisenberg group part of 𝔾\mathbb{G}{}.

  • For Er=1E_{r}=1 substitution of Es=14πE_{s}=\frac{1}{4\pi\hbar}, Ex=Ey=0E_{x}=E_{y}=0 and Eb=2E_{b}=2 with C=24C=\sqrt[4]{2} into the vacuum ϕ1\phi_{1} ϕ1\phi_{1} (34) again produces

    (36) ϕ(u)=24eπu2 with the identity dρi/(4π)S+2iB+Rϕ=0,\phi(u)=\sqrt[4]{2}\mathrm{e}^{-\pi\hbar\,u^{2}}\quad\text{ with the identity }\quad{\mathrm{d}\rho}^{\mathrm{i}/(4\pi\hbar)S+2\mathrm{i}B+R}\,\phi=0,

    i.e. ϕ\phi is also annihilated by the affine group part of 𝔾\mathbb{G}{}.

Let us introduce the covariant transform 𝒲ϕ:𝖫2()𝖫2(+4)\mathcal{W}_{\phi}:\mathsf{L}_{2}{}(\mathbb{R}{})\rightarrow\mathsf{L}_{2}{}(\mathbb{R}^{4}_{+}{}) (24) with the fiducial vector ϕ\phi (35)–(36):

(37) [𝒲ϕf](x,y,b,r)=rf(u)e2πi(x(uy)b(uy)2/2)ϕ¯(r(uy))du=2r24f(u)e2πi(x(uy)b(uy)2/2)eπr2(uy)2du=2r24f(u)exp(π((r2ib)(uy)2+2i(uy)x))du.\begin{split}\@ADDCLASS{ltx_eqn_lefteqn}$\displaystyle[\mathcal{W}_{\phi}f](x,y,b,r)=\sqrt{r}\int_{\mathbb{R}{}}{f(u)\,\mathrm{e}^{-2\pi\mathrm{i}\hbar(x(u-y)-b(u-y)^{2}/2)}\,\overline{\phi}(r(u-y))}\,\mathrm{d}u$\mbox{}\hfil\qquad&\\ &=\sqrt[4]{2r^{2}}\int_{\mathbb{R}{}}f(u)\,\mathrm{e}^{-2\pi\mathrm{i}\hbar(x(u-y)-b(u-y)^{2}/2)}\,\mathrm{e}^{-\pi\hbar r^{2}(u-y)^{2}}\,\mathrm{d}u\\ &=\sqrt[4]{2r^{2}}\int_{\mathbb{R}{}}f(u)\,\exp\left(-\pi\hslash\left((r^{2}-\mathrm{i}b)(u-y)^{2}+2\mathrm{i}(u-y)x\right)\right)\,\mathrm{d}u\,.\end{split}

That is we obtained a representation of the metamorphism (1) as a covariant transform: f=𝒲ϕf\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}=\mathcal{W}_{\phi}f. Now the notation f\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt} can be explained as the double covariant transform for the Heisenberg and the affine groups simultaneously. The image space 𝖫ϕ(+4)\mathsf{L}_{\phi}{}(\mathbb{R}^{4}_{+}{}) of the metamorphism is a subspace of square-integrable functions on 𝖫2(+4,μ)\mathsf{L}_{2}{}(\mathbb{R}^{4}_{+}{},\|\cdot\|_{\mu}), see (26).

Remark 5.3.

Another feature of the Gaussian as a fiducial vector is that an extension of the group 𝔾\mathbb{G}{} to the full Schrödinger group does not add a value. Indeed, the Iwasawa decomposition SL2()=ANK\mathrm{SL}_{2}(\mathbb{R}{})=ANK \citelist[Lang85]*§III.1 [Kisil12a]*§1.1 represents SL2()\mathrm{SL}_{2}(\mathbb{R}{}) as the product of the affine subgroup ANAN and the compact subgroup KK. Yet, the Gaussian is invariant under the action of the phase-space rotations produced by KK. Thus, we get the same set of coherent states from the actions of the group 𝔾\mathbb{G}{} and the Schrödinger group.

From the annihilation property (35) by the derived representation dρX+iY{d\rho}^{-X+\mathrm{i}Y} and Cor. 5.1 we conclude that XiYf=0\mathcal{L}^{-X-\mathrm{i}Y}\,\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}=0 for any ff. Using (31) we find [Kisil21b]:

(38) 𝒞1=XiY=1r((r2ib)x+iy+2xπI).\begin{split}\mathcal{C}_{1}&=-\mathcal{L}^{X}-\mathrm{i}\mathcal{L}^{Y}\\ &=\frac{1}{r}\left({(r^{2}-\mathrm{i}b)}\,\partial_{x}+\mathrm{i}\,\partial_{y}+2x\hslash\pi\,I\right).\end{split}

The operator 𝒞1\mathcal{C}_{1} is called the first Cauchy–Riemann type operator. Similarly from (35) we conclude that 𝒞2f=0\mathcal{C}_{2}\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}=0 for the second Cauchy–Riemann type operator [Kisil21b]:

(39) 𝒞2=i4πS2iB+R=2r2b+irr12iI.\begin{split}\mathcal{C}_{2}&=-\frac{\mathrm{i}}{4\pi\hbar}\mathcal{L}^{S}-2\mathrm{i}\mathcal{L}^{B}+\mathcal{L}^{R}\\ &=2r^{2}\,\partial_{b}+\mathrm{i}r\,\partial_{r}-{\textstyle\frac{1}{2}}\mathrm{i}\,I\,.\end{split}

It is convenient to view operators 𝒞1\mathcal{C}_{1} and 𝒞2\mathcal{C}_{2} as the Cauchy–Riemann operators for the following complexified variables:

(40) w=b+ir2 and z=x+(b+ir2)y=x+wy.w=b+\mathrm{i}r^{2}\quad\text{ and }\quad z=x+(b+\mathrm{i}r^{2})y=x+wy\,.
Remark 5.4.

As was pointed out in [Kisil13c], the analyticity conditions 𝒞1f=0\mathcal{C}_{1}\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}=0 (38) and 𝒞2f=0\mathcal{C}_{2}\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}=0 (39) are consequences of minimal uncertainty properties of the fiducial vector. The first condition (38) follows from the celebrated Heisenberg–Kennard uncertainty relation [Folland89, Kisil13c]

Δϕ(M)Δϕ(D)h2\Delta_{\phi}(M)\cdot\Delta_{\phi}(D)\geq\frac{h}{2}

for the coordinate M=dρiXM=\mathrm{d}{\rho}^{\mathrm{i}X} and momentum D=dρiYD=\mathrm{d}{\rho}^{\mathrm{i}Y} observables in the Schrödinger representation (19). The second condition (39) is due to the similar minimal joint uncertainty of the Gaussian state for the Euler operator dρ1/(4π)SiR=iuddu{\mathrm{d}\rho}^{1/(4\pi\hbar)S-\mathrm{i}R}=-\mathrm{i}u\,\frac{\mathrm{d}\ }{\mathrm{d}u} and the quadratic potential dρiB=πu2I{\mathrm{d}\rho}^{\mathrm{i}B}=\pi\hbar u^{2}I.

Besides the two operators 𝒞1\mathcal{C}_{1} and 𝒞2\mathcal{C}_{2} which are based on the special properties (35)–(36) of the Gaussian we can note a couple of polynomial identities in the Schrödinger type representation of the Lie algebra 𝔤\mathfrak{g}. Indeed, using (19) one can check:

(41) (dρX)2+2dρSdρB=0, and dρXdρY+dρYdρX+2dρSdρR=0.\left(\mathrm{d}{\rho}^{X}\right)^{2}+2\,\mathrm{d}{\rho}^{S}\,\mathrm{d}{\rho}^{B}=0,\quad\text{ and }\quad\mathrm{d}{\rho}^{X}\,\mathrm{d}{\rho}^{Y}+d{\rho}^{Y}\,\mathrm{d}{\rho}^{X}+2\,\mathrm{d}{\rho}^{S}\,\mathrm{d}{\rho}^{R}=0.

These relations express the affine subalgebra generators BB and RR through the Heisenberg ones XX and YY. That is related to so-called quadratic algebra concept [Gazeau09a]*§2.2.4. Because operators in (41) annihilate any function, including the fiducial vector of the metamorphism, Rem. 5.2 implies that the image space 𝖫ϕ(+4)\mathsf{L}_{\phi}{}(\mathbb{R}^{4}_{+}{}) is annihilated by by the second-order differential operators [Kisil21b]:

(42) 𝒮1\displaystyle\mathcal{S}_{1} =(X)2+2SB=r2(4πibxx2);\displaystyle=\left(\mathcal{L}^{X}\right)^{2}+2\,\mathcal{L}^{S}\,\mathcal{L}^{B}=r^{2}(4\pi\mathrm{i}\hslash\,\partial_{b}-\partial_{xx}^{2})\,;
and
(43) 𝒮2=XY+YX+2SR=4πirr2bxx2+2xy24πixx2πiI.\displaystyle\begin{split}\mathcal{S}_{2}&=\mathcal{L}^{X}\,\mathcal{L}^{Y}+\mathcal{L}^{Y}\,\mathcal{L}^{X}+2\,\mathcal{L}^{S}\,\mathcal{L}^{R}\\ &=-4\pi\mathrm{i}r\hslash\,\partial_{r}-2b\,\partial_{xx}^{2}+2\,\partial_{xy}^{2}-4\pi\mathrm{i}x\hslash\,\partial_{x}-2\pi\mathrm{i}\hslash\,I\,.\end{split}

The identities 𝒮1f=0\mathcal{S}_{1}\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}=0 and 𝒮2f=0\mathcal{S}_{2}\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt}=0 are called the first and second structural conditions. Their presence is a notable difference between covariant transforms on the group 𝔾\mathbb{G}{} and the Heisenberg group.

Of course, the list of annihilators is not exhausting and the above conditions are not independent. If 𝒮1F=0\mathcal{S}_{1}F=0 for a function FF satisfying both the Cauchy–Riemann-type operators (38)–(39) then the function FF has to be in the kernel of 𝒮2\mathcal{S}_{2} (43) as well, see [Kisil21b].

It was shown [Kisil21c] that a generic solution of two differential operators (38)–(39) is:

(44) [𝒢f2](z,w)reπix2/wf2(z,w),[\mathcal{G}f_{2}](z,w)\coloneqq\sqrt{r}\,\mathrm{e}^{-\pi i\hslash x^{2}/w}\,f_{2}(z,w)\,,

where f2f_{2} is a holomorphic function of two complex variables zz and ww (40). Additionally, the structural condition 𝒮1\mathcal{S}_{1} (42) applied to 𝒢f2\mathcal{G}f_{2} (44) produces a parabolic equation for f2f_{2}:

(45) 4πihwwf2(z,w)wzz2f2(z,w)+4πihzzf2(z,w)+2πihf2(z,w)=0.4\pi ihw\partial_{w}f_{2}(z,w)-w\partial_{zz}^{2}f_{2}(z,w)+4\pi ihz\partial_{z}f_{2}(z,w)+2\pi ihf_{2}(z,w)=0\,.

which is equivalent through a change of variables [PolyaninNazaikinskii16a]*3.8.3.4:

(z,w,f2)(zw,1w,1wf2).(z,w,f_{2})\rightarrow\left(\frac{z}{w},\frac{1}{w},\frac{1}{\sqrt{w}}f_{2}\right).

to the free particle Schrödinger equation. The above discussion allows us to characterise the image space of the metamorphism:

Theorem 5.5.

A function F(x,y,b,r)F(x,y,b,r) on +4\mathbb{R}^{4}_{+}{} is the metamorphism (37) of a function f𝖫2()f\in\mathsf{L}_{2}{}(\mathbb{R}{}) if and if only FF satisfies to the following conditions:

  1. (1)

    F(x,y,b,r)F(x,y,b,r) is annihilated by operators 𝒞1\mathcal{C}_{1} (38), 𝒞2\mathcal{C}_{2} (39) and 𝒮1\mathcal{S}_{1} (42).

  2. (2)

    F(,,b0,r0)F(\cdot,\cdot,b_{0},r_{0}) is square-integrable in the sense of the inner product ,(b0,r0)\langle\cdot,\cdot\rangle_{(b_{0},r_{0})} (28) for some (b0,r0)+2(b_{0},r_{0})\in\mathbb{R}^{2}_{+}{}.

Proof.

The necessity of both conditions was discussed above. For sufficiency, let a function GG is annihilated by 𝒞1\mathcal{C}_{1}, 𝒞2\mathcal{C}_{2} and 𝒮1\mathcal{S}_{1}. If G(x,y,b0,r0)=0G(x,y,b_{0},r_{0})=0 for all (x,y)2(x,y)\in\mathbb{R}^{2}{} then the initial value problem for the parabolic equation (45) implies G0G\equiv 0 on +4\mathbb{R}^{4}_{+}{}.

Now, based on the square-integrability of FF we use contravariant transform expression (30) to construct a function f𝖫2()f\in\mathsf{L}_{2}{}(\mathbb{R}{}). Then GFfG\coloneqq F-\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt} is annihilated by operators 𝒞1\mathcal{C}_{1}, 𝒞2\mathcal{C}_{2}, 𝒮1\mathcal{S}_{1} and G(x,y,b0,r0)=0G(x,y,b_{0},r_{0})=0 for all (x,y)2(x,y)\in\mathbb{R}^{2}{}. Thus G0G\equiv 0 (as explained above) and therefore F=fF=\accentset{\smash{\raisebox{-0.36165pt}{$\scriptscriptstyle\approx$}}}{f}\rule{0.0pt}{9.90276pt} on +4\mathbb{R}^{4}_{+}{}. ∎

Although the Gaussian and the metamorphism based on it are genuinely remarkable in many respects, other covariant transforms (24) with fiducial vectors (33) and (34) deserve further attention as well.

Acknowledgments

Authors are grateful to Prof. Alexey Bolsinov for useful comments and suggestions on this work. Suggestions of anonymous referees helped to improve the presentation.
Funding and Conflicts of interests/Competing interests. The first named author was sponsored by the Albaha University (SA). The authors have no relevant financial or non-financial interests to disclose.

References