This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mesoscopic Lattice Boltzmann Modeling of the Liquid-Vapor Phase Transition

Rongzong Huang [email protected] School of Energy Science and Engineering, Central South University, 410083 Changsha, China    Huiying Wu [email protected] School of Mechanical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China    Nikolaus A. Adams [email protected] Institute of Aerodynamics and Fluid Mechanics, Technical University of Munich, 85748 Garching, Germany
(April 22, 2021)
Abstract

We develop a mesoscopic lattice Boltzmann model for liquid-vapor phase transition by handling the microscopic molecular interaction. The short-range molecular interaction is incorporated by recovering an equation of state for dense gases, and the long-range molecular interaction is mimicked by introducing a pairwise interaction force. Double distribution functions are employed, with the density distribution function for the mass and momentum conservation laws and an innovative total kinetic energy distribution function for the energy conservation law. The recovered mesomacroscopic governing equations are fully consistent with kinetic theory, and thermodynamic consistency is naturally satisfied.

Liquid-vapor phase transition is a widespread phenomenon of great importance in many natural and engineering systems. Because of its multiscale nature and macroscopic complexity Cheng et al. (2014); Onuki (2005); Boreyko and Chen (2009); Cira et al. (2015); Nikolayev and Beysens (1999); Nikolayev et al. (2006), thermodynamically consistent modeling of liquid-vapor phase transition with the underlying physics is a long-standing challenge, despite extensive studies. Physically speaking, the phase transition is a natural consequence of the molecular interaction at the microscopic level. Therefore, as a mesoscopic technique that can incorporate the underlying microscopic interaction, the lattice Boltzmann (LB) method is advocated as a promising method for modeling multiphase flows with phase transition He and Doolen (2002); He et al. (1998); Luo (1998).

The theory of the LB method for multiphase flows has been extensively studied since the early 1990s Gunstensen et al. (1991); Shan and Chen (1993); Swift et al. (1995); He et al. (1998); Luo (1998). However, most studies are inherently limited to isothermal systems, and the theory of the LB method for liquid-vapor phase transition remains largely unexplored. Recently, some liquid-vapor phase transition problems have been simulated by the LB method Hazi and Markus (2009); Gong and Cheng (2012); Li et al. (2015); Albernaz et al. (2017); Qin et al. (2019), where the popular pseudopotential LB model for isothermal systems is adopted to handle the mass and momentum conservation laws, and a supplementary macroscopic governing equation is employed to handle the energy conservation law. Because of the idea of mimicking the microscopic interaction responsible for multiphase flows, the pseudopotential LB model shows great simplicity in both concept and computation. However, it suffers from thermodynamic inconsistency He and Doolen (2002), although the coexistence densities could be numerically tuned close to the thermodynamic results. The supplementary macroscopic energy governing equation is extremely complicated Onuki (2005); Laurila et al. (2012) and it is artificially simplified with macroscopic assumptions and approximations in previous works Hazi and Markus (2009); Gong and Cheng (2012); Li et al. (2015); Albernaz et al. (2017); Qin et al. (2019). Both thermodynamic consistency and the underlying physics are sacrificed. Moreover, the simplified energy governing equation cannot be recovered from the mesoscopic level, implying that the computational simplicity is also lost.

In this Letter, we first analyze the kinetic model that combines Enskog theory for dense gases with mean-field theory for long-range molecular interaction. Guided by this kinetic model, we develop a novel mesoscopic LB model for liquid-vapor phase transition by handling the underlying microscopic molecular interaction rather than resorting to any macroscopic assumptions or approximations. The present LB model has a clear physical picture at the microscopic level and thus the conceptual and computational simplicity, and it is also kinetically and thermodynamically consistent.

The microscopic molecular interaction responsible for liquid-vapor phase transition generally consists of a short-range repulsive core and a long-range attractive tail. The short-range molecular interaction can be well modeled by Enskog theory for dense gases, and the long-range molecular interaction can be described by mean-field theory and thus modeled as a point force Rowlinson and Widom (1982). Combining Enskog theory for dense gases with mean-field theory for long-range molecular interaction, the kinetic equation for the density distribution function (DF) f(𝐱,𝛏,t)f(\mathbf{x},{\bm{\xiup}},t) can be written as He and Doolen (2002)

tf+𝛏f+𝐚𝛏f=ΩEnskog+Vmean𝛏f,\partial_{t}f+{\bm{\xiup}}\cdot\nabla f+\mathbf{a}\cdot\nabla_{\bm{\xiup}}f=\mathit{\Omega}_{\text{Enskog}}+\nabla V_{\text{mean}}\cdot\nabla_{\bm{\xiup}}f, (1)

where 𝛏{\bm{\xiup}} is the molecular velocity, 𝐚\mathbf{a} is the external acceleration, and VmeanV_{\text{mean}} denotes the mean-field approximation of the long-range molecular potential. The Enskog collision operator ΩEnskog\mathit{\Omega}_{\text{Enskog}} is Chapman and Cowling (1970)

ΩEnskog=χΩ0bρχfeq{25[2𝓒𝓒:𝐮+(|𝓒|252)𝐮]\displaystyle\mathit{\Omega}_{\text{Enskog}}=\chi\mathit{\Omega}_{0}-b\rho\chi f^{\text{eq}}\Big{\{}\tfrac{2}{5}\left[2{\bm{\mathcal{C}}}{\bm{\mathcal{C}}}:\nabla\mathbf{u}+\left(|{\bm{\mathcal{C}}}|^{2}-\tfrac{5}{2}\right)\nabla\cdot\mathbf{u}\right] (2)
+𝐂[ln(ρ2χT)+35(|𝓒|252)lnT]\displaystyle+\mathbf{C}\cdot\left[\nabla\ln(\rho^{2}\chi T)+\tfrac{3}{5}\left(|{\bm{\mathcal{C}}}|^{2}-\tfrac{5}{2}\right)\nabla\ln T\right] },\displaystyle\Big{\}},

where Ω0\mathit{\Omega}_{0} is the usual collision operator for rarefied gases, χ\chi is the collision probability, b=2πd3/(3m)b=2\pi d^{3}\big{/}(3m) with dd and mm the molecular diameter and mass, 𝐂=𝛏𝐮\mathbf{C}={\bm{\xiup}}-\mathbf{u}, and 𝓒=𝐂/2RT{\bm{\mathcal{C}}}=\mathbf{C}\big{/}\!\sqrt{2RT}. The equilibrium DF feqf^{\text{eq}} is

feq=ρ(2πRT)3/2exp(|𝓒|2).f^{\text{eq}}=\dfrac{\rho}{(2\pi RT)^{3/2}}\exp\left(-|{\bm{\mathcal{C}}}|^{2}\right). (3)

The density ρ\rho and momentum ρ𝐮\rho\mathbf{u} are calculated as

ρ=f𝑑𝛏,ρ𝐮=f𝛏𝑑𝛏.\rho=\int fd{\bm{\xiup}},\quad\rho\mathbf{u}=\int f{\bm{\xiup}}d{\bm{\xiup}}. (4)

Based on the density DF, a distinct internal kinetic energy ρϵk\rho\epsilon_{k} and total kinetic energy ρek\rho e_{k} can be well defined:

ρϵk=f|𝛏𝐮|22𝑑𝛏,ρek=f|𝛏|22𝑑𝛏.\rho\epsilon_{k}=\int f\dfrac{|{\bm{\xiup}}-\mathbf{u}|^{2}}{2}d{\bm{\xiup}},\quad\rho e_{k}=\int f\dfrac{|{\bm{\xiup}}|^{2}}{2}d{\bm{\xiup}}. (5)

Because of the long-range molecular interaction, the internal potential energy, defined as ρϵp=12ρVmean\rho\epsilon_{p}=\frac{1}{2}\rho V_{\text{mean}}, should be considered. Here, the factor 12\tfrac{1}{2} avoids counting each interacting pair twice. Therefore, the usual internal energy and total energy are ρϵ=ρϵk+ρϵp\rho\epsilon=\rho\epsilon_{k}+\rho\epsilon_{p} and ρe=ρek+ρϵp\rho e=\rho e_{k}+\rho\epsilon_{p}. Through the Chapman-Enskog (CE) analysis, the following mesomacroscopic governing equations can be derived:

tρ+(ρ𝐮)=0,\displaystyle\partial_{t}\rho+\nabla\cdot(\rho\mathbf{u})=0, (6a)
t(ρ𝐮)+(ρ𝐮𝐮)=pBE+𝐅mean+ρ𝐚+𝚷,\displaystyle\partial_{t}(\rho\mathbf{u})+\nabla\cdot(\rho\mathbf{u}\mathbf{u})=-\nabla p_{\text{\tiny BE}}+\mathbf{F}_{\text{mean}}+\rho\mathbf{a}+\nabla\cdot\mathbf{\Pi}, (6b)
t(ρek)+(ρek𝐮+pBE𝐮)=𝐅mean𝐮+ρ𝐚𝐮+(𝐉+𝐮𝚷),\displaystyle\partial_{t}(\rho e_{k})+\nabla\cdot(\rho e_{k}\mathbf{u}+p_{\text{\tiny BE}}\mathbf{u})=\mathbf{F}_{\text{mean}}\cdot\mathbf{u}+\rho\mathbf{a}\cdot\mathbf{u}+\nabla\cdot(\mathbf{J}+\mathbf{u}\cdot\mathbf{\Pi}), (6c)

where pBE=ρRT(1+bρχ)p_{\text{\tiny BE}}=\rho RT(1+b\rho\chi) is the equation of state (EOS) for dense gases recovered by the Enskog collision operator, 𝐅mean=ρVmean\mathbf{F}_{\text{mean}}=-\rho\nabla V_{\text{mean}} is the point force for the long-range molecular interaction, 𝚷\mathbf{\Pi} is the viscous stress tensor, and 𝐉\mathbf{J} denotes the energy flux by conduction. Note that Eq. (6) should be viewed as mesomacroscopic rather than macroscopic governing equations because the involved 𝐅mean\mathbf{F}_{\text{mean}} and ρek\rho e_{k} cannot be well defined from the macroscopic viewpoint.

Equation (6c) in terms of ρek\rho e_{k} is uncommon in previous works. To derive the usual macroscopic energy governing equation, the transport equation for ρϵp\rho\epsilon_{p} should be first established. The mean-field approximation of the long-range molecular potential is given as Rowlinson and Widom (1982)

Vmean=|𝐱2𝐱|>dρ(𝐱2)V(|𝐱2𝐱|)𝑑𝐱2,V_{\text{mean}}=\int_{|\mathbf{x}_{2}-\mathbf{x}|>d}\rho(\mathbf{x}_{2})V(|\mathbf{x}_{2}-\mathbf{x}|)d\mathbf{x}_{2}, (7)

where 𝐱\mathbf{x} and 𝐱2\mathbf{x}_{2} are the positions of two interacting molecules, V(|𝐱2𝐱|)V(|\mathbf{x}_{2}-\mathbf{x}|) is the distance-dependent potential. Performing Taylor series expansion of ρ(𝐱2)\rho(\mathbf{x}_{2}) centered at 𝐱\mathbf{x}, Eq. (7) can be formulated as

Vmean=2aρκρ,V_{\text{mean}}=-2a\rho-\kappa\nabla\cdot\nabla\rho, (8)

where a=12|𝐫|>dV(|𝐫|)𝑑𝐫a=-\tfrac{1}{2}\int_{|\mathbf{r}|>d}V(|\mathbf{r}|)d\mathbf{r} and κ=16|𝐫|>d|𝐫|2V(|𝐫|)𝑑𝐫\kappa=-\tfrac{1}{6}\int_{|\mathbf{r}|>d}|\mathbf{r}|^{2}V(|\mathbf{r}|)d\mathbf{r}. Then, the following relation can be derived:

t(ρϵp)+(ρϵp𝐮)+𝐅mean𝐮=12ρ(tVmean𝐮Vmean)\displaystyle\partial_{t}(\rho\epsilon_{p})+\nabla\cdot(\rho\epsilon_{p}\mathbf{u})+\mathbf{F}_{\text{mean}}\cdot\mathbf{u}=\tfrac{1}{2}\rho(\partial_{t}V_{\text{mean}}-\mathbf{u}\cdot\nabla V_{\text{mean}}) (9)
=[𝐮(𝐏pBE𝐈)]+𝐮:[κ2(ρρ)𝐈+κ(ρρ)]\displaystyle=-\nabla\cdot[\mathbf{u}\cdot(\mathbf{P}-p_{\text{\tiny BE}}\mathbf{I})]+\nabla\mathbf{u}:\left[-\tfrac{\kappa}{2}\nabla\cdot(\rho\nabla\rho)\mathbf{I}+\kappa\nabla(\rho\nabla\rho)\right] ,

where 𝐈\mathbf{I} is the unit tensor, and 𝐏\mathbf{P} is the pressure tensor defined as 𝐏=pBE𝐅mean\nabla\cdot\mathbf{P}=\nabla p_{\text{\tiny BE}}-\mathbf{F}_{\text{mean}} based on Eq. (6b). Adding ρϵp\rho\epsilon_{p} to ρek\rho e_{k}, Eq. (6c) can be rewritten in terms of ρe\rho e:

t(ρe)+(ρe𝐮+𝐮𝐏)=ρ𝐚𝐮+(𝐉+𝐮𝚷)\displaystyle\partial_{t}(\rho e)+\nabla\cdot(\rho e\mathbf{u}+\mathbf{u}\cdot\mathbf{P})=\rho\mathbf{a}\cdot\mathbf{u}+\nabla\cdot(\mathbf{J}+\mathbf{u}\cdot\mathbf{\Pi}) (10)
+𝐮:[κ2(ρρ)𝐈+κ(ρρ)]\displaystyle+\nabla\mathbf{u}:\left[-\tfrac{\kappa}{2}\nabla\cdot(\rho\nabla\rho)\mathbf{I}+\kappa\nabla(\rho\nabla\rho)\right] .

The last term in Eq. (10) refers to the work done by surface tension He and Doolen (2002). Equations (6c) and (10) are physically equivalent to each other, but Eq. (6c) is much simpler than Eq. (10). This is because ρek\rho e_{k}, as a moment of the density DF, is more easily calculated than ρe\rho e at the mesoscopic level, although ρe\rho e is extensively involved at the macroscopic level. Inspired by the above analysis, we will develop a mesoscopic LB model to recover Eq. (6) rather than Eq. (10), and the key points are recovering a nonideal-gas EOS like pBEp_{\text{\tiny BE}} that corresponds to the short-range molecular interaction and mimicking the long-range molecular interaction. Note that both the short- and long-range molecular interactions should be included in physically modeling liquid-vapor phase transition. Otherwise, the liquid-vapor system will suffer from density collapse or be homogenized. Before proceeding further, some discussion on the kinetic model is useful. With Eq. (8), the pressure tensor can be calculated as

𝐏=(pEOSκρρκ2ρρ)𝐈+κρρ,\mathbf{P}=\left(p_{\text{\tiny EOS}}-\kappa\rho\nabla\cdot\nabla\rho-\tfrac{\kappa}{2}\nabla\rho\cdot\nabla\rho\right)\mathbf{I}+\kappa\nabla\rho\nabla\rho, (11)

where pEOS=pBEaρ2p_{\text{\tiny EOS}}=p_{\text{\tiny BE}}-a\rho^{2} is the full EOS. Obviously, the above 𝐏\mathbf{P} is consistent with thermodynamic theory. The internal kinetic energy is ρϵk=ρcvT\rho\epsilon_{k}=\rho c_{v}T according to kinetic theory, and the total kinetic energy satisfies ρek=ρϵk+12ρ|𝐮|2\rho e_{k}=\rho\epsilon_{k}+\tfrac{1}{2}\rho|\mathbf{u}|^{2}, where cvc_{v} is the constant-volume specific heat. The latent heat of vaporization is hlv=hvhl=a(ρlρv)+ps(ρv1ρl1)h_{lv}=h_{v}-h_{l}=a(\rho_{l}-\rho_{v})+p_{s}\big{(}\rho_{v}^{-1}-\rho_{l}^{-1}\big{)}, where hvh_{v} and hlh_{l} are the specific enthalpies (h=ϵ+pEOS/ρh=\epsilon+p_{\text{\tiny EOS}}/\rho) of the saturated vapor and liquid, respectively, ρv\rho_{v} and ρl\rho_{l} are the saturated vapor and liquid densities, respectively, and psp_{s} is the saturation pressure.

Based on Eq. (6) derived from the kinetic model, we introduce double DFs: the density DF fi(𝐱,t)f_{i}(\mathbf{x},t) for the mass and momentum conservation laws and an innovative, simple yet effective, total kinetic energy DF gi(𝐱,t)g_{i}(\mathbf{x},t) for the energy conservation law. The standard D2Q9 lattice Qian et al. (1992) is considered here for simplicity, and the extension to three dimensions is straightforward. The LB equations for fif_{i} and gig_{i} are given as

i(𝐱+𝐞iδt,t+δt)=¯i(𝐱,t),\displaystyle\ell_{i}(\mathbf{x}+\mathbf{e}_{i}\delta_{t},t+\delta_{t})=\bar{\ell}_{i}(\mathbf{x},t), (12a)
𝐦¯=𝐦+δt𝐅m𝐒(𝐦𝐦eq+δt2𝐅m)+𝐒𝐐m,\displaystyle\bar{\mathbf{m}}=\mathbf{m}+\delta_{t}\mathbf{F}_{m}-\mathbf{S}\left(\mathbf{m}-\mathbf{m}^{\text{eq}}+\tfrac{\delta_{t}}{2}\mathbf{F}_{m}\right)+\mathbf{S}\mathbf{Q}_{m}, (12b)
𝐧¯=𝐧+δt𝐪m𝐋(𝐧𝐧eq+δt2𝐪m)+c2𝐘(𝐦+𝐦¯2𝐦eq),\displaystyle\bar{\mathbf{n}}=\mathbf{n}+\delta_{t}\mathbf{q}_{m}-\mathbf{L}\left(\mathbf{n}-\mathbf{n}^{\text{eq}}+\tfrac{\delta_{t}}{2}\mathbf{q}_{m}\right)+c^{2}\mathbf{Y}\left(\tfrac{\mathbf{m}+\bar{\mathbf{m}}}{2}-\mathbf{m}^{\text{eq}}\right), (12c)

where Eq. (12a) is the linear streaming process in velocity space with i\ell_{i} denoting fif_{i} or gig_{i} and the overbar denoting the post-collision state, Eqs. (12b) and (12c) are the local collision processes in moment space computed at position 𝐱\mathbf{x} and time tt with the moments 𝐦=𝐌(fi)T\mathbf{m}=\mathbf{M}(f_{i})^{\text{T}} and 𝐧=𝐌(gi)T\mathbf{n}=\mathbf{M}(g_{i})^{\text{T}}, and c=δx/δtc=\delta_{x}/\delta_{t} is the lattice speed. The post-collision DFs are obtained via (f¯i)T=𝐌1𝐦¯(\bar{f}_{i})^{\text{T}}=\mathbf{M}^{-1}\bar{\mathbf{m}} and (g¯i)T=𝐌1𝐧¯(\bar{g}_{i})^{\text{T}}=\mathbf{M}^{-1}\bar{\mathbf{n}}. Here, 𝐌\mathbf{M} is the orthogonal transformation matrix Lallemand and Luo (2000). A pairwise interaction force is introduced to mimic the long-range molecular interaction, which is given as Huang et al. (2019a)

𝐅pair=G2ρ(𝐱)iω(|𝐞iδt|2)ρ(𝐱+𝐞iδt)𝐞iδt,\mathbf{F}_{\text{pair}}=G^{2}\rho(\mathbf{x})\sum\nolimits_{i}\omega(|\mathbf{e}_{i}\delta_{t}|^{2})\rho(\mathbf{x}+\mathbf{e}_{i}\delta_{t})\mathbf{e}_{i}\delta_{t}, (13)

where G2G^{2} controls the interaction strength, ω(δx2)=13\omega(\delta_{x}^{2})=\tfrac{1}{3} and ω(2δx2)=112\omega(2\delta_{x}^{2})=\tfrac{1}{12} maximize the isotropy degree of 𝐅pair\mathbf{F}_{\text{pair}}. The density ρ\rho, momentum ρ𝐮\rho\mathbf{u}, and total kinetic energy ρek\rho e_{k} are calculated as

ρ=ifi,ρ𝐮=i𝐞ifi+δt2𝐅,ρek=igi+δt2q.\rho=\sum\nolimits_{i}f_{i},\quad\rho\mathbf{u}=\sum\nolimits_{i}\mathbf{e}_{i}f_{i}+\tfrac{\delta_{t}}{2}\mathbf{F},\quad\rho e_{k}=\sum\nolimits_{i}g_{i}+\tfrac{\delta_{t}}{2}q. (14)

Here, 𝐅=𝐅pair+ρ𝐚\mathbf{F}=\mathbf{F}_{\text{pair}}+\rho\mathbf{a} is the total force, and q=𝐅pair𝐮+ρ𝐚𝐮q=\mathbf{F}_{\text{pair}}\cdot\mathbf{u}+\rho\mathbf{a}\cdot\mathbf{u} is the total work done by force. Note that δt2𝐅\tfrac{\delta_{t}}{2}\mathbf{F} and δt2q\tfrac{\delta_{t}}{2}q in Eq. (14) are necessary to avoid the discrete lattice effect.

The technical details of the present mesoscopic LB model (including the equilibrium moments 𝐦eq\mathbf{m}^{\text{eq}} and 𝐧eq\mathbf{n}^{\text{eq}}, the collision matrices 𝐒\mathbf{S} and 𝐋\mathbf{L}, the discrete force 𝐅m\mathbf{F}_{m}, the discrete source 𝐪m\mathbf{q}_{m}, etc.) are given in Supplemental Material SM . Performing the second- and third-order CE analyses for the above LB model, the mesomacroscopic governing equations from the kinetic model [i.e., Eq. (6)] can be recovered once we set

pBE=pLBE,𝐅mean=𝐅pair+𝐑iso+𝐑add,ρhk=ρek+pBE,\begin{array}[]{l}p_{\text{\tiny BE}}=p_{\text{\tiny LBE}},\quad\mathbf{F}_{\text{mean}}=\mathbf{F}_{\text{pair}}+\mathbf{R}_{\text{iso}}+\mathbf{R}_{\text{add}},\\[3.01385pt] \rho h_{k}=\rho e_{k}+p_{\text{\tiny BE}},\end{array} (15)

where pLBE=cs2(ρ+η)p_{\text{\tiny LBE}}=c_{s}^{2}(\rho+\eta) is the recovered EOS for dense gases with η\eta a built-in variable in 𝐦eq\mathbf{m}^{\text{eq}}, 𝐑iso=112δx2𝐅pair\mathbf{R}_{\text{iso}}=\tfrac{1}{12}\delta_{x}^{2}\nabla\cdot\nabla\mathbf{F}_{\text{pair}} and 𝐑add=G2δx424[2ρρ+(ρρ)𝐈]\mathbf{R}_{\text{add}}=-\tfrac{G^{2}\delta_{x}^{4}}{24}\nabla\cdot[2\nabla\rho\nabla\rho+(\nabla\rho\cdot\nabla\rho)\mathbf{I}] are the third-order terms by the third-order discrete lattice effect and by the compensation term 𝐒𝐐m\mathbf{S}\mathbf{Q}_{m} in Eq. (12b), respectively, and ρhk\rho h_{k} is the total kinetic enthalpy in 𝐧eq\mathbf{n}^{\text{eq}}. The recovered viscous stress tensor and energy flux are given as 𝚷=ρν[𝐮+(𝐮)T(𝐮)𝐈]+ρς(𝐮)𝐈\mathbf{\Pi}=\rho\nu[\nabla\mathbf{u}+(\nabla\mathbf{u})^{\text{T}}-(\nabla\cdot\mathbf{u})\mathbf{I}]+\rho\varsigma(\nabla\cdot\mathbf{u})\mathbf{I} and 𝐉=λT\mathbf{J}=\lambda\nabla T, respectively, with the kinematic viscosity ν=cs2δt(sp112)\nu=c_{s}^{2}\delta_{t}\big{(}s_{p}^{-1}-\tfrac{1}{2}\big{)}, the bulk viscosity ς=ϖcs2δt(se112)\varsigma=\varpi c_{s}^{2}\delta_{t}\big{(}s_{e}^{-1}-\tfrac{1}{2}\big{)}, and the heat conductivity λ=4+3γ1+2γ26Crefc2δt(σj112)\lambda=\tfrac{4+3\gamma_{1}+2\gamma_{2}}{6}C_{\text{ref}}c^{2}\delta_{t}\big{(}\sigma_{j}^{-1}-\tfrac{1}{2}\big{)}. Here, ϖ\varpi and γ1,2\gamma_{1,2} are model coefficients, se,ps_{e,p} and σj\sigma_{j} are relaxation parameters, CrefC_{\text{ref}} is the reference volumetric heat capacity SM , and cs=c/3c_{s}=c\big{/}\!\sqrt{3} is the lattice sound speed. Based on Eq. (15), the pressure tensor given by Eq. (11) can be derived, and there have

a=G2δx22,κ=G2δx44.a=\tfrac{G^{2}\delta_{x}^{2}}{2},\quad\kappa=\tfrac{G^{2}\delta_{x}^{4}}{4}. (16)

Therefore, thermodynamic consistency naturally emerges from our mesoscopic LB model developed in accordance with the kinetic model. Note that there exist some additional cubic terms of velocity in recovering the viscous stress tensor Dellar (2014); Geier and Pasquali (2018), which are ignored with the low Mach number condition and can also be eliminated by trivial modifications Huang et al. (2019a, 2020). Moreover, the present LB model shows satisfactory numerical stability due to the separate incorporations of the short- and long-range molecular interactions and the introduction of an innovative, simple yet effective, total kinetic energy DF.

In this work, the following full EOS combining the Carnahan-Starling expression for hard spheres Carnahan and Starling (1969) with an attractive term is specified:

pEOS=KEOS[ρRT1+ϑ+ϑ2ϑ3(1ϑ)3a~ρ2],p_{\text{\tiny EOS}}=K_{\text{\tiny EOS}}\left[\rho RT\tfrac{1+\vartheta+\vartheta^{2}-\vartheta^{3}}{(1-\vartheta)^{3}}-\tilde{a}\rho^{2}\right], (17)

where ϑ=b~ρ/4\vartheta=\tilde{b}\rho/4, a~=0.4963880577294099R2Tcr2/pcr\tilde{a}=0.4963880577294099R^{2}T_{\text{cr}}^{2}\big{/}p_{\text{cr}}, and b~=0.1872945669467330RTcr/pcr\tilde{b}=0.1872945669467330RT_{\text{cr}}\big{/}p_{\text{cr}}. Here, TcrT_{\text{cr}} and pcrp_{\text{cr}} are the critical temperature and pressure, respectively. The interaction strength is set to

G=KINT2KEOSa~/δx2,G=K_{\text{\tiny INT}}\sqrt{2K_{\text{\tiny EOS}}\tilde{a}\big{/}\delta_{x}^{2}}\,, (18)

and the lattice sound speed is chosen as

cs=KINT(pEOSρ)T+2KEOSa~ρ|ρ=ρl.c_{s}=K_{\text{\tiny INT}}\left.\sqrt{\left(\tfrac{\partial p_{\text{\tiny EOS}}}{\partial\rho}\right)_{T}+2K_{\text{\tiny EOS}}\tilde{a}\rho}\,\right|\,\raisebox{-7.3194pt}{$\scriptstyle\rho\,=\,\rho_{l}$}. (19)

Note that the scaling factors KEOSK_{\text{\tiny EOS}} and KINTK_{\text{\tiny INT}} are introduced to adjust the surface tension σKEOSKINT\sigma\propto K_{\text{\tiny EOS}}K_{\text{\tiny INT}} and interface thickness WKINTW\propto K_{\text{\tiny INT}}.

To test the applicability of our mesoscopic LB model for liquid-vapor phase transition, we perform simulations with ϖ=1/6\varpi=1/6, γ1=2\gamma_{1}=-2, γ2=2\gamma_{2}=2, a~=1\tilde{a}=1, b~=4\tilde{b}=4, R=1R=1, and δx=1\delta_{x}=1. The reduced temperature (Tr=T/TcrT_{r}=T/T_{\text{cr}}) is set to Tr,0=0.8T_{r,0}=0.8, and the surface tension σ=0.01\sigma=0.01 and interface thickness W=10W=10, which indicate that KEOS=0.479820K_{\text{\tiny EOS}}=0.479820 and KINT=2.294922K_{\text{\tiny INT}}=2.294922. The kinematic viscosities and heat conductivities of the liquid and vapor satisfy νl=νv\nu_{l}=\nu_{v} and λl=10λv\lambda_{l}=10\lambda_{v}, respectively. A higher temperature Tr,1=0.85T_{r,1}=0.85, together with the outflow and constant-pressure condition, is applied to drive the phase transition. This boundary condition is treated by the improved nonequilibrium-extrapolation scheme Huang et al. (2019c). Meanwhile, eliminating the additional cubic terms of velocity is also plugged into the LB model Huang et al. (2020). Before simulating liquid-vapor phase transition, an equilibrium droplet in periodic domain is considered. The numerical results of σ\sigma and WW, measured by Laplace’s law and circular fitting, are 0.01016760.0101676 and 9.9611049.961104, respectively. Such good agreements with the prescribed values validate the present LB model. Subsequently, the one-dimensional Stefan problem is simulated on a 1024δx×4δx1024\delta_{x}\times 4\delta_{x} domain heated from the left side. Neglecting convection and taking the sharp-interface limit, the analytical location of liquid-vapor phase interface can be obtained Solomon (1966):

Xi(t)=2kαv(t+t0),X_{i}(t)=2k\sqrt{\alpha_{v}(t+t_{0})}, (20)

where αv=λv/(ρvcv)\alpha_{v}=\lambda_{v}\big{/}(\rho_{v}c_{v}), t0t_{0} shifts the initial location, and kk is the root of the transcendental equation

Steexp(k2)erf(k)=kπ,\tfrac{\text{Ste}}{\exp(k^{2})\,\text{erf}(k)}=k\sqrt{\pi}, (21)

where the Stefan number is defined as Ste=ρvcvTcr(Tr,1Tr,0)/(ρlhlv)\text{Ste}=\rho_{v}c_{v}T_{\text{cr}}(T_{r,1}-T_{r,0})\big{/}(\rho_{l}h_{lv}) and set to Ste=0.005\text{Ste}=0.005 to ensure that convection can be neglected. The numerical results are shown in Fig. 1. It can be seen that liquid-vapor phase transition is successfully and accurately captured by the present LB model. The vapor slowly flows to the left with its temperature gradually rising from Tr,0T_{r,0} to Tr,1T_{r,1}, while the liquid stays at rest with a uniform temperature Tr,0T_{r,0}. Across the phase interface, the density profile can be well maintained, and the pressures in vapor and liquid balance each other (the jumps of pEOSp_{\text{\tiny EOS}} within the phase interface come from the nonmonotonic EOS for liquid-vapor fluids). Moreover, the location of phase interface agrees very well with the analytical result, which suggests that the latent heat of vaporization in the mesoscopic LB model is naturally consistent with thermodynamic theory.

Refer to caption
Figure 1: Distributions of (a) density ρ\rho, (b) velocity uxu_{x}, (c) temperature TrT_{r}, and (d) pressure pEOSp_{\text{\tiny EOS}} at time t=0.401×107t=0.401\times 10^{7}, 0.803×1070.803\times 10^{7}, 1.204×1071.204\times 10^{7}, and 1.606×1071.606\times 10^{7}, and (e) time evolution of the phase interface location XiX_{i} for the one-dimensional Stefan problem.

A liquid droplet with diameter D0=256δxD_{0}=256\delta_{x} is then simulated on a 1024δx×1024δx1024\delta_{x}\times 1024\delta_{x} domain heated from all the four sides. The Stefan number is set to Ste=0.005\text{Ste}=0.005 and thus convection in the evaporation is quite weak. Figure 2 shows the time evolution of the square of the normalized diameter (D/D0)2(D/D_{0})^{2}, together with four snapshots of the local density and temperature fields. Here, the time is normalized as t=αvt/D02t^{\ast}=\alpha_{v}t/D_{0}^{2}. The well-known D2D^{2} law Godsave (1953); Safari et al. (2013) can be perfectly observed during the entire droplet lifetime, and both the interface thickness and droplet temperature can be well maintained at the prescribed values. As a further application, the evaporation of a large-small droplet pair is simulated with Ste=0.005\text{Ste}=0.005, 0.050.05, and 0.50.5, respectively. Initially, the diameters of the two droplets are 160δx160\delta_{x} and 96δx96\delta_{x}, respectively, and the distance between the droplet centers is 256δx256\delta_{x}. Figure 3 shows the snapshots of the local temperature and velocity fields, and the time evolution of the normalized volume V/V0V/V_{0}. Here, VV is the total volume of the droplets, V0=πD02/4V_{0}=\pi D_{0}^{2}\big{/}4, and D0=128δxD_{0}=128\delta_{x}. For Ste=0.005\text{Ste}=0.005, the evaporation is quite slow, and the two droplets attract each other and coalesce into a single one. This attraction-coalescence behavior is due to the nonuniform evaporation rate along droplet surface, which is induced by the other droplet and will result in an imbalanced vapor recoil force Nikolayev et al. (2006). Such unusual behavior of evaporating droplets under slow evaporation condition is consistent with the recent experimental and theoretical results Wen et al. (2019); Man and Doi (2017). Interestingly, the local temperature slightly rises [see the middle panel in Fig. 3(a)] and the normalized volume slightly increases [see the “kink” in Fig. 3(d)] when the coalescence occurs, which can be explained as follows: At the neck formed by coalescence, the phase interface changes from convex to concave, and the local saturated vapor pressure will decrease according to the Kelvin equation in thermodynamic theory Rowlinson and Widom (1982). Therefore, the vapor nearby the neck becomes supersaturated and then condenses into liquid, resulting in the release of latent heat and also the increase of droplet volume. Here, it is noteworthy that the above condensation at the neck between two merging droplets is a kind of capillary condensation in thermodynamic theory Fisher et al. (1981); Yang et al. (2020). For Ste=0.05\text{Ste}=0.05 and 0.50.5, evaporation becomes much faster and convection is very strong. The two droplets repulse each other rather than attract, and the droplet lifetime is much shorter than that for Ste=0.005\text{Ste}=0.005. As seen in Fig. 3(b) and 3(c), the vapor outflows originating from the droplet surfaces impact each other in the middle region between the two droplets, and thus the pressure in this region obviously increases, which then pushes the two droplets away from each other against the imbalanced vapor recoil force.

Refer to caption
Figure 2: Evolution of the square of the normalized droplet diameter (D/D0)2(D/D_{0})^{2} with the normalized time t=αvt/D02t^{\ast}=\alpha_{v}t\big{/}D_{0}^{2} in the droplet evaporation process. Snapshots of the local density (left) and temperature (right) fields are also shown at time t=12.716t^{\ast}=12.716, 38.14738.147, 63.57863.578, and 89.01089.010, where the solid line in temperature field denotes the liquid-vapor phase interface.
Refer to caption
Figure 3: Snapshots of the local temperature and velocity fields at different normalized times for (a) Ste=0.005\text{Ste}=0.005, (b) Ste=0.05\text{Ste}=0.05, and (c) Ste=0.5\text{Ste}=0.5, and (d) evolutions of the normalized total volume of the droplets V/V0V/V_{0} with the normalized time t=αvt/D02t^{\ast}=\alpha_{v}t\big{/}D_{0}^{2} in the evaporation process of a large-small droplet pair. The solid and dotted lines in temperature field denote the liquid-vapor phase interface and its initial location, respectively.

In summary, we have developed a novel mesoscopic LB model for liquid-vapor phase transition, where the short- and long-range molecular interactions are incorporated by recovering an EOS for dense gases and introducing a pairwise interaction force, respectively, and an innovative, simple yet effective, total kinetic energy DF is proposed for the energy conservation law. The same mesomacroscopic governing equations as the kinetic model can be recovered, and thus thermodynamic consistency is naturally satisfied. Because of the successful modeling of the underlying microscopic molecular interaction, the present mesoscopic LB model does not rely on any macroscopic assumptions or approximations and has the potential to provide reliable physical insights into the liquid-vapor phase transition processes.

Acknowledgements.
R.H. acknowledges the support by the Alexander von Humboldt Foundation, Germany. This work was supported by the National Natural Science Foundation of China through Grants No. 52006244 and No. 51820105009.

References

  • Cheng et al. (2014) P. Cheng, X. Quan, S. Gong, X. Liu,  and L. Yang, Adv. Heat Transf. 46, 187 (2014).EOS
  • Onuki (2005) A. Onuki, Phys. Rev. Lett. 94, 054501 (2005).EOS
  • Boreyko and Chen (2009) J. B. Boreyko and C.-H. Chen, Phys. Rev. Lett. 103, 184501 (2009).EOS
  • Cira et al. (2015) N. J. Cira, A. Benusiglio,  and M. Prakash, Nature 519, 446 (2015).EOS
  • Nikolayev and Beysens (1999) V. S. Nikolayev and D. A. Beysens, Europhys. Lett. 47, 345 (1999).EOS
  • Nikolayev et al. (2006) V. S. Nikolayev, D. Chatain, Y. Garrabos,  and D. Beysens, Phys. Rev. Lett. 97, 184503 (2006).EOS
  • He and Doolen (2002) X. He and G. D. Doolen, J. Stat. Phys. 107, 309 (2002).EOS
  • He et al. (1998) X. He, X. Shan,  and G. D. Doolen, Phys. Rev. E 57, R13 (1998).EOS
  • Luo (1998) L.-S. Luo, Phys. Rev. Lett. 81, 1618 (1998).EOS
  • Gunstensen et al. (1991) A. K. Gunstensen, D. H. Rothman, S. Zaleski,  and G. Zanetti, Phys. Rev. A 43, 4320 (1991).EOS
  • Shan and Chen (1993) X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993).EOS
  • Swift et al. (1995) M. R. Swift, W. R. Osborn,  and J. M. Yeomans, Phys. Rev. Lett. 75, 830 (1995).EOS
  • Hazi and Markus (2009) G. Hazi and A. Markus, Int. J. Heat Mass Tran. 52, 1472 (2009).EOS
  • Gong and Cheng (2012) S. Gong and P. Cheng, Int. J. Heat Mass Tran. 55, 4923 (2012).EOS
  • Li et al. (2015) Q. Li, Q. J. Kang, M. M. Francois, Y. L. He,  and K. H. Luo, Int. J. Heat Mass Tran. 85, 787 (2015).EOS
  • Albernaz et al. (2017) D. L. Albernaz, M. Do-Quang, J. C. Hermanson,  and G. Amberg, J. Fluid Mech. 820, 61 (2017).EOS
  • Qin et al. (2019) F. Qin, L. Del Carro, A. Mazloomi Moqaddam, Q. Kang, T. Brunschwiler, D. Derome,  and J. Carmeliet, J. Fluid Mech. 866, 33 (2019).EOS
  • Laurila et al. (2012) T. Laurila, A. Carlson, M. Do-Quang, T. Ala-Nissila,  and G. Amberg, Phys. Rev. E 85, 026320 (2012).EOS
  • Rowlinson and Widom (1982) J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1982).EOS
  • Chapman and Cowling (1970) S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, 1970).EOS
  • Qian et al. (1992) Y. H. Qian, D. d’Humières,  and P. Lallemand, Europhys. Lett. 17, 479 (1992).EOS
  • Lallemand and Luo (2000) P. Lallemand and L.-S. Luo, Phys. Rev. E 61, 6546 (2000).EOS
  • Huang et al. (2019a) R. Huang, H. Wu,  and N. A. Adams, Phys. Rev. E 99, 023303 (2019a).EOS
  • (24) See Supplemental Material for technical details of the present mesoscopic LB model, which includes Refs. Huang and Wu (2014); Huang et al. (2019b).
  • Huang and Wu (2014) R. Huang and H. Wu, J. Comput. Phys. 274, 50 (2014).EOS
  • Huang et al. (2019b) R. Huang, H. Wu,  and N. A. Adams, Phys. Rev. E 100, 043306 (2019b).EOS
  • Dellar (2014) P. J. Dellar, J. Comput. Phys. 259, 270 (2014).EOS
  • Geier and Pasquali (2018) M. Geier and A. Pasquali, Comput. Fluids 166, 139 (2018).EOS
  • Huang et al. (2020) R. Huang, L. Lan,  and Q. Li, Phys. Rev. E 102, 043304 (2020).EOS
  • Carnahan and Starling (1969) N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).EOS
  • Huang et al. (2019c) R. Huang, H. Wu,  and N. A. Adams, J. Comput. Phys. 392, 227 (2019c).EOS
  • Solomon (1966) A. Solomon, Math. Comp. 20, 347 (1966).EOS
  • Godsave (1953) G. A. E. Godsave, Symp. (Int.) Combust. 4, 818 (1953).EOS
  • Safari et al. (2013) H. Safari, M. H. Rahimian,  and M. Krafczyk, Phys. Rev. E 88, 013304 (2013).EOS
  • Wen et al. (2019) Y. Wen, P. Y. Kim, S. Shi, D. Wang, X. Man, M. Doi,  and T. P. Russell, Soft Matter 15, 2135 (2019).EOS
  • Man and Doi (2017) X. Man and M. Doi, Phys. Rev. Lett. 119, 044502 (2017).EOS
  • Fisher et al. (1981) L. R. Fisher, R. A. Gamble,  and J. Middlehurst, Nature 290, 575 (1981).EOS
  • Yang et al. (2020) Q. Yang, P. Z. Sun, L. Fumagalli, Y. V. Stebunov, S. J. Haigh, Z. W. Zhou, I. V. Grigorieva, F. C. Wang,  and A. K. Geim, Nature 588, 250 (2020).EOS

See pages 1, of Supplemental_Material.pdf See pages 2, of Supplemental_Material.pdf