This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Measuring the Virial Factor in SDSS DR7 AGNs with Redshifted Hβ\beta and Hα\alpha Broad Emission Lines

H. T. Liu11affiliation: Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, Yunnan, People’s Republic of China; [email protected], [email protected] 22affiliation: Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, Yunnan, People’s Republic of China 33affiliation: Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, People’s Republic of China , Hai-Cheng Feng11affiliation: Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, Yunnan, People’s Republic of China; [email protected], [email protected] 22affiliation: Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, Yunnan, People’s Republic of China 33affiliation: Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, People’s Republic of China , Sha-Sha Li11affiliation: Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, Yunnan, People’s Republic of China; [email protected], [email protected] 22affiliation: Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, Yunnan, People’s Republic of China 33affiliation: Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, People’s Republic of China , J. M. Bai11affiliation: Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, Yunnan, People’s Republic of China; [email protected], [email protected] 22affiliation: Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, Yunnan, People’s Republic of China 33affiliation: Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, People’s Republic of China , and H. Z. Li44affiliation: Physics Department, Yuxi Normal University, 134 Fenghuang Road, Hongta District, Yuxi 653100, Yunnan, People’s Republic of China
Abstract

Under the hypothesis of gravitational redshift induced by the central supermassive black hole, and based on line widths and shifts of redward shifted Hβ\beta and Hα\alpha broad emission lines for more than 8000 SDSS DR7 AGNs, we measure the virial factor in determining supermassive black hole masses. The virial factor had been believed to be independent of accretion radiation pressure on gas clouds in broad-line region (BLR), and only dependent on inclination effects of BLR. The virial factor measured spans a very large range. For the vast majority of AGNs (>>96%) in our samples, the virial factor is larger than f=1f=1 usually used in literatures. The ff correction makes the percent of high-accreting AGNs decrease by about 100 times. There are positive correlations of ff with the dimensionless accretion rate and Eddington ratio. The redward shifts of Hβ\beta and Hα\alpha are mainly the gravitational origin, confirmed by a negative correlation between the redward shift and the dimensionless radius of BLR. Our results show that radiation pressure force is a significant contributor to the measured virial factor, containing the inclination effects of BLR. The usually used values of ff should be corrected for high-accreting AGNs, especially high redshift quasars. The ff correction increases their masses by one–two orders of magnitude, which will make it more challenging to explain the formation and growth of supermassive black holes at high redshifts.

Active galactic nuclei (16) – Black hole physics (159) – Emission line galaxies (459) – Quasars (1319) – Supermassive black holes (1663)

1 INTRODUCTION

Black hole mass, MM_{\bullet}, is an important fundamental parameter of black hole. Reliable measurement of MM_{\bullet} always is a key issue of black hole related researches. For active galactic nuclei (AGNs), the reverberation mapping (RM) method or the relevant secondary methods based on single-epoch spectra were widely used to measure MM_{\bullet} by a virial mass MRM=fvFWHM2rBLR/GM_{\rm{RM}}=fv^{2}_{\rm{FWHM}}r_{\rm{BLR}}/G when clouds in broad-line region (BLR) are in virialized motion, where ff is the virial factor, vFWHMv_{\rm{FWHM}} is full width at half maximum of broad emission line, rBLRr_{\rm{BLR}} is radius of BLR, and GG is the gravitational constant (e.g., Peterson et al., 2004). However, ff is very uncertain due to the unclear kinematics and geometry of BLR (e.g., Peterson et al., 2004; Woo et al., 2015). ff is commonly considered to be the main source of uncertainty in MRMM_{\rm{RM}}. The reverberation-based masses are themselves uncertain typically by a factor of \sim 2.9 (Onken et al., 2004), and the absolute uncertainties in MRMM_{\rm{RM}} given by the secondary methods are typically around a factor of 4 (Vestergaard & Peterson, 2006). If vFWHMv_{\rm{FWHM}} is replaced with the line width σline\sigma_{\rm{line}}, the second moment of emission line, ff becomes fσf_{\sigma}. Based on the photoionization assumption (e.g., Blandford & McKee, 1982; Peterson, 1993), rBLR=τobc/(1+z)r_{\rm{BLR}}=\tau_{\rm{ob}}c/(1+z), where cc is the speed of light, zz is the cosmological redshift of source, and τob\tau_{\rm{ob}} is the observed time lag of the broad-line variations relative to the continuum ones. For non–RM AGNs studied by the secondary methods, rBLRr_{\rm{BLR}} can be estimated with the empirical rBLRr_{\rm{BLR}}L5100L_{\rm{5100}} relation for Hβ\beta emission line of the RM AGNs, where L5100L_{\rm{5100}} is AGN continuum luminosity at rest-frame wavelength 5100 Å (e.g., Kaspi et al., 2000; Bentz et al., 2013; Du et al., 2018b; Du & Wang, 2019; Yu et al., 2020).

RM surveys had been carried out (e.g., King et al., 2015; Shen et al., 2015a, b, 2016; Grier et al., 2017; Hoormann et al., 2019; Shen et al., 2019). Non-survey RM observation researches had been made for more than 100 AGNs over the last several decades (e.g., Kaspi & Netzer, 1999; Kaspi et al., 2000; Peterson et al., 2005; Bentz et al., 2006; Kaspi et al., 2007; Bentz et al., 2010; Denney et al., 2010; Barth et al., 2011; Haas et al., 2011; Pozo Nuñez et al., 2012; Du et al., 2014; Pei et al., 2014; Wang et al., 2014; Barth et al., 2015; Du et al., 2015; Hu et al., 2015; Bentz et al., 2016; Du et al., 2016; Lu et al., 2016; Pei et al., 2017; Du et al., 2018a, b; Xiao et al., 2018a, b; Zhang et al., 2019; Hu et al., 2020; Bentz et al., 2021; Feng et al., 2021a, b; Hu et al., 2021; Li et al., 2021; Lu et al., 2021; Bentz et al., 2022; Li et al., 2022; Bentz et al., 2023). The single-epoch spectra had been widely used to estimate MRMM_{\rm{RM}} in studies of high-zz quasars (e.g., Willott et al., 2010; Wu et al., 2015; Wang et al., 2019; Eilers et al., 2023), and on statistics of AGNs, such as the Sloan Digital Sky Survey (SDSS) quasars (e.g., Hu et al., 2008; Liu et al., 2019). Based on the MσM_{\bullet}-\sigma_{\ast} relation for the low-zz inactive and quiescent galaxies with σ\sigma_{\ast} to be stellar velocity dispersion of galaxy bulge (e.g., Tremaine et al., 2002; Onken et al., 2004; Piotrovich et al., 2015; Woo et al., 2015), these derived averages of f1\langle f\rangle\approx 1 and/or fσ5\langle f_{\rm{\sigma}}\rangle\approx 5 were usually used to estimate MRMM_{\rm{RM}} by the RM and/or single-epoch spectra of AGNs. Therefore, measuring ff and/or fσf_{\rm{\sigma}} independently by a new method for individual AGNs is necessary and important to understand the physics of BLR, and the issues related to masses of supermassive black holes (SMBHs), e.g., the formation and growth of SMBHs at z6z\gtrsim 6 (e.g., Wu et al., 2015; Fan et al., 2023), coevolution (or not) of SMBHs and host galaxies (e.g., Tremaine et al., 2002; Kormendy & Ho, 2003; Woo et al., 2013; Caglar et al., 2020), etc.

Some efforts have been made on an object by object basis for small samples of AGNs using high-fidelity RM techniques (e.g., Pancoast et al., 2014a, b) or by using spectral fitting methods (Mejía-Restrepo et al., 2018, and references therein). Liu et al. (2017) proposed a new method to measure ff based on the widths and shifts of redward shifted broad emission lines for the RM AGNs. Based on SDSS DR 5 quasars with redward shifted Hβ\beta and Fe ii broad emission lines, Liu et al. (2022) made further efforts of researching ff and fσf_{\rm{\sigma}}. Fe iiiλλ\lambda\lambda 2039–2113 UV line blend comes from an inner region of BLR (Mediavilla et al., 2018; Mediavilla & Jiménez-Vicente, 2021), and for 10 lensed quasars of higher Eddington ratio, the redward shifted Fe iii blend was used to estimate ff with f=14.3\langle f\rangle=14.3 much larger than f1\langle f\rangle\approx 1 (Mediavilla et al., 2020). However, the origins of broad emission lines and BLR are yet unclear for AGNs (e.g., Wang et al., 2017). Thus, it is unclear of the origin of redward shifts of broad emission lines. The redward shifts of broad emission lines are commonly believed to be from inflow (e.g., Hu et al., 2008). Inflow can generate the redward shifts of broad absorption lines, but the broad absorption and emission lines may be from different gas regions due to their distinct velocities (Zhou et al., 2019).

RM observations of Mrk 817 suggest that the redward shifts of broad emission lines do not originate from inflow because of their redward asymmetric velocity-resolved lag maps (Lu et al., 2021), which are not consistent with the blueward asymmetric maps expected from inflow. Redward shifts of broad emission lines in the RM observations of Mrk 110 follow the gravitational redshift prediction (Kollatschny, 2003). The gravitational interpretation of redward shift of the Fe iii blend is preferred than alternative explanations, such as inflow, that will need additional physics to explain the observed correlation between the width and redward shift of the blend (Mediavilla et al., 2018). A sign of the gravitational redshift zgz_{\rm{g}} was found in a statistical sense for broad Hβ\beta in the single-epoch spectra of SDSS DR 7 quasars (Tremaine et al., 2014). Based on the widths and asymmetries of Hα\alpha and Hβ\beta broad emission line profiles in a sample of type-1 AGNs taken from SDSS DR 16, Rakić (2022) showed that the BLR gas seems to be virialized. The velocity-resolved lag maps of Hβ\beta broad emission line for Mrk 50 and SBS 1518+593 show characteristic of Keplerian disk or virialized motion (Barth et al., 2011; Du et al., 2018a). Thus, it is likely that the redward shifts of broad emission lines originate from the gravity of the central black hole.

Radiation pressure from accretion disk has significant influences on the stability and dynamics of clouds in BLR (e.g., Marconi et al., 2008; Netzer & Marziani, 2010; Krause et al., 2011, 2012; Naddaf et al., 2021). The dynamics of clouds can determine the three-dimensional geometry of BLR (Naddaf et al., 2021). However, radiation pressure was not considered in estimating MRMM_{\rm{RM}}, and the virial factor had been believed to be only from the geometric effect of BLR. Lu et al. (2016) found that the BLR of NGC 5548 could be jointly controlled by the radiation pressure force from accretion disk and the gravity of the central black hole. Krause et al. (2011) found that stable orbits of clouds in BLR exist for very sub-Keplerian rotation, for which the radiation pressure force contributes substantially to the force budget. Thus, the radiation pressure force may result in significant influence on the virial factor. Based on redward-shifted Hβ\beta and Fe ii broad emission lines for a sample of 1973 z<0.8z<0.8 SDSS DR5 quasars, Liu et al. (2022) found a positive correlation of the virial factor with the dimensionless accretion rate or the Eddington ratio. They suggested that the radiation pressure force is a significant contributor to the virial factor, and that the redward shift of Hβ\beta broad emission line is mainly from the gravity of the black hole. In this work, more than 8000 SDSS DR7 AGNs with redward-shifted Hβ\beta and Hα\alpha broad emission lines, out of Table 2 in Liu et al. (2019), will be adopted to investigate the virial factor, relations of the virial factor with other physical quantities, the origin of the redward shifts of the broad Balmer emission lines, and the implications of the ff correction.

The structure is as follows. Section 2 presents method. Section 3 describes sample selection. Section 4 presents analysis and results. Section 5 is potential influence on quasars at z6z\gtrsim 6. Section 6 is potential influence on MσM_{\bullet}-\sigma_{\ast} map of AGNs. Section 7 presents discussion, and Section 8 is conclusion. Throughout this paper, we assume a standard cosmology with H0=70kms1Mpc1H_{0}=70\rm{\/\ km\/\ s^{-1}\/\ Mpc^{-1}}, ΩM\Omega_{\rm{M}} = 0.3, and ΩΛ\Omega_{\rm{\Lambda}}= 0.7 (Spergel et al., 2007).

2 METHOD

A BLR cloud is subject to gravity of black hole, FgF_{\rm{g}}, and radiation pressure force, FrF_{\rm{r}}, due to central continuum radiation. The total mechanical energy and angular momentum are conserved for the BLR clouds because FgF_{\rm{g}} and FrF_{\rm{r}} are central forces. Under various assumptions, FrF_{\rm{r}} can be calculated for more than hundreds of thousands of lines, with detailed photoionization, radiative transfer, and energy balance calculations (e.g., Dannen et al., 2019). In principle, MM_{\bullet} could be estimated by the BLR cloud motions when the numerical calculation methods give FrF_{\rm{r}}. However, the various assumptions may significantly influence the reliability of FrF_{\rm{r}}. Especially, many unknown physical parameters are likely various for different AGNs. Thus, a new method was proposed to measure ff and then MRMM_{\rm{RM}}, avoiding to use the averages of the virial factor or the numerical calculation of FrF_{\rm{r}} (Liu et al., 2017, 2022).

The virial factor formula in Liu et al. (2022) was derived from the Schwarzschild metric for clouds in the virialized motion

f=13c2vFWHM2[1(1+zg)2],f=\frac{1}{3}\frac{c^{2}}{v^{2}_{\rm{FWHM}}}\left[1-\left(1+z_{\rm{g}}\right)^{-2}\right], (1)

where the gravitational and transverse Doppler shifts are taken into account. If vFWHMv_{\rm{FWHM}} is replaced with σline\sigma_{\rm{line}}, ff becomes fσf_{\sigma}. As zg1z_{\rm{g}}\ll 1 or rg/rBLR1r_{\rm{g}}/r_{\rm{BLR}}\ll 1 for broad emission lines (the gravitational radius rg=GM/c2r_{\rm{g}}=GM_{\bullet}/c^{2}), we have

f=23c2vFWHM2zg.f=\frac{2}{3}\frac{c^{2}}{v^{2}_{\rm{FWHM}}}z_{\rm{g}}. (2)

Mediavilla & Jiménez-Vicente (2021) pinpointed that the observed redward shift of the Fe iiiλλ\lambda\lambda 2039–2113 emission line blend in quasars originates from the gravity of black hole, while these Fe iiiλλ\lambda\lambda 2039–2113 emission lines are broad emission lines. Furthermore, their redward shifts and line widths follow the gravitational redshift prediction (see Figure 4 in Mediavilla et al., 2018). So, the broad emission line position and width should be not only determined by the kinematics of BLR, but also determined by the gravity of black hole. The virialized assumption in measuring MRMM_{\rm{RM}} will ensure that the line position should be governed by the gravity of black hole for the redward shifted broad emission lines in AGNs (this will be tested in the next section). The same method as in Liu et al. (2017, 2022) was used to estimate the virial factor in Mediavilla et al. (2018) (see their Equation 5). Thus, the method in this work, evolved from Liu et al. (2017), is reliable, and the assumption of the gravitational redshift is reasonable.

The Schwarzschild metric is valid at the optical BLR scales, and Equation (1) is valid for a disklike BLR (see Liu et al., 2022). The disklike BLR is preferred by some RM observations of AGNs, e.g., NGC 3516 (e.g., Denney et al., 2010; Feng et al., 2021a), and the VLTI instrument GRAVITY observations of quasar 3C 273 (Sturm et al., 2018). For rapidly rotating BLR clouds, the relativistic beaming effect can give rise to a profile asymmetry with an enhanced blue side in broad emission lines, i.e., blueshifts of broad emission lines (Mediavilla & Insertis, 1989). Thus, the relativistic beaming effect should be neglected for the redward shifted broad emission lines, which should be dominated by the gravitational redshift and transverse Doppler effects. The reliability of the redward shift method was confirmed by the consistent masses estimated from Equations (4) and (7) based on 4 broad emission lines for Mrk 110 (see Figure 2 of Liu et al., 2017). Hereafter, MRMM_{\rm{RM}} denotes MM_{\bullet} measured with the RM method and/or the relevant secondary methods, fgf_{\rm{g}} denotes f=1\langle f\rangle=1 for vFWHMv_{\rm{FWHM}} or fσ=5.5\langle f_{\rm{\sigma}}\rangle=5.5 for σline\sigma_{\rm{line}}, MRMMRM(fg=1)M_{\rm{RM}}\equiv M_{\rm{RM}}(f_{\rm{g}}=1), the Eddington luminosity LEddLEdd(fg=1)L_{\rm{Edd}}\equiv L_{\rm{Edd}}(f_{\rm{g}}=1), the Eddington ratio Lbol/LEddLbol/LEdd(fg=1)L_{\rm{bol}}/L_{\rm{Edd}}\equiv L_{\rm{bol}}/L_{\rm{Edd}}(f_{\rm{g}}=1), and rgrg(fg=1)r_{\rm{g}}\equiv r_{\rm{g}}(f_{\rm{g}}=1).

3 SAMPLE SELECTION

Liu et al. (2019) reported a comprehensive and uniform sample of 14584 broad-line AGNs with z<0.35z<0.35 from the SDSS DR7. The stellar continuum was properly removed for each spectrum with significant host absorption line features, and careful analyses of emission line spectra, particularly in the Hα\alpha and Hβ\beta wavebands, were carried out. The line widths and line centroid wavelengths of the Hα\alpha, Hβ\beta, and [O iii] spectra are given in Table 2 of Liu et al. (2019). The redward shifts of broad emission lines Hβ\beta and Hα\alpha are defined as

zg=λb(H)λn(H)1=λb(H)λn([Oiii])λ0([Oiii])λ0(H)1,\begin{split}z_{\rm{g}}&=\frac{\lambda_{\rm{b}}\rm{(H)}}{\lambda_{\rm{n}}\rm{(H)}}-1\\ &=\frac{{\lambda_{\rm{b}}\rm{(H)}}}{\lambda_{\rm{n}}\rm{([O~{}{\sc iii}])}}\frac{\lambda_{\rm{0}}\rm{([O~{}{\sc iii}])}}{\lambda_{\rm{0}}\rm{(H)}}-1,\end{split} (3)

where λb{\lambda_{\rm{b}}} is the centroid wavelength of broad emission line corrected by the cosmological redshift zSDSSz_{\rm{SDSS}} given by the SDSS site (Liu et al., 2019), λn{\lambda_{\rm{n}}} is the centroid wavelength of narrow emission line corrected by zSDSSz_{\rm{SDSS}}, and λ0\lambda_{\rm{0}} is the vacuum wavelength of spectrum line (λ0=4862.68\lambda_{\rm{0}}=4862.68 Å\rm{\AA} for Hβ\beta, λ0=6564.61\lambda_{\rm{0}}=6564.61 Å\rm{\AA} for Hα\alpha, and λ0=5008.24\lambda_{\rm{0}}=5008.24 Å\rm{\AA} for [O iii]λ5007\lambda 5007)111https://classic.sdss.org/dr6/algorithms/linestable.html.

Because of the absence of the uncertainty of λn{\lambda_{\rm{n}}} for Hβ\beta in Table 2 of Liu et al. (2019), and in order to unify standard of estimating zgz_{\rm{g}} for the broad Hβ\beta and Hα\alpha, the [O iii]λ5007\lambda 5007 line is used in Equation (3). First, one of choice criteria is AGN’s flag = 0, which means no emission line with multiple peaks (Liu et al., 2019), because that the multiple peaks of emisson lines may be from dual AGNs (e.g., Wang et al., 2009). Second, AGNs are selected on the basis of zg>0z_{\rm{g}}>0 and zgσ(zg)>0z_{\rm{g}}-\sigma(z_{\rm{g}})>0 for the broad Hβ\beta and Hα\alpha, where σ(zg)\sigma(z_{\rm{g}}) is the uncertainty of zgz_{\rm{g}}. Third, AGNs are selected on the basis of vFWHM>0v_{\rm{FWHM}}>0 and vFWHMσ(vFWHM)>0v_{\rm{FWHM}}-\sigma(v_{\rm{FWHM}})>0 for the broad Hβ\beta and Hα\alpha, where σ(vFWHM)\sigma(v_{\rm{FWHM}}) is the uncertainty of vFWHMv_{\rm{FWHM}}. The selection conditions of zg>0z_{\rm{g}}>0 and zgσ(zg)>0z_{\rm{g}}-\sigma(z_{\rm{g}})>0 make sure that the shifts of broad emission lines are redward within 1σ1\sigma uncertainties. Because the empirical rBLRr_{\rm{BLR}}L5100L_{\rm{5100}} relation is established for broad emission line Hβ\beta, the relevant researches on the virial factor are made with the broad Hβ\beta and Hα\alpha in this work. 9185 AGNs are selected out of the 14584 AGNs as Sample 1 only for the broad Hβ\beta. 9271 AGNs are selected out of the 14584 AGNs as Sample 2 only for the broad Hα\alpha. The cross-identified AGNs in Samples 1 and 2 are used as Sample 3 that contains 8169 AGNs with zgz_{\rm{g}} of the broad Hβ\beta and Hα\alpha.

Some physical quantities are taken or estimated from Table 2 in Liu et al. (2019), including vFWHMv_{\rm{FWHM}}(Hβ\beta), vFWHMv_{\rm{FWHM}}(Hα\alpha), zgz_{\rm{g}}(Hβ\beta), zgz_{\rm{g}}(Hα\alpha), L5100L_{\rm{5100}}, MRMM_{\rm{RM}}, Lbol/LEddL_{\rm{bol}}/L_{\rm{Edd}}, and the dimensionless accretion rate ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1}. The bolometric luminosity LbolL_{\rm{bol}} was estimated in Liu et al. (2019) using Lbol=9.8L5100L_{\rm{bol}}=9.8L_{\rm{5100}} (McLure & Dunlop, 2004). The details of samples are listed in Tables 13. The virial factors, ff(Hβ\beta) and ff(Hα\alpha), are estimated by Equation (1) for the broad Hβ\beta and Hα\alpha (see Tables 13). ˙fg=1=Lbol/LEdd/η\mathscr{\dot{M}}_{f_{\rm{g}}=1}=L_{\rm{bol}}/L_{\rm{Edd}}/\eta, where η\eta is the efficiency of converting rest-mass energy to radiation. Hereafter, in addition to special statement, we adopt η=0.038\eta=0.038 (Du et al., 2015).

For our selected AGNs, L5100L_{\rm{5100}} spans four orders of magnitude, MRMM_{\rm{RM}} spans more than four orders of magnitude, and Lbol/LEddL_{\rm{bol}}/L_{\rm{Edd}} spans more than three orders of magnitude. These parameters cover at least one order of magnitude wider than those in Liu et al. (2022). The measured values of ff span more than three orders of magnitude, which cover at least one order of magnitude wider than those in Liu et al. (2022). These much wider parameters can ensure that this work is feasible.

Table 1: The Relevant Parameters for 9185 AGNs in SDSS DR7 for Sample 1
Designation vFWHM(Hβ)kms1\frac{v_{\rm{FWHM}}(\rm{H\beta})}{\rm{km\/\ s^{-1}}} zgz_{\rm{g}}(Hβ\beta) logL5100\log L_{\rm{5100}} logMRMM\log\frac{M_{\rm{RM}}}{M_{\odot}} logLbolLEdd\log\frac{L_{\rm{bol}}}{L_{\rm{Edd}}} ff(Hβ\beta) log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} rBLRrg\frac{r_{\rm{BLR}}}{r_{\rm{g}}} RFeIIR_{\rm{FeII}} logMRMM\log\frac{M_{\rm{RM}}}{M_{\odot}}^{{\dagger}} rBLRrg\frac{r_{\rm{BLR}}}{r_{\rm{g}}}^{{\dagger}} log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}^{{\dagger}}
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
J000048.16-095404.0 2132.9±\pm71.0 0.00089±\pm0.00005 43.39±\pm0.00 7.26 -1.086 11.7±\pm0.8 0.334 15381.3 -999 -999 -999 -999
J000102.19-102326.9 4695.0±\pm69.2 0.00062±\pm0.00049 44.36±\pm0.00 8.46 -1.356 1.7±\pm0.0 0.064 3191.6 0.188 8.49 3191.7 0.037
J000154.29+000732.5 1813.8±\pm98.9 0.00046±\pm0.00023 43.48±\pm0.00 7.14 -0.972 8.4±\pm0.9 0.448 22644.5 0.115 7.27 22645.3 0.322

Note. — Column 1: object name; Column 2: vFWHMv_{\rm{FWHM}} of Hβ\beta broad emission line; Column 3: the redward shift of Hβ\beta; Column 4: logarithm of L5100L_{\rm{5100}} in units of ergs1\rm{erg\/\ s^{-1}}; Column 5: logarithm of MRMM_{\rm{RM}} in units of MM_{\odot}; Column 6: logarithm of Lbol/LEddL_{\rm{bol}}/L_{\rm{Edd}}; Column 7: ff estimated from vFWHMv_{\rm{FWHM}} of Hβ\beta; Column 8: logarithm of ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1}; Column 9: rBLRr_{\rm{BLR}} in units of rgr_{\rm{g}}, where rBLR=33.65L440.533r_{\rm{BLR}}=33.65L^{0.533}_{44} light-days with L44=L5100/(1044ergs1)L_{44}=L_{\rm{5100}}/(10^{44}\/\ \rm{erg\/\ s^{-1}}). Column 10: RFeIIR_{\rm{FeII}} is the line ratio of Fe ii to Hβ\beta. Columns 2–6 and 10 are taken from Table 2 of Liu et al. (2019) or converted from the relevant quantities in Table 2 of Liu et al. (2019). -999 denotes no data of RR(Fe ii), which results in no data for the latter three quantities. {\dagger} denotes the values estimated from Equations (6) and (7).

(This table is available in its entirety in machine-readable form.)

Table 2: The Relevant Parameters for 9271 AGNs in SDSS DR7 for Sample 2
Designation vFWHM(Hα)kms1\frac{v_{\rm{FWHM}}(\rm{H\alpha})}{\rm{km\/\ s^{-1}}} zgz_{\rm{g}}(Hα\alpha) zgz_{\rm{g}}(Hα\alpha)(b-n) logL5100\log L_{\rm{5100}} logMRMM\log\frac{M_{\rm{RM}}}{M_{\odot}} logLbolLEdd\log\frac{L_{\rm{bol}}}{L_{\rm{Edd}}} ff(Hα\alpha) ff(Hα\alpha)(b-n) log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} rBLRrg\frac{r_{\rm{BLR}}}{r_{\rm{g}}}
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
J000048.16-095404.0 2132.9±\pm282.9 0.00089±\pm0.00022 0.00063±\pm0.00022 43.39±\pm0.00 7.26 -1.086 11.7±\pm3.1 8.3±\pm2.2 0.334 15381.3
J000102.19-102326.9 4695.0±\pm172.5 0.00062±\pm0.00050 0.00073±\pm0.00050 44.36±\pm0.00 8.46 -1.356 1.7±\pm0.1 2.0±\pm0.1 0.064 3191.6
J000111.15-100155.5 1937.4±\pm84.2 0.00015±\pm0.00012 0.00013±\pm0.00012 43.15±\pm0.04 6.37 -0.327 2.4±\pm0.2 2.1±\pm0.2 1.093 88935.0

Note. — Column 1: object name; Column 2: vFWHMv_{\rm{FWHM}} of Hα\alpha broad emission line; Column 3: the redward shift of broad Hα\alpha with respect to [O iii]λ\lambda5007; Column 4: the redward shift of broad Hα\alpha with respect to narrow Hα\alpha; Column 5: logarithm of L5100L_{\rm{5100}} in units of ergs1\rm{erg\/\ s^{-1}}; Column 6: logarithm of MRMM_{\rm{RM}} in units of MM_{\odot}; Column 7: logarithm of Lbol/LEddL_{\rm{bol}}/L_{\rm{Edd}}; Column 8: the virial factor estimated from vFWHMv_{\rm{FWHM}} of broad Hα\alpha and zgz_{\rm{g}}(Hα\alpha); Column 9: the virial factor estimated from vFWHMv_{\rm{FWHM}} of broad Hα\alpha and zgz_{\rm{g}}(Hα\alpha)(b-n); Column 10: logarithm of ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1}; Column 11: rBLRr_{\rm{BLR}} in units of rgr_{\rm{g}}, where rBLR=33.65L440.533r_{\rm{BLR}}=33.65L^{0.533}_{44} light-days with L44=L5100/(1044ergs1)L_{44}=L_{\rm{5100}}/(10^{44}\/\ \rm{erg\/\ s^{-1}}). Columns 2–7 are taken from Table 2 of Liu et al. (2019) or converted from the relevant quantities in Table 2 of Liu et al. (2019).

(This table is available in its entirety in machine-readable form.)

Table 3: The Relevant Parameters for 8169 AGNs in SDSS DR7 for Sample 3
Designation vFWHM(Hβ)kms1\frac{v_{\rm{FWHM}}(\rm{H\beta})}{\rm{km\/\ s^{-1}}} zgz_{\rm{g}}(Hβ\beta) vFWHM(Hα)kms1\frac{v_{\rm{FWHM}}(\rm{H\alpha})}{\rm{km\/\ s^{-1}}} zgz_{\rm{g}}(Hα\alpha) logL5100\log L_{\rm{5100}} logMRMM\log\frac{M_{\rm{RM}}}{M_{\odot}} logLbolLEdd\log\frac{L_{\rm{bol}}}{L_{\rm{Edd}}} ff(Hβ\beta) ff(Hα\alpha) log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} rBLRrg\frac{r_{\rm{BLR}}}{r_{\rm{g}}} RFeIIR_{\rm{FeII}} logMRMM\log\frac{M_{\rm{RM}}}{M_{\odot}}^{{\dagger}} rBLRrg\frac{r_{\rm{BLR}}}{r_{\rm{g}}}^{{\dagger}} log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}^{{\dagger}}
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
J000048.16-095404.0 2132.9±\pm71.0 0.00089±\pm0.00005 2132.9±\pm282.9 0.00089±\pm0.00022 43.39±\pm0.00 7.26 -1.086 11.7±\pm0.8 11.7±\pm3.1 0.334 15381.3 -999 -999 -999 -999
J000102.19-102326.9 4695.0±\pm69.2 0.00062±\pm0.00049 4695.0±\pm172.5 0.00062±\pm0.00050 44.36±\pm0.00 8.46 -1.356 1.7±\pm0.0 1.7±\pm0.1 0.064 3191.6 0.188 8.49 6663.8 0.037
J000154.29+000732.5 1813.8±\pm98.9 0.00046±\pm0.00023 1813.8±\pm178.9 0.00046±\pm0.00023 43.48±\pm0.00 7.14 -0.972 8.4±\pm0.9 8.4±\pm1.7 0.448 22644.5 0.115 7.27 52991.6 0.322

Note. — Column 1: object name; Column 2: vFWHMv_{\rm{FWHM}} of Hβ\beta broad emission line; Column 3: the redward shift of Hβ\beta; Column 4: vFWHMv_{\rm{FWHM}} of Hα\alpha broad emission line; Column 5: the redward shift of Hα\alpha; Column 6: logarithm of L5100L_{\rm{5100}} in units of ergs1\rm{erg\/\ s^{-1}}; Column 7: logarithm of MRMM_{\rm{RM}} in units of MM_{\odot}; Column 8: logarithm of Lbol/LEddL_{\rm{bol}}/L_{\rm{Edd}}; Column 9: ff estimated from vFWHMv_{\rm{FWHM}} of Hβ\beta; Column 10: ff estimated from vFWHMv_{\rm{FWHM}} of Hα\alpha; Column 11: logarithm of ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1}; Column 12: rBLRr_{\rm{BLR}} in units of rgr_{\rm{g}}, where rBLR=33.65L440.533r_{\rm{BLR}}=33.65L^{0.533}_{44} light-days with L44=L5100/(1044ergs1)L_{44}=L_{\rm{5100}}/(10^{44}\/\ \rm{erg\/\ s^{-1}}). Column 13: RFeIIR_{\rm{FeII}} is the line ratio of Fe ii to Hβ\beta. Columns 2–8 and 13 are taken from Table 2 of Liu et al. (2019) or converted from the relevant quantities in Table 2 of Liu et al. (2019). -999 and {\dagger} are same as in Table 1.

(This table is available in its entirety in machine-readable form.)

4 ANALYSIS AND RESULTS

In order to study the correlation between ff, ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1}, L5100L_{\rm{5100}}, and vFWHMv_{\rm{FWHM}}, as well as zgz_{\rm{g}} and rBLR/rgr_{\rm{BLR}}/r_{\rm{g}}, we will perform the Spearman’s rank test and/or the Pearson’s correlation analysis. The bisector linear regression (Isobe et al., 1990) is performed to obtain the slope and intercept coefficients of y=a+bxy=a+bx in fitting our samples, if needed for some quantities. The partial correlation analysis is used to further verify the presence of correlation between ff and ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1}. All correlation analyses are calculated in log-space. The SPEAR (Press et al., 1992) is used to calculate the Spearman’s rank correlation coefficient rsr_{\rm{s}} and the pp-value PsP_{\rm{s}} of the hypothesis test. The PEARSN (Press et al., 1992) is used to give the Pearson’s correlation coefficient rr and the pp-value PP of the hypothesis test.

The Spearman’s rank correlation test is run for Samples 1–3, and the analysis results are listed in Table 4. There are positive correlations between the virial factor and ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} or Lbol/LEddL_{\rm{bol}}/L_{\rm{Edd}} for Samples 1–3 (see Figure 1 and Table 4). The results from the Pearson’s correlation analysis are listed in Table 5. The bisector regression fit can give aa and bb, as well as their uncertainties Δa\Delta a and Δb\Delta b, but it does not take into account the obervational errors of data (Isobe et al., 1990). So, based on Monte Carlo simulated data sets from the obervational values and errors, we calculate the best parameters using the bisector regression, and repeat this procedure 10410^{4} times to generate the distributions of aMCa_{\rm{MC}}, bMCb_{\rm{MC}}, ΔaMC\Delta a_{\rm{MC}}, and ΔbMC\Delta b_{\rm{MC}}. The means of the aMCa_{\rm{MC}} and bMCb_{\rm{MC}} distributions are taken to be the final best parameters of aa and bb, respectively. The corresponding uncertainties are given by the combinations of the means of the ΔaMC\Delta a_{\rm{MC}} and ΔbMC\Delta b_{\rm{MC}} distributions with the standard deviations of the aMCa_{\rm{MC}} and bMCb_{\rm{MC}} distributions, respectively. The bisector regression is run for logf=a+blog˙fg=1\log f=a+b\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}, and the fitting results are

logf\displaystyle\log f =0.76(±0.01)+0.88(±0.01)log˙fg=1,\displaystyle=0.76(\pm 0.01)+0.88(\pm 0.01)\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}, (4a)
logf\displaystyle\log f =0.76(±0.01)+0.77(±0.01)log˙fg=1,\displaystyle=0.76(\pm 0.01)+0.77(\pm 0.01)\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}, (4b)
logf\displaystyle\log f =0.80(±0.01)+0.78(±0.01)log˙fg=1,\displaystyle=0.80(\pm 0.01)+0.78(\pm 0.01)\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}, (4c)
logf\displaystyle\log f =0.77(±0.01)+0.78(±0.01)log˙fg=1,\displaystyle=0.77(\pm 0.01)+0.78(\pm 0.01)\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}, (4d)

where the pp-values of the hypothesis test are <1040<10^{-40}, and in the fittings, the uncertainty of log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} is taken to be 0.4 determined by the uncertainty of 0.4 dex usually used in MRMM_{\rm{RM}}. Equations (4aa)–(4dd) correspond to the best fits to data sets (ff,˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1}) for Hβ\beta in Sample 1, Hα\alpha in Sample 2, Hβ\beta in Sample 3, and Hα\alpha in Sample 3, respectively. It is clear that f˙fg=10.80.9f\propto\mathscr{\dot{M}}_{f_{\rm{g}}=1}^{0.8-0.9}, and then f(Lbol/LEdd)0.80.9f\propto(L_{\rm{bol}}/L_{\rm{Edd}})^{0.8-0.9}.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: ff vs. ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1}. Panel (aa): for Hβ\beta of 9185 AGNs in Sample 1. Panel (bb): for Hα\alpha of 9271 AGNs in Sample 2. Panel (cc): for Hβ\beta of 8169 AGNs in Sample 3. Panel (dd): for Hα\alpha of 8169 AGNs in Sample 3. The dashed green line denotes fg=1f_{\rm{g}}=1 for vFWHMv_{\rm{FWHM}}. The dashed red line denotes the best bisector linear fit. The blue solid line denotes the 95% confidence ellipse. Δf\Delta f is the fitting residuals.

Since ff may be affected by FrF_{\rm{r}}, it is possible that ff is correlated with L5100L_{\rm{5100}}. In fact, there are weak correlations between ff and L5100L_{\rm{5100}} (see Tables 45). Also, the dependence of ff and ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} on vFWHMv_{\rm{FWHM}} may result in a false correlation. Thus, the partial correlation analysis is needed to test the logf\log flog˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} correlation when excluding the influence of vFWHMv_{\rm{FWHM}} and/or L5100L_{\rm{5100}}. Based on the Pearson’s correlation coefficients in Table 5, the 1st order partial correlation analysis gives a confidence level of >> 99.99% for the logf\log flog˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} correlation when excluding the dependence on L5100L_{\rm{5100}} or vFWHMv_{\rm{FWHM}} (see Table 6). The 2nd order partial correlation analysis gives a confidence level of >> 99.99% for the logf\log flog˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} correlation when excluding the dependence on vFWHMv_{\rm{FWHM}} and L5100L_{\rm{5100}}, except for the broad Hα\alpha in Sample 3 at a confidence level of 99.84% (see Table 6). Thus, the positive correlation exists between ff and ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1}. This positive correlation is qualitatively consistent with the logical expectation when the overall effect of FrF_{\rm{r}} on the BLR clouds is taken into account to estimate MRMM_{\rm{RM}}. In addition, f>fg=1f>f_{\rm{g}}=1 for Hβ\beta and Hα\alpha in most of AGNs (see Figure 1): >> 96.5% for Hβ\beta in Sample 1, >> 97.2% for Hα\alpha in Sample 2, and >> 97.7% for Hβ\beta and >> 97.4% for Hα\alpha in Sample 3.

In order to test the gravitational origin of the redward shift of broad emission line, we compare zgz_{\rm{g}} to rBLR/rgr_{\rm{BLR}}/r_{\rm{g}}, the dimensionless radius of BLR in units of rgr_{\rm{g}}. The Spearman’s rank correlation test shows negative correlation between zgz_{\rm{g}} and rBLR/rgr_{\rm{BLR}}/r_{\rm{g}} (see Table 4). This negative correlation is qualitatively consistent with the expectation that zgz_{\rm{g}} is mainly from the gravity of the central black hole, because that MRMM_{\rm{RM}} can not be corrected individually for each AGN due to the absence of the individual virial factor that is independent of zgz_{\rm{g}}. So, we can make the overall correction of MRMM_{\rm{RM}} to be MRM/fM_{\rm{RM}}/\langle f\rangle, where f\langle f\rangle is the average of ff in Samples 1–3 (see Figure 2). This overall correction is equivalent to the parallel shift of the data point in Figure 2. The negative correlation expectation is basically consistent with the trend between zgz_{\rm{g}} and rBLR/rg/fr_{\rm{BLR}}/r_{\rm{g}}/\langle f\rangle in Figure 2. This indicates that zgz_{\rm{g}} is dominated by the gravity of the central black hole. In addition, rg/rBLR0.011r_{\rm{g}}/r_{\rm{BLR}}\lesssim 0.01\ll 1 and frg/rBLR<0.1\langle f\rangle r_{\rm{g}}/r_{\rm{BLR}}<0.1 for AGNs in Tables 13. frg/rBLR0.01\langle f\rangle r_{\rm{g}}/r_{\rm{BLR}}\lesssim 0.01 for >> 96% AGNs in Sample 1, >> 97% AGNs in Sample 2, and for >> 96% AGNs in Sample 3. Thus, the Schwarzschild metric is valid and matches the weak-field limit at the optical BLR scales of AGNs in our samples, which are conditions on the validity of Equation (1) (see Liu et al., 2022).

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Panel (aa): Hβ\beta shift zgz_{\rm{g}} vs. rBLR/rgr_{\rm{BLR}}/r_{\rm{g}} corrected by f=13.2\langle f\rangle=13.2 for Sample 1. Panel (bb): Hα\alpha shift zgz_{\rm{g}} vs. rBLR/rgr_{\rm{BLR}}/r_{\rm{g}} corrected by f=12.5\langle f\rangle=12.5 for Sample 2. Panel (cc): Hβ\beta shift zgz_{\rm{g}} vs. rBLR/rgr_{\rm{BLR}}/r_{\rm{g}} corrected by f=13.9\langle f\rangle=13.9 for Sample 3. Panel (dd): Hα\alpha shift zgz_{\rm{g}} vs. rBLR/rgr_{\rm{BLR}}/r_{\rm{g}} corrected by f=12.7\langle f\rangle=12.7 for Sample 3. The Spearman test shows negative correlations between these two physical quantities.

Since f>1f>1 for most of SDSS AGNs in Samples 1–3, the ff correction might result in substantial influence on MRMM_{\rm{RM}} and ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1}. We choose 8169 AGNs in Sample 3 to illustrate this influence. On average, the corrected MRMM_{\rm{RM}} becomes larger by one order of magnitude than MRMM_{\rm{RM}}, and the corrected ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} decreases by about 10 times (see Figure 3). The substantial increase of MRMM_{\rm{RM}} will significantly impact the black hole mass function of these SDSS AGNs, e.g., leading to more AGNs with higher masses. The substantial decrease of ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} loosens the requirement for accretion rate of accretion disk, and might make the distinction between high- and low-accreting sources less obvious. If Lbol/LEdd0.1L_{\rm{bol}}/L_{\rm{Edd}}\geq 0.1, i.e., log˙fg=10.42\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}\geq 0.42, for high-accreting sources, the percent of AGNs with log˙fg=10.42\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}\geq 0.42 is 31.4%, but the percent of AGNs with log(˙fg=1/f)0.42\log(\mathscr{\dot{M}}_{f_{\rm{g}}=1}/f)\geq 0.42 is only 0.3% (see Figure 3). The percent of high-accreting sources is decreased by about 100 times due to the ff correction. In a sense, the ff correction blurs the distinction between high- and low-accreting sources.

Refer to caption
Refer to caption
Figure 3: The ff correction effects on mass and accretion rate for 8169 AGNs in Sample 3. The blue lines are y=0.42y=0.42 and x=0.42x=0.42.

The virial factor of Hβ\beta is consistent with that of Hα\alpha for 8169 AGNs in Sample 3 (see Figure 4). The Hα\alpha lags are consistent with or (slightly) larger than the Hβ\beta lags for RM AGNs (e.g., Kaspi et al., 2000; Bentz et al., 2010; Grier et al., 2017). Because the Hα\alpha optical depth is larger than the Hβ\beta optical depth, the optical depth effects may result in the larger Hα\alpha lags that cause the Hα\alpha emission line to seemingly appear at the larger distances than Hβ\beta (see Bentz et al., 2010), even though the Hβ\beta and Hα\alpha broad emission lines are from the same region. Thus, it seems that rBLRr_{\rm{BLR}}(Hβ\beta) rBLR\approx r_{\rm{BLR}}(Hα\alpha). For broad emission lines with different rBLRr_{\rm{BLR}}, there will be frBLRαf\propto r_{\rm{BLR}}^{\alpha} (α>0\alpha>0) as FrF_{\rm{r}} is considered and the BLR clouds are in the virialized motion for a given AGN (Liu et al., 2017). The Hβ\beta and Hα\alpha BLRs have similar virialized kinematics for type-1 AGNs in SDSS DR 16 (Rakić, 2022). If rBLRr_{\rm{BLR}}(Hβ\beta) rBLR\approx r_{\rm{BLR}}(Hα\alpha) and frBLRαf\propto r_{\rm{BLR}}^{\alpha}, it will be expected that ff(Hβ\beta) is on the whole consistent with ff(Hα\alpha) for AGNs in Sample 3, as shown in Figure 4.

Refer to caption
Figure 4: Density map of ff(Hα\alpha) vs. ff(Hβ\beta) for 8169 AGNs in Sample 3. The dashed line is y=xy=x.
Table 4: Spearman’s rank analysis results
X Y Line rsr_{\rm{s}} PsP_{\rm{s}} Sample
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logf\log f Hβ\beta 0.615 <1040<10^{-40} 1
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logf\log f Hα\alpha 0.578 <1040<10^{-40} 2
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logf\log f Hβ\beta 0.626 <1040<10^{-40} 3
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logf\log f Hα\alpha 0.590 <1040<10^{-40} 3
logL5100\log L_{\rm{5100}} logf\log f Hβ\beta 0.089 1.0×10171.0\times 10^{-17} 1
logL5100\log L_{\rm{5100}} logf\log f Hα\alpha 0.047 6.0×1066.0\times 10^{-6} 2
logL5100\log L_{\rm{5100}} logf\log f Hβ\beta 0.113 8.3×10258.3\times 10^{-25} 3
logL5100\log L_{\rm{5100}} logf\log f Hα\alpha 0.044 5.8×1055.8\times 10^{-5} 3
log[rBLR/rg]\log[r_{\rm{BLR}}/r_{\rm{g}}] logzg\log z_{\rm{g}} Hβ\beta -0.440 <1040<10^{-40} 1
log[rBLR/rg]\log[r_{\rm{BLR}}/r_{\rm{g}}] logzg\log z_{\rm{g}} Hα\alpha -0.318 <1040<10^{-40} 2
log[rBLR/rg]\log[r_{\rm{BLR}}/r_{\rm{g}}] logzg\log z_{\rm{g}} Hβ\beta -0.447 <1040<10^{-40} 3
log[rBLR/rg]\log[r_{\rm{BLR}}/r_{\rm{g}}] logzg\log z_{\rm{g}} Hα\alpha -0.335 <1040<10^{-40} 3
log˙fg=1(η)\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}(\eta) logf\log f Hβ\beta 0.654 <1040<10^{-40} 1
log˙fg=1(η)\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}(\eta) logf\log f Hα\alpha 0.647 <1040<10^{-40} 2
log˙fg=1(η)\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}(\eta) logf\log f Hβ\beta 0.662 <1040<10^{-40} 3
log˙fg=1(η)\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}(\eta) logf\log f Hα\alpha 0.658 <1040<10^{-40} 3

Note. — X and Y are the relevant quantities presented in Samples 1–3. The first part: ˙fg=1=Lbol/LEdd/η\mathscr{\dot{M}}_{f_{\rm{g}}=1}=L_{\rm{bol}}/L_{\rm{Edd}}/\eta and η=0.038\eta=0.038. The last part: ˙fg=1(η)=Lbol/LEdd/η\mathscr{\dot{M}}_{f_{\rm{g}}=1}(\eta)=L_{\rm{bol}}/L_{\rm{Edd}}/\eta and η=0.089M80.52\eta=0.089M_{8}^{0.52}.

Table 5: Pearson’s analysis results
X Y Line rr PP Sample
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logf\log f Hβ\beta 0.601 <1040<10^{-40} 1
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logf\log f Hα\alpha 0.568 <1040<10^{-40} 2
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logf\log f Hβ\beta 0.618 <1040<10^{-40} 3
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logf\log f Hα\alpha 0.588 <1040<10^{-40} 3
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logL5100\log L_{\rm{5100}} Hβ\beta 0.236 <1040<10^{-40} 1
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logL5100\log L_{\rm{5100}} Hα\alpha 0.265 <1040<10^{-40} 2
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logL5100\log L_{\rm{5100}} Hβ\beta 0.247 <1040<10^{-40} 3
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logL5100\log L_{\rm{5100}} Hα\alpha 0.247 <1040<10^{-40} 3
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logvFWHM\log v_{\rm{FWHM}} Hβ\beta -0.747 <1040<10^{-40} 1
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logvFWHM\log v_{\rm{FWHM}} Hα\alpha -0.757 <1040<10^{-40} 2
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logvFWHM\log v_{\rm{FWHM}} Hβ\beta -0.753 <1040<10^{-40} 3
log˙fg=1\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} logvFWHM\log v_{\rm{FWHM}} Hα\alpha -0.787 <1040<10^{-40} 3
logL5100\log L_{\rm{5100}} logf\log f Hβ\beta 0.072 5.4×10125.4\times 10^{-12} 1
logL5100\log L_{\rm{5100}} logf\log f Hα\alpha 0.032 2.1×1032.1\times 10^{-3} 2
logL5100\log L_{\rm{5100}} logf\log f Hβ\beta 0.096 4.6×10184.6\times 10^{-18} 3
logL5100\log L_{\rm{5100}} logf\log f Hα\alpha 0.028 1.0×1021.0\times 10^{-2} 3
logL5100\log L_{\rm{5100}} logvFWHM\log v_{\rm{FWHM}} Hβ\beta 0.133 1.5×10371.5\times 10^{-37} 1
logL5100\log L_{\rm{5100}} logvFWHM\log v_{\rm{FWHM}} Hα\alpha 0.073 2.7×10122.7\times 10^{-12} 2
logL5100\log L_{\rm{5100}} logvFWHM\log v_{\rm{FWHM}} Hβ\beta 0.117 3.9×10263.9\times 10^{-26} 3
logL5100\log L_{\rm{5100}} logvFWHM\log v_{\rm{FWHM}} Hα\alpha 0.090 3.3×10163.3\times 10^{-16} 3
logvFWHM\log v_{\rm{FWHM}} logf\log f Hβ\beta -0.647 <1040<10^{-40} 1
logvFWHM\log v_{\rm{FWHM}} logf\log f Hα\alpha -0.686 <1040<10^{-40} 2
logvFWHM\log v_{\rm{FWHM}} logf\log f Hβ\beta -0.666 <1040<10^{-40} 3
logvFWHM\log v_{\rm{FWHM}} logf\log f Hα\alpha -0.693 <1040<10^{-40} 3

Note. — X and Y are the relevant quantities presented in Samples 1–3. ˙fg=1=Lbol/LEdd/η\mathscr{\dot{M}}_{f_{\rm{g}}=1}=L_{\rm{bol}}/L_{\rm{Edd}}/\eta and η=0.038\eta=0.038.

Table 6: Partial correlation analysis results
Name Order Line rpr_{\rm{p}} PpP_{\rm{p}} Sample
rlogflog˙fg=1,logL5100r_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log L_{\rm{5100}}} 1 Hβ\beta 0.603 <104<10^{-4} 1
rlogflog˙fg=1,logvFWHMr_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log v_{\rm{FWHM}}} 1 Hβ\beta 0.232 <104<10^{-4} 1
rlogflog˙fg=1,logvFWHMlogL5100r_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log v_{\rm{FWHM}}\log L_{\rm{5100}}} 2 Hβ\beta 0.151 <104<10^{-4} 1
rlogflog˙fg=1,logL5100r_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log L_{\rm{5100}}} 1 Hα\alpha 0.581 <104<10^{-4} 2
rlogflog˙fg=1,logvFWHMr_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log v_{\rm{FWHM}}} 1 Hα\alpha 0.102 <104<10^{-4} 2
rlogflog˙fg=1,logvFWHMlogL5100r_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log v_{\rm{FWHM}}\log L_{\rm{5100}}} 2 Hα\alpha 0.055 <104<10^{-4} 2
rlogflog˙fg=1,logL5100r_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log L_{\rm{5100}}} 1 Hβ\beta 0.616 <104<10^{-4} 3
rlogflog˙fg=1,logvFWHMr_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log v_{\rm{FWHM}}} 1 Hβ\beta 0.237 <104<10^{-4} 3
rlogflog˙fg=1,logvFWHMlogL5100r_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log v_{\rm{FWHM}}\log L_{\rm{5100}}} 2 Hβ\beta 0.141 <104<10^{-4} 3
rlogflog˙fg=1,logL5100r_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log L_{\rm{5100}}} 1 Hα\alpha 0.600 <104<10^{-4} 3
rlogflog˙fg=1,logvFWHMr_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log v_{\rm{FWHM}}} 1 Hα\alpha 0.096 <104<10^{-4} 3
rlogflog˙fg=1,logvFWHMlogL5100r_{\log f\log\mathscr{\dot{M}}_{f_{\rm{g}}=1},\log v_{\rm{FWHM}}\log L_{\rm{5100}}} 2 Hα\alpha 0.035 1.6×1031.6\times 10^{-3} 3

Note. — Based on the Pearson’s correlation coefficient rr in Table 5, the partial correlation coefficient rpr_{\rm{p}} and the p-value PpP_{\rm{p}} of the hypothesis test are estimated using the Website for Statistical Computation (http://vassarstats.net/index.html). Orders 1 and 2 denote the 1st and 2nd order partial correlation coefficients, respectively. ˙fg=1=Lbol/LEdd/η\mathscr{\dot{M}}_{f_{\rm{g}}=1}=L_{\rm{bol}}/L_{\rm{Edd}}/\eta and η=0.038\eta=0.038.

5 POTENTIAL INFLUENCE ON QUASARS AT z6z\gtrsim 6

Quasars at z6z\gtrsim 6 can probe the formation and growth of SMBHs in the Universe within the first billion years after the Big Bang. The quasars, with MRM109MM_{\rm{RM}}\gtrsim 10^{9}M_{\odot} at z7z\gtrsim 7 and with MRM1010MM_{\rm{RM}}\gtrsim 10^{10}M_{\odot} at z6z\gtrsim 6, make the formation and growth of SMBHs ever more challenging (e.g., Wu et al., 2015; Fan et al., 2023). These SMBHs will need a combination of massive early black hole seeds with highly efficient and sustained accretion (e.g., Fan et al., 2023). However, the single-epoch spectrum method had been widely used to estimate MRMM_{\rm{RM}} of the high-zz quasars (e.g., Willott et al., 2010; Wu et al., 2015; Wang et al., 2019; Eilers et al., 2023), and this may result in underestimation of MRMM_{\rm{RM}}, overestimation of Lbol/LEddL_{\rm{bol}}/L_{\rm{Edd}}, and significant influence on the formation and growth of SMBHs in the early Universe. Based on Equation (4), We will use logf=0.8+0.8log˙fg=1\log f=0.8+0.8\log\mathscr{\dot{M}}_{f_{\rm{g}}=1} to estimate ff and study its influence for quasars at z6z\gtrsim 6.

There are 113 quasars at 6z86\lesssim z\lesssim 8 with reliable Mg ii-based black hole mass estimates (Fan et al., 2023). These 113 quasars have f=78\langle f\rangle=78 (f=f= 12–189), log(MRM/M)=9.0\langle\log(M_{\rm{RM}}/M_{\odot})\rangle=9.0, log(fMRM/M)=10.9\langle\log(fM_{\rm{RM}}/M_{\odot})\rangle=10.9, and Lbol/LEdd/f=0.01\langle L_{\rm{bol}}/L_{\rm{Edd}}/f\rangle=0.01 (see Table 7). The ff correction makes MRMM_{\rm{RM}} increase by one–two orders of magnitude. Also, substantially reduced Lbol/LEdd/f=L_{\rm{bol}}/L_{\rm{Edd}}/f= 0.007–0.014 will make these 113 quasars accreting at well below the Eddington limit, although likely in the radiatively efficient regime via a geometrically thin, optically thick accretion disk (Shakura & Sunyaev, 1973). Based on Equation (7) in Fan et al. (2023), M(t)exp(t)M_{\bullet}(t)\propto\exp(t), the growth times of SMBHs in these quasars will increase by a factor of 2.5–5.2 due to the ff correction. Thus, the black hole seeds don’t seem to have enough time to grow up for SMBHs in quasars at z6z\gtrsim 6, and this gives more strong constraints on the formation and growth of the black hole seeds. Thus, the ff correction will make it more difficult to explain the formation and growth of SMBHs at z6z\gtrsim 6, e.g., larger masses of SMBHs need more massive early black hole seeds and/or longer growth times. Bogdán et al. (2023) found evidence for heavy-seed origin of early SMBHs from a zz\approx10 X-ray quasar. Our results of corrected masses support heavy-seed origin scenarios of early SMBHs.

The highest redshift quasar J031343.84-180636.40, at z=7.6423z=7.6423, has log(MRM/M)=9.2\log(M_{\rm{RM}}/M_{\odot})=9.2, log(fMRM/M)=11.0\log(fM_{\rm{RM}}/M_{\odot})=11.0, and Lbol/LEdd/f=0.01L_{\rm{bol}}/L_{\rm{Edd}}/f=0.01. Quasar J0100+2802, the most luminous quasar known at z>6z>6, has log(MRM/M)10\log(M_{\rm{RM}}/M_{\odot})\sim 10, and Lbol/LEdd0.8L_{\rm{bol}}/L_{\rm{Edd}}\sim 0.8 (Wu et al., 2015). So, J0100+2802 has log(fMRM/M)12\log(fM_{\rm{RM}}/M_{\odot})\sim 12, and Lbol/LEdd/f0.01L_{\rm{bol}}/L_{\rm{Edd}}/f\sim 0.01. Quasar J140821.67+025733.2, at z=2.055z=2.055, has a black hole mass of 1011.3M10^{11.3}M_{\odot} with the uncertainty of 0.4 dex (Kozłowski, 2017). It seems reasonable that J0100+2802 has log(fMRM/M)12\log(fM_{\rm{RM}}/M_{\odot})\sim 12 with the uncertainty of 0.4. Recently, Kokorev et al. (2023) found an AGN at z=8.50z=8.50 with an Hβ\beta-based mass of log(MRM/M)=8.2\log(M_{\rm{RM}}/M_{\odot})=8.2, and Lbol/LEdd0.33L_{\rm{bol}}/L_{\rm{Edd}}\sim 0.33. We have log(fMRM/M)9.7\log(fM_{\rm{RM}}/M_{\odot})\sim 9.7, and Lbol/LEdd/f0.01L_{\rm{bol}}/L_{\rm{Edd}}/f\sim 0.01 for this AGN. In addition, Samples 1–3 each have Lbol/LEdd/f=0.01\langle L_{\rm{bol}}/L_{\rm{Edd}}/f\rangle=0.01. It is interesting that Lbol/LEdd/f=0.01\langle L_{\rm{bol}}/L_{\rm{Edd}}/f\rangle=0.01 exists for quasars/AGNs at z<0.35z<0.35 and z6z\gtrsim 6, and perhaps it is a coincidence.

Table 7: Quasars at z6z\gtrsim 6
Name redshift logMRMM\log\frac{M_{\rm{RM}}}{M_{\odot}} logL3000ergs1\log\frac{L_{\rm{3000}}}{\rm{erg~{}s^{-1}}} LbolLEdd\frac{L_{\rm{bol}}}{L_{\rm{Edd}}} ff logfMRMM\log\frac{fM_{\rm{RM}}}{M_{\odot}} LbolfLEdd\frac{L_{\rm{bol}}}{fL_{\rm{Edd}}}
(1) (2) (3) (4) (5) (6) (7) (8)
J000825.77-062604.42 5.930 8.72 46.32 1.626 127.4 10.82 0.013
J002031.47-365341.82 6.834 9.23 46.42 0.633 59.8 11.01 0.011
J002429.77+391318.97 6.621 8.43 46.18 2.293 167.7 10.66 0.014

Note. — Lbol=5.15L3000L_{\rm{bol}}=5.15L_{3000}, and L3000L_{3000} is the UV quasar continuum luminosity at rest-frame wavelength 3000 Å (Fan et al., 2023). ff is estimated by logf=0.8+0.8log˙fg=1\log f=0.8+0.8\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}, where ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} is estimated by Lbol/LEdd/ηL_{\rm{bol}}/L_{\rm{Edd}}/\eta and η=0.038\eta=0.038.

(This table is available in its entirety in machine-readable form.)

6 POTENTIAL INFLUENCE ON MσM_{\bullet}-\sigma_{\ast} MAP OF AGNs

It is not determined whether or not the SMBHs coevolve with their host galaxies (e.g., Kormendy & Ho, 2003), especially, the SMBHs in AGNs with high accrete rates. Coevolution had been supported by the MσM_{\bullet}-\sigma_{\ast} relations of local quiescent galaxies. For 31 nearby galaxies, Tremaine et al. (2002) obtained log(M/M)=8.13+4.02log(σ/σ0)\log(M_{\bullet}/M_{\odot})=8.13+4.02\log(\sigma_{\ast}/\sigma_{0}) with σ0=200kms1\sigma_{0}=200~{}\rm{km~{}s^{-1}}. McConnell & Ma (2013) presented a revised scaling relation of log(M/M)=8.32+5.64log(σ/σ0)\log(M_{\bullet}/M_{\odot})=8.32+5.64\log(\sigma_{\ast}/\sigma_{0}) for dynamical measurements of MM_{\bullet} at the centers of 72 nearby galaxies. For 72 nearby quiescent galaxies with dynamical measurements of MM_{\bullet}, Woo et al. (2013) obtained log(M/M)=8.37+5.31log(σ/σ0)\log(M_{\bullet}/M_{\odot})=8.37+5.31\log(\sigma_{\ast}/\sigma_{0}). For 19 local luminous AGNs at z<0.01z<0.01, Caglar et al. (2020) obtained log(M/M)=8.14+3.38log(σ/σ0)\log(M_{\bullet}/M_{\odot})=8.14+3.38\log(\sigma_{\ast}/\sigma_{0}).

We collect σ\sigma_{\ast} from Table 1 in Woo et al. (2015) for AGNs in our samples, and MRMM_{\rm{RM}}, σ\sigma_{\ast}, L5100L_{\rm{5100}}, etc for other SDSS quasars from Table 1 in Shen et al. (2015b). There are 62 AGNs and 88 quasars collected (see Tables 89). These 62 AGNs are at z=z= 0.013–0.100 with z=\langle z\rangle= 0.063, which are beyond the local Universe. These 88 quasars are at z=z= 0.116–0.997 with z=\langle z\rangle= 0.581, which are well beyond the local Universe. The significant difference of redshift might influence whether these 150 sources follow the same MσM_{\bullet}-\sigma_{\ast} relationship as the local sources. The (MRMM_{\rm{RM}},σ\sigma_{\ast}) data of these 150 soures do not roughly follow these four local MσM_{\bullet}-\sigma_{\ast} relations, and the deviation of these 88 quasars is more obvious (see Figure 5). As study the coevolution of SMBHs with host galaxies, the local MσM_{\bullet}-\sigma_{\ast} relation is basically equivalent to the local black hole–galaxy bulge mass relation. Quasars at z6z\sim 6 are above the local mass relation (e.g., Fan et al., 2023). So, these quasars at z6z\sim 6 should be above the local MσM_{\bullet}-\sigma_{\ast} relation. Thus, these z6z\gtrsim 6 quasars using fMRMfM_{\rm{RM}} might be above these local MσM_{\bullet}-\sigma_{\ast} relations.

These local luminous AGNs in Caglar et al. (2020) have Lbol/LEdd=0.07\langle L_{\rm{bol}}/L_{\rm{Edd}}\rangle=0.07, which corresponds to f=10f=10, indicating that the MσM_{\bullet}-\sigma_{\ast} relation of Caglar et al. (2020) should be corrected by moving vertically upward by an order of magnitude in the MσM_{\bullet}-\sigma_{\ast} map. Though, the (fMRMfM_{\rm{RM}},σ\sigma_{\ast}) data of these 150 sources deviate from (are above) these local MσM_{\bullet}-\sigma_{\ast} relations, they roughly follow the corrected MσM_{\bullet}-\sigma_{\ast} relation (see Figure 5). This deviation implies requirements of more massive black hole seeds, longer growth times, larger AGN duty cycles, and/or higher mass accretion rates in long-term accretion history for them. Also, it seems that agreement of the (fMRMfM_{\rm{RM}},σ\sigma_{\ast}) data with the corrected MσM_{\bullet}-\sigma_{\ast} relation is better than agreement of the (MRMM_{\rm{RM}},σ\sigma_{\ast}) data with these local MσM_{\bullet}-\sigma_{\ast} relations (see Figure 5). These results might shed light on possible redshift evolution in the MσM_{\bullet}-\sigma_{\ast} relationship. The formation and growth of the local SMBHs and host galaxies might be different from those of the SMBHs in higher redshift AGNs/quasars and host galaxies.

Refer to caption
Figure 5: MσM_{\bullet}-\sigma_{\ast} map for 62 AGNs in our samples (solid circles), and 88 quasars in Shen et al. (2015b) (open squares). The black symbols correspond to MRMM_{\rm{RM}}, and the colourful symbols are fMRMfM_{\rm{RM}}. The bule dashed line is the Tremaine et al. (2002) relation for nearby inactive galaxies. The olive dashed line is the Woo et al. (2013) relation for nearby quiescent galaxies. The magenta dashed line is the McConnell & Ma (2013) relation for 72 nearby galaxies. The cyan dashed line is the Caglar et al. (2020) relation for local luminous AGNs. The cyan dash-dotted line is the Caglar et al. (2020) relation moved vertically upward by an order of magnitude.
Table 8: 62 SDSS AGNs in MσM_{\bullet}-\sigma_{\ast} map research
Name redshift logMRMM\log\frac{M_{\rm{RM}}}{M_{\odot}} LbolLEdd\frac{L_{\rm{bol}}}{L_{\rm{Edd}}} ff σkms1\frac{\sigma_{\ast}}{\rm{km~{}s^{-1}}} logfMRMM\log\frac{fM_{\rm{RM}}}{M_{\odot}}
(1) (2) (3) (4) (5) (6) (7)
J010409.16+000843.7 0.071 6.78 0.065 6.4 66±\pm16 7.59
J030417.78+002827.4 0.045 6.54 0.147 25.9 88±\pm8 7.95
J073106.87+392644.7 0.048 6.39 0.120 29.8 72±\pm14 7.86

Note. — σ\sigma_{\ast} of 62 AGNs in our samples are taken from Table 1 in Woo et al. (2015).

(This table is available in its entirety in machine-readable form.)

Table 9: 88 SDSS quasars in MσM_{\bullet}-\sigma_{\ast} map research
Name redshift logMRMM\log\frac{M_{\rm{RM}}}{M_{\odot}} logL5100ergs1\log\frac{L_{\rm{5100}}}{\rm{erg~{}s^{-1}}} LbolLEdd\frac{L_{\rm{bol}}}{L_{\rm{Edd}}} ff σkms1\frac{\sigma_{\ast}}{\rm{km~{}s^{-1}}} logfMRMM\log\frac{fM_{\rm{RM}}}{M_{\odot}}
(1) (2) (3) (4) (5) (6) (7) (8)
141359.51+531049.3 0.8982 7.94 44.11 0.117 15.6 121±\pm31 9.13
141324.28+530527.0 0.4559 8.36 43.91 0.028 4.9 191±\pm4 9.05
141323.27+531034.3 0.8492 8.93 44.28 0.017 3.4 166±\pm20 9.46

Note. — 88 SDSS quasars are taken from Table 1 in Shen et al. (2015b). Lbol=9.8L5100L_{\rm{bol}}=9.8L_{\rm{5100}}. ff is estimated by logf=0.8+0.8log˙fg=1\log f=0.8+0.8\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}, where ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} is estimated by Lbol/LEdd/ηL_{\rm{bol}}/L_{\rm{Edd}}/\eta and η=0.038\eta=0.038.

(This table is available in its entirety in machine-readable form.)

7 DISCUSSION

The redward shift zgz_{\rm{g}} can also be estimated by λb\lambda_{\rm{b}} and λn\lambda_{\rm{n}} of the Hβ\beta and Hα\alpha lines (see Equation 3). Because of the absence of the uncertainty of λn\lambda_{\rm{n}} for Hβ\beta in Table 2 of Liu et al. (2019), zgz_{\rm{g}} is estimated by λb\lambda_{\rm{b}} and λn\lambda_{\rm{n}} of Hα\alpha for 7552 AGNs in Sample 2, zgz_{\rm{g}}(Hα\alpha)(b-n). zgz_{\rm{g}}(Hα\alpha)(b-n) is roughly consistent with [O iii]λ\lambda5007-based zgz_{\rm{g}}(Hα\alpha) (see Figure 6). Considering the uncertainties of zgz_{\rm{g}}(Hα\alpha) and zgz_{\rm{g}}(Hα\alpha)(b-n) (see columns 3–4 in Table 2), they are consistent with each other. Thus, the results of zgz_{\rm{g}}(Hα\alpha) are reliable. Based on zgz_{\rm{g}}(Hα\alpha) and zgz_{\rm{g}}(Hα\alpha)(b-n), the virial factors of ff(Hα\alpha) and ff(Hα\alpha)(b-n) are estimated and are compared to test their reliabilities. Figure 6 shows that ff(Hα\alpha) and ff(Hα\alpha)(b-n) are basically consistent. Considering the uncertainties, which have a mean of 2.0 and a median of 0.8 for ff(Hα\alpha) and a mean of 1.6 and a median of 0.7 for ff(Hα\alpha)(b-n) (see columns 8–9 in Table 2), ff(Hα\alpha) is consistent with ff(Hα\alpha)(b-n). Thus, the selection of [O iii]λ\lambda5007 as a reference to estimate zgz_{\rm{g}} in Equation (3) will not influence our results.

Refer to caption
Refer to caption
Figure 6: Density maps for 7552 AGNs in Sample 2. Panel (aa): narrow Hα\alpha-based zgz_{\rm{g}}(Hα\alpha)(b-n) vs. [O iii]λ\lambda5007-based zgz_{\rm{g}}(Hα\alpha). Panel (bb): ff(Hα\alpha)(b-n) vs. ff(Hα\alpha). The dashed lines are y=xy=x.

It is very difficult to get real individual value of η\eta to estimate ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} for a large sample of AGNs, because η\eta is closely related to the difficultly measured spin of a black hole. Usually, the Eddington ratio is regarded as a proxy of accretion rate of black hole. Even though these correlations of ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} with ff are likely influenced by the unknown individual value of η\eta, there are still correlations of the Eddington ratio with ff, because only a difference of 0.038 exists between ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} and Lbol/LEddL_{\rm{bol}}/L_{\rm{Edd}} in Tables 13. Davis & Laor (2011) found a strong correlation of η=0.089M80.52\eta=0.089M_{8}^{0.52} for a sample of 80 Palomar–Green quasars, where M8M_{8} is the black hole mass in units of 108M10^{8}M_{\odot} and η\eta was estimated from the mass accretion rate and LbolL_{\rm{bol}}. This empirical relation is used to estimate η\eta in order to test the influence of using η=0.038\eta=0.038 on these correlations of ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} with ff. Correlation analyses are made for ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} and ff in Figure 1 with ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} to be re-estimated by Lbol/LEddL_{\rm{bol}}/L_{\rm{Edd}} in Tables 13 and the estimated η\eta. There are still correlations very similar to those found in Figure 1 when using these new dimensionless accretion rates (see Figure 7 and Table 4). Thus, these ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1}ff correlations found in this work do not result from using the fixed value of η=0.038\eta=0.038.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7: ff vs. ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} for AGNs in Samples 1–3. The Spearman test shows positive correlations between these two physical quantities. ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} is estimated by η=0.089M80.52\eta=0.089M_{8}^{0.52} rather than η=0.038\eta=0.038.

Equation (2) can give for vFWHMv_{\rm{FWHM}}, ff, and zgz_{\rm{g}}

log(vFWHMc)2=log(32f)+logzg,\log(\frac{v_{\rm{FWHM}}}{c})^{2}=-\log(\frac{3}{2}f)+\log z_{\rm{g}}, (5)

which is similar to Equation (6) in Mediavilla et al. (2018). Mediavilla et al. (2018) found a tight correlation between the widths and redward shifts of the Fe iiiλλ\lambda\lambda 2039–2113 blend for lensed quasars, which supports the gravitational interpretation of the Fe iiiλλ\lambda\lambda 2039–2113 redward shifts. A series of lines based on Equation (4) with different ff are compared to the observational data points (see Figure 8). From top to bottom, the corresponding ff increases. Because of the codependence among the Eddington ratio, dimensionless accretion rate and vFWHMv_{\rm{FWHM}}, the large ranges of the former two quantities may lead to the large span in the direction roughly perpendicular to these lines (see Figure 8). These lines with f=1f=1–100 recover the observational data in Figure 8, and this indicates the gravitational origin of zgz_{\rm{g}}. At the same time, the internal physical processes, e.g., the micro-turbulence, within the BLR cloud can broaden and smooth the line profles (Bottorff & Ferland, 2000). Also, the turbulence velocity of the BLR cloud can influence the widths of the line profiles. These turbulence processes will influence vFWHMv_{\rm{FWHM}} and then ff for different AGNs. The combination of the column density of the BLR cloud, metallicity of the BLR cloud, internal physical processes within the BLR cloud, etc, may decrease these correlations in Figure 1 (e.g., Liu et al., 2022).

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 8: (vFWHM/c)2(v_{\rm{FWHM}}/c)^{2} vs. zgz_{\rm{g}} for AGNs in Samples 1–3. The values labeled on the dashed lines represent ff in Equation (5).

There are the various outflows at accretion disk scales, the BLR scales, the NLR scales and the kpc scales, driven by FrF_{\rm{r}} from AGNs (Kang & Woo, 2018; Dyda & Proga, 2018; Dannen et al., 2019; Mas-Ribas & Mauland, 2019; Nomura et al., 2020; Meena et al., 2021; Singha et al., 2021). Thus, FrF_{\rm{r}} is prevalent, and may contribute to the force budget for inflow, e.g., FrF_{\rm{r}} decelerates inflow (Ferland et al., 2009). RM observations of PG 0026+129 indicate a decelerating inflow if zgz_{\rm{g}} originates from inflow. If the decelerating inflow is prevalent, zgz_{\rm{g}} will increase with the increasing rBLR/rgr_{\rm{BLR}}/r_{\rm{g}}, but this expectation is not consistent with the negative trend found in Figure 2. Thus, the inflow seems not to be the origin of zgz_{\rm{g}}. In RM observations, the asymmetric lag maps and shifts of broad emission lines for AGNs usually differ from the theoretical expectation that inflow will generate the redward shifted broad emission lines with the blueward asymmetric lag maps (e.g., Denney et al., 2010; Zhang et al., 2019; Hu et al., 2020; Feng et al., 2021a, b). This kind of broad emission lines may originate from an elliptical disklike BLR (Kovačević et al., 2020; Feng et al., 2021a). Therefore, the redward shifted broad emission lines in AGNs do not necessarily originate from inflow.

Mejía-Restrepo et al. (2018) determined the virial factor in a smaller set of sources using a different method than proposed here, and found a relation whereby f1/vFWHMf\propto 1/v_{\rm{FWHM}}, which is attributed to inclination effects, but without excluding the possibility of radiation pressure effects over a wide luminosity range. Their sources have log[vFWHM/(kms1)]\log[v_{\rm{FWHM}}/\rm{(km~{}s^{-1}})] \approx 3.2–4.0, which are much narrower than log[vFWHM/(kms1)]\log[v_{\rm{FWHM}}/\rm{(km~{}s^{-1}})] \approx 2.7–4.4 in our samples. Also, their sources have log(MRM/M)\log(M_{\rm{RM}}/M_{\odot})\approx 7.5–9.7 and log[L5100/(ergs1)]\log[L_{5100}/\rm{(erg~{}s^{-1}})] == 44.3–46.2, which are much narrower than log(MRM/M)\log(M_{\rm{RM}}/M_{\odot}) \approx 5.2–9.7 and log[L5100/(ergs1)]\log[L_{5100}/\rm{(erg~{}s^{-1}})] == 40.6–45.6 in our samples, respectively. There are positive correlations between zgz_{\rm{g}} and vFWHMv_{\rm{FWHM}} for our samples, zgvFWHM1.5z_{\rm{g}}\propto v_{\rm{FWHM}}^{1.5} (see Figure 9). Based on zgvFWHM1.5z_{\rm{g}}\propto v_{\rm{FWHM}}^{1.5} and Equation (2) with vFWHMv_{\rm{FWHM}} partly contributed from inclination effects, we have f1/vFWHM0.5f\propto 1/v_{\rm{FWHM}}^{0.5}, which is qualitatively consistent with, but shallower than f1/vFWHMf\propto 1/v_{\rm{FWHM}}. This discrepancy might be generated by our consideration of radiation pressure, and the estimation of MM_{\bullet} using standard thin accretion disk models for sources with the narrower parameter coverage (Mejía-Restrepo et al., 2018). In this sense, these results and interpretations promoted here are consistent with Mejía-Restrepo et al. (2018).

Refer to caption
Refer to caption
Figure 9: Panel (aa): zgz_{\rm{g}} vs. vFWHMv_{\rm{FWHM}} for Hβ\beta in Sample 1. The blue dashed line represents the best bisector fit, logzg=8.106(±0.073)+1.486(±0.021)logvFWHM\log z_{\rm{g}}=-8.106(\pm 0.073)+1.486(\pm 0.021)\log v_{\rm{FWHM}}, with the pp-value of the hypothesis test to be <1040<10^{-40}. Panel (bb): zgz_{\rm{g}} vs. vFWHMv_{\rm{FWHM}} for Hβ\beta in Sample 3. The red dashed line represents the best bisector fit, logzg=7.978(±0.072)+1.458(±0.021)logvFWHM\log z_{\rm{g}}=-7.978(\pm 0.072)+1.458(\pm 0.021)\log v_{\rm{FWHM}}, with the pp-value of the hypothesis test to be <1040<10^{-40}.

The AGNs with high-accretion rates show shorter time lags by factors of a few compared to the predictions from the rBLRr_{\rm{BLR}}L5100L_{\rm{5100}} relationship (Du et al., 2015). Du & Wang (2019) found that accretion rate is the main driver for the shortened lags, and established a new scaling relation:

logrBLR(Hβ)=1.65+0.45logL440.35RFeII,\log r_{\rm{BLR}}(\mathrm{H\beta})=1.65+0.45\log L_{44}-0.35R_{\rm{FeII}}, (6)

where rBLR(Hβ)r_{\rm{BLR}}(\rm{H\beta}) is rBLRr_{\rm{BLR}} in units of light days for Hβ\beta, L44=L5100/(1044ergs1)L_{44}=L_{\rm{5100}}/(\rm{10^{44}~{}erg~{}s^{-1}}), and RFeIIR_{\rm{FeII}} is the line ratio of Fe ii to Hβ\beta. Replacing rBLR=33.65L440.533r_{\rm{BLR}}=33.65L_{44}^{0.533} with Equation (6), the mass of black hole is given by

logMRM(RFeII)=logMRM0.083logL440.35RFeII+0.123,\log M_{\rm{RM}}(R_{\rm{FeII}})=\log M_{\rm{RM}}-0.083\log L_{44}-0.35R_{\rm{FeII}}+0.123, (7)

which is used to estimate the dimensionless accretion rate, ˙fg=1(RFeII)\mathscr{\dot{M}}_{f_{\rm{g}}=1}(R_{\rm{FeII}}). Samples 1 and 3 are used to investigate the influence of Equation (6) on the ff˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} relation. RFeIIR_{\rm{FeII}} is estimated by equivalent widths of Hβ\beta and Fe ii taken from Table 2 of Liu et al. (2019) for 5997 AGNs in Sample 1 and 5365 AGNs in Sample 3. First, ˙fg=1(RFeII)\mathscr{\dot{M}}_{f_{\rm{g}}=1}(R_{\rm{FeII}}) is overall consistent with the original ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} (see Figure 10). Second, ff is well correlated with ˙fg=1(RFeII)\mathscr{\dot{M}}_{f_{\rm{g}}=1}(R_{\rm{FeII}}) (see Figure 10), and Equation (6) has a slight impact on the ff˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} relation. Also, rBLR(RFeII)/rg(RFeII)r_{\rm{BLR}}(R_{\rm{FeII}})/r_{\rm{g}}(R_{\rm{FeII}}) is estimated, and there exits the anti-correlation trend between zgz_{\rm{g}} and rBLR(RFeII)/rg(RFeII)/fr_{\rm{BLR}}(R_{\rm{FeII}})/r_{\rm{g}}(R_{\rm{FeII}})/\langle f\rangle (see Figure 11), same as in Figure 2. The potential effect of ˙\mathscr{\dot{M}}, especially at the high mass accretion rate end (Du et al., 2015), do not lead to qualitatively different results of rBLR/rgr_{\rm{BLR}}/r_{\rm{g}}.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 10: Panel(aa): ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} vs. ˙fg=1(RFeII)\mathscr{\dot{M}}_{f_{\rm{g}}=1}(R_{\rm{FeII}}) for Hβ\beta in 5997 AGNs from Sample 1. Panel(bb): ff vs. ˙fg=1(RFeII)\mathscr{\dot{M}}_{f_{\rm{g}}=1}(R_{\rm{FeII}}) for Hβ\beta in 5997 AGNs from Sample 1. The best bisector fit is logf=0.69(±0.01)+0.73(±0.01)log˙fg=1(RFeII)\log f=0.69(\pm 0.01)+0.73(\pm 0.01)\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}(R_{\rm{FeII}}), with the pp-value of the hypothesis test to be <1040<10^{-40}. Panel(cc): ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} vs. ˙fg=1(RFeII)\mathscr{\dot{M}}_{f_{\rm{g}}=1}(R_{\rm{FeII}}) for Hβ\beta in 5365 AGNs from Sample 3. Panel(dd): ff vs. ˙fg=1(RFeII)\mathscr{\dot{M}}_{f_{\rm{g}}=1}(R_{\rm{FeII}}) for Hβ\beta in 5365 AGNs from Sample 3. The best bisector fit is logf=0.71(±0.01)+0.71(±0.01)log˙fg=1(RFeII)\log f=0.71(\pm 0.01)+0.71(\pm 0.01)\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}(R_{\rm{FeII}}), with the pp-value of the hypothesis test to be <1040<10^{-40}. The coloured lines in Panels (bb) and (dd) are same as in Figure 1, and two outliers with log˙fg=1(RFeII)\log\mathscr{\dot{M}}_{f_{\rm{g}}=1}(R_{\rm{FeII}})\approx 27 and 103 are not included in fitting.
Refer to caption
Refer to caption
Figure 11: Panel(aa): Hβ\beta shift zgz_{\rm{g}} vs. rBLR(RFeII)/rg(RFeII)r_{\rm{BLR}}(R_{\rm{FeII}})/r_{\rm{g}}(R_{\rm{FeII}}) corrected by f=14.2\langle f\rangle=14.2 for 5997 AGNs in Sample 1. Panel(bb): Hβ\beta shift zgz_{\rm{g}} vs. rBLR(RFeII)/rg(RFeII)r_{\rm{BLR}}(R_{\rm{FeII}})/r_{\rm{g}}(R_{\rm{FeII}}) corrected by f=15.0\langle f\rangle=15.0 for 5365 AGNs in Sample 3.

8 CONCLUSION

Based on the assumption of a gravitational origin for the redward shifts of broad emission lines Hβ\beta and Hα\alpha, and their widths and redward shifts for more than 8000 SDSS DR7 AGNs with z<0.35z<0.35, we measured the virial factor in MRMM_{\rm{RM}}, estimated by the RM method and/or the relevant secondary methods. The measured virial factor contains the overall effect of FrF_{\rm{r}} from accretion disk radiation and the geometric effect of BLR. Our findings can be summarized as follows:

  1. 1.

    There are positive correlations of ff with ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} and Lbol/LEddL_{\rm{bol}}/L_{\rm{Edd}}, which are a combined effect of several physical mechanisms, such as the Doppler effects, the gravitational redshift, the gravity of black hole, the radiation pressure force, etc. ff spans a large range, and f>1f>1 for >>96% AGNs in Samples 1–3. The ff correction makes the percent of high-accreting AGNs decrease by about 100 times, and blurs the distinction between high- and low-accreting sources.

  2. 2.

    zgz_{\rm{g}} is anti-correlated with rBLR/rgr_{\rm{BLR}}/r_{\rm{g}}. zgz_{\rm{g}} and rBLR/rg/fr_{\rm{BLR}}/r_{\rm{g}}/\langle f\rangle marginally follow the 1:1 line. A series of lines with different ff basically reproduce the vFWHMv_{\rm{FWHM}}zgz_{\rm{g}} distribution for the broad Hβ\beta and Hα\alpha. These results suggest that the redward shifts of the broad Hβ\beta and Hα\alpha are governed by the gravity of the central SMBHs.

  3. 3.

    For quasars at z6z\gtrsim 6, the ff correction makes them from the close Eddington accreting sources become low-accreting sources, likely in the radiatively efficient regime via a geometrically thin, optically thick accretion disk. The ff corrected masses indicate that quasars at z6z\gtrsim 6 have more massive early black hole seeds and longer growth times, supporting heavy-seed origin scenarios of early SMBHs. These results will make it more challenging to explain the formation and growth of SMBHs at z6z\gtrsim 6.

  4. 4.

    62 AGNs and 88 quasars, beyond the local Universe, do not follow these local MσM_{\bullet}-\sigma_{\ast} relations. After the ff correction, these 150 sources are above these local MσM_{\bullet}-\sigma_{\ast} relations, but they roughly follow the ff-corrected MσM_{\bullet}-\sigma_{\ast} relation of these local luminous AGNs in Caglar et al. (2020). These results might shed light on possible redshift evolution in the MσM_{\bullet}-\sigma_{\ast} relationship.

Our results show that radiation pressure force should be considered in estimating the virial masses of SMBHs. The usually used values of ff should be corrected for high-accreting AGNs, especially quasars at z6z\gtrsim 6. The ff correction to MRMM_{\rm{RM}} will make the coevolution (or not) of SMBHs and host galaxies more complex for the local sources and the higher redshift sources. Positive correlations of ff with ˙fg=1\mathscr{\dot{M}}_{f_{\rm{g}}=1} and Lbol/LEddL_{\rm{bol}}/L_{\rm{Edd}} need to be further tested by the redward shifted broad emission lines of the RM AGNs without the signatures of inflow and outflow in BLR, which can be picked out by the velocity-resolved time lag maps.

We are grateful to the anonymous referee for constructive comments and suggestions that improved significantly this manuscript. We thank the financial support of the National Key R&D Program of China (grant No. 2021YFA1600404), the National Natural Science Foundation of China (grants No. 12373018, No. 12303022, No. 12203096, No. 12063005, and No. 11991051), Yunnan Fundamental Research Projects (grants No. 202301AT070358 and No. 202301AT070339), Yunnan Postdoctoral Research Foundation Funding Project, Special Research Assistant Funding Project of Chinese Academy of Sciences, and the science research grants from the China Manned Space Project with grant No. CMS-CSST-2021-A06. We acknowledge the Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province (IRTSTYN). ORCID iDs H. T. Liu https://orcid.org/0000-0002-2153-3688
Hai-Cheng Feng https://orcid.org/0000-0002-1530-2680
Sha-Sha Li https://orcid.org/0000-0003-3823-3419
H. Z. Li https://orcid.org/0000-0001-8307-1442

References

  • Barth et al. (2011) Barth, A. J., Pancoast, A., Thorman, S. J., et al. 2011, ApJ,743, L4
  • Barth et al. (2015) Barth, A. J., Bennert, V. N., Canalizo, G., et al. 2015, ApJS, 217, 26
  • Bentz et al. (2016) Bentz, M. C., Cackett, E. M., Crenshaw, D. M., Horne, K., Street, R., & Ou-Yang, B. 2016, ApJ, 830, 136
  • Bentz et al. (2006) Bentz, M. C., Denney, K. D., Cackett, E. M., et al. 2006, ApJ, 651, 775
  • Bentz et al. (2013) Bentz, M. C., Denney, K. D., Grier, C. J., et al. 2013, ApJ, 767, 149
  • Bentz et al. (2023) Bentz, M. C., Onken, C. A., Street, R., & Valluri, M. 2023, ApJ, 944, 29
  • Bentz et al. (2010) Bentz, M. C., Walsh, J. L., Barth, A. J., et al. 2010, ApJ, 716, 993
  • Bentz et al. (2021) Bentz, M. C., Williams, P. R., Street, R., Onken, C. A., Valluri, M., & Treu, T. 2021, ApJ, 920, 112
  • Bentz et al. (2022) Bentz, M. C., Williams, P. R., & Treu, T. 2022, ApJ, 934, 168
  • Blandford & McKee (1982) Blandford, R. D., & McKee, C. F. 1982, ApJ, 255, 419
  • Bogdán et al. (2023) Bogdán, Á., Goulding, A. D., Natarajan, P. et al. 2023, Nature Astronomy, (https://doi.org/10.1038/s41550-023-02111-9)
  • Bottorff & Ferland (2000) Bottorff, M. C., & Ferland, G. J. 2000, MNRAS, 316, 103
  • Caglar et al. (2020) Caglar, T., Burtscher, L., Brandl, B., et al. 2020, A&A, 634, A114
  • Dannen et al. (2019) Dannen, R. C., Proga, D., Kallman, T. R., & Waters, T. 2019, ApJ, 882, 99
  • Davis & Laor (2011) Davis, S. W., & Laor, A. 2011, ApJ, 728, 98
  • Denney et al. (2010) Denney, K. D., Peterson, B. M., Pogge, R. W., et al. 2010, ApJ, 721, 715
  • Du et al. (2014) Du, P., Hu, C., Lu, K. X., et al. 2014, ApJ, 782, 45
  • Du et al. (2015) Du, P., Hu, C., Lu, K. X., et al. 2015, ApJ, 806, 22
  • Du et al. (2016) Du, P., Lu, K. X., Hu, C., et al. 2016, ApJ, 820, 27
  • Du et al. (2018a) Du, P., Brotherton, M. S., Wang, K., et al. 2018a, ApJ, 869, 142
  • Du et al. (2018b) Du, P., Zhang, Z. X., Wang, K., et al. 2018b, ApJ, 856, 6
  • Du & Wang (2019) Du, P., & Wang, J. M. 2019, ApJ, 886, 42
  • Dyda & Proga (2018) Dyda, S., & Proga, D. 2018, MNRAS, 481, 5263
  • Eilers et al. (2023) Eilers, A.-C., Simcoe, R. A., Yue, M., et al. 2023, ApJ, 950, 68
  • Fan et al. (2023) Fan, X., Bañados, E., & Simcoe, R. A. 2023, ARA&A, 61, 373
  • Feng et al. (2021a) Feng, H.-C., Hu, C., Li, S.-S., et al. 2021a, ApJ, 909, 18
  • Feng et al. (2021b) Feng, H.-C., Liu, H. T., Bai, J. M., et al. 2021b, ApJ, 912, 92
  • Ferland et al. (2009) Ferland, G. J., Hu, C., Wang, J. M., et al. 2009, ApJ, 707, L82
  • Grier et al. (2017) Grier, C. J., Trump, J. R., Shen, Y., et al. 2017, ApJ, 851, 21
  • Haas et al. (2011) Haas, M., Chini, R., Ramolla, M., et al. 2011, A&A, 535, A73
  • Hoormann et al. (2019) Hoormann, J. K., Martini, P., Davis, T. M., et al. 2019, MNRAS, 487, 3650
  • Hu et al. (2008) Hu, C., Wang, J. M., Ho, L. C., et al. 2008, ApJ, 687, 78
  • Hu et al. (2015) Hu, C., Du, P., Lu, K. X., et al. 2015, ApJ, 804, 138
  • Hu et al. (2020) Hu, C., Li, S. S., Guo, W. J., et al. 2020, ApJ, 905, 75
  • Hu et al. (2021) Hu, C., Li, S.-S., Yang, S., et al. 2021, ApJS, 253, 20
  • Isobe et al. (1990) Isobe, T., Feigelson, E. D., Akritas, M. G., & Babu, G. J. 1990, ApJ, 364, 104
  • Kang & Woo (2018) Kang, D., & Woo, J. H. 2018, ApJ, 864, 124
  • Kaspi & Netzer (1999) Kaspi, S., & Netzer, H. 1999, ApJ, 524, 71
  • Kaspi et al. (2000) Kaspi, S., Smith, P. S., Netzer, H., et al. 2000, ApJ, 533, 631
  • Kaspi et al. (2007) Kaspi, S., Brandt, W. N., Maoz, D., et al. 2007, ApJ, 659, 997
  • King et al. (2015) King, A. L., Martini, P., Davis, T. M., et al. 2015, MNRAS, 453, 1701
  • Kokorev et al. (2023) Kokorev, V., Fujimoto, S., Labbe, I., et al. 2023, ApJ, 957, L7
  • Kollatschny (2003) Kollatschny, W. 2003, A&A, 412, L61
  • Kormendy & Ho (2003) Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511
  • Kovačević et al. (2020) Kovačević, A. B., Wang, J.-M., & Popović, L. Č. 2020, A&A, 635, A1
  • Kozłowski (2017) Kozłowski, S. 2017, ApJS, 228, 9
  • Krause et al. (2011) Krause, M., Burkert, A., & Schartmann, M. 2011, MNRAS, 411, 550
  • Krause et al. (2012) Krause, M., Schartmann, M., & Burkert, A. 2012, MNRAS, 425, 3172
  • Li et al. (2022) Li, S.-S., Feng, H.-C., Liu, H. T., et al. 2022, ApJ, 936, 75
  • Li et al. (2021) Li, S.-S., Yang, S., Yang, Z.-X., et al. 2021, ApJ, 920, 9
  • Liu et al. (2017) Liu, H. T., Feng, H.-C., & Bai, J. M. 2017, MNRAS, 466, 3323
  • Liu et al. (2022) Liu, H. T., Feng, H.-C., Li, S.-S., & Bai, J. M. 2022, ApJ, 928, 60
  • Liu et al. (2019) Liu, H. Y., Liu, W. J., Dong, X. B., et al. 2019, ApJS, 243, 21
  • Lu et al. (2016) Lu, K. X., Du, P., Hu, C., et al. 2016, ApJ, 827, 118
  • Lu et al. (2021) Lu, K. X., Wang, J. G., Zhang, Z. X., et al. 2021, ApJ, 918, 50
  • Marconi et al. (2008) Marconi A. et al. 2008, ApJ, 678, 693
  • Mas-Ribas & Mauland (2019) Mas-Ribas, L., & Mauland, R. 2019, ApJ, 886, 151
  • McConnell & Ma (2013) McConnell, N. J., & Ma, C.-P. 2013, ApJ, 764, 184
  • McLure & Dunlop (2004) McLure, R. J., & Dunlop, J. S. 2004, MNRAS, 352, 1390
  • Mediavilla & Insertis (1989) Mediavilla, E., & Insertis, F. M. 1989, A&A, 214, 79
  • Mediavilla et al. (2018) Mediavilla, E., Jiménez-Vicente, J., Fian, C., et al. 2018, ApJ, 862, 104
  • Mediavilla et al. (2020) Mediavilla, E., Jiménez-vicente, J., Mejía-Restrepo, J., et al. 2020, ApJ, 895, 111
  • Mediavilla & Jiménez-Vicente (2021) Mediavilla, E., & Jiménez-Vicente, J. 2021, ApJ, 914, 112
  • Meena et al. (2021) Meena, B., Crenshaw, D. M., Schmitt, H. R., et al. 2021, ApJ, 916, 31
  • Mejía-Restrepo et al. (2018) Mejía-Restrepo, J. E., Lira, P., Netzer, H., Trakhtenbrot, B., & Capellupo, D. M. 2018, Nature Astronomy, 2, 63
  • Naddaf et al. (2021) Naddaf, M. H., Czerny, B., & Szczerba, R. 2021, ApJ, 920, 30
  • Netzer & Marziani (2010) Netzer, H. & Marziani, P. 2010, ApJ, 724, 318
  • Nomura et al. (2020) Nomura, M., Ohsuga, K., & Done, C. 2020, MNRAS, 494, 3616
  • Onken et al. (2004) Onken, C. A., Ferrarese, L., Merritt, D., et al. 2004, ApJ, 615, 645
  • Pancoast et al. (2014a) Pancoast, A., Brewer, B. J., & Treu, T. 2014a, MNRAS445, 3055
  • Pancoast et al. (2014b) Pancoast, A., Brewer, B. J., & Treu, T., et al. 2014b, MNRAS445, 3073
  • Pei et al. (2014) Pei, L., Barth, A. J., Aldering, G. S., et al. 2014, ApJ, 795, 38
  • Pei et al. (2017) Pei, L., Fausnaugh, M. M., Barth, A. J., et al. 2017, ApJ, 837, 131
  • Peterson (1993) Peterson, B. M. 1993, PASP, 105, 247
  • Peterson et al. (2004) Peterson, B. M., Ferrarese, L., Gilbert, K. M., et al. 2004, ApJ, 613, 682
  • Peterson et al. (2005) Peterson, B. M., Bentz, M. C., Desroches, L. B., et al. 2005, ApJ, 632, 799
  • Piotrovich et al. (2015) Piotrovich, M. Y., Gnedin, Y. N., Silant’ev, N. A., Natsvlishvili, T. M., & Buliga, S. D. 2015, MNRAS, 454, 1157
  • Pozo Nuñez et al. (2012) Pozo Nuñez, F., Ramolla, M., Westhues, C., et al. 2012, A&A, 545, A84
  • Press et al. (1992) Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes (2nd edn.; Cambridge: Cambridge Univ. Press)
  • Rakić (2022) Rakić, N. 2022, MNRAS, 516, 1624
  • Shakura & Sunyaev (1973) Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
  • Shen et al. (2015a) Shen, Y., Brandt, W. N., Dawson, K. S., et al. 2015a, ApJS, 216, 4
  • Shen et al. (2015b) Shen, Y., Greene, J. E., Ho, L. C., et al. 2015b, ApJ, 805, 96
  • Shen et al. (2016) Shen, Y., Horne, K., Grier, C. J., et al. 2016, ApJ, 818, 30
  • Shen et al. (2019) Shen, Y., Hall, P. B., Horne, K., et al. 2019, ApJS, 241, 34
  • Singha et al. (2021) Singha, M., O’Dea, C. P., Gordon, Y. A., Lawlor-Forsyth, C., & Baum, S. A., 2021, ApJ, 918, 65
  • Spergel et al. (2007) Spergel, D. N., et al. 2007, ApJS, 170, 377
  • Sturm et al. (2018) Sturm, E., Dexter, J., et al. 2018, Nature, 563, 657
  • Tremaine et al. (2002) Tremaine, S., Gebhardt, K., Bender, R., et al. 2002, ApJ, 574, 740
  • Tremaine et al. (2014) Tremaine, S., Shen, Y., Liu, X., & Loeb, A. 2014, ApJ, 794, 49
  • Vestergaard & Peterson (2006) Vestergaard, M., & Peterson, B. M. 2006, ApJ, 641, 689
  • Wang et al. (2019) Wang, F. G., Wang, R., Fan, X. H., et al. 2019, ApJ, 880, 2
  • Wang et al. (2009) Wang, J. M., Chen Y. M, Hu, C., Mao, W. M., Zhang, S., & Bian, W. H. 2009, ApJ, 705, L76
  • Wang et al. (2014) Wang, J. M., Du, P., Hu, C., et al. 2014, ApJ, 793, 108
  • Wang et al. (2017) Wang, J. M., Du, P., Brotherton, M. S., et al. 2017, Nature Astronomy, 1, 775
  • Willott et al. (2010) Willott, C. J., Albert, L., Arzoumanian, D., et al. 2010, AJ, 140, 546
  • Woo et al. (2013) Woo J. H., Schulze A., Park D., Kang W. R., Kim S. C., & Riechers D. A., 2013, ApJ, 772, 49
  • Woo et al. (2015) Woo, J. H., Yoon, Y., Park, S., Park, D., & Kim, S. C. 2015, ApJ, 801, 38
  • Wu et al. (2015) Wu, X. B., Wang, F. G., Fan, X. H., et al. 2015, Nature, 518, 512
  • Xiao et al. (2018a) Xiao, M., Du, P., Horne, K., et al. 2018a, ApJ, 864, 109
  • Xiao et al. (2018b) Xiao, M., Du, P., Lu, K. K., et al. 2018b, ApJ, 865, L8
  • Yu et al. (2020) Yu, L. M., Zhao, B. X., Bian, W. H., Wang, C., & Ge, X. 2020, MNRAS, 491, 5881
  • Zhang et al. (2019) Zhang, Z. X., Du, P., Smith, P. S., et al. 2019, ApJ, 876, 49
  • Zhou et al. (2019) Zhou, H. Y., Shi, X. H., Yuan, W. M., et al. 2019, Nature, 573, 83